A comparison of classification algorithms within the Classifynder pollen imaging system

dc.contributor.authorLagerstrom, Ryanen
dc.contributor.authorArzhaeva, Yuliaen
dc.contributor.authorBischof, Leanneen
dc.contributor.authorHaberle, Simonen
dc.contributor.authorHopf, Felicitasen
dc.contributor.authorLovell, Daviden
dc.date.accessioned2025-07-08T12:23:22Z
dc.date.available2025-07-08T12:23:22Z
dc.date.issued2013en
dc.description.abstractWe describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.en
dc.description.statusPeer-revieweden
dc.format.extent10en
dc.identifier.issn0094-243Xen
dc.identifier.otherScopus:84887949143en
dc.identifier.otherORCID:/0000-0001-5802-6535/work/167653329en
dc.identifier.urihttps://hdl.handle.net/1885/733766491
dc.language.isoenen
dc.relation.ispartofseries2013 International Symposium on Computational Models for Life Sciences, CMLS 2013en
dc.sourceAIP Conference Proceedingsen
dc.subjectautomationen
dc.subjectclassificationen
dc.subjectpalynologyen
dc.subjectPollenen
dc.titleA comparison of classification algorithms within the Classifynder pollen imaging systemen
dc.typeConference paperen
dspace.entity.typePublicationen
local.bibliographicCitation.lastpage259en
local.bibliographicCitation.startpage250en
local.contributor.affiliationLagerstrom, Ryan; CSIROen
local.contributor.affiliationArzhaeva, Yulia; CSIROen
local.contributor.affiliationBischof, Leanne; CSIROen
local.contributor.affiliationHaberle, Simon; Sch of Culture History & Lang, School of Culture, History & Language, ANU College of Asia & the Pacific, The Australian National Universityen
local.contributor.affiliationHopf, Felicitas; Sch of Culture History & Lang, School of Culture, History & Language, ANU College of Asia & the Pacific, The Australian National Universityen
local.contributor.affiliationLovell, David; CSIROen
local.identifier.citationvolume1559en
local.identifier.doi10.1063/1.4825017en
local.identifier.pure13fdbf91-4f35-425f-933a-6bd0f714e3acen
local.identifier.urlhttp://www.scopus.com/inward/record.url?scp=84887949143&partnerID=8YFLogxKen
local.type.statusPublisheden

Downloads