Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation

dc.contributor.authorAbsil, P-A
dc.contributor.authorMahony, Robert
dc.contributor.authorSepulchre, R
dc.date.accessioned2015-12-13T22:39:44Z
dc.date.available2015-12-13T22:39:44Z
dc.date.issued2004
dc.date.updated2015-12-11T09:51:58Z
dc.description.abstractWe give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in ℝn. In these formulas, p-planes are represented as the column space
dc.identifier.issn0167-8019
dc.identifier.urihttp://hdl.handle.net/1885/77911
dc.publisherKluwer Academic Publishers
dc.sourceActa Applicandae Mathematicae
dc.subjectKeywords: Algorithms; Matrix algebra; Nonlinear equations; Optimization; Problem solving; Set theory; Theorem proving; Euclidean space; Grassmann manifolds; Invariant subspace; Newton method; Computational geometry Geodesic; Grassmann manifold; Invariant subspace; Levi-civita connection; Mean of subspaces; Newton method; Noncompact stiefel manifold; Parallel transportation; Principal fiber bundle
dc.titleRiemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation
dc.typeJournal article
local.bibliographicCitation.issue2
local.bibliographicCitation.lastpage220
local.bibliographicCitation.startpage199
local.contributor.affiliationAbsil, P-A, Catholic University of Louvain
local.contributor.affiliationMahony, Robert, College of Engineering and Computer Science, ANU
local.contributor.affiliationSepulchre, R, Universite de Liege
local.contributor.authoruidMahony, Robert, u4033888
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor010303 - Optimisation
local.identifier.ariespublicationMigratedxPub6646
local.identifier.citationvolume80
local.identifier.doi10.1023/B:ACAP.0000013855.14971.91
local.identifier.scopusID2-s2.0-1442336159
local.type.statusPublished Version

Downloads