Local and dimension adaptive stochastic collocation for uncertainty quantification

dc.contributor.authorJakeman, John D.en
dc.contributor.authorRoberts, Stephen G.en
dc.date.accessioned2025-06-15T13:33:40Z
dc.date.available2025-06-15T13:33:40Z
dc.date.issued2013en
dc.description.abstractIn this paper we present a stochastic collocation method for quantifying uncertainty in models with large numbers of uncertain inputs and non-smooth input-output maps. The proposed algorithm combines the strengths of dimension adaptivity and hierarchical surplus guided local adaptivity to facilitate computationally efficient approximation of models with bifurcations/ discontinuties in high-dimensional input spaces. A comparison is made against two existing stochastic collocation methods and found, in the cases tested, to significantly reduce the number of model evaluations needed to construct an accurate surrogate model. The proposed method is then used to quantify uncertainty in a model of flow through porous media with an unknown permeability field. A Karhunen-Loève expansion is used to parameterize the uncertainty and the resulting mean and variance in the speed of the fluid and the time dependent saturation front are computed.en
dc.description.statusPeer-revieweden
dc.format.extent23en
dc.identifier.isbn9783642317026en
dc.identifier.issn1439-7358en
dc.identifier.otherScopus:84874430506en
dc.identifier.otherARIES:f5625xPUB2775en
dc.identifier.otherORCID:/0000-0002-6730-3108/work/162592376en
dc.identifier.urihttp://www.scopus.com/inward/record.url?scp=84874430506&partnerID=8YFLogxKen
dc.identifier.urihttps://hdl.handle.net/1885/733761997
dc.language.isoenen
dc.relation.ispartofseriesLecture Notes in Computational Science and Engineeringen
dc.titleLocal and dimension adaptive stochastic collocation for uncertainty quantificationen
dc.typeConference paperen
local.bibliographicCitation.lastpage203en
local.bibliographicCitation.startpage181en
local.contributor.affiliationJakeman, John D.; Purdue Universityen
local.contributor.affiliationRoberts, Stephen G.; Mathematics Programs, Mathematical Sciences Institute, ANU College of Systems and Society, The Australian National Universityen
local.identifier.doi10.1007/978-3-642-31703-3-9en
local.identifier.pure647c6a48-0f28-4f20-ae21-29964fe8f521en
local.type.statusPublisheden

Downloads