3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data

dc.contributor.authorPilla, Kala
dc.contributor.authorOtting, Gottfried
dc.contributor.authorHuber, Thomas
dc.contributor.editorKeith, Jonathan
dc.date.accessioned2021-04-27T01:03:54Z
dc.date.issued2017
dc.date.updated2020-11-23T10:04:24Z
dc.description.abstractComputational modeling of proteins using evolutionary or de novo approaches offers rapid structural characterization, but often suffers from low success rates in generating high quality models comparable to the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. A computational/experimental hybrid approach incorporating sparse experimental restraints in computational modeling algorithms drastically improves reliability and accuracy of 3D models. This chapter discusses the use of structural information obtained from various paramagnetic NMR measurements and demonstrates computational algorithms implementing pseudocontact shifts as restraints to determine the structure of proteins at atomic resolutionen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9781493966110en_AU
dc.identifier.urihttp://hdl.handle.net/1885/231009
dc.language.isoen_AUen_AU
dc.publisherHumana Press Inc.en_AU
dc.relation.ispartofMethods in Molecular Biology - Bioinformatics: Structure, Function and Applicationsen_AU
dc.relation.isversionof1st Edition
dc.rights© Springer Science+Business Media New York 2017en_AU
dc.title3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Dataen_AU
dc.typeBook chapteren_AU
local.bibliographicCitation.lastpage21en_AU
local.bibliographicCitation.placeofpublicationUSA
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationPilla, Kala, College of Science, ANUen_AU
local.contributor.affiliationOtting, Gottfried, College of Science, ANUen_AU
local.contributor.affiliationHuber, Thomas, College of Science, ANUen_AU
local.contributor.authoruidPilla, Kala, u4945883en_AU
local.contributor.authoruidOtting, Gottfried, u4046684en_AU
local.contributor.authoruidHuber, Thomas, u9512183en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.identifier.absfor030606 - Structural Chemistry and Spectroscopyen_AU
local.identifier.absseo970103 - Expanding Knowledge in the Chemical Sciencesen_AU
local.identifier.ariespublicationu8801298xPUB229en_AU
local.identifier.doi10.1007/978-1-4939-6613-4_1en_AU
local.identifier.scopusID2-s2.0-85000819227
local.publisher.urlhttps://link.springer.com/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Pilla_3D_Computational_Modeling_of_2017.pdf
Size:
6.65 MB
Format:
Adobe Portable Document Format
Description: