Understanding magnetic relaxation in single-ion magnets with high blocking temperature

dc.contributor.authorChiesa, A.en
dc.contributor.authorCugini, F.en
dc.contributor.authorHussain, R.en
dc.contributor.authorMacaluso, E.en
dc.contributor.authorAllodi, G.en
dc.contributor.authorGarlatti, E.en
dc.contributor.authorGiansiracusa, M.en
dc.contributor.authorGoodwin, C. A. P.en
dc.contributor.authorOrtu, F.en
dc.contributor.authorReta, D.en
dc.contributor.authorSkelton, J. M.en
dc.contributor.authorGuidi, T.en
dc.contributor.authorSantini, P.en
dc.contributor.authorSolzi, M.en
dc.contributor.authorDe Renzi, R.en
dc.contributor.authorMills, D. P.en
dc.contributor.authorChilton, N. F.en
dc.contributor.authorCarretta, S.en
dc.date.accessioned2025-05-26T19:25:54Z
dc.date.available2025-05-26T19:25:54Z
dc.date.issued2020-05-04en
dc.description.abstractThe recent discovery of single-ion magnets with magnetic hysteresis above liquid-nitrogen temperatures placed these compounds among the best candidates to realize high-density storage devices. Starting from a prototypical dysprosocenium molecule, showing hysteresis up to 60 K, we derive here a general recipe to design high-blocking-temperature rare-earth single-ion magnets. The complex magnetic relaxation is unraveled by combining magnetization and nuclear magnetic resonance measurements with inelastic neutron scattering experiments and ab initio calculations, thus disentangling the different mechanisms and identifying the key ingredients behind slow relaxation.en
dc.description.statusPeer-revieweden
dc.format.extent1en
dc.identifier.otherBibtex:chiesa_understanding_2020en
dc.identifier.otherScopus:85085496264en
dc.identifier.urihttps://hdl.handle.net/1885/733753778
dc.language.isoenen
dc.sourcePhysical Review Ben
dc.titleUnderstanding magnetic relaxation in single-ion magnets with high blocking temperatureen
dc.typeJournal articleen
local.bibliographicCitation.startpage174402en
local.contributor.affiliationChiesa, A.; Università di Parmaen
local.contributor.affiliationCugini, F.; Università di Parmaen
local.contributor.affiliationHussain, R.; Università di Parmaen
local.contributor.affiliationMacaluso, E.; Università di Parmaen
local.contributor.affiliationAllodi, G.; Università di Parmaen
local.contributor.affiliationGarlatti, E.; Università di Parmaen
local.contributor.affiliationGiansiracusa, M.; University of Manchesteren
local.contributor.affiliationGoodwin, C. A. P.; University of Manchesteren
local.contributor.affiliationOrtu, F.; University of Manchesteren
local.contributor.affiliationReta, D.; University of Manchesteren
local.contributor.affiliationSkelton, J. M.; University of Manchesteren
local.contributor.affiliationGuidi, T.; Rutherford Appleton Laboratoryen
local.contributor.affiliationSantini, P.; Università di Parmaen
local.contributor.affiliationSolzi, M.; Università di Parmaen
local.contributor.affiliationDe Renzi, R.; Università di Parmaen
local.contributor.affiliationMills, D. P.; University of Manchesteren
local.contributor.affiliationChilton, N. F.; University of Manchesteren
local.contributor.affiliationCarretta, S.; Università di Parmaen
local.identifier.citationvolume101en
local.identifier.doi10.1103/PhysRevB.101.174402en
local.identifier.pureea062133-53cc-4612-b731-487eac48e825en
local.type.statusPublisheden

Downloads