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Chapter 5 Major Elements 

CHAPTER 5 MAJOR ELEMENTS 

The aims of investigating the major-element chemistry of precipitation from the 

present study are two-fold. In a general sense, the data from remote localities will 

provide information on baseline levels of constituents in unpolluted atmospheres, 

and will add to the sparse data base of precipitation chemistry from Australia. Of 

particular relevance to the present investigation however, is that an understanding of 

the major-element chemistry and the processes that affect it at different times and 

locations around Australia, will provide a basis upon which 36Cl data can be 

interpreted. 

Since the initiation of the sampling program in March of 1991, a total of 148 

samples have been collected. Each sample was analysed for Cl, S04, N03, HP04, 

Br, Na, K, NH4, Ca, Mg and pH, and the data split into two groups, those from the 

WE array (80 samples) and those from the SN array (68 samples). Following data 

quality checks outlined below, the data for 7 samples have been removed from the 

WE data set leaving 73 samples for detailed analysis, and 11 samples have been 

removed from the SN data set, leaving 57 samples for detailed analysis. The 

complete data set is listed in Appendix D. 

5.1 DATA QUALITY 

The data are subject to scrutiny with respect to their representativeness of 

precipitation in the co11ection area over the collection period. The following 

discussion applies the ion imbalance, regression and outlier analysis techniques 

described in Section 3.3 to each data set. Samples were only removed from the data 

set if they failed all the data quality checks. Thus, for example, while the dry 

samples from the northern section of the SN array had ion imbalances of greater than 

100%, they :;atisfied the outlier analysis check, and were retained in the data set. 

Ion Imbalance 

Tables 5.1 and 5.2 displ.:ly the ion imbalances for each sample collected from the 

WE and SN arrays respectively. Samples from the WE array with imbalances of 

greater than 100% are removed from the data set and are listed in Table 5.3. In each 

case, the imbalance can be attributed to contamination during sampling, eg. 

infestation of ants or the presence of algal matter, and are reflected by excessive 

amounts of cations, in particular NH4. 
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TABLE 5.1 Ion imbaiances for the WE array. Bold values highlight imbalances 

greater than 100%. 

Site Collection Period 

A91 W91 ~p91 S91 A92 W92 S_p92 S92 

16 Cliff Head 0 5 -1 41 14 24 11 ., 
•..t. 

17 West Morawa -17 -15 -20 6 32 11 79 -1 

18 Badja -3 -0.6 -37 26 59 12 31 15 

19 Iowna -48 13 -32 122 26 15 45 -14 

20 Barrambie -28 -42 -20 -23 124 90 45 -10 
21 Y eelirrie -17 -49 -9 -42 34 6 43 64 

22 Lake Violet -22 -64 -26 -17 37 25 25 29 

23 Carnegie -16 -74 -5 -6 30 35 12 81 

24 Gunbarrel -75 -88 -42 146 20 10 124 83 

25 Everard Junction -50 -91 -65 127 31 -10 139 123 

TABLE 5.2 Ion imbalances for the SN array. Bold values highlight imbalances 
greater than 100%. · __ , . . ' 

Site Collection Period 

W92 S_p92 S92 A93 W93 Sp93 S93 A94 

26 Port Lincoln 3 58 7 -58 11 16 28 14 

27a Gawler Ranges 13 61 30 40 25 31 5 88 

27b Gawler Ranges 24 29 10 84 

28 Wintinna -9 40 20 58 -16 23 38 67 

29 Alice Springs 14 32 131 -12 17 11 24 26 

30 Tennant Creek 70 22 197 104 19 33 86 93 

31 Dunmarra 112 35 75 105 91 37 100 57 

32 Katherine 132 104 64 61 125 117 40 92 

33 Kapalga 91 70 82 24 126 148 90 169 

An apparent high ionic imbalance may also occur for samples where ionic strengths 

are at or near to analytical detection limits, where poorer precision can e_xaggerate 

differences. This is illustrated for the WE array in Table 5.4. Low total ionic 

strength for each season gives higher occurrences of imbalances greater than 50%. 

In comparison, the site at Cliff Head (site 16) exhibit~ a high ionic strength and nil 
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imbalances greater than 50%. This has been noted elsewhere (Ayers and Manton 

1991). 

TABLE 5.3 Samples removed from the WE data set, ion imbalances and reasons for 

removal. 

Sample Ion ImbaJaace % Reac:ons for Removal 

19-S91 Iowna 122 growth of algae 

24-S91 Gunbarrel 146 insect infestation 

25-S91 Everard Junction 127 insects and algae 

20-A92 Barrambie 124 insects 

24-Sp92 Gunbarrel 124 ant infestation 

2~-Sp9? t:<;verard Junction 139 ant infestation 

25-S92 Everard Junction 123 ant infestation J 
TABLE 5.4 Relationship between total ionic.concentration and ionic imbalance for 

samples from the WE array. 

Site Mean total Imbalance 

ions JleqiL <10% 10 to 20to 50 to >100% 

<20% <50% .<100% 

16 Cliff Head 975 4 2 2 0 0 
' 

17 Morawa 220 2 3 2 1 0 

18 Badja 176 2 1 3 2 0 

19 Iowna 170 0 3 4 1 1 

20 Barrambie 23I 0 1 5 1 I 

21 Yeelirrie 87 2 1 4 1 0 

22 Lake Violet 175 0 1 6 I 0 

23 Carnegie 93 2 2 2 2 0 

24 Gunbarrel 69 1 1 2 2 2 

25 Everard Junction 85 0 1 2 2 3 

Table 5.5 displays the samples that have been removed from the SN data set. As in 

the WE data set, each of these samples can be directly attributed to contamination 

during the sampling program. Sample 26-A93 displays a very high concentration of 

S04 which acts to produce a high negative imbalance. While no obvious source of 

contamination was observed in the sample, the outlier analysis that follows justifies 
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the removal of this sample from the data set. It should be noted that dry samples 

with imbalances of greater than 100% have not been removed, and the reasons for 

this are shown in the following section. 

Several features noted in the ion balances for the SN data set are shown in Table 5.6. 

· Firstly there is a predominance of positive imbalances (i.e. indicating higher cation 

concentrations than anion concentrations). Secondly, the more northerly sampling 

localities in the array (sites 30 to 33) show a higher occurrence of imbalances of 

greater than 100%. These two features may reflect the absence of the measurement 

of all anions in the analytical program. The most likely missing anions are organic 

acids. Organic acids have been measured in rainfall from tropical regions (Noller et 

al 1990) where they have been found to be a major anion. However, organic acids 

were not measured in the present investigation as steps taken to preserve the organic 

acids in the sample during tield collection were unsuccessful (Section 3.1) and the 

facility to measure organic acids as part of the analytical program did not exist at the 

Research School of Earth Sciences, Australian National University. The absence of 

rainfall during the non-monsoonal period in the northern half of the array is another 

feature that can be correlated with the higher occurrence of inn imbalances ·in the 

more northern section of the array. Finally, as seen in the WE array, low ionic 

strengths in some samples are correlated with increased ionic imbalances (Table 

5.6). 

TABLE 5.5 Samples removed from the SN data set, ion imbalances and reasons for 

removal. Cases marked with an * are removed because a reliable record of the 

volume of rain for the sampling period was not recorded due to the inappropriate 
d. fh I ~ h . 1 es1gn o t e co lector or t at part1cu ar season. 

Sample Ion Imbalance % Reasons for Removal 

26-A93 Port Lincoln -58 elevated so4 (?) 

29-S92 Alice Springs 131 ants nest 

30-S92 Tennant Creek 197 tield site disrupted 

30-A93 Tennant Creek 104 algae 

31-S92 Dunmarra 75 field site disrupted 

31-A93 Dunmarra 105 algae 

32-S92 Katherine 64 unknown volume* 

32-Sp93 Katherine 117 field site disrupted 

33-S92 Kapalga 82 unknown volume* 

33-Sp93 Kapalga 148 ash/algae 
33-A94 Kapalga 169 ash 
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TABLE 5.6 Relationship between total ionic concentration and ion imbalar.ces for 

samples from the SN array. 

Site mean total Imbalance 

ions ~q/L <10% lOto 20to 50 to >100% 

<20% <50% <100% 

26 Port Lincoln 1137 2 3 1 2 0 

27a Gawler Ranges 383 1 1 4 2 0 

27b Gawler Ranges 383 1 0 2 1 0 

28 Wintinna 242 1 2 3 2 0 

29 Alice Springs 202 0 4 3 0 1 

30 Tennant Creek 549 0 1 2 3 2 

31 Dunmarra 131 0 0 2 3 3 

32 Katherine 578 0 0 1 3 4 

33 Kapalga !47 0 ·0 1 4 3 

Regression 
Figure 5.1 shows the plots of total cations versus total anions for the WE and SN 

arrays. All. samples are shown on the plots, including those removed from the data 

which failed to meet the ion balance criteria above. Also shown on the plots is C1e 

regression line derived using the reduced major axis technique. The results of the 

reduced major axis regression are also shown in Table 5.7. The data set used in 

these regressions does not include data with ionic imbalances of greater than 100%. 

In an ideal situation, where all ions are accounted for and analytical error does not 

exist, a regression slope of unity and intercept of zero will be attained. The results 

listed in Table 5.7 show a very high correlation coefficient between anions and 

cations for the WE data set, and a calculated slope and intercept close to the ideal 

situation at the 68% confidence interval (within twice the standard error). The 

coefficient of correlation for the SN data set is lower than for the WE data set, 

reflecting the high imbalances introduced by the dry samples. However, the slope 

and intercept of the regression fall within the bounds of an ideal situation at the 68% 

confidence interval (within two times the standard error), as is shown in Figure 5.1 
where the data fall in the area bounded by the upper and lower 2cr limits rather than 

on the reduced major axis regression line. 
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FIGURE 5.1 Total anions versus total cations (J.leq/L) for a) WE Array and b) the 
SN Array. The reduced major axis regression lines are shown as solid thick lines, and 
the 2cr errors as thin short-dashed lines. For comparison, the linear regression line is 
also shown, as the thin dotted line. For the SN data set, the reduced major axis line 
passes through the data points within the bounds of the 2cr error for the line, and 
there is poor agreement between the reduced major axis and linear regression lines. 
This lack of agreement most likely reflects the low correlation coefficient for the 
reduced major axis regression (R=0.74) which occurs because of the high ionic 
imbalances introduced by the dry samples from the NS array. · . 
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TABLE 5.7 Statistics for reduced major axis regression on WE and SN data sets. 

Statistic WE Array SN Array 

number of data points 73 58 

slope (std error) 1.025 (0.026) 1.004 (0.033) 

intercept (std error) 0.003 (0.008) 0.057 (0.071) 

correlation coefficient 0.99 0.74 

Outlier Analysis 

The geometric means used in the outlier analysis do not use the data removed 

during the ionic imbalance calculation. Samples with individual ionic 
concentrations that differ from the geometric mean by greater than 2cr for the WE 

array are listed in Table 5.8. As expected, these include all the samples with 

imbalances of greater than 100%. The remaining samples 21-Sp91 and 23-Sp91 

represent samples of very low rainfall amount and hence have elevated 

concentrations of ionic species. However, because of the good balance between 

anions and cations in these samples, as shown in Table 5.1, these samples are not 

removed from the data set. Samples with individual ionic concentrations that differ 
from. the geometric mean by greater than 2cr for the SN array coincide with those 

listed in Table 5.5, that have already been removed from the data set. Dry samples 
fell within 2cr of the geometric mean, justifying their inclusion in the SN data set. 

TABLE 5.8 Samples that lie outside 2cr of the geometric mean for each site. 

sample ion imbalance % rainfall mrn 

19-A92 Iowna 122 30 

24-A92 Gunbarrel 146 38 

25-A92 Everard Junction 127 98 

20-W92 Barrambie 124 268 

24-Sp92 Gunbarrel 124 23 

25-Sp92 Everard Junction 139 35 

25-S92 Everard Junction 123 34 

18-S92 Badja 15 3 

21-Sp91 Y eelirrie -9 0 

23-Sp9 Carnegie 1-5 0 
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5.2 GENERAL RELATIONSIDPS 

A summary of the minimum, maximum and means for each site: on the WE and SN 

arrays, expressed in units of total deposition (JJ.eq/m2/day) is given in Appendix E. 

A typical frequency distribution of ionic species for each array is shown in Figure 

5.2 for Cl which reveals a skewed distribution towards lower concentrations. Figure 

5.3 confirms that the distribution displayed by the ions is approximately log-norrr.dl, 

a feature that hr-s previously been noted by other workers (eg. Saylor et al 1992). 

The relative mag1'tirude of ionic species over the entire WE array is Cl > Na > S04 > 

Ca > N03 > Mg.> H > NH4 > HP04 > Br. The general relative magnitude of ionic 

species for the SN data set is Cl, Na > S04, Ca, Mg > K, HP04, N03, N~ > Br. 

NH4 displays locally high concentrations eg. at sites 30 (Tennant Creek) and 32 

(Katherine). Ionic pair correlations and rainfall amount for each array are listed in 

T~ble 5.9 and 5.10. High affinities (greater than 0.5) are displayed between most 

species for the WE data set except H, HP04 and Nfi4. The low affinities of these 

latter ions may be due to the influence of biodegradation on the concentration vi 
these species. Good correlations are displayed between Cl, S04, Na, Ca and ~~g in 

the SN data set. K displays good correlations with Ca, Mg, and HP04, and N03 

correlates well-with Ca, S04 and H (inversely). Both H and rainfall amount show 

negative correlations with all species. 

TABLE 5.9 Table of ionic pair correlation coefficients for the WE array. Bold 

values highlight correlations of greater than 0.4. 

rain H Cl so4 N03 HP04 Br Na K NR4 Ca M~ 

ram 1 

H -.17 1 

Cl -.02 -.38 1 

so4 -.30 -.16 .79 1 

N03 -.37 .07 .28 .72 I 

HP04 -.18 -.27 .35 .42 .31 1 

Br -.08 -.11 .57 .56 .31 .29 1 

Na -.11 -.37 .98 .84 .38 .39 .59 1 

K -.27 -.40 .59 .75 .48 .40 .30 .66 1 

NR4 -.05 -.27 -.01 .00 .02 .03 -.16 -.04 .31 1 

Ca -.3 -.39 .77 .86 .58 .42 .52 .82 .77 .18 1 

Mg -.17 -.40 .95 .85 .40 .37 .54 .97 .72 .01 .88 1 
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TABLE 5.10 Table of ionic pair correlation coefficients for the SN data set. Bold 

values highlight correlations of greater than 0.4. 

rain H Cl so4 N03 HP04 Br Na K NH4 Ca Mg 

rain 1 

H .14 1 

Cl -.34 -.25 

S04 -.59 -.24 .75 1 

N03 -.68 -.13 .31 .59 1 'L 
HP04 -.20 -.38 .25 .28 .22 1 

Br .01 .19 .57 .44 .17 .25 I 

Na -.35 -.27 .97 .82 .38 .22 .56 1 

K -.48 -.31 .45 .50 .37 .67 .33 .44 1 -· 
NH4 -.03 -.33 -.04 .11 -.03 .42 -.24 -.08 .37 1 

Ca -.53 -.47 .87 .75 .51 .39 .33 .84 .57 .09 1 

Mg -.37 -.37 .93 .78 .37 .31 .53 .95 .60 .01 .88 1 

The correlations give a general idea of the sources of ionic constituents to 

precipitation. For example, correlntions between Cl, Na, Mg, Ca, K and S04 

suggest a seawater origin, while a continental source of material would be indicated 

by similar correlations, but with elevated concentrations of K and Ca. The inverse 

correlation of rainfall volume with all species is a commonly noted feature of rainfall 

chemistry (Lindberg 1982, Khwaja and Husain 1990, Saylor et al 1992). One 

possible explanation involves a 'washout' effect of the rain cloud during initial stages 

of the rain period. This initially concentrated rainfall is then diluted if deposition 

continues. Saylor et al (1992) invoked in-cloud and below-cloud removal of 

aerosols during brief showers that occur after periods of dryness as a mechanism for 

concentrating ions in low rainfall amounts. As discussed in Chapter 4 other workers 

have recognised the significance of precipitation type, i.e. frontal or convective. For 

example, Likens et al (1984) suggest that evaporation below the cloud at the leading 

edge of a frontal storm may lead to increased concentrations of ions during the initial 

stages of a period of rainfall. 
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FIGURE 5.2 The frequency distribution of Cl deposition for a) all samples in the WE 
data set (n=73) and b) for all samples in the SN data set (n=57), remaining after data 
quality tests. The distribution is skewed towards lower concentrations. A similar 
pattern of distribution is displayed by the other major elements. 
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Spatial and Seasonal Variations 

WE Array 

Chapter 5 Major Elements 

Ionic fluxes generally decrease with increasing distance from the coast (Figure 5.4). 
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FIGURE 5.4 Mean deposition of a) anions and b) cations for the WE Array. Insets 
show spatial variations of ionic species with low deposition rates. Coastal localities 
have higher deposition rates than inland localites. See Figure 3.1 for site number 
localities. 

90 



Chapter 5 Major Elements 

This trend most likely reflects the decreasing influence of seawater on rainfall 

composition at continental sites. The general seasonal distribution of ionic fluxes 

over time is summarised in Figure 5.5. Maximum values occur in winter of each 

year, and minimum values in summer and autumn, reflecting the influence of rainfall 

volume on deposition. When individual ions are investigated (Figure 5.6) it can be 

seen that the above variation pattern is predominantly followed by Na, Mg, and Cl, 

ions characteristic of seawater. This may suggest there is a change in the influence 

of seawater on rainfall composition with time. The influence of seawater as a source 

of material to the chemistry of rainfall across the WE array is discussed in more 

detail later in this chapter. 
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FIGURE 5.5 Seasonal variations in the deposition of total cations and anions for the 
WE array. A91=autumn 91, W91=winter 91, Sp91=spring 91, S91=summer 91 etc. 
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FIGURE 5.6 Mean seasonal deposition of a) anions and b) cations for the WE 
Array. A91= Autumn 91, W9l=Winter 91, Sp91=Spring 91, S91=Surnrner 91 etc. 
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SNArray 
Figure 5. 7 show spatial variation of ionic deposition for the SN array. 
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FIGURE 5.7 Mean deposition of a) anions and b) cations for the SN Array. Insets 
show spatial variations of ionic species with low deposition rates. See Figure 3.1 for 
site number lO'~ations. 
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The most obvious pattern displayed by both cations and anions is for very high 

deposition rates at the southern coastal site, (26 Port Lincoln), decreasing inland, and 

increasing at the most northern site 33 (Kapalga). This pattern again most likely 

reflects the influence of seawater at the coastal margins of the continent. When the 

inland sites are examined in mere detail (Figure 5.7) a change in the significance of 

major chemical species is noted at sites 28 (Wintinna), 29 (Alice Springs), 31 

(Dunmarra) and 32 (Katherine). At these sites anions, S04 and N03 become as, or 

more, significant as Cl, and cations Nf4, Ca and Mg become comparable to Na. 

This again reflects the limited influence of seawater to deposition at these inland 

sites, where if it were significant, Na and Cl would be the most important species as 

at site 26 (Port Lincoln). The high flux of NH4 at sites 30, 31 and 33 most likely 

reflects the high level of biological activity as expected in tropical regions. 

The mean total ion deposition for each season is shown in Figure 5.8 for the southern 

and northern section of the SN array. Deposition in the south of the array is greater 

than in the north. Maximum deposition occurs in the south during spring 92, and the 

relatively high deposition that occurs during winter of each year, represent the 

importance of winter rainfall in the south of the array. Maximum deposition rates 

occur during the summer seasons in the north of the array, while minimum 

deposition occurs during winter of each year, reflecting the control of the monsoonal 

rainfall on deposition. When individual ions are investigated (Figure 5.9), it can be 

seen that t~e above seasonal variation patterns are predominantly followed by Na and 

Cl in the south of the array. In the north of the array the pattern is dominated by Cl, 

Na, S04, N03 and NH4. 

5.3 MULTIVARIATE RELATIONSIDPS 
Multivariate analysis is performed on total and subsets of WE and SN data sets to 

isolate the sources of ionic constituents in precipitation, by grouping ionic species 

with similar variances. The background, theory and previous examples of the 

application of factor analysis (FA) and principal component analysis (PCA) are 

given in Section 3.3. 

The application of FA to the data from both arrays reveals the influence of three 

major sources/processes that control the ionic composition of precipitation collected 

in the present investigation. These are termed a mixed seawater/continental source, 

acid-base balance factor and biodegradation. 
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SN Array Southern section (sites 26 to 29) 
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FIGURE 5.8 Seasonal variations in the deposition of total cations and anions for 
a) the southern section of the SN array and b) the northern section of the SN array. 
W93=winter 93, Sp93=spring 93, S93=summer 93, A93:::autumn 93 etc. 
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FIGURE 5.9 Mean seasonal deposition of a) anions and b) cations for the 
southern section of the SN array and c) anions and d) cations for the 
northern section of the SN array. A93= Autumn 93, W93=Winter 93, 
Sp93=Spring 93, S93=Sumrner 93 etc. 
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The seawater/continental source defines common variation between Cl, Na, Mg, 

S04, Br, Ca and K. FA is generally unable to distinguish between the two end

members of this source, although dividing the data into subsets (eg. coastal and non

coastal) shows higher loadings of seawater constituents (Cl, Na and Mg) with respect 

to continentally sourced ions (eg. Ca and K) in coastal subsets. The natural acid

base balance factor groups all or some of N03, S04 and H. Biodegradation groups 

NH4, H, K and HP04. HP04 may also indicate agricultural input in the form of 

fertiliser, and may be particularly significant in the southern section of the SN array 

where agricultural activities are concentrated. Note that the assignment of sources 

based upon species groupings is a subjective process. 

The significance of the influence of each of the three factors differs between data sets 

and subsets, and in some cases a factor may be described in tenns of a combination 

of sources. For example, a mixed seawater/continental/biodegradation source may 

be invoked to explain the grouping of Cl, Na, Mg, S04, Ca, K, NH4 and H. 

Principal component analysis is applied to subsets made up of data for individual 

sites and isolates the same three sources/processes as FA performed on the larger 

data sets. 

Within the framework provided by the three factors described above the following 
discussion describes details of the application of FA and PCA to the WE and SN data 
sets (and subsets of these). Because of the approximately Iog-nmmal distribution of the 
data described above, all multivariate analyses are performed on log-transformed data. 
Factor loadings of greater than 0.4 are considered to be significant, following the 
technique of Crawley and Sievering (1986). 

Factor Analysis of the WE Data Set 
The results of the FA of the total WE data set are shown in Table 5.11. The three 

factors described above exp!!l.in 78% of the variance in the data set. High loading of 

seawater components (i.e. Na, Cl and Mg) in the mixed seawater/continental factor 

indicates the predominance of seawater in this mixed source. The presence of Br in 

the acid-base balance factor most likely reflects the low concentration of this ion 

(usually less than the level of detection) at all sites except the coastal site 16 (Cliff 

Head), and is therefore most likely an artifact of the measurement technique. The 

relationships between the factor loadings of each species c?.n be more clearly see:n in 
the factor loading diagrams of Figure 5.10. In these plots factor loadings are plotted 

as co-ordinates. Species that have high loadings on a single factor will cluster along 

the end of the axis of that factor, eg. Cl, Na and Mg for factor 1. Species that cluster 
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near the. ori~in have small loadings on both factors, eg. Na, Cl and Mg for factor 2 

and 3. S~cies that plot between two axes may be explained by two factors, eg. K 

for factors 1 and 3. 
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FIGURE 5.10 Factor loading plots for data from the WE array. Fl, F2 and F3 
represent factor 1, factor 2 and factor 3. Species that have high loadings on a single 
factor cluster along the end of the axis for that factor, eg. Na, Cl and Mg h:1ve high 
loadings on Fl. Species that cluster near the origin, have small loadings on both 
factors in the plot, eg. Na, Cl and Mg for F2 and F3. Species that plot between two 
axes may be explained in terms of two factors, eg. K for Fl and F3. 

TABLE 5.11 Factor loadings for the WE data set (n=73). Bold values highlight 

loadings of greater than 0.4. 
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Factor Factor 1 Factor 2 Factor 3 

%variance 52.9% 14.9% 9.9% 

eigenvalue 5.8 1.6 1.1 

H -0.14 0.89 -0.10 

Cl· 0.96 0.15 0.06 

so4 0.90 0.29 0.15 

N03 0.18 0.64 0.17 

HP04 0.34 -0.11 0.34 

Br 0.56 0.67 0.16 

Na 0.97 0.11 0.10 

K 0.61 -0.03 0.63 

NH4 0.00 0.26 0.90 
Ca 0.86 -0.04 0.31 

Mg 0.96 0.08 0.16 

source/process seawater/continental acid/base balance biodegradation 

The results of this FA suggest the major source of ionic constituents to WE 

precipitation is of mixed seawater/continental origin. The relationship between the 

continental ru:td seawater source may be further investigated by dividing the data set 

into coastal and :Ion-coastal data sets based on the proximity of the sample location 

to the Western Australian coast, and comparing factor loadings for each data subset. 

Coastal localities were chosen to lie within 200 km of the coast, (after Simpson and 

Herczeg 1994), so include sites 16 (Cliff Head) to 18 (Badja). Inland c;ites include 

the remaining sampling localities, i.e. 19 (lowna) to 25 (Everard Junction). It should 

be noted here and tor elsewhere in this section that dividing the larger data set into 

subsets (i.e. coastal and non-1:oastal) has the effect of increasing the uncertainties 

associated with FA, because ~he number of cases is reduced. 

!he results ofF A performed on the coastal and non-coastal data subsets are summarised 
~ Tabl~ 5.12 and detailed in Appendix F. The results are similar to the FA performed on 

e entJre 'W!3 data set. However, the factor loadings of species in the mixed 
seawater/con~mental sour~e. are greater for the coastal data subset suggesting that at 
non-coastal Sites the remrurung two factors are also 1'mportant to th · f h 

· Th hi h · e vanance o t ese 
:h~ct~s. e g l~admg of all species into Fl for the coastal data subset rna; be 

wmgdthbe predorrunance of seawater as a source at the coast as is intuitively 
suggeste y the coastal locality of these sampling sites. ' 
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TABLE 5.12 Summary of FA perfonned on coastal and non-coastal data subsets. 

Ionic species are listed in order of decreasing factor loadings. 

Factor 1 Factor 2 Factor 3 

%variance 59% 13% 10% 

Coastal Mg, Cl, Na, S04, K, H, N03, Br NR4 

n=24 Ca, Br, HP04 

source/ rocess seawater/continental acid-base balance biode radation 

%variance 42% 16% 14% 

Non-coastal Na, Mg, Cl, S04, NJ-4, K, Ca, N~ H,N03 

n=49 Ca, N03 

source/ rocess seawater/continental biode radation/continental acid-base balance 

Principal Component Analysis on the WE Data Set 

The change in emphasis of each species in the three factors between the coastal and 

non-coastal data subsets can be further investigated by looking at principal 

component loadings that are calculated when the data set is divided into individual 

sites. PCA is used to calculate the principal component loadings as outlined in 

Section 3.3. The results of PCA on data sets of each site are shown in Figure 5.11 

and summarised in Table 5.13. The sites display variance explainable by three or 

four components. The loading of species in the fourth component for sites 19 

(Iowna) to 23 (Carnegie) represent duplications of one of the three sources/processes 

described by FA, thus Figure 5.11 shows only three components. Of note in Figure 

5.11 are both negative and positive component loadings, which provide additional 

information with regards to the importance of each component to a particular 

species. For example, Site 20 (Barrambie) shows highly negative loadings for 

species in PC2 (H, S04, N03, NH4 and Ca), suggesting the acid-base balance, 

biodegradation and possibly a gypsum (Ca and S04) input, while high positive 

loadings of Na and Cl may suggest halite input. 

All sites are characterised by a high loading of most species into PC l. At sites 16 

(Cliff Head) to 19 (lowna), 23 (Carnegie) and 25 (Everard Junction) the loading of 

species in PCl suggests a mixed seawater/continental origin. However, the high 

loadings of H and N03 in PCl for sites 20 (Barrambie), 21 (Yeelirrie), 22 (Lake 

Violet) and 24 (Gunbarrel) suggest a mixed continental/acid-base balance. The 
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• PCl 0 PC2 0 PC3 

FIGURE 5.11 Principal component loadings for individual sites along the WE 
array. PC = principal component loading. See Figure 3.1 for site number 
localities 
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extent of this influence at each site differs however, as suggested by the differences 

in variation explained by PC1 at each site (Table 5.13). As distance from the coast 

increases, the amount of variance explained by this mixed continental seawater 

source decreases from 66% at the coastal site to 37% at site 19 (lowna). Sites 23 

(Carnegie) and 25 (Everad Junction) display the influence of a mixed 

seawater/continental source, explaining approximately 50% of variance at these sites . 
... 

The lo"ding of species amongst the three PCs at inland sites, 20-25 (Barrambie to 

Everard Junction), may be interpreted as showing the stronger influence of 

continental sources of material to precipitation. For example, at site 20 (Barrambie ), 

PC2 shows high negative loadings of Ca, S04, N03 and H, and high positive 

loadings of Na and Cl, suggesting a mixed acid/base and continental source. The 

continental source in this case appears to be supplying halite. Other sites where a 

salt-lake source of material may be inferred include site 21 (Yeelirrie) and 22 (Lake 

Violet) where PC2 has high loadings for Ca and S04, suggesting a gypsum source, 

and PC3 has high loac!:ngs for Na and Cl, suggesting a halite source. Site 23 

(Carnegie) also shows high loadings of Na and CI for PC3. The importance of salt 

lakes as sources of material to these inland sh~.• is not surprising when the number of 

sait lakes in the proximity of the WE array is considered, and will be important in the 

discussions of 36CI compositions of Chapter 6. 

TABLE 5.13 Summary of variances attributable to each PC for the WE data set. 

site %variation %variation % variation . %variation 

PCl PC2 PC3 PC4 

16 Cliff Head 67 16 9 

17 Morawa 66 18 9 

18 Badja 55 23 11 6 

19 Iowna 37 25 18 10 

20 Barrambie 43 22 17 8 

21Yeelirrie 40 22 20 8 

22 Lake Violet 52 23 9 9 

23 Carnegie 49 23 14 7 

24 Gunbarrel 42 30 20 

25 Everard Junction 56 26 14 
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Acid-base balances and sample biodegradation are also significant at each site, being 

more so at inland sites than coastal localities. 

Factor Analysis of the SN Data Set 

Two factors explain 85% of the variance displayed by the SN data set (Table 5.14 

and Figure 5.12). The first factor (74%) suggests mixed seawater/continental and 

biodegradation, and the second ( 11% ), acid-base balances. Again, the high loading 

of Br in the second factor is most likely an artifact of the below-detection-level of Br 

at all sites except the coast, as described for the WE data set. The continental 

component of this mixed source may include an agricultural input, as suggested by 

the high loading of HP04 in factor 1. 

TABLE 5.14 Factor loadings for SN data set (n=57). Bold values highlight 

loadings of greater than 0.4. 

factor 1 factor 2 

%variation 73.5 10.6 

e!g_en value 8.1 1.2 

H 0.08 0.94 

Cl 0.85 0.35 

S04 0.89 0.33 

N03 0.74 0.50 

HP04 0.85 -0.23 

Br 0.76 0.60 

Na 0.87 0.37 

K 0.89 0.15 

NH.t 0.76 0.14 

Ca 0.90 0.26 

Mg 0.89 0.35 

source/process continental/seawater/ acid-base balance 

biodegradation 

The extreme differences in rainfall regimes experienced by the southern and northern 

sections of the SN array (i.e. the northern section experiences summer rainfall while 

the southern section experiences winter rainfall), suggests it may be useful to divide 

the SN data set into northern (30-33) and southern (26-29) sites. The northern data 

set is further subdivided into wet and dry sampling periods. The dry periods are 
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times when the prevailing wind direction is from the southeast (i.e. off the 

continent). The wet periods represent monsoonal and transitional monsoonal 

activity. The transitional monsoon periods are marked by the monsoonal trough 

existing north of the latitude of Jabiru (Gillett et al 1990) and therefore are also 

represented by southeasterly winds. However, as discussed in Chapter 2, the 

monsoonal period involves winds from the northeast. Thus dividing the northern 

data subset into wet and dry periods may provide some information about the effect 

of the monsoon on precipitation chemistry. The southern data subset is also further 

divided, into coastal (sites 26 and 27) and inland (sites 28 and 29) data subsets, to 

assess the effect of seawater input to these localities. 
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FIGURE 5.12 Factor loading plot for all data from the SN array. 

Northern Subset 

The results of the FA on the northern data subsets are summarised in Table 5.15 and 

detailed in Appendix F. A mixed seawater/continental and biodegradation source 

explains most of the variance for each data subset. Little effect on the overall 

variance explained by each factor is observed for the wet data set. The dry data set, 

however, has a lower amount of variance explained by the two-factor model (85%) 

than does the wet or complete northern data set (93%). The loading of individual 

species in each factor also differs between data subsets. High loadings of seawater 

species (i.e. Na, Cl and Mg) in the second factor for the wet data subset suggest an 

isolation of the seawater source associated with monsoonal and transitional monsoon 

deposition. This is not surprising since monsoonal precipitation moisture is derived 

from tropical marine air masses, as discussed in Chapter 2. It is also not surprising 
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that the distinct seawater source of wei: deposition explains only a very small 

proportion of the variance in the wet data subset, and indicates the influence of 

southeasterly winds during transitional periods when wet deposition occurred. 

TABLE 5.15 Summary ofF A performed on northern, northern wet and northern dry 

data subsets. Ionic species listed in order of decreasing factor loadings. 

Factor 1 Factor2 

%variance 82% 12% 

northern subset K, Na, Mg, Cl, Ca, HP04, H,N03 

(all seasons) so4,N~,N03 

n=24 

source/process seawater/continental and acid-base balance 

biodegradation 

%variance 81% 12% 

wet samples HP04, K, NH4, S04, Ca, CJ, H, N03, Mg, Na, Ca, Cl S04 

(n= 14) Na, Mg, N03 

source/process biodegradation and mixed acid-base balance and seawater 

continental seawater 

%variance 77% 8% 

dry samples Na, Cl, Mg, Ca, K, HP04, H,HP04, N03 

n=ll ~.N03 

source/process seawater/continental and acid-base balance 

biodegradation 

Southern Subset 

The results of the FA performed on data subsets from the southern section of the SN 

array are summarised in Table 5.16 and detailed in Appendix F. Three factors 

explain the variance of the data sets, with the loiidings of ionic species again 

suggesting the sources/processes discussed throughout this section. The high 

loading of HP04 in the third factor may represent an agricultural input. 

Isolation of seawater from the mixed seawater/continental source is again noted 

when the southern data set is divided into coastal and non-coastal subsets. The 

negative loading of Ca in the second factor may represent the neutralising property 

of CaC03, evidenced by the presence of carbonate crusts on dunes in the vicinity of 

the coastal site 26 (Port Lincoln). The non-coastal data subset shows lower 

magnitude in loadings of species for factor 1 than for the coastal data subset, 
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indicating the importance of factors 2 and 3 on the variance of the species in the non

coastal data subset. 

TABLE 5.16 Summary of FA perfonned on northern, northern wet and northern dry 

data subsets. Ionic species listed in order of decreasing factor loadings. 

Factor 1 Factor 2 Factor~ 

%variance 61% 12% 10% 

southern subset Mg, Cl, Na, Ca, H, N03, Br, S04, K HP04, Nli4 

(all sites) S04,K 

n=34 ~~ 

source/process mixed acid-base balance and biodegradation 

seawater/continental continental? 

%variance 57% 16% 16% 

Coastal Mg, Na, Cl, S04, K, H, N03, HP04, -Ca -NH4, HP04, 

n=l9 Br, H, Ca N03, Ca 

source/process seawater/continental acid-base balance biodegradation 

%variance r-60% 18% 10% 

Non-coastal Cl, Na, Mg, N03, H, S04, Mg, K, N03 HP04, K, NH4, 

n=l5 Cl, NH4, Ca Ca 

source/process seawater/continental acid-base balance and biodegradation 

continental 

Principal Components in the SN data set 

PCA perfonned on individual site data sets show very similar results to the FA for 

the various groups of data. Results of PCA on individual site data sets are shown in 

Figure 5.13 and summarised in Table 5.17. 

Variance at the southern sites can be explained by three components. The coastal 

site (26 Port Lincoln) has a PC1 with high loadings of seawater specie!;, while PC2 

represents mixed acid/base continental source with the neutralising role of Ca as 

sourced from calcareous dunes inferred by the high loading of Ca in this component. 

The third PC has high loadings of acid-base and biodegradation species. Site 27 

(Gawler Ranges) has similar loadings of species in the three components, although 

the seawater component is less significant in explaining the variance. At site 28 

(Wintinna), most of the variance can be explained in tenns of a continental source 

and acid-base balance. A mixed seawater/continental source makes up PC2 which is 

almost as significant as PC1, and PC3 represents a continental (po~sibly agricultural) 
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FIGURE 5.13 Principal component loadings for individual sites along the SN 
array. PC= principal component. 
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source. Sites 29-33 (Alice Springs to Kapalga) display two principal components, 

comprising a mixed continental/seawater/biodegradation origin and acid-base 

balances. The amount of variance explained by each component ranges between 79 

and 87% for PCI, and 8 to 11% for PC2. 

TAB.LE 5.17 Summary of variances attributable to each PC for the SN data set. 

site % variation PC 1 % variation PC2 % variation PC3 

26 Port Lincoln 60 20 10 

27 Gawler Ranges 37 32 18 

28 Wintinna 38 31 18 

29 Alice Springs 79 H 

30 Tennant Creek 85 12 

31 Dunmarra 85 w 
32 Katherine 79 17 

33 Ka al a 87 8 

The results of multivariate analyses performed on the SN data set reveal that 

variations are primarily controlled by the variations that occur in the northern half of 

the array. This is suggested by the similarity between results of FA analysis on the 

entire data set and the results of PCA on the northern most individual sites 29-33 

(Alice Springs to Kapalga). The northern sites of the array are influenced primarily 

by mixed continental/seawater/biodegradation sources. During periods of 

monsoonal and transitional precipitation, a seawater factor can be isolated in the 

variation displayed by the northern sites, but this factor is only responsible for a very 

small amount of variation during the wet season. The southern localities are 

influenced by three factors; a mixed seawater/continental source, acid-base balances 

and biodegradation. The coast proximal sites 26 (Port Lincoln) and 27 (Gawler 

Ranges) show the influence of a seawater source which contributes to a large 

proportion of variance (30-60% ). 

5.4 SPATIAL AND SEASO!·iAL VARIATIONS 
The results of multivariate analyses show that there are three major processes that 

affect the composition of rainfall across the arrays; the influx of a mixed 

seawater/continental source, natural acid/base balances in the atmosphere and 

decomposition of the sample between deposition and collection from the field. The 

following discussion assesses each of these processes in more detail. 
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Mixed Seawater/Continental Source 

The most significant source of material to the rain collectors along the WE and SN 

arrays is of mixed seawater/continental origin. The results of dividing the WE data 

set and southern section of the SN data set into coastal, non-coastal and individual 

sites, suggests that the relative input of a seawater and continental source is 
dependent on sample locality. The mean seasonal patterns of depositional flux, 

described in Section 5.2, suggest that there is a seasonal dependency in the supply of 

most species to the .collectors. The following discussion uses simple graphical 

techniques described in Section 3.3 to carry out a detailed investigation of the 

variations displayed by this mixed seawater/continental source over space and time. 

Spatial Variations along the WE Array 

The mean ratios of Cl, S04, K, Ca and Mg to Na at each site on the WE are shown in 

Figure 5.14. Also plotted are the ratios of these species in seawater. As expected, 

the coastal locality (site 16 piff Head) displays ratios found in seawater, suggesting 

the coastal rainwater samples represent diluted seawater. The Cl/Na ratio displays a 

decrease with increasing distance from the coast, while each of the ratios of the other 
• 

ions to Na show an increase. The decreasing Cl!Na ratio with increasing distance 

from the coast may be attributable to the addition of continental soil or dust material 

that has a Cl/Na ratio lower than that of seawater, or to the liberation of Cl and H (to 

produce gaseous HCI) by H2S04. This latter process has been used to explain 

depletions of Cl in marine aerosols of up to 12% (Warneck 1988). The inland sites 

of the WE array (site 20 Barrambie to site 25 Everard Junction) display depletions of 

up to 18%, suggesting that both processes are act:ng to decrease the Cl/Na ratio as 

distance from the coast increases. In addition, attributing the trend mostly to the 

input of non-si~asalt aerosol material with !ow Cl!Na ratios agrees with the trend of 

increasing ratios displayed by S04, K, Ca and Mg ratios with Na with increasing 

distance from the coast. Thus, seawater may be the main source of Cl to the rain 

collectors, while the ions S04, K, Ca and Mg are influenced by an additional sC'urce 

at non-coastal localities. The very· low concentrations (i.e. near the detection level of 

instrumentation) of Br in rainfall at non-coastal localities also suggests seawater lo 

be the sole source of Br to the array. However, because of the low concentrations 

and therefore high errors, Br is excluded from the following discussion. 
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FIGURE 5.14 Me.u~ Ratios of a) CJ and S04, b)Mg, c) Ca and d) K with Na for 
sites along the WE array compared with the ratios found in seawater. Seawater 
ratios calculated from Millero 1977. Ratios calculated from depositional units 
(J..leqim2/day). See Fig--Jre 3.1 kr .sitt~ number names. 
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The non-seasalt source for S04, K, Ca and M~ to the rain colle~tors can be further 

investigated by looking at the '"non-seasalt" (nss) fraction of these ions in rainfall (as 

defined in Section 3.3). Figure 5.15 displays the percentage of the nss ions as a 

function of distance from the coast for the WE array. In general, nss ions increase 

with increasing distance from the coast, with nss S04 and nss Ca reaching a steady 

state of between 40-50% at approximately 400 km from the c_,ast. The percentage of 

nss K at inland sites reaches values of close to 90%, while nss Mg remains be!ow 

30% at inland sites. These patterns may suggest that the source of K to inland sites 

is almost exclusively from a source other than seawater, while seawater remaim. an 

important source of Mg at inland sites, and the ions S04 and Ca are influenced by a 

mixture of sources, one of which is seawater. 
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FIGURE 5.15 The mean non-seasalt proportions of S04, Ca, Mg and K for sites 
along the WE array. See Figure 3.1 for site locations. 

Comparisons of mean ratios of Cl, S04, Na, K and Mg with Ca in rainfall and 

soil/dust samples collected from each site on the WE array are shown in Figure 5.16. 

Further evidrmce of the importance of seawater to the concentrations of Cl, Na and 

Mg can be seen with th~ decreasing of ratios of these elements to Ca as distance 

from the coast increases. The ratios generally move closer to those of the soil/dust 

compositions at inland sites, though S04/Ca in rainwater remains greater than in 

soil/dust compositions across the entire array, and no relationship can be discerned 

between rainfall and soil/dust K/Ca ratios. 
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FIGURE 5.16 Mean ratios of a) Cl and Na, b) Mg, c) S04, and d) K with Ca for 
sites along the WE array compared with the ratios found in soil/dust collected at 
each site. Ratios calculated from depositional units (J,teqfm2fday). See Figure 3.1 
for site localities. 
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Spatial Variations along the SN Array 

The mean ratios of Cl, S04, K, Ca and Mg to Na at each site on the SN are shown in 
Figure 5.17. Site 26 (Port Lincoln), the southern coastal site, shows with ionic 

concentrations that approximate those found in seawater. The remaining sites show 

an increase in ratios (Cl shows a de£rease) relative to seawater in a northward 

direction, suggesting the importance of a non-seawater source at these non-coastal 

sites. At the northern end of the array, ratios begin to fall closer to that of seawater, 

reflecting the influence of seawater at site 33 (Kapalga). 

The non-seasalt fractions for sites along the SN array are shcvm in Figure 5.18. All 

nss concentrations show an increase from site 26 (Port Lincnln) to inland sites and a 

slight decrease at sites 32 (Katherine) and 33 (Kapalga). The relatively high nss 

fractions shown at site 33 suggest that seasalt is less importan~ to the chemistry of 

precipitation than a non-seasalt source. This supports the work of Ayers and Gille.t 

(1988a) who found high levels of non-seasalt Ca, Mg and S04 in 1ainfall at Jabiru. 

Despite site 33 (Kapalga) being within 100 k.m of the north coast of Australia, and 

the prevailing northwest winds during the monsoon, the high non-seasalt fractions 

represent the predominance of southeasterly winds during the non-monsoon periods. 

Thus, this locality may be considered continental rather than maritime. 

The mean ratios of Cl, S04, K, Na and Mg to Ca, are compared with local soil/dust 

ratios for each site along the SN array in Figure 5.19. The importance of seawater 

to site 26 can be inferred from this plot by the high ratios of Cl, Na and Mg. An 

increase from the generally low ratios at inland sites to values seen at site 33 

(Kapalga) also points to the importanc1! of seawater at this site. The ratio of K with 

Ca increases from north to south, ana S04 to Ca ratios approximate that of gypsum. 

Simpson and Herczeg (1994) looked at the relative abundances of Ca and Na in 

rainfall from southeastern Australia in order to investigate the input of resuspended 

soil to precipitation. High Ca/Na ratios (greater than unity) were considered to 

represent a significant regional dust input, since Ca salts such as CaC03 and 

CaS04.2H20, tend to be the first salts to precipitate out of soils. The WE data set all 

show Ca/Na ratios of less than 0.5 andi sites along the SN array show mean CaiN a 

ratios of less than 0.5. However several individual samples display ratios greater 

than 1, suggesting the influx of resuspended soil material. These samples include 

sites from both the north and south of the array, and represent so• .1e of the seasons of 

low to nil rainfall. 
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FIGURE 5.17 Mean Ratios of a) Cl and S04, b) Mg, c) Ca and d) K with Na for 
sites along the SN array compared with the ratios found in seawater. Seawater 
ratios calculated from Millero 1977. Ratios calculated from depositional units 
(f.Leq/m2/day). ~ee Figure 3.1 for site locations. 
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sites along the SN array compared with the ratios found in soil/dust collected at 
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for site localities. 
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Seasonal Variations 

Seasonal changes in the influence of seawater as a source of material to rainfall at 

each site can be investigated by looking at the ratios of various species to Na and Ca 

at each site over time. The plots shown in Figure 5.20 show the ratios of Cl, S04, K, 

Mg, Ca and Na with Na and Ca for sites 16 (Cliff Head), 21(Yeelirrie) and 23 

(Carnegie) along the WE array and Figure 5.21 shows the same ratios for sites 26 

(Port Lincoln), 30 (Tennant Creek) and 33 (Kapalga) along the SN array. Also 

shown are the seawater ratios of these species, the local soil/dust ratios at each site, 

and the C1/Na ratio of halite and S041'Ca ratio of gypsum. 

Calcium is assumed to be of continental origin. Thus when a continental source is 

predominant at a site, increased supply of Ca leads to a decrease in the ratio of other 

species with respect to Ca. Hence low Ca ratios are genera1ly interpreted as 

representing increased continental source influence. Low Ca ratios are often 

ma~ched by Na ratios higher than that of seawater, suggesting an alternative source 

to seawater is adding all species except Na. The exception is when the C1/Na ratio 

falls below that of seawater, indicating that the alternative source is then also adding 

Na. The local soil/dust ratios shown in the plots do not represent the end-member 

composition of the continental source, but rather, the composition of rainfall that 

would arise if soil/dust from the site in question were to enter the collector. The 

halite and gypsum ratios also do not represent the end-member composition of the 

continental source, but are shown on the plots as references for possible input of salt 

lake material to the rain collectors at each site. Because the concentration of 

seawater is well known, and we therefore have better constraints on the seawater 

source, the ratios are summarised in Figure 5.22 in terms of the dominance of a 

seawater source. During some collection periods, the behaviour of the different 

ratios is inconclusive or contradictory. Such cases are marked with a slash in Figure 

5.22. For cases where analyses are missing, no results are shown. 

As expected, site 16 (Cliff Head) is dominated by a seawater source throughout most 

of the sampling program, except for summer of each year and autumn of 91. An 

investigation of the synoptic patterns (Figure 5.23) reveals the dominance of cold 

front activity in association with rainfall at Dongara meteorological observation 

station (approximately 50 km north of site 16) throughout the sampling program. A 

similar trend is displayed by site 26 (Port Lincoln) on the SN array (Figure 5.24). 

Cold fronts affecting Western Australia and South Australia, involve air masses that 

are sourced from the south or southwest, i.e. of marine origin. 
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FIGURE 5.20. Seasonal variations in the ratios of Cl, S04, Ca, K and Mg to Na, 
and Cl, S04, Na, K and Mg to Ca for sites 16, 21 and 23 on the WE array. 
Circles with the solid line are ratios to Na in precipitation. Circles with the 
dashed line are ratios to Ca in precipitation. The solid horizontal line is the ratio 
to Na in seawater (from Millero 1974). The dashed horizontal line is the ratio to 
Ca in soil/dust at the site. The left vertical axes are scales for the Na ratios. The 
right axes are scales for theCa ratios. In the S04fNa and S04/Ca plots the dotted 
line is ratio of S04/Ca in gypsum. In the Cl/Na and Cl/Ca plots the dotted line is 
the ratio of Cl/Na in halite. 
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dashed line are ratios to Ca in precipitation. The solid horizontal line is the ratio 
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right axes are scales for the Ca ratios. In the S04fNa ar.J S04/Ca plots the dotted 
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FIGURE 5.23 The percentage of rain aHributable to different synoptic processes 
(defined in Chapter 2) during each collection period at Dongara (Met station closest 
to site 16, Cliff Head). CF ·=cold front, TE =tropical event, WCT = W'.:St Coast 
Trough, T =trough, CoL= cut-off low, MLCB =middle-level cloud band, MLD = 
middle-level disturbance. A9J. ::.autumn 91, W91 =winter 91, Sp91 =spring 91, S 
= summer 91 etc. Note that throughout most of the sampling program rainfali at 
Dongara was associated with cold fronts. 

The dominance of the seawater source at all site!; along the WE array during winter 

91, including the most inland site, Everard Jun~;tion (site 25), is unexpected. An 

investigation of the synoptic patterns for each meteorological observation station 

across the WE array (Figure 5.25), again reveals that a high proportion of rainfall for 

winter 91 is associated with cold front activity. The more coastal sites 17 (Morawa), 

18 (Badja), 19 (lowna) and 21(Yeelirrie) also display seawater source dominance 

during winter 92, again corresponding to periods of enhanced cold front activity. 

The remaining sites show dominance of a non-seawater source throughout the 

sampling program (except during winter 91 as described above). 
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FIGURE 5.24 The percentage of rain attributable to different synoptic processes 
(defined in Chapter 2) during each collection period at Port Lincoln (Met station 
closest to site 26, Port Lincoln). CF =cold front, TF =tropical flow, WCT =West 
Coast Trough, T= trough, CoL= cut-off low, MLCB =middle level cloud band. 
A92 = autumn 92, W92 = winter 92, Sp92 = spring 92, S92 = summer 92 etc. Note 
that throughout most of the sampling program rainfall at Port Lincoln was associated 
with cold fronts. 

Sites 27 (Gawler Ranges) and 28 (Wintinna) along the SN array display the 

dominance of a seawater source during wi.nter of each year, and non-seawater 

dominance during autumn of each year. Between autumn and winter there is a 

gradation towards seawater dominance. The distinction between the influence of 

seawater and non-seawater sources is less obvious as distance from the coast 

increases. Sites 29 (Alice Springs), 30 (Tennant Creek) and 31 (Dunmarra) do not 

experience the dominance of a seawater source during any stage of the sampling 

program (Figure 5.22). The contradictory nature of many of the Na and Ca ratios 

may suggest something about the non-seawater source and possible changes in its 

composition. The SO,VCa ratio approximates that of gypsum at various times during 

the sampling program. Sites 32 (Katherine) and 33 (Kapalga) show a high ratios of 

Na during winter of each year, and minium Na ratios during summer. This 

represents the dominance of continental material bought to the collectors by the 

southeasterlies that characterise the dry season in the north of Australia. During the 
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summer, when northerlies associated with the monsoon become more important, the 

ratios move closer to those of seawater (Figure 5.26). 
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FIGURE 5.25 Proportion of total rainfall at Met stations along the WE array 
associated with cold fronts during winter 1991. 

These results are not unexpected, i.e. seawater compositions in rairifall correspond to 
increased cold front activity. Thus rainfall during winter of 1991 is mainly of marine 
origin, even as far inland as Everard Junction (1800 km from the coast). However, it is 
surprising that the tropically sourced rainfall does not have a marine signature (we would 
expect to see seasons and sites dominated by tropical events or middle level cloud bands 
eg. Site· 22 (Lake Violet) during summer 92, to display a seawater dominance). This 
may represent the e~~~~- ~f-~he land mass over whi<?h_ th~ .. ~~~ss must pass, therefore 

adopting a continental signature, or may be an artefact of the three-month sampling 
period. The results from the SN array support these speculations. During the summer 
season3, the north of Australia experiences both monsoonal (ie marine-sourced 
airmas.~es) and transitional monsoonal (i.e. continental airmass from the southeast of the 
contine:'lt). This is represented by the data from sites 33 (Kaplaga) and 32 (Katherine) 
displaying only weak seawater signatures. 
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FIGURE 5.26 The percentage of rain attributable to different synoptic processes 
(defined in Chapter 2) during each collection period at Darwin (Met station dosest 
to site 33, Kapalga). MT =monsoon trough, T =trough, TF = tropica.! flow, GL = 
Gulf Lines, l'ALCB = middle level cloud band, TC = tropical cyclone. A92 = autumn 
92, W92 = winter 92, Sp92 = spring 92, S92 = summer 9:~ etc. Note that throughout 
most of the sampling program rainfall at Darwin is associated with synoptic 
processes sourced from the topical north of Australia. 

Acid-Base Balance and Biodegradation 
The results of multivariate analysis on the total WE data set show that 25% of 

variation in the data set may be explained in terms of the acidity of the sample, or a 

combination of acidic anions and biodegradation. Acid-base balances account for 

10% of variance in the overall SN data set and northern subset of the SN data set, 

and 12-20% variance in the southern subset of :he SN data set. Input of an 

agricultural source and biodegradation, are only found in the southern data subset 

and accounts for approximately 10% of variation. For the purpose of the following 

discussion, acid-base balance and biodegradation are grouped together as it will be 

seen that the effects of bo;:h processes produce the acidity measured in the samples. 
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Rainfall acidity has been shown to change within ten days of sample deposition in 

wet precipitation samples (Vesely 1990). We would exp!Ct changes in pH to occur 

even sooner in bulk depositional collectors used in the 1 1resent investigation. Thus 

the pH values measured in this project may not reflect the true H concentrations of 

rainfall as deposited. Instead, the pH levels of the samples may represent processes 

that occur after deposition of the sample eg. biodegradation. The high positive ion 

imbalances for the SN data set suggest the presence of an unmeasured species in the 

precipitation samples, possibly organic acids. Herlihy (1987) showed formic and 

acetic acids to be very unstable, and readily utilised by microorganisms in 

precipitation for their growth. Both formate and acetate are also known to be 

intermediate metabolic products. Thus the presence of organic acids may influence 

the extent of biodegradation and h:us the acid-base balances of precipitation. 

Unfortunately, organic acids were not measured in the present study for the reasons 

outlined in Chapter 3. Despite this however, we do see H showing variances with 

inorganic acid ion N03, and at particular sites with S04, Nl4 and HP04. 

WE Array 

There have been many previous investigations into acidic precipitation, especially in 

polluted areas, eg. Ayers and Gillett (1984). These investigations often directly link 
acid precipitation to sources of anthropogenic emissions of S02, NOx and 

hydrocarbons. The remoteness of tbe sampling localities in the present 

investigation, however, minimises th::: ~ffect of anthropogenic sources along the WE 

array. 

As described in Chapter 4, the natural sources of N03 to rainfall may include 

biogenic emissions, biomass bumir.tg and lightning. The NOx emission rates for 

temperate grassland and agricuiturallaud as taken from Galbally (1984) are listed in 

Table 5.18. While many of the localities along the WE array are situated on 

agricultural land predominantly used for grazing, the number of domestic grazing 

animals per acre is very low because of the poor suitability of the land in the uid 

regions of the array for grazing. Thus it seems more useful to compare emission 

rates from temperate grassland systems than from agricultural systems. It should be 

noted that there is a complete Jack of information regarding the: emission of NOx 

from desert areas. When agricultural emissions are ignored, the major contributors 

of NOx are soil emissions and lightning. 
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TABLE 5.18 Emission ofNOx (g Nfm2fa) after Galbally 1984. 

source Emission 

soil emissions temperate grassland -0.006-0.08 

soil emissions agricu!tural 0.04-0.26 

biomass burning 0.003 

li htnin 0.05 
----~------------~ 

The importance of lightning on the supply of N03 can be investigated by comparing 

the mean depositional rlux of N03 for each season with the lightning. Figure 5.27 

attempts to correlate between the total number of lightning flashes per day for 

Western Australia and the N03 fluxes for each sampling season. Maximum N03 

deposition during summer 91 is matched by maximum number of lightning flashes, 

and there is a generally sympathetic trend between N03 deposition and lightning 

flash counts. Summer 92 does not fit into this general pattern however, with 

extremely high lightning counts being matched by average N03 deposition. This 

may be a function of the low rainfall amount during summer 92 (less than 0.5 

mm/day), reflecting the dependence of flux on rainfall amount, or may be due to 

processes that occur after sample deposition that involve the consumption of N03. 

Natural sources of S04 include seawater and gypsum from salt-lake material. Ayers 

and Gillett ( 1988a) suggest that S02 introduced by biogenic emissions or biomass 

burning may be significant precursors to acidification in tropical Australia. It is 

likely that these sources are much less significant in the semi-arid, and therefore less 

densely vegetated area of the WE array than is the seawater or gypsum source. 
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FIGURE 5.27 Deposition of N03 and rainfall per day for sites along the WE array 
and average number of lightning flashes for 10 lightning observation stations across 
Western Australia plotted as a function of seasons. There is a stronger relationship 
between rainfall per day and N03 deposition than between lightning flashes per day 
and N03 deposition. Monthly records of lightning flashes were obtained from the 
Bureau of Meteorology. The observation sites for WA include Albany, Geraldton, 
Kalgoorlie, Kununurra, Meekatharra, Moora, Perth Airport, Port Hedland and Three 
Springs. Observations are made using lightning flash counters. For the purpose of 
this work, total lightning flash counts per day is calculated by adding all lightning 
flashes recorded at all observation stations for each sampling period and dividing by 
the number of days in each sampling period. 

Vesely (1990) investigated the change in H, N03 and NH4 in rainwater samples over 

time, under various conditions of sample treatment and storage. He described 

bioconsumption as being caused by microbially induced oxidation of NH4 

(nitrification), which consumes NH4 and produces N03 and H, or the assimilation of 

NH4 into organic matter, which consumes Nl4 and produces H. Once all the NH4 is 

consumed, or if initial NH4 values were low, bioconsumption of N03 then proceeds, 

consuming N03 and H. These processes were found to occur at a greater rate under 

warmer conditions. An investigation of the depositional fluxes of NH4 and H for 

each season for the WE data set, shows that H fluxes are constant throughout most of 

the sampling program, while NH4 concentrations decrease during summer and 
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spring of each year (Figure 5.28). This suggests that NH4 is being consumed during 

warm months, but other processes have a stronger effect on controlling the 

deposition of H. Because of the common association of NH4 and K displayed in 

multivariate analyses, K deposition is also shown on Figure 5.28. High depositional 

fluxes of K are matched by high deposition of NH4. The absence of a strong 

relationship between H, Nli4 and N03, as suggested by the work of Vesely (1990), 

indicates that either bioconsumption involves assimilation of N~ into organic 

matter, rather than the nitrification reaction, or that the supply of NzO via lightning is 

far greater than that produced by bioconsumption, so that the bioconsumption of 

N03 is being swamped. 
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FIGURE 5.28 Seasonal variation in the deposition of H, Nli4, K and N03 for the 
WE array. 

SNArray 

As fvr the WE data set, the acid-base balance process in the SN data set is 

represented primarily by co-variance between Hand N03. However, depending on 

the data subset used, S04, HP04, K, Ca and Nf4 may also vary in accordance with 

the more typical acid-base species. Anthropogenic sources of N03 and S04 to 

precipitation along the SN array cannot be completely discounted, because of the 

proximity of major areas of settlement to some of the collection sites; in particular 

Port Lincoln is 30 km north of site 26, Alice Springs is 100 km southwest of site 29, 
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and Katherine is 25 km south of site 32. As none of these settlements support 

industries that would emit large quantities of S02 or NOx, the major anthropogenic 

emissions from these settlements would most likely be from motor vehicle. use. 

However, the results of this work are insufficient to do more than acknowledge that 

anthropogenic sources of S04 and NOx may play a small part in the acid-base 

balance ofprecipitati.cr. along the SN array. 

Northern Subset 

The northern data subset sees the covariance of H and N03 in the acid-base balance 

factor. Natural sources ofN03 to tropical Australia have been summarised by Ayers 

and Gillett (1988a) and are listed in Table 5.19. The major input of nitrogen shown 

in Table 5.19 appears to be from biomass burning. This is because tropical Australia 

is prone to bushfires, both controlled burns and wildfires. It should be noted that site 

33 is located at the CSIRO Kapalga research station where one of the major llreas of 

research is the effect of burning on tropical ecosystems (Hurst et al 1994 ). While the 

collector was located in a natural fire compartment (i.e. no fires were deliberately 

lit), the adjacent compartments were burnt in late May-June (early burning), 

progressively (fires in late May-June followed by a series of fires as vegetation dries 

out downslope towards pennanent water), and in September (late burning). The late 

burns were usually very hot, while the early bums were patchy and low temperature. 

Figure 5.29 shows the flux of N03 during all seasons at site 33 and the dates of 

burning in the adjacent compartments. While no relationship can be discerned 

between the dates of burning and N03 flux at site 33, the fact that burning occurs 

throughout most of the sampling program suggests that biomass burning should be 

an important source of nitrogen emissions in the north of the array. 

TABLE 5.19 Summary of N inputs (tonnes/year) for northern Australia, after Ayers 

and Gillett (1988a). 

source 

biomass burning 

in ut (tonnes/ ear) 

388,000 

33,000 

23,000 

22,000 

A comparison of N03 depositional .fluxes and lightning flash rates at observation 

stations at Darwin and Tennant Creek are shown in Figure 5.30 There is a very 

strong correlation between deposition of N03 at site 33 (Kapalga) and lightning rate 
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at Darwin. The relationship between N03 deposition and lightning rate at Tennant 

Creek (site 30) is weaker but is still present. A direct relationship is also observed 

between lightning flash rate and rainfall amount. This has been observed by the 

Bureau of Meteorology (Ayers and Gillett 1988a). The absence of a strong 

relationship between lightning flash rate and N03 concentration (J.Leq/L) in rainfall, 

however suggests that the relationship between deposition of N03 and lightning 

flash rate displayed in Figure 5.30 primarily reflects the relationship between rainfall 

amount and lightning flash rate. 

-~ 
10 ~ 

:§ 
0" 
Q) 
::1. 
'-" 
t'i 

0 1 z 

security burn 
18-19, 24-28May 

• Late bum 
22 Sept 

early bum 
16 June 

mid bum 
14-17 July 
wildfire 

28 August • 

• 
• early bum 

8-17 June 
mid bum 
8-9 july 
wildfire 

17 August 

• 

wet season bum I 
14-17 Dec, 26 Jan 

• • late bum 
20-22 sept 

security bum 
16-20 May, 17 June 

Early bum I 
6-7, 15-16June 

• 

Collection Period 

FIGURE 5.29 N03 deposition at Kapalga (site 33) and times and types of burns in 
adjacent compartments of the Kapalga Research Station. Burning occurred 
throughout the sampling program. 

From the present study, the acid-base balances in the northern half of t.he SN array 

reflect the supply of N03 to the atmosphere by both biomass burning and lightning 

flash production of NO. While soil and vehicle emissions may also be important, 

there is insufficient evidence to discuss the extent of the importance of these sources. 

However, the clear relationships between lightning flash rates and N03 deposition, 

and the extent of burning throughout most of the sampling program suggest that 

lightning flashes and biomass burning are the most significant sources of N03 to the 

north of the SN array. 
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FIGURE 5.30 Mean N03 deposition, rainfall per day and lightning flashes per 
day for each season at a) Darwin and b) Tennant Creek. The postitive 
relationship between all three factors at each site suggests lightning to be a 
source of N03 in the north of Australia. 
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.£Qmhem Subset 

The acid-base balance factor for the southern sites of the SN array explains variance 

primarily between N03 and H, _with S04 and K also being significant. A 

comparison of lightning flash rates and N03 deposition for site 26 (Figure 5.31) 

reveals a very poor relationship, suggesting that lightning flash is not a major source 

ofN03 to precipitation in the south of the SN array. Burning is also not as extensive 

in the south of the array as in the north. Thus, these two sources (burning and 

lightning) that are considered to be significant to the supply of N03 in the north of 

the array, do not appear to be significant in the south of the array, and the importance 

of soil, plant and anthropogenic emissions can only be suggested by default. S04 

also has high loadings in this factor (except in the coastal data), and is most likely 

sourced from seasalt. Thus at coastal sites, the variance of S04 with other seawater

supplied species masks the variance of S04 with the acid-base balance species. 
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FIGURE 5.31 Mean N03 deposition, rainfall per day and lightning flashes per day 
during each season at Port Lincoln (site 26) in South Australia. 

Biodegradation and a supply of agricultural material that group NB4 and HP04 are 

suggested by the third factor of the multivariate an'alysis carried out on the southern 

subset of the SN data set. The agricultural source is not unexpected when it is 

considered that the southern sites of the SN array are located in areas of high density 

grazing. As discussed in Chapter 4, one of the largest sources of NH3 to the 

atmosphere involves volatilization of animal urine. All sites in the southern section 

of the SN array are used for sheep and cattle grazing, with the highest density of 

domestic animals on the SN array, occurring on the property on which site 26 (Port 
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Lincoln) is located. The negative correlation of NH4 with other species with high 

loadings in this factor may represent biodegradation of the sample. The source of 

HP04 is most probably fertiliser. 

5.5 SUMMARY AND DISCUSSION 

The major-element chemistry of precipitation from the WE and SN array shows the 

main influence on the composition of precipitation from remote areas of Australia is 

the mixing between a seawater and continental source. At most sites along the two 

arrays it is difficult to distinguish between the separate end-members of this source, 

except at coastal localities where seawater dominates the chemistry of precipitation. 

However, the influence of seawater can be discerned at non-coastal sites in 

association with favourable synoptic conditions, such as cold frontal activity in 

southern and western Australia during winter, and monsoonal activity in northern, 

Australia during summer. The continentally-derived end-member is most likely 

composed of re-suspended soil/dust material, including salt lake and calcareous dune 

components. In the south of the SN array where agriculture is intense this 

continental source may also include a fertiliser component. The chemistry of 

precipitation across Australia is also affected by an acid-base balance factor, the 

components of which are derived from natural sources such as biogenic emissions, 

biomass burning and lightning flash production. The nature of the collection 

program means that biodegradation is also a feature of rainfall chemistry. 

Results from the major-element chemistry of precipitation provide information 

important for Chapter 6, in particular in the interpretation of 36ClfCl ratio anomalies. 

WE Array 

Three processes affect the composition of rainfall along the WE array: the supply of 

a mixed seawater/continental source, acid-base balances and bioconsumption of the 

sample between deposition and sample collection. The extent of the influence of 

each of these factors is dependent on locality and/or season. Further, due to the well 

constrained composition of seawater, differences in the influence of the mixed 

continental/seawater source can be discussed in terms of the dominance of seawater 

and otherwise derived aerosols. The coastal site is dominated by a seawater source 

throughout most of the sampling program, while the effect of the seawater source at 

inland sites is dependent upon season. This seasonal dependence can be linked to 

weather patterns, eg. with increased cold front activity being conducive to the 
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transportation of seawater great distances inland, eg. as far as 1800 km to Everard 

Junction dnring winter 1991. 

The acid-base balance describes the variations displayed in H and N03. Nitrate is 

supplied to the atmosphere by natural sources, including biogenic emissions of soi!s 

and via lightdn_g strikes. The deposition of N03 is also dependent on season, and is 

associated with increased lightning occurring during summer of 1991. The third 

factor arises from biodegradation of the sample. This really represents modification 

of the rainfall after its deposition, rather than a possible source of influx of 

constituents to the sampling vessels. Biodegradation is also dependent on season, 

with maximum biodegradation occurring during warm seasons. 

As discussed in Chapter 4, many of the previous investigations into the chemistry of 

precipitation of Western Australia have been concerned with the accession of salts to 

the landmass. The results from the present investigation can most usefully be 

directly compared with the results of Hingston and Gailitis (1976) who carried out a 

comprehensive investigation of 59 sites throughout W A, many of which coincide 

with sites in the present investigation. Figure 5.32 shows a figure from Hingston and 

Gailitis displaying the pattern of deposition of Cl (kg/ha) across Western Australia. 

Also shown on the diagram are the average deposition rates measured at each site in 

the present investigation. It can be seen that deposition measured in the present 

study falls within the ranges defined by the Cl isochrones calculated by Hingston and 

Gailitis dependent on locality. As in other investigations of rainfall chemistry from 

the southwest of the state (Farrington and Bartle 1988, Farrington et al 1993), 

deposition in the present investigation is lower than was measured in the southwest 

of Western Australia by Hingston and Gailitis. It has been suggested that Cl 

accession increases at inland sites when strong westerly onshore winds are able to 

transport oceanic seaspray inland (Farrington and Bartle 1988). This is supported in 

the present investigation by characteristically seawater compositions of precipitation 

up to 1800 km inland associated with enhanced cold frontal activity during winter 

months. 

SN Array 

Four processes affect the composition of rainfall along the SN array: supply of a 

seawater/continental source, acid-base balances, supply of an agricultural source 

material aud biodegradation. The effect of these processes on the north and the south 

of the array is quite different. Sites in the north of the array have a large proportion 

of variance that can be explained in terms of a mixed 
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FIGURE 5.32 The mean CI deposition rates for sites along the WE array (in kg 
C1/ha) and the isochrons calculated from the investigation of Hingston and Gailitis 
1976. The WE array shows broad agreement with the isochrons. 
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seawater/continental source. During the monsoonal period, seawater can be 

separated from the mixed seawater/continental source, but this only explains a small 

amount of variance.. The extent of seawater influence from the north coast of 

Australia can only be seen as far inland as site 32 ( -200 km), and only during the 

sumner ~\eason when the monsoon occurs. Acid-base balances explain less than 

20o/r of variance in the north of Australia, and are described by variation between H 

and N03. A seasonal variation in the supply of N03 to precipitation can be related 

to lightning flashes and rainfall amount in the north of Austritlia. 

Sites in the south of the SN array are influenced by three factors, a mixed 

seawater/continental source, acid-base balances and a mixed agricultural 

input/biodegradation factor. The seawater source can be :solated for coastal sites 26 

(Port Lincoln) and 27 (Gawler Ranges), and seawater can be seen to influence the 

composition of precipitation as far inland as site 28 (Wintinna) during winter of each 

year, in accordance with the strong influence of cold frontal precipitation from the 

south coast of Australia at this time of year. The acid-base factor is defined by 

covariance between H, N03, S04 and Ca, representing the supply of S04 by seasalt 

and the neutfalising effect of CaC03 at the coastal locality. A mixed 

agricultural/biodegradation factor is suggested by covariance of HP04, NH3, Ca and 

K 

It is difficult to make direct comparisons between previous investigations and the 

present investigation despite the extensive number of investigations into pr~ipitation 

in the north of Australia (Table 4.1), due to of the difference in sample collection 

techniques. The present investigation uses bulk-depositional collectors and therefore 

incorporates both wet and dry deposition, while previous investigations in the 

Alligator Rivers Region (eg. Noller et al 199~, Gillett ct al 1990) and Katherine 

(Galloway et al 1982, Likens et al 1987) looked at wet-only deposition. This means 

that comparisons of the rate of deposition of material between the different studies is 
unrealistic. However, some general comparisons can be seen between the vari:ms 

investigations: i) the large cation excesses over anions in the present study may be . 

interpreted to suggest the presence of large amounts of organic acid anions as seen in 

previous studies (eg. Galloway et al 1982) .. ii) the importance of seawater as a 

source of material to monsoonal rain as suggested by Likens et al ( 1987) and Noller 

et al (1990), is supported in the present investigation, although, the tropical airmasses 

are modified of their marine character after movement 300 km inland. iii) contrary 

to previous investigations, is the correlation between lightning flash rates and N03 

depositional flux shown strongly in the north of the SN array. This good correlation 
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most likely reflects the strong relationship displayed between lightning flash rate ar,d 
rainfall amount (Ayers end Gillett 1988a). 

Results from the Alice Springs coilector (site 29) can be compared with thos: of 

Hutton (1983) for a site 100 km north of Alice Springs. Table 5.21 shows that 

concentrations measured in the present investigation are much lower than the volume 

weighted mean for 1958 to 1962 measured by Hutton. Also of note is the higher 

average amount of rainfall recorded during the present investigation. An individual 

rainstorm measured on 13/11/58 has a similar rainfall volume to the present 

investigation, and it can be seen from Table 5.21 that the concentrations measured in 
the present .\nvestigation are much more comparable to the high rainfall sample 

collected in 1958. This suggests that the difference dj:;played between the mean 

concentrations is a artifact of the rainfall volume. 

TABLE 5.21 Comparison of a previous precipitation investigation at Alice Springs 

with the present investigation. 

Investigation rainfall Cl Na K Ca Mg 

nun 

13/11/58 30 4 20 8 2 20 10 

(Hutton 1983) 

*vwm 1957-1962 14 25 <30 28 9 32 23 

(Hutton 1983) 

1992-1994 55 6.3 12.2 8.6 3.1 9.6 4.8 

(Present investi ation) 

* vwm=volume weighted mean 

138 



Chapter 6 Chlorine-36 

CHAPTER 6 CHLORINE-36 

This chapter describes 36Cl in precipitation from remote areas of Australia. It begins 

with a review of the production and fallout mechanisms of 36Cl from the atmosphere 

(both natural and anthropogenic), followed by a description of observations. The 

chapter is concluded with a discussion of the observations and implications of this 

work for atmospheric and hydrologic investigations. 

6.1 CHLORINP.-36 PRODUCTION AND FALLOUT 
Chlodhe-36 is produced in the atmosphere and lithosphere by various reactions. In 

the atmosphere, it is formed by the cosmic ray spallation of 40 Ar. During the 

detonation of a thermonuclear device in a marine environment, neutron capture of 

35Cl may also inject large quantities of 36Cl into the atmosphere as a single pulse 

(Schaeffer et al 1960). Within the top 2 m of the Earth's surface, cosmic ray 

spallation ~f 39K and 40Ca produces 36Cl. Below 2 m, negative muon induced 

reactions become an important source of 36CI. At greater depths in the crust (>50 

m), neutrons produced by U and Th decay and subsequently captured by 35CI are the 

dominant source of 36CI. Cosmic ray spallation in the upper few metres of the ocean 

produces large amounts of 36Cl (30 atomsfm2fs). However the 36Cl!Cl ratio of 

oceanic water is low (<lxi0-15 ) due to dilutim1 during oceanic circulation 

(Andrews and Fontes 1.992). 

This project is concerned with atmospherically produced 36Cl, but production in the 

lithosphere may also contribute to groundwater systems. In general however, this 

contribution is very small compared to atmospheric production. 

Natural Productian and Fallout 

Most t>f the production of 36Cl by cosmic ray spallation occurs in the stratosphere 

with less than 40% occurring in the troposphere (Lal and Peters 1967). 

Stratospherically produced 36CI mixes with stable Cl (sometimes termed dead Cl), 

usually of marine and terrestrial origin in the troposphere, and it s beli ~d that this 

mixed aerosol, containing 36CI and stable Cl, is quickly washed out as wet or dry 

precipitation. The residence time of aerosols in the troposphere has been calculated 

to be about one week (Turekian et al1977). 
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The latitudinal dependence of _36CJ fallout has been calculated by Lal and Peters 

(1967). Their values, which were based on production from 40Ar alone, ranged from 

5 atomsfm2/s near the equator to a maximum of 28 atoms /rrl2/s at 40°N, with a mean 

of 11 atomsfm2/s. Onufriev ( I968) suggested that neutron activation of 36 Ar should 

produce an additional fallout of 5 atoms/m2/s. Accordingly, Bentley et al (1986a) 

reproduced the shape of the fallout curve of Lal and Peters ( I967), but adopted a 

mean fallout of 16 atomsfm2/s. More recently however, the cross sections for the 

neutron activation reaction of 36Af have been measured (Jiang et al I990) and shown 
,.\ 

to result in negligible 36Cl production. Best modem estimates (Andrews a.~d Fontes 

1992) use a mean f8llout of II atomslm2/s. The most recent fallout curve dependent 

on geographic lt~.iltude is shown in Figure 6.1 and is taken from Andrews and Fontes 

(1992). This shows a reduc~~"n in the values reported in Bentley et al (1986a) by a 

factor or I i/16 and reproduces the curve of Lal and Peters (1967). 

0 10 20 30 40 50 60 70 80 90 

Latitude 

FIGURE 6.1 The pattern of fallout of 36Cl as a function of latitude. From Andrews 
and Fontes 1992. 

. 
The latitudinal dependence of 36Cl fallout has two components: i) variation due to 

the effect of the Earth's dipole and ii) variation due to the atmospheric transfer 

between the stratosphere and troposphere. 
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Geomagnetic Dependence 

Cosmic ray fluxes to the Earth's surface are affected by the Earth's magnetic field. 

The geomagnetic dipole field of the Earth prevents charged particles below a certain 

rigidity (the ratio of the particle's momentum and charge) from penetrating into the 

atmosphere. The shielding effect is greatest at the equator, and decreases towards 

the magnetic poles. At geomagnetic latitude A. the minimum rigidity R(A.) which can 

penetrate the atmosphere is given by 

R(A.) = Rocos4A. (6.1) 

where R0 is tbe magnetic rigidity at the equator. Thus when a particle's rigidity at a 

certrun latitude A. is less than R(A.), it is unable to reach the atmosphere. 

Variations in the flux of cosmic rays to the Earth's surface have been noted in 

association with the 11-year sun spot cycle (Lal and Peters 1962). It is well 

established that cosmic ray intensity decreases with increasing solar activity (Figure 

6.2). Lal and Peters (1962) suggest that the average eleven-year cycle produces a 

fluctuation of about ±5% around mean global production of cosmogenic isotopes, 

and that the emission of high energy particles in solar flares may offset reduced 

isotopic production during periods of strong solar activity (i.e. during the sunspot 

maxima). Solar flares may also be responsible for major changes in the flux of 

cosmic rays to the Earth's surface (Lal and Peters 1962). Solar flares involve the 

emissions of high-energy particles from the sun and are rare even at the height of sun 

spot activity. 

Transfer Between Atmospheric Domains 

While the production of 36Cl in the stratosphere is dependeP..t upon geomagnetic 

latitude (Lal and Peters 1967), geographic latitude controls the transfer of 

stratospheric 36Cl to the troposphere and the dispersion of the mixed aerosol in the 

troposphere. The most effective processes of transfer between the stratosphere and 

the troposphere involve mean meridional circulation dominated oy Hadley 

circulation and large-scale eddy transports associated with the jet streams (Reiter 

1975). Hadley cell circulation carries tropospheric air into the strutosphere at 

tropical latitudes and stratospheric air into the troposphere at middle and high 

latitudes (see Figures 2.1 and 2.2). 
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FIGURE 6.2 Comparison of groundlevel cosmic ray flux secondary-particle fluxes 
with sunspot number over the past 150 years. Cosmic ray fluxes are recorded by 
ionisation chambers and neutron monitors. The amplitudes are given in units of 
standard deviations (i.e. the number of standard deviations the value is from the 
normalised mean). All data points represent annual mean values. The correlation 
factor is -0.8. F..rom Beer et al 1991. 

Air circulation in the vicinity of the jet streams promotes air mass transfer from the 

stratosphere to the troposphere. Figne 6.3 sh')WS a schematic north-south cross 

sectior. through a jet stream. The tropopause is defined by the thick line. At the jet 

stream core, the tropopause cannot be defined and a gap appears. A frontal zone 

extends from the tropopause section on the right of the diagram into the lower 

troposphere. Circulation relative to the position of the jet stream causes air from the 

stratosphere to extrude into the frontal zone (as shown by the curved arrow). This 

process is also known as tropospheric folding (Danielsen 1968, Reiter 1975). Jet 
streams occur in the 30-50° latitude belt (subtropical jet stream) and more regularly in 
the 50-60° latitude belt (the stronger subpolar jet stream) where they are associated with 
cyclones (See chapter 2). 

The combination of mean meridional circulation and large-scale eddy transports 

result in the transfer of 73% of the mass of the stratosphere, i.e. 38% by mean 

meridional flow, 15% from the northern hemisphere to the southern hemisphere, and 

20% by large-scale eddy transport (Reiter 1975). Thus, maximum transfer of air 

from the stratosphere to the troposphere occurs in the middle latitudes (35-40°). 
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FIGURE 6.3 South-north cross section through a jet stream. Isotachs (lines of 
constant wind speed m/s) are shown as dashed lines, isotherms of potential 
t~mperature (temperature an air parcel would assume if compressed adiabatically to 
1 bar) are solid lines. Tropopause is the solid thick line. The flow of air through the 
jet stream is the thick curved arrow. Cis the core of the jet stream. After Warneck 
1988. 

Another significant mechanism of transfer of stratospheric air mass involves 

seasonal adjustments in the height of the mean tropopause level. This leads to 

changes in the mass of air contained in the stratosphere (Staley 1962), and is seen as 

a net flux (upwards or downward) of stratospheric air. Increased tropopause heights 

in the warmer seasons, promote inclu!;ion of stratospheric air into the troposphere, 

where trace species such as 36CJ can be scavenged. In addition for 36CJ, more 

cosmic rays can penetrate the troposphere, enhancing the production of tropospheric 

36CI. Based upon seasonal measurements of tropopause heights made at four 

different latitudes in the northern hemisphere, it was suggested that seasonal 

variations in the height of the tropopause results in transfer of 10% of the mass of the 

stratosphere (Reiter 1975). Small-scale eddy transport across the tropopause eg. 

penetration of thunderstorm cells into the I ower stratosphere, result in transfer of Jess 

than 10% of material between the stratosphere and troposphere. 
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- - . . 

Air is a1so transferred across the interhemispheric tropica1 convergence zone (ITCZ) 
between the northern and southern hemispheres. Exchange between the two 
hemispheres occurs by eddy diffusion in the equatorial troposphere. However, most 
exchange occurs by seasonal shifts in the ITCZ, which lies to the north of the equator in 
July and may lie to the south of the equator in Januruy, in the vicinity of Australia. The 
displacement is greatest over the Indian Ocean, highlighting the importance of the 
monsoon for interhemispheric exchange (Figure 2.2). 

Warneck (1988) summarises movement of airmasses through the different 

atmospheric domains in terms of a four-box model, where the stratosphere and 

troposphere of each hemisphere belong to a separate box. The exchange rates shown 

in Figure 6.4 are summarised by Warneck from various tracer observations 
(including C02, 14C(h, 185W, 144Co, 137Cs, 54Mn, 85.Kr, 90Sr and meteorological 

data). This model treats the northern and southern hemispheres the same, i.e. 

assumes that the rate of stratospheric/tropospheric exchange is the same in both 

hemispheres. 

Southern 
3.5 yr .. Northern 

Stratosphere ~ Stratosphere 

A~ 

, r 1.4 yr 
'' 1.4 vr ~ 1 yr 

Southern • Northern 

Troposphere ~ 
Troposphere 

FIGURE 6.4 Standard four-box model of the atmospht;ric reservoirs and the rate of 
exchange between reservoirs. After Warneck 1988. 

However, asymmetry in the exchange of material between the stratosphere and 

troposphem in the northern and southern hemispheres has been noted in several 

studies invo~ving a variety of tracers. For example, the fallout of 90Sr in the 

southern hemisphere was lower than in the northern hemisphere after atmospheric 

bomb tests (Lal and Peters 1962, Figure 6.5). Measurements of 1 0Be in northern 

hemisphere precipitation also appear to be greater than in southern hemisphere 

precipitation. Raisbeck et al (1979) measured a deposition rate of 4.2 xl0-2 atoms 

10Be!cm2/s at 39°N, and more recent measurements have been in agreement with 
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FIGURE 6.5 The fallout pattern of 90Sr from the stratosphere in the northern and 
southern hemisphere. From Lal and Peters 1962. 

this value (eg. 6.9 xi0-2 lOBe atoms/cm2/s measured in precipitation at 400N by 

Knies 1994 and 4.4 xiQ-2 lOSe atoms/cm2/s for continental sites in the US measured 

by Monaghan 1985/1986). A surface snow sample from Antarctica (Raisbeck et al 

1978), however, gives a lower rate of deposition (3.1 xiQ-3 lOSe atoms/cm2fs), ten 

times lower than measured in Greenland ice. This extremely low value was 

attributed to the low rate of precipitation at the Antarctic site. 

Investigations into the meridional distribution of ozone in the troposphere also 

highlighted this asymmetry between the hemispheres (Fabian and Pruchniewicz 

1973). Peaks in ozone mixing were observed for northern hemisphere subtropical 

and high latitudes, while only occasional peaks were observed in the southern 

hemisphere subtropical latitudes. These peaks trace the latitudinal ranges where 

enhanced stratospheric/tropospheric exchange occurs in association with tropopause 

folding events. Figure 6.6 shows the mean ozone injection from the stratosphere as a 

function of latitude, based upon flight data (Fabian and Pruchniewicz 1973). 

Pruchniewicz (1973) attributed the asymmetry observed between northern and 

southern hemisphere ozone levels to the lower efficiency of the southern 
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FIGURE 6.6 Mean ozone injection from the stratosphere as a function of latitude. 
From Faiben and Pruchniewicz (1977). 

hemisphere gap region in transferring ozone from the stratosphere to the 

troposphere. 

Holton ( 1990) used climate data to model the rate of flux of material between 

atmospheric domains and found transfer in the northern hemisphere to be 50% 

greater than in the southern hemisphere. In extratropical regions, poleward and 

downward transport of aerosols was found to be most robust during winter, and 

stronger in the northern hemisphere than in the southern hemisphere (Hitchman et al 

1994). Robinson (1980), Holton (1990), Follows (1992) and Yulaeva et al (1994) 

attributed the enhanced poleward and downward transport of air during winter in the 

northern hemisphere to a more pronounced driving lower stratospheric wave. Lower 

stratospheric stationary waves are generated by orographic and thermal forcing in the 

troposphere, the effects of each process being equally important (Gill 1982, Smith 

1979). 
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Orographic Forcing 

Figure 6.7 shows a schematic representation of the role of mountains in producing 

stationary waves. Mountain waves have been observed, eg. in the Rocky Mountains 

and the Tibetan Plateau (Lilly et all974) and modelled (see Smith 1979 for a review 

of planetary-scale mountain wave models). Manabe and Terpstra 1974, used a 

complex three layer model to show that the disturbance to zonal air flow is stronger 

in the presence of mountains. Smith and Davies (1977) used a simpler two-layer 

model to show that in the absence of mountains recurring transient disturbances in 

the middle latitude wind flow occurred. In the presence of mountains large 

amplitude standing waves were produced, and the amplitudes of the transient waves 

decreased. 

The smaller area of land mass and therefore Jesser amount of topography in the 

southern hemisphere mean that less orographic production of stationary waves 

occurs in the southern hemisphere. This factor contributes to the reduced amount of 

lower stratospheric wave driving in the southern hemisphere. 

20 

10 

5 

direction of air flow 
~ 

Stratosphere 

Troposphere 

0 15 30 

FIGURE 6.7 Schematic representation showing the formation of turbulence in the 
lower stratosphere by air flowing over mountains to produce mountain waves. After 
Gossard and Hooke 1975. 
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Thennal Forcing -
Waves are able to propagate vertically if a unifonn mean wind (U) is below a critical 

velocity (Uc), where Uc is dependent on the zonal and meridional components of the 

wave, the Coriolis effect, buoyancy and height. Arising from this transmission 

criteria, upward propagation of waves is forbidden in easterly and strong westerly 

winds (Plumb 1989). 

Stationary waves have high amplitudes in the northern hemisphere during winter and 

are absent during summer. During th~ southern hemisphere winter, stationary waves 

have high amplitudes at the beginning and end of winter, but collapse in mid-winter. 

The behaviour of the southern hemisphere stationary waves is therefore not simply a 

reflection of tropospheric forcing, but can be explained in terms of the transmission 

criteria described above. During the southern hemisphere mid-winter westerly winds 

are too strong to permit vertical propagation of stationary waves. A feedback 

mechanism seems to exist in which the difference in the mid-winter wind regimes of 

the two hemispheres arises from the difference in them1al structure of the two 

hemispheres. The temperature of the southern hemisphere polar night is lower than 

that of the northern hemisphere polar night (Figure 6.8a). Departures from radiative 

equilibrium arise from differences in wave transport (Andrews 1989). Therefore the 

differences in geopotential heights between the two hemispheres in winter (Figure 

6.8b) arise from the difference in wave transport, with the southern hemisphere 

waves being weaker. 

Summary 

In conclusion, the enhanced lower stratospheric wave driving in the northern 

hemisphere arises from the greater amount of orographic forcing, a consequence of 

the greater amount of land mass in the northern hemisphere. Differences in the 

thermal structure of the two hemispheres are also significant, giving rise to 

differences in mean zonal winds between the two hemispheres during winter. In the 

southern hemisphere, the mid-winter westerlies are stronger and therefore inhibit 

vertical propagation of the stationary waves. In the northern hemisphere, wave 

propagation in mid-winter is enabled as a result of the reduction to the mean 

westerlies by the waves themselves (Plumb 1989). 

The 36Cl prediction curve of Lal and Peters (1967) is constructed on the basis of the 

southern hemisphere representing a mirror image of the northern hemisphere in a 

similar way to the atmospheric box models discussed f1bove. However, for the 

transfer of many species from the stratosphere to the tropc,sphere ( eg. ozone, 90Sr) 
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Southern hemisphere: Ju1y Northern hemisphere: January 

Southern hemisphere: July Northern hemisphere: January 

FIGURE 6.8 Polar stereographic maps of a) monthly averaged temperature (K) at 
10 mb and b) monthly averaged geopotential height fields at 10 mb during winter in 
both hemispheres (i.e. July in the southern hemisphere and January in the northern 
hemisphere). Geopotential height field is calculated from the geopotential/9.8 rnfs2. 
Geopotential at a certain height in the atmosphere is the amount of work required to 
move a unit mass from sea-level to that height. Note the zonal symmetries displayed 
by both parameters for the southern hemisphere winter. Arrows in b) represent 
direction of geostrophic flow. 

this is not the case, and up to 50% less transfer appears to occur in the southern 

hemisphere. This difference may be reflected in the fallout of 36Cl, with lower 

values being observed in the present investigation than those measured for the 

northern hemisphere. 
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Anthropogenic Production and Fallout 
During the 1950s large amounts of 36CJ were injected into the stratosphere by 

thennonuclear weapons tests in marine environments. Chlorine-36 was produced by 

the neutron capture of 35CJ in seawater. This injection of 36Cl has become known as 

the 'bomb pulse'. The bomb pulse was characterised by fallout levels that peaked at 

1,000 times the background levels in middle latitudes and occurred between 1953 

and 1964 (Schaeffer et al 1960, Bentley et al 1982). The elevated 36Cllevels 

associated with the bomb pulse are recorded in the Dye-3 Greenland ice core 

(Elmore et al 1982, Suter et aJ 1987, Synal et al 1990), the Camp Century ice core 

(Elmore et al 1987), soils from New Mexico (Phillips et al 1988) and Australia 

(Fifield et al 1987), and groundwaters from Ontario (Bentley et aJ 1986a). At 

Maralinga in South Australia, the site of British nuclear weapons tests during the 

1950s, localised 36ClJCl ratios of up to 1o-11 occur (Bird et aJ 1991). 

In the Dye-3 Greenland ice core, 36Cllevels in 1957 corresponded to 500 times the 

background level (Elmore et al1982, Suter et al 1987). Synal et al (1990) used the 

data from the Greenland ice core to develop a model of atmospheric bomb-produced 

36Cl, and calculated a residence time of 2±0.3 years for bomb-produced 36Cl in the 

stratosphere. Bentley et al ( 1982) modelled 36Cl fallout from nuclear tests by using 

estimates of 36Cl mjection into the stratosphere from individual explosions as input 

for an atmospheric box model. The model was calibrated using the 36C I 

concentrations in rainfall reported by Schaeffer et al ( 1960). In general, good 

agreement was found between the model and the 36Cl levels found in the Dye-3 

Greenland ice core. 

As the levels of 36CJ associated with the bomb pulse are so much greater than 

background levels, the bomb pulse is a useful environmental tracer, eg. in the study 

of hydraulic flow and dispersive mixing in groundwater investigations. The long 

half-life of 36Cl eliminates ambiguities that result from decay and dispersive mixing 

when other radionuclides, such as tritium are used. 

Results obtained from the Dye-3 Greenland ice core showed that 36CJ produced 

during the weapons tests of the 1950s was influencing precipitation until as late as 

1985 (Suter et al 1987). While the present-day 36CJ fallout levels have again 

reached pre-nuclear weapons testing levels, neutron capture of 35Cl associated with 

nuclear technology may occur on a local scale, eg. nuclear reactor or processing 

operations. For example, operation of the HIFAR reactor at Lucas Heights, Sydney 
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Australia has produced ratios up to 10-11 on the reactor site (Bird et a11991). These 

levels are not considered an environmental hazard. Much more significantly, nuclear 

reactor accidents such as Chemobyl, have released considerable amounts of 36Cl 

into the environment (Andrews and Fontes 1992). 

6.2 PREVIOUS 36CI PRECIPITATION ll'<VESTIGATIONS 
The first measurements of 36CJ in rainfall were~ from Long Island, USA, during the 

period of nuclear weapons testing in the 1950s (Schaeffer et al 1960). As discussed 

above, levels of 36CJ were several orders of magnitude above background levels. 

These large values were measured in a screen-wall counter, a technique whose 

detection limit is too high to measure background levels of 36CJ. With the 

refinement of AMS, it has become possible to measure much lower levels of 36CJ. 

For example, Elmore et al (1979) measured 36Cl concentrations in seawater and 

surface waters from North America with a background level of 3x1Q·15 36Cl!Cl. 

Finkel et al (1980) measured 36Cl in ice, rain and upper seawater levels in 

Antarctica. Variations of up to three orders of magnitude were observed in snow and 

firn and were attributed to the effects of atmospheric mixing and scavenging, or to 

radioactive decay of 36Cl in the very old ice. A rainfall sample measured by Finkel 

et al (1980) showed 36Cllevels lower tl:lan rainfall collected during the early 1960s, 

showing the decrease in atmospheric 36CI derived from nuclear weapons tests. 

Investigations of anthropogenic levels of 36Cl in ice-cores were discussed in the 

previous section. Pre-bomb 36CI concentrations of ice from the Dye-3 Greenland ice 

core were also measured and found to be 3 to 5 times greater than predicted from 

production rate calculations (Suter et al 1987). In contrast, the global fallout rate of 

36CJ estimated from measurements of Antarctic ice (Nishiizumi et al 1979, Finkel et 

al 1980 and Nishiizumi et al 1983) were close to the predicted calculations. (Table 

6.1 ). Reliable 36Cl fallouts of between 10 and 14 atomsfm2fs can be deduced from 

the 36Cl concentrations measured in the surface ice samples when snow deposition 

rate and latitude are taken into account. 

Chlorine-36 has been used as a tool to model evapotranspirative loss from the upper 

Jordan River catchment (Magaritz et al1990). Stable Cl concentrations and 36Cl/Cl 

ratios of several wate; bodies were compared with those of precipitation, and were 

found to experience between 40 to 90% evapotranspirative loss. The representative 

precipitation sample was Mt Hermon snow (latitude 32.5°N), which had a ratio of 

1589 ± 12 36C1fCl and was calculated to be made up of less than 1% of bomb

produced 36CJ. 
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TABLE 6.1 Concentration of 36CJ in ice from Antarctica and the estimated 36CJ 

fallout calculated from A=fc/s (from Nishiizumi et al 1979), where A is 36Cl 

concentration (atoms/kg of ice), f is fallout, cis latitude scaling factor (0.4 at 700) 

and s is snow deposition rate (5 cm/y) . 

sample 36CI atoms/kg 

Y amato Mountains 

Allan Hills 

SipleFim 

Allan Hills (0-12 em) 

Y amato Mountains c-8 

*higher snow accumulation rate 

of ice (x1Q6) 

2.5 

2.6±0.1 

7.5±0.3* 

2.8±0.2 

3.6±0.2 

8.7±0.8** 

3.38±0.2 

3.17±0.22 

36Cl fallout 

(atomsfm2fs) 

9.9 

10.3 

30 

11.1 

14.2 

34 

13.4 

12.6 

Reference 

Nishiizumi 1979 

Finkell980 

Nishiizumi 1983 

** remelting of old ice near the surface of the ice sheet (based on field evidence) may have allowed 

incorporaqon of bomb 36cJ in the modem ice 

Herut et al (1992) investigated the 36Cl composition of Cl-rich rainwater (defined as 

having greater than 2.9 meq/L Cl) from Israel. A positive strong correlation between 

36CVC1 ratio and Cl concentration was interpreted as a solute relationship defined by 

mixing between two endmembers, sea-spray with a low 36Cl/Cl ratio and CJ-rich 

marine-dust aerosol with a high 36CVC1 ratio. 

Hainsworth (1994) measured the 36Cllevels in monthly rainfall from Maryland, 

USA. Seasonal changes in the flux of 36Cl were observed, with a maximum in the 

northern hemis!'~;:,re spring reflecting the seasonal changes in stratospheric

tropospheri~ mixing. Wet-only collectors were compared with bulk depositional 

collectors, and dry deposition was estimated to account for 25% of flux to the site, 

being ·.;ignificant during periods of low rainfall. The mean depositional flux at the 

Mary land site was 59±8 36Cl atoms/m2/s, three times greater than that predicted for 

latir1de 380N, but in accordance with the fallouts measured in the pre-bomb Dye-3 

Greenland ice cores (Suter et al !987). 

Ratios of 36Cl!Cl ratios in surface waters from the Susquehanna River basin 

(Pennsylvania) and groundwaters from the Aquia r~uifer (Maryland) were found to 

be 3 to 5 times higher than predicted by Bentley et al (1986a). Hainsworth (1994) 
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recalculated the depositional pattern of .:16Cl/Cl for the USA based upon the 

deposition pattem of 90Sr. The model included latitudinal and longitudinal 

variations in 36Cl deposition. The longitudinal variations arise due to the effect of 

topography on stratospheric/tropospheric mixing. The recalculated 36Cl!Cl 

deposition pattern agreed with that of Bentley but values were two times greater than 

Bentley's. Bulk-deposjtion samples were collected frcm six sites in eastern USA and 

one si.te in central nm1hern USA. The measured 36Cl/Cl ratios agreed with the 

predictions of Hainsworth for the eastern sites, but were anomalously high for the 

central site (i.e. measured at 4220 xi0-15, when predicted to be between 1200 xi0-15 

and 1600 xlQ-15 by Hainsworth). Measured fluxes were two times greater than 

Hainsworth's predictions and stable Cl was two times greater than measurements 

from the National Atmospheric Deposition Program. These discrepancies were 

attributed to a combination of oversampling, recycling of crustal material and dry 

deposition. A global production of 40 atomsfm2fs was suggested, almost four times 

greater than that predicted by Lal and Peters ( 1967). 

Knies (1994) measured 36Cl, lOBe and 7Be from wet deposition in Illinios, USA. 

Fluxes of each isotope correlated with precipitation amount. The mean flux of 36CJ 

was measured to be 67±5 36Cl atomsfm2fs, approximately four times that predicted 

even when dry deposition of 15% was taken into account. 

In summary, measurements of 36Cl in precipitation from the northern hemisphere 

suggest a 36Cl fallout that is 3-5 times greater than predicted by Lal and Peters 

(1967). The few published values of 36CJ in the southern hemisphere (i.e. Antarctic 

ice measured by Nishiizumi et al1979, Finkel et al 1980 and Nishiizumi et al 1983) 

suggests a fallout that is only slightly higher than the predictions of Lal and Peters 

(1967), i.e. a factor 3 less than in the northern hemisphere. Data from the present 

investigation allows a detailed examination of the discrepancy between northern and 

southern hemisphere fallout estimates. 

6.3 CHLORINE-361NV.ESTIGATIONS IN AUSTRALIA 

There have been many 36Cl/Cl meusurements made on samples from various parts of 

the Australian environment. These have all been measured by the AMS group in the 

Research School of Physical Sciences and Engineering at the Australian National 

University with the exception of early measurements on the Great Artesian Basin 

(Bentley et al 1986b ). Some early results are reported in Fifield et al 1987, Davie et 

al (1989) and Bird et al (1991), although a suhstantial body of data is awaiting 
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publication. The following discussion will focus on those studies for which the 

atmospheric deposition results from the present investigation may be of particular 

relevance. 

The present study has relevance to groundwater investigations, as precipitation 

provides the means of input of 36CJ to groundwater systems. The Great Artesian 

Basin showed the application of 36CJ to date groundwater greater than 1 Ma 

(Bentley et al 1986b). The Great Artesian Basin occupies one fifth of the area of 

Australia, and is located in central and northeastern Australia. Recharge to the basin 

occurs along the coastal ranges of northeast Australia, and outflow emerges near 

Lake Eyre in central Australia. Ages of the groundwater ranged between less than 

100,000 years and greater than 1 Ma, and were in agreement with age estimates from 

hydraulic models. The 36CIJC1 ratio was found to be constant in the recharge area 

and decreased smoothly away from the recharge zone. The 36CIJC1 ratio at the 

recharge zone was used as an estimate of the initial 36CifCl ratio required in the age 

calculation. 

Davie et al (1989) used 36CifCJ ratios to identify chlorides of different origins in 

groundwater from the Mallee region of the Murray-Darling Basin, southeastern 

Australia. Isotope ratios were found to increase in the direction of flow. This trend 

was opposite to that expected based upon probable relative ages since recharge, and 

was interpreted as the influx of saline groundwater along the flow path. The 

generally low 36CIJC1 ratios and the associated increases in Cl along the flow lines 

were interpreted as the percolation of rainwater downwards at several places within 

the aquifer. 

A major increase in stable Cl concentration and falling 36CIJCJ ratios was noted in 

the downflow (from east to west) direction of the Lachlan Fan area of the Murray

Darling Basin (Bird et al 1989). The young age of the groundwater ( <<300,000 

years) ruled out decay as being an explanation of this increase. Instead, evaporation 

and dissolution of a constant ratio chloride was invoked as a cause. 

Simpson and Herczeg (1994) reinterpreted data on the stable Cl concentration of 

rainfall from eastern Australia and concluded that it consisted of up to 50% recycled 

Cl. It was recognised that this has implications for the calculated 36CJ/Cl ratios as a 

function of distance from the coast for the Murray-Darling basin. If marine Cl 

accounts for only half of the Cl in rain, the 36Cl/Cl ratio would be twice that 

calculated for Cl that is 100% marine in origin if the 36CifCl composition of the 
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----------------------------------------------------------
re<;ycled component is comparable with recent precipitation rather than the low 

ratios typical of seawater. The present investigation may tell us something about the 

recycled Cl component by comparing the measured ratio with a recalculated ratio 

based upon latitude and distance from the coast. 

Salt lakes provide a source of recycled Cl to precipitation. Relatively low ratios (30-

60xi0-15) are found in salt lakes mainly from Western Australia (Fifield et al 1987). 

The lack of variation in the ratios as a function of location, and the similarity of the 

average ratio to granites, was interpreted as weathering of surface rocks as being the 

main source of 36Cl to the salt lakes. However, further investigations of the 36Cl 

content of halite from Western Australian salt lakes found that 36CifC1 ratios in 

halites from salt lakes in Western Australia showed increasing ratios with increasing 

distance from the coast (Chivas et al1994). The present investigation, by measuring 

precipitation of 36CI in the vicinity of the Western Australian salt lakes, may provide 

further insight to this suggestion of the source of 36Cl to salt lakes. 

The results of previous investigations of 36CJ in the Australian landscape highlight 

several areas in-which basic measurements of 36Cl are necessary in order to fully 

interpret existing 36Cl data. For example, although good agreement was found 

between predicted 36CifCl ratios of precipitation and measured values of 36C1JC1 in 

recharge waters in the Mallee area of the Murray-Darling Basin (Davie et al 1989), 

recharge ratios in the Lachlan River region were higher than the calculated values 

(Bird et al 1989). This was also the case for the Great Artesian Basin (Bentley et al 

1986b). Thus there is a need for more information on the Cl and 36CJ precipitation 

rates as a function of latitude and distance from the coast. Bird et al (1991) also 

speculated that the 36C1JC1 ratios in tropical rainfall would be low because of the 

very high rainfa11 carrying marine CI. Recycled solids in rainfaii from inland 

Australia would be expected to contribute to high 36C1JCI ratios in meteoric fallout 

at inland sites. 

The investigation of the 36CI in precipitation from the two arrays established in this 

research project provides some of the basic information required to fully interpret 

existing 36CJ data. The WE arr~y allows an investigation of the change in 36C1JCI 

ratios with changing distance from the coast. The SN array allows an assessme"'t of 

the latitudinal dependence of 36CI fallout. Both arrays provide information on the 

seasonal variations of the 36CI in precipitation. 
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6.4 THE DATA SET 
The 36Cl data set is made up of 115 (of a possible 144) values spread over the 18 

sites that make up the WE and SN arrays. Samples excluded from the data set 

include those removed during the major-element data quality checks (Chapter 5) and 

those which experienced problems during collection and subsequent manipulation, 

eg. northern sites along the SN array during summer 1992 are excluded because an 

accurate rainfall record was not measured due to a fault in the rain-collector design. 

The data set is listed in Appendix G. 

6.5 OBSERVATIONS 
In the following discussion, fallout of 36Cl is in atomsfm2fs. Stable Cl concentration 

is in JleqiL (unless stated otherwise) and 36Cl concentration is in units of atoms/L. 

Spatial variations 

Mean 36Cl/Cl Ratios 

The mean ratios of 36ClfCl as a function of distance from the coast, are shown in 

Figure 6.9 for both the WE and SN arrays. The mean stable Cl concentrations at 

each site are also shown on the plots. The WE array shows an increase in the 

36ClfCl ratio with increasing distance from the coast. A similar trend is observed for 

the SN array from the southern and northern coasts. It should be noted that the mean 

north coastal ratios (eg. at sites 32 and 33) greatly exceed those measured at an 

equivalent distance from the western coast of the WE array (eg. sites 16, 17 and 18) 

and from the southern coast of the SN array (sites 26 and 27). The increase in 

36CJ!Cl ratio with increasing distance from the coast is matched by a decrease in 

stable Cl. This trend reflects the influence of marine chloride at coastal localities 

and the decreasing influence with increasing distance from the coast. 

Mean Stable Cl Concentrations 

The relationship between 36ClfCl and distance from the coast reflects the decreasing 

influence of stable Cl of marine origin with increasing distance inland. Figure 6.10 

shows the rapid decrease of Cl concentration in rainfall with increasing distance 

from the coast for the WE and SN arrays. The relationship between Cl concentration 

of precipitation and distance from the coast has been discussed, both world wide 

(Junge 1963) and for Australia (Hutton 1976). Junge (1963) showed that wet and 

dry removal of salt by in-cloud and below-cloud scavenging (calculated from salt 

residence times in the atmosphere and wind directions) were insufficient to explain 
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FIGURE 6.9 Mean 36cVCI ratios and stable CI concentrations as a function of 
distance from the coast for a) the WE array and b) the SN array. Coast for a) is 
Leeman, W A b) is Port Lincoln SA for the southern section of the SN array and 
Finke Bay, NT for the northern section of the SN array. Note that t~Ie stable Cl 
axis is reversed. Mean ratios and stable Cl concentrations are calculated from 
seasonal means (see text). 
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FIGURE 6.10 Mean stable Cl concentrations as a function of distance from the 
coast. Coast for the WE array is Leeman, W A, coast for the southern section of the 
SN array is Port Lincoln, coast for the northern section of the SN array is Finke Bay, 
NT. Mean stable Cl concentrations are calculated from the seasonal means. 

the dramatic decrease in rainfall Cl concentration with increasing distance from the 

coast for Europe, USA and Australia. Instead this dependence was explained in 

terms of increased convective mixing of marine air masses moving inland. Mixing 

results in a decrease of salt concentration in subcloud layers, and therefore a 

decrease in salt concentrations in rainfall. At coastal sites, where convective mixing 

has not begun, the airmass is not well mixed so that Cl is available for easy removal 

by in-cloud and below-cloud deposition. As the airmass moves inland, convective 

mixing occurs and salts are distributed vertically through the ainnass. Thus, less Cl 

is available in the in-cloud and below-cloud regions, so that concentrations in 

rainfall decrease. The distance from the coast where vertical distribution becomes 

uniform is marked by a plateau of Cl concentrations, and this distance is dependent 

upon the original vertical salt profile, which varies with geographical location. 

Previous Models 

The rate of decrease of Cl concentration in rainfall with distance from the coast has 

been shown for Australia to follow the form (Hutton 1976) 

y = 0.99d·ll4- 0.23 (6.2) 

158 



Chapter 6 Chlorine-36 

where y is volume weighted mean concentration of CI in J.leq/L and d is distance 

from the coast in km. For data from Victoria (Hutton and Leslie 1958) this gave a 

good fit with r2= 0.992, n=24. Restrictions necessary for the application of this 

equation include the removal of sites influenced to a large extent by terrestrial 

sources, exclusion of sites with annual rainfall less than 500 mm, sampling over at 

least 12 months and removal of sites greater than 300 k.m from the coast. The 

regression form of Hutton's equation was applied to the data from Western Australia 

of Hingston and Gailitis (1976) in Isbell et al (1983), and gave different constants 

i.e. 

southwest WA: y = 0.724d·li4_0.09 r2 = 0.855 (6.3) 

northwest WA: y= 0.14d-114.Q.02 r2 = 0.687 (6.4) 

Mean annual Cl concentration in rainfall for southwest Western Australia 

(Farrington et al1993) was shown to follow the following relationship 

Cx = Cmin + (Cmax-Cmin)e-A.x r2=0.975 (6.5) 

where Cx is the concentration of Cl at distance x km (mg/L), Cmax is the 

concentration of CI at coast, Cmin is the concentration of Cl at the most inland site, x 
is the distance from coast (km) and A. is the spatial decay constant. This exponential 

decay function was then used to predict the amount of Cl accession in southwestern 

Western Australia. 

The regression equations described by Hutton (1976) and Farrington et al (1993) are 

applied to data for the WE and SN arrays in Figure 6.11. Also shown in Figure 6.11 

are the equations for data from north-west and south-west of Western Australia from 

Hingston and Gailitis (1976) reported in Isbell et al (1983). Figure 6.11 shows that 

neither regression form adequately fits the data for the WE and SN arrays. However, 

the WE data set, falls between the curves defined for the south-west (curve A) and 

northwest (curve B) of Western Australia. This reflects the location of sampling 

sites on the WE array which are between those of the northwest and southwest of 

Western Australia as sampled by Hingston and Gailitis (Figure 6.12). A trend of 

decreasing Cl concentration in rainfall from the south to the north of the State is 

suggested. The sites along the northern section of the SN array display lower . 

concentrations than those observed for the north-west of Western Australia by 

Hingston and Gailitis (1976). The northern sample locations of the SN array are 

PJrther north than those of Hingston and Gailitis (Figure 6.12), supporting the 
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FIGURE 6.11 Mean stable Cl concentrations versus distance from the coast for 
a)WE array, b) southern section of SN array and c) northern section of SN array. 
Cl concentrations are fitted to equations of Hutton (1976) and Farrington et al 
(1993). Coast for a) is Leeman, WA, b) is Port Lincoln, SA and c) is Finke Bay, 
NT. 
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FIGURE 6.12 Map showing the location of the WE array with respect to the 
northwest (squares) and southwest (circles) sampling sites of Hingston and 
Gailitis (1976). 
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suggestion of decreasing Cl concentration of rainfall from the south to the north of 

Australia. The site at 850 km inland in Figure 6.1lc, which is displaced from the 

regression curve is most likely influenced by recycled Cl. 

The data is more adequately explained in terms of a two-exponential equation of the 

fom1 

(6.6) 

where A1 and A2 are fitting parameters, A.1 and A.2 are decay constants and d is 

distance from the coast. Figure 6.13 shows the WE and southern section of the SN 

array fitted to this equation. 

100 
•WE array 
o southern section of SN array 

-u 

10 

• 

1 

200 400 600 800 1000 1200 1400 
distance from coast (km) 

.FIGURE 6.13 Stable Cl concentration versus distance from the coast for the WE 
array (filled circles) and southern section of the SN array (unfilled circles) with a 
double exponential fit applied to the data. The fit to the WE data (solid line) follows 
the equation 

y = 69.4 exp(-d/394.9) + 284.0 exp(-d/37.1) x2=16 
The fit to the southern section of the SN array data (dashed line) follows the 
equation 

y = 19.4 exp(-d/1036.9) + 357.7 exp(-d/58.4) 

(Note that a X2 could not be calculated because of the lack of degrees of freedom 
that arises from having only four data points for the southern section of the SN 
array). 
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The good fit between the data and the equation suggests that there are two processes 

influencing the Cl concentration of rainfall as a function of distance from the coast, 

one that causes rapid decay of Cl concentrations, and the other a slow decay. There 

are two possible combinations of processes that may cause this two-fold decay of Cl 

concentrations with distance from the coast: i) the enhanced mixing of airmasses 

moving inland as discussed above and ii) differences in the rate of removal of Cl 

aerosols and Cl gas from marine and continental airmasses. The rapid decay of Cl 

concentrations at the coastal regions represent the removal of Cl in aerosols, 

introduced to the atmosphere by bubble-bursting at the ocean surface. The second, 

slower decay process represents the removal of Cl introduced to the atmosphere by 

volatilisation of Cl from aerosols by strong acids (this process is discussed in Section 

6.6). It seems likely that the decreasing Cl concentrations with distance from the 

coast is influenced by both of the above situations. 

Mean 36CJ Fallout 

The mean fallouts of 36Cl at each site as a function of latitude are shown in Figure 

6.14. Also shown on Figure 6.14 is the predicted fallout curve for the latitudes 

sampled in this project (Lal and Peters 1967, Andrews and Fontes 1992). In order to 

minimise the influence of missing values on the mean calculations, mean 36CI 

fallouts are calculated from the mean of fallouts for each season (winter, summer, 

spring and autumn). 
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FIGURE 6.14 Mean 36CI fallout as a function of latitude. Also shown is the 
predicted fallout curve of Lal and Peters ( 1967). Error bars represent propagation of 
standard errors. Mean 36Cl fallouts are calculated from seasonal mean fallouts (see 
text). 
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With the exception of the three northernmost points, the data appear to agree with 

the general shape of the predicted curve, although the predicted curve appears to 

underestimate the fallout by about 40%. The anomalously large values for sites from 

the north of the SN array (latitude 12°-180) reflect the large fallouts during summer 

(monsoonal period) for these sites, and will be discussed in detail in the following 

section. A more detailed comparison between predicted and measured fallout values 

is given in the Discussion (Section 6.6). 

Seasonal Variations 
The seasonal variations of 36CI/Cl ratios, 36CI fallout and 36Cl concentration, 

rainfall amount and stable Cl concentration for each site on the WE and SN arrays 

are displayed in Figure 6.15. Each value represents the mean value for each season 

over two years. Where there are missing values (as discussed in Section 6.4), the 

value in the plot represents single measurements. At site 25 during summer and site 

33 during spring, there are no measurements available. 

Investigating the trends displayed by 36CVCI ratios, 36CI fallout, 36Cl concentration, 

rainfall amount and stable Cl concentration over time provide information 

concerning the processes that effect the 36Cl composition of prP.•;ipitation. While 

exceptions exist, the following discussion describes the general trends displayed by 

the different variables and attemptc; to explain the processes that may produce these 

correlations. From the data, a positive correlation is observed between rainfall 

amount and 36Cl fallout and a negative correlation between rainfall amount and 36Cl 

concentrations. 36CVC1 ratios exhibit both positive and negative correlations with 

36Cl and stable Cl concentration, reflecting the site dependent input of 36Cl and 

stable Cl. This is corroborated by a lack of correlation between 36Cl concentration, 

stable Cl concentration or 36CVC1 ratio with 36Cl fallout. 

164 

I 



Chapter 6 Chlorine-36 · 

100 

fallout 
., .. . 

rainfal .. 
10 

,. . 100 I 

- ratio 
~ 

~1 cone u 
\C 
M 

~ Cl t-- ~ 1 10 s A w Sp s s 
0 '-" 
...... season = ~ 0 '-' '::2 = ~ 0 1000 1000 ·:: = «< site 17 0 !:I 

rainfall 
u = = ·8 100 .•••••• tc. 0 .. u = )(·•" 

ratio -0 100 ·u u - fallout ..... 
:··..... . 0 u · .. ;-· .. ..... 

..0 
\C 10 

II· .•• .. 
5 M 

~ 10 ~ ·~ (/) ,....., 
/ . 

;;. ...... 
~ ~ .€ 1 -CI (/) 

......., 

s -
0 :N 
~ 1 = ._, 0.1 ·a ...... A w Sp s ~ ::s 
0 - season 
:3 - 1000 u 1000 \C site 18 M 

100 -~ 100 

'•N.., 

fallout
11 
........... §·" 

.... .... m- •• ::·······~oe 
10 '····.1 10 ...-

6Cl cone 

1 1 

A w Sp s 
season 

/ 

FIGURE 6.15 Seasonal variations displayed by 36Cl fallout, 36Cl concentration, 
36CIJCI ratio, stable Cl concentration and rainfall amount at each sampling site. 
A=autumn, W=winter, Sp=spring, S=summer. Values represent the mean for each 
season over the sampling program. 

/ • 
165 

·f 



-----------------

I 

-u 
\0 
(<') 

1000 1000 I I I I I I I I I I I I 

rainfall 

100 100 

falloul.... . ..... JD-· •• ::,, ••• 4 ....... ~-···· 
10 36Cl cone 

10 

....... l 

Sp S 
season 

1000 site 20 
100 

••••••• .X ... 
100 10 

fallout 
11···········111···········111-··········-41 

10 Cl 1 

36Clco~ • "--r-· 

A W Sp s 
season 

site 21 

100 

)( ... 
rainfall ··· ... 

.. " ••••.•..•. ·JC··· .•.•..•• "M 

fallout 10 

10 
•..••.•••.•. it ..••..•.•• ·Ill· •••••••••• .GJ 

Cl 1 

1 
A W Sp s 

season 

FIGURE 6.15 continued 

166 

Chapter 6 Chlorine·36 

i 
r::: 
0 ·.... 
~ 
r::: 
8 c 
8 
u 
q) 

::0 
C<j .... 
VJ 

1 
~ 
c ..... 
CIS 

c.::: 



1000 
site 22 --------..... -: 100 

100 
... 

.,. ....... ····~e. 
' 

-:10 

10 
., 1 

all out ...... 41
; ••• 

!f· .... 
CI ~ 

1 
~ 

36CI cone 0.1 
-!-JU 

A W Sp 
season 

s 

100 "··· ... 
rainfall ····'lC 

site 23 
-: 100 .... .. . 

10 
G··~·... • .. ·• .... • , 

fallout .... ~ ........ ··;· .. . 
'\. .. 

/.. ' ·· .. 
~, ... ---- "" 

... ~ .. J~.l 
1 

0.1 
A W Sp s 

season 

1ooo~~~~~~~~~~~~~1ooo 

ratio site 24 

---------------............... 
rainfall ···. 100 .K ... 

"···~······· 

1 100 
.. 

-, 
; 10 ~ .. 

10 
-: 1 

1 
A W Sp 

season 
s 

FIGURE 6.15 continued 

167 

Chapter 6 Chlorine-36 _ 

-u 
II) -.g .... 
<I) 

. 



Chapter 6 Chlorine-36 

1000 
..,.~ I I 

_l_'_ 
I 1000 

------ ratio site 25 

It···· ........... •• 0 

·· ....• rainfall - 100 
100 ~ 

fallout - 10 
~ ,.II - 10'" ~ ~ Cl 

., 1 
~ 

"( _ - 3tl cone ,-.., 
M 

~ ~ 1 I 
a· 

I 0.1 I 0 I 

I'll A w Sp s e 
e '-" 

c:: 
0 season 0 ... e '::J 

c:: ~ 
0 100 1000 c:: ..... Q) 
...... 
Cl:l site 26 

u 
J:2 

c:: 
0 

c:: 
(I) 

u l ····f u . . . . . . . -. . . . u c: .. . . 
0 .· · .. 1 Q) 
u . . . . -·"'·. .. .. -
0 ·' . i 

10 . ·:· 100 .... 
10 I'll 

M . ,-.., 
~ 
~ ~ N 

.§ '-" -I'll ~ e Cl c:: 
0 ... '«< e 1 

10 ~ 
...... 
::s A w Sp s 0 -~ season 

-u 
10 100 1000 M 

·"· .· . . '•· .·· ·:: .. 100 ·:::; 
fallout .. 

10 rainfalr ;:: .. 

10 

1 

A W Sp 
season 

s 

FIGURE 6.15 continued 

168 



Chapter 6 Chlorine-36 

1000 100 
r~fall ··· 

•··... • ...... 0 tC # •• 

... 
·-a 
site 28 

atio 
100 10 

10 fallout 1 

Cl _.....,& 
315CI cone .-a---......- , - 0.1 1 

A w 
seaso;p 

s 

g 
1000 f~i~f~ f".' 100 \0 -(<) It •• 

~ 
~ 

site 29 
· ratto 8 .......... e 

~ 10 
c: 

c; 0 .... 100 ·-«S ..... 
'-' ~ 
·= 0 c: 

".::1 
¢) 

g 0 
-~~- c: 

' .. 1 0 
~ ' 10 '~tl' - fallout 0 

0 -s 1- Cl 
u 

-..... ¢) 
0 - 36 -- Clconc "S- - . ..__ .0 
u 0.1 «S ..... 
\0 1 en 
(<) ~ 

.....:: A w Sp s -
~ season ~ N 

~ 
.......... -;s 
c: 

.9 100 ·a 
~ ~ .... 
::s ratio 10 0 ...... 
;s 100 

' - ·~ ~ Cl . , -- i 1 
(<) 

36 
. , 

10 *- I 

Cl cone ........ 
0.1 I .._ 

fallout 
. !'" --! 

1 -·' t-. 

0.1 
rainfall 0.001 

A w Sp 
season 

s 

FIGURE 6.15 continued 

169 



Chapter 6 Ch/orine-36 

170 



Chapter 6 Chlorine-36 

Chlorine-36 Fallout 

The general seasonal trends displayed by 36Cl fallout can be seen in Figure 6.16 

which shows the mean36Cl fallout for each season for sites along the WE array, and 

northern and southern sections of the SN array. The WE and southern section of the 

SN array display maximum fallout during spring. High spring fallouts are in 

accordance with the findings of Hainsworth et al (1994) for rainfall in Maryland, 

USA (latitude 38°N). It was suggested that this enhanced fallout may be due to an 
increase in transfer of stratospheric air to the troposphere that occurs as the 

tropopause rises during spring to its maximum height during mid-summer (Reiter 

1975). Th~ elevated tropopause allows transfer of stratospheric 36CI as well as the 

penetration of cosmic rays into the troposphere, increasing the production of 

tropospheric 36CJ. If this mechanism were the sole cause of enhanced 36CJIC1 ratios, 

it is expected that summer ratios would also be high, which is not observed. The 

same behaviour for summer fallouts was observed by Hainsworth et al (1994) who 

were equally puzzled by this inconsistency. 
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FIGURE 6.16 Mean 36Cl fallout for each season along the WE array, northern 
section of the SN array and southern sectim• of the SN array. Maximum fallout 
occurs during spring on the WE and southern section of the SN array, reflecting the 
change in tropopause height during spring. Maximum fallout occurs during summer 
on the northern section of the SN array, reflecting direct entrainment of stratospheric 
36CJ during convective cumulus activity associated with the monsoon. 

The northern section of the SN array displays maximum fallout during summer. 

However, the fact that high fallouts during summer are restricted to the northern 

171 



Chapter 6 Chlorine-36 

section of the SN array where the monsoon dominates, suggests that raising of the 
tropopause during summer is not the main cause of enhanced summer fP.llout. Instead, 
entrainment of stratospheric air during convection may be invoked (Reiter 1975). 
Equatorial Indonesia is known as a fountain region where troposheric air is injected into 
the stratosphere (Newel and GouldoStewart 1981 ), so that tall cumulus clouds 
exclusively generated near Indonesia sometimes penetrate above the tropopause allowing 
exchange between the troposphere and the stratosphere (Danielsen 1982, Kley et al 
1982). 

Rainfall Amount Versus Fallout 

In many instances, rainfall amount and fallout variations with season follow similar 

trends, eg. sites 16-19 (Cliff Head to Iowna) on the WE array, and all sites along the 

SN array (Figures 6.15). 

The positive correlation between rainfall and fallout can be seen in a plot of the two 

variables for the complete data set (Figure 6.17a). The E11ear correlation coefficient 

is 0.47. The dependence of the relationship on arr:.y is shown by the difference in 

correlation when data from the two arrays are separately analysed. Data for the SN 

array shows a higher correlation coefficient (Figure 6.17b) than data from the WE 

array (Figu~ 6.17c). 

The more distinct positive relationship between rainfall and fallout displayed by the 

sites from the SN array most likely reflects the extreme rainfall regimes that sites 

along this array experience (i.e. nil rainfall in the northern half of the array during 

winter, and up to 800 mm during summer). Rainfall along the WE array is less 

variable over time so that the influence of rainfr.dl on fallout appears to be less 

dramatic. The mechanism for the high fallout along the northern section of the SN 

array during summer has been discussed above in terms of high-reaching cumulus 

convective activity. 

Sites 20 -25 (Barrambie to Everard .Junction) along the WE array do not display a 

sympathetic trend between rainfall and fallout with season (Figure 6.15). The 

similarity in trends displayed by fallout, Cl concentration and/or ratio suggest that at 

these sites rainfall does not control fallout of 36CJ. Instead the supply of 36Cl and Cl 

(where the sympathetic trends between ratio and Cl suggest the two are sourced from 

a similar process) is more dominant. 
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Rainfall Amount Versus 36Cf Concentration 

Figure 6.18 shows an inverse relationship between rainfall amount and 36C I 

concenti<aticn r,f precipitation. This is in agreement with the behaviour displayed by 

the major-element concentrations and rainfall amount described in Chapter 5. At 

coa,\tal localities, 36CJ concentration and stable Cl concentrations show similar 

trends, but this disappears at non-coastal localities. The relationship between 36Cl 

and rainfall amount will be discussed further in the Discussion (Section 6.6). 
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40 

FIGURE 6.18 Rainfall versus 36CJ concentration for all data. The negative 
correlation displayed between rainfall and 36CJ concentration is in agreement with 
the behaviour displayed between the major-element concentrations and rainfall 
amount in Chapter 5. 

36Cl!Cl Variations 

The seasonal trends displayed by the 36Cl!Cl ratio and the stable Cl concentrdi.ions 

of precipitation in Figure 6.15 show variable patterns: sympathetic (eg. high ratios 

and high Cl, or low ratios and low Cl) and antipathetic (eg. low ratios and high Cl or 

high ratios and low Cl). The sympath~tic trends represent changes in the supply of 

36Cl and Cl which have the same magnitude of effect on both species. Conversely, 

the antipathetic relationships represent independent changes in the supply of 36CJ 

and Cl. Low ratios and high Cl compositions suggest a supply of stable Cl that has a 

low 36CI composition. High ratios and low Cl suggest a supply of Cl that has a high 

36Cl composition. Figure 6.19 displays a schematic representation of the processes 
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that may affect the 36CJ/Cl ratio. The following discussion suggests possible 

explanations for the seasonal variations in 36CUC1 ratios. 

0 

·~ 

0 
~u 
10 
<'") 

Entrainment of stratospheric 36ct during cumulus thunderstorms, 
increased height of tropopause during spring and summer, 
mixing with a recylced source that has a high 36CVC/ ratio. 

36Cl decay 

Dilution with a source of low 
stable Cl and loss of 36C!? 

Dilution with stable Cl from 
seawater and salt klkes. 

stable Cl 

FIGURE 6.19 Schematic diagram of the processes that control the distribution of 
36Cl in the environment. Italics describe processes relevant to 36Cl in precipitati<;>n. 

Low ratios 

Low 36CUCI ratios that occur in association with high Cl concentrations represent 

precipitation that has been diluted with CI with negligible or significantly lower 

36CI t;Omposition. The two major sources of this Cl for the present sampling 

program are seawater and sa!i-lake material. 

a) Seawater 

Chapter 5 showed that sites along the WE and SN arrays displayed major ion ratios 

(eg. Cl/Na, S04/Na, Mg/Na) characteristic of seawater during certain seasons. 
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These seasons of influx of seawater could be tied into the prevailing rain producing 

synoptic processes described in Chapter 2. The coastal sites 16 (Cliff Head) and 26 

(Port Lincoln) displayed seawater ratios throughout most of the year; all sites along 

the WE array displayed seawater ratios during winter 91 and sites 16 to 21 

(Yeelirrie) during winter of 1992. 

Low 36CIJC1 ratios and high Cl concentrations are exhibited by the coastal sites 16 

and 26 throughout the year, by sites 17 (Morawa) to 20 (Barrambie) along the WE 

array during winter, and by sites 27 (Gawler Ranges) and 28 (Wintinna) along the 

SN array during winter. Thus seawater Cl is acting to decrease the 36Cl!Cl 

composition of precipitation at these sites during these times. 

b)Salt Lakes 

An additional source of Cl that acts to dilute 36ClfCI ratios at non-coastal' localities 
l 

may be Cl of salt lake origin. Salt lakes are especially common on the WE array and 

there are a number of salt lakes that may influence the 36ClJCl ratio of precipitation 

at inland sites of the WE array (Figure 6.20). There are a number of instances where 

low ratios and high stable Cl compositions of rainfall can be correlated with surface 

w!nd directions that support influx of Cl from a salt lake to a collection site. These 

are summarised in Table 6.2 and include : 

1) Site 20 (Barrambie) during summer; the predominant frequency of surface 

wind directions at Meekatharra for each summer season are from the southeast 

(Appendix H) and Lake Mason is situated 30 km towards the east-southeast of the 

collector site. 

2) Site 21 (Yeelirrie) during summer; the predominant frequency of surface 

wind directions at Yeelirrie are northeast-east-southeast and Lake Way lies 50 km to 

the northeast of collector 21. 

3) Site 24 (Gunbarrel) and 25 (Everard Junction) during winter of 92; the 

prevailing wind directions at Giles are southeast-south and north and Lake Gillen is 

located 100 km to the southeast of collector 24 and Lake Breaden is located 100 km 

to the southeast of site 25. 

.. 
It should be noted that there are numerous small unmapped salt lakes throughout 

Western Australia which may also supply stable Cl to the collectors. !.:t addition, the 

presence of recycled salt in soils may also be a source. 
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TABLE 6.2 Mean wind direction at sites along the WE array displaying low 36CJ/Cl 

ratios and high stable Cl concentrations, and the salt lakes that may be a source of 

stable Cl. 

Site Met Station Saason Wind Lake 

direction 

20 Meekatharra summer91 E-SE Lake Mason 

20 Meekatharra summer92 E-SE Lake Mason 

21 Yeelirrie summer91 NE-E-SE LakeWay 

21 Yeelirrie summer92 NE-E-SE LakeWay 

24 Giles winter 92 SE-S Lake Gillen 

25 Giles winter 92 SE-S Lake Breaden 

The 36clfCI ratios and stable Cl concentrations at site 23 (Carnegie) do not suggest 

that Lake Carnegie, a major salt lake located 100 km to the southwest of site 23, 

influences the 36CI!Cl ratio. This makes sense when the surface wind directions at 

Carnegie are considered. The predominant surface wind direction is never from the 

southwest at Carnegie (Appendix H). 

Chivas et al.(l994) reported increasing 36Cl/Cl ratios, in halite, from modern salt 

lakes in Western Australia with increasing distance from the coast. This reflects the 

trend shown by the 36CI!Cl ratios of precipitation and increasing distance from the 

coast (although at lower levels). The relationship between precipitation and salt lake 

36CI!Cl ratios suggests that the main source of 3table Cl to the Western Australia 

landscape is meteoric. Chivas et al (1994) used this to calculate a residence time of 

-1 Ma for Cl in the Australian landscape. 

High ratios 

High ratios of 36ClfCl are observed at most sites during spring. For coastal sites on 

the WE array (sites 16 to 18) this is associated with high stable CJ concentrations. 

At inland sites on the WE array, high 36Cl/Cl ratios are observed with 1ov1 stable Cl 

concentrations. All sites along the SN array exhibit high 36CI!Cl ratios during spring 

in association with low stable Cl concentrations. High ratios and/or high fallouts are 

observed during summer in some instance, in particular along the northern section of 

the SN array. 

The mechanisms for producing high spring and summer ratios have been discussed 

earlier in terms of the high 36Cl fallouts during thest! seasons. During spring high 
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ratios occur because of the enhanced transfer of stratospheric 36Cl that occurs with 

tropopause rising during this time. Hi~ummer ratios in the north of Australia 
' 

arise from direct entrainment of stratospheric 36Cl during cumulus convective 

activity associated with the monsoon. The expected, but unobserved widespread 

occurrence of high ratios during summer suggests that other localised processes, 

(such as the supply of stable Cl from local salt lakes) can significantly effect the 

ratios, as has been shown for sites 20 (Barrambie) and 21 (Yeelirrie) on the WE 

array. 

The supposition by Bird et al ( 1991) that 36CI!Cl ratios in tropical rainfall should be 

low because of the anticipated high stable Cl fallout due to very high monsoonal 

rainfall deriving moisture from oceanic areas to the north of Australia, is not true for 

the northern section of the array. Ratios of approximately 400 x J0-15 are meac;ured 

at sites 30 (Tennant Creek) to 32 (Katherine) for summer 1993. Even for the near

coastal locality 33 (Kapalga) the measured ratio of -100 x IQ-15 is significantly 

greater than ratios observed at a similar distance (50 km) from the southern and 

western coasts. 

The Relationship Between 36Cf and Major-Element Concentrations 

The generally accepted process of incorporation of 36CJ into rainfall involves 

production of 36CJ in the stratosphere, movement into the troposphere, mixing with 

stable Cl of marine origin within the troposphere and deposition as rain within one 

week of entry to the troposphere. It has been shown here that an inverse relationship 

exists between rainfall amount and 36Cl concentration (Figure 6.18). In addition, 

there is a lack of correlation between 36Cl and stable Cl concentrations (Figure 6.15). 

For the above process to C1)ntrol the movement of 36Cl from the stratosphere to the 

troposphere and removal from the troposphere, a correlation should be seen between 

36CJ and stable Cl concentrations. Thus a discrepancy appears to be present. 

To investigate this discrepancy further, a comparison of the 36Cl concentrations with 

major-element concentrations was carried out. Table 6.3 shows the correlation 

coefficients between 36Cl and major elements described in Chapter 5. Of note is that 

36CJ does not show a high correlation with Cl, but instead shows a strong affinity 

with N03 and to a less~r extent S04 and K. A multivariate analysis of the variations 

displayed by the major elements, 36Cl and rainfall (Figure 6.21) sees 36Cl grouping 

with N03, S04, K and inversely with rainfall amount. The correlation between 36Cl 

and N03 concentration has implications about the phase (gaseous or aerosol) of 36CJ 
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before its incorporation into rainfall. This is expanded in the Discussion (Section 

6.8). 
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FIGURE 6.21 Factor loading plot i'or major element and 36Cl concentrations 
(atoms/L). 36CJ plots close to N03, near the F2 axis, not with stable Cl, near the Fl 
axis. 

TABLE 6.3 Correlation coefficients between major element ions, 36CJ fallout and 

rainfall amount. Bold values highlight coefficients of greater than 0.6. Note that 

36ci has a high correlation with N03 and not with Cl or Na. 

H Cl S04 N03 HP04 Na K NH4 Ca Mg 36Cl rain 

H ; LOO .02 -.031 .013 -.12 .08 -.07 -.12 -.06 .03 -.13 -.04 

CI 1.00 .83 .14 .55 .97 .73 .45 .81 .98 .27 -.06 

so4 1.00 .57 .65 .90 .81 .58 .79 .86 .69 -.18 

N03 1.00 .37 .23 .42 .30 .35 .22 .84 -.21 

HP04 1.00 .52 .88 .93 .58 .59 .50 -.13 

BR .41 .22 .12 .26 .30 .25 -.02 

Na 1.00 .69 .41 .81 .97 .31 -.07 

K 1.00 .82 .73 ,78 .62 -.18 

NR4 1.00 .48 .48 .47 -.12 

Ca 1.00 .85 .45 -.15 

Mg 1.00 .34 -.09 

36(:1 1.00 -.27 

rain 1.00 
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Dry Deposition 
The measurement of 36CI/Cl ratios in samples that showed nil rainfall are an 

opportunity to investigate the extent of dry deposition of 36Cl to particular sites 

along each array. Table 6.4 lists the fallout for dry samples compared with the total 

fallout at the site of dry deposition over the entire sampling period (excluding 

summer monsoonal fallout, which has been shown to be anomalously high). As the 

number of measurements differs between sites, the total 36Cl fallout for each site is 

averaged. Table 6.4 shows that dry deposition contributes less than 50% of the total 

wet and dry fallout per sample collection period for each of the northern sites of the 

SN array which typically experience nil rainfall during the winter seasons. 

TABLE 6.4 Percentage of 36CI fallout attributable to dry deposition at sites that 

experienced nil rainfall during any part of the sampling program. 

site 36CI (atomsfm2/s) 

wet+ 

30 Tennant Creek 14.77 n=4 

31 Dunmarra 5.39 n=5 

32 Katherine 4.06 n=4 

33 Ka al a 5.38 n=3 

36Cl (atoms/m2/s) 

d 

0.45 n=2 

0.84n=3 

1.87 n=2 

1.94 n=2 

% of;6CI in 

3±0.5 

16±1.9 

46±10.8 

36+6.0 

The estimates of dry deposition for the present investigation are comparable with 

those of Hainsworth (1994) for a site in North America (latitude 380N). There, dry 

deposition was seen to range from 19% to 40%. While it is interesting to compare 

the results of the present study with the results of Hainsworth, the methods used to 

compare wet and dry deposition in these two studies differ. Hainsworth compared a 

wet-only with a bulk-deposition collector over three collection periods. In that study 

unce.rtainties were introduced by missing wet-only precipitation values arising from 

equipment malfunction. The present investigation provides an unambiguous 

assessment of dry deposition, by comparing the 36CI composition of samples 

containing precipitation (and therefore representing both wet and dry deposition) 

with samples of nil rainfall, representing dry deposition only. 

It is unfortunate that the only measurements of dry deposition occur along the 

northern section of the SN array. This section of the SN array experiences different 

rainfall regimes and climates to the southern section of the SN array and the WE 

array. Thus, caution should be used when applying the results of dry deposition 

from the northern section of the SN array to other sample sites. However, assuming 
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that dry deposition of 36Cl is more important during periods of low precipitation 

rates, the results from the present investigation may be considered as the maximum 

amount of dry deposition, sinre they are associated with nil rainfall. 

Table 6.5 compares 36ClJCl ratios with Ca/Na ratios for the dry samples collected 

from the northern section of the SN array. Simpson and Herczeg (1994) suggested 

that Ca/Na ratios of greater than 1 denoted input of resuspended soil material to 

precipitation. The discussions in Chapter 5 noted that CaiN a ratios of greater than 1 

were only observed in samples from the SN array, during periods of nil precipitation. 

Sites 32 (Katherine) and 33 (Kapalga) appear to be affected by resuspended soil 

material during winter seasons. The high Ca/Na and 36CifCI ratios observed during 

winter 1993 at site 33 may suggest a recycled soil source with high 36CifC1 ratio. 

The estimates of dry deposition from Table 6.4 represent upper limits. Thus wet 

deposition is more significant to the fallout of 36CJ to the northern section of the NS 

array even when the summer monsoonal periods are not considered. Tills, and the 

positive relationship between rainfall amount and 36CJ fallout suggests that wet 

deposition is the most significant mechanism by which 36CJ is removed from the: 

atmosphere. 

TABLE 6.5 36CifCI ratios, stable Cl concentrations and Ca/Na ratios dry deposition 

samples compared to mean 36ClJCl ratios and stable Cl concentrations. 

site mean 36Cl/Cl season 
*10·15 

30 Tennant Creek 260±27 

30 

31 Dunmarra l378±25 
31 

31 

32 Katherine 232±22 

32 

33 Kapalga 179±11 

33 

winter 92 

autumn 93 

winter 92 

winter 93 

autumn 94 

winter 92 

autumn 92 

winter 92 

winter 93 
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36ClfCl ·ca/Na 

xi0-15 

133 

278 

734 

446 

181 

201 

152 

155 

367 

0.30 

0.57 

0.24 

0.16 

0.41 

L58 

0.56 

0.48 

1.23 
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6.6 DISCUSSIONS 

Comparison of Measured Fallouts with Predicted Fallouts 

As discussed in Section 6.3, the range of latitudes sampled in this project enables us 

to test the predictions of latitude dependence of 36CI fallout (Lal and Peters 1967, 

Andrews and Fontes 1992). The data from this investigation fit the general shape of 

the predicted curve, but the curve underestimates the amount.of fallout. Instead the 

best fit to the data is obtained by scaling the predicted curve by a factor of 1.4 (the 

three anomalous points from the northern section of the SN array are removed for 

this fit) as shown in Figure 6.22. Thus, a revised mean fallout of 15.4 atomsfm2Js is 

suggested from this investigation. 
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FIGURE 6.22 Mean 36Cl fallout as a function of latitude and the predicted curve of 
Lal and Peters (1967) scaled by 1.4 times. The scaled curve is the solid line, the 
unsealed curve is the dashed line. The X2 represents the degree of fit each curve 
shows to the data. The x2 for the data to the unsealed Lal and Peters curve is 2. 

Solar Activity Effects 

Lal and Peters ( 1967) discussed the dependence of the flux of cosmic rays to the 

Earth's surface upon solar activity and how the predicted curve needs to be adjusted 

depending on the 11-year sunspot cycle. At polar regions, cosmic ray fluxes 

decrease by 30% from a sunspot minimum to maximum. Middle latitudes see a 

decrease of 25% from sunspot minima to maxima, while the equator sees a decrease 

of 7%. The curve of Lal and Peters (1967) was calculated for 1948-1949, which 

represents a sunspot minimum (Figure 6.2). Thus this curve represents maximum 
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fallout during the 11-year sunspot cycle. The present investigation encompassed a 

sunspot maximum in 1991 and a reduction in sunspot activity through to 1994. The 

change in solar activity cannot be used to explain the higher fallouts observed during 

the present study, since a reduction in fallout is expected with the maxima in sunspot 

activity. 

WE Array 

1 
SN Array 

400 "' ] ~ 
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c:: a :::1 0 c:: ·.:: 300] lli:t 00 ~ - ..... - c:: 0 0 
~ 

4) .... u 
"' c:: ~ 0 

u 
200 § z 
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1991 1992 1994 

-.:.--- 36CJ concentration 

D . Sun spot R number 

II Number of solar flares 

FIGURE 6.23 Sun spot R numbers and the number of solar flares recorded during 
the sampiing program, compared with the 36Cl concentration of precipitation 
collected at latitude 12.80S (site 18 of WE array and site 28 of SN array). R 
numbers=(# of sun spot groups)-# of sun spots) measured by the National Solar 
Observatory, Sacramento Peak, New Mexico. Solar flare numbers recorded by 
BATSE (Burst and Transient Source Experiment) from the Gamma Ray Astronomy 
Group, NASA. 

The relationship between solar activity and 36Cl fallout for the present sampling 

program is shown in Figure 6.23. Sunspot R numbers and the number of solar flares 

are compared with 36Cl concentration measured in rainfall at latitude 13°S (i.e. site 

18 on the WE array and site 28 on the SN array). Sunspot R numbers were 

measured by the U.S. National Solar Observatory, Sacramento Peak and the number 

of solar flares was measured by BA TSE, NASA. An overall trend of decreasing 
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sunspot R number and solar flare number is seen as the collection program 

progresses. However 36Cl concentration of rainfall remains constant (excepting a 

peak on both arrays during summer 1993). An inverse relationship between solar 

activity and cosmic ray flux has been demonstrated by 1 0Be in ice-cores from 

Greenland and Antarctica (Beer et ai 1991). These ice cores have been compared 

with 14C from tree-ring records to extend the record of solar activity back in time to 

2,500 years BP. However it can be seen in Figure 6.23 that the inverse relationship 

does not appear to be recorded by 36Cl in rainfall from the present investigation. 

This suggests that transport and depositional processes control the fallout of 36Cl to 

the Earth's surface on the time scales used in this investigation (i.e. 3 months), rather 

than changes in solar activity. This is consistent with results from the Camp-Century 

ice core (Elmore et al 1987) where a correlation between sunspot activity and 36CJ 

concentration could only be seen after the data had been mathematically smoothed. 

Atmospheric Implications 
Global Fallouts 

The mean fallout of 36Cl to the Earth's surface in the latitudes investigated in this 

research agree with the general form of the fallout curve predicted by Lal and Peters 

(1967), but are a factor of 1.4 greater. The mean global fallout calculated from this 

research is 15.4 atomsfm2/s. While higher than the predicted mean global fallout of 

Lal and Peters (11 atomsfm2Js) this is much lower than the fallouts measured from 

northern hemisphere investigations, eg. Greenland ice-core data measures a pre

bomb mean global fallout of 30-60 atoms/m2/s i.e. 3 to 5 times greater than 

predicted (Suter et a11987). Hainsworth (1994) and Knies (1994) measured fallouts 

at 40°N of 40-50 atomsfm2fs (4 times greater than predicted). However, the fallout 

measured in this project is similar to that deduced from the only published 

measurements of 36Cl concentrations in modem precipitation from the southern 

hemisphere. From Antarctic ice (Table 6.1) a fallout of between 10-14 atomsfm2fs 

can be deduced. 

This work suggests that the fallout of 36Cl to the Earth's surface in the southern 

hemisphere is lower (by approximately 3 times) than in the northern hemisphere. 

Some possible reasons for this are: 

a) the production of 36Cl in the northern hemisphere stratosphere is greater than in 

the southern hemisphere stratosphere. 
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Such a situation would require a greater flux of cosmic rays to the northern 

hemisphere and/or a greater concentration of target 40 Ar. This is not possible or 

observed. Cosmic ray fluxes are affected by the Earth's geomagnetic field, but the 

geomagnetic field is symmetric about the geomagnetic equator. The main 

components of the atmosphere i.e. N2, 02, Ar and C02 are mixed in constant 

proportions up to the mesopause (Wameck 1988). 

b) there is an additional supply of 36Cl in the northern hemisphere that does not exist 

in the southern hemisphere. 

This supply may include output from nuclear reactor and processing activities, or 

recycled 36CJ, remnant from the bomb testing of the 1950s. The density of nuclear 

installations in North America and Europe is higher than in the southern hemisphere. 

An investigation of the release of 36Cl to the atmosphere at the Chalk River 

Laboratories in Ontario (Milton et al 1993), found that only small quantities of 36CJ 

were released during reactor operations. The dispersion of 36Cl (as measured in 

rainfall and snow) was dependent on wind direction, with most of the estimated 

release being deposited locally. Background levels of 36Cl were measured at 140 

kill from the reactor site. Beasley et al (1992) however, reported that nuclear fuel 

reprocessing activities at the US Department of Energy's Savannah River Site 

increased the flux of 36CI fP:>m natural levels of 20-25 atomsfm2fs by factors of 10 to 

20 within 200 km of the site. Measurement of soil cores and groundwaters 

confirmed the presence of site-derived 36CJ at a similar facility in Idaho (Beasley et 

al1990, reported in Beasley et al 1992). The information regarding the atmospheric 

release of 36Cl from nuclear processing activities appears inconsistent. This 

inconsistency may simply arise from differences in the magnitude of the operations 

at the different facilities. A nuclear activity source of 36(:1 does not explain the high 

pre-bomb fallout levels measured in the Greenland ice-cores. The pre-bc>mb fallouts 

were measured for 1945 to 1950 (Suter et al 1987), a period before extensive 

development of nuclear facilities in the northern hemisphere. Thus, while nuclear 

reactor and processing activities may be important on a local scale, they are not 

considered to be the main cause of the large difference seen between northern and 

southern hemisphere fallouts. 

Cornett et a1 (1994) suggest that high fallouts of 36CJ measured in environmental 

samples from Canada is due to recycling of bomb 36CJ. Phillips et a1 ( 1988) 

compared 36CJ in soil profiles under laboratory and field conditions. They found the 

movement of 36CJ through the soil profile is dependent upon many conditions 
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including water content, time, temperature etc. The rate of movement of 36Cl 

through the soils profile from arid New Mexico was considerably slower than 

simulated in laboratory experiments. The 1950s bomb spike was retained near the 

soil surface. Fifield et al (1987) measured the 36Cl in soils from a semi·arid region 

in South Australia and recorded the bomb spike between 1·1.5 m into the soil. 

In order for recycling of bomb-produced 36Cl to influence measurements of 36CI in 

precipitation, the 36Cl mv~t reside in the soil surface. While this appears to be the 

case for New Mexico, experimental studies (Phillips et al 1988) and other 

investigations (eg. Fifield et al 1987) suggest that the movement of 36Cl through the 

soil profile is geographically variable. The influence of recycled bomb-produced Cl 

on the high fallouts of 36CI measured from the northern hemisphere cannot be 

discounted. However,· a great deal more information regarding the behaviour of 36CI 

and soil and the release of 36Cl from soils is required before this possibility can be 

discussed further. 

c) there is greater transfer of 36CI from the stratosphere to the troposphere in the 

northern hemisphere. 

The review of transfer between atmospheric domains (Section 6.1) showed an 

asymmetry in the stratosphere-troposphere transfer of 90Sr (Lal 1962), ozone (Fabian 

and Pruchniewicz 1973) and aerosols (Hitchman et al 1994) between the two 

hemispheres. Modelling of climate data revealed transfer to be up to 50% greater in 

the northern hemisphere (Holton 1990). Transfer from the stratosphere to the 

troposphere occurs at middle-latitudes in association with tropopause gaps (or 

folding events). Danielsen (1968) sllggested baroclinic waves associated with the jet 

stream enhanced movement of material through the gap region. A global circulation 

model that incorporates stratospheric-tropospheric transfer (Mote et al 1994) 

supported this. The asymmetry of transfer between the two hemispheres has been 

attributed to enhanced lower stratospheric wave driving in the northern hemisphere 

(particularly during the northern hemisphere winter). 

The higher 36Cl fallouts measured in the northern hemisphere are most likely 

explained in terms of the enhanced transfer of 36CI from the stratosphere to the 

troposphere. This occurs in response to the more dynamically active nature of the 

lower stratosphere in the northern hemisphere, which arises from the difference in 

orographic and thermal forcing between the two hemispheres. 
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Revised Estimate of Global Fallout 

A mean global 36Cl fallout of 25 to 35 atomsfm2fs can be calculated. This value 

incorporates the results from the present investigation (15.4 atomsfm2/s), estimates 

from Antarctic ice (10 to 14 atomsfm2/s, Nishiizumi et al1979, Finkel et al1980 and 

Nishiizumi et al 1983), the higher fallout calculated from measurements of 36Cl in 

northern hemisphere precipitation (40-50 atomsfm2fs, Hai~sworth 1994 and Knies 

1994) and Greenland Ice Core data (30-60 atomsfm2/s eg. Suter et al 1987). This 

mean global value is 2-3 times greater than predicted by Lal and Peters (1967). The 

calculation of production rates is dependent on information pertaining to nuclear 

reaction cwss sections, which for 36CJ production were estimated by Lal and Peters 

(1967) based upon similar reactions at lower energies than those actually required 

for the production of 36Cl. It is realised that the estimation of cross-section energies 
may introduce a variation factor in the production rate calculation of up to two (eg. 

see Hainsworth 1994 ). 

Phase of 36C[ in the Atmosphere 

, The behaviour of 36Cl and stable Cl in the atmosphere have been discussed 

throughout this work. The two species arrive in the atmosphere by very different 

processes. Chlorine-36 is produced in the stratosphere by cosmic ray spallation of 

40 Ar, where it exists predominantly as HCl gas. Seawater is the main source of 

stable Cl to the lower atmosphere. Stable Cl is introduced as an aerosol by breakmg 

waves at the ocean's surface (Erickson and Duce 1988). The bulk of Cl remains 

associated with large aerosol particles. However, 3-20% is released as gaseous 

inorganic Cl (Cicerone 1991). The mechanisms of release are not well understood. 

Numerous workers (including Ericksson 1959, Duce 1969 and Martens et a1 1973 to 

name a few) suggest that Cl release from the aerosol may occur by direct 

volatilisation of se~.salt aerosol that is acidified to low pH by the incorporation of 

HN03 and H2S04. Mechanisms of release of gaseous Cl involving reactions of 

various N gases with the seasalt aerosol have also been demonstrated (Finlayson

Pitts 1983 and Finlayson-Pitts et al 1989). Keene et al ( 1990) proposed a 

photochemical mechanism involving the reaction of 03 at NaCl surfaces to explain 

release of Cl in the marine atmosphere. This process produces HCl that can be 

efficiently rescavenged by the aerosol. 

The lack of correlation between 36Cl and seasa\t aerosol species such as Na and Cl, 

and the good correlation between 36Cl and N03 concentrations allows us to 

188 



Chapter 6 Chlorine-36 

speculate about the behaviour of 36Cl from its production in the stratosphere to its 

deposition at the Earth's surface. In the stratosphere, 36CJ exists predominantly as 

H36Cl (Wahlen et al 1991 ). It moves through the tropopause, into the troposphere as 

a gas. The possible courses of action that may follow are: 

a) in the troposphere H36CI it is scavenged by NaCI aerosol and deposited. 

This does not fit our observations as a correlation is not observed between 36CJ, Na 

and Cl concentrations. 

b) in the troposphere, H36CJ remains as a gas and mixes with HCI released by 

volatilisation of NaCI. 

As described above, the volatilisation process only releases less than 30% of Cl 

contained in NaCl aerosols. The mixed H36CJ, HCI and other atmospheric gases 

such as HN03 and H2S04 are then deposited at the Earth's surface. Chapter 2 

describes the incorporation of gases and aerosols into cloud drops and raindrops both 

in and below-clouds. At pH of 4.5 (the typical pH of cloudwater ) strong acids (such 

as HCI and HN03) are directly scavenged from the gas phase (Wameck 1988). The 

correlatic,n observed between 36CJ and N03 tends to suggest that 36CJ is directly 

scavenged from the gas phase before deposition. 

Hydrological Implications 
The results of this study suggest that on a short timescale (i.e. seasonal), fallout of 

36CJ is dependent upon rainfall amount. However, the long-term averages measured 

in this project are only slightly greater than ·predicted values. Hydrological 

investigations generally require estimates of long-term f3llouts. Thus this 

investigation supports the use of scaled predicted 36Cl fallout levels as estimates of 

inputs of 36Cl to groundwater systems. The Cl concentrations of rainfall from the 

present investigation display exponential decreases with increasing distance from the 

coast, as has been shown world-wide. However, it is not possible to characterise the 

exponential decrease by using regression equations derived from earlier 

investigations. Thus, this project clearly shows the caution that is required when 

trying to use a particular regression equation to predict the Cl concentration of 

rainfall at a given distance from the coast. It is important to recognise that Cl 

concentration of rainfall is geographically variable. The most effective method of 

overcoming uncertainties due to Cl concentration of rainfall when estimating 36{;1/Cl 
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input to groundwater systems is to undertake a reconnaissance survey of rainfall Cl 

concentrations. 

6.7SUMMARY 

The fallout of 36Cl to the Earth's surface at the latitudes sampled in this project agree 

with the general form of Lal and Peters ( 1967) but are 1.4 times greater. The mean 

fallout of 36Cl calculated for west, north and south Australia is 15.4 atomsfm2fs, 

comparable to that calculated for samples of Antarctic ice, but 3 times lower than 

measured in the northern hemisphere. The lower southern hemisphere fallout raies 

reflect the lower rates of transfer of stratospheric air to the troposphere in £he 

southern hemisphere. A mean globa! fallout that incorporates the high fallouts 

measured in northern hemisphere precipitation of 25-35 atomsim2/s can be 

calculated. This value is 2-3 times greater than predicted by Lal and Peters (1967), 

suggesting that the cross-section for the cosmic-ray production of 36Cl may be 

underestimated in their paper. 

The spatial pattern of stab}<; Cl deposition to the Australian continent is for 

decreasing deposition from south to north, reflecting the importance of the southern 

marine ainnasses in the supply of Cl. The northern tropical airrnasses play a less 

significant part in this process. The relationship between Cl deposition and distance 

from the coast can be explained in terms of a double exponential decay, suggesting 

that two processes control this relationship. These processes may reflect the 

enhanced mixing of airrnasses moving inland and/or differences in the rate of 

removal of Cl aerosol and Cl gas from marine and continental airmasses. 

The 36Cl!Cl ratio of precipitation increases exponentially with increasing distance 

from the coast. The opposite trend displayed by stable Cl concentrations of 

precipitation reflects the decreasing influence of stable Cl of marine origin on the 

36Cl!Cl ratios at inland sites. 

Low 36Cl!Cl ratios are observed at coastal localities and at inland sites when 

synoptic conditions favour the transport of seawater aerosols great distances inland 

(eg. during cold frontal activity). Low 36Cl!Cl ratios at inland sites on the WE array 

reflect the diluting effect of stable recycled Cl from local salt lakes which have low 

36Cl contents. 

Seasonal variations in 36Cl fallouts and 36Cl!Cl show high ratios and fallouts during 

spring, and at some localities, during summer (i.e. the north of the SN array). These 
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increased spring 36CI fallouts are attributed to increased transfer of stratospheric 

36Cl to the troposphere that occurs as the tropopause height increases during the 

warmer months. High fallouts during summer in the north of the SN array may be 

attributed to the direct entrainment of stratospheric air into cumulus clouds during 

the monsoonal convection. 

Wet deposition appears to be the major process of removal of 36CI from the 

atmosphere. Chlorine-36 fallout and rainfall amount can be correlated, particularly 

along the SN array where extremes in rainfall regimes are experienced. Dry 

deposition accounts for less than 50% of fallout in the north of the SN array. 

Chlorine-36 exists in the stratosphere predominantly as HCI gas (Wahlen et all991). 

The correlation between 36CJ and N03 and the lack of any relationship between 

36CI, stable Cl and Na concentrations, suggest that 36Cl is scavenged from the 

atmosphere as a gas rather than aerosol phase. 

Long-term average predictions of 36Cl fallout rates used to predict the input ratios of 

36ClfCI in hydrological investigations should be increased by a factor of 1.4 for the 

southern hemisphere. A simple correlation between stable Cl concentrations and 

distance from the coast is not the rule however. While stable Cl concentrations in 

precipitation display a general exponential decrease with distance, the nature of this 

relationship is geographically variable, and should be investigated for each study by 

local direct measurements, a process that is simple and inexpensive. 

191 



Chapter 7 Summary and Conclusions 

CHAPTER 7 SUMMARY AND CONCLUSIONS 

The major-element and 36CJ chemistry of bulk precipitation collected from 18 sites 

in remote areas of Australia, over two years at three-monthly intervals, has bet~n 

assessed. Samples were collected from two arrays: the WE array extended in an 

west-east direction from the coast of Western Australia south of Geraldton, inland to 

Warburton in Central Australia, and the SN array, extended in a south-11orth 

direction from Port Lincoln in South Australia to Kakadu in the Northern Territory. 

The work can be divided into two related sections: major elements and 36CI. 

7.1 MAJOR ELEMENTS 

The aims of investigating the major-element chemistry of precipitation in this project 

were to assess the sources of ionic constituents to precipitation, assess the seasonal 

variations in the supply of these sources and to asses the accession rate of ionic 

constituents to the Australian landmass. This work also adds to the Australian data 

base of precipitation chemistry, and provides the background on which interpretation 

of 36Cl data can be based. 

A synoptic. classification system described in Chapter 2, was used as a simplified 

proxy for ainnass trajectory analysis, to trace the movement of ainnasses associated 

with rainfall during each collection period. In most cases, rainfall events were 

associated with synoptic processes involving airmasses of marine origin, in 

pruticular cold fronts that sourced ainnasses travelling from south of the Australian 

landmass and tropical events that sourced ainnasses from north of Australia. Cold 

fronts were most active during winter with coastal cold front activity occurring all 

year round. During winter 1991, cold fronts were seen to penetrate as far inland as 

2000 km from the west coast of Western Australia. Tropical events mainly affected 

the northern half of Australia during summer months, and were seen to extend I 000 

km southwards from the north coast. Therefore, it was anticipated that precipitation 

chemistry across Western Australia in winter and northern Australia in summer 

would exhibit a strong marine signature. 

Data quality checks were perfonned on the WE and SN data sets to remove samples 

that were not representative of bulk precipitation deposited over the collection area 

for the collection time. These checks removed 9% of data from the WE array and 

16% of data from the SN array. Large ion imbalances in the SN data set were 
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attributed to the presence of organic acids, which were unmeasured in this analytical 

program. 

All the ionic species displayed an approximately log-normal distribution of 

depositional rates. The relative magnitude of species in precipitation was Cl > Na > 

S04 >Ca > N03 > Mg > H > NB4 > HP04 > Br, with NH4 showing locally high 

concentrations at sites from the north of the SN array. An inverse correlation 

between ionic species concentrations and rainfall amount was attributed to a 

"washout"-effect during the initiil! stages of a rain event, the initially concentrated 

rainfall being diluted as the rain event continued. 

All ionic species displayed a decrease in deposition with 'increasing distance from 

the coast, with generally lower deposition rates at the north coast compared to the 

south and west. Hingston and Gailitis (1973) found a simHar trend for the south and 

north of Western Australia. Sites along the WE array and southern section of the SN 

array experienced maximum deposition of all ionic species during winter and 

minimum deposition during summer. Sites along the northern section of the SN 

array showed the opposite relationship with maximum deposition occurring during 

summer. These differences can be correlated with seasonal differences in rainfall 

amount. 

Three main sources/processes were found to control the chemistry of precipitation 

collected in the sampling vessels: a mixed seawater/continental source represented 

by simultaneous variances between Cl, Mg, Na, S04, Ca and K; acid-base balances 

in which some or all of H, N03, S04 and K showed similar variances; a_nd 

biodegradation. The mixed seawater/continental source was responsible for most 

variance (usually about 75%) of the WE data set and the southern section of the SN 

data set. Isolating the two end-members of this source was only possible when the 

data sets were divided into coastal and non-coastal subsets. Most of the variance in 
/ 

the ~ data set was caused by the mixed continental/seawater source and 

biodegradation. Dividing the data set into wet and dry subsets isolated the seawater 

source in a factor responsible for only 10% of variance in the wet data set, 

suggesting that the tropical monsoon activity may provide only a limited supply of 

ionic species to precipitation in the north of Australia. The components of the acid

base balan~e factor were suggested to be derived from natural sources such as 

biogeniy emissions, bio~ass burning and lightning flash production. The nature of 

the col'lection program (i.e. sampling vessels were open to the atmosphere for three 
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months without preservatives) meam; that bbdegradation was also a consequence of 

sampling procedures. 

Seasonal variations of ionic species to Na (acting as a seawater tracer) a~d Ca 

(acting as a continental tracer) were used to ascertain periods dominated by a seasalt 

source. Seasalt was found to dominate precipitation ch~mistry at southern and 

western coastal localities throughout the sampling program, and during winter, 

extend up to 1800 km inland from the west coast. This was associated with cold 

front activity. A marine signature was also found for the coastal northern site, and 

was associated with monsoonal .l!ctivity. However, this marine signature did not 

extend to 200 Ian from the northern coast, suggesting that the tropical marine 

airmass is rapidly modified as it moves southwards over the Australian landmass. 

7.2 CHLORINE-36 
One of the aims of investigating 36Cl in precipitation was to test the latitudinal

dependent predicted fallout curve of 36CJ to the Earth's surface (Lal and Peters 

1967), commonly used to calculate 36ClJCl ratios in recharge for hydrological 

investigations. The results of the present investigation agree with the general shape 

of the predicted curve, but suggest the curve underestimates the true rate of fallout. 

A revised southern hemisphere fallout of 1 5.4 36Cl at('msfm2fs is suggested. Long

term average predictions of 36Cl fallout rates used to predict the input ratios of 

36ClJCl in hydrological investigations should thus be increased by a factor of 1.4 for 

the southern hemisphere. The common assumption of a simple correlation between 

stable Cl concentrations and distance from the coast was not uniformly observed. 

While stable Cl concentrations in precipitation displayed a general exponential 

decrease with distance from the coast, the nature of this relationship was shown to be 

geographically variable, and for theoretical 36ClJCl estimates, should be investigated 

for each study by local direct measurements, a process that is simple and 

inexpensive. 

Wet deposition appeared to be the major process of r~moval of 36Cl from the 

atmosphere. Chlorine-36 fallout and rainfall could be correlated, particularly along 

the SN array where extremes in rainfall regimes are experienced. Dry deposition is 

£hown to account for less than 50% of fallout in the north of the SN array. 

The spatial pattern of· stable Cl deposition to the Australian continent is for 

decreasing deposition from south to north, reflecting the importance of the southern 

marine airmasses in the supply of CJ. The northern tropical airrnasses play a less 
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significant part in this process. The relationship between Cl deposition and distance 

from the coast can be explained in terms of a double exponential decay, suggesting 

that two processes control this relationship. These processes may reflect the 

en .. hanced mixing of airmasses moving inland and/or differences in the rate of 

removal of Cl aerosol and Cl gas from maxine and continental airmasses. 

As expected, the 36Cl!Cl ratio of precipitation increases exponentially with 

increasing distance from the coa1:t, due to the opposing trend displayed by stable Cl 

concentrations in prr,:::ipitation, reflecting the decreasing influence of stable Cl of 

marine origin at inland sites. The 36ClfCl ratio was often peiturbed however, by the 

supply of a source cf stable Cl with insignificant or low 36Cl content. For example, 

low 36ClfC1 ratios were observed at inland sites when synoptic conditions favoured 

the transport of seawater aerosols great distances inland (eg. during cold frontal 

activity). Also, low 36ClfCl ratios at inlanrl sites on the WE array reflect the diluting 

effect of stable, recycled Cl from local salt lakes with low 36Cl contents. 

This work supports the use of 36Cl as a tracer of atmospheric processes. Its 

production primarily in the stratosphere suggests that it may trace stratosphere

troposphere exchange. Chlorine-36 fallouts and 36Cl!Cl ratios were high dutiing 

spring, and for the north of the SN m1ay, u!.!ring summer. The increased spring 36Cj 

fallouts may be attributed to increased transfer of stratospheric 36Cl to the 

troposphere occurring a.s the tropopause increases height during the warmer mouths. 

High 36Cl fallouts during summer in the north of the SN array may be attributed to 

the direct entrainment of stratospheric air into cumulus clouds during the monsoonal 

convection. 

The mean fallout (:alculated from this work, while higher than the theoretical 

estimate, is three time~> iower than has been measured for p!ecipitation in the 

northern hemisphere. Several possible explanations are suggested for this 

observation: i) an additional supply of 36Cl that is not present. in the southe•:. 

hemisphere. Output from nuclear reactors, which are concentrated in tht:>: iio.-:.i:lern 

hemisphere is suggested. However, releases of 36CI to the environmt>;1t from nuclear 

reactor operations ar~ too localised and thm: cannot be considerer. to be the cause of 

the total fallout discrepancy between the northern and southt•.m hemisphere. ii) 

recycling of bomb-produced 36CI is also suggested as an explana~ion, although this 

does not explain the high fallouts measured in pre-bomb Greenland ice. Further 

investigations into the behaviour of 36CJ in soil profiles may allow more comment 

on the role of bomb-produced 36ci in enhancing fallout of 36Cl in the northern 
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hemisphere. iii) li is suggested here that enhanced 36CJ fallout in the northern 

hemisphere actually reflects the lower rates of transfer of stratospheric air to the 

troposphere in the southern hemisphere, a consequence of the less dynamic nature of 

the lower southern hemisphere stratosphere as compared to the northern hemisphere. 

A mean global 36CJ fallout of 25 to 35 atomsfm2/s can be calculated. This value 

incorporates the results from the present investigation, estimates from Antarctic ice 

and the higher fallout calculated from measurements of 36Cl in northern hemisphere 

precipitation. This value is 2-3 times greater than predicted by Lal and Peters (1967), 

suggesting that the cross-section for the cosmic-ray production of 36Cl may be 

underestimated in their paper. 

Another implication from this work for atmospheric investigations arises from the 

36CI relationship to major elements measured in precipitation. A correlation 

between 36Cl and N03 and the lack of any relationship between 36Cl, stable Cl and 

Na concentrations, suggests that 36CJ is scavenged from the atmosphere as a gas 

rather than aerosol phase. This is a very preliminary suggestion, and further 

investigations into the phase of 36CJ through cross-sections of the atmosphere may 

provide more infonnation required to develop this hypothesis. 
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Appendix A Rain-producing Synoptic Classification 

APPENDIX A RAIN-PR ODUCING SYNOPTIC 
CLASSIFICATION 

Proportion of rainfall during each collection period at each Met station attributed 
to synoptic processes as defined in Chapter 2. 

A91=Autumn 91, W91=Winter 91, Sp91=Spring 9, S91=Summer 91 etc. 
CF=cold front, TE=tropical event, WCT=West Coast Trough, T=trough, 
CoL=cut-off low, MLCB=middle-level cloud band, MLD=middle-level 
depression, TF=tropical flow, TD=tropical depression, MT=monsoonal 
trough, GL=gulf Jines, TC::.:tropcial cyc1one 
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Appendix B Site Description 

APPENDIX B DESCRIPTION OF RAIN COLLECTOR 
LOCALITIES 

Site: 16 

Name: Cliff Head 

Location: 29033'55" S, 114038'55" E 

Elevation: 10m 

Pi,ysiographic Description: limestone dune ridge covered by aeolian sand; Quaternary 

Vegetation: d1me type and spinifex 

Annual Rainfall: 441 mm (Dongara 2 years of record); 470 mm (Geraldton 48 years of 

record) 

Rainfall Regime: winter rainfall 

Climate: temperate coastal, influenced by IsTm 

Land Use: recreation 

Site: 17 

Name: Morawa 

Elevation: 409m 
LOcation: 29012'18" S, 115050'05" E 

Physiographic Description: dissected plateau and hil1s; minor laterite capping; Archaean 

granite 

Annual Ra~nfall: 441 mm (Dongara 2 years of record); 470 mm (Gerald ton 48 years of 

record) 

Rainfall Regime: winter rainfall 

Climate: temperate, may be influenced by lsTm , influenced by sTc all year round. 

Vegetation: herbland 

Lmzd Use: cattle and sheep grazing 

Site: 18 

Name: Badja Homestead 

Location: 28034'05" S, 116043'56" E 

Elevation: 350m 

Physiographic Description: plains dissected by ridges of the Archaean plateau; Archaean 

basic volcanics, banded chert and iron fonnations 

Annual Rainfall: 246 mm (Y algoo 30 years of record) 

Rainfall Regime: arid, winter/non season rain 

Climate: subtropical to warm temperate, influenced by sTc in both summer ancJ winter 

months 

Bl 



Vegetation: open shrubland; hummocky grass understorey 

Land Use: sheep grazing 

Site: 19 

Name: Iowna Homestead 

Location: 28030'39" S, 118004'25" E 

Elevation: 300m 

Appendix B Site Description 

Physiographic Description: granitic hills, sandplains, lateritic breakaways, small salt 

lakes; Archaean granite 

Vegetation: open shrubland; spinifex 

Annual Rainfall: 234 mm (Mt Magnet 91 years of record) 

Rainfall Regime: arid (winter/non season rain) 

Climate: subtropical to warm temperate, influenced by sTc both summer and winter 

months 

Land Use: sheep grning 

Site: 20 

Name: Barrarnbie Homestead 

Location: 27032'59" S, 119013'53" E 

Elevation: 550m 

Physiographic Description: granitic hills, sandplains, lateritic breakaways, small salt 

lakes; Archaean granite 

Vegeto:zon: open shrubland; hummocky grass understorey 

Annual Rainfall: 234 mm (Sandstone 62 years of record) 

Rainfall Regime: arid (winter/non season rain) 

Climate: subtropical to warm temperate, influenced by sTc in both summer and winter 

m:mths 

Ltlnd Use: cattle and sheep grazing 

Site: 21 

Name: Yeelirrie 

Location: 27011'18" S, 120003'07" E 

Elevation: SOOm 

Physiographic Description: granitic hills, sandplains, lateritic breakaways, small salt 

lakes; Archaean granite 

Vegetation: open shrubland; hummocky grru:s understorey 

Annual Rainfall: 343 mm (1991-1993) 

Rainfall Regime: arid (mainly summer rain) 
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Appendix B Site Description 

Climate: subtropical, influenced by sTc in both summer and winter months 

Land Use: cattle and sheep grazing 

Site: 22 

Name: Lake Violet 

Location: 26037'08" S, 121010'51" E 

Elevation: 300m 

Physiographic Description: granitic hills, sandplains, lateritic breakaways, small salt 

lakes; Archaean granite 

Vegetation: open shrubland 

Annual Rainfall: 234 mm (Wiluna 30 years of record) 

Rainfall Regime: arid (mainly summer rain) 

Climate: subtropical, influenced by sTc in both summer and winter months 

Land Use: cattle and sheep grazing 

Site: 23 

Name: Carnegie Station 

Location: 25046'55" S, 122053'38" E 

Elevation: 300m 

Physiographic Description: sandstone tablelands, stony plains, salt lakes; Permian 

Officer Basin sediments 

Vegetation: open shrubland 

Annual Rainfall: 292 mm (Wiluna, 1991-1993) 

Rainfall Regime: arid (mainly summer rain) 

Climate: subtropical, influenced by sTc in both summer and winter months 

Land Use: cattle and sheep grazing 

Site: 24 

Name: Gunbarrel Highway 

Location: 25025'13" S, 124000'50" E 

Elevation: 300m 

Physiographic Descr!ption: sandy or lateritic plains of the Gibson Desert; Cretaceous 

sediments of the Officer Basin 

Vegetation: open shrubland 

Annual Rainfali: 292 mm (Wiluna, 1991-1993), 256 nun (Giles 34 years of recNd) 

Rainfall Regime: arid (mainly summer rain) 

Climate: subtropical, influenced by sTc in both summer and winter months 

Land Use: none 
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Site: 25 

JVame:EvenudJunction 

Location: 25025'1 'J'' S, 124058'26" E 

Elevation: 300m 

Appendix B Site Description 

sandy or lateritic plains of the Gibson Desert; Cretaceous sediments of the Officer Basin 

Vegetation: open shrubland 

Rainfall Regime: arid (mainly summer rain) 

Annual Rainfall: 256 mm (Giles 34 years of record) 

Climate: subtropical, influenced by sTc in both summer and winter months 

Land Use: none 

Site: 26 

JVame: Port Lincoln 

Location: 34052'34" S, 135041'21" E 

Elevation: 50m 

Physiographic Description: low rounded hills, partially dune covered; Quaternary 

Vegetation: herbland 

Annual Rainfall: 491 mm (Port Lincoln 125 years of record) 

Rainfall Regime: winter rainfall 

Climate: temperate, may be influenced by sPm air masses during winter months, 

influenced by sTc all year round 

Land Use: cattle and sheep grazing 

Site: 27 

JVame: Gawler Ranges 

Location: 32041'22" S, 135036'53" E 

Elevation: 200m 

Physiographic Description: rounded hills; Mid to lower Proterozoic acid volcanics of 

Gawler Block 

Vegetation: herbland 

Annual Rainfall: 318 mm (Kyancutta 61 years of record) 

Rainfall Regime: winter rainfall 

Climate: temperate, may be influenced by sPm air masses during winter months, 

influenced by sTc all year round 

Land Use: cattle and sheep grazing 
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Site: 28 

Name: Wintinna Station 

Location: 27047'49" S, 133057'59" E 

Elevation: 300m 
. I 

Appendix B Site Description 

Physiographic Description: low tablehmds, siliceous and ferruginous duricrust; 

Cretaceous sediments 

Vegetation: shrubland , 
Annual Rainfall: 172 mm (Tarcoola 84 years of record), 157 mm (Coober Pedy 60 years 

of record) 

Rainfall Regime: arid (winter/non season rain), 

Climate: subtropical to wann temperate, influenced by sTc in both summer and winter 
\ 

months 

Land Use: cattle grazing 

Site: 29 

Name: Alice Springs 

Location: 22053'03" S, 134003'45" E 

Elevation: 650nf 

Physiographic Description: granitic plains with lateritic rises overlain by alluvium, sand 

silt and gravel; Arunta Block metamorphosed granite and gabbro 

Vegetation: shrubland with hummocky grass understorey 

Annual Rainfall: 282 mm (Alice Springs 49 years of record) 

Rainfall Rr:gime: arid (mainly summer rain) 

Climate: subtropical, influenced by sTc in both summer and winter months 

Land Use: cattle grazing 

Site: 30 

Name: Tennant Creek 

Location: 19054'30" S, 134021'50" E 

Elevation: 400m 

Physiographic Description: conglomerate, chert, sandstones and dolomites of the 

Tennant Creek Block 

Vegetation: shrubland with hummocky grass and small eucalypt and acacia 

Annual Rainfall: 427 mm (Tennant Creek 21 years of record) 

Rainfall Regime: arid (mainly summer rain) 

Climate: subtropical, influenced by sTc in both summer and winter months 

La.r~d Use: ANU Seismic Research Station 
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Site: 31 

Name; Dunmarra 

Location: 16047'38" S, 133027'20" E 

Elevation: 250m 

Appendix B Site Description 

Physiographic Description: black clay plains, sandy rises of laterized sandstone; 

Cretaceous sediment. 

Vegetation: open woodlands 

Annual Rainf'zll: 574 mm (Daly Waters 78 years of record) 

Rainfall Regime: summer rainfall, 

Climate: tropir.al monsoon, influenced Tc during w!nter months and Tm (Pacific) and Tc 

air masses during summer months 

Lane' Use: cattle gra2..ing 

Site: 32 

Name: Katherine 

Location: 14037'47" S, 132027'16" E 

Elevation: 200m 

Physiographic Description: shallowly dissected plateau of laterized sandstone and 

alluyiated valleys; sediq~ents of Daly River Basin ( -500 my) 

Annual Rainfall: 973 mm (Katherine 114 years of record) 

Rainfall Regime: summer rainfall 

Climate: tropical monsoon, influenced Tc during winter months and Tm (north of 

Australia) and Tc air masses during summer months 
" 

Vegetation: tropical savannah with scattered small eucalyptus 

Land Use: cropping and pastoral 

Site: 33 

Name: Kapalga 

Location: 12040'54" S, 132025'11" E 

Elevation: 0-lOm 

Physiographic Description: dissected lateritic lowlands, coastal estuarine and alluvial 

plains; sediments in Pine Creek Geosyncline (-500 my) 

Vegetation: open tropical forest with eucalyptus 

Annual Rainfall: 1480 mm (Jabiru 18 years of record), 1668 (Darwin Airport 50 years of 

record) ... 

Rainfall Regime: summer rainfall 

Climate: tropical monsoon, influenced Tc during winter months and Tm (nortb of 

Australia) and Tc air masses during summer months 
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Appendix B Site Description 

lAnd U~e: Research Station for Division of Wildlife and Ecology, C.S.I.R.O. The main 

research activity is an investigation into the effects of tU-e on the tropical ecosystem at 

Kapalga. The research station is divided into compartments separated by fire breaks. 

Each of these compartments is subjected to a particular burning regime, early, 

progressive, late and natural. The rain collector was located in a compartment of natural 

burning (i.e. in which no man-made fires were lit). However, the collector was affected 

by ash fallout associated with burning elsewhere in the research station and Kakadu. 

Burning of vegetation is a common practise in the northern parts of t.ie Northern 

Territory. By locating the rain collector in the C.S.I.R.O research station, it was felt that· 

at least this burning was monitor,'!d. 

Physiographic Description based upon Jennings and Mabbu.tt, in "Australia: a 
Geography", D.N. Jeans editor, Sydney University Press, Sydney 1977 and Geological 
Map of Australia 1976 
Vegetation description based upon "Australia: a Geography", D.N. Jeans editor, Sydney 
University Press, Sydney 1977 · 
Annual Rainfall from Bureau of Meteorology; Rainfall Regime from Bureau of 
Meteorology, "Climate of Australia", AGPS, Canberra 1979 
Climate from Gentilli, "World Survey of Climatology, Australia and New Zealand", 
Eleseiver, Amsterdam 1977; Linarce and Hobbs, The Australian Climatic Environment, 
John Wiley and Sons, Brisbane 1982; Tapper and Hurry, "Australia's Weather Patterns", 
Dellasta, Victoria 1994. · 
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Appendix C Chemical Composition of Soil/dust at Each Site 

APPENDIX C THE CHEMICAL COMPOSITION OF SOIL/DUST 
AT EACH SITE 

The chemical composition of solutions produced after leaching soiVdust collected at 

each rain collector site in Milli-Q® water for 2 months. Concentration units are IJ.eq/L. 

b.d is below detection. 

Slti! Cl error so4 error N03 error HP04 error 
Cliff Head 16 2.7 0.2 11.9 0.02 87.3 0.15 2.86 0.01 
Morawa 17 0.5 O.tH7 3.2 0.3 96.3 0.1 b.d b.d 
Badja 18 1.6 0 0.66 0.171 27.9 0.06 b.d b.d 
Iowna 19 0.23 0.02 . 1.2 0.48 11.7 0.11 b.d b.d 
Barrambie 20 0.28 0.011 2.2 0 4.1 0.03 b.d b.d 
Y eelirrie 21 9.2 0.07 3.5 0.2 38.5 0.2 b.d b.d 
Lake Violet 22 5.6 0.17 43.4 0.91 83.6 0.66 b.d b.d 
Carnegie 23 2.3 0.11 1.5 0.18 22.1 0.07 b.d b.d 
Gunbarrel 24 C.28 0 0.21 0 1.3 0.05 b.d b.d 
Everard Junction 2S 0.26 0.037 1 0 4.6 0.09 b.d b.d 
Gawler Ranges 27 0.03 0.002 0.24 0.004 11.5 0.08 b.d b.d 
Wintinna 28 0.28 0 0.42 0.092 13.2 0.14 b.d b.d 
Alice Springs 29 0.28 0 1.3 0.05 19.8 0.3 7.34 0.22 
Tennant Creek 30 0.09 0.026 0 0 2.3 0.1 I b.d b.d 
Dunmarra 31 0.28 0 0.56 0.057 7.4 0.58 b.d b.d 
Katherine 32. 0.28 0 1.2 0.09 1.3 0.01 2.63 0 
Kapalga 33 0.28 0 0 0 0.62 0 0 b.d 

site Na error K error Ca error Mg error 
Cliff Head 16 17.4 0.19 6.8 0.01 1396 2 161 2 
Morawa 17 6 0.19 7.2 0.01 67 4.55 30.7 2.05 
Badja 18 10.1 0.15 20.7 0.04 9.3 1.13 6.9 0.~9 
Iowna 19 2.9 0.13 2.7 0.01 14.1 1.59 4.5 0.28 
Barrambie 20 1.1~ 0.01 1.2 0.02 3.8 0.64 1.8 0.23 
Y eelirrie 21 12.8 0.3 9.1 0.01 12.4 1.14 13.6 0.69 
Lake Violet 22 15.1 0.25 12.2 0.04 100 3 29.1 1.27 
Carnegie 23 33.9 0.41 46.8 0.09 3.8 0.77 9.2 0.27 
Gunbarrel 24 1.5 0.01 3.1 0.02 1.8 0.58 14 0.33 
Everard Junction 25 1.4 0.02 3.1 0.34 2.7 0.76 2.1 0.22 
Gaw1er Ranges 27 8 0.67 17.9 0.05 26.6 1.49 22 0.36 
Wintinna 28 3.9 0.34 15.4 0.66 17.3 1.82 13.6 0.61 
Alice Springs 29 1.6 0.19 37.3 '.).21 10.4 0.95 20.3 0.74 
Tennant Creek 30 1.4 0.11 5.7 0.46 2.4 0.64 2.3 0.37 
Dunmarra 31 1.3 0.03 3.7 0.1 3.2 0.68 2.1 0.31 
Katherine 32 1.5 0.09 47.1 2.74 24.2 1.96 40.5 3.58 
Kapalga 33 1.4 0.02 5.3 0.07 2.6 0.63 4.4 0.53 
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Appendix D WE and NS Major-Element Data Sets 

APPENDIX D WE AND SN MAJOR-ELEMENT DATA SETS 
H, Cl, S04, N03, HP04, Br, Na, K, NH4, Ca and Mg in depositional units J,leqfm2Jday, na is not 

measured, rainfall volume in brackets is mm ofMilli-Q® used to leach dry bottle 

WE DataSet 
site season rrunfall mm error time days evaporation % error H error 
16 A91 36 2 80 6 5 na na 
16 W91 343 10 107 25 4 na na 
16 Sp91 87 5 69 5 5 na na 
16 S91 57 4 79 0 5 0.19 0.014 
16 A92 154 6 136 16 4 0.63 0.025 
16 W92 220 7 102 8 4 0.99 0.032 
16 Sp92 54 4 56 0 5 0.17 0.013 
16 S92 5 3 102 83 2 na na 
17 A91 45 2 80 -· 4 na na ./.1 

17 W91 168 7 107 19 4 na na 
17 Sp91 63 3 70 4 5 na na 
17 S91 35 2 78 0 5 0.59 0.034 
17 A92 236 10 137 42 4 0.83 0.03.) 
17 W92 215 9 101 2 5 9.32 0.393 
17 Sp92 71 3 56 4 5 2.85 0.123 
17 S92 17 1 102 96 1 na na 
18 A91 36 2 81 27 4 na na 
18 W91 94 4 107 17 4 na na 
18 Sp91 33 1 70 31 4 na na 
1R .c;:91 31 1 79 7 5 10.8 0.36 
18 A92 236 10 137 5 4 1.33 0.057 
18 W92 124 5 90 4 5 2.89 0.118 
18 Sp92 32 1 66 0 5 0.92 0.030 
18 S92 2.61 1 102 0 0 na na 
19 A91 31 1 83 14 4 na na 
19 W91 134 5 107 22 4 na na 
19 Sp91 22 1 71 0 4 na na 
19 A92 262 6 142 1 4 3.64 0.086 
19 W92 128 5 87 6 4 8.53 0.342 
19 Sp92 75 3 65 14 4 11.1 0.47 
19 S92 22 1 103 71 2 na na 
20 A91 33 1 83 16 4 na na 
20 W91 70 3 107 9 4 na na 
20 Sp91 4 1 71 44 0 na na 
20 S91 59 2 77 0 5 2.60 0.090 
20 W92 120 5 87 34 3 0.46 0.019 
20 Sp92 37 1 67 0 5 6.79 0.313 
20 S92 40 2 102 7 5 8.75 0.440 
21 A91 35 2 82 14 4 na na 
21 W91 63 3 107 45 3 na na 
21 Sp91 1 1 71 0 173 na na 
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Appendix D WE and NS Major-Element Data Sets 

site season ramfall mm error time days evaporation % error H error 
21 S91 35 2 77 9 4 0.77 0.044 
21 A92 245 10 139 20 4 7.57 0.374 
21 W92 38 2 87 8 4 1.46 0.077 
21 Sp92 45 2 67 22 3 3.16 0.174 
21 S92 44 2 104 26 6 0.12 0.006 
22 A91 16 1 81 28 4 na na 
22 W91 60 3 107 0 5 na na 
22 Sp91 2 1 72 54 15 na na 
22 S91 48 2 76 22 4 2.71 0.114 
22 A92 255 10 140 20 1 3.50 0.194 
22 W92 13 1 87 32 4 0.31 0.024 
22 Sp92 55 2 68 37 3 2.74 0.130 
22 S92 13 1 106 60 2 0.01 0.001 
23 A91 16 1 82 44 3 na na 
23 W91 153 6 107 53 2 na na 
23 Sp91 1.25 1 71 0 0 na na 
23 S91 55 2 77 34 3 2.36 0.089 
23 A92 194 4 139 0 5 4.73 0.166 
23 W92 31 1 86 1 5 0.68 0.022 
23 Sp92 20 0 68 4 4 1.48 0.014 
23 S92 33 2 107 0 3 0.29 0.018 
24 A91 -36 2 83 13 4 na na 
24 W91 118 5 107 60 2 na na 
24 Sp91 14 1 72 6 na na 
24 A92 265 11 141 50 0 6.21 0.368 
24 W92 31 1 84 0 0 3.69 0.142 
24 S92 79 3 108 25 3 0.31 0.012 
25 A91 11 1 83 72 2 na na 
25 W91 118 5 107 45 2 na na 
25 Sp91 50 2 72 11 4 na na 
25 A92 191 8 140 1 1 I 1.23 0.64 
25 W92 22 1 83 0 I 2.84 0.145 

SNDataSet 
site season rair.rall mm error time days evaporation % error H error 
26 W92 199 8 90 10 4 21 0.880 
26 Sp92 334 14 101 23 4 1.53 0.063 
26 S92 70 3 104 4 5 0.29 0.012 
26 W93 227 9 90 38 3 7.61 0.314 
26 Sp93 93 4 72 7 4 6.48 0.271 
26 S93 41 2 105 36 3 .7.09 0.309 
26 A93 103 4 107 7 4 1.21 0.050 
27 W92 70 3 90 0 0 0.98 0.041 
27 Sp92 299 12 100 18 4 2.97 0.122 
27 S92 144 6 104 39 3 0.38 0.016 
27 A93 40 2 83 1 5 0.18 0.008 
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Appendix D WE and NS Major-Element Data Sets 

site season rainfall mm error time days evaporation % error H error 

27 W93 97 4 88 6 4 0.32 0.013 

27 W93 97 4 88 6 4 0.29 0.012 

27 Sp93 83 3 71 26 4 1.11 0.047 

27 Sp93 83 3 71 29 3 0.48 0.020 

27 S93 60 3 105 10 4 5.03 0.213 

27 S93 60 3 105 10 4 0.73 0.031 

27 A93 37 2 106 17 4 0.02 0.001 

27 A93 31 2 106 13 4 0.02 0.001 

28 W92 27 1 90 0 5 0.93 0.044 
28 sp92 134 6 104 45 2 2.54 0.109 

28 S92 31 1 105 49 2 0.05 0.002 

28 A93 31 1 82 0 0 0.11 0.005 

28 W93 4~' 2 89 6 4 0.18 0.008 

28 Sp93 66 3 72 52 2 2.04 0.087 

28 S93 74 7 106 37 6 0.26 0.023 

28 A94 43 2 104 11 4 0.53 0.023 

29 W92 10 1 84 0 0 0.15 0.011 

29 Sp92 69 3 105 34 3 2.18 0.095 

29 A93 149 6 82 0 0 10.43 0.571 

29 W93 14 1 89 13 5 0.12 0.007 

29 Sp93 62 3 70 26 3 3.76 0.161 

29 S93 85 7 105 60 3 0.56 0.045 

29 A94 2 0 106 0 0 0.00 0.000 

30 W92 0 (2) 0 85 0 0 0.00 0.000 

30 Sp92 57 2 103 35 3 5.98 0.277 

30 W93 5 1 90 66 4 0.01 0.001 

30 Sp93 59 6 70 13 10 0.97 0.105 

30 S93 56 2 105 0 0 0.03 0.001 

30 A94 0 (3) 0 106 0 0 0.37 0.012 

31 W92 0 (2) 0 86 0 0 0.00 0.000 

31 Sp92 57 2 103 13 4 1.89 0.081 

31 W93 0 (1) 0 89 0 0 0.00 0.000 

31 Sp93 94 4 70 0 0 28.58 2.088 

31 S93 768 54 105 0 0 3.19 0.226 

31 A94 0 (5) 0 106 0 0 0.13 0.001 

32 W92 0 (4) 0 86 0 0 0.00 0.000 

32 Sp92 209 9 104 16 4 0.95 0.039 

32 A93 0 (3) 0 79 0 0 0.01 0.000 

32 W93 0(3) 0 89 0 0 0.00 0.000 

32 S93 854 64 108 0 0 26.81 2.040 

32 A94 11 0 106 0 0 0.01 O.O'JO 
33 W92 0 (3) 0 80 0 0 0.00 0.000 

33 Sp92 290 12 102 0 5 9.84 0.914 

33 A93 59 2 80 0 0 1.04 0.044 

33 W93 0 (3) 0 89 0 0 0.00 0.000 

33 S93 866 40 104 0 0 7.09 0.329 
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Appendix D WE and NS Major-Element Data Sets 

WE DataSet 
site season Cl error so4 error N03 error HP04 error Br error 
16 A91 154 9.7 25.2 1.41 25.4 1.42 1.41 0.267 0.15 0.018 
16 W91 1151 41.1 127 3.8 4.65 0.143 0.50 0.015 1.20 0.036 
16 Sp91 701 42.9 83.8 4.87 5.99 0.352 0.25 0.014 0.79 0.048 
16 S91 122 9.0 26.4 1.89 18.0 1.32 1.65 0.193 0.05 0.003 
16 A92 207 8.9 26.5 1.36 5.22 0.266 0.02 0.001 0.06 0.002 
16 W92 701 26.0 108 4.3 7.04 0.478 38.0 2.03 0.12 0.004 
16 Sp92 477 41.0 69.6 5.82 6.72 0.647 1.81 0.196 0.54 0.064 
16 S92 33.4 20.08 6.23 3.746 0.11 0.066 1.01 0.610 0.00 0.001 
17 A91 45.9 2.29 12.2 0.55 11.4 0.51 0.83 0.047 0.07 0.017 
17 W91 229 10.5 28.8 1.21 3.08 0.153 0.26 0.011 0.24 0.033 
17 Sp91 121 6.2 22.5 1.15 7.66 0.376 2.52 0.123 0.12 0.022 
17 S91 22.0 1 3~ 14.3 0.86 12.4 0.76 0.01 0.001 0.03 0.002 
17 A92 58.9 3.&2 11.9 0.64 7.09 0.435 0.02 0.001 0.06 0.003 
17 W92 170 8.0 31.3 1.51 4.37 0.304 0.04 0.002 0.13 0.006 
17 Sp92 113 6.8 28.2 1.62 4.55 0.254 1.14 0.075 0.11 0.013 
17 S92 4.29 0.32 2.43 0.168 2.57 0.188 0.62 0.047 0.01 0.001 
18 A91 12.9 0.74 7.22 0.41 6.70 0.374 0.88 0.073 0.02 0.00 I 
18 W91 68.7 3.27 10.3 0.46 3.18 0.159 0.15 0.007 0.05 0.002 
18 Sp91 38.4 1.40 17.9 0.57 11.8 0.37 0.47 0.069 0.08 0.005 
18 S91 13.0 0.44 13.4 0.47 13.0 0.50 0.76 0.155 0.02 0.001 
18 A92 31.9 1.82 11.2 0.~0 7.39 0.497 0.03 0.001 0.10 0.004 
18 W92 83.6 4.07 17.1 0.84 2.99 0.296 0.03 0.001 0.08 0.003 
18 Sp92 19.8 1.04 ll.5 0.57 5.06 0.242 0.54 0.028 0.04 0.004 
18 S92 5.41 2.088 5.57 2.143 3.27 1.261 0.00 0.000 0.00 0.001 
19 A91 . 9.06 0.348 6.82 0.224 5.60 0.191 0.33 0.011 0.29 0.010 
19 W91 51.5 2.38 10.8 0.44 4.88 0.214 0.20 0.008 0.06 0.002 
19 Sp91 29.0 1.51 22.1 1.02 10.6 0.85 0.06 0.003 0.05 0.002 
19 A92 29.9 1.29 12.2 0.61 9.43 0.510 0.04 0.001 O.ll 0.003 
19 W92 44.1 2.56 14.1 0.67 3.57 0.242 0.03 0.001 0.09 0.003 
19 Sp92 10.7 0.61 15.7 0.87 6.56 0.353 0.02 0.001 0.06 0.003 
19 S92 12.8 0.84 20.1 1.18 10.9 0.69 3.44 0.304 0.04 0.004 
20 A91 9.14 0.339 7.72 0.243 6.79 0.210 0.42 0.025 0.02 0.001 
20 W91 14.6 0.71 5.08 0.220 2.98 0.130 0.12 0.005 0.04 0.002 
20 Sp91 9.5 2.390 13.5 3.37 4.34 1.084 1.45 0.362 0.02 0.005 
20 S91 15.3 0.57 14.5 0.53 20.5 0.95 0.02 0.001 0.05 0.002 
20 W92 25.2 1.51 11.7 0.57 3.38 0.26 0.02 0.001 0.06 0.002 
20 Sp92 5.30 0.345 10.9 0.51 6.46 0.289 0.53 0.048 0.03 0.003 
20 S92 8.86 0.612 14.1 0.87 8.04 0.532 0.01 0.000 0.02 0.001 
21 A91 8.91 0.552 6.49 0.378 5.15 0.299 0.08 0.004 0.02 0.001 
21 W91 6.49 0.323 3.30 0.158 1.98 0.095 0.07 0.003 0.02 0.001 
21 Sp91 4.12 4.124 7.77 7.768 3.26 3.265 0.00 0.003 0.00 0.003 
21 S91 14.1 0.84 16.0 0.94 13.3 0.81 0.01 0.000 0.05 0.003 
21 A92 8.35 0.525 8.80 0.546 9.10 0.555 0.03 0.001 0.09 0.004 
21 W92 12.4 0.84 5.60 0.327 2.20 0.172 1.76 0.125 0.03 0.001 • 
21 Sp92 3.38 0.225 8.37 0.491 5.71 0.329 0.37 0.025 0.03 0.001 
21 S92 5.03 0.328 6.11 0.361 6.27 0.395 1.55 0.101 0.02 0.001 
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Appendix D WE and NS Major-Element Data Sets 

site season Cl error S04 error N03 error HP04 error Br error 
22 A91 5.46 0.363 4.80 0.302 5.16 0.324 0.03 0.002 0.01 0.005 
22 W91 6.80 0.355 3.73 0.209 4.07 0.208 0.12 0.006 0.04 0.002 
22 Sp91 2.79 1.396 3.87 1.937 1.63 0.815 0.00 0.001 0.00 0.002 
22 S91 11.1 0.50 12.3 0.54 17.6 0.81 0.51 0.057 0.03 0.001 
22 A92 6.17 0.484 6.97 0.467 6.58 0.359 0.03 0.001 0.09 0.004 
22 W92 6.82 0.554 4.19 0.337 1.34 0.129 0.00 0.000 0.01 0.000 
22 Sp92 3.84 0.206 6.94 0.366 5.04 0.258 1.05 0.137 0.06 0.006 
22 S92 4.40 0.395 5.04 0.428 5.19 0.459 1.17 0.106 0.00 0.000 
23 A91 4.81 0.316 5.12 0.322 4.04 0.254 0.18 0.011 0.01 0.002 
23 W91 5.12 0.277 4.76 0.212 3.36 0.133 0.14 0.006 0.04 0.002 
23 Sp91 5.27 4.220 10.3 8.22 3.79 3.031 0.14 0.112 0.01 0.005 
23 S91 10.5 0.47 9.81 0.392 16.2 0.68 0.01 0.000 0.03 0.001 
23 A92 5.51 0.420 10.5 0.43 9.9 0.427 0.03 0.001 0.09 0.002 
23 W92 4.73 0.274 5.57 0.224 2.42 0.160 0.01 0.000 0.02 0.001 
23 Sp92 5.73 0.559 10.3 0.39 7.02 0.252 0.71 0.030 0.04 0.004 
23 S92 1.10 0.110 1.84 0.130 1.52 0.113 0.33 0.077 0.02 0.001 
24 A91 7.24 0.457 7.54 0.422 4.75 0.265 0.08 0.004 0.02 0.001 
24 W91 3.36 0.156 2.57 0.191 2.63 0.112 0.09 0.004 0.03 0.001 
24 Sp91 5.57 0.413 7.80 0.574 4.92 0.355 0.11 0.011 0.02 0.003 
24 A92 3.98 0.313 7.04 0.422 7.73 0.441 0.02 0.001 0.06 0.002 
24 W92 6.25 0.395 8.06 0.330 3.45 0.224 0.01 0.000 0.02 0.001 
24 S92 2.14 0.189 3.25 0.172 2.75 0.159 1.09 0.065 0.03 0.001 
25 A91 4.15 0.395 6.96 0.634 4.28 0.390 0.13 0.012 0.00 0.000 
25 W91 2.74 0.207 3.53 0.151 2.35 0.102 0.13 0.005 0.04 0.002 
25 Sp91 7.85 0.472 11.4 1.09 8.17 0.336 0.13 0.005 0.02 0.001 
25 A92 · 4.57 0.786 10.7 0.59 11.5 0.69 0.03 0.001 0.08 0.004 
25 W92 4.34 0.311 5.74 0.294 2.69 0.194 0.01 0.000 0.02 0.001 

NS Data Set 
site season CI error so4 error N03 error HP04 error Br error 
26 W92 910 58.2 106 5.0 7.09 0.505 0.41 0.017 1.17 0.158 
26 Sp92 539 50.6 118 7.9 9.6 0.903 0.53 0.022 0.76 0.121 
26 S92 376 22.4 51.9 2.92 10.2 0.61 4.01 0.234 0.33 0.057 
26 W93 792 34.1 96.8 5.39 5.06 0.401 0.32 0.013 1.17 0.194 
26 Sp93 424 40.4 54.5 6.08 9.5 0.832 9.5 0.853 0.23 0.024 
26 S93 271 12.4 48.0 2.21 24.6 1.12 1.52 0.180 0.20 0.018 
26 A93 478 21.3 110 7.9 18.4 1 42.7 2.36 0.22 0.016 
27 W92 123 7.8 18.4 0.88 3.27 0.215 0.16 0.007 0.10 0.004 
27 Sp92 72.8 7.05 34.0 2.35 11.1 1.03 0.51 0.021 0.31 0.013 
27 S92 55.4 3.05 15.7 1.16 12.2 0.69 0.18 0.007 0.11 0.004 
27 A93 33.4 1.87 11.2 0.58 6.33 0.450 0.10 0.004 0.06 0.003 
27 W93 151 6.7 22.9 1.23 4.82 0.322 O.:t-2 0.009 0.13 0.005 
27 W93 158 7.8 24.1 1.27 5.26 0.500 0.22 0.009 0.13 0.005 
27 Sp93 73.5 7.03 12.7 1.27 4.37 0.307 0.18 0.008 0.11 0.005 
27 Sp93 61.3 5.44 14.2 1.32 10.5 0.80 0.17 0.007 0.10 0.004 
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Appendix D WE and NS Major-Element Data Sets 

site season Cl error so4 error N03 error HP04 error Br error 
27 S93 50.9 2.26 14.3 0.66 29.5 1.28 2.96 0.248 0.41 0.112 
27 S93 55.7 2.48 14.1 0.67 24.8 1.13 1.20 0.074 0.40 0.032 
27 A93 77.5 4.00 11.8 0.91 2.09 0.150 0.85 0.039 0.04 0.002 
27 A93 75.3 3.43 11.9 0.93 2.74 0.214 0.90 0.055 0.04 0.002 
28 W92 8.36 0.598 6.11 0.335 4.34 0.300 0.06 0.003 0.04 0.002 
28 sp92 6.63 0.693 11.0 0.87 9.9 0.869 o:15 0.006 0.09 0.004 
28 S92 9.09 0.526 10.0 0.62 10.6 0.64 0.72 0.053 0.02 0.002 
28 A93 4.34 0.244 9.6 0.844 8.18 0.626 1.13 0.075 0.05 0.002 
28 W93 10.6 1.18 6.71 0.351 4.25 0.255 0.11 0.005 0.07 0.003 
28 Sp93 7.70 0.809 8.15 0.762 8.60 0.637 0.09 0.004 0.06 0.002 
28 S93 6.29 0.582 8.15 0.823 9.12 0.850 1.22 0.123 0.05 0.005 
28 A94 5.60 0.253 5.39 0.375 1.58 0.109 2.20 0.296 0.05 0.002 
29 W92 2.31 0.226 4.37 0.343 2.17 0.178 0.60 0.194 0.01 0.001 
29 Sp92 4.59 0.520 10.5 0.760 9.34 0.825 0.09 0.004 0.05 0.002 
29 A93 2.22 0.194 11.6 0.673 10.7 1.13 0.38 0.016 0.23 0.009 
29 W93 5.34 0.540 5.07 0.338 3.35 0.234 1.06 0.077 0.02 0.001 
29 Sp93 11.3 1.05 15.51 1.45 16.4 1.27 2.68 0.320 0.08 0.003 
29 S93 3.23 0.288 7.51 0.655 6.64 0.557 0.86 0.194 0.04 0.003 
29 A94 1.55 0.021 2.64 0.135 1.75 0.096 0.13 0.013 0.00 0.000 
30 W92 0.16 0.009 0.04 0.003 0.10 0.005 0.00 0.000 0.00 0.000 
30 Sp92 6.67 0.747 12.2 0.82 10.9 0.94 0.08 0.003 0.05 0.002 
30 W93 0.71 0.094 1.48 0.176 0.08 0.016 0.01 0.002 0.00 0.000 
30 Sp93 11.4 1.60 18.1 2.47 19.9 2.74 3.00 0.491 0.09 0.010 
30 S93 22.7 1.04 32.9 1.50 8.54 0.392 61.7" 3.82 0.14 0.110 
30 A94 0.40 0.005 0.04 0.004 0.10 0.009 0.01 0.000 0.00 0.000 
31 W92 0.10 0.008 0.06 0.005 0.10 0.005 0.00 0.000 0.00 0.000 
31 Sp92 8.05 0.757 12.8 0.96 11.6 0.99 0.10 0.004 0.06 0.003 
31 W93 0.27 0.01 0.11 0.007 0.12 0.005 0.17 0.005 0.00 0.000 
31 Sp93 9.20 3.045 15.6 1.46 26.2 1.71 0.28 0.012 0.17 0.007 
31 S93 25.2 1.87 41.1 3.58 23.2 1.74 25.6 2.19 0.92 0.065 
31 A94 1.64 0.058 2.57 0.174 0.18 0.018 0.33 0.007 0.01 0.000 
32 W92 0.21 0.014 0.01 0.000 0.22 0.011 0.01 0.000 0.01 0.000 
32 Sp92 9.69 1.081 14.4 0.95 13.5 1.26 0.35 0.015 0.21 0.009 
32 A93 3.25 0.148 1.15 0.036 0.63 0.023 2.09 0.092 0.00 0.000 
32 W93 0.37 0.006 0.09 0.005 0.17 0.011 0.30 0.022 0.00 0.000 
32 S93 29.5 2.36 22.3 1.78 22 2 1.65 0.123 0.99 0.074 
32 A94 11.50 0.65 7.53 0.497 0.93 0.052 11.6 0.23 0.01 0.000 
33 W92 1.46 0.000 0.40 0.000 0.14 0.000 0.17 0.000 0.00 0.000 
33 Sp92 5.84 0.693 12.8 1.019 9.9 1 0.59 0.024 0.36 0.015 
33 A93 19.0 1.09 5.50 0.307 3.87 0.218 0.15 0.007 0.09 0.004 
33 W93 0.90 0.000 0.28 0.000 0.14 0.000 0.66 0.000 0.00 0.000 
33 S93 64.6 3.51 31.9 1.60 24.7 1.45 1.73 0.081 1.04 0.048 
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Appendix D WE and NS Major-Element Data Sets 

WE DataSet 
site season Na error K error Nlf4 error Ca error Mg error 
16 A91 122 6.8 5.63 0.31 0.12 0.007 46.8 2.61 32.5 1.82 
16 W91 931 27.5 17.5 0.52 0.67 0.020 181 5.4 219 6.5 
16 Sp91 614 35.6 8.00 0.463 0.33 0.019 28.9 1.67 130 7.5 
16 S91 117 12.4 7.38 1.079 0.20 0.014 52.8 3.72 78.5 5.55 
16 A92 184 8.4 5.28 0.225 7.24 0.500 25.0 1.11 53.7 2.13 
16 W92 627 25.8 38.0 1.41 191.4 16.8 71.4 4.69 157 6.4 
16 Sp92 417 33.8 10.2 1.05 28.1 4.91 66.8 5.01 100 7.6 
16 S92 20.9 12.52 2.00 1.198 3.25 1.958 5.52 3.309 8.48 5.087 
17 A91 39.2 1.76 1.84 0.083 1.56 0.070 7.00 0.314 9.40 0.422 
17 W91 179 7.48 3.68 0.154 0.35 0.015 4.44 0.186 38.7 1.62 
17 Sp91 95.9 4.62 2.65 0.128 0.24 0.012 4.57 0.220 22.3 1.07 
17 S91 26.7 2.64 2.41 0.339 6.23 0.656 4.32 0.266 11.7 0.69 
17 A92 56.4 2.83 3.17 0.303 21.1 1.50 8.07 0.403 17.8 0.76 
17 W92 155 7.19 7.11 0.363 13.9 1.46 7.12 0.591 37.7 1.96 
17 Sp92 115 6.16 5.17 0.438 11.8 1.94 9.51 0.741 26.1 1.34 
17 S92 3.93 0.242 0.97 0.063 1.39 0.111 1.89 0.111 1.68 0.099 
18 A91 12.5 0.70 0.80 0.045 6.80 0.380 3.84 0.214 3.08 0.172 
18 W91 54.6 2.34 1.38 0.059 0.20 0.009 9.09 0.389 16.8 0.72 
18 Sp91 31.7 0.99 1.76 0.055 0.09 0.003 4.59 0.143 9.14 0.285 
18 S91 16.8 1.41 2.80 0.373 13.0 1.152 3.38 0.118 5.34 0.181 
18 A92 30.8 1.50 2.93 0.136 36.9 2.62 8.12 0.350 13.6 0.586 
18 W92 74.9 3.41 3.69 0.273 10.4 0.99 5.90 0.245 19.9 0.816 
18 Sp92 22.7 1.09 1.95 0.153 10.5 1.70 3.63 0 221 5.15 0.267 
18 S92 8.61 3.303 0.52 0.201 0.97 0.374 3.55 1.360 2.83 1.086 
19 A91 7.13 0.234 0.11 0.004 1.27 0.042 3.30 0.108 1.81 0.059 
19 W91 38.8 1.46 0.12 0.005 2.06 0.078 9.74 0.366 8.56 0.322 
19 Sp91 30.5 1.40 0.04 0.002 0.09 0.004 5.33 0.245 8.96 0.412 
19 A92 28.4 0.98 3.55 0.094 19.9 1.22 3.01 0.267 8.91 0.206 
19 W92 42.2 1.85 2.23 0.104 4.23 0.455 3.41 0.279 11.7 0.46 
19 Sp92 13.3 0.69 1.42 0.128 8.38 1.366 7.44 0.445 3.61 0.169 
19 S92 15.3 0.75 4.19 0.205 16.7 1.19 3.03 0.143 2.06 0.095 
20 A91 7.38 0.228 0.61 0.019 4.95 0.15 2. 75 0.085 2.43 0.075 
20 W91 11.3 0.49 0.30 0.013 0.17 0.007 0.59 0.026 2.51 0.108 
20 Sp91 14.2 3.56 1.86 0.465 0.01 0.002 3.39 0.848 4.09 1.022 
20 S91 15.0 1.27 1.96 0.260 12.3 1.10 3.94 0.146 4.02 0.146 
20 W92 19.2 0.89 17.1 0.786 69.0 7.29 5.68 0.239 11.0 0.47 
20 Sp92 8.00 0.360 3.22 0.255 12.4 2.02 4.77 0.157 2.48 0.095 
20 S92 6.68 0.725 1.20 0.083 3.25 0.535 5.11 0.268 3.06 0.155 
21 A91 6.18 0.355 0.23 0.013 1.57 0.090 3.11 0.179 1.64 0.094 
21 W91 5.39 0.258 0.27 0.013 0.09 0.004 0.39 0.019 I .07 0.051 
21 Sp91 8.50 8.497 0.50 0.498 0.00 0.004 2.38 2.377 2.48 2.479 
21 S91 16.2 1.56 1.48 0.215 5.52 0.553 2.37 0.148 1.93 0.114 
21 A92 9.32 0.488 1.62 0.069 13.4 1.15 1.93 0.094 3.26 0.212 
21 W92 10.4 0.59 1.11 0.067 4.76 0.466 2.11 0.113 3.35 0.184 
21 Sp92 5.72 0.323 1.42 0.121 10.4 1.71 3.03 0.190 2.11 0.114 
21 S92 6.65 0.348 2.12 0.162 18.3 1.32 6.36 0.329 3.13 0.143 
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Appendix D WE and NS Major-Element Data Sets 

site season Na error K error NI-4 error Ca error Mg error 
22 A91 5.91 0.371 0.49 0.031 1.26 0.079 3.13 0.196 1.65 0.103 
22 W91 5.05 0.254 0.43 0.022 0.16 0.008 0.78 0.039 l.l6 0.058 
22 Sp91 3.64 1.822 0.31 0.157 0.00 0.002 1.27 0.637 1.14 0.572 
22 S91 15.0 1.32 2.90 0.396 8.48 0.783 3.54 0.149 2.44 0.103 
22 A92 4.56 0.218 1.01 0.046 17.0 1.20 1.02 0.209 1.75 0.109 
22 W92 5.09 0.405 3.52 0.279 1.16 0.130 3.85 0.309 1.93 0.154 
22 Sp92 4.72 0.233 2.46 0.199 6.91 1.120 3.62 0.207 2.01 0.099 
22 S92 5.72 0.452 2.01 0.160 6.00 0.564 4.89 0.382 2.49 0.193 
23 A91 4.73 0.297 0.76 0.048 2.31 0.145 2.66 0.167 1.59 0.100 
23 W91 3.92 0.155 0.48 0.019 0.19 0.007 0. 74 0.029 0.83 0.033 
23 Sp91 8.6J 6.946 1.81 1.447 0.17 0.139 4.76 3.807 3.09 2.470 
23 S91 12.7 1.11 1.57 0.241 6.81 0.627 6.22 0.235 4.75 0.184 
23 A92 4.55 0.145 2.18 0.119 18.3 1.106 2.65 0.205 2.94 0.102 
23 W92 3.77 0.146 1.36 0.056 7.08 0.625 3.35 0.167 1.92 0.075 
23 Sp92 6.87 0.224 1.93 0.139 10.0 1.579 3.94 0.175 2.83 0.023 
23 S92 2.40 0.162 0.99 0.096 4.27 0.376 2.07 0.126 1.31 0.082 
24 A91 4.27 0.238 0.63 0.035 0.10 0.006 2.58 0.144 1.34 0.075 
24 W91 2.00 0.085 0.38 0.016 0.12 0.005 0.42 0.018 0.47 0.020 
24 Sp91 5.48 0.393 1.47 0.106 0.05 0.004 2.42 0.174 2.61 0.188 
24 A92 3.31 0.188 1.03 0.161 9.08 0.718 1.62 0.075 1.75 0.091 
24 W92 4.83 0.194 1.22 0.072 4.22 0.424 3.55 0.119 2.24 0.098 
24 S92 3.99 0.205 1.99 0.319 10.6 0.74 3.47 0.154 1.93 0.080 ~ 
25 A91 5.27 0.480 0.63 0.057 0.01 0.001 2.04 0.185 1.41 0.128 
25 W91 2.0 I 0.085 0.25 0.011 0.17 0.007 0.36 0.015 0.50 0.021 
25 Sp91 7.50 0.305 0.95 0.039 0.17 0.007 1.76 0.071 4.14 0.168 
25 A92 5.93 0.375 1.76 0.079 12.1 1.17 3.33 0.148 2.46 0.189 
25 W92 3.54 0.176 0.81 0.039 0.80 0.069 1.89 0.127 1.62 0.086 

NS Data Set 
site season Na error K error NI4 error Ca error Mg error 
26 W92 786 36.0 16.7 0.80 5.97 0.656 50.6 4. 5 192 18.8 
26 Sp92 831 44.2 19.1 1.12 25.7 1.86 89.0 5.41 247 21.7 
26 S92 322 14.8 10.1 0.65 7.65 0.494 38.0 2.28 98.1 8.74 
26 W93 699 29.5 14.4 0.82 7.43 0.809 59.2 4.54 208 21.7 
26 Sp93 359 18.8 11.3 0.48 45.3 2.75 46.8 2.77 117 9.0 
26 S93 316 25.5 8.44 0.556 1.86 0.177 41.6 3.47 82.7 5.71 
26 A93 475 45.2 10.5 0.75 0.99 0.041 153 10.2 110 7.5 
27 W92 110 5.5 2.72 0.197 6.30 0.546 14.8 1.44 30.9 3.20 
27 Sp92 112 6.2 4.80 0.480 29.5 2.36 36.5 2.79 40.8 3.76 
27 S92 47.5 2.25 2.04 0.298 12.0 1.014 33.7 2.03 17.6 1.78 
27 A93 30.4 1.48 1.58 0.243 3.99 0.450 28.3 2.22 12.5 1.24 
27 W93 130 5.6 2.78 0.120 8.33 0.850 50.9 3.54 39.6 3.89 
27 W93 137 5.9 2.84 0.132 7.04 0.403 50.8 3.85 41.5 2.06 
27 Sp93 58.5 3.36 3.09 0.226 24.9 1.66 17.0 1.29 20.1 1.75 
27 Sp93 55.1 2.88 2.88 0.215 18.9 1.08 18.0 1.49 20.0 1.91 
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Appendix D WE and NS Major-Element Data Sets 

site season Na error K error Nfi4 error Ca error Mg error 
27 S93 45.4 4.01 4.09 0.239 2.73 0.229 36.9 2.06 14.0 0.96 
27 S93 48.2 3.97 3.16 0.272 0.97 0.073 39.8 1.97 14.2 1.15 
27 A93 71.3 7.10 3.35 0.496 8.06 0.359 131 9.1 23.0 1.67 
27 A93 67.3 6.58 2.43 0.178 6.73 0.570 125 11.1 22.0 1.75 
28 W92 7.93 0.413 0.79 0.039 2.93 0.168 2.16 0.182 2.51 0.273 
28 sp92 10.2 0.63 1.91 0.121 11.9 0.96 9.72 0.721 5.36 0.574 
28 S92 10.5 0.55 1.41 0.135 14.1 0.98 7.24 0.475 3.89 0.350 
28 A93 6.05 0.296 1.58 0.223 24.4 1.46 6.98 0.583 3.34 0.476 
28 W93 8.97 0.482 0.28 0.084 2.87 0.171 3.35 0.237 3.19 0.415 
28 Sp93 7.49 1.529 1.47 0.114 10.8 0.62 7.69 0.442 3.62 0.276 
28 S93 8.39 0.986 2.18 0.246 14.3 1.73 8.46 0.819 3.18 0.447 
28 A94 5.59 0.704 7.49 0.950 7.13 0.761 6.35. 0.511 2.79 0.569 
29 W92 2.08 0.158 1.51 0.116 3.14 0.282 2.54 0.287 1.57 0.214 
29 Sp92 7.07 0.487 2.09 0.127 10.5 0.84 7.55 0.436 4.60 0.442 
29 A93 8.99 0.587 3.71 0.154 4.33 1.152 5.06 0.373 3.97 0.639 
29 W93 5.51 0.333 1.80 0.110 4.52 0.364 3.27 0.278 2.50 0.258 
29 Sp93 10.7 0.66 3.54 0.177 22.3 1.27 8.93 0.664 5.82 0.608 
29 S93 4.08 0.453 1.47 0.169 8.44 1.044 5.99 0.527 2.61 0.339 
29 A94 2.10 0.174 0.62 0.038 1.50 0.088 2.55 0.129 1.09 0.077 
30 W92 0.07 0.004 0.05 0.003 0.45 0.016 0.04 0.003 0.04 0.004 
30 Sp92 10.3 0.70 1.79 0.123 7.45 0.576 6.56 0.398 5.54 0.479 
30 W93 0.65 0.076 0.77 0.090 0.50 0.090 0.50 0.071 0.34 0.054 
30 Sp93 10.6 1.23 4.93 0.558 32.4 3.89 15.9 1.81 8.15 1.135 
30 S93 23.2 1.97 30.8 1.88 224 19.0 23.0 1.15 15.6 1.18 
30 A94. 0.10 0.008 0.63 0.062 0.17 0.010 0.11 0.011 0.13 0.036 
31 W92 0.15 0.007 0.29 0.006 0.34 0.015 0.07 0.005 0.09 0.013 
31 Sp92 12.4 0.67 2.59 0.176 11.7 0.94 9.5 0.562 8.36 0.740 
31 W93 0.17 0.005 0.50 0.007 0.96 0.039 0.05 0.003 0.08 0.010 
31 Sp93 8.20 0.42 4.92 0.207 14.0 0.94 7.83 0.672 11.5 1.01 
31 S93 31.5 4.59 24.7 1.98 239 24.8 29.9 2.40 20.6 4.33 
31 A94 2.04 0.179 2.24 0.125 1.16 0.042 1.66 0.115 1.26 0.128 
32 W92 0.23 0.006 0.17 0.012 0.71 0.020 0.72 0.086 0.30 0.031 
32 Sp92 14.9 1.00 15.3 0.99 26.6 2.24 33.4 1.98 29.9. 2.83 
32 A93 2.28 0.059 3.67 0.104 2.86 0.103 2.56 0.105 2.02 0.155 
32 W93 0.35 0.026 0.67 0.015 0.89 0.038 1.40 0.084 0.77 0.077 
32 S93 30.3 3.52 7.89 1.251 8.79 0.854 23.7 1.87 18.3 2.10 
32 A94 9.8 0.829 15.6 0.93 44.4 0.96 8.43 2.343 7.21 0.786 
33 W92 1.29 0.000 1.30 0.000 0.43 0.000 1.25 0.000 1.52 0.000 
33 Sp92 9.01 0.660 3.70 0.264 24.7 2.05 5.66 0.308 8.44 1.03 
33 A93 17.6 0.85 3.34 0.268 1.19 0.287 4.72 0.262 9.6 0.91 
33 W93 1.02 0.000 1.31 0.000 0.69 0.000 2.49 0.000 3.19 0.000 
33 S93 63.0 7.01 16.0 1.10 187 16.0 22.8 2.63 29.6 5.14 
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Appendix E Mean, Minimum and Maximum Deposition 

APPENDIX E MEAN, MINIMUM AND l\1AXIMUM DEPOSITION 
OF IONIC SPECIES AND RAINFALL AMOUNT AT EACH 

SAMPLE SITE ON THE WE AND NS ARRAYS 

H, Cl, S04, N03, HP04, Br, Na, K, NH4, Ca and Mg in units of J.Leq/m2/day 

site rainfall (nun) error H error Cl error S04 error 
site 16 mean 120 5 0.40 0.007 443 10.1 59.1 1.3:l 
Cliff Head min 5 0.01 33.4 6.23 
n=7 max 343 0.99 1151 127 
site 17 mean 89 4 2.72 0.055 95.4 2.13 19.0 0.38 
Morawa min 3 0.00 4.29 2.43 
n=8 max 236 10.8 229 31.3 
site 18 mean 87 3 3.19 0.071 34.2 0.95 11.8 0.38 
Badja min 22 0.04 9.14 5.08 
n=8 max 262 11.1 44.1 22.1 
site 19 mean 51 2 5.84 0.090 26.7 0.56 14.6 0.29 
Iowna min 1 0.04 4.12 3.30 
n=7 max 120 8.75 25.2 14.5 
site 20 mean 69 3 4.65 0.091 12.6 0.43 11.1 0.52 
Barrambie min 16 0.12 3.38 3.73 
n=7 max 245 3.16 14.1 16.0 
site 21 mean 43 2 2.62 0.055 7.84 0.546 7.81 0.986 
Yeelirrie min 2 0.01 2.79 3.87 
n=8 max 153 4.16 11.1 12.3 
site 22 mean 61 2 1.85 0.034 5.92 0.225 5.98 0.275 
Lake Violet min I 0.29 1.10 1.84 
n=8 max 194 5.05 10.5 10.5 
site 23 mean 90 4 1.91 0.036 5.35 0.617 7.27 1.181 
Carnegie min 11 0.31 2.14 3.25 
n=8 max 265 10.4 7.85 11.4 
site 24 mean 30 2 3.40 0.078 4.75 0.128 6.04 0.155 
Gunbarrel min 22 0.05 4.34 4.27 
n=6 max 38 0.84 7.38 7.20 
site 25 mean 92 4 7.04 0.141 4.73 0.114 7.67 0.239 
Everard Junction min 23 0.03 2.30 3.19 
n=5 max 268 0.05 20.6 25.2 
site 26 mean 153 2 6.50 0.128 541 12.4 83.5 1.9 
Port Lincoln min 41 0.29 271 48.0 
n=8 max 334 21.3 910 118 
site 27 mean 92 1 1.04 0.021 82.3 1.55 17.1 0.34 
Gawler Ranges min 37 0.02 33.4 11.2 

~:;8 
max 299 5.03 158 34.0 
mean 57 1 0.83 0.019 7.33 0.238 8.15 0.234 

intinna mm 27 0.05 4.34 5.39 
8 max 134 2.54 10.6 11.0 
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Appendix E Mean, Minimum and Maximum Deposition 

site rainfall error H error Cl error so4 error 
(mm) 

site 29 mean 5 2 2.4 0.086 4.36 0.194 8.17 0.279 
Alice Springs min 2 0.00 1.55 2.64 
n=7 max 149 10.4 11.3 15.5 
site 30 mean 30 1 1.23 0.049 7.01 0.341 10.8 0.50 
Tennant Creek min 0 . 0.00 0.00 0.00 
n=6 max 59 5.98 22.7 32.9 
site 31 mean 155 9 5.63 0.350 7.40 0.608 12.0 0.66 
Dunmarra min 0 0.00 0.00 0.00 
n=6 max 768 28.6 25.2 41.1 
site 32 mean 225 29 5.72 0.362 17.3 1.278 10.9 0.63 
Katherine min 0 0.00 0.00 0.00 
n=6 max 854 26.8 66.9 30.5 
site 33 mean 289 11 9.84 0.162 103 1.0 33.6 0.46 
Kapalga min 3 0.00 0.90 0.28 
n=5 max 866 9.84 32.4 14.1 

site N03 error HP04 error Br error Na error 
site 16 mean 9.15 0.269 5.59 -0270 0.37 0.011 379 8.15 
CJiffHead min 0.11 0.02 0.00 20.9 
n=7 max 25.4 38.0 1.20 931 
site 17 mean 6.65 0.147 0.68 0.020 0.09 0.006 83.8 1.70 
Morawa min 2.57 0.00 0.00 3.93 
n=8 max 13.0 2.52 0.29 179 
site 18 mean 6.67 0.227 0.36. 0.027 0.05 0.001 31.6 0.84 

-
Badja min 2.98 o.o2· 0.02 7.38 
n=8 max 10.9 3.44 0.11 42.2 
site 19 mean 7.37 0.188 0.59 0.044 0.10 0.002 25.1 0.44 
Iowna min 1.98 0.00 0.00 5.39 
n=7 max 20.5 0.53 0.06 19.2 
site 20 mean 7.50 0.229 0.37 0.052 0.03 0.001 11.7 0.57 
Barrambie min 2.20 0.01 0.01 5.05 
n=7 max 13.3 1.76 0.09 16.2 
site 21 mean 5.87 0.433 0.48 0.020 0.03 0.001 8.55 1.087 
Yeelirrie min 1.34 0.00 0.00 3.64 
n=8 max 17.6 1.17 0.06 15.0 
site 22 mean 5.83 0.172 0.37 0.023 0.03 0.001 6.21 0.300 
Lake Violet min 1.52 0.01 0.01 2.00 
n=8 max l6.2 0.71 0.09 12.7 
site 23 mean 6.03 0.452 0.19 0.020 0.03 0.001 5.95 1.007 
Carnegie min 2.35 0.02 0.00 2.01 
n=8 max 8.17 1.09 0.06 7.50 
site 24 mean 4.37 0.115 0.23 0.011 ' 0.03 0.001 3.98 0.096 
Gunbarrel min 0.02 0.01 0.02 3.54 
n==6 max 9.00 7.14 0.02 60.1 
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site N03 error HP04 error Br error Na error 
site 25 mean 5.81 0.148 0.08 0.002 0.03 0.001 4.85 0.118 
Everard Junction min 0.03 0.04 0.02 3.41 
n=5 max 11.8 29.7 0.11 21.~ 
site 26 mean 12.1 0.28 8.42 0.316 0.58 0.036 541 10.7 
Port Lincoln min 5.06 0.32 0.20 316 
n=8 max 24.6 42.7 1.17 831 
site 27 mean 9.75 0.202 0.64 0.022 0.16 0.010 76.1 1.41 
Gawler Ranges min 2.09 0.10 0.04 30.4 
n=12 max 29.5 2.96 0.41 137 
site 28 mean 7.07 0.211 0.71 0.042 0.05 0.001 8.14 0.279 
Wintinna min 1.58 0.06 0.02 5.59 
n=8 max 10.6 2.20 0.09 10.5 
site 29 mean 7.20 0.285 0.83 0.061 0.06 0.002 5.79 0.169 
Alice Springs min 1.75 0.09 0.00 2.08 
n=7 max 16.4 2.68 0.23 10.7 
site 30 mean 6.60 0.487 10.8 '0.64 0.05 0.018 7.48 0.404 
Tennant Cre.ek min 0.00 0.00 0.00 0.00 
n=6 max 19.9 61.7 0.14 23.2 
site 31 mean 10.2 0.438 4.41 0.364 0.19 0.011 9.08 0.776 
Dunmarra min 0.00 0.00 0.00 0.00 
n=6 max 26.2 25.6 0.92 31.5 
site 32 mean 8.34 3.072 2.42 0.043 0.26 0.015 18.5 1.39 
Katherine min 0.00 . 0.00 0.00 0.00 
n=6 max 22.5 11.6 0.99 71.6 
site 33 me!l..n 24.7 0.336 13.9 0.240 1.04 0.009 103 1.3 
Kapalga min 0.14 0.15 0.00 1.02 
n=5 max 8.72 2.87 0.35 32.6 

site K error NH4 error Ca error Mg error 
site 16 mean 12 0.31 28.9 2.20 59.8 1.32 97.3 2.02 
Cliff Head min 2.00 0.12 5.52 8.48 
n=7 :max 38 191 181 219 
site 17 1nean 3.37 0.095 7.08 0.366 5.86 0.144 20.7 0.41 
Morawa min 0.11 0.09 1.89 1.68 
n=8 max 7.11 36.9 9.7 39 
site 18 mean 1.98 0.079 9.9 0.502 5.26 0.217 9.48 0.144 
Badja min 0.04 0.09 0.59 2.06 
n=8 max 4.19 19.9 7.44 11.7 
site 19 mean 1.67 0.040 7.51 0.319 5.04 0.108 .il 0.108 
Iowna min 0.23 0.00 0.39 1.07 
n=7 max 17 69.0 5.68 11.0 
site 20 mean 3.75 0.141 14.6 1.095 3.75 0.136 4.22 0.165 
Barrambie min 0.43 0.16 0.78 1.16 
n=7 max 2.12 18.3 6.36 3.35 
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site K error NJ4 error Ca error Mg error 
site 21 mean 1.09 0.073 6.75 0.320 2.71 0.303 2.37 0.313 
Yeelinie min 0.31 0.00 0.74 0.83 
n=8 max 3.52 8.48 4.89 2.49 . 

site 22 mean 1.64 0.072 5.12 0.239 2.76 0.112 1.82 0.082 
Lake Violet min 0.38 0.10 0.42 0.47 
n=8 max 2.18 18.3 6.22 4.75 
site 23 mem 1.38 0.212 6.14 0.309 3.30 0.548 2.41 0.355 
Carnegie min 0.25 0.01 0.36 0.50 
n=8 rna;: 1.99 10.6 3.47 4.14 
site 24 mean 1.12 0.064 4.03 0.186 2.34 0.051 1.72 0.043 
Gunbarrel min 0.81 0.80 1.19 1.62 

n=6 max 10 74.4 8.14 11.5 
site 25 mean 0.88 0.019 2.65 0.195 1.88 0.046 2.02 0.049 
Everard Junction min 2.37 29.7 3.28 2.49 
n=5 max 37 244 19.4 23.9 
site 26 mean 12.9 0.25 13.6 0.44 68.3 1.77 151 4.9 
Port Lincoln min 8.44 0.99 38.0 82.7 
n=8 max 19.1 45.3 153 247 
site 27 mean 2.98 0.081 10.8 0.29 48.6 1.35 24.7 0.66 
Gawler Ranges min 1.58 0.97 14.8 12.5 
n=12 max 4.80 29.5 131 41.5 
site 28 mean 2.14 0.12" 11.0 0.35 6.49 0.190 3.49 0.154 
Wintinna . min 0.28 2.87 2.16 2.51 
n=8 max 7.49 24.4 9.72 5.36 
site 29 mean 2.10 0.051 7.82 0.318 5.13 0.158 3.17 0.157 
Alice Springs min 0.62 1.50 2.54 1.09 
n=7 max 3.71 22.3 8.93 5.82 
site 30 mean 6.50 0.329 44.2 3.24 7.69 0.364 4.96 0.284 
Tennant Creek min 0.00 0.00 0.00 0.00 
n=6 max 30.8 224 23.0 15.6 
site 31 mean 5.87 0.333 44.5 4.14 8.18 0.426 6.98 0.751 
Dunmarra min 0.00 0.00 0.00 0.00 
n=6 max 24.7 239 29.9 20.6 
site 32 mean 7.78 0.389 17.4 1.07 20.0 1.48 14.3 1.037 
Katherine min 0.00 0.00 0.00 0.00 
n=6 max 15.6 44.4 70.0 41.5 
site 33 mean 20.9 0.23 187 4.1 29.2 0.54 56.1 1.18 
Kapalga min 1.30 0.43 1.25 1.52 
n=5 max 7.75 66.5 11.0 18.1 
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Appendix F Details of Factor Analyses from Chapter 5 

APPENDIX F DETAILS OF FACTOR ANALYSES PERFORMED 
ON SUBSETS OF THE WE AND SN DATA SETS AS DESCRIBED 

IN CHAPTERS 

Factor loadings for the coastal subset (n=24) of the WE data set 

Loadings Factor 1 Factor 2 Factor 3 

%variance 59.1% 13.3% 10.3% 

eigenvalue 6.4991 1.4606 1.1329 

H .07959 .86501 .25986 

Cl .96785 .14013 .00819 

so4 .93572 .26229 .06506 

N03 .07130 .77087 -.27935 

HP04 .45361 -.04509 -.05780 

Br .75746 .54200 -.05442 

Na .96420 .18174 .03570 

K .93029 .09335 .23900 

Nl4 .01785 -.02301 .96090 

Ca .90601 -.03262 -.08901 

Mg .97067 .12202 .01246 

Factor loadings for the non-coastal data subset (n=49) of the WE data set 

Loadings Factor 1 Factor 2 Factor 3 

%variance 42.1% 16.3% 14.3% 

eigenvalue 4.628 1.790 1.575 

H .04092 .00569 .92769 

Cl .88638 -.11856 .22293 

S04 .84034 .23231 .20643 

N03 .51934 .41632 .41688 

HP04 -.05854 .28065 -.27390 

Na .95915 -.00064 .00822 

K .10688 .80364 -.18094 

NH4 .16136 .84883 .23461 

Ca .64232 .46642 -.29773 

Mg .89925 .19965 -.05541 

F1 



Appendix F Details of Factor Analyses from Chapter 5 

Factor loadings for the northern data subset, wet data subset and dry data subsets of the 

NS data set 

all seasons (n=25) wet samples (n=14) dry samples (n=ll) 

factor factor 1 factor 2 factor 1 factor 2 factor 1 factor 2 

eigenvalue 8.479 1.168 8.085 1.168 7.69 0.8 

_l)_ercentage var 81.8 11 '7 
- ,., • I 80.8 11.7 77.0 8.0 

H .11701 .97178 .04·181 .97366 -.19498 -.95129 

Cl .93720 .28184 .76,l90 .54809 .91972 .29688 

S04 .• 92057 .25436 .825;W .52829 .80597 .39634 

N03 .83001 .49515 .56149 .77499 .65938 .43028 

HP04 .92071 -.24488 .94368 .03656 .77643 .54426 

Na .94048 .30126 .75898 .58606 .95589 .25826 

K .97056 .05432 .93724 .26479 .85558 .30428 

NH4 .91924 .17185 .91545 .25690 .69921 .48964 

Ca .93380 .24174 .78618 .55473 .90443 .20231 

Mg .93950 .26410 .74441 .62817 .92706 .20525 

F I eli fi th b ( 32) f th NS d actor oa ngs or sou em su set n= 0 e ata set 

factor 1 factor2 factor 3 

eigenvalue 6.709 1.369 1.114 

%variation 61.0 12.4 10.1 

H .23014 .88266 -.18040 

Cl .96415 .13812 .01778 

so4 .87664 .41408 .01322 

N03 .13116 .82305 .23283 

HP04 .32317 .25682 .66145 

Br .68493 .64124 -.07399 

Na .96575 .20102 .00446 

K .77934 .40717 .07778 

NH4 .13875 .13301 -.75461 

Ca .91057 .03745 .14910 

Mg .96788 .21780 -.03139 
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Appendix F Details of Factor Analyses from Chapter 5 

Factor loadin s southern coastal subset n= 19) of the NS data set 

factor 1 factor 2 factor 3 

eigenvalue 6.225 1.805 1.709 

%variance 56.6 16.4 15.5 

H .51802 .80141 -.00244 

Cl .97211 .02786 .04578 

so4 .95652 .17055 .13940 

N03 
.01922 .71708 .60728 

HP04 
.38209 -.04140 .76950 

Br .68349 .60452 .10013 

Na .98752 .04423 .04781 

K .94501 .19468 .15426 

NH4 
.16897 -.07885 -.79167 

Ca .43585 -.64148 .51731 

M .99185 .03989 -.01564 

Factor loadin s for southern inland subset (n=15) of the NS data set 

factor 1 factor 2 factor 3 

eigenvalue 5.981 1.7807 .9508 

%variance 59.8 17.8 9.5 

H .2 37 .90911 .03321 

Cl .88141 -.06643 -.06266 

so4 .71186 .60889 .25540 

N03 .71936 .50814 .13097 

HP04 
.02604 -.16500 .91425 

Na .84980 .39032 -.01680 

K -.09850 .51234 .78398 

NR4 .66622 .22248 .63138 

Ca .58344 .38748 .56340 

M .76917 .58222 .19537 
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Appendix G Chlorine-36 Data Set 

APPENDIX G CHLORINE-36 DATA SET 

site season Volume error time Cl error 36CIJCI error 

(Litres) ±0.5 days (mg/L) (*10-15) 

16 A91 3.02 0.001 80 12.9 0.32 13 2 

16 W91 23.12 0.021 107 17.0 0.34 4 1 

16 Sp91 7.41 0.006 69 20.7 0.41 5 2 

16 S91 5.22 0.001 79 5.99 0.13 21 3 

16 A92 11.60 0.012 136 7.72 0.14 4 2 

16 . W92 18.30 0.018 102 12.5 0.23 8 2 

16 Sp92 5.33 0.001 56 17.5 0.75 8 1 

16 S92 0.26 0.001 102 142 6.64 6 2 

17 A91 3.23 0.001 80 3.66 0.08 35 5 

17 W91 12.26 0.013 107 6.37 0.12 6 2 

17 Sp91 5.49 0.001 70 4.96 0.09 53 4 

17 S91 3.17 0.001 78 1.74 0.04 134 5 

17 A92 12.34 0.013 137 2.09 0.06 28 3 
-

17 W92 18.99 0.018 101 2.89 0.06 18 3 

17 Sp92 6.06 0.001 56 3.28 0.14 20 2 

17 S92 0.22 0.001 102 22.8 1.06 98 8 

18 A91 2.30 0.001 81 1.41 0.02 121 8 

18 W91 7.04 0.005 107 3.34 0.07 19 3 

18 Sp91 2.06 0.001 70 4.18 0.08 81 5 

18 S91 2.57 0.001 79 1.26 0.02 198 9 

18 A92 20.21 0.019 137 0.69 0.02 64 6 

18 W92 10.77 0.011 90 2.24 0.06 31 3 

18 Sp92 3.25 0.001 66 1.45 0.06 109 7 

18 S92 0.235 0.001 102 7.50 0.35 110 10 

19 A91 2.37 0.001 83 1.00 0.02 246 11 

19 W91 9.34 0.009 107 1.87 0.05 30 3 

19 A92 23.62 0.021 140 0.58 0.02 91 6 

19 W92 10.39 0.011 87 1.13 0.06 43 9 

19 S92 5.79 0.001 65 0.38 0.02 254 19 

19 S92 0.58 0.001 104 7.35 0.34 189 15 

20 A91 2.48 0.001 83 0.97 0.02 268 13 

20 W91 5.68 0.001 107 0.87 0.02 88 7 

20 S91 5.67 0.001 77 0.71 0.01 241 8 

20 W92 7.15 0.005 87 0.98 0.04 144 9 

G1 



Appendix G Chlorine-36 Data Set 

site season Volume error time Cl error 36CIJCI error 

(Litres) ±0.5 days (mg/L) (*lQ-15) 

20 Sp92 3.60 0.001 67 0.34 0.02 459 25 

20 S92 3.34 0.001 104 0.86 0.04 225 11 

21 A91 4.89 0.001 82 0.86 0.02 244 14 

21 W91 5.49 0.001 107 0.71 0.01 390 16 

21 S91 5.09 0.001 77 1.21 0.02 198 9 

21 A92 32.49 0.026 139 0.21 0.01 309 15 

21 W92 5.54 0.005 87 1.09 0.05 99 10 

21 Sp92 5.60 0.001 67 0.23 0.01 561 22 

21 S92 5.15 0.001 105 0.57 0.03 270 11 

22 A91 1.86 0.001 81 1.36 0.03 214 11 

22 W91 5.42 0.000 107 0.43 0.01 238 12 

22 Sp91 0.14 0.001 72 7.74 0.15 151 10 

22 A92 26.81 0.023 140 0.15 0.01 119 8 

22 W92 1.46 0.001 87 2.38 0.06 375 27 

22 Sp92 5.59 0.001 68 0.27 0.01 471 20 

22 S92 0.86 0.001 106 3.18 0.15 253 13 

23 A91 1.42 0.001 82 1.56 0.03 261 13 

23 W91 11.52 0.012 107 0.27 0.01 285 12 

23 S91 5.80 0.001 77 0.79 0.02 236 16 

23 A92 32.37 0.026 139 0.14 0.01 535 16 

23 W92 4.85 0.001 86 0.47 0.02 263 17 

23 Sp92 3.06 0.001 68 0.72 0.07 367 16 

23 S92 5.20 0.001 107 0.13 0.01 239 17 

24 A91 5.01 0.001 83 0.68 0.02 353 14 

24 W91 7.62 0.006 107 0.27 0.01 660 25 

24 Sp91 2.03 0.001 72 1.08 0.02 483 11 

24 A92 32.21 0.026 141 0.15 0.01 621 18 

24 W92 5.12 0.001 84 0.60 0.03 298 16 

24 S92 5.40 0.001 108 0.14 0.01 406 19 

25 A91 0.48 0.001 83 3.96 0.11 277 11 

25 W91 10.32 0.010 107 0.16 0.01 527 22 

25 Sp91 7.16 0.005 72 0.45 0.02 335 14 

25 A92 30.48 0.025 140 0.12 0.02 647 27 

25 W92 3.85 0.001 83 0.58 0.03 170 15 

26 W92 16.11 0.016 90 16.2 0.79 5 2 

26 S92 6.11 0.001 1J4 20.4 0.86 12 2 
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Appendix G Ch/orine-36 Data Set 

site season Volume error time Cl error 36ClJCl error 

(Litres) ±0.5 days (mg/L) (*10·15) 

26 W93 12.59 0.013 90 18.1 0.22 5 3 

26 Sp93 7.82 0.007 72 12.4 1.07 13 2 

26 S93 2.38 0.001 105 38.1 0.54 6 1 

26 A94 8.6148 0.01 107 19.0 0.312 4.3 3.2 

27 W92 6.36 0.003 90 5.60 0.03 20 2 

27 Sp92 22.21 0.020 100 1.05 0.09 86 7 

27 S92 7.96 0.007 104 2.31 0.08 79 6 

27 A93 3.60 0.001 83 2.46 0.09 56 6 

27 S93 4.86 0.001 105 3.50 0.05 52 5 

27 S93 4.87 0.001 105 3.83 0.05 49 5 

27 A94 5.694 0.001 106 7.59 0.253 11 4 

28 W92 4.44 0.001 90 0.99 0.05 149 15 

28 Sp92 11.92 0.012 104 0.33 0.03 290 16 

28 S92 2.58 0.001 104 2.10 0.08 175 15 

28 A93 5.31 0.001 82 0.40 0.01 301 11 

28 W93 7.43 0.007 89 0.72 0.07 165 15 

28 Sp83 5.13 0.007 72 0.61 0.06 236 12 

28 S93 7.42 0.007 106 0.51 0.01 174 13 

28 A94 6.0487 0.005 104 0.55 0.007 134 8.4 

29 W92 1.50 0.001 86 0.70 0.05 340 42 

29 SP92 7.30 0.012 105 0.37 0.04 354 22 

29 A92 23.60 0.324 82 0.21 0.02 408 14 

29 W93 1.90 0.007 89 1.42 0.12 190 16 

29 Sp93 7.31 0.007 70 0.61 0.05 222 11 

29 S93 5.41 0.007 105 0.36 0.14 295 11 

29 A94 0.323 0.001 106 2.91 0.037 520 48 

30 W92 0.2411 0.001 85 0.31 0.017 133 110 

30 Sp92 5.94 0.001 103 0.66 0.07 184 9 

30 Sp93 8.24 0.007 70 0.55 0.05 625 49 

30 S93 0.61 0.001 105 1.51 0.03 84 19 

30 A94 0.4213 0.001 106 0.56 0.007 276 56 

31 W92 0.3152 0.001 86 0.16 0.013 734 123 

31 SP92 8.00 0.007 103 0.59 0.01 129 7 

31 W93 0.23 0.001 89 0.58 0.02 446 73 

31 SP93 15.46 0.017 70 0.24 0.08 260 16 

31 S93 7.68 0.007 105 0.12 0.00 519 26 
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Appendix G Chlorine-36 Data Set 

site season Volume error time Cl error 36C1JC1 error 

(Litres) ±0.5 da s (*I0-15) 

31 A94 0.4447 0.001 106 1.25 0.044 181 26 

32 W92 0.34 0.001 86 0.17 0.01 201 71.0 

32 SP92 15.85 0.016 104 0.20 0.02 140 11 

32 A92 0.28 0.001 79 2.90 0.13 152 32 

32 S93 8.54 0.007 108 0.13 0.00 459 29 

32 A93 0.3197 0.001 106 3.93 0.222 208 21 

33 W92 0.24 0.001 80 1.55 0.08 155 22.0 

33 A93 5.32 0.247 80 0.92 0.02 92 5 

33 W93 0.25 0.001 89 1.04 0.01 367 38 

33 S93 8.660 0.007 104 0.28 0.01 103 8 

site season 36CI ( atomfm2/s) error 36cJ (* 106 atoms /L) error 

16 A91 14 2.4 2.92 0.49 

16 W91 32 8.1 1.15 0.29 

16 Sp91 23 8.8 1.66 0.64 

16 S9i 19 2.9 2.18 0.34 

16 A92 5 3.0 0.47 0.28 

16 W92 37 8.4 1.60 0.36 

16 Sp92 27 4.6 2.23 0.37 

16 S92 5 1.6 14.95 4.87 

17 A91 11 1.7 2.18 0.31 

17 W91 10 2.4 0.65 0.16 

17 Sp91 45 3.7 4.47 0.35 

17 S91 21 1.0 3.96 0.17 

17 A92 11 1.3 0.98 0.11 

17 W92 21 3.6 0.88 0.15 

17 Sp92 16 1.7 1.11 0.12 

17 S92 10 1.0 38.00 3.57 

18 A91 11 0.7 2.89 0.19 

18 W91 9 1.3 1.10 0.15 

18 Sp91 22 1.5 5.75 0.37 

18 S91 18 1.0 4.24 0.20 

18 A92 14 1.5 0.74 0.08 

18 W92 18 1.9 1.18 0.12 
18 Sp92 17 1.4 2.69 0.21 
18 S92 4 0.4 14.02 1.43 
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Appendix G Ch/orine-36 Data Set 

site season 36CI (atornfm2fs) error 36CJ (* 106 atoms /L) error 

19 A91 15 0.9 4.18 0.21 

19 W91 11 1.3 0.95 0.11 

19 A92 19 1.5 0.90 0.07 

19 W92 13 2.8 0.82 0.18 

19 S92 19 1.8 1.64 0.15 

19 S92 17 1.6 23.60 2.17 

20 A91 17 1.0 4.41 0.23 

20 W91 9 0.8 1.30 0.11 

20 S91 28 1.2 2.91 0.10 

20 W92 25 2.0 2.40 0.18 

20 Sp92 18 
' 

1.5 2.65 0.21 

20 S92 14 1.0 3.29 0.22 

21 A91 15 1.0 3.57 0.22 

21 W91 17 0.9 4.70 0.22 

21 S91 19 1.0 4.07 0.20 

21 A92 19 1.3 1.10 0.08 

21 W92 8 0.9 1.83 0.20 

21 Sp92 13 0.8 2.19 0.13 

21 S92 9 0.6 2.61 0.16 

22 A91 8 1.0 4.95 0.27 

22 W91 6 1.0 1.74 0.10 

22 Sp91 3 1.0 19.86 1.34 

22 A92 4 1.0 0.30 0.02 

22 W92 18 1.5 15.16 1.17 

22 Sp92 13 0.8 2.16 0.12 

22 S92 8 0.6 13.67 0.94 

23 A91 9 0.5 6.90 0.37 

23 W91 10 0.6 1.31 0.08 

23 S91 17 1.3 3.17 0.23 

23 A92 21 1.7 1.27 0.10 

23 W92 9 0.7 2.10 0.16 

23 Sp92 15 1.6 4.49 0.48 

23 S92 2 0.2 0.53 0.05 

24 A91 18 0.9 4.07 0.18 

24 W91 16 0.8 3.03 0.15 

24 St:;91 18 0.6 8..86 0.26 

24 A92 26 1.2 1.58 0.07 
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Appendix G Chlorinen36 Data Set 

site season 36CI (atornlm2fs) error 36CJ (*106 atoms IL) error 

24 W92 13 1.0 3.03 0.23 

24 S92 3 0.3 0.97 0.09 

25 A91 8 0.4 18.63 0.88 

25 W91 10 0.8 1.43 0.11 

25 Sp91 18 1.2 2.56 0.16 

25 A92 21 3.9 1.32 0.25 

25 W92 6 0.6 1.68 0.17 

26 W92 32 13 1.38 0.56 

26 S92 32 6 4.24 0.82 

26 W93 29 18 1.60 1.01 

26 Sp93 38 8 2.68 0.54 

26 S93 6 2 3.76 0.91 

26 A94 8 6 1.38 1.03 

27 W92 17 2 1.90 0.19 

27 Sp92 44 5 1.53 0.18 

27 S92 31 3 3.10 0.26 
-

27 A93 13 2 2.34 0.26 

27 S93 10 1 3.09 0.30 

27 S93 11 1 3.19 0.33 

27 A94 5 2 1.42 0.52 

28 W92 9 1 2.49 0.28 

28 Sp92 13 2 1.62 0.18 

28 S92 11 1 6.24 0.58 

28 A93 10 1 2.05 0.10 

28 W93 12 2 2.03 0.28 

28 Sp83 13 1 2.46 0.27 

28 S93 8 1 1.51 0.12 

28 A94 5 0 1.24 0.08 

29 W92 5 1 4.06 0.57 

29 SP92 11 1 2.25 0.27 

29 A92 31 3 1.47 0.13 

29 W93 7 1 4.57 0.54 

29 SP93 17 2 2.31 0.22 

29 S93 7 3 1.78 0.70 

29 A94 6 1 25.68 2.39 

30 W92 0.15 0 0.71 0.59 

30 SP92 9 1 2.05 0.24 

06 



Appendix G Chlorine-36 Data Set 

site season 36Cl (atornJm2fs) error 36Cl (* 1Q6 atoms /L) error 

30 SP93 50 6 5.83 0.69 

30 S93 14 3 2.16 0.49 

30 A94 0.76 0 2.64 0.54 

31 W92 0.52 0 1.97 0.37 

31 SP92 7 0 1.29 0.07 

31 W93 0.83 0.14 4.42 0.73 

31 SP93 17 6 1.08 0.36 

31 S93 91 8 1.08 0.06 

31 A94 1.2 0 3.83 0.57 

32 W92 0.29 0 0.57 0.21 

32 SP92 9 1 0.48 0.06 

32 A92 3 1 7.48 1.61 

32 S93 94 9 1.03 0.07 

32 A93 3 0 13.89 1.61 

33 W92 2 0 4.08 0.62 

33 A93 12 1 1.43 0.09 

,33 W93 2 0 6.50 0.68 

33 S93 46 5 0.48 0.04 
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Appendix H Mean Seasonal Wind Directions for Inland Sites of the WE A"ay 

APPENDIX H MEAN SEASONAL SURFACE WIND 
DIRECTIONS FOR INLAND SITES ALONG THE WE ARRAY 

Mean seasonal wind directions are plotted on wind roses, and the wind roses plotted 

on a map of salt lakes along the inland section (sites 19 to 25) of the WE array. The 

wind roses are plotted on Met station sites closest to the sample site (Table 1 ). The 

wind roses are drawn from mean daily wind directions during each day of the 

sampling period. The mean daily wind directions were calculated from three-hourly 

surface wind direction data purchased from the Bureau of Meteorology. The size of 

the wedge on the wind rose represents the number of days of a particular wind 

direction, eg. when the wind direction is predominantly from the southeast, a large 

wedge will feature in the southeast section of the wind rose. 

Table 1 Sample sites and corresponding Met Stations 

Sample Site Met Station 

Iowna (19) MtMagnet 

Barrambie (20) Meekatharra .,. 

Yeelirrie (21) Yeelirrie 

Lake Violet (22) Wiluna 

Carnegie (23) Carnegie 

Gunbarrel (24) Giles 

Everard Junction (25) 
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Response to Examiners Comments 

Examiner 1 

The examiner states "p 191, last paragraph- given some variations in 36Cl measurements 
spatially from different studies, extending the results of this study to represent the entire 
Southern Hemisphere is questionable. What happens if the seasons in question becomes 
unusually wet?" 

Response: The fallout values in atoms/m% take into account factors such as 
rainfall volume etc. I recognise that it is premature to state these fallouts are 
representative of the southern hemisphere. The main point here is that we cannot 
take fallouts measured in the northern hemisphere as representative of global 
fallouts, and as these are the only measurements made for the southern hemisphere, 
for now, they provide us with an idea of the hemispheric differences in fallout. 

The examiner states " ... choose an accessible representative site for major-element 
evaluation on a more detailed temporal scale for one or more seasons. If this was done 
on an event (or even weekly scale), a much better evaluation of the relationship with 
meteorology would have been possible, which might have been extended to the rest of 
the array." 

Response: I agree, and I did consider undertaking a similar activity during the 
monsoon period at one of the northern sites of the SN array, but time and financial 
constraints made this impossible. 

the examiner states "p98 and elsewhere- if Br is below the detection limit almost all of 
the time, why not remove it from the data set" 

Response: Br was present in the coastal samples (site 16 and 26) and represents 
the input of seawater to rainfall at these sites. Thus data from sites 16 and 26 were. 
used in the factor analysis, Br data was kept in the data set in the hope that it 
would indicate the seawater source. 

The examiner states "p 102-103- individual site analysis. Some spatial distributions of 
the PC variances mapped on the site location maps would have been useful to enhance 
interpretation. Also the tabular FA results for the individual sites for both arrays should 
be included in an appendix." 

Response: FA was not performed on data from individual sites because the FA 
procedure could not be carried out on data sets with few number of cases. than 
variables. This is outlined in Chapter 3. 

The examiner states" pl26 top paragraph- the speculations regarding sources of acidity 
are disappointing. The author cannot formally justify biodegradation as a source of 
acidity from the data (see FA results)." 

Response: I did not mean this discussion to suggest that biodegradation is a source 
of acidity. Rather that the acidity of the sample is something that has been altered 
after deposition, rather than a true representation of the atmospheric acidity. Thus 
biodegradation is used here more as a term to explain the post-depositional 
degradation. 
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Response to Examiners Comments 

The examiner states "p2 last two lines- salinisation in the landscape is mainJy caused by 
salt from ancient seas rising to the surface after land clearing and over irrigation. It is 
not clear whether the author is implying a major role for rainfall chemistry, which is 
unlikely". 

Response: this is not what I am implying. Instead I am stating that in order to 
remedy salinisation problems we need information such as how much salt is 
naturally accessed in order make mass balance calculations. 

The examiner states "p39 I would have liked a better discussion of the potential 
problems that the use of glass bottles could have on rainwater chemistry, especially over 
a three-month exposure period." 

Response : Borosilicate glass bottles were chosen for this sampling program to 
cater for the 36Cl measurements. Fresenius et al (1988) state that "glass bottles are 
particularly necessary for sampling if a substance to be determined could be 
secondarily changed by plastics or if changes in concentration of substances 
contained in water can occur by adsorption onto plastic". Plastic containers use Cl 
as a binding agent, and although polyethylene bottles have been found to be inert 
(Fresenius et al1988), as we were measuring such trace levels of36CI in rainwater, 
we decided it was unnecessary to risk interference from the collection container. 
Major-elements were sam~led from the borosilicate glass bottles so that .the Cl 
concentration used in the 6CI calculations was analysed from the same sampling 
vessel. 

Disadvantages of glass collection vessels for the collection and measurement of 
major-elements have been noted. In particular, glass containers are unsuitable for 
the collection of water with low concentrations of Na and K (Rump and Kirst 
1988) since the ion exchange properties of the glass are greater than those of 
plastic. A review of the properties of collection vessel material (Krajca 1989), 
however reveals that borosilicate glass is able to withstand heat and weakly acid 
solutions for long periods of time, making this type of glass particularly suitable in 
the present investigation where temperatures at central Australian sites can reach 
over 40oC and where the rainfall is weakly acidic. 

As discussed in Chapter 3, the effect of the collection vessel material on the sample 
chemistry under simulated field sampling conditions was tested and found to be 
negligible. 

Fresenius, W., Quentin, K. E. and Schneider, W. (1988). Water Analysis. Springer 
Verlag, Berlin 804 pp. 

Krajca, J. M. (1989). Water Sampling. Ellis and Horwood Ltd, England 212pp. 

Rump, H. H. and Krist, H. (1988). Laboratory Manual for the Examination of 
Water, Waste Water and Soil. VCH Publishers, Germany 190pp. 
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Respo11se to .Examiners Comments 

Examiner2 
No respcnse required 

.Examiner3 

Ttte examiner states " Chapter 3- Since no acid is added prior to volume reduction, 
heating may permit additional biodegradation, and possibly formation of volatiles and/or 
organic complexes containing Cl which will not be recovered later. I would suggest 
measurement of stable Cl both before and after volwne reduction. Acid :s usually added 
to promote exchange between sample Cl and dead carrier Cl when required." 

Response: The stable Cl concentration of the ,concentrate was not measured 
because of low sample amounts. However, the WSistt: material from the 
concentrating process was analysed for stable Cl on a number cf occasions and was 
found to be below detection. Carrier was added on a very few occasions which is 
why we did not add acid which may have provided a source of impurities. 

The examiner states "Chapter4·· Acid-base balance- IiHle is said about the pH of these 
smnples, but unless this parameter is measured soon after precipitation falls it is unlikely 
tc' he accurate. However H appears in all listings of cations. Is this measurement 
significant in samples that have been sitting for several months?" 

Response: I acknowledge that H concentrations (measured as pH) do not represent 
the pH of the atmosphere but the processes of sample degradation between 
deposition and retrieval from the field. This is reflected in the discussions, where 
H, N03, NR. and HP04 are suggested to indicate biodegradation in the 
mult\variate analysis. 
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