ANU Open Research Repository will be unavailable 8am-9am on Tuesday 20th August 2024 due to scheduled maintenance.
 

A theoretical model for horizontal convection at high Rayleigh number

dc.contributor.authorHughes, Graham
dc.contributor.authorGriffiths, Ross
dc.contributor.authorMullarney, J
dc.contributor.authorPeterson, William H
dc.date.accessioned2015-12-08T22:35:45Z
dc.date.issued2007
dc.date.updated2015-12-08T09:44:44Z
dc.description.abstractWe present a simple flow model and solution to describe 'horizontal convection' driven by a gradient of temperature or heat flux along one horizontal boundary of a rectangular box. Following laboratory observations of the steady-state convection, the model is based on a localized vertical turbulent plume from a line or point source that is located anywhere within the area of the box and that maintains a stably stratified interior. In contrast to the 'filling box' process, the convective circulation involves vertical diffusion in the interior and a stabilizing buoyancy flux distributed over the horizontal boundary. The stabilizing flux forces the density distribution to reach a steady state. The model predictions compare well with previous laboratory data and numerical solutions. In the case of a point source for the plume (the case which best mimics the localized sinking in the large-scale ocean overturning) the thermal boundary layer is much thicker than that given by the two-dimensional boundary layer scaling of H. T. Rossby (Tellus, vol. 50, 1965, p. 242).
dc.identifier.issn0022-1120
dc.identifier.urihttp://hdl.handle.net/1885/34990
dc.publisherCambridge University Press
dc.sourceJournal of Fluid Mechanics
dc.subjectKeywords: Boundary layers; Buoyancy; Diffusion; Heat flux; Mathematical models; Numerical methods; Thermal gradients; Turbulence; Convective circulation; Horizontal convection; Rayleigh number; Heat convection; Boundary layers; Buoyancy; Diffusion; Heat convection;
dc.titleA theoretical model for horizontal convection at high Rayleigh number
dc.typeJournal article
local.bibliographicCitation.lastpage276
local.bibliographicCitation.startpage251
local.contributor.affiliationHughes, Graham, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationGriffiths, Ross, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationMullarney, J, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationPeterson, William H, No formal affiliation
local.contributor.authoremailu8912812@anu.edu.au
local.contributor.authoruidHughes, Graham, u8912812
local.contributor.authoruidGriffiths, Ross, u8300081
local.contributor.authoruidMullarney, J, u4024764
local.description.embargo2037-12-31
local.description.notesImported from ARIES
local.identifier.absfor040403 - Geophysical Fluid Dynamics
local.identifier.ariespublicationu4353633xPUB119
local.identifier.citationvolume581
local.identifier.doi10.1017/S0022112007005630
local.identifier.scopusID2-s2.0-34548173727
local.identifier.uidSubmittedByu4353633
local.type.statusPublished Version

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Hughes_A_theoretical_model_for_2007.pdf
Size:
248.69 KB
Format:
Adobe Portable Document Format