Quasi-diagonal flows

dc.contributor.authorKishimoto, Akitaka
dc.contributor.authorRobinson, Derek
dc.date.accessioned2015-12-07T22:42:36Z
dc.date.issued2011
dc.date.updated2016-02-24T11:17:18Z
dc.description.abstractWe introduce two notions for flows (or one-parameter automorphism groups) on quasi-diagonal C*-algebras, quasi-diagonal and pseudodiagonal flows; the former being apparently stronger than the latter. We derive basic facts about these flows and give various examples. In addition we extend results of Voiculescu from quasi-diagonal C*-algebras to these flows.
dc.identifier.issn0379-4024
dc.identifier.urihttp://hdl.handle.net/1885/24617
dc.publisherTheta Foundation
dc.sourceJournal of Operator Theory
dc.subjectKeywords: Approximately inner; C*-algebra; Crossed product; Flow; KMS state; Pseudo-diagonal; Quasi-diagonal; Weyl-von Neumann theorem
dc.titleQuasi-diagonal flows
dc.typeJournal article
local.bibliographicCitation.issue2
local.bibliographicCitation.lastpage384
local.bibliographicCitation.startpage353
local.contributor.affiliationKishimoto, Akitaka, Hokkaido University
local.contributor.affiliationRobinson, Derek, College of Physical and Mathematical Sciences, ANU
local.contributor.authoruidRobinson, Derek, u8200089
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor010108 - Operator Algebras and Functional Analysis
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
local.identifier.ariespublicationu4685828xPUB33
local.identifier.citationvolume66
local.identifier.scopusID2-s2.0-82355182370
local.identifier.thomsonID000298762800005
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Kishimoto_Quasi-diagonal_flows_2011.pdf
Size:
290.6 KB
Format:
Adobe Portable Document Format