Internal Structure Identification of Random Process Using Principal Component Analysis

dc.contributor.authorZhang, Mengqiu (Karan)
dc.contributor.authorKennedy, Rodney
dc.contributor.authorZhang, Wen
dc.contributor.authorAbhayapala, Thushara
dc.coverage.spatialGold Coast Australia
dc.date.accessioned2015-12-10T22:58:01Z
dc.date.createdDecember 13-15 2010
dc.date.issued2010
dc.date.updated2016-02-24T11:01:52Z
dc.description.abstractPrincipal component analysis (PCA) is known to be a powerful linear technique for data set dimensionality reduction. This paper focuses on revealing the essence of PCA to interpret the data, which is to identify the internal structure of the random process from a large experimental data set. We give an explanation of the PCA procedure performed on a generated data set to demonstrate the exact meaning of the dimensionality reduction. Especially, a method is proposed to precisely determine the number of significant principal components for a random process. Then, the internal structure of the random process can be modeled by analyzing the relation between the PCA results and the original data set. This is vital in the efficient random process modeling, which is finally applied to an application in HRTF Modeling.
dc.identifier.isbn9781424479078
dc.identifier.urihttp://hdl.handle.net/1885/60675
dc.publisherIEEE Communications Society
dc.relation.ispartofseriesInternational Conference on Signal Processing and Communication Systems (ICSPCS 2010)
dc.sourceProceedings of the International Conference on Signal Processing and Communication Systems (ICSPCS 2010)
dc.subjectKeywords: Data sets; Dimensionality reduction; Experimental data; Internal structure; Linear techniques; Principal Components; Process Modeling; Communication systems; Random processes; Signal processing; Principal component analysis
dc.titleInternal Structure Identification of Random Process Using Principal Component Analysis
dc.typeConference paper
local.bibliographicCitation.lastpage4
local.bibliographicCitation.startpage1
local.contributor.affiliationZhang, Mengqiu (Karan), College of Engineering and Computer Science, ANU
local.contributor.affiliationKennedy, Rodney, College of Engineering and Computer Science, ANU
local.contributor.affiliationAbhayapala, Thushara, College of Engineering and Computer Science, ANU
local.contributor.affiliationZhang, Wen, CSIRO
local.contributor.authoremailu8607590@anu.edu.au
local.contributor.authoruidZhang, Mengqiu (Karan), u4332252
local.contributor.authoruidKennedy, Rodney, u8607590
local.contributor.authoruidAbhayapala, Thushara, u9701943
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor090609 - Signal Processing
local.identifier.absseo970109 - Expanding Knowledge in Engineering
local.identifier.ariespublicationu4334215xPUB555
local.identifier.doi10.1109/ICSPCS.2010.5709648
local.identifier.scopusID2-s2.0-79952525537
local.identifier.uidSubmittedByu4334215
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01_Zhang_Internal_Structure_2010.pdf
Size:
155.19 KB
Format:
Adobe Portable Document Format