Probabilistic Inference in Piecewise Graphical Models
Date
2016
Authors
Mohasel Afshar, Hadi
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In many applications of probabilistic inference the models
contain piecewise densities that are differentiable except at
partition boundaries. For instance, (1) some models may
intrinsically have finite support, being constrained to some
regions; (2) arbitrary density functions may be approximated by
mixtures of piecewise functions such as piecewise polynomials or
piecewise exponentials; (3) distributions derived from other
distributions (via random variable transformations) may be highly
piecewise; (4) in applications of Bayesian inference such as
Bayesian discrete classification and preference learning, the
likelihood functions may be piecewise; (5) context-specific
conditional probability density functions (tree-CPDs) are
intrinsically piecewise; (6) influence diagrams (generalizations
of Bayesian networks in which along with probabilistic inference,
decision making problems are modeled) are in many applications
piecewise; (7) in probabilistic programming, conditional
statements lead to piecewise models. As we will show, exact
inference on piecewise models is not often scalable (if
applicable) and the performance of the existing approximate
inference techniques on such models is usually quite poor.
This thesis fills this gap by presenting scalable and accurate
algorithms for inference in piecewise probabilistic graphical
models. Our first contribution is to present a variation of Gibbs
sampling algorithm that achieves an exponential sampling speedup
on a large class of models (including Bayesian models with
piecewise likelihood functions). As a second contribution, we
show that for a large range of models, the time-consuming Gibbs
sampling computations that are traditionally carried out per
sample, can be computed symbolically, once and prior to the
sampling process. Among many potential applications, the
resulting symbolic Gibbs sampler can be used for fully automated
reasoning in the presence of deterministic constraints among
random variables. As a third contribution, we are motivated by
the behavior of Hamiltonian dynamics in optics —in particular,
the reflection and refraction of light on the refractive
surfaces— to present a new Hamiltonian Monte Carlo method that
demonstrates a significantly improved performance on piecewise
models.
Hopefully, the present work represents a step towards scalable
and accurate inference in an important class of probabilistic
models that has largely been overlooked in the literature.
Description
Keywords
Piecewise, Graphical models, probabilistic inference, MCMC, sampling
Citation
Collections
Source
Type
Thesis (PhD)
Book Title
Entity type
Access Statement
License Rights
Restricted until
Downloads
File
Description