Overlapping additive Schwarz preconditioners for boundary element methods

dc.contributor.authorTran, T
dc.date.accessioned2015-12-13T23:17:50Z
dc.date.available2015-12-13T23:17:50Z
dc.date.issued2000
dc.date.updated2015-12-12T08:54:36Z
dc.description.abstractWe study overlapping additive Schwarz preconditioners for the Galerkin boundary element method when used to solve Neumann problems for the Laplacian. Both the h and p versions of the Galerkin scheme are considered. We prove that the condition number of the additive Schwarz operator is bounded by O(1 + log2(H/δ)) for the h version, where H is the size of the coarse mesh and d is the size of the overlap, and bounded independently of the mesh size and the polynomial order for the p version.
dc.identifier.issn0897-3962
dc.identifier.urihttp://hdl.handle.net/1885/89891
dc.publisherRocky Mountain Mathematics Consortium
dc.sourceJournal of Integral Equations and Applications
dc.subjectKeywords: Additive Schwarz; Galerkin boundary element method; H version; Overlapping; P version; Preconditioned conjugate gradient
dc.titleOverlapping additive Schwarz preconditioners for boundary element methods
dc.typeJournal article
local.bibliographicCitation.issue2
local.bibliographicCitation.lastpage207
local.bibliographicCitation.startpage177
local.contributor.affiliationTran, T, College of Physical and Mathematical Sciences, ANU
local.contributor.authoruidTran, T, u9716743
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor010301 - Numerical Analysis
local.identifier.ariespublicationMigratedxPub20125
local.identifier.citationvolume12
local.identifier.doi10.1216/jiea/1020282169
local.identifier.scopusID2-s2.0-0004303257
local.type.statusPublished Version

Downloads