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Abstract

This thesis considers the design of a beamformer which can enhance desired sig-

nals in an environment consisting of broadband near�eld and/or far�eld sources.

The thesis contains: a formulation of a set of analysis tools which can provide

insight into the intrinsic structure of array processing problems; a methodology for

near�eld beamforming; theory and design of a general broadband beamformer; and

a consideration of a coherent near�eld broadband adaptive beamforming problem.

To a lesser extent, the source localization problem and background noise modeling

are also treated.

A set of analysis tools called modal analysis techniques which can be used to

a solve wider class of array signal processing problems, is �rst formulated. The

solution to the classical wave equation is studied in detail and exploited in order

to develop these techniques.

Three novel methods of designing a beamformer having a desired near�eld

broadband beampattern are presented. The �rst method uses the modal anal-

ysis techniques to transform the desired near�eld beampattern to an equivalent

far�eld beampattern. A far�eld beamformer is then designed for a transformed

far�eld beampattern which, if achieved, gives the desired near�eld pattern exactly.

The second method establishes an asymptotic equivalence, up to complex con-

jugation, of two problems: (i) determining the near�eld performance of a far�eld

beampattern speci�cation, and (ii) determining the equivalent far�eld beampattern

corresponding to a near�eld beampattern speci�cation. Using this reciprocity rela-

tionship a computationally simple near�eld beamforming procedure is developed.

The third method uses the modal analysis techniques to �nd a linear transforma-

tion between the array weights required to have the desired beampattern for far�eld

and near�eld, respectively.

An e�cient parameterization for the general broadband beamforming prob-

lem is introduced with a single parameter to focus the beamformer to a desired

operating radius and another set of parameters to control the actual broadband

beampattern shape. This parameterization is derived using the modal analysis

techniques and the concept of the theoretical continuous aperture.

A design of an adaptive beamformer to operate in a signal environment con-

sisting of broadband near�eld sources, where some of interfering signals may be

correlated with desired signal is also considered. Application of modal analysis

techniques to noise modeling and broadband coherent source localization conclude

the thesis.





Glossary of De�nitions

C complex numbers

Z integers

Z+ positive integers

a� complex conjugate of scalar a

aT transpose of matrix or vector a

aH conjugate transpose of matrix or vector a

� Convolution

Ay matrix pseudo-inverse: Ay �

= [AHA]�1AH


 Kronecker product: a
 b �

= [a1b; : : : ; aNb],

where N is length of a

jaj Absolute value of real number a

kak 2-norm of vector a

Ef�g Expectation

diag(�) Form a diagonal matrix with the elements shown

in brackets as diagonal elements

sgn(�) signum function: sgn(a)
�

= 0 for a = 0,

sgn(a)
�

= a=jaj for a 6= 0.

FIR Finite Impulse Response

DOA Direction Of Arrival

FFT Fast Fourier Transform

DFT Discrete Fourier Transform
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Chapter 1

Introduction

1.1 Motivation and Scope

Signal reception using an array of sensor elements has long been an attractive

solution to problems of signal enhancement, detection and estimation [1]. Use of

an array of sensor elements to extract useful information from signals carried by

propagating waves, is termed as array signal processing [2].

The array itself takes on a variety of di�erent geometries depending on the

application of interest. The most commonly used con�guration is the linear uniform

array, in which the sensors are uniformly spaced along a straight line. Other

common con�gurations are circular arrays, where the sensors are arranged in a

circle and planar arrays, in which the sensors form a rectangular grid or lie on

concentric circles. Other possibilities are nonuniformly spaced and randomly spaced

arrays.

Beamforming is the name given to a wide variety of array processing techniques

that by some means, focus the array's signal capturing (spatial �ltering) capabilities

in a particular direction or location [3]. This means that signals from a given spatial

region are ampli�ed and signals from other regions are attenuated with the usual

objective of estimating a desired signal in the presence of noise and interfering

signals. A processor that performs beamforming operations is called a beamformer.

Thus, a beamformer is used in conjunction with an array of sensors to provide

spatial �ltering and usually consists of �lters or complex weights to combine the

sensor signals. Typically a beamformer linearly combines the spatially sampled

signal from each sensor to obtain an output signal in the same manner as a FIR

�lter linearly combines temporally sampled data [4].

A beamformer can be characterized by its spatial response in the same way a

1
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Figure 1.1: An example beampattern

linear time-invariant system is characterized by its frequency response. Mathemat-

ically, the spatial response is a function of space variables and the graph of spatial

response versus space variables is called the beampattern of the beamformer. In the

literature, the terms spatial response and beampattern have been used interchang-

ingly. We also use both terms to describe the output response of a beamformer in

terms of space variables. Sometimes, the spatial response is expressed only as angu-

lar variables, then it is called the angular response. An example of a beampattern

as a function of azimuth and elevation angles is given in Figure 1.1.

Common applications of beamforming include sonar [5], radar [6], tomography

[7], exploration seismology [8], communication systems [9] and speech acquisition

systems [10].

In sonar, an array of hydrophones is used to passively detect signals such as ship

noise. A transmitting array is used in radar to illuminate an area surrounding the

radar site and a receiving array looks for re
ections from targets. In tomography,

arrays are used to form cross-sectional images of objects from either transmission

or re
ection data. An array of geophones is used in exploration seismology to re-

ceive signals re
ected from a region inside the earth with the objective of detecting

minerals. Arrays have long been used in High Frequency (HF) communications for

signal estimation and detection [11] and more recently their application in personal

communications in multiuser environment has also been identi�ed [9]. In speech

acquisition systems, electronically steerable microphone arrays are used to cap-
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Figure 1.2: Response of a narrowband beamformer over a broad frequency band.

ture high-quality signals from a desired speaker while simultaneously attenuating

interfering talkers and ambient noise.

In many applications, the signal of interest covers a wide bandwidth. For ex-

ample, speech signals typically cover several octaves where the bandwidth of intel-

ligible speech is approximately 200� 3400Hz which is roughly 4 octaves1. Thus, it

is desirable to design beamformers with controllable broadband frequency charac-

teristics. Most of the early array processing literature only considered narrowband

or single frequency operation, where the beamformer is designed to have desired

spatial response for a particular frequency. In situations where the fractional band-

width is very wide (a signi�cant fraction of the central frequency of the band), the

assumption of a single frequency produces poor results. For example, Figure 1.2

shows the angular response of a narrowband beamformer designed for operation at

1800Hz operated over a bandwidth of 200� 3400Hz. At frequencies below 1800Hz

the main beam spreads out and spatial resolution is lost. Whereas for frequencies

above 1800Hz the main beam becomes narrower until grating lobes begins to ap-

pear in the beampattern. Clearly, the spatial resolution varies signi�cantly with

frequency; this is unacceptable for broadband applications. Hence, the design of

broadband beamformers has been considered as a challenging problem.

The majority of array processing literature deals with the case in which the

1One octave is a doubling of frequency, i.e., the frequency range 200 � 400Hz is one octave
and 200� 800Hz is two octaves.
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source is assumed to be in the far�eld of the array. That is, the source is assumed

to be at an in�nite distance from the array and hence the received waveform from a

single point source is planar. This signi�cantly simpli�es the solution to the beam-

forming problem. However, in many practical situations, such as use of microphone

array to capture speech in an automobile environment, the source is well within the

near�eld (few wavelengths) of the array, and using the far�eld assumption to design

the beamformer results in severe degradation in the beampattern. Furthermore,

when broadband operation of the beamformer is required, the problem becomes

more acute: at low frequencies the source may appear in the near�eld, whereas at

high frequencies the same source may appear in the far�eld of the array.

Several methods have been suggested to solve the broadband beamforming prob-

lem. However, most of these methods are limited in their generality, relying either

on speci�c array geometries (usually uniformly spaced arrays), or speci�c beam-

patterns, or assumption of far�eld sources.

Thus from the above discussion we have identi�ed a basic question which has

not been adequately answered previously. We state it as follows:

How can one design a beamformer that can enhance a desired signal

in an environment consisting of broadband near�eld and/or far�eld

sources?

This general question motivates the work in this thesis, where a general theory for

beamforming is developed that can be applied to a wide class of array geometries,

allows arbitrary beampatterns, can be used over a large bandwidth and can deal

with sources in the near�eld of the array. In developing this theory, we formulate

a set of analysis tools which can be used to solve a wider class of array signal

processing problems. Whilst the techniques developed are new, the philosophy

behind our approach is not; we emphasize:

The general philosophy of our approach is to analyze the underlying

physical and mathematical structure of the array processing problem,

and to exploit this knowledge to synthesize solutions to the problem of

signal enhancement, detection and estimation. The set of analysis tools

we develop called modal analysis techniques are based on traditional

techniques used to solve the classical wave equation.
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Summary of the Thesis:

� The remainder of this chapter reviews related array signal processing litera-

ture and lists the contribution of the thesis.

� Chapter 2 presents the theory of modal analysis of beamforming. This chap-

ter serves as the basis of the thesis and the subsequent chapters use modal

analysis as a tool to solve various aspects of beamforming and array process-

ing problems.

� Chapter 3 describes a near�eld-far�eld beampattern transformation method

and presents novel near�eld beamforming techniques using far�eld design

methods.

� Chapter 4 formulates the design of general broadband beamformers using the

modal analysis techniques introduced in Chapter 2.

� Chapter 5 applies the modal analysis theory (Chapter 2) and general beam-

forming theory (Chapter 4) to the near�eld adaptive broadband beamforming

problem.

� Chapter 6 illustrates the application of modal analysis techniques to other

related areas such as the problems of near�eld noise modeling and source

localization.

� Chapter 7 concludes the thesis and suggests some projects for further re-

search.

1.2 Background Beamforming Concepts

In the previous section, we have outlined the motivation for the work in this the-

sis, identi�ed a basic question to be answered, and stated the philosophy of our

approach. In this section we give some background beamforming theory to set

the context for the contributions of the thesis, which are listed at the end of this

chapter.

1.2.1 Beamforming and Spatial Filtering

Systems designed to receive propagating signals often encounter interfering signals.

If the interference and the desired signal occupy the same temporal frequency band,
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then linear temporal �ltering cannot be used to separate the desired signal from

interference. However, the desired and interfering signals usually originate from

di�erent locations in space. Thus, a spatial �lter can be used to separate the de-

sired signal from the interference originating from a di�erent location. Application

of temporal �ltering requires processing of data collected over a period of time

(temporal aperture). Similarly, application of spatial �ltering requires processing

of data collected over a region of space which we will refer to as a spatial aperture2.

The word \beamforming" derives from the fact that early spatial �lters were

designed to form pencil beams in order to receive a signal radiating from a speci�c

location and attenuate signals from other locations [4]. Spatial �ltering can be

performed by using either a continuous aperture or discrete aperture (array of

sensors). In this thesis, the processor that performs spatial �ltering is called a

beamformer irrespective of the nature of the aperture. In some literature, it is

used only for spatial �ltering by an array of sensors [4].

Depending on the bandwidth of the signal environment, a beamformer can be

classi�ed as either narrowband or broadband. If the signal bandwidth is more than

a signi�cant fraction (say 0:1) of the mid-band frequency, then the signal is said to

be broadband. There is no �xed de�nition for a broadband signal in the literature3,

since, whether one can su�ciently treat the signal as monochromatic4 depends on

a range of other factors associated with the problem. Most of the beamforming

literature is concerned with narrowband signals. Dealing with broadband beam-

forming is more complicated, because of the additional frequency variable. Since

the operating frequency is �xed in narrowband beamforming, the frequency can

be excluded. Broadband beamforming subsumes or generalizes the narrowband

case. In the broadband case, sensor outputs are processed using �lters rather than

complex scalars (weights).

Beamformers can also be classi�ed as either data independent or data depen-

dent, depending on how the beamformer parameters (�lter coe�cients or weights)

are chosen. The parameters in the data independent beamformer are designed

to produce predetermined response regardless of the signal environment. The pa-

rameters in a data dependent beamformer are chosen based on the statistics of the

array data to optimize the array response according to some design criterion such as

maximizing the signal to noise ratio at the beamformer output. The beamforming

2An aperture is a region over which energy can be received. Apertures can either be continuous
or discrete as in sensor arrays.

3A working de�nition is that if there is a signi�cant (or measurable) di�erence between the
upper and lower frequencies then the signal is broadband.

4A signal with one frequency only.
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Figure 1.3: Variation of the shape of the angular response of a beamformer de-
signed with far�eld assumption with the radial distance (range - expressed in terms
of wavelengths). Angular response is normalized at each radial distance , thus am-
plitude variation versus radial distance is suppressed.

theory developed in this thesis are applicable to both kind of beamformers.

The vast majority of beamforming literature deals only with the situation in

which the impinging wavefronts on the array are planar in nature, where all the

signals are assumed to be originated from sources in the far�eld of the array (an

in�nite distance from the array). This is called far�eld beamforming. A wave

propagating from a point source radiates spherically outwards from the source

location. If a point source is in the near�eld of the array (suitably close to an array),

then the impinging wavefront on the array from that source is spherical. In this

situation, use of the far�eld assumption to design the beamformer will generally

degrade the beamformer spatial response (see Figure 1.3). The common rule of

thumb for the approximate distance at which the far�eld approximation begins to

be valid is r = 2L2=� (known as Rayleigh distance), where r is the distance from

an arbitrary array origin, L is the largest array dimension, and � is the operating

wavelength [12]. In the antenna literature, the far�eld is called the Fraunhofer

zone [13, p. 12] and the near�eld is called the Fresnel zone [13, p. 10] and they

are treated di�erently. Most of the near�eld designs are based on approximations

such as near�eld compensation [14] in which a delay correction is used on each

sensor to account for the near�eld spherical wavefronts. Even with the simplest

array geometries, designs based on near�eld compensation tend only to achieve the
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Figure 1.4: A block diagram of a typical narrowband beamformer

desired near�eld beampattern over a limited range of angles because they focus

the array to a single point in three dimensional space. One of the main objective

of this thesis is to establish a new theory applicable to both near�eld and far�eld

beamforming.

1.2.2 Narrowband Beamformers

In a conventional narrowband beamformer, the output of each sensor is weighted

by a complex scalar. All such weighted outputs are summed together to give the

beamformer output. A block diagram of a typical narrowband beamformer is shown

in Figure 1.4. The output of a narrowband beamformer with 2Q + 1 sensors at

time t is given by

z(t) =

QX
q=�Q

wq sq(t); (1.1)

where wq is the complex weight applied to the qth sensor, and sq(t) is the signal

received at the qth sensor at time t. The basic idea of a narrowband beamformer

is to add the outputs of sensors with appropriate weights so that a signal arriving

from a desired direction adds up constructively and signals arriving from other

directions add destructively (on average).



1.2 Background Beamforming Concepts 9

Near�eld Sources

Suppose the signal environment consists of V near�eld sources located at (rv; �v),

v = 1; : : : ; V , where rv is the distance from the sensor origin (assumed to be

coincidence with the coordinate origin) to vth source and �v is the angle between

the array axis (assumed to be along the x-axis) and the line joining the origin and

the vth source. Then the received signal at the qth sensor (of a linear double-sided

array of 2Q+ 1 sensors) is given by

sq(t) =
VX
v=1

rv
d(rv; �v; xq)

sv[t� d(rv; �v; xq)=c+ rv=c]; (1.2)

where sv(t) is the signal received at the sensor origin from vth source, c is the speed

of wave propagation and

d(r; �; x)
�

=
p
x2 + r2 � 2rx cos �)

is the distance between the source at (r; �) and the sensor at x. Note that the

expression (1.2) is normalized for 1=r spreading loss and gross delay.

Since we are considering the narrowband operation, assume that all source

signals are monochromatic with radian frequency5 !0. Then we can write

sv(t) = Av e
i!0t; (1.3)

where Av is the amplitude of the vth source signal. By substituting (1.2) and (1.3)

into (1.1), we can write the narrowband beamformer output (1.1) as

z(t) = ei!0t
VX
v=1

Av brv(�v); (1.4)

where

br(�) =

QX
q=�Q

wq
rei(!0=c)r

d(r; �; xq)
e�i(!0=c)d(r;�;xq): (1.5)

The function br(�) is known as the spatial response or the beampattern of the beam-

former.

5Frequency measured in radians per second, i.e., if f is the frequency in Hz then ! = 2�f .
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Figure 1.5: Far�eld spatial response (beampattern) of a typical narrowband beam-
former where 9 sensors are equally spaced at half wavelength spacing. Sensor
weights are designed according to Chebyshev method.

Far�eld Sources

If the signal environment consists of all far�eld sources, impinging wavefronts are

planar. In this case rv !1, v = 1; : : : ; V and the far�eld spatial response of the

narrowband beamformer is given by

b1(�) = lim
r!1

br(�)

=

QX
q=�Q

wq e
�i(!0=c)xq cos �: (1.6)

Figure 1.5 shows the far�eld spatial response (beampattern) of a typical beam-

former. By referring to Figure 1.5, some of the features of a beampattern are

described as follows. A single main beam, known as the mainlobe, is usually di-

rected towards the desired source. The smaller beams are referred to as sidelobes.

Troughs between beams are called nulls, which may be placed in a direction of a

strong unwanted signal by designing sensor weights appropriately.
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Sensor spacing

Most conventional narrowband beamformers have a uniformly spaced array of sen-

sors. Historically, half a wavelength sensor spacing6 were used in narrowband arrays

to avoid spatial aliasing. Similar to the temporal aliasing, which is the e�ect of un-

dersampling a time domain signal, spatial aliasing is the e�ect of undersampling in

the space domain signal. In both cases, sampling rates need to satisfy the Nyquist

criterion.

In the array signal processing literature, half a wavelength sensor spacing have

been used for both far�eld and near�eld beamforming arrays. Simple mathematical

analysis shows that half wavelength sensor spacing indeed guarantees no aliasing in

the operation of far�eld arrays. However, whether half wavelength spacing ensure

no spatial aliasing in near�eld arrays does not seem to have been investigated.

Another question to be answered in this thesis is to investigate e�ects of spatial

aliasing for near�eld arrays.

Use of half a wavelength sensor spacing for far�eld arrays simpli�es the formula

for the beampattern of the narrowband beamformer signi�cantly and enables the

use of Fourier techniques to design sensor weights. With half a wavelength (�=2)

spacing, the beampattern (1.6) reduces to

b1(�) =
QX

q=�Q
wq e

�i�q cos �: (1.7)

Beam Steering

The main beam of a far�eld beampattern may be steered to directions other than

broadside of the array by introducing a progressive time delay across the array.

Speci�cally, if the main beam is to be pointed to a angle 
 then a phase delay

of xq(!0=c) cos 
 should be applied to the qth sensor, where !0 is the angular

frequency of operation. This is equivalent to delaying the output of the qth sensor

by xq(!0=c) cos 
 before summing together to produce the beamformer output.

Therefore, this is referred to as delay and sum beamforming, which is one of the

oldest and simple beamforming techniques. Figure 1.6 shows a spatial response

(beampattern) of a steered beamformer.

6Known as the �=2 rule, where � is the wavelength.
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Figure 1.6: Beampattern of a beamformer steered to a direction other than broad-
side of the array where the unsteered beampattern is given by Figure 1.5.

Narrowband Beamformer Design Methods

For a �xed beamformer design, the spatial response (beampattern) of the beam-

former is pre-determined and independent of the actual signal received (array data).

For this case, the location of the desired source is assumed to be known. A common

approach is �rst to draft a beampattern speci�cation re
ecting the spatial �ltering

requirement. For example, features like mainlobe width (beam width), sidelobe

levels can be used as design speci�cations, where the beamwidth re
ects the reso-

lution required and sidelobe levels can be used to indicate the desired attenuation

of undesired signals. The �nal step is to design a beamformer that achieves the

given speci�cations. Design considerations may involve determining the number of

sensors, the sensor separation, the array geometry and the array weights.

Several classical techniques exist in the antenna literature for designing narrow-

band beamformers. A few methods are brie
y outlined below. For a full review,

reader is referred to see [12, 15].

The Fourier series method [12, p. 112] can be applied to a narrowband beam-

forming problem as follows. For a uniformly spaced sensor array (1.6), can be

written as

b1(u) =
QX

q=�Q
wq e

�i2�q d
�
u; (1.8)
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where u = cos �, d is the inter-sensor spacing and � = !0=c is the wavelength.

Equation (1.8) can be considered as a �nite Fourier series where wq are the Fourier

coe�cients and b1(u) is periodic in u-space with period �=d. Thus, given the

desired beampattern b1(u), weights can be obtain by the Fourier analysis equation

as

wq =
d

�

Z �
2d

� �
2d

b1(u)e
i2�q d

�
u du; q = �Q; : : : ; Q: (1.9)

This method provides the least-mean-square-error approximation of the desired

beampattern.

The method in [16] expresses (1.8) as a polynomial of degree 2Q+ 1,

b1(u) =
2Q+1X
q=0

wq z
q; (1.10)

where z = e�i2�
d
�
cos �. The beampattern is synthesized by changing the zero posi-

tions of this polynomial. Again this method relies on equal sensor spacing and the

far�eld assumption.

The Dolph-Chebyshev method [17] equates (1.10) with a Chebyshev polynomial

to produce a beampattern with the narrowest mainlobe width for a given constant

sidelobe level. Figure 1.5 shows the beampattern of a beamformer designed using

Dolph-Chebyshev method with �25dB sidelobe levels.

There are other classical beampattern synthesis methods [18{24] reported in

the literature which rely on uniform sensor spacing and far�eld assumption.

Introducing nonuniform sensor spacing signi�cantly complicates the beamformer

design problem. Most methods that use nonuniform sensor spacing are either iter-

ative [25{27] or use some form of numerical optimization [28]. These methods tend

to be more mechanical computational processes with no insight into the structure

of the problem, thus they can not be generalized for broadband or near�eld applica-

tions. A more fundamental approach was given in [29] where Poisson's summation

formula was used to �nd an analytical solution to the beamformer design problem

with nonuniform sensor arrays.

The above classical beampattern synthesis methods are su�cient for traditional

far�eld narrowband applications such as (most) radar problems, but most of them

are not suitable for an increasing range of broadband and/or near�eld applications

of arrays. The main theme of this thesis is to design more general beamform-

ing methods that can be applied to process signals from broadband and near�eld
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Figure 1.7: Schematic diagram of a broadband beamformer. The functions hq(t)
represent general �lters that follow each sensor output.

sources which are valid for arbitrary sensor geometries. In the next section, we

outline some of the existing broadband beamformer design methods.

1.2.3 Broadband Beamformers

Narrowband beamforming methods assume that the signal bandwidth is su�ciently

narrow to consider only a single frequency. However, the frequency spectrum of

many signals of interest have more than one frequency component. As we have

already illustrated in Figure 1.2, the use of a narrowband beamformer for a broad-

band signal degrades the performance of the beamformer. One common approach

to this problem is to attach a temporal �lter7 to each sensor output instead of a

complex weight, before summing them together. Combining these �ltered outputs

to form a beam is known as �lter and sum beamforming [3]. Broadband beam-

forming is said to entail spatio-temporal �ltering or a space-time signal processing

problem, since the signal wave�eld is sampled and processed in both space and

time domains.

Figure 1.7 shows a schematic diagram of a typical beamformer with a �lter

7A time domain �lter; we use this term to distinguish it from a spatial �lter which is in the
space domain.
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attached to each sensor. The broadband beamformer output can be written as

z(t) =

QX
q=�Q

hq(t) � sq(t); (1.11)

where hq(t) is the impulse response of the �lter attached to the qth sensor, sq(t) is

the signal received at the qth sensor and � denotes the continuous time convolution
which is de�ned by [30, p. 97]

hq(t) � sq(t) =
Z 1

�1
hq(�)sq(t� �) d�: (1.12)

Early beamformers used continuous time �lters in beamformers, but almost

all modern beamformers use discrete time �lters such as FIR �lters and are im-

plemented on digital signal processors (DSPs). In order to use a discrete time

beamformer, the received signal at each sensor needs to be sampled before �ltering

it using FIR �lters. We can consider (1.11) as the output of a continuous time

broadband beamformer. The output of the associated discrete time broadband

beamformer is

z[n] =

QX
q=�Q

hq[n] � sq[n]; (1.13)

where hq[n] is the impulse response of the FIR �lter and sq[n] = sq(nT ), where T

is a suitable sampling time and � denotes the discrete time convolution given by

hq[n] � sq[n] =
1X

m=�1
hq[m]sq[n�m]: (1.14)

Suppose that the signal environment consists of V broadband sources located

at (rv; �v), v = 1; : : : ; V where rv is the distance from the sensor origin to vth

source and �v is the angle between the array axis and the line joining origin and

the vth source. Then the received signal at the qth sensor sq(t) is given by (1.2) as

in the narrowband beamformer. A broadband signal can be considered as a sum

of many narrowband signals. Hence, using (1.3) we can write the signal received

at the sensor origin from the vth source as

sv(t) =

Z 1

�1
Av(!) e

i!td!; (1.15)
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where Av(!) is the frequency dependent amplitude of the signal received from the

vth source. Observe that sv(t) and Av(!) form a Fourier transform pair.

Using (1.12), (1.15) and (1.2), the output of the continuous time beamformer

can be written as

z(t) =
VX
v=1

Z 1

�1
Av(!) brv(�v;!)e

i!t d!; (1.16)

where

br(�;!) =

QX
q=�Q

Hq(!)
rei!r=c

d(r; �; xq)
e�i!d(r;�;xq)=c; (1.17)

is the spatial response of a broadband beamformer to a source at (r; �) and

Hq(!) =

Z 1

�1
hq(�)e

�i!� d�; (1.18)

is the frequency response of the �lter attached to the qth sensor. Observe the

similarities between the spatial response of a broadband beamformer (1.17) and

that of a narrowband beamformer (1.5). The only di�erence is that the frequency

! is �xed in the latter case.

The discrete time counterparts of (1.16) and (1.17) can be derived in a similar

vein. Speci�cally, the output z[n] of the discrete time broadband beamformer can

be written as follows:

z[n] =
VX
v=1

Z 1

�1
Av(!)brv(�v;!); e

i!nT d!;

=
1

T

VX
v=1

Z 1

�1
Av(

~!

T
)brv(�v;

~!

T
); ei~!n d~!; (1.19)

where T is the sampling time and ~! is the discrete time frequency which is related

to the continuous time frequency by ~! = !T [31, p. 87]. The spatial response of

the discrete time beamformer is same as that of a continuous time beamformer

(1.17). However, the frequency response of the discrete �lter attached to the qth

sensor is given by

Hq(~!) =
M�1X
m=0

hq[m]e�i~!m; (1.20)
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where M is the number of �lter taps in FIR �lter attached to each sensor.

Let Zc(!) be the continuous time Fourier transform of z(t) and Zd(~!) be the

discrete time Fourier transform of z[n]; then it can be seen from (1.16) and (1.19)

that

Zc(!) = 2�
VX
v=1

Av(!) brv(�v;!); (1.21)

where 2� arrives from the inverse Fourier transform, and

Zd(~!) =
2�

T

VX
v=1

Av(
~!

T
)brv(�v;

~!

T
): (1.22)

In other words, Zc(!) and Zd(~!) give the output of the continuous and discrete

time beamformers respectively. Note the similarity between the two outputs, and

recall that earlier we observed the similarity between the spatial response of the

two beamformers. Therefore, in this thesis, without loss of generality, we will use

(1.17) to write the spatial response and (1.21) to represent output of broadband

beamformers, irrespective of whether they are continuous time or discrete time

realizations. We prefer this frequency domain representation since most of the

theory developed in this thesis is applicable to both continuous time and discrete

time beamformers and the theory is naturally formulated in the frequency domain.

Broadband Beamformer Design Methods

In broadband beamformers, the spatial response is also dependent on frequency.

Thus, one needs to control the spatial response of the beamformer over the signal

bandwidth. This means that a broadband beampattern speci�cation is de�ned over

space and frequency. Figure 1.8 shows a broadband beampattern speci�ed over the

elevation angle and frequency (which is de�ned on a �xed radial distance from the

array and no variation with azimuth angle). We now brie
y review a few of the

existing broadband beamforming techniques.

Frequency Decomposition Method: Most of the techniques described in Sec-

tion 1.2.2 for narrowband beamformers are not directly applicable to broadband

beamformers with a FIR �lter attached to each sensor. However, one approach is to

use FFT (Fast Fourier Transform) methods to form separate narrowband frequency

bins, and perform narrowband beamforming in each frequency bin [32, 33]. Since
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Figure 1.8: A typical broadband beampattern de�ned over elevation angle and a
band of frequency on �xed radius from the array origin with no variation with the
azimuth angle.

the broadband received array data are transformed to a set of narrowband array

data segments, this method is referred to as frequency decomposition method. One

disadvantage of this method over the time domain beamforming is the additional

computation required by the FFT operation. Also to avoid spatial aliasing for

all frequencies, a highly dense sensor array is needed with sensor spacing of �u=2

where �u is the wavelength of the highest frequency of the design band. Obviously,

this approach requires a large number of sensors and may not be practical for real

applications. Some methods have been suggested recently to reduce the number of

sensors using nonuniform sensor spacing [34, 35].

Fourier Transform Method: It has been noted in [36] that, for the case of

an equally spaced array, there is a two-dimensional Fourier transform relationship

between �lter coe�cients and the beampattern of a broadband beamformer. This

provides a simple means of designing the sensor �lters for a desired broadband

beampattern. However, to avoid spatial aliasing, as we have mentioned before, a

high density uniform spaced array is required.

Least Square Optimization Method: For a general array geometry, the fol-

lowing 2-norm optimization method [37] may be used. Let b̂r(�; !) be a desired

broadband beamformer response. A response of a discrete time beamformer with
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2Q+1 sensors and M -tap FIR �lters attached to each sensor, can be written using

(1.17) and (1.20) as

br(�;!) = hHdr(�; !); (1.23)

where

h =
�
h�Q[0]; : : : ; hQ[0]; : : : ; h�Q[M � 1]; : : : ; hQ[M � 1]

�H
is the (2Q + 1)M vector of �lter coe�cients, H denotes the complex conjugate

transpose,

dr(�; !) = e(!)
 ar(�; !)

is a (2Q+ 1)M vector, 
 denotes the Kronecker product,

e(!) =
�
1; e�i!; : : : ; e�i!(M�1)

�T
;

is a M dimensional vector and

ar(�; !) = rei!r=c
�e�i!d(r;�;x�Q)
d(r; �; x�Q)

; : : : ;
e�i!d(r;�;xQ)

d(r; �; xQ)

�T
is the 2Q + 1 dimensional broadband array response vector. If the desired beam-

pattern b̂r(�; !) is sampled at P points (which has to be greater than the product

of the number of sensors and number of �lter coe�cients per each sensor) in (�; !)

space, then the following well-known over-determined least square minimization

problem is obtained:

min
h

kDHh� bdk2;

where D = [dr(�1; !1); : : : ;dr(�P ; !P )] and bd = [br(�1; !1); : : : ; br(�P ; !P )]
T . The

solution to this problem is

h =Dybd

where Dy is the pseudo-inverse8 of D. The above solution exists only if D has full

rank, i.e., DDH is invertible. This is a simple procedure. However, performance

8
D
y �

= (DDH)�1
D

H
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may be moderate due to rank de�ciency of D which may be caused by too closely

spaced sensors. Since there are no guidelines to place sensors, spatial aliasing may

cause reduced performance. Also, this method provides no insight into the under-

lying structure of the problem. Nevertheless it can be applied to general geometries.

Harmonic Nesting Method: The method of \harmonic nesting" has often been

used for designing microphone arrays for speech acquisition [10, 38, 39]. The ba-

sic idea behind this method is that an equally spaced array with an inter-sensor

spacing of d exhibits the same beampattern at a frequency ! as an equally spaced

array with inter-sensor spacing d=2 exhibits at frequency !=2. The beamformer is

composed of a set of nested equally spaced sub-arrays, each of which is a single

frequency design (i.e., narrowband design). Bandpass �lters are used to combine

the sub-array outputs such that the appropriate sub-array is used for each octave.

The idea is to reduce the frequency variation to that which would occur in a single

octave. However this method also assumes all signal sources are in the far�eld of

the array; thus it is not the best choice for near�eld applications such as speech

acquisition.

There are several variations of the harmonic nesting method. In [40, 41], con-

straints are imposed on sub-arrays of di�erent octaves. The two sub-arrays are

\spaced" an octave apart each other and outputs are combined by two compen-

sation �lters, one on each sub-array output. These compensation �lters allow two

spatial constraints to be maintained over that octave, e.g., a unity constraint at

broadside and half power constraint on the main beamwidth. Bandpass �lters have

been used to apply this techniques over several octaves [42].

Another approach based on harmonic nesting is the frequency sampling method,

[43]. Each octave band is divided to K frequencies and the required sensor weights

are calculated by taking the inverse discrete Fourier transform of the sampled de-

sired beampattern. An FIR �lter is then designed for each sensor to realize the

sensor weight at each of the K frequencies. Because of the use of the discrete

Fourier transform, this method is restricted to a uniformly spaced array geometry

within each octave band and relies on the assumption of far�eld sources as well.

Multiple Beamforming: As seen in Figure 1.2 the main width of a narrow-

band beamformer decreases as frequency increases. If several overlapping beams

are simultaneously formed, the width of the resulting multibeam may be kept con-

stant by increasing the steering angle of the outermost beams as the beamwidth
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decreases [44, 45].

Space Tapering Method: Doles and Benedict [46] have proposed a method

in which the beamformer spatial response has little or no frequency variation over

the design bandwidth. The asymptotic theory of unequally spaced arrays [29, 47]

is used to derive relationships between beampattern properties (such as peak re-

sponse, mainlobe width, and sidelobe level) and beamformer design. These re-

lationships are then used to translate beampattern requirements into functional

requirements on the sensor spacing and weightings, thereby deriving a broadband

design. Although this method provides the desired beampattern over a speci�ed

frequency design band, it is based on a linear array and depends on the far�eld as-

sumption. However, unlike most other methods, it does allow nonuniformly spaced

arrays.

Theoretical Continuous Sensor Approach: Ward et al. [34] have taken the

above space tapering idea [46] further by developing a frequency invariant beampat-

tern property for a theoretical continuous sensor. The continuous sensor approach

is justi�ed from the following observations: to obtain an identical beampattern at

K discrete frequencies requires a compound array of K sub-arrays having the self-

similarity property as outlined in the harmonic nesting method. Thus, to provide

an identical beampattern over a continuous range of frequencies requires an in�nite

number of sub-arrays, or e�ectively a continuous sensor. Once the structure of the

continuous sensor has been determined, it can be approximated by discrete sensors.

Unlike the earlier described methods, the continuous sensor approach gives

a better understanding of the underlying structure of the beamforming problem

and this has been exploited to provide improved solutions to broadband adaptive

beamforming [48], broadband pattern nulling [49] and broadband direction of ar-

rival estimation [50] problems. However, this method also assumes planar wave

propagation (far�eld sources), thus lacks the generality that we seek in this thesis.

We use some of the ideas presented in this method together with modal analysis

techniques (see Chapter 2) to design a general broadband beamformer that can

deal with near�eld source signals.

1.2.4 Data Dependent Beamforming Techniques

Conventional �xed beamforming may not provide the amount of interference sup-

pression required in many situations. Better noise suppression is a�orded through
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statistically optimum techniques. These techniques attempt to choose array weights

(in the case of narrowband beamformers) or �lter coe�cients (in the case of broad-

band beamformers) such that the desired signal is enhanced and the interfering

noise signals are suppressed, based on the statistics of the received array data [1].

If the statistics of the array data are unknown or time dependent, then the opti-

mum solution is estimated from the available data adaptively, which is termed as

adaptive beamforming.

Most of the early adaptive array techniques were developed for narrowband

applications. However, these methods may be employed for broadband signals

by frequency decomposition followed by application of narrowband techniques at

each frequency bin. Frost [51] proposed an e�cient broadband adaptive algorithm

based on the application of linear constraints. An excellent outline of these classical

methods is given in [4].

One of the problems that occurs with classical adaptive array techniques is

\desired signal cancellation". This is due to interfering signals which can be either

delayed versions of the desired signal due to multipath propagation or deliberate

jamming signals (The reader is referred to Chapter 5 for more detail). Several

methods, which are capable of handling this problem, have been reported [52{56].

However, all of these methods depend on the assumption of far�eld sources.

Thus, we have identi�ed another important problem to be investigated. That

is, how to design an adaptive beamformer to enhance a desired signal in a signal

environment consisting of near�eld broadband interfering signals that are coherent

with the desired signal. In this thesis we show how to overcome desired signal

cancellation by using modal based beamformers.

1.2.5 Source Localization

Estimation of the direction of arrival or localization of the sources present in the

signal environment is another important problem in array processing. For example,

in passive sonar, the received signals from an array of hydrophones are processed

to provide estimates of the direction of sources. There are literally hundreds of

papers written on this subject area and it is impossible to review all of them here.

Instead we refer [11, 57] for a review of more recently reported techniques.

Source localization procedures may be loosely divided into three general cat-

egories [58]: those based upon maximizing the output power of a steered beam-

former; techniques adopting high-resolution spectral estimation concepts; and ap-

proaches employing time di�erence of arrival information. The �rst refers to any
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Figure 1.9: A typical array processing system in a block diagram form

situation where the location estimate is derived directly from a �ltered, weighted

and summed version of the signal data received at the sensors. The second will be

used to term any localization scheme relying on application of the signal correlation

matrix. The �nal method calculates source locations from a set of delay estimates

measured across various combinations of sensors.

In this thesis, we show that the modal analysis techniques can improve the

performance of the �rst two types of source localization methods described above.

Speci�cally, we consider the problem of broadband source localization in a signal

environment with correlated interfering signals.
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1.3 Questions to be Answered in this Thesis

In this section we itemize the questions 
agged in the previous two sections, which

will be answered in the following chapters of this thesis.

� How can one design a beamformer that can enhance a desired signal in an

environment consisting of broadband near�eld and/or far�eld sources?

� One of the main objectives of this thesis is to establish a set of analysis tools,

which are applicable to both near�eld and far�eld arrays, to solve a wide

variety of array processing problems.

� How does spatial aliasing a�ect near�eld arrays?, and how can one reduce its

e�ects?

� How can one design an adaptive beamformer to operate in a signal environ-

ment consisting of coherent broadband near�eld sources?

1.4 Outline of Thesis

1.4.1 Overview

The primary motivation of this thesis is to design a general broadband beam-

former that can deal with signals received from near�eld and/or far�eld sources.

To develop this beamforming theory, we formulate a set of analysis tools (called

modal analysis techniques) which are useful in solving wider class of array signal

processing problems.

Figure 1.9 illustrates the various stages of a typical array processing system9,

which includes a set of sensors, a source localization module, a beamforming block

and a module containing adaptive algorithms. We claim that most of the prob-

lems and issues involved in such a system can be solved using the modal analysis

techniques formulated in this thesis. Speci�cally we make contributions to gen-

eral beamforming theory, adaptation issues, source localization, background noise

modeling and sensor placement issues.

The following subsection reviews what can be found in each of the �ve technical

chapters, 2 to 6. (This discussion is often speci�c and may be safely skimmed over.)

9A practical system may have all or some of these modules depending on the application.



1.4 Outline of Thesis 25

1.4.2 Content and Contribution of Thesis

A summary of the major contributions of this thesis follows.

� Chapter 2: establishes the theory of modal analysis of beamforming. We

identify the modes as solutions to the classical wave equation, which are or-

thogonal functions of the spherical coordinates. We show that these modes

form a useful basis set to analyze and synthesize arbitrary wave�elds, beam-

pattern speci�cations and spatial response of physical apertures (beamform-

ers). Speci�cally, we derive a novel representation to express any arbitrary

beampattern uniquely based on these modes, which is capable of represent-

ing both far�eld and near�eld beampatterns. The new modal representation

consists of analysis and synthesis equations to decompose a given beampat-

tern to modes and, given the modal decomposition, to construct an arbitrary

beampattern respectively. We also devise a Parseval relation to quantify the

beampattern error involved by using a �nite number of modes in the modal

representation. We collectively call these modal representation based results

modal analysis techniques and exploit them in the rest of this thesis to solve

associated problems in beamforming and array signal processing.

� Chapter 3: devises three novel methods of near�eld beamforming by exploit-

ing the modal analysis techniques introduced in Chapter 2 and the concept

of a near�eld-far�eld transformation.

The �rst method provides an exact transformation method, which radially

transforms a near�eld beampattern speci�cation to a physically equivalent

far�eld beampattern. A far�eld beamformer is then designed for a trans-

formed far�eld beampattern which, if achieved, gives the desired near�eld

beampattern exactly. Salient features of the new method are: (i) the near�eld

patterns can be achieved for all angles, not just the primary look direction,

and (ii) general array geometries may be used.

The second method establishes an asymptotic equivalence, up to complex

conjugation, of two problems: (i) determining the near�eld performance of a

far�eld beampattern speci�cation, and (ii) determining the equivalent far�eld

beampattern corresponding to a near�eld beampattern speci�cation. Using

this reciprocity relationship, we develop a computationally simple procedure

to design a beamforming array that achieves a desired near�eld beampattern

response. The superiority of this approach to existing methods, both in ease
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of design implementation and performance obtained, is analyzed and then

illustrated by a design example.

The third and �nal near�eld beamforming method uses the modal analysis

techniques (Chapter 2) to �nd a linear transformation between the array

weights required to achieve the given beampattern for far�eld and near�eld,

respectively.

� Chapter 4: introduces an e�cient parameterization for the near�eld (and

far�eld) broadband beamforming problem with a single parameter to focus

the beamformer to a desired operating radius and another set of parameters

to control the actual broadband beampattern shape. This parameteriza-

tion is derived using the modal analysis techniques developed in Chapter 2

and the concept of the theoretical continuous aperture. A set of elementary

beamformers are designed for each elementary beampattern and the desired

beamformer is constructed by summing the elementary beamformers with

frequency and source-array distance dependent weights. An important con-

sequence of our result is that the beamformer can be factored into three

levels of �ltering: (i) beampattern independent elementary beamformers; (ii)

beampattern shape dependent �lters; and (iii) radial focusing �lters where

a single parameter can be adjusted to focus the array to a desired radial

distance from the array origin. As an illustration, the method is applied to

the problem of producing a practical array design that achieves a frequency

invariant beampattern over a frequency range of 1:10 (which is suitable for

speech acquisition using a microphone array), and with the array focused ei-

ther to far�eld or near�eld where at the lowest frequency the radial distance

to the source is only three wavelengths.

� Chapter 5: considers a design of an adaptive beamformer to operate in a sig-

nal environment consisting of broadband near�eld sources, where some of the

interfering signals may be correlated with desired signal. We extend the gen-

eral beamforming theory developed in Chapter 4 to propose a novel adaptive

beamformer. Speci�cally, the frequency invariance nature of the beamform-

ing structure (Chapter 4) is used to combat the desired signal cancellation

due to correlated interfering signals and the radial focusing capability is used

to deal with the near�eld source signals. A simulation example is presented

to demonstrate the use of the proposed method in microphone array appli-

cations in speech acquisition systems.
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� Chapter 6: exploits the modal analysis techniques developed in Chapter 2

to analyze and solve related array signal processing problems. We have con-

sidered two areas of array processing, namely noise modeling and broadband

source localization.

In the �rst part of this chapter, an exact series representation for a near�eld

spherically isotropic noise model is introduced. The proposed noise model

can be utilized e�ectively to apply well established far�eld array processing

algorithms for near�eld applications of sensor arrays. A simple array gain

optimization is used to demonstrate the use of the new noise model.

The second part of Chapter 6 shows how to simplify existing broadband

source localization techniques using modal analysis techniques (Chapter 2).

When received signals from di�erent directions are correlated with each other

(e.g., multipath), a common practice is to align the received array data into

a single frequency, and then use frequency averaging to reduce the signal

correlation and thereby avoid signal cancellation. Usually these frequency

alignments are done by either using focusing matrices or spatial resampling

techniques. By analyzing the received wave�eld, we formulate a new set of

focusing matrices that, unlike the existing methods, do not require prelimi-

nary estimation of source locations and depend only on the array geometry.

We also establish a single set of spatial resampling matrices for frequency

alignment over the full �eld of view of the array, whereas in the existing tech-

niques, this is done by dividing the �eld of view of the array into di�erent

sectors and using numerical interpolation to �nd resampling matrices for each

sector. Since our intention is only to show how to exploit modal analysis in

localization problems, we do not give a detailed study or any example case

studies in this chapter.
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Chapter 2

Theory of Modal Analysis of

Beamforming

2.1 Introduction

At the physical level, beamforming is characterized by the classical wave equation.

The general solution to the wave equation can be decomposed into modes which are

orthogonal functions of the spatial coordinates. These modes exhibit interesting

mathematical properties and form a useful basis set to analyze and synthesize an

arbitrary wave�eld or a spatial response of a beamformer. In this chapter, we

derive expressions for the modes and package them as a set of tools called modal

analysis techniques. These techniques will be used in subsequent chapters to solve

associated problems in beamforming and array signal processing.

In the antenna literature, these modes have been used to synthesize antenna

shapes [1, 2], to represent electromagnetic �elds radiated by circular antennas [3],

and to compute antenna couplings [4]. However, this previous work is limited to

speci�c applications. There does not seem to have been a more general application

of classical modal decomposition to array signal processing, especially in the way

developed in this thesis.

We preview the contents of this chapter by section. Section 2.2 describes how

we represent a space-time signal and the coordinate system we use throughout

the thesis. We consider the classical wave equation in Section 2.3 and establish the

notion of modes of the wave equation solution. In Section 2.4, we use these modes to

�nd a novel representation for beampatterns, which is valid both in the far�eld and

the near�eld of the array, and enables us to analyze and synthesize beampatterns.

Parseval's relation is used in Section 2.5 to quantify the error involved using a �nite

33
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Figure 2.1: Spherical coordinate system.

number of modes in the new representation. In Section 2.6 we analyze the spatial

response of an arbitrary aperture using these modes. A summary is included in

Section 2.7.

2.2 Coordinate Systems

In this thesis, we use a three-dimensional spherical coordinate system to represent

space, with time being the fourth dimension. Here a point in the space is rep-

resented by its distance r from the origin, its elevation � from the vertical axis

and azimuth � within an equatorial plane containing the origin (Figure 2.1), and a

space-time signal is written as s(r; �; �; t). The spherical coordinates of a point are

related to the (x; y; z) right-handed Cartesian coordinates by the simple trigono-

metric formulae:

x = r sin � cos�

y = r sin � sin�

z = r cos �:

We also use the position vector x to denote the triple of spatial variables (r; �; �)

or (x; y; z). Using this notation we can write a space-time signal as s(x; t). Also
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let

x̂ =
x

kxk (2.1)

be a unit vector in the direction of x, where k�k denotes the vector 2-norm. We use

either (�; �) or x̂ to represent a direction. For example, if there is a function f that

depends on � and �, then we write it as either f(�; �) or f(x̂); both representations

are equivalent.

There are other various coordinate systems such as cylindrical and elliptical co-

ordinate systems which may be convenient choices under di�erent circumstances.

However, the spherical coordinate system has a special place in this thesis since

much of the theory developed is heavily dependent on it. We try to use a coordinate-

independent representation x when the relevant theory is independent of the coor-

dinate system.

2.3 Wave Equation

2.3.1 Background

The classical wave equation is one of the fundamental equations in array signal

processing. It governs how signals pass from a source radiating energy to a sensor.

Array processing algorithms attempt to extract information such as source location

from propagating waves. To do this they rely on an accurate characterization of

how the medium a�ects propagation through the wave equation for a given source-

medium-sensor situation. Thus, array processing or beamforming algorithms are

characterized by the wave equation at the physical level.

Here we study the solution to the wave equation in detail and exploit it to

develop modal analysis techniques which provide insight into the intrinsic structure

of the general broadband beamforming problem highlighted in Chapter 1. In the

subsequent chapters, we make use of these modal analysis techniques to solve the

various aspects of general array and aperture processing problems.
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2.3.2 Reduced Wave Equation

The physics of sound propagation is described by the scalar wave equation given

by

r2s =
1

c2
@2s

@t2
(2.2)

where r2 is the Laplacian which can be expressed in a chosen coordinate system, c

is the speed of wave propagation, s � s(x; t) is the scalar wave �eld (such as sound

pressure) at a point x and time t. Conventionally, it is assumed that the wave�eld

s(x; t) has a time-harmonic dependence [5, p. 48], that is,

s(x; t) = b(x;!)ei!t (2.3)

where b is the space dependent part of the wave�eld, ! is the radian frequency

and i =
p�1. For broadband signal environment, an arbitrary time dependent

solution s(x; t) can be obtained by using the principle of linear superposition as

s(x; t) =

Z 1

�1
b(x;!)ei!td!: (2.4)

Note that s(x; t) and b(x;!) in (2.4) form a Fourier Transform pair.

In the context of this thesis, we are more interested in space-dependent part

of the solution b(x;!), which we relate to beampatterns and spatial responses of

apertures. Substituting (2.3) into the time-dependent wave equation given by (2.2)

yields

r2b + k2b = 0 (2.5)

which is the time-independent reduced wave equation or Helmholtz equation [6],

where k is the wavenumber which is given by

k =
!

c
=

2�

�
;

and � is the wavelength. We assume that the propagation speed c is independent

of frequency, implying k is a constant multiple of radian frequency !. For this

reason, throughout this thesis we will often refer to k as \frequency".

In the following subsection we solve the Helmoltz equation in the spherical

coordinate system to obtain the space dependent part of the solution b(x;!).
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2.3.3 Solution in Spherical Coordinate System

The Helmoltz wave equation (2.5) can be expressed in spherical coordinates as

1

r2
@

@r

�
r2
@b

@r

�
+

1

r2 sin �

@

@�

�
sin �

@b

@�

�
+

1

r2 sin2 �

@2b

@�2
+ k2b = 0; (2.6)

where b = b(r; �; �; k) is the wave�eld at a point (r; �; �) for frequency k. The

solution of (2.6) is classical [7,8] and a general solution, b(r; �; �; k), can be written

as linear combinations of modes of the form

r�
1

2

Jn+ 1

2
(kr)

Nn+ 1

2
(kr)

Pm
n (cos �)

cosm�

sinm�
(2.7)

where n and m (n > m) are non-negative integers that index the modes, Pm
n (�)

is the associated Legendre function; Jn+ 1

2
(�) is the half odd integer order Bessel

Function of the �rst kind and Nn+ 1

2
(�) is the half odd integer order Neumann

Function (or Bessel Function of the second kind) [8]. Note that in (2.7) either

the upper or lower function in the r and � portions can be taken, leading to four

possibilities. The lack of an option for the � portion is based on physical grounds

related to the associated Legendre functions of the second kind being unbounded

for certain arguments [9]. Finally, when m = 0 the associated Legendre function is

called the Legendre function Pn(�) [8, 9].
In this work we use complex combinations of the classical modes (2.7) which

leads to a more suitable engineering formulation. We have, equivalent to (2.7),

r�
1

2

H
(1)

n+ 1

2

(kr)

H
(2)

n+ 1

2

(kr)
P jmj
n (cos �) eim�; n 2 Z, m 2 Z and n > jmj (2.8)

where j � j denotes the absolute value and the radial dependency now comes through

the half odd integer order Hankel Functions of the �rst kind and second kind,

respectively

H
(1)

n+ 1

2

(�) �

= Jn+ 1

2
(�) + i Nn+ 1

2
(�) (2.9a)

H(2)

n+ 1

2

(�) �

= Jn+ 1

2
(�)� i Nn+ 1

2
(�) (2.9b)

which form a complex conjugate pair [9].

Note that in (2.8), the half odd integer order Hankel Functions of the �rst kind

are associated with waves propagating away from the origin, whereas the second
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kind are associated with waves propagating towards the origin. For the prob-

lems considered in this thesis, it is su�cient to consider either waves propagating

generally towards the origin or away from the origin; we only consider the waves

propagating toward the origin, i.e., the lower mode of (2.8). This option gives us

the modes of the solution at a point (r; �; �) on a surface of an enclosure, where the

origin is inside the enclosure and all sources of interest are outside of the enclosure.

For notational convenience, we use the spherical Hankel function of the second

kind h
(2)
n (kr) which is de�ned as

h(2)n (kr) =

r
�

2kr
H

(2)

n+ 1

2

(kr): (2.10)

instead of the factor r�
1

2H
(2)

n+ 1

2

(kr) in (2.8).

Another observation regarding (2.8) is that the associated Legendre functions

P
jmj
n (cos �) and exponential functions eim� are two di�erent sets of orthogonal func-

tions. The orthogonality property of the associated Legendre function is [10, p. 117]Z 1

�1

P jmj
n (cos �)P

jmj
n0 (cos �)d(cos �) =

2

2n+ 1

(n+ jmj)!
(n� jmj)! �nn0; (2.11)

and that of exponential functions isZ 2�

0

eim� e�im
0� d� = 2��mm0 ; (2.12)

where n; n0; m and m0 are integers and the Kronecker symbol

�mn
�

=

8<:0 if m 6= n

1 if m = n:

Observe that both the associated Legendre and exponential functions are not or-

thonormal. Therefore, to simplify the beampattern formulation in the next section,

we merge these two functions to de�ne the following orthonormal function

Ynm(�; �)
�

=

s
2n+ 1

4�

(n� jmj)!
(n+ jmj)! P

jmj
n (cos �) eim� (2.13)

for m = �n; : : : ; n, n = 0; 1; 2; : : : . Using (2.11) and (2.12), it can be proved thatZ 2�

0

Z 1

�1

Ynm(�; �)Y
�
n0m0(�; �) d(cos �)d� = �nn0 �mm0 (2.14)
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where � denotes complex conjugate. In the acoustic literature the functions Ynm(�)
are known as spherical harmonics [11, p. 121].

We use (2.10), (2.13, and the lower modes of (2.8) to rewrite the basic solution

of the Helmoltz wave equation (2.5) as

h(2)n (kr)Ynm(�; �) (2.15)

which we refer to as modes of the solution. Now we can write the general solution

of the Helmoltz wave equation by combining all possible modes of (2.15) as

b(r; �; �; k) =
1X
n=0

mX
m=�n

�nm(k) h
(2)
n (kr)Ynm(�; �) (2.16)

where �nm(k) is a set of frequency dependent modal coe�cients. Thus (2.16) can

be used to write an arbitrary solution to the wave equation in terms of spatial

variables r; �; � and frequency k. In the following section we show how to use

this modal representation of the wave equation solution to represent an arbitrary

beampattern.

2.4 Beampattern Formulation

2.4.1 Preliminaries

In this section we develop a novel representation for beampatterns using the modes

of the solution to the Helmoltz wave equation which we have developed in the

previous section. In the engineering literature, this detail of modeling is usually

unnecessary as much simpler formulations can be made exploiting the common

array geometries (typically equally spaced sensors in a straight line), phasor repre-

sentations (where the time dependence through the frequency of modulation is not

explicitly indicated), and far�eld data (facilitating the use of the Fourier Trans-

form). In our work, we �nd a general representation for a beampattern in terms of

the modes (2.15) of the wave equation, and explore it to develop novel beamformers

and array processing algorithms. Particularly, we seek a solution to the di�cult

near�eld broadband beamforming problem, which is one of the the main problems

addressed in this thesis, using the beampattern representation developed in this

section.

A beampattern can be de�ned as the spatial response of a beamformer. If the

signal processing associated with the beamformer is linear, then the beampattern is
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equal to the linearly weighted or �ltered sum of the received signals at each sensor

(or at each point of the sensor in a case of a distributed sensor1) from a point

source in space. Since a received signal at a sensor satis�es the wave equation,

using the linearity of the wave equation, we can claim that the beampattern of a

linear beamformer is also a solution of the Helmoltz wave equation (2.5). Thus we

assert that an arbitrary beampattern can be expressed by the general solution of

the Helmoltz wave equation (2.16).

2.4.2 Near�eld and Far�eld Beampatterns

In the classical beamforming literature, near�eld and far�eld operation of beam-

formers are considered separately [12, p. 57-62], and the beamforming algorithms

vary accordingly. In this thesis, our primary aim is to develop general beamforming

theory which can be applied to both near�eld and far�eld operation of beamform-

ers. Hence we seek a representation of beampatterns that is valid for both near�eld

and far�eld beamformers.

Observe that the magnitude of each of the modes in (2.15) decays to zero as

r approaches in�nity. This can be gleaned from the following asymptotic form of

the half integer order Hankel Function of the second kind [13, p. 692],

h(2)n (kr) = in+1 1

kr
e�ikr as r!1: (2.17)

Hence from (2.16) every wave equation solution b(r; �; �; k) has this property. It is

desirable to normalize the modes (2.15) so that we can represent both near�eld (r

�nite) and far�eld (r in�nite) beampatterns in one formulation. Hence we de�ne a

beampattern through

br(�; �; k)
�

= reikrb(r; �; �; k); (2.18)

and the normalized modes of the beampattern are given by

Rn(r; k)Ynm(�; �); (2.19)

where

Rn(r; k)
�

= reikr h(2)n (kr): (2.20)

1A distributed sensor can be considered as the limiting case of having an in�nite number of
discrete sensors (with attached �lters) closely packed together.



2.4 Beampattern Formulation 41

Now, the magnitude of the normalized modes (2.19) remains �nite at in�nity, since

lim
r!1

Rn(r; k) =
in+1

k
: (2.21)

2.4.3 Analysis and Synthesis Equations

Using (2.16) and (2.18), we write an arbitrary beampattern

br(�; �; k) =
1X
n=0

mX
m=�n

�nm(k)Rn(r; k)Ynm(�; �) (2.22)

where the complex constants �nm(k) characterize the beampattern. Given a set of

modal coe�cients f�nm(k)g, one can synthesis a beampattern (2.22), thus we call

it the synthesis equation.

Note that we only consider the spherical Hankel function of second kind in

the beampattern representation (2.22). This representation is therefore valid on a

manifold (typically sphere) that encapsulates but does not penetrate the physical

aperture.

Assume that the beampattern br(�; �; k) is given on a sphere of radius r, then

we can �nd an expression for the modal coe�cients �nm(k) as follows:

Multiplying (2.22) with Y �
n0m0(�; �) sin � and integrating with respect to � and �

givesZ 2�

0

Z �

0

br(�; �; k)Y
�
n0m0(�; �) sin �d�d� =

1X
n=0

mX
m=�n

�nm(k)Rn(r; k)Z 2�

0

Z �

0

Ynm(�; �)Y
�
n0m0(�; �) sin �d�d�:

Using (2.14), we can conclude that

�nm(k) =
1

Rn(r; k)

Z 2�

0

Z �

0

br(�; �; k)Y
�
n0m0(�; �) sin �d�d�: (2.23)

Division by Rn(r; k) is justi�ed by the fact that there is no nonnegative integer

n and no real numbers r > 0 and k > 0 such that Rn(r; k) = 0. This result

follows from the fact that there are no common zeros for the functions Jn+ 1

2
(r) and

Nn+ 1

2
(r) [14, p. 30].

The equations (2.22) and (2.23) form an orthogonal transform pair which is

analogous to the familiar Fourier series and its coe�cients. Consequently, they
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possess a number of useful properties such as linearity and a Parseval's relation.

In Section 2.5, we explicitly give the Parseval's relation which is useful to measure

the error associated in a truncated beampattern representation of (2.22).

For a given beamformer, the modal coe�cients �nm(k) are dependent on the

sensor geometry and the structure of the beamformer. We will derive expressions for

�nm(k) in terms of the physical aperture and the associated beamformer structure

in Section 2.6.

2.4.4 Elementary Beamshapes

As we have seen by (2.22), any physically realizable beampattern can be con-

structed by combining modes of (2.19). Inversely, an arbitrary beampattern can

be decomposed into modes by (2.23). Therefore, one can consider these modes

(2.19) as elementary beampatterns. Also note that the shape of the mode (2.19) is

determined entirely by the function Ynm(�; �) and the complex function Rn(r; k) is

clearly separated from it. Recognizing the above fact, we denote functions Ynm(�; �)

elementary beamshapes. These are elementary because any arbitrary beampattern

can be expressed as a linearly weighted sum of elementary beamshapes.

Some examples of the lower order elementary beamshapes Ynm(�; �) for m = 0

(which implies the shape is invariant with �) are illustrated in Figure 2.2 where

the magnitude of Ynm(�; �) is plotted against �.

2.4.5 Radially Invariant Beampatterns

As a simple illustration of the modal representation (2.22), we now introduce a

novel class of beampatterns which are radially invariant with respect to their shape.

A radially shape invariant beampattern br(�; �; k) has the following property: For

rA; rB > 0, � 2 [0; �] and � 2 [0; 2�) there exists a complex constant C � C(rA; rB)

such that

brA(�; �; k) = C brB(�; �; k): (2.24)

One such class of beampatterns can be found excluding all but a single index n in

(2.22) as

br(�; �; k)invariant = Rn(r; k)
nX

m=�n
�nm(k)Ynm(�; �); (2.25)
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(a) mode: m = 0; n = 0
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(b) mode: m = 0; n = 1
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(c) mode: m = 0; n = 2
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(d) mode: m = 0; n = 3
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(e) mode: m = 0; n = 4

0 20 40 60 80 100 120 140 160 180
−40

−35

−30

−25

−20

−15

−10

−5

0

B
E

A
M

P
A

T
T

E
R

N
 (

d
B

)

ANGLE (degrees)

(f) mode: m = 0; n = 5

Figure 2.2: Magnitude of few lower order elementary beamshapes Ynm(�; �) (given
by (2.13)) for m = 0 plotted against the angle �.
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where, in (2.24), the complex scaling factor C = Rn(rA; k)=Rn(rB; k). Here, the

shape of the beampattern is �xed with respect to radius r but its amplitude and

phase are scaled with the radial distance from the array origin. However, this

variation of phase and amplitude is the same for all angles. The beampattern

class (2.25) covers only a subset of all possible arbitrary beampatterns (2.22). An

example of a beampattern of the form (2.25) is illustrated in Figure 2.3. A drawback

of this special class is that all radially invariant beam shapes of the form (2.25) need

two-dimensional arrays except those trivial beam shapes such as omni-directional,

dipole etc.

Simple design techniques such as the least squares may be applied to design

beampatterns such as (2.25) with the resulting beamformer automatically inherit-

ing the radial invariance property if the far�eld pattern is accurately realized. We

will not proceed how to realize radially invariant beampatterns in this thesis.

Keeping the same beampattern shape in both near�eld and far�eld could be a

useful solution to such problems such as microphone array design in teleconferenc-

ing rooms where the array needs to focus on a near�eld source (the talker) but to

attenuate far�eld interference (reverberation)2.

Radially invariant beampatterns are only one of the possible applications of

modal representation. In the remainder of this thesis we will illustrate how modal

representation can be used to develop theory for more general broadband beam-

forming.

2.5 Parseval's Relation

The synthesis equation (2.22) usually requires an in�nite number of terms to exactly

characterize the beampattern. In this section, we establish a Parseval's relation to

provide an expression for the error in beampattern power associated with using a

�nite number of modes in the synthesis equation. Determining the minimum num-

ber of modes to accurately model a speci�c beampattern is an essential component

of an e�cient numerical procedure.

Rewrite (2.22) and (2.23) as

b(�; �) =
1X
n=0

nX
m=�n

Anm Ynm(�; �) (2.26)

2This is referred as the mixed near�eld/far�eld problem [15].
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Figure 2.3: An example of a shape invariant beampattern given by (2.25): n = 4,
�4(4) = 0:05, �4(3) = 0, �4(2) = 0:35, �4(1) = 0, �4(0) = 7:0, and �4(�m) = �4m.

and

Anm =

Z 2�

0

Z �

0

b(�; �)Y �
nm(�; �) sin �d�d� (2.27)

where Anm = Rn(r; k)�nm(k) and b(�; �) = br(�; �; k). Although Anm and b(�; �)

are functions of r and k, we suppress this dependence to simplify the notation.

We de�ne the beampattern power on a sphere of radius r and frequency k as

Beampattern Power
�

=

Z 2�

0

Z 1

�1

��b(�; �)��2d(cos �)d�; (2.28)

where b(�; �) is given by (2.26). Then we have the following proposition:

Proposition 2.1 Let b(�; �) be a beampattern speci�cation on elevation � and az-

imuth � angles. Then,Z 2�

0

Z 1

�1

��b(�; �)��2d(cos �)d� =
1X
n=0

nX
m=�n

��Anm

��2: (2.29)

Proof of Proposition 2.1: Multiplying (2.26) by its complex conjugate and
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integrating with respect to cos � and � gives

Z 2�

0

Z 1

�1

jb(�; �)j2d(cos �)d� =
1X
n=0

nX
m=�n

1X
n0=0

n0X
m0=n0

AnmA
�
n0m0

�
Z 2�

0

Z 1

�1

Ynm(�; �)Y
�
n0m0(�; �)d(cos �)d�:

Use of the orthogonality property (2.14) to evaluate the above integral, establishes

the result.

Given N , we approximate b(�; �) by a �nite series of the form

b̂(�; �) =
NX
n=0

nX
m=�n

Ânm Ynm(�; �); (2.30)

where we wish to �nd the Ânm's that minimise the integral squared error between

the desired beampattern b(�; �) and the approximate beampattern b̂(�; �). As

for the well known case of a �nite Fourier series representation, the minimum

squared beampattern error is obtained by setting Ânm = Anm, for n = 0; : : : ; N ,

m = �n; : : : ; n, and the residual error is then given by

�N =

Z 2�

0

Z 1

�1

��b(�; �)� b̂(�; �)
��2 d(cos �) d�

=

Z 2�

0

Z 1

�1

��b(�; �)��2 d(cos �) d�� NX
n=0

nX
m=�n

��Anm

��2
=

1X
n=N+1

nX
m=�n

��Anm

��2: (2.31)

Thus (2.31) gives the error associated with truncating the synthesis equation (2.26)

to a �nite number of terms.

The Parseval's relation (2.29) gives some engineering insights into the number

of modes with signi�cant power required to get a good beampattern match. In close

analogy with frequency domain �lter analysis we will see that the lower order modes

are the signi�cant ones which give the broad beampattern features (analogous to

the lower frequencies in a �lter design problem), while the higher order modes give

the �ner detail (analogous to higher frequencies in a �lter design problem). We

assert that sensible beampattern speci�cations should involve only the lower order
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Figure 2.4: Relative beampattern error calculated from (2.31) for the example
beampattern shown in Figure 2.5.

modes.

Parseval's Relation Example

We consider the beampattern of a simple narrowband beamformer to demonstrate

the utility of the Parseval's relation. Consider a (2Q + 1) sensor linear array

aligned with the z axis, with inter-sensor spacing of �=2 where � is the wavelength.

In this case the beampattern is rotationally symmetric with respect to � and can

be expressed as b(�; �) = b(�). The response of this beamformer to a point source

in the far�eld (far�eld beampattern) is given by

b(�) =

QX
q=�Q

wqe
�i�q cos �; (2.32)

where wq is the weight attached to the qth sensor.

In this case, it can be shown that

Beampattern Power = 2�

Z 1

�1

��b(�; �)��2d(cos �);
= 4�

QX
q=�Q

jwqj2: (2.33)
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Figure 2.5: Approximate beampatterns of a 7-element linear array calculated from
(2.26) for several di�erent values of N . Also shown is the desired beampattern
(2.32).

For this special case, Anm = 0 for m 6= 0 in (2.27) and for m = 0

An0 = 2�

Z �

0

b(�)Y �
n0(�; �) sin �d�: (2.34)

Generally the integration in (2.34) has to be evaluated numerically, but for the

beampattern in this example, it can be done analytically. Using (2.32), (2.48) and

(2.11) it can be shown that

An0 = 2
p
�(2n+ 1) in

QX
q=�Q

wqjn(�q); (2.35)

where jn(�) is the spherical Bessel function of �rst kind (see 2.40). Figure 2.4 shows
the relative beampattern error (

�

= �N=(Beampattern Power)) versus the number of

coe�cients, calculated from (2.31) for the case of Q = 3 and wq = 1 for q =

�Q; : : : ; Q.

The approximate beampatterns calculated from (2.30) for several di�erent val-

ues of N is shown in Figure 2.5. Also shown is the desired beampattern (2.32).

Figure 2.4 shows that the use of 8 coe�cient should be su�cient to obtain a beam-

pattern with less than 5% beampattern error. This is con�rmed by Figure 2.5 where

the beampattern with 10 coe�cients is almost same as the desired beampattern.
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2.6 Modal Analysis of Aperture Response

In the previous sections we have formulated the modal representation to represent

arbitrary beampatterns. Up to now we have not considered any beampattern cor-

responding to a physical aperture. In this section we consider the spatial response

(beampattern) of an arbitrarily shaped continuous aperture and a set of arbitrar-

ily located array of sensors. We show that the spatial responses of these physical

apertures can also be expressed by the modal representation. Further we derive

expressions for modal coe�cients �nm(k) in terms of the structure and geometry

of the physical aperture. These results will be used in the subsequent chapters to

solve the problems identi�ed in the Chapter 1.

2.6.1 Point Source and a Point Sensor

Consider an omnidirectional point source located at a point y 2 R
3 and a point

sensor located at x 2 R3 . Then the received signal at the sensor is given by

�s(x; t) =
kyk

ky � xk �s0
�
t� ky � xk � kyk

c

�
; x 6= y; (2.36)

where k � k denotes the vector 2-norm, and �s0(t) is the received signal at the origin

of the coordinate system, c is the speed of wave propagation. Let s0(k) and s(x; k)

be the Fourier transform of �s0(t) and �s(x; t), respectively. Then taking the Fourier

transform of (2.36) with respect to t, we obtain

s(x; k) = �(x;y; k) s0(k); x 6= y; (2.37)

where

�(x;y; k) =
kyk

ky � xk e
�ik(ky�xk�kyk): (2.38)

The function �(x;y; k) can be considered as the normalized transfer function be-

tween source and the sensor. It is also a solution of the Helmoltz wave equation

(2.5) for a �xed y, and is called the fundamental solution in the acoustic litera-

ture [6, p. 16].

The fundamental solution �(x;y; k) can also be expressed by a weighted sum

of modes of the form (2.19). By manipulating some results in [6, p. 30], we can
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show that for kyk > kxk

�(x;y; k) = 4�(�i)kkykeikkyk
1X
n=0

nX
m=�n

h(2)n (kkyk) jn(kkxk)Ynm(ŷ)Y �
nm(x̂);

(2.39)

where

jn(r)
�

=

r
�

2r
Jn+ 1

2
(r) (2.40)

are the spherical Bessel functions, h
(2)
n (�) are the spherical Hankel functions as

de�ned by (2.10) and Ynm(�; �) are the elementary beamshapes as de�ned by (2.13).

We use (2.20) to write (2.39),

�(x;y; k) =
1X
n=0

nX
m=�n

�� 4�ik jn(kkxk)Y �
nm(x̂)

�
Rn(kyk; k)Ynm(ŷ); kyk > kxk;

(2.41)

as a weighted sum of modes of the form (2.19).

Equation (2.41) takes a special place in this thesis: it will be used to convert any

relationship involving the transfer function �(x;y; k) to modal representation. In

the next section, we use it to �nd the modal representation of the spatial response

of a continuous sensor and a set of arbitrarily located sensors.

To derive an alternative expression for (2.41), we use the addition theorem for

Legendre functions [16, p. 360] to obtain the following relationship:

nX
m=�n

Ynm(ŷ)Y
�
nm(x̂) =

2n+ 1

4�
Pn(cos 
) (2.42)

where 
 denotes the angle between x̂ and ŷ. By substituting (2.42) into (2.41) we

obtain

�(x;y; k) =
1X
n=0

�� ik(2n+ 1) jn(kkxk)
�
Rn(kyk; k)Pn(cos 
); kyk > kxk:

(2.43)

The expansion (2.43) is preferred over (2.39) when the array is linear3.

3For a linear array aligned with the z axis, only the m = 0 modes are non-zero and 
 = � for
points on the positive side of the z axis and 
 = �� for points on the negative side of the z axis.
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Far�eld Behaviour

Here we investigate the behaviour of the normalized transfer function between

source and the sensor, �(x;y; k) when the source is in the far�eld of the sensor.

Let us consider the magnitude and phase of �(x;y; k) separately. Since kyk � kxk
for a far�eld source, ky � xk � kyk; thus from (2.38),

lim
kyk!1

���(x;y; k)�� = lim
kyk!1

kyk
ky � xk = 1: (2.44)

On the other hand

ky � xk � kyk � kxk cos 
 as kyk ! 1
= x � ŷ (2.45)

where 
 is the angle between x and ŷ, and � denotes the vector inner product

and ŷ is a unit vector pointing opposite to the direction of the propagation of

waves. Thus, the phase of �(x;y; k) ! �kxk cos 
 as kyk ! 1. Therefore, the

normalized transfer function between a far�eld source and a sensor is denoted and

given by

�1(x; k)
�

= lim
kyk!1

�(x;y; k)

= e�ikkxk cos 


= e�ikx�ŷ (2.46)

From (2.41) and (2.21), the far�eld transfer function can be written as

�1(x; k) =
1X
n=0

nX
m=�n

�� 4�ik jn(kkxk)Y �
nm(x̂)

�
Rn(1; k)Ynm(ŷ)

=
1X
n=0

nX
m=�n

4�in jn(kkxk)Y �
nm(x̂)Ynm(ŷ): (2.47)

Similarly, the alternative form (2.43) can be written

�1(x; k) =
1X
n=0

�� ik(2n+ 1)jn(kkxk)
�
Rn(1; k)Pn(cos 
)

=
1X
n=0

in(2n+ 1)jn(kkxk)Pn(cos 
): (2.48)
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Figure 2.6: A diagram of a theoretical continuous sensor and a point source

In this subsection we have derived the transfer function between a point source

and a point on an aperture. We also expressed this transfer function (for both

far�eld and near�eld sources) as a weighted sum of modes of the form (2.19).

As we already highlighted in the Chapter 1, our approach to beamforming and

array processing problems is to analyze them using the modal analysis techniques

developed in this chapter. Thus, the modal representations (2.41), (2.43), (2.47)

and (2.48) will be used throughout this thesis as key analysis tools.

2.6.2 Theoretical Continuous Sensor Response

In this section we express the spatial response of a continuous sensor in the modal

representation form (2.22). We determine expressions for the modal coe�cients

�nm(k) in terms of the physical parameters of the continuous sensor.

Consider a theoretical continuous sensor (see Figure 2.6) with an arbitrary shape

and let the sensor be con�ned to a region 
 � R
3 , x 2 
 be a point on the sensor,

and �(x; k) : R � R+ ! C be the aperture illumination function (also called the

sensitivity distribution). Aperture illumination �(x; k) can be interpreted as the

sensor gain at point x at frequency k. In other words, we can view the continuous

sensor as a distributed �lter with �lters �(x; k) attached to each point x on the

sensor.

Let s(x; k) be the Fourier transform of the received signal at point x on the

sensor. Then the sensor output in the frequency domain is de�ned and given by

z(k) =

Z



�(x; k) s(x; k) dx: (2.49)
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Suppose, there is a point source at y 2 R
3nB where B = fx : kxk < ag, a 2 R

and let s0(k) be the Fourier transform of the signal received from this source at

the origin. Using (2.37) and (2.49) we write the output response of the continuous

sensor to a point source at y as

z(k) = b(y; k) s0(k); (2.50)

where

b(y; k) =

Z



�(x; k) �(x;y; k) dx: (2.51)

The function b(y; k) can be described as the spatial response or the beampat-

tern of the continuous sensor. We now show that the beampattern b(y; k) can be

expressed in the form of modal representation (2.22) using spherical coordinates

instead of the vector notation.

By substituting (2.41) into (2.51) and interchanging summation and integra-

tion4, we obtain

b(y; k) =
1X
n=0

nX
m=0

�nm(k)Rn(kyk; k)Ynm(ŷ) (2.52)

where

�nm(k) = �i4�k
Z



�(x; k) jn(kkxk)Y �
nm(x̂) dx: (2.53)

Note that if the point y is given by the polar coordinates (r; �; �), then we can

replace kyk by r and ŷ by (�; �) in (2.52) to get the modal representation of the

beampattern as in (2.22). Equation (2.53) provides us with an expression for the

modal coe�cients in terms of the physical structure of the aperture �(x; k).

2.6.3 Discrete Aperture Response

Consider several omnidirectional point sensors (ideal sensors) arbitrary placed in

a closed spherical region 
 2 R3 with radius a. Let the qth sensor be located

at the position xq 2 
, q = 0; : : : ; Q � 1, and let wq(k) be the complex weight

at frequency k or the �lter attached to the qth sensor. Then a discrete aperture

4The Parseval's relation (2.29) is applicable to the series modal expansion (2.41). Hence, the
series (2.41) is uniformly convergent and we can safely interchange the summation and integration.
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Figure 2.7: Arbitrarily placed set of discrete sensors and associated signal process-
ing.

output is de�ned to be equal to the sum of �ltered outputs of all sensors as shown

in Figure 2.7.

Let s(xq; k) be the Fourier transform of the received signal at the qth sensor.

Then the array output is given by

z(k) =

Q�1X
q=0

wq(k)s(xq; k): (2.54)

Suppose that there is a point source at y 2 R3n
 and let s0(k) be the Fourier

transform of the signal received from this source at the sensor origin. Using (2.37)

and (2.54) we write the output of the discrete set of sensors to a point source at y

as

z(k) = b(y; k) s0(k); (2.55)
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where

b(y; k) =

Q�1X
q=0

wq(k)�(xq;y; k): (2.56)

We can consider (2.56) as the spatial response of the discrete set of sensors. By

substituting (2.41) into (2.56) we obtain the modal representation of the spatial

response of the discrete aperture as

b(y; k) =
1X
n=0

nX
m=�n

�nm(k)Rn(kyk; k)Ynm(ŷ); kyk > a; (2.57)

where

�nm(k) = �i4�k
QX
q=0

wq(k) jn(kkxqk)Y �
nm(x̂q); (2.58)

and Rn(�; k) is given by (2.20).

Thus, equations (2.57) and (2.58) enable us to write the spatial response of a set

of arbitrarily located sensors in form of the modal representation, where the modal

coe�cients are given in terms of the array geometry and its frequency dependent

weights. This is another basic modal analysis result which we will use in the other

chapters of this thesis to solve array processing problems.

2.7 Summary and Contributions

A set of modal analysis techniques has been established in this chapter to ana-

lyze and synthesize wave�elds, beampattern speci�cations and spatial response of

beamformers. These techniques will be exploited in the rest of the thesis to solve

a wide class of beamforming and array processing problems.

We itemize some speci�c contributions made in this chapter:

i. A modal representation was proposed which can be used to represent both

far�eld and near�eld beampatterns. This includes (1) an analysis equation

(2.23) to decompose an arbitrary beampattern (speci�cation) into the modes

of the wave equation, and (2) a synthesis equation (2.22) to construct any

arbitrary beampattern using the modes.

ii. The notion of elementary beampatterns and elementary beamshapes has been
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introduced.

iii. We showed that there is a class of beampatterns that are radially invariant

with respect to their shape.

iv. The Parseval's relation was established to quantify the error in beampat-

tern power associated with using a �nite number of modes in the synthesis

equation.

v. The transfer function between a point source (either in the near�eld or far�eld

of the aperture) and a point in an aperture was expressed as a weighted sum

of modes.

vi. The spatial response of a physical aperture (continuous or discrete) was ex-

pressed in the form of a modal representation and an expression for the modal

coe�cients was derived in terms of the physical aperture structure (its geom-

etry and associated signal processing).
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Chapter 3

Near�eld Beamforming using

Far�eld Beamforming Techniques

3.1 Introduction

Near�eld beamforming is a neglected area in the array processing literature. There

are several reasons for this neglect. Firstly, near�eld beamformer design is di�cult

compared to far�eld beamformer design, since the impinging wavefront on the array

is spherical from near�eld point sources in contrast to the planar wavefronts from

far�eld sources. Secondly, in traditional applications of array processing such as

radar and sonar, sources are e�ectively in the far�eld.

However for applications such as speech acquisition and medical imaging, the

source of interest can be in the near�eld of the sensor array, and use of the far�eld

assumption may considerably degrade the performance of these systems. In this

chapter, we use modal analysis techniques developed in Chapter 2 to establish

several near�eld beamforming methods.

Since there are well established far�eld beamforming methods, it would seem a

worthwhile idea to transform a given near�eld beamforming problem to an equiv-

alent far�eld problem so that far�eld techniques could be applied to solve the

near�eld problem. This idea of near�eld-far�eld transformation is well suited to de-

sign data-independent (�xed) near�eld beamformers. The same principle has been

used for many years in the radio antenna community for reconstructing far�eld an-

tenna patterns from near�eld measurements [1], though these transformations are

computationally involved. In this chapter, we propose exact techniques to trans-

form a near�eld beampattern speci�cation to an equivalent far�eld beampattern

speci�cation.

59
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One common method of near�eld beamforming is near�eld compensation (e.g.,

[2]) in which a delay correction is used on each sensor to account for the near�eld

spherical wavefronts. This method depends on the array geometry, and takes its

simplest form when the sensors are colinear. Even with the simplest array geome-

tries, designs based on near�eld compensation tend only to achieve the desired

near�eld beampattern over a limited range of angles because they focus the array

to a single point in three dimensional space. We outline the near�eld compensa-

tion method in Section 3.2. Another near�eld compensation method is given in [3],

where the curvature of the spherical wavefront is approximated by a quadratic

surface over the array aperture. However, designs based on this quadratic compen-

sation method tend only to achieve the desired near�eld beampattern over a limited

angles closer to broadside and also ignore the variation of the magnitude with dis-

tance and angle. Other near�eld design methods exist that are based on numerical

optimization (e.g., [4, 5]), and consequently provide little intuitive insight.

In this chapter, three novel near�eld beamforming methods are proposed in

which a desired arbitrary beampattern may be produced using far�eld design tech-

niques. In the �rst method we use modal representation of beampatterns (devel-

oped in Chapter 2) to �nd an exact near�eld-far�eld transformation method. The

second transformation method, which is computationally simpler than the �rst,

relies on the asymptotic equivalence up to complex conjugation of two transforma-

tion problems: (i) determining the near�eld performance of a desired beampattern

speci�cation in the far�eld, and (ii) determining the equivalent far�eld beampat-

tern corresponding to a given desired beampattern speci�cation in the near�eld.

As a consequence of this relationship, we show that the computationally di�cult

near�eld-far�eld transformation method may be circumvented by use of a sim-

pler far�eld to near�eld determination. Equally importantly we show that far�eld

techniques may be used directly to solve the near�eld beamformer design prob-

lem. Both of above design techniques can be applied to arbitrarily placed sensor

geometries. The third and �nal near�eld design method is also computationally

simple but valid only for linear (not necessarily uniformly spaced) arrays. The

methodology uses the modal representation of a physical aperture and the concept

of a continuous sensor to �nd a linear transformation between the array weights

required to have the given beampattern for far�eld and near�eld respectively.

This chapter is organized as follows: Section 3.2 outlines the near�eld compen-

sation method of near�eld beamforming. A near�eld beamforming method based

on an exact radial transformation of the beampattern between near�eld and far�eld
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is proposed in Section 3.3. Section 3.4 proposes a computationally simple near�eld

beamforming method based on the radial reciprocity of beampatterns. A method

based on a linear transformation between far�eld and near�eld array weights is

established in Section 3.5. A summary of this chapter is given in Section 3.6.

3.2 Near�eld Compensation Method

In this section, the compensation method [2] is outlined for designing near�eld

beamformers based on applying time delays to compensate for the di�ering prop-

agation delays, assuming spherical propagation.

In order to illustrate near�eld compensation, consider a narrowband linear array

of Q sensors aligned with the z axis with a complex weight on each sensor. The

normalized spatial response of the array to a signal from a point source at a distance

r and angle � (measured relative to end�re) from the zeroth sensor is (see Figure 2.1)

br(�; k) =

Q�1X
q=0

wq
r

d(r; �; zq)
e�ik

�
d(r;�;zq)�r

�
; (3.1)

where wq is the complex weight on the qth sensor,

d(r; �; zq) =
�
r2 + 2r(zq � z0) cos � + (zq � z0)

2
� 1
2 (3.2)

is the distance from the source to the qth element, and zq is the location of the qth

element.

Compare (3.1) with the normalized response of the same array to a far�eld

source at an angle �:

b1(�; k) =
Q�1X
q=0

wq e
�i2�kzn cos �: (3.3)

The goal of near�eld compensation is to transform the near�eld response to

the far�eld, such that standard far�eld techniques can be used to design the array

weights.

The compensated near�eld response of method [2] is

b̂r(�; k) =

Q�1X
q=0

wq q
r

d(r; �; zq)
e�ik

�
d(r;�;zq)�r

�
;



62 Near�eld Beamforming using Far�eld Beamforming Techniques

Desired      

Compensated  

Uncompensated

0 0.5 1 1.5 2 2.5 3
−60

−50

−40

−30

−20

−10

0

ANGLE (rads)

B
E

A
M

P
A

T
T

E
R

N
 (

d
B

)

Figure 3.1: Comparison of compensated and uncompensated near�eld beampat-
terns for a desired Chebyshev 25 dB beampattern at a radius of 3 wavelengths
from the centre of a 7-sensor array.

where

 q = r�1d(r; 
; zq) e
�ik
�
r�d(r;
;zq)+zq cos 


�
is the qth compensation term and 
 is the desired direction. It is seen that the

compensated near�eld response is identical to the far�eld response only at � = 
,

and is approximately equal for angles close to 
. To design a near�eld beamformer

with a desired response, the weights wq are obtained using standard far�eld design

techniques. The resulting compensated near�eld response is then approximately

equal to the designed far�eld response, at least over a range of angles close to 
.

This is illustrated in Figure 3.1 which shows a desired Chebyshev 25 dB response

and the corresponding compensated near�eld response (
 = �=2) at a radial dis-

tance of 3 wavelengths from the centre of a 7-element array. Also shown is the

uncompensated near�eld response (far�eld design assumption). Clearly, near�eld

compensation provides a signi�cant improvement over an uncompensated array,

although the compensated response still does not accurately achieve the desired

response over all angles.
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3.3 Radial Transformation

3.3.1 Preliminary

The near�eld compensation method is relatively straightforward to implement.

However, the result achieved may fail to meet the desired design speci�cation (par-

ticularly in the sidelobes) since it only achieves the performance in a single direction

(see Figure 3.1). The near�eld beamforming method proposed in this section is to

radially transform a near�eld beampattern speci�cation to a physically equivalent

far�eld beampattern and design a far�eld beamformer to realize this transformed

far�eld beampattern. This equivalence, which we establish later in this section,

means that we can obtain the desired near�eld response for all angles. We use the

modal representation of beampatterns (2.22) developed in Chapter 2 to perform

this radial transformation at a given frequency. For broadband beamformer design,

this transformation needs to be done for a number of frequencies over the design

band.

3.3.2 Design Procedure

For convenience, we restate the synthesis (2.22) and analysis (2.23) equations of

the modal representation of a beampattern developed in Chapter 2 as follows:

br(�; �; k) =
1X
n=0

mX
m=�n

�nm(k)Rn(r; k)Ynm(�; �); (3.4)

�nm(k) =
1

Rn(r; k)

Z 2�

0

Z �

0

br(�; �; k)Y
�
nm(�; �) sin �d�d�; (3.5)

where the radially dependent functionRn(r; k) is given by (2.20) and the elementary

beamshapes Ynm(�; �) are given by (2.13).

Since the modal coe�cients �nm(k) in the expansion (3.4) completely character-

ize the beampattern at all radial distances, the beampattern can be reconstructed

for sources at arbitrary points in space. Because of the preferred choice of spherical

coordinates, taking a near�eld beampattern speci�ed on a sphere and subsequently

transforming to the far�eld in�nite sphere leads to some computational savings in

the above representations.

The utility of the radial beampattern transformation is as follows. Given a

beampattern br1(�; �; k) measured at some radius r1, calculate �nm(k) from (3.5)
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with r = r1. The beampattern can now be reconstructed for a source at any radius

r2 by using (3.4) with r = r2.

The method we propose to design a near�eld beamformer is outlined below.

1. Calculate the beampattern coe�cients �nm(k) for the desired near�eld beam-

pattern brd(�; �; k) using (3.5) with r = rd.

2. Calculate b1(�; �; k) from (3.4) at r =1.

3. Design a far�eld beamformer to realize this beampattern using classical far�eld

array design techniques.

A curious feature of this formulation is that the actual array geometry is only

of secondary importance. Any array geometry that can realize the resulting trans-

formed far�eld pattern may be used. This is important in a practical situation

in which the array is mounted on a complex three dimensional manifold, such as

a microphone array mounted on the curved dashboard of a car. The question of

whether a speci�c array can realize a speci�c far�eld beampattern is a separate

issue and is not addressed in this section.

3.3.3 Near�eld/Far�eld Equivalence

Since the solution to the Helmoltz wave equation (2.5) is unique, there is an equiv-

alent far�eld beampattern for every near�eld beampattern speci�cation and vice

versa. Hence, using the far�eld beamformer (obtained in step 3 of Section 3.3.2

above) in the near�eld at r = rd, will produce the desired near�eld beampattern

brd(�; �; k). To see this formally, observe that the coe�cients in (3.5) are uniquely

and completely determined once the beampattern is speci�ed. Using (3.4) and

(2.21) in Chapter 2, we obtain the following far�eld synthesis equation

b1(�; �; k) =
1

k

1X
n=0

mX
m=�n

�nm(k) i
n+1 Ynm(�; �): (3.6)

Equation (3.6) can be used in step 2 of the design procedure given in Section 3.3.2.

3.3.4 Linear Array

Motivation for Special Case

The radial transformation developed in the previous sub-sections is su�ciently gen-

eral to capture quite arbitrary three-dimensional array geometries. In an attempt
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to bring the results into focus and provide a more concrete presentation of the ideas,

we examine a linear array aligned with the z axis. In this case, the beampattern is

rotationally symmetric with respect to �, and the beampattern can be expressed

as br(�; �; k) = br(�; k).

Radial Transformation

For this special case, the modal coe�cients satisfy

�nm(k) = 0 for m 6= 0;

that is, only the non-zero components are those for which m = 0. Hence we can

write (3.4) and (3.5) in the following simpli�ed form:

br(�; k) =
1X
n=0

�n(k)Rn(r; k)Yn(�) (3.7)

and

�n(k) =
2�

Rn(r; k)

Z �

0

br(�; k)Yn(�) sin � d�; (3.8)

where �n(�) �

= �n0(�),

Yn(�)
�

= Yn0(�; �) =

r
2n+ 1

4�
Pn(cos �); (3.9)

and Pn(�) is the Legendre function. Using (2.21), the corresponding far�eld syn-

thesis equation for a linear array aligned with the z axis is given by

b1(�; k) =
1

k

1X
n=0

�n(k) i
n+1Yn(�): (3.10)

Parseval Relation

We have developed the Parseval relation for the modal representation of beampat-

terns in the Section 2.5. Now we restate it here for the special case of a linear array
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Figure 3.2: Relative beampattern error �N versus the number of analysis coe�cients
N , calculated from (3.12) for a Chebyshev 25 dB beampattern at a radial distance
of 3 wavelengths.

aligned to the z axis. Speci�cally, (2.29) reduces to

2�

Z 1

�1

��br(�; k)��2 d(cos �) = 1X
n=0

��Rn(r; k)
��2 ���n(k)��2 (3.11)

and the integral squared error between the desired beampattern br(�; k) and an

approximation using �rst N + 1 terms of the series expansion (3.7) is given by

�N = 2�

Z 1

�1

��br(�; k)��2 d(cos �)� NX
n=0

��Rn(r; k)
��2 ���n(k)��2: (3.12)

In the example of Section 3.3.5 to follow, we use (3.12) to quantify the error incurred

by using a �nite number of terms in (3.7) to approximate a given beampattern

speci�cation.

3.3.5 Example

To illustrate the radial beampattern transformation, we revisit our previous exam-

ple in Section 3.2. The design was for a Chebyshev 25 dB beampattern (the desired

beampattern in Figure 3.1) at a radius of r = 3 wavelengths.

The squared beampattern error versus the number of modal coe�cients is cal-

culated from (3.12) and is shown in Figure 3.2. It is clear from this plot that at

least 10 analysis coe�cients are required to provide a good approximation to the

desired beampattern and 15 coe�cients capture essentially all the energy. The
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(a) Reconstructed beampatterns.
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Figure 3.3: (a) Reconstructed beampatterns using di�erent numbers of analysis
coe�cients N for N = 5; 9; 11; 15, for a desired Chebyshev 25 dB beampattern
at a radial distance of 3 wavelengths. (b) Squared error between the desired and
reconstructed beampatterns.

monotonically decreasing property displayed in Figure 3.2 follows directly from

(3.12).

To verify that the desired speci�cation has been achieved, we calculated a set

of 15 analysis coe�cients from (3.8) at a radius of 3 wavelengths, and then recon-

structed the near�eld beampattern from (3.7) using di�erent numbers of analysis

coe�cients. The resulting beampatterns are shown in Figure 3.3, along with the

squared error between the desired and reconstructed beampatterns. With 15 coe�-

cients the reconstructed beampattern is indistinguishable from the desired Cheby-

shev 25 dB beampattern and the squared beampattern error is uniformly less than

10�6.

Using the set of 15 coe�cients, we transformed the desired near�eld beampat-

tern to the far�eld using (3.10). We then designed a far�eld beamformer to achieve

this beampattern using a complex-valued least squares design criterion [6]. The re-

sulting beampattern realization for a symmetric linear array with 13 quarter wave-

length spaced sensors is shown solid in Figure 3.4. (Note that a quarter-wavelength

spaced array was used since we found that it provided a better approximation to

the desired beampattern when used in the near�eld than a half-wavelength spaced

array1.) This far�eld beamformer was then used in the near�eld at a radial dis-

1This is due to the reduction of spatial aliasing in the near�eld; see Appendix A for more
detail.
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Figure 3.4: Transformed far�eld beampattern corresponding to a desired Cheby-
shev 25 dB beampattern at r = 3 wavelengths (dotted), and realization using an
array of 13 quarter-wavelength spaced sensors (solid). Phase has not been indi-
cated.

tance of r = 3 wavelengths. The corresponding beampattern is shown solid in

Figure 3.5, along with the desired near�eld beampattern shown dotted. The pro-

posed near�eld beamforming method provides a very close approximation to the

desired beampattern over all angles, not just at angles close to broadside as for the

near�eld compensation method.
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Figure 3.5: Resulting near�eld beampattern (solid) from the proposed near�eld
beamforming design technique for a desired Chebyshev 25 dB beampattern (dotted)
at a radius of 3 wavelengths. The beampattern of a beamformer designed using
near�eld compensation is also shown (dashed) for comparison.
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3.4 Radial Reciprocity

3.4.1 Preliminary

In this section, we use the modal analysis techniques developed in Chapter 2 as a

theoretical tool to establish the asymptotic equivalence up to complex conjugation

of two transformation problems: (i) determining the near�eld performance of a de-

sired beampattern speci�cation in the far�eld, and (ii) determining the equivalent

far�eld beampattern corresponding to a given desired beampattern speci�cation in

the near�eld. As a consequence of this relationship, we show that the computa-

tionally di�cult near�eld-far�eld transformation developed in Section 3.3 and [7]

may be circumvented, albeit with some approximation, by use of a simpler far�eld

to near�eld determination. Equally importantly we show that far�eld techniques

may be used directly to solve the near�eld beamformer design problem.

3.4.2 Radial Transformation and Reciprocity

Problem formulation

The objective is to relate a beampattern speci�cation given on a sphere at one

radius r1 to a beampattern speci�cation at a second radius r2. This is achieved by

beampattern analysis at r1 (through (3.5)) and resynthesis at r2 (through (3.4)).

The key technical observation we make is that this problem is essentially identical

to the problem of beampattern analysis at r2 and resynthesis at r1 (for a di�er-

ent solution to the wave equation), up to complex conjugation and an error term

which is typically small for problems of interest. This result is far from intuitive

and quite non-trivial to derive as we will see. This is exploited later in a near�eld

design procedure, given in Section 3.4.3, that permits bypassing the computation-

ally di�cult analysis step (calculation of modal coe�cients �nm(k) for the desired

near�eld beampattern) of the exact design method in Section 3.3.

Asymptotic Equivalence

Given that our key technical development is cast in terms of asymptotic equivalence,

we present some concise de�nitions.

Let g(x) and f(x) be two complex functions of a real variable x within some real

domain D both possessing limits as x! x0 in D; then we say that f(x) = O
�
g(x)

�
as x! x0 if there exist positive constants K and � such that jf j � Kjgj whenever
0 < jx� x0j < �.
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We say that f(x) is asymptotically equivalent to g(x) in the limit as x ! x0 if

f and g are such that limx!x0 f=g = 1. The notation in this case is f(x) � g(x) as

x! x0. As an example of asymptotic equivalence, we can write

h(2)n (kr) � in+1 1

kr
e�ikr as r !1 (3.13)

which follows from (3.20), given later.

Hankel Function Property

Associated with a single mode indexed by n (and independent of m) we have a

reciprocity relationship, given next. It is referred to as a reciprocity relationship

because the radial behaviour relating an ordered pair of distances (r1; r2) for one

beampattern problem can be related to the reversed ordered pair (r2; r1) of another

beampattern problem, after complex conjugation and up to some error term related

to the closeness of r1 and r2.

Proposition 3.1 Consider the complex valued function

Rn(r; k) = reikrh(2)n (kr) (3.14)

where h(2)n (�) is the spherical Hankel functions of the second kind, n is the modal

index, the wave number k = 2�=�, and � is the wavelength. Then

Rn(r1; k)

Rn(r2; k)
=
R�
n(r2; k)

R�
n(r1; k)

�
1 + �(n; kr1; kr2)

�
(3.15)

where

�(n; kr1; kr2) =
n(n + 1)

2k2
� 1
r22
� 1

r21

�
+O

� 1

k4r4
�
; as r!1 (3.16)

with r = min(r1; r2).

Proof of Proposition 3.1: The behaviour of h
(2)
n (�) is characterized through the

recursion [8, p. 693]

h
(2)
n+1(x) =

(2n+ 1)

x
h(2)n (x)� h

(2)
n�1(x) (3.17)
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with

h
(2)
0 (x) =

i

x
e�ix:

From the recursion (3.17), and after some simpli�cation it follows that

h(2)n (x) =
in+1

x

�
1 +

nX
q=0

�q;n
(�ix)q| {z }

pn(�ix)

�
e�ix (3.18)

for some n real valued coe�cients �q;n. These coe�cients can be readily determined

in the form

pn(z) = 1 +
nX

q=0

1

2q q!

(n + q)!

(n� q)!

1

zq
; (3.19)

leading to the asymptotic representation

h(2)n (x) =
in+1

x

�
1 + i

1

2x
n(n+ 1)� 1

8x2
(n+ 2)!

(n� 2)!
+O

� 1
x3
��
e�ix; (3.20)

as x!1. From (3.14) and (3.18) we can also write

Rn(r; k) =
in+1

k
pn(�ikr): (3.21)

Of interest, in proving the proposition, is the square magnitude of the polyno-

mial portion of the spherical Hankel function which can be written

���1 + nX
q=0

�q;n
(�ix)q

���2 �

= 1 +
nX

q=0

�q;n
x2q

= 1 + (�21;n � 2�2;n)| {z }
�1;n

1

x2

+ (�22;n + 2�4;n � 2�1;n�3;n)| {z }
�2;n

1

x4
+O

� 1
x6
�
;

where �q;n are suitable real valued coe�cients. Whence, from (3.15),

1 + �(n; kr1; kr2) =
��Rn(r1; k)

��2���Rn(r2; k)
��2
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=
�
1 +

�1;n
(kr1)2

+
�2;n
(kr1)4

+O
� 1

(kr1)6
��

.�
1 +

�1;n
kr22

+
�2;n
(kr2)4

+O
� 1

(kr2)6
��

=
�
1 +

�1;n
(kr1)2

+
�2;n
(kr1)4

+O
� 1

(kr1)6
��

�
�
1� �1;n

(kr2)2
� �2;n

(kr2)4
+

�21;n
(kr2)4

+O
� 1

(kr2)6
��

= 1 + �1;n
� 1

(kr1)2
� 1

(kr2)2
�
+ �2;n

� 1

(kr1)4
� 1

(kr2)4
�

+ �21;n
1

(kr2)2
� 1

(kr2)2
� 1

(kr1)2
�
+O

� 1
r6
�

as r ! 1, where r = min(r1; r2). Using (3.20) the �rst correction term has

coe�cient

�1;n = �21;n � 2�2;n =
1

2
n(n + 1);

and this establishes the result.

We make the following observations regarding this result. We can take r1 = r <1
and r2 = 1 to make the reciprocity between the near�eld and the far�eld. The

quantities in (3.15) are complex. However, the error �(n; kr1; kr2) term is purely

real, meaning the error is only in the magnitude or equivalently there is no error

in the phase angle. This follows from the property arg(z1=z2) = arg(z�2=z
�
1) where

z1 and z2 are complex numbers.

Key Reciprocity Relationship

We now show how beampattern speci�cation (analysis) at r1 and resynthesis at r2

relates to a conjugate beampattern speci�cation (analysis) at r2 and resynthesis at

r1, leading to Proposition 3.2 below. While modal techniques are used to establish

the result, they are not needed to use the result.

Suppose we need to design a beamformer to have beam shape b(�; �) speci�ca-

tion at radius r1 and frequency k. Then, using (3.4) and (3.5), we can write

br1(�; �; k) = b(�; �) =
1X
n=0

nX
m=�n

Anm(b)Ynm(�; �) (3.22)
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where

Anm(b) = �nm(k)Rn(r; k) =

Z 2�

0

Z �

0

b(�; �)Y �
nm(�; �) sin � d�d�: (3.23)

Note that Anm(b) depends only on beamshape speci�cation b(�; �) and not on

radius r. Now the resultant beampattern of the above beamformer at distance r2

is given by

br2(�; �; k)
��
br1=b

=
1X
n=0

nX
m=�n

�nm(k)Rn(r2; k)Ynm(�; �)

=
1X
n=0

Rn(r2; k)

Rn(r1; k)

nX
m=�n

Anm(b)Ynm(�; �): (3.24)

This equation follows from substituting (3.23) in (3.4).

Compare this with the resulting beampattern at radius r1 of the beamformer

designed to have the complex conjugate beamshape b�(�; �) speci�cation at radius

r2:

br1(�; �; k)
��
br2=b

�
=

1X
n=0

R�
n(r1; k)

R�
n(r2; k)

nX
m=�n

Anm(b
�)Ynm(�; �): (3.25)

From (3.23) Anm(b
�) = A�

n(�m)(b). Then taking the complex conjugate of (3.25),

by change of variable m in the summation by �m, and then using Proposition 3.1

yields

b�r1(�; �; k)
��
br2=b

�
=

1X
n=0

Rn(r1; k)

Rn(r2; k)

nX
m=�n

Anm(b)Ynm(�; �)

= br2(�; �)
��
br1=b

�
1 +O

� 1

k2r22
� 1

k2r21

��
(3.26)

as r !1, where r = min(r1; r2) (alternatively for r1 ! r2 this also holds). Thus

we have established:

Proposition 3.2 Let � be the wavelength and k = 2�=� the wave number, then

b�r1(�; �)
��
br2=b

�
= br2(�; �)

��
br1=b

�
1 +O

� 1

k2r22
� 1

k2r21

��
(3.27)

as r!1, where r = min(r1; r2).
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By associating r1 with the near�eld and r2 with the far�eld, this proposition estab-

lishes an asymptotic equivalence, up to complex conjugation, of two problems: (i)

determining the near�eld performance of a far�eld beampattern speci�cation, and

(ii) determining the equivalent far�eld beampattern corresponding to a near�eld

beampattern speci�cation. We make the following observations:

(i) If r2 = 1 then this result is saying that a near�eld problem can be solved

approximately by solving a related far�eld problem.

(ii) Consider the tradeo� between operating at a distance (measured in wave-

lengths) su�ciently large to ensure the dominant error term in (3.16) to be

small. (For analysis purposes we take r1 = r and r2 = 1.) This requires,

after taking the square root, r
n(n+ 1)

8�2
� r

�
; (3.28)

whereas for the �rst order term in the asymptotic expansion of Rn(r; k),

(3.21), to be small (see (3.20)) requires

n(n+ 1)

4�
� r

�
: (3.29)

This shows that asymptotic reciprocity holds much better than might be

expected by taking the naive approach of operating at a distance with r=�

large enough such to guarantee that the asymptotic form (3.13) can be used

as an approximation. Further, the true dominant error term (3.28) grows

linearly with n relative to r=� versus the naive condition (3.29) which grows

quadratically (and hence more quickly) with n relative to r=�.

(iii) The reciprocity holds whenever the dominant error term can be made small,

which implies that either the beampattern is low-pass in character, i.e., most

of the energy is in the lower order modes (small n, which generally holds),

or that the di�erence in the radial distances, r1 � r2, is small enough. The

meaning of the former condition will be 
eshed out later in Section 3.4.5.

3.4.3 Near�eld Design Procedure

The exact near�eld design given in Section 3.4.2 can be implemented by transform-

ing the near�eld speci�cation b(�; �) de�ned on a sphere of radius r to the far�eld.
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This method requires in the analysis step (3.5) multi-dimensional numerical inte-

grations to be performed which must contend with numerical issues. The advantage

of the radial reciprocity technique de�ned in this section, although only asymptoti-

cally exact, is that no analysis step or modal synthesis needs to be performed. This

leads to a sequence of computationally straightforward signal processing steps to

achieve a high quality near�eld design.

Novel Design using Reciprocity

The reciprocity relationship (3.27) with r1 = r and r2 =1, leads to the corollary

of Proposition 3.2:

Proposition 3.3 The far�eld beampattern corresponding to a desired near�eld

beampattern speci�cation br(�; �) = b(�; �) satis�es the asymptotic equivalence

b1(�; �)
��
br=b

� b�r(�; �)
��
b1=b�

; as r !1: (3.30)

By assuming (3.30) holds with equality we have the following approximate design

procedure:

Near�eld Design Procedure

Step 0) Specify the desired near�eld beampattern b(�; �) at distance r.

Step 1) Synthesize the far�eld beampattern b�(�; �) at r2 = 1, i.e., b1(�; �) =

b�(�; �).

Step 2) Using the sensor weights of Step 1 evaluate the resultant near�eld beampat-

tern a(�; �) at r, i.e., a(�; �) = br(�; �)
��
b1=b�

.

Step 3) Synthesize a far�eld beampattern a�(�; �) at r2 = 1. These weights will

produce the desired beampattern b(�; �) at distance r.

This procedure requires a near�eld beampattern determination from far�eld data

sandwiched between two far�eld designs.

The far�eld design in Step 1 may be implemented as follows. Determine Q

sensor weights fwqg, using standard far�eld techniques, to synthesize the response
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using

b�(�; �) =
Q�1X
q=0

wqe
�ik(xq sin � cos�+yq sin � sin�+zq cos �); (3.31)

where (xq; yq; zq) is the location of the qth sensor|this is a well studied design

procedure and can be e�ected by using least squares techniques.

Step 2 requires determination of the near�eld response from the far�eld design.

The response can be computed using the weights and array geometry used in Step

1, i.e.,

a(�; �) = C

Q�1X
q=0

wn
d0(r; �; �)

dq(r; �; �)
e�ik

�
dq(r;�;�)�d0(r;�;�)

�
(3.32)

where dq(r; �; �) is the distance from a point at (r; �; �) to the qth sensor and C is

some normalizing complex constant. Note that in (3.32) we use the propagation

model where magnitude attenuates like the reciprocal of distance and the phase

is proportional to distance. This type of response determination, (3.32), which

requires explicit sensor locations and weights can be contrasted with the more

general methods given in Section 3.4.2 which do not require any array geometry

information (but do require the determination of the modal coe�cients (3.5)).

The �nal step, Step 3, is to determine the eQ sensor weights ewq to give the

far�eld response:

a�(�; �) =

~Q�1X
q=0

ewq e
�ik(~xq sin � cos�+~yq sin � sin�+~zq cos �) (3.33)

where (exq; eyq; ezq) is the location of the qth sensor. Note that this array geometry

need not necessarily be the same as in Step 1, but should correspond to the actual

array. A typical design procedure is illustrated in the next section.

The primary utility in the procedure is the circumvention of the computationally

di�cult transformation from a desired near�eld beampattern to the equivalent

far�eld beampattern requiring numerical integration, and the direct use of far�eld

design procedures.
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(a) Desired near�eld Chebyshev 25 dB beampat-
tern. The phase is 
at at zero radians. (Steps 0
and 1 of Near�eld Design Procedure).

BEAMPATTERN (dB)
PHASE (rads)    

0 30 60 90 120 150 180
−50

−40

−30

−20

−10

0

10

ANGLE (degrees)

(b) Result of using a Chebyshev 25 dB far�eld
beamformer in the near�eld at a radius of 3
wavelengths (Step 2 of Near�eld Design Proce-
dure).

Figure 3.6: Demonstration of Steps 0, 1, and 2 of the Near�eld Design Procedure
using Near�eld/Far�eld Reciprocity.
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3.4.4 Design Example and Analysis

Application of Parseval Relation

We have developed a Parseval relation in Section 2.5 for modal representation of

beampatterns. It will be essential later in assessing the novel design using reci-

procity by determining the distribution of power across the modal components for

a given beampattern speci�cation on a sphere of arbitrary radius. An observation

regarding the Anm(b) in (3.23) is that these represent modal amplitudes and de-

pend only on the shape of the beampattern and not on the radius of the sphere

on which the beampattern is given, e.g., the computation is identical whether the

beampattern is near�eld or far�eld.

As indicated in the following example, whenever such a \low pass" beampattern

speci�cation is used, the novel design procedure using reciprocity has been observed

to work extremely well. The analysis that follows the example corroborates these

claims.

Linear 1D Array Example

The following example shows the result of the near�eld design procedure of Sec-

tion 3.4.3 in comparison with the near�eld compensation technique [2] outlined

in Section 3.2. The objective was to realize a seventh-order zero-phase Cheby-

shev 25 dB beampattern, shown in Figure 3.6(a), in the near�eld at a radius of 3

wavelengths|this is Step 0 of the near�eld design procedure. The array sensors

are co-linear and aligned along the z axis.

Step 1 of the near�eld design procedure required a design to realize the complex

conjugate of this Chebyshev beampattern in the far�eld. This is a classical design

problem [9], and the weights for a 7 sensor half-wavelength spaced far�eld array are

easily calculated. The resultant designed far�eld beampattern is identical to that

shown in Figure 3.6(a). This is b�(�; �) in the design procedure, i.e., the complex

conjugate of the objective beampattern.

The response of this far�eld beamformer was then evaluated in the near�eld at

the required radius of 3-wavelengths according to (3.32). Figure 3.6(b) shows the

resulting beampattern. This is a(�; �) in Step 2 of the near�eld design procedure.

Step 3 of the near�eld design procedure required designing a far�eld beamformer

to realize a�(�; �). We used a weighted complex-valued least-squares design method

[6] to realize a�(�; �) with a quarter-wavelength spaced array. Thirteen elements,

corresponding to a 3 wavelength aperture, were used to achieve an adequate match
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(a) Far�eld realization of conjugate beampat-
tern using least square design for a 13 ele-
ment quarter-wavelength spaced array (Step 3
of Near�eld Design Procedure).
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(b) Result of using 13 sensor far�eld beamformer
in the near�eld (solid curve) compared with the
design speci�cation which is the dotted curve.
For comparison, the compensated design tech-
nique in [2] (outlined in Section 3.2) is given
(dashed curve).

Figure 3.7: Demonstration of Step 3 of the Near�eld Design Procedure using
Near�eld/Far�eld Reciprocity.
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Figure 3.8: Performance of the beamformer design magnitude as a function of angle
(degrees) and radial distance (wavelengths). The phase response is not shown.

to the desired beampattern. Angles outside the range 70�{110� were weighted

more heavily so that the sidelobe region of the desired Chebyshev beampattern

would be accurately approximated. The resulting far�eld realization is shown in

Figure 3.7(a).

Finally, to verify the design objectives had been met, this beamformer was

simulated in the near�eld at a radius of 3 wavelengths; the near�eld beampattern

shown solid in Figure 3.7(b) resulted. Also shown is the desired Chebyshev 25

dB beampattern (dotted), and the response of the near�eld compensation method

in Section 3.2 (dashed). We note that the proposed near�eld design technique

provides a very close realization of the desired beampattern over all angles, not just

at angles close to broadside as for the near�eld compensation method in Section 3.2.

Figure 3.8 shows the performance of the beamformer versus angle (degrees) and

distance (wavelengths). It shows the desired beampattern at 3 wavelengths (near

edge) and the variation with distance as we move towards the far�eld (far edge).

This example highlights the main feature of our proposed near�eld beamform-

ing procedure: when the reciprocity relation holds, it is only necessary to use

well-established far�eld beamformer design techniques in the design of a near�eld

beamformer.

3.4.5 Modal Analysis of the Example

Since the array sensors are aligned along the z axis, only the m = 0 modes are po-

tentially nonzero, i.e., only the An0(b) coe�cients, (3.23), can be nonzero. Further,
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Table 3.1: Power and Errors versus Modal Coe�cients for Example 1

n An0(b)
�
��(n; 6�;1)

�
�

�
�An0(b)

�
�2 % Pow % Err

0 0.748830 0.000000 0.560746 27.7 0.0

2 -0.790121 0.008443 0.624291 30.8 0.3

4 0.619535 0.028145 0.383824 18.9 0.5

6 -0.560184 0.059104 0.313806 15.5 0.9

8 0.353918 0.101321 0.125258 6.2 0.6

10 -0.129829 0.154796 0.016855 0.8 0.1

12 0.029584 0.219529 0.000875 0.0 0.0

14 -0.004547 0.295520 0.000021 0.0 0.0

16 0.000504 0.382769 0.000000 0.0 0.0

18 -0.000042 0.481276 0.000000 0.0 0.0

20 0.000003 0.591040 0.000000 0.0 0.0

22 0.000000 0.712063 0.000000 0.0 0.0

24 0.000000 0.844343 0.000000 0.0 0.0

Sum n/a n/a 2.025676 100.0 2.5

since the phase is zero for this example, the An0(b) coe�cients are purely real, and

because the beampattern is symmetric the odd coe�cients are zero.

In order to determine the validity of the reciprocity relation (3.27), we analyze

the modal expansion for this example. The results are summarized in Table 3.1

and Figure 3.9. Table 3.1 shows a decomposition of the beampattern as a modal

expansion indexed by n.

A conservative check can �rst be made by seeing whether (3.28) is satis�ed

for all signi�cant terms used in the beampattern synthesis equation (3.22). The

Parseval relation (2.29) identi�es the power contained in each (m = 0) mode with��An0(b)
��2. In this way we can see the error measured in beampattern power asso-

ciated with using a �nite number of analysis coe�cients in the synthesis equation

(3.22) and also see which are the dominant modes. Using this Parseval expression,

we calculated the power in each mode in the fourth column of Table 3.1. In Fig-

ure 3.9 we have plotted the cumulative beampattern power versus n. Clearly, only

the even terms up to n = 10 are signi�cant. Substituting n = 10 into the error

bound (3.28) gives

p
55

2�
� 1:068� r

�
;

which can be compared with our design for r = 3 wavelengths. Note that for this
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Figure 3.9: Number of terms required in (3.22) to accurately model a seventh-order
Chebyshev 25 dB beampattern. There is insigni�cant power beyond the tenth order
mode.

distance, kr = 6� and we take r1 = r and r2 =1.

A more detailed examination of the modal expansion shows that the lower-order

modes (small n) dominate the power, but it is these modes that contribute the least

asymptotic error in (3.16). From (3.16), for the parameters in this example, we

have

���(n; 6�;1)
�� = n(n + 1)

72�2
(3.34)

which is computed in the third column of Table 3.1. However, to better gauge the

overall error this causes to the reciprocity condition (3.27) we weight these error

magnitudes by the power in the corresponding mode and the result is sixth column

of Table 3.1 which is provided as a guide only. So it can be seen that an upper

bound on the approximate accuracy of the reciprocity is at most of the order of

2.5% in error.

3.5 Far�eld Array Weight Redesign

3.5.1 Preliminary

In this section, we present yet another new method for near�eld array beamform-

ing, exploiting the modal analysis techniques developed in Chapter 2. Unlike the

methods in Section 3.3 and Section 3.4, this method is developed only for linear
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arrays. Generalization of this method to arbitrary array geometries is a possibility

but is not considered in this thesis.

Here we devise a linear transformation to obtain a set of array weights that

achieves the desired beampattern for sources in the near�eld, given another set of

array weights that achieves the same beampattern for far�eld sources. The design

methodology relies on three key ideas: 1) a relationship between near�eld response

and far�eld response of a given theoretical continuous sensor based on modal ex-

pansion; 2) a Fourier transform relationship between the far�eld beampattern and

a continuous aperture function; and 3) an expression for the modal coe�cients

of a beampattern in terms of the far�eld array weights. Using these ideas, we

redesign the far�eld array weights using a linear transformation to produce the

desired beampattern in the near�eld.

3.5.2 Problem Formulation

Suppose there exists a linear array of (2M + 1) sensors with array weight vector

W (1) = [w(1)
�M ; : : : ; w

(1)
M ]T

aligned to the z axis, such that the response to plane waves from a far�eld source,

impinging at an angle � to the array axis, is

a(�) =
MX

m=�M
w(1)
m e�ikzm cos � (3.35)

where zm is the distance to the mth source. Suppose

W (r) = [w
(r)
�Q; : : : ; w

(r)
Q ]T

are the weights of a linear array of (2Q+1) sensors that achieve the desired beam-

pattern speci�cation a(�) for a near�eld source at an angle � and distance r from

the array origin. Hence,

a(�) =

QX
q=�Q

w(r)
q

r

d(r; �; zq)
e�ik(d(r;�;zq)�r); (3.36)

where

d(r; �; z)
�

= (r2 � 2rz cos � + z2)1=2



84 Near�eld Beamforming using Far�eld Beamforming Techniques

is the distance from the source to a sensor position z in the array axis.

The problem we consider is determining the \far�eld-near�eld" transformation

matrix A such that

W (r) � AW (1) (3.37)

and identify the nature of the approximation in (3.37).

3.5.3 Theoretical Continuous Aperture

In Chapter 2, we have shown how to write the aperture response using the modal

representation. In this section we use those results for a linear aperture to derive

the desired transformation A.

Near�eld Response

Consider a linear continuous aperture aligned to the z axis with an aperture illu-

mination function �(z; k). Then the response of the sensor to a source at an angle

� and distance r from the array origin is

br(�) =

Z 1

�1
�(z; k)

reikr

d(r; �; z)
e�ikd(r;�;z)dz; (3.38)

provided that the function d(r; �; z) 6= 0 (which is the distance from the source to

a point z in the sensor). Also we assume that �(z; k) � 0 for jzj > r. Under these

mild conditions, we can use (2.43) to write

reikr

d(r; �; z)
e�ikd(r;�;z) =

1X
n=0

�� ik(2n+ 1)jn(kz)
�
Rn(r; k)Pn(cos �); for jzj < r

where Pn(�) are the Legendre functions and jn(�) is the spherical Bessel function
(2.40) and h

(1)
n (�) is the Hankel functions of �rst kind (2.10). By substituting the

above expansion in (3.38) and integrating the series term by term, we obtain the

near�eld sensor response as

br(�) =
1X
n=0

�n(k)Rn(r; k)Pn(cos �); (3.39)
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where

�n(k)
�

= (�i)k(2n + 1)

Z 1

�1
�(z; k)jn(kz)dz: (3.40)

Far�eld Response

The response of the same continuous sensor �(z; k) to a far�eld source at an angle

� can be written from (3.39) as

b1(�) =
1X
n=0

�n(k)Rn(1; k)Pn(cos �); (3.41)

where �n(k) is given by (3.40) as for the case of the near�eld response. Note that,

(3.41) is the equivalent far�eld beampattern of the near�eld beampattern (3.39).

Modal Coe�cients

We can also evaluate the coe�cients �n(k) of the series (3.39) for a �xed frequency

k using the orthogonality property of Legendre functions (2.11) as

�n(k) =
1

Rn(r; k)

Z 1

�1

br(�)Pn(cos �)d(cos �): (3.42)

Suppose that the response br(�) of the continuous sensor is equal to the desired

beampattern speci�cation a(�). Hence, we can substitute (3.35) into (3.42) and

interchange the integration and summation to obtain

�n(k) =
1

Rn(r; k)

MX
m=�M

w(1)
m

Z 1

�1

e�ikzmuPn(u) du;

where u = cos �. The integral of the above equation can be evaluated using (2.48)

and the orthogonality property of Legendre functions (2.11) to get

�n(k) =
2in

Rn(r; k)

MX
m=�M

w(1)
m jn(kzm): (3.43)

Thus we have established an expression relating the modal coe�cients �n(k) of a

beampattern to its far�eld array weights.

In summary, the modal coe�cients �n(k) may be related by either: 1) the

aperture illumination function �(z; k) in (3.40); 2) the equivalent beampattern
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br(�) at distance r in (3.42); or, 3) the linear array weights (3.43) which realize the

desired beamshapes in the far�eld.

Aperture Illumination

In order to derive an expression for the aperture function �(z; k) in terms of the

array weights, we write the response of �(z; k) to a far�eld source at an angle � as

~b1(u) =
Z 1

�1
�(z; k) e�ikuz dz (3.44)

where u = cos � and ~b1(u)
�

= b1(cos�1 u) = b1(�). Note that (3.44) is the stan-

dard Fourier transform relating a far�eld aperture response ~b1(u) to the aperture

illumination function �(z; k) for frequency k. Thus the inverse Fourier transform

corresponding to (3.44) is given by

�(z; k) =
k

2�

Z 1

�1

~b1(u) eikuz du: (3.45)

Using the series expansion (2.48), we may write

eikzu =
1X
n=0

(�i)n(2n+ 1)jn(kz)Pn(u): (3.46)

Since (3.41) is the modal representation of the far�eld response of the continuous

sensor �(z; k), we substitute (3.41) and (3.46) into (3.45), and interchange integra-

tion and summation to get an exact expression for the aperture illumination

�(z; k) =
k

�

1X
n=0

(�i)nRn(1; k)�n(k) jn(kz): (3.47)

For practical purposes, we assume that there are only N + 1 signi�cant terms in

the in�nite series expression (3.47) for the continuous sensor �(z; k). From (3.43),

(2.21), and a truncated series (3.47) we get

�(z; k) =
2

�

NX
n=0

in+1

Rn(r; k)
jn(kz)

MX
m=�M

w(1)
m jn(kzm); (3.48)

which relates the continuous aperture function required to produce the beampat-

tern a(�) for a near�eld source to the weights of a linear array of sensors which

produce the same beampattern a(�) for a far�eld source. In the following section,
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we truncate and discretize this continuous aperture to obtain the desired transfor-

mation matrix between far�eld and near�eld weights.

3.5.4 Transformation Matrix

It can be shown that the Fourier transform of the aperture illumination (3.48)

�(z; k) with respect to z is bandlimited by k. This implies that we can represent

�(z; k) by its samples if the sampling distance is less than �=2 (= �=k). Further, we

have assumed that �(z; k) � 0 for jzj > r; hence we can approximate the integral

in (3.38) by a �nite summation to obtain

br(�) �
QX

q=�Q
gq �(zq; k)

r

d(r; �; zq)
e�ik(d(r;�;zq)�r); (3.49)

where [z�Q; : : : ; zQ] is a possible set of sampling points (sensor locations) and gq

depends on the sensor separations. By comparing (3.36) with (3.49) we can observe

that

w(r)
q � gq�(zq; k) for q = �Q; : : : ; Q

so that

W (r) �

2664
g�Q�(z�Q; k)

...

gQ�(zQ; k)

3775 : (3.50)

By combining (3.50) and (3.48) we can obtain the following matrix equation,

W (r) � D1J1D2J
T
2W

(1);

where

D1 =

2666664
g�Q 0 : : : 0

0
. . .

...
...

. . . 0

0 : : : 0 gQ

3777775
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Figure 3.10: Desired near�eld beampattern.

is a (2Q + 1)� (2Q+ 1) diagonal matrix,

J1 =

2664
j0(kz�Q) : : : ; jN (kz�Q)

...
...

j0(kzQ) : : : ; jN(kzQ)

3775
is a (2Q + 1)� (N + 1) matrix,

D2 =
2

�

2666664
i0+1

R0(r;k)
0 : : : 0

0
. . .

...
...

. . . 0

0 : : : 0 iN+1

RN (r;k)

3777775
is a (N + 1)� (N + 1) diagonal matrix, and

J2 =

2664
j0(kz�M) : : : ; jN (kz�M)

...
...

j0(kzM) : : : ; jN(kzM)

3775
is a (2M + 1)� (N + 1) matrix. Hence we can conclude that the far�eld-near�eld

transformation matrix is given by

A =D1J1D2J
T
2 :
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Figure 3.11: Resulting beamformer performance in the near�eld at a distance of 3
wavelengths from the array origin. The desired beampattern (dotted) and the re-
sponse of the beamformer designed using near�eld quadratic compensation method
(dashed) are also shown for comparison.

3.5.5 Weight Redesign Example

The following example illustrates the use of the above transformation technique for

near�eld beamforming in comparison with the near�eld quadratic compensation

technique in [3, p. 36]. We wish to design a near�eld beamformer having the

response in Figure 3.10 at a distance of 3 wavelengths from the array origin.

A set of weights for a linear array of 7 (Q = 3) half wave-length spaced sensors

was designed according to [9] to produce the required beampattern in the far�eld.

For the actual array for near�eld operations, we chose 13 (M = 6) sensors with

uniform sensor separation of half a wavelength. Then we calculated the transfor-

mation matrix A with the maximum number of modes N = 15 for this example.

Next we evaluated the corresponding near�eld weight vector using (3.37). The

resulting beamformer response was evaluated in the near�eld and the response is

depicted (solid) in Figure (3.11). Also shown is the desired beampattern (dotted),

and the response of the near�eld method [3] (dashed). We note that the proposed

near�eld design technique provides a close realization of the desired beampattern

over all angles, not just at angles close to broadside as for the near�eld method

of [3].
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3.6 Summary and Contributions

Three methods of near�eld beamforming have been presented exploiting the modal

analysis techniques developed in Chapter 2. Based on the results of this chapter,

we can make two conclusions: 1) a near�eld beamforming can be e�ectively per-

formed by using far�eld design techniques after obtaining a relationship between

the near�eld beampattern speci�cation and its equivalent far�eld beampattern, 2)

modal analysis techniques are useful in establishing these near�eld-far�eld beam-

pattern relationships.

We itemize some speci�c contributions made in this chapter:

i. The concept of near�eld-far�eld beampattern transformation was introduced

to design data-independent near�eld beamformers.

ii. An exact near�eld-far�eld beampattern transformation method was devel-

oped for near�eld beamforming using modal analysis techniques developed in

the Chapter 2. This method involves the radial transformation of a near�eld

beampattern to a physically equivalent far�eld beampattern and the subse-

quent design of a far�eld beamformer to realize this transformed beampat-

tern.

iii. We established an asymptotic equivalence between two transformation prob-

lems: (i) determining the near�eld performance of a desired beampattern

speci�cation in the far�eld, and (ii) determining the equivalent far�eld beam-

pattern corresponding to a given desired beampattern speci�cation in the

near�eld. This result was used to propose a computationally simple near�eld

beamformer design procedure based on far�eld design techniques.

iv. A direct linear matrix transformation was obtained between the array weights

required to achieve the given beampattern speci�cation in the far�eld and

near�eld.
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Chapter 4

General Broadband Aperture/

Array Design

4.1 Introduction

In this chapter, we develop a systematic procedure for the design of a general

broadband beamformer using the modal analysis techniques developed in Chapter 2

and the concept of a theoretical continuous sensor.

We identify a set of elementary aperture functions indexed by modes, where each

elementary aperture function realizes the corresponding elementary beamshape in-

troduced in Chapter 2. By linearly combining these elementary aperture functions

an arbitrary broadband beampattern, can be realized. Then we approximate the re-

sulting aperture by a set of discrete sensors to obtain a realizable broadband beam-

former. The proposed beamformer structure has three major processing blocks: (i)

a beampattern independent �ltering block consisting of elementary beamformers;

(ii) a beampattern shape dependent �ltering block; and (iii) a radial focusing �lter

block, where a single parameter can be adjusted to focus the array to di�erent

radial distances from the array-origin. Hence, this design provides an e�cient

parametrization for adaptive beamformers (Chapter 5), where only the beampat-

tern shape dependent �lters and a radial distance dependent parameter need to be

adapted.

This chapter is organized as follows: Section 4.2 establishes a relationship be-

tween the modal coe�cients of an arbitrary broadband beampattern speci�cation

and the aperture illumination function required to realize this beampattern at a

given distance from the sensor origin. Explicit expressions for elementary aperture

functions for linear and spherical apertures are derived in Section 4.3. Section 4.4

93
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shows how to approximate the theoretical continuous sensor by a practical discrete

array of sensors. Guidelines for choosing the non-uniformly spaced sensor locations

and the consequence of spatial sampling are addressed in Section 4.5. We conclude

with an example broadband beamformer, which can be focused to either near�eld

or far�eld, in Section 4.6.

4.2 Broadband Continuous Sensor

4.2.1 Background

A broadband continuous aperture can be viewed as a limiting case of a closely

packed set of discrete sensors with a temporal �lter attached to each sensor. That

is, the aperture illumination of a broadband continuous sensor is a function of fre-

quency. The concept of such a theoretical aperture has been used previously [1], to

design far�eld frequency invariant beamformers. We also use a similar approach,

since mathematical relationships between the functional requirements of the broad-

band beampattern speci�cation and the beamformer structure are simple to derive

using a theoretical continuous aperture. Once the relevant beamforming struc-

ture is developed, it can be approximated by a set of discrete sensors to realize a

practical implementation.

4.2.2 Continuous Aperture for Far�eld

Even though the problem addressed in this chapter is to design a general broadband

beamformer, �rst we consider a problem of designing a far�eld beamformer. In the

following section we generalize the results of this section to accommodate general

broadband beamforming.

Suppose the desired far�eld broadband beampattern is speci�ed by the modal

representation (2.22) as

b1(ŷ; k) =
1X
n=0

nX
m=�n

�nm(k)Rn(1; k)Ynm(ŷ); k 2 [kl; ku] (4.1)

where the integers n � 0, m 2 f�n;�(n + 1); : : : ; ng index the modes, Ynm(�) is
the elementary beamshape (2.13), kl and ku are the lower and upper frequencies of
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the design band,

Rn(1; k)
�

= lim
r!1

Rn(r; k) =
in+1

k
; (4.2)

Rn(r; k) is de�ned in (2.20), and �nm(k) are the modal coe�cients. (Recall that an

arbitrary beampattern can be uniquely speci�ed by the modal coe�cients �nm(k)

for each frequency k.) Now we seek a theoretical sensor that gives the spatial

response (4.1) to a far�eld point source.

Consider a continuous sensor con�ned to a bounded region 
 � R3 with broad-

band aperture illumination �(x; k), x 2 
. From the development in Chapter 2,

the angular response of a this aperture to planar waves (i.e., those generated by

a far�eld point source) impinging from an angle (�; �) can be written using (2.51)

and (2.46) as

b1(ŷ; k) =
Z



�(x; k)e�ikx�ŷdx; (4.3)

where ŷ = (sin � cos �; sin � sin�; cos �), is a unit vector pointing opposite to the

direction of the propagation of waves. Observe that (4.3) is a three-dimensional

Fourier Transform relating the far�eld beampattern to aperture illumination for

a frequency k. The three-dimensional inverse Fourier transform corresponding to

(4.3) is given by

�(x; k) =
k

2�

Z
B

b1(ŷ; k)ejkx�ŷdŷ (4.4)

where the three-dimensional integration is over the unit sphere and B = fŷ 2 R3 :

kŷk = 1g.
Suppose the continuous sensor response (4.3) is equal to the desired beampat-

tern (4.1). We substitute (4.1) into (4.4) and rearrange to obtain the aperture

illumination function as

�(x; k) =
1X
n=0

nX
m=�n

�nm(k)Rn(1; k)%nm(x; k); (4.5)

where

%nm(x; k)
�

=
k

2�

Z
B

Ynm(ŷ) e
jkx�ŷdŷ: (4.6)

That is, the given far�eld beampattern (4.1), can be achieved by a beamformer
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(theoretical sensor) with the aperture illumination (4.5). Observe the similarities

in mathematical form between the far�eld beampattern (4.1) and the correspond-

ing aperture illumination (4.5). In (4.1), an arbitrary far�eld beampattern is rep-

resented by the weighted sum of elementary beamshapes Ynm(�) with the frequency
dependent weights are given by �nm(k)Rn(1; k). Whereas in (4.5), the aperture

illumination required to produce the beampattern (4.1) for a far�eld source is given

by weighted sum of functions %nm(�) where the weights are same as in (4.1). In

recognition of this similarity, we name the functions %nm(�) elementary aperture

illumination functions.

Note that (4.6) could be directly used to �nd the elementary aperture illumina-

tion %nm(�) for each elementary beamshape Ynm(�). Since these elementary aperture
functions act as a functional basis they are independent of the speci�c beampattern,

and can be calculated beforehand in a practical situation. That is, a beampattern

speci�cation, in this case in the far�eld, can be reduced to a constructible set of

frequency dependent weights (�lters).

4.2.3 Near�eld Equivalence

In the previous subsection we introduced a technique to obtain a continuous aper-

ture illumination function �(x; k) that realizes a given broadband far�eld beampat-

tern. In this section, we generalize this result to establish the aperture illumination

function needed to realize a given broadband beampattern at any radial distance

from the array origin. We make use of the modal analysis techniques introduced

in Chapter 2 to derive the desired result.

Theorem 4.2.1 Let b(�; �; k) be an arbitrary broadband beampattern speci�cation.

Suppose that a continuous sensor is contained inside a ball centred at the origin

with radius r0; then the aperture illumination, �r(x; k) of the continuous sensor

that realizes the beampattern b(�; �; k) at a radius r > r0 from the sensor origin is

given by

�r(x; k) =
1X
n=0

nX
m=�n

Anm(k)
Rn(1; k)

Rn(r; k)
%nm(x; k); (4.7)

where the elementary aperture illumination functions %nm(x; k) are given by (4.6),

Rn(�; �) is given by (2.20) and

Anm(k) =

Z 2�

0

Z �

0

b(�; �; k)Y �
nm(�; �) sin � d�d�: (4.8)
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Proof of Theorem 4.2.1: Let ar(�; �; k) be the beampattern (spatial response)

of the continuous sensor �r(x; k) for a source at (r; �; �). Then we use the modal

representation (2.22) to write,

ar(�; �; k) =
1X
n=0

nX
m=�n

�nm(k)Rn(r; k)Ynm(�; �); r > r0; (4.9)

where the constraint r > r0 comes from the fact that the modal representation

(2.22) is valid on a manifold that encapsulates the aperture. Using (2.23) we can

write

Anm(k) = �nm(k)Rn(r; k) =

Z 2�

0

Z �

0

ar(�; �; k)Y
�
nm(�; �) sin � d�d�: (4.10)

Since ar(�; �; k) = b(�; �; k),

Anm(k) =

Z 2�

0

Z �

0

b(�; �; k)Y �
nm(�; �) sin � d�d�: (4.11)

The far�eld beampattern equivalent to ar is given by

a1(�; �; k) =
1X
n=0

nX
m=�n

�nm(k)Rn(1; k)Ynm(�; �): (4.12)

From (4.5) the aperture illumination function corresponding to this far�eld pattern

is

�r(x; k) =
1X
n=0

nX
m=�n

�nm(k)Rn(1; k)%nm(x; k); r > r0: (4.13)

Finally, substituting (4.10) into (4.13) completes the proof.

Comments:

1. The theorem provides a method to achieve a desired beampattern response at

any radius r > r0 from the array origin by a single parameter r adjustment of

the continuous sensor �r(x; k). This has practical implications, shown later,

for easily being able to focus the array.

2. When r ! 1 then the theorem gives the result for the far�eld. That is,

an arbitrary broadband beampattern can be realized at the far�eld by the
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aperture illumination

�1(x; k) =
1X
n=0

nX
m=�n

Anm(k) %nm(x; k);

where Anm(k) is given by (4.8).

4.3 Elementary Aperture Functions

In the previous section, we derive the aperture illumination required to realize a

given broadband beampattern speci�cation at any radial distance from the aperture

origin. In doing so, we expressed the aperture illumination (4.7) as a (frequency

dependent) weighted sum of elementary aperture functions (4.6). However, (4.6) is

a integral equation and falls short of providing complete insight into the structure

of the continuous aperture. In this section, to get a better structural insight,

we derive closed-form expressions for the elementary aperture functions %nm(�)
(4.6) and consider speci�c aperture geometries which are of interest in practical

implementations.

Theorem 4.3.1 Consider a continuous sensor con�ned to a bounded region 
 �
R3 and let x̂ be a unit vector directed to a point x 2 
 on the sensor, then the

elementary aperture function %nm(x; k) is given by

%nm(x; k) = 2k(�i)n jn(kkxk)Ynm(x̂); (4.14)

where jn(�) are the spherical Bessel functions (2.40) and Ynm(�) are the elementary

beamshapes given by (2.13).

Proof of Theorem 4.3.1: The complex conjugate of (2.47) is given by

eikx�ŷ = 4�
1X
n=0

nX
m=�n

(�i)njn(kkxk)Ynm(x̂)Y �
nm(ŷ): (4.15)

By substituting (4.15) into (4.6), interchanging integration and summation, we

obtain

%nm(x; k) = 2k
1X

n0=0

n0X
m0=�n0

(�i)njn0(kkxk)Yn0m0(x̂)

Z
Ynm(ŷ)Y

�
n0m0(ŷ)dŷ:

We use the result (2.14) to evaluate the integration to complete the proof.
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Now Theorem 4.2.1 and Theorem 4.3.1 provide the complete mathematical formu-

lation for the theoretical broadband continuous sensor (beamformer) which realizes

a given broadband beampattern at a given radius from the aperture origin.

Linear Continuous Sensor

The broadband array theory developed in the previous sections is su�ciently gen-

eral to capture quite arbitrary three-dimensional sensor geometries. In an attempt

to bring the result into focus and provide a more concrete presentation of the ideas,

we examine a linear sensor aligned with the z axis. Suppose the origin is at the

centre of the linear sensor. In this case, the beampattern is rotationally symmetric

with respect to �, and a beampattern can be expressed as br(�; k) = br(�; �; k).

By rotational symmetry about the z axis, the only non-zero components of the

modal representation (2.22) are those for which m = 0. Thus we obtain

br(�; k) =
1X
n=0

�n0(k)Rn(r; k)

r
2n+ 1

4�
Pn(cos �)

=
1X
n=0

An(k)Pn(cos �); (4.16)

where

An(k)
�

=

r
2n+ 1

4�
�n0(k)Rn(r; k) (4.17)

=
2n+ 1

2

Z �

0

br(�; k)Pn(cos �) sin �d�; (4.18)

and Pn(�) = P 0
n(�) is the Legendre function of order n. The linear continuous

aperture illumination (4.7) that realizes the beampattern (4.16) at a radius r > r0

from the array origin is given by

�r(z; k) =
1X
n=0

An(k)

r
4�

2n+ 1

Rn(1; k)

Rn(r; k)
%n0(z; k); (4.19)

where r0 is chosen such that �r(z; k) = 0, 8jzj > r0.

We can use the Theorem 4.3.1 to write the elementary aperture functions for
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this special case as

%n0(z; k) = (�i)nk
r
2n+ 1

�
jn(kjzj)

8<:Pn(1) if z > 0

Pn(�1) if z < 0:
(4.20)

To further simplify (4.20), we use some properties of the Bessel and Legendre

functions.

The Bessel functions of the �rst kind have the following property [2, p. 75]

Jv(�t) = ei�vJv(t); (4.21)

where v 2 R, t 2 R and Jv(�) is the Bessel function of �rst kind. Using (4.21) and

(2.40), we can derive that

jn(�t) = (�1)njn(t): (4.22)

Now we use (4.22) and the following results [3, p. 688]

Pn(t) = (�1)nPn(t)
Pn(1) = 1;

to write (4.20) as

%n0(z; k) = (�i)n k
r

2n+ 1

�
jn(kz): (4.23)

Now we state the following theorem regarding a linear continuous broadband aper-

ture (beamformer) as a special case of Theorem 4.2.1:

Theorem 4.3.2 Let b(�; k) be an arbitrary broadband beampattern speci�cation

(rotationally symmetric around z axis). Then the aperture illumination, �r(z; k) of

a linear continuous aperture, aligned with the z axis, that realizes this beampattern

at a radius r > r0 from the aperture origin is given by

�r(z; k) =
1X
n=0

An(k) (�i)n2k Rn(1; k)

Rn(r; k)
jn(kz); (4.24)

where

An(k) =
2n + 1

2

Z �

0

b(�; k)Pn(cos �) sin � d�; (4.25)
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and r0 is chosen such that �r(z; k) = 0, 8jzj > r0.

Comments:

1. The above theorem provides a foundation to design a linear sensor array for

broadband beamforming, which will be considered in the next section.

2. We need to comment on the condition r > r0 in Theorem 4.3.2 which some-

what restricts the application of Theorem 4.3.2 in the near�eld of the aper-

ture. Naturally, �r(z; k) in (4.24) is in�nite in length, since the spherical

Bessel functions jn(t) is de�ned for t 2 R. However, we have noticed in

Chapter 3 that a \reasonable" beampattern speci�cation can be represented

by a �nite number of modal coe�cients. Suppose the given beampattern

speci�cation b(�; k) can be accurately modeled by �rst N +1 coe�cients, i.e.,

An(k) = 0, for n > N . Therefore, we only need to consider �rst N + 1 terms

of the series expansion (4.24). We also note from [3, p. 692] that for kz � n,

jn(kz) =
1

kz
cos

�
kz � n+ 1

2
�
�
;

= 0 as kz !1: (4.26)

Therefore we can claim that for a speci�c design condition, i.e., signal band-

width and beampattern speci�cation, �r(z; k) is e�ectively equal to zero for

z greater than some number r0.

Spherical Continuous Sensor

Another aperture geometry that may have practical signi�cance is a spherical aper-

ture1. For example in [4], a set of microphones were 
ush-mounted on the surface

of 19mm diameter rigid nylon sphere to have a steerable, �rst order di�erential

microphone array.

Consider a spherical continuous sensor with radius r0 and let a point on the

sensor x = x(r0; �0; �0) in spherical coordinates where the centre of the sensor is

located at the origin. Then the elementary aperture functions (4.14) for this special

case is given by

%nm(x(r
0; �0; �0); k) = 2kjn(kr

0)Ynm(�0; �0): (4.27)

1This can be a rigid ball or a shell, where the surface of the sphere is considered as the aperture.
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Unlike the linear aperture, the spherical aperture has �nite dimensions. However,

in this thesis, we will not proceed with any further developments on the spherical

aperture.

4.4 Broadband Discrete Array Design

4.4.1 Background

We now show how to exploit the above ideas for broadband array design. An array

is a �nite set of identical, discrete, omni-directional broadband sensors arranged in

a regular geometric fashion. We will only consider one-dimensional linear sensor

arrays, although the results can be generalized to two and three dimensions. We

consider a double sided linear array aligned to the z axis. There are a few techniques

discussed in the literature [5,6] for discretization of a continuous sensor; we closely

follow the procedure given in [1].

4.4.2 Approximation

An array of sensors can only approximate the continuous aperture distribution

described by (4.24). In our formulation this reduces to a numerical approximation

of the following integral representation, which gives the continuous sensor output

Z(k) =

Z 1

�1
�r(z; k)S(z; k) dz; (4.28)

where S(z; k) is the Fourier Transform of the received signal at point z on the

sensor. We use the well-known Trapezoidal integration method as used in [1] to

approximate (4.28) by

eZ(k) = QX
q=�Q

gi �r(zq; k)S(zq; k); (4.29)

where fzqgQq=�Q is a set of 2Q + 1 discrete sensor locations and gq is a spatial

weighting term which is used to account for the (possibly) nonuniformly spaced

sensor locations. The role of the gq is better understood at the end of Section 4.5,

where the gq are expressed in terms of sensor locations. The above approximation

introduces two kind of errors: (i) the physical array is �nite in extent and thus an

in�nite length integral has been replaced by a �nite length summation; (ii) two spa-
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tially continuous functions �r(z; k) and S(z; k) are replaced by their corresponding

spatially discrete counterparts and, hence, there is a possibility of spatial aliasing

errors.

4.4.3 Beamformer Structure

We can consider �r(zq; k) in (4.29) as the frequency response of a �lter attached to

the sensor at point zq. By combining (4.24) and (4.29) we write,

eZ(k) = LX
q=�L

gq S(zq; k)
1X
n=0

An(k)Gn(r; k)Fn(zq; k); (4.30)

where

Fn(zq; k)
�

= 2(�i)n jn(kzq) (4.31)

Gn(r; k)
�

= k
Rn(1; k)

Rn(r; k)
: (4.32)

We will call Fn(zq; k) the elementary �lters (consistent with terminology of elemen-

tary beamshapes and elementary aperture functions). As in the case of elementary

aperture functions, these elementary �lters can be considered a common element

of all beamformers; thus they are useful in developing an e�ective parameteriza-

tion for adaptation of beampatterns (see Chapter 5). Figure 4.1 illustrates the

magnitude of the frequency response of the elementary �lters of the �rst six modes

versus the product of the wavenumber k and the distance z to the associated sen-

sor. Note that all but the mode zero elementary �lters are bandpass in nature.

This fact will be used in Section 4.5 to �nd the best possible sensor locations, i.e.,

to derive the nonuniform spacings naturally a�orded by this design method to deal

the broadband signals.

We now demonstrate an important result regarding the elementary �lters as a

consequence of (4.31). Note that in (4.31), Fn(zq; k) is a symmetric function of the

spatial variable zq and of the frequency variable k. Thus, these elementary �lters

are related through a frequency dilation property:

Theorem 4.4.1 All elementary �lter responses Fn(zq; k) of the same mode n at

di�erent sensor locations zq are identical up to a frequency dilation. That is,

Fn(zq; k) = Fn(z0;
zq
z0
k); (4.33)
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(a) mode: n = 0
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(b) mode: n = 1
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(c) mode: n = 2
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(d) mode: n = 3
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(e) mode: n = 4
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(f) mode: n = 5

Figure 4.1: Magnitude response of elementary �lters Fn(z; k) for n = 0; 1; 2; 3; 4
and 5, plotted against the product of the wavenumber k and the distance z to the
associated sensor.
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where z0 is a reference sensor location.

Proof of Theorem 4.4.1: Let Fn(z0; k) and Fn(zq; k) be the frequency response

of two elementary �lters of the same mode n and associated with sensors at z0 6= 0

and zq, respectively. Then from (4.31),

Fn(zq; k) = 2 jn(kzq)

= 2 jn(k
zq
z0
z0)

= Fn(z0;
zq
z0
k); (4.34)

which is a dilation in the frequency domain.

With the output of the double-sided one-dimensional broadband array as de�ned

in (4.30) and the dilation property of the elementary �lters (4.34), we are led to

a block diagram of a general linear broadband beamformer (4.30) as shown in

Figure 4.2.

Regarding the beamformer structure we can make following comments:

1) The proposed general beamformer has three levels of �ltering associated with

it. The �rst level consists of elementary beamformers, which are shown in-

side the dashed-line boxes in Figure 4.2. Each of the elementary beamformers

consists of elementary �lters of the same mode which are connected to dif-

ferent sensors but are related by the dilation property. As a consequence, we

have a set of unique beamformers for each and every mode n. In other words,

the elementary beamformer of mode n produces the elementary beamshape

of the mode n. Further, the elementary beamformers are independent of the

required beampattern speci�cations.

2) The coe�cients An(k) form the second level of �ltering. Since the An(k)

determine the shape of the beampattern, we call them beam shape �lters.

3) The �nal set of �lters Gn(r; k) are independent of sensor locations but de-

pendent on the operating radius r and the mode, and can be simpli�ed using

(4.32), (2.20) and (2.17) to obtain

Gn(r; k) =
2(�i)n+1

reikrh
(2)
n (kr)

: (4.35)
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Figure 4.2: Block diagram of a general one-dimensional broadband beamformer
described by (4.30) where Fn(zq; k) are the elementary �lters, Gn(r; k) are the
radial focusing �lters and An(k) are the beam shape �lters.
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By adjusting the parameter r in Gn(r; k), the beamformer can be focused to

a particular operating radius r either in near�eld or far�eld. To highlight this

important property we call the �lters Gn(r; k) radial focusing �lters.

4) In Section 4.2.2 we showed that an arbitrary beampattern can be decom-

posed into a weighted sum of elementary beamshapes, where the weights

are the modal coe�cients. Since each elementary beamformer produces an

elementary beamshape, an arbitrary beamformer can be implemented by

adding them together with the beamshape �lter An(k) and the focusing �l-

ters Gn(r; k). Because of these properties, our design is readily convertible

to adaptive implementations, where only the beam shape �lters and radial

focusing �lters need to be adapted (see Chapter 5).

5) Finally, we will give some remarks about the general beamforming structure

for two and three dimensional arrays. We can generalize the one dimensional

beamforming structure (4.30) to higher dimensions:

eZ(k) =X
q

gq S(xq; k)
1X
n=0

Gn(r; k)
nX

m=�n
Anm Fnm(xq; k); (4.36)

where q is an integer, Fnm(�; �) are appropriately de�ned elementary �lters

of mode n and submode m and the sensors are placed at points fxqg in 3-

dimensional space. Let us assume that �nm(k) = 0 for n > N , where N is

a positive integer. Then, there will be N(N + 2) elementary beamformers

whose outputs are connected to the shape �lters �nm(k). Compared with

the one-dimensional beamformer (Figure 4.2), there are additional summing

points before the radial focusing �lters Gn(r; k) which add the outputs from

the (2n+ 1) shape �lters Anm of the same mode n but di�erent m values.

4.4.4 Frequency Invariant Beamforming

In many applications it is desirable for a broadband beamformer to have spatial

resolution that is constant over the entire bandwidth of the source signals. For

examples, in speech acquisition with a microphone array, it might be desirable

that the spatial resolution remain constant over the entire speech bandwidth, which

covers approximately four octaves. Signals with a bandwidth of several octaves are

also encountered in sonar applications. A beamformer that maintains a constant

spatial response over an arbitrarily wide bandwidth is called a frequency invariant

beamformer [7].
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In this section we consider the design of frequency invariant beamformers as

a special case of the general beamforming theory developed in this chapter. This

method generalizes the previous work [1].

An arbitrary beampattern over an arbitrary bandwidth can be expressed by

(4.16). It can be seen from (4.16) that if the coe�cients An(k) are independent of

frequency k for a range of frequencies k 2 [kl; ku] � (0;1), i.e., if

An(k) = �n0Rn(r; k) = An 8k 2 [kl; ku]; (4.37)

where fAng are set of complex scalars, then the beampattern is frequency invariant
over k 2 [kl; ku]. This simpli�es the general beamformer structure in Figure 4.2,

where the set of shape dependent �lters becomes a set of scalars.

If the beamshape speci�cation b(�) is given then the set of scalars fAng can be

determined using (4:17) where br(�; k) = b(�).

4.5 Choice of Sensor Locations

As an engineering problem, it is desirable to minimize the number of sensors re-

quired whilst maintaining acceptable performance. The major factor determining

the minimum number of sensors possible is spatial aliasing. It is well known from

the array literature [8] that a sensor spacing of �=2 = �=k is needed to avoid spatial

aliasing for a narrowband array operating at frequency k. For a broadband array,

the upper limit of the design band frequency ku must be used to avoid spatial

aliasing in all frequencies, which suggests that a uniformly spaced array with �=ku

spacing is needed. However, such an array will give a smaller e�ective aperture for

lower frequencies and larger aperture for a high frequencies, which is undesirable.

We will now show how to overcome this problem.

In Section 2.5, it was shown that the lower-order modes are the signi�cant ones

that give the broad beampattern features, whereas the higher-order modes give the

�ner detail. We assert that sensible beampattern speci�cations should involve only

the lower order modes. Hence, for most practical beampatterns, the coe�cients

An(k) can be taken as zero for larger n (typically n > 15 or so). Let us assume

An(k) = 0 for n > N , and thus we need to consider only modes up to N , which

limits the number of elementary �lters required.

We observe from Figure 4.1 that all the elementary �lters tend to have the

characteristics of a bandpass �lter except the n = 0 mode �lter which has low-

pass characteristics. Due to the dilation property of the elementary �lters (see
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Theorem 4.4.1), the bandwidth and the cut-o� frequencies of elementary �lters

are scaled with the location of the sensor to which they are connected. Therefore,

as we move away from the origin, sensors become relatively inactive at higher

frequencies. This means that the sensor spacings can be increased according to the

highest frequency for which that sensor is e�ectively active. Consequently we can

minimize the number of sensors as well as avoid the spatial aliasing.

For a given sensor location, the e�ective cut-o� frequency of these �lters in-

creases as mode n increases (see Figure 4.1). Let an be the product of the upper

cut-o� frequency kc;n of the mode n �lter and the distance z to the associated

sensor from the origin (i.e., an = kc;nz), where kc;n is de�ned as the �rst zero

crossing point above the passband2. Table 4.1 lists the an of the �rst 16 elemen-

tary �lters. Clearly the upper cut-o� frequencies of elementary �lters are related

by kc;1 < kc;2 < : : : < kc;N . Therefore to make a sensor inactive for a given

frequency k, it is su�cient to have kc;N < k.

mode (n) an = kc;nz mode (n) an = kc;nz

0 3.142 8 12.79

1 4.493 9 13.91

2 5.763 10 15.03

3 6.988 11 16.14

4 8.183 12 17.25

5 9.356 13 18.35

6 10.51 14 19.44

7 11.05 15 20.54

Table 4.1: Upper cut-o� frequencies of the �rst 16 elementary �lters as a product
of sensor location z and cut-o� frequency kc;n.

We can now give complete guidelines for choosing discrete sensor locations.

Here we consider a double-sided array and begin with a sensor located at the array

origin. Initially, to avoid spatial aliasing we need a sampling distance of

dku = �u=2 = �=ku: (4.38)

As long as the cut-o� frequency kq of the sensor located at zq (which is equal to

the cut-o� frequency kc;N of the highest mode elementary �lter attached to that

sensor) is greater than the upper design frequency ku, we need to maintain the

2Note that these elementary �lters are not ideal bandpass �lters and other de�nitions for
cut-o� frequencies such as half power point can be used.
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above sampling distance. In this central portion of the array, the cut-o� frequency

of the qth sensor from either side of the origin is given by

kq =
aN
jqj�ku for 0 < jqj � Q;

where Q is the number of uniformly spaced sensors in one side of the array. As we

move further away from the origin, i.e., as q grows, kq decreases and will become

less than ku. The number of uniformly spaced sensors Q required to satisfy this

constraint is given by

Q =
�aN
�

�
; (4.39)

where d�e is the ceiling function. At this point, we can increase the sampling

distance, just to avoid spatial aliasing at kQ. Since the cut-o� frequency kQ+1 of

the (Q + 1)th sensor is less than that of Qth sensor, the sampling distance can be

further increased for the next location. This process can be continued until the

cut-o� frequency of the last sensor becomes less than the lower design frequency

kl. Therefore the location of the qth sensor relative to the origin is given by

zq =

8><>:
q�
ku

for jqj � Q

Q�
ku

�
1 + �

aN

�jqj�Q
for Q < jqj � L ;

(4.40)

where L is the total number of sensors in one side of the array. Using the fact

that the cut-o� frequency of the last sensor has to be less than or equal to the

lower design frequency kl, the number of minimum sensors per one side required

to implement a broadband array over the design band is

L = Q+
� log

�
aNku
Q�kl

�
log

�
1 + �

aN

� �; (4.41)

where b�c is the 
oor function. Note that we need a total of 2L+1 sensors altogether
to have a double-sided array.

Spatial Weights

In order to complete the guidelines for a practical realization of the beamformer

given by (4.30), we now consider the spatial weighting term gq introduced in (4.29).

Recall that the Trapezoidal rule has been used to approximate the integral in
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Figure 4.3: Desired beamformer response used in the example in Section 4.6: 25dB
Chebyshev beampattern over 300� 3000Hz.

equation (4.28) by the summation in (4.29), hence the spatial weighting term gq is

given by (possibly) non-uniform sensor locations (4.40) as

gq =

8><>:
1
2
(zq+1 � zq�1) if jqj < L

1
2
(zL � zL�1) if jqj = L:

(4.42)

Note that any other integral approximation method can be used instead of the

Trapezoidal rule and the spatial weighting term gq needs to be determined appro-

priately.

4.6 Design Example

We now consider an example of broadband beamforming design using the tech-

niques introduced above.

Suppose we wish to design a one-dimensional microphone array for operation

in the air at sea level so c = 345ms�1. Suppose that the desired design frequency

range is 300 � 3000 Hz, which is suitable for speech applications. Let us limit

the maximum mode index, N , to 15 as suggested in Section 4.5; thus we assume

all beampatterns of our interest can be approximately decomposed to the �rst 16

modes. Now we can determine the sensor locations and 16 elementary �lters, which

are independent of the desired response once the design band and the number of

modes are decided. From Table 4.1, the product of cut-o� frequency kc;n and the

sensor location z of the highest (15th) mode elementary �lter is aN = 20:54. Next
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the sensors are placed according to (4.40) and it is found from (4.41) that the total

number of sensors required is 41 and the length of the double sided array is 4:9m.

The sensor locations are given in Table 4.2 and the frequency responses of the

elementary �lters are given by (4.31).

Now we consider an example beampattern which is for a beamformer having a

constant Chebyshev 25 dB beampattern (shown in Figure 4.3) over the frequency

range 300 � 3000 Hz. The example chosen is a frequency invariant beampattern,

although we stress that our design method is not restricted to frequency invari-

ant beamformers. For this case, the beampattern is characterized by the scalar

coe�cients An and we have calculated them for n = 0; 1; : : : ; 15 using (4.18).

For the sake of e�cient implementation, all the �lters are collapsed into one �lter

per sensor. This is possible, since the proposed beamformer structure (Figure 4.2)

consists of linear combinations of various �lters.

q zq=�u q zq=�u
0 0.0 11 6.2

1 0.5 12 7.1

2 1.0 13 8.2

3 1.5 14 9.5

4 2.0 15 10.9

5 2.5 16 12.6

6 3.0 17 14.5

7 3.5 18 16.7

8 4.0 19 19.3

9 4.6 20 22.3

10 5.4

Table 4.2: Locations zq of the q
th sensor of the example double sided symmetric

array in Section 4.6 (given in terms of the upper design wavelength �u).

The resulting beamformer is focused at the far�eld by setting the parameter

r = 100�l in the focusing �lter Gn(r; k). The response of the beamformer to a

far�eld source is given in Figure 4.4(b), which is close to the desired response.

The response of the same far�eld focused beamformer to a near�eld source at a

radius 3�l is given Figure 4.4(a). It is evident from this �gure that the far�eld

design is inadequate for the desired near�eld performance. Next we focus the same

beamformer to the near�eld by simply adjusting the variable r in the focusing

�lter Gn(r; k) to 3�l. The resulting beamformer is simulated in the near�eld and
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(a) near�eld response at a radius
3�l
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(b) far�eld response

Figure 4.4: Response of the far�eld focused (by setting r = 100�l in the focusing
�lter Gn(r; k)) beamformer (see Figure 4.2) with 25dB Chebyshev beampattern
to (a) a near�eld source at a radius 3�l (b) a far�eld source at 100�l. This �g-
ure demonstrates that the far�eld design is inadequate for the desired near�eld
performance.

we observe an improved response in Figure 4.5(a). The focused array response

is close to the desired response with negligible variation in the main beam and

slight ripples in the side lobes. We conclude that the approximation involved in

discretizing and truncating the continuous sensor was su�ciently accurate. For

completeness, we �nd the response of near�eld focused beamformer to a far�eld

source and show this in Figure 4.5(b).

The similar appearance of Figure 4.4(a) and Figure 4.5(b) (also the pair Fig-

ure 4.4(b) and Figure 4.5(a)) can be explained by the results in Section 3.4 and

our work [9] on radial reciprocity, which established the asymptotic equivalence of

two transformation problems: (i) determining the near�eld performance of a far�eld

beampattern speci�cation, and (ii) determining the equivalent far�eld beampattern

corresponding to a near�eld beampattern speci�cation. We can view Figure 4.5(b)

and Figure 4.4(a) as the result of problem (i) and (ii), respectively, with beampat-

tern speci�cation given in Figure 4.3 for both cases.
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(a) near�eld response at 3�l

500

1000

1500

2000

2500

3000

0

50

100

150

−60

−50

−40

−30

−20

−10

0

FREQUENCY (Hz)ANGLE (degrees)

B
E

A
M

P
A

T
T

E
R

N
 (

d
B

)

(b) far�eld response

Figure 4.5: Response of the near�eld focused (by setting r = 3�l in the focusing
�lter Gn(r; k)) beamformer (see Figure 4.2) with 25dB Chebyshev beampattern to
(a) a near�eld source at a radius 3�l (b) a far�eld source at 100�l.

4.7 Summary and Contributions

A new method of general broadband beamforming covering far�eld and near�eld

operations has been proposed in this chapter. The e�cient parameterization af-

forded by this technique enables the beamformer to be focused to a desired radial

distance using a single parameter and the shape of the beampattern can be con-

trolled by another set of parameters. These properties make it potentially useful

for adaptive beamformer design.

We itemize some speci�c contributions made in this chapter:

i. We have established an expression for the continuous aperture illumination

required to realize a given far�eld broadband beampattern in terms of modal

coe�cients of the given beampattern.

ii. The above result was generalized to obtain a continuous aperture, which

can realize an arbitrary beampattern at a radius r from the origin, i.e., the

aperture can be focused to a desired radius. The only restriction that applies

is that the aperture must be inside a sphere with the radius r.

iii. The concept of elementary aperture functions indexed by modes, was intro-

duced. Each elementary aperture function corresponds to the elementary

beamshape of the same mode. Thus, given a beampattern speci�cation in its
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modal representation, the required continuous aperture can be constructed

by linearly combining elementary aperture functions with appropriate weights

which depend on the modal coe�cients of the desired beampattern.

iv. We also obtained exact expressions for the elementary aperture functions for

linear and spherical aperture geometries.

v. A general discrete linear beamformer was obtained by approximating the the-

oretical continuous aperture by a set of discrete sensors. The resulting beam-

former structure can be factored into three levels of �ltering: (i) beampattern

independent elementary beamformers; (ii) beampattern shape dependent �l-

ters; and (iii) radial focusing �lters where a single parameter can be adjusted

to focus the array to a desired radial distance from the array origin.

vi. We also gave guidelines on how to place sensors in a nonuniform fashion to

minimize the number of sensors required.
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Chapter 5

Near�eld Adaptive Beamforming

5.1 Introduction

In this chapter, we consider the design of an adaptive beamformer to operate in

a signal environment consisting of broadband near�eld sources, where some of the

interfering signals may be correlated with the desired signal.

Conventional adaptive beamformers such as the Frost beamformer [1] and Gen-

eralized Sidelobe Canceller (GSC) [2] are found to be e�ective in strong interference

as long as the interferers are uncorrelated with the desired source and the assump-

tion of plane wave propagation is met. In some cases, due to coherent interference,

conventional beamformers break down as a result of signal cancellation of the de-

sired source. This problem arises in hands-free speech acquisition using a micro-

phone array, where the correlated interference is due to re
ections of the desired

signal [3]. Remedies have been proposed to reduce the e�ect of signal cancellation

due to correlated interference by spatial averaging [4] for narrowband signals and

by interpolating arrays or spectral averaging [3, 5{7]. However, all of the above

pieces of work are based on the assumption of far�eld sources. In this chapter,

we use the general broadband beamforming theory developed in Chapter 4 to pro-

pose a novel adaptive beamformer that overcomes coherent signal cancellation and

works well for the sources in the near�eld of the array.

There appears to be little work in the literature on near�eld adaptive beam-

forming. In [8], the Frost algorithm and another method have been used to suppress

uncorrelated interference speech sources. However, they assumed that plane waves

are incident on the array and the issue of coherent interference was not addressed.

In [9], spatial �ltering is employed in the blocking matrix of a beamformer based on

the GSC structure [2] to control the desired signal cancellation, and the adaptation

117
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takes place only when the speaker is silent in order to avoid signal cancellation due

to speaker correlated interference. The few other related works we are aware of

dealing with adaptive microphone array can be found in [10{12].

In this chapter, a near�eld broadband adaptive beamformer is proposed by

extending the results in Chapter 4, where a general broadband beamformer is

introduced using modal analysis tools introduced in Chapter 2. It provides an

e�cient parameterization for the near�eld broadband beamforming problem with

a single parameter to focus the beamformer to a desired operating radius, and

another set of parameters to control the actual broadband beampattern shape. In

this chapter, the frequency invariant nature of the above beamforming structure

is used to combat signal cancellation due to correlated interference and the radial

focusing capability is used to deal with the near�eld source signals.

5.2 Problem formulation

5.2.1 Background

The objective of broadband adaptive beamforming is to preserve a chosen frequency

response for a desired signal arriving from a given source while minimizing the

contribution from interfering sources. This is often achieved by minimizing the

beamformer output power while maintaining the chosen frequency response in the

look direction.

Several di�erent performance measures can be adopted to govern the adaptation

process that adjusts the parameters (e.g., sensor weights or �lter coe�cients) of the

beamformer. The four popular performance measures for obtaining the optimum

solution are based on minimummean square error (MSE), maximum signal to noise

ratio (SNR), maximum likelihood (ML), and minimum variance (MV) criteria. In

this chapter we use the last criterion, speci�cally the linearly constrained minimum

variance (LCMV) beamformer.

There are two general methods of beamforming for broadband signals: time-

domain beamforming and frequency-domain beamforming. In time-domain beam-

forming, a transversal �lter (FIR �lter) is used on each sensor. For an array with

2Q+ 1 sensors, each feeding a L-tap FIR �lter, there are (2Q+ 1)� L parameters

to be adapted. The popular Frost algorithm [1] solves the broadband time-domain

minimum variance beamforming problem.

In frequency-domain beamforming, the data received by each sensor is separated

into narrowband frequency bins and the data in each frequency bin is processed
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separately using narrowband techniques. For an array with (2Q+ 1) sensors, with

M frequency bins in the bandwidth of interest, there are (2Q+1)�M parameters to

be adapted. Frost's algorithm can also be used in frequency-domain beamforming

[13] where in each frequency bin one of the parameters is used to maintain a look

direction constraint, and the remaining parameters minimize the output power.

A discussion on the trade-o� between frequency- and time-domain processors

is found in [14, 15]. Since our proposed near�eld adaptive beamformer is natu-

rally formulated in the frequency-domain, we will only consider frequency domain

processing in this thesis.

5.2.2 Array Model

Consider V broadband signals impinging on a linear double-sided array of 2Q+ 1

sensors from sources at (r1; �1); : : : ; (rV ; �V ) where rv is the distance to the vth

source from the array origin and �v is measured relative to the array axis. One of

these signals is from the desired source at known location (r1; �1), and the remaining

signals are treated as interference. We assume that the desired source location is

known exactly. Otherwise, derivative constraints [16] could be included to provide

robustness for look direction mismatch.

In the far�eld array processing literature, the received signal from a source at

each sensor is expressed as a time delay or advance of the received signal at the

sensor origin from the corresponding source. In this paper, we follow the same

convention.

The received signals are discretized at each sensor, and the resulting array data

is divided into blocks of J samples and Discrete Fourier transformed to produce

M � J narrowband frequency bins within the design bandwidth k 2 [kl; kl], where

kl and kl are the lower and upper frequencies of the design bandwidth, respectively.

The array data in the mth frequency bin is

z(km) =
VX
v=1

arv(�v; km)sv(km) + n(km); (5.1)

where sv(�) is the signal received from the vth source at the origin, n(�) is the
uncorrelated noise data and

ar(�; k) =
�
r
e�i(kd(r;�;z�Q)�r)

d(r; �; z�Q)
; : : : ; r

e�i(kd(r;�;zQ)�r)

d(r; �; zQ)

�T
; (5.2)
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where

d(r; �; z) =
p
z2 + r2 � 2rz cos � (5.3)

is the distance from the source to a point z in the sensor. The above formulation

is valid regardless of whether all the sources are in the far�eld or in the near�eld.

In the case of far�eld sources, rv !1, v = 1; : : : ; V and (5.1) is still valid since

lim
r!1

ar(�; k) =
�
e�ikz�Q cos �; : : : ; e�ikzQ cos �

�T
: (5.4)

We can also write (5.1) as

z(km) = A(km)s(km) + n(km); m = 1; : : : ;M (5.5)

where

A(k) =
�
ar1(�1; km); : : : ;arV (�V ; km)]: (5.6)

and s(k) = [s1(k); : : : ; sV (k)]
T . Equation (5.5) will be useful in analyzing results

in this chapter.

5.3 Conventional Broadband Minimum Variance

Beamforming

In this section, we outline conventional minimum variance beamforming in the

frequency domain. The objective here is to minimize the beamformer output power

while maintaining a chosen look direction response.

Applying a set of frequency dependent weights to the received data (5.1), the

beamformer output is

Z(km) = wH
m z(km); (5.7)

where wm is a 2Q+1 weight vector for the mth frequency bin. Thus, the expected

output power of the beamformer is

EfjZ(km)j2g = wH
mR(km)wm; (5.8)
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where

R(km) = Efz(km)zH(km)g; (5.9)

is the data covariance matrix and satis�es RH(km) = R(km). We substitute (5.5)

in (5.9) to get

R(km) = A(km)Rs(km)A
H(km) +Rn(km) (5.10)

where

Rs(k) = Efs(km)sH(km)g; (5.11)

is the V � V source covariance matrix and

Rn(k) = Efn(km)nH(km)g;

is the (2Q+ 1)� (2Q+ 1) noise covariance matrix.

The spatial response of the beamformer to a source at (r; �) is

br(�; km) = wH
m ar(�; km); (5.12)

where � 2 [0; �]. The broadband minimum variance beamforming problem is for-

mulated mathematically as

min
wm

wH
mR(km)wm

subject to wH
mar1(�1; km) = 1; (5.13)

where (r1; �v) is the location of the desired source and the constraint has been taken

as unity without loss of generality. Then the solution to (5.13) is given by [1]

w(opt)
m =

R�1(km)ar1(�1; km)

aHr1(�1; km)R
�1(km)aHr1(�1; km)

: (5.14)

Since a di�erent weight vector is found for each frequency bin, this method is

referred to as the independent multiple narrowband (IMN-MVDR) beamformer

[13].
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Signal Cancellation

To show the desired signal cancellation in this method, we consider two correlated

signals from two identical sources located at (r1; �1) and (r2; �2). The received

signals from two sources at the origin of the array are related by

s2(k) =
r1
r2
e�ik(r2�r1)s1(k): (5.15)

The source correlation matrix (5.11) for this case is given by,

Rs(k) = Efs1(k)s�1(k)g
24 1 r1

r2
eik(r2�r1)

r1
r2
e�ik(r2�r1) r2

1

r2
2

35 : (5.16)

Observe that Rs(k) is a singular matrix. Singularity of Rs(k) causes rank de�cien-

cies in R(km) and in turn the two signals cancel each other1.

5.4 General Broadband MV Beamforming

5.4.1 Preliminary

It was shown in [13] that the use of a frequency invariant beamformer reduces the

computational complexity and increases the rate of convergence of the adaptive

parameters. In [3], the same idea was used to reduce the signal cancellation due to

coherent interference in minimum variance beamformers. The above work is based

on the frequency invariant beamformer structure described in [19], which assumed

far�eld sources, and is not suitable for near�eld operation. The general beamformer

proposed in Chapter 4 has structural properties similar to the beamformer in [19],

and, in addition, our beamformer can deal with near�eld sources. Hence we use the

frequency invariant version of the beamformer described in Chapter 4 to propose

a new MV beamforming method, to overcome the limitations present in [13] and

to retain its other capabilities.

1See [17, 18] for more detailed treatment of the signal cancellation phenomenon.
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5.4.2 Modal Beamformer

Using (4.30) and (4.37), the structure of a broadband frequency invariant beam-

former for sources at a radius r1 from the array origin is given by

Z(k) =
NX
n=0

AnGn(r1; k)
LX

q=�L
gq S(zq; k)Fn(zq; k); (5.17)

where Gn(r; �) are the radial focusing �lters (4.32) and Fn(zq; �) are the elementary
�lters (4.31). The above equation can be written in matrix form:

Z(k) = bHCr1(k) z(k) (5.18)

where b = [A0; : : : ; AN ]
H is a vector of beamshape coe�cients,

Cr1(k) =

2666664
G0(r1; k) 0 : : : 0

0
. . .

...
...

. . . 0

0 : : : 0 GN (r1; k)

3777775
2664
F0(z�Q; k) : : : F0(zQ; k)

...
. . .

...

FN(z�Q; k) : : : FN (zQ; k)

3775

�

2666664
g�Q 0 : : : 0

0
. . .

...
...

. . . 0

0 : : : 0 gQ

3777775 (5.19)

and

z(k) = [S(z�Q; k) � � �S(zQ; k)]T

represents the array data. The spatial response of the beamformer (5.17) to a

source at (r; �) is given by

br(�; k) = bH Cr1(k)ar(�; k)

� br(�); if r = r1, 8� and 8k 2 [kl; kl]; (5.20)

i.e., the response is approximately frequency invariant2. Because the beamshape

coe�cients b are independent of frequency, and the response br(�; k) is independent

2As described in Chapter 4, the behaviour would be exactly frequency invariant were if not
for truncation of the aperture and sensor discretization.
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of frequency within the design band for r = r1, it follows from (5.20) that

Cr1(k)ar1(�; k) � Cr1(k0)ar1(�; k0) 8� and 8k 2 [kl; kl]; (5.21)

where k0 is a nominal frequency within the bandwidth of interest.

The importance of the above formulation is that the discrete array beamformer

(5.18) can be focused to any radius r1 to give a frequency invariant response at

that radius and there is a single set of modal coe�cients b that de�nes the spatial

response, i.e., the beampattern shape, over the bandwidth of interest. Thus, the

number of adaptation parameters is equal to N + 1, the number of modes used.

Usually this is much less than that of a conventional adaptive beamformer where

the number of adaptation parameters are equal to the product of the number of

sensors and number of �lter taps per each sensor. Of course, it is the imposition

of frequency invariance as a constraint that enables this reduction.

5.4.3 Novel MV Beamforming

We now apply the above beamforming processing (5.18) to the received data (5.1),

giving the beamformer output

Z(km) = bHCr1(km)z(km) (5.22)

in the mth frequency bin. The expected output power of the beamformer over all

frequency bins is

EfjZj2g =
1

M

MX
m=1

EfjZ(km)j2g

= bRbH ;

where

R =
1

M

MX
m=1

Cr1(km)Efz(km)zH(km)gCH
r1
(km) (5.23)

is the frequency averaged data covariance matrix. The objective here is to �nd

the modal coe�cient vector b that minimizes the interference power while passing

signals from the desired location (r1; �1) with unity gain for all frequencies within
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the design band. This is formulated as

min
b

bHRb

subject to DHb = 1M1
; (5.24)

where

D = [Cr1(k1)ar1(�1; k1); : : : ;Cr1(kM1
)ar1(�1; kM1

)]

is a constraint matrix and 1M1
is a vector of ones of dimension M1. Theoretically,

a single constraint at the midband frequency should be su�cient as evident from

(5.21). However, the array beamformer is only an approximation of the frequency

invariant theoretical continuous sensor. Following the idea indicated in [3], we

impose a small number of constraints M1 across the frequency band of interest to

reinforce a frequency invariant response.

Equation (5.24) is a well known constrained LMS problem and its optimum

solution is given by [1]

bopt = R
�1
D[DHR

�1
D]�11M1

: (5.25)

Since we used modal analysis techniques to formulate this beamformer, we will

refer it as the modal analysis (MA)-MVDR beamformer.

5.4.4 Analysis of the Covariance Matrix

In this section we investigate the frequency averaged data covariance matrix (5.23)

to show that it preserves the directional information of all sources despite the

frequency averaging.

Recall that the beamformer (5.17) is an approximation of the broadband con-

tinuous (linear) aperture (4.24) derived in Chapter 4. To obtain an approximate

analytical expression for the covariance matrix (5.23), we calculate the output of

the broadband continuous aperture (5.17) when in the same signal environment

described in Section 5.2.2 via

Ẑ(k) =

Z 1

�1
�r1(z; k)S(z; k)dz (5.26)
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where

�r1(z; k) =
1X
n=0

An 2k(�i)n Rn(1; k)

Rn(r1; k)
jn(kz); (5.27)

and S(z; k) is the Fourier transform of the signal received at a point z on the array.

As in the case of the discrete beamformer (5.17), the continuous aperture (5.26) is

focused to a radius r1 in order to have a frequency invariant response for sources

at that radius.

For the same signal environment described in Section 5.2.2, we can write

S(z; k) =
VX
v=1

rve
ikrv

e�ikd(rv ;�v;z)

d(rv; �v; z)
sv(k) + n(z; k); (5.28)

where n(z; k) is the sensor noise at z which is assumed to be uncorrelated from point

to point on the sensor. From the development of Chapter 2 (see Section 2.6.2), we

can write the output of the continuous aperture as,

Ẑ(k) =

VX
v=1

brv(�v; k) sv(k) + Znoise(k); (5.29)

where

br(�; k) =

Z
�r1(z; k) re

ikr e
�ikd(r;�;z)

d(r; �v; z)
dz; (5.30)

is the spatial response of the continuous aperture to a source at a point (r; �), and

Znoise(k) =

Z 1

�1
�r1(z; k)n(z; k)dz:

It can be shown that, when rv = r1, the spatial response (5.30) is frequency invari-

ant and given by (see (4.16)),

br1(�v; k) �
1X
n=0

AnPn(cos �1);

and generally,

brv(�v; k) �
1X
n=0

An
Rn(rv; k)

Rn(r1; k)
Pn(cos �v): (5.31)
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Now we substitute (5.31) into (5.29) and obtain the output of the continuous aper-

ture to the signal environment described in Section 5.2.2 as

Ẑ(k) �
VX
v=1

1X
n=0

Rn(rv; k)

Rn(r1; k)
Pn(cos �v)sv(k) + Znoise(k): (5.32)

Since the discrete array beamformer (5.22) is an approximation of the continu-

ous sensor, it can be written using (5.32) as

Z(km) � bHTU(km)s(km) + b
HCr1(km)n(km) (5.33)

where the block diagonal matrix

U(k) = diag[

2664
R0(r1;k)
R0(r1;k)

...
RN (r1;k)
RN (r1;k)

3775 � � � ;
2664

R0(rV ;k)
R0(r1;k)

...
RN (rV ;k)
RN (r1;k)

3775];

T =
�
2666664
P0(�1) 0 : : : 0

0
. . .

...
...

. . . 0

0 : : : 0 PN(�1)

3777775 ; � � �
2666664
P0(�V ) 0 : : : 0

0
. . .

...
...

. . . 0

0 : : : 0 PN (�V )

3777775
�
; (5.34)

and s(k) = [s1(k); : : : ; sV (k)]
T .

To show the e�ects of frequency averaging in (5.23), we form an alternative

expression for frequency average correlation matrix using (5.33) as

R � TRsT
H +Rn; (5.35)

where

Rs =
1

M

MX
m=1

U(km)Rs(km)U
H(km); (5.36)

Rn =
1

M

MX
m=1

Cr1(km)Rn(km)C
H
r1
(km)
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and the source covariance matrix is

Rs = Efs(km)sH(km)g: (5.37)

From the above analysis we make the following comments:

1. The directional information of sources is contained in T (5.34), which is

independent of frequency. Thus it is factored out in (5.35), when forming the

frequency average covariance matrix, and una�ected by the averaging.

2. For correlated signals, the source covariance matrix (5.37) tends to be singular

which in turn causes desired signal cancellation in traditional beamformers.

By frequency averaging over a su�ciently large bandwidth, we can obtain a

non-singular data covariance matrix R in our formulation. By using two cor-

related sources, similar to the analysis given in [17], it is possible to show how

the frequency averaging reduces singularity in the data covariance matrix.

3. Frequency averaging in (5.36) involves U(k), which contains radial informa-

tion of the sources. However, this will not a�ect the desired signal, since the

beamformer is focused to the radius of the desired source.

5.5 Adaptive Algorithm

The constrained minimization problem (5.24) is in the same form as that considered

by Frost [1] save that he optimized the array weights whereas we have optimized

the modal coe�cients. In our case, we use Frost's gradient-based algorithm, which

converges in the mean to the optimum solution (5.25), to adapt the modal coe�-

cients.

In summary, the algorithm for our case is given by

b(l + 1) = P [b(l)� �R̂b(l)] + F (5.38)

where b(l) is the set of modal coe�cients at the lth iteration,

F =D(DHD)�11M1
;

the (N + 1)� (N + 1) matrix

P = IN+1 �D(DHD)�1DH ;
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Figure 5.1: Anechoic spatial response of the adapted beamformer at 5m from the
array origin at 26 frequencies within the design band of 500� 3000 Hz. The solid
line indicates the direction of the desired source, while the dashed line indicates
an uncorrelated interferer which is 10 times stronger than the desired source, and
the dotted line indicates another uncorrelated interfere with same power as the the
desired source. All sources are placed at 5m from the array origin.

the initial value of modal coe�cients

b(0) = F ;

R̂ =
1

M

MX
m=1

Cr1(km)z(km)z
H(km)C

H
r1
(km) (5.39)

is an (N + 1)� (N + 1) matrix used to estimate R for the lth iteration, and � is

the adaptive step size parameter which controls the convergence characteristics of

the algorithm. As noted by Frost, � is chosen such that 0 < � < 1=�max, where

�max is the largest eigenvalue of PRP .

5.6 Examples

We now present an example to show the performance of the adaptive array in a

signal environment which consists of near�eld sound sources and their reverberation

due to re
ections.

The design is suitable for speech with a design bandwidth of 600� 3000Hz and

a maximum mode index N = 11 is used. According to Chapter 4, we determine

the number of sensors needed and their location to meet the above bandwidth and

mode speci�cation. The resulting non-uniformly spaced double sided linear array
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Figure 5.2: Reverberated spatial response of the adapted beamformer at 5m from
the array origin at 26 frequencies within the design band.

has total of 39 sensors with aperture length of 2:6m.

We consider an anechoic signal environment consisting of a desired source and

two uncorrelated interference sources, all 5m away from the array origin, with


at frequency spectra over the bandwidth of interest. The desired signal was at

80�, the �rst interferer was at 130� and 10 times stronger than the desired signal,

and the other interferer was at 60� with the same power as the desired source.

White Gaussian noise, uncorrelated from sensor to sensor, was modeled at the

input of each sensor such that the SNR of the desired signal at the origin is 30 dB.

The received array data z(km) was synthesized for 26 frequency bins uniformly

spaced within the desired bandwidth, and the adaptive algorithm was used to

�nd the modal coe�cients with M1 = 3 frequency constraints. The adaptation

step size � = 1 � 10�3 was used. Figure 5.1 shows the beampatterns at r = 5m

produced by the adapted modal coe�cients after 4000 data samples. Observe that

the beampattern has nulls in the directions of interferers and exhibits little variation

with frequency at the focused radius.

Next we consider the performance of the adaptive beamformer in a reverberant

rectangular room3 (7m � 10m) with re
ection coe�cient of 0:8 (the array is aligned

to the 7m long wall). We used the image-source method [20] to calculate the

positions of images (up to the 10th order) of 3 sound sources due to the 4 vertical

walls. The adapted beampatterns after 4000 data samples are given in Figure 5.2.

Note that, even with the multiplicity of highly correlated re
ected signals, the

3Here we only consider a 2 dimensional room and thus only re
ection by 4 vertical walls are
calculated.
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beamformer is able maintain a unity gain in the desired direction and attenuates

the other two interference sources while preserving its frequency invariant behaviour

at the focused radius in the near�eld. Unsurprisingly, the performance is not quite

as good as in Figure 5.1.

Comments:

1. Under the above image source modeling, there are 440 correlated interferers

(images of the desired source) and 882 uncorrelated interferers (two uncorre-

lated interferers and their images). Thus, it is impossible to place a null for

each interferer. Since signal power received from the interferers are less than

that of the original sources, nulls are aligned with the original two uncorre-

lated interferers.

2. Relative to Figure 5.1, the nulls in Figure 5.2 are misaligned to the angles

corresponding to the uncorrelated interferers. This is not an error, but just a

property of the optimal solution to which the adaptive beamformer is trying

to converge.

5.7 Summary and Contributions

The general broadband adaptive beamforming theory developed in Chapter 4 was

used to propose a novel adaptive beamformer. The proposed adaptive beamformer

has the capability to overcome desired signal cancellation and to work well for the

broadband signal sources in the near�eld of the array.

We itemize some speci�c contributions made in this chapter:

i. We have extended the general beamforming theory developed in Chapter 4 to

propose a novel adaptive beamformer. The frequency invariant nature of the

beamforming structure (Chapter 4) is used to combat desired signal cancel-

lation due to correlated interfering signals, and the radial focusing capability

is used to deal with the near�eld source signals.

ii. The frequency averaged array data covariance matrix was analyzed to show

that the directional information of sources is una�ected by the averaging in

our method.

iii. A simulation example is presented to demonstrate the use of the proposed

method for microphone array applications in speech acquisition systems.
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Chapter 6

Other Applications of Modal

Analysis

6.1 Introduction

The modal analysis techniques developed in Chapter 2 have already been used to

solve beamforming problems in the previous chapters. However, we have claimed

that modal analysis is a versatile tool to solve not only beamforming problems but

also to address related array processing issues. The reasoning behind this claim

is as follows. Any array processing problem involves extracting information from

the signal wave�eld around the array. The use of modal analysis to represent the

wave�eld gives structural insights into the problem at hand, which in turn aids

in �nding a solution. In this chapter we show the application of modal analysis

techniques in other areas of array processing. Speci�cally, we consider isotropic

noise modeling and source localization problem to corroborate our claims.

In the �rst part of this chapter, we consider isotropic noise modeling used for

array designs. Historically, isotropic noise is viewed as noise sources uniformly

distributed over all directions in the far�eld of the array. We consider isotropic

noise �elds in the near�eld of the array and also di�use noise �elds where noise

(point) sources are distributed over the entire space. We use modal techniques to

�nd exact series representations for both near�eld isotropic noise and for di�use

noise �elds. The proposed near�eld noise model can be utilized e�ectively to apply

well established far�eld array processing algorithms for near�eld applications of

sensor arrays. An array gain optimization is used to demonstrate the use of the

new noise model.

In the second part of this chapter, we show how to analyze the localization

135
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problem and how to synthesize a solution using modal techniques. We concentrate

on the multiple coherent broadband signal environment, where the received signals

may be correlated with each other (e.g., due to multipath propagation or deliberate

jamming). One of the common approaches to coherent broadband array processing

is to use focusing1 matrices to align broadband array data to a single frequency

and use the frequency averaging to remove the signal correlation. Literally, there

are dozens of papers written on these focusing methods. Here, we show how to �nd

alternative but simple solutions for such approaches.

6.2 Spherically Isotropic Noise Modeling

6.2.1 Preliminary

In much of the array processing literature, the observed external noise2 is assumed

to consist of many random waves propagating in all possible directions with equal

probability [1]. Such a noise �eld results in uniform distribution of noise sources

over all directions in the far�eld of the array, and it is called far�eld spherically

isotropic noise. In many optimal beamformer designs, the noise �eld is assumed to

be known and usually modeled by either white (in time and space) Gaussian noise

or far�eld spherically isotropic noise.

For near�eld applications of sensor arrays such as teleconferencing, the noise

�eld consists of undesirable near�eld sound sources as well as reverberation caused

by the desired and noise sources. Using the source-image method [2], we can model

reverberation as an in�nite set of image point-sources in free space. In an average

size room, some or all �rst-order re
ected images will be in the near�eld of the array,

while multiply re
ected images will tend to be in the far�eld. Due to absorption

by walls and attenuation with distance, an image generated by a multiply re
ected

noise source contributes less power compared to �rst-order re
ected images. Thus,

the overall noise �eld can be regarded as near�eld noise sources, with either far�eld

spherically isotropic noise or white Gaussian noise as a crude approximation. In [3],

far�eld spherically isotropic noise was used to model the e�ect of reverberation

without considering the e�ect of near�eld noise sources.

1There is a possible confusion by the the use of the term \focusing". Here we use the term
\focusing" to denote alignment over frequency as used in the literature. However, the act of
focusing usually refers to delay operations used to align the wavefront as we used in Chapter 3.

2External noise is due to sources other than the desired source. Internal noise is due to sensors
and electronics thermal noise.
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As an alternative, in this chapter we model the noise �eld by a source distribu-

tion that is uniform over all directions in the near�eld at a �xed distance from the

array origin. We call this near�eld spherically isotropic noise. This noise model can

be utilized e�ectively to apply any signal processing criterion based on an isotropic

type noise correlation (which has traditionally been assumed to be in the far�eld)

to near�eld applications. In our simulation example in Section 6.2.7 we will show

that a design based on this near�eld noise model provides better directional gain

than one based on a far�eld noise model in a more realistic mixed far�eld-near�eld

noise �eld. As motivation for the theoretical development, we consider an array

optimization technique formulated for a near�eld array in the following subsection.

6.2.2 Gain optimization for an arbitrary array

The array gain is often used as an indicator of overall array performance. It is

de�ned by

G = 4�
power received from a desired location (Psource)

total noise power received (Pnoise)
(6.1)

Consider an array of 2N+1 sensors, arbitrarily placed in a bounded region 
 � R
3 .

Then the normalized response of this narrowband array to a source located outside

the region 
 at y, is given by

b(y) =
NX

n=�N
wn
e�ikky�xnk

ky � xnk ye
iky; (6.2)

where k � k is the vector 2-norm, wn is the complex gain associated with the sensor

positioned at xn 2 
, y = kyk and k is the wavenumber. Thus, the power received
from the desired location ys of the source is given by

Psource = b�(ys) b(ys);

where � denotes complex conjugate. Arranging the weights in an (2N +1)-element

column vector

w =

2664
w�N
...

wN

3775
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and de�ning a square ((2N + 1)� (2N + 1)) Hermitian matrix

Rsource = aaH

in terms of the (2N + 1) element column vector

a =

2666664
e�ikky�x�Nk

ky � x�Nk
...

e�ikky�xNk

ky � xNk

3777775 yeiky;

leads to the matrix expression

Psource = wHRsourcew:

By assuming a near�eld spherically isotropic noise �eld, i.e., having uniformly

distributed noise sources on a sphere of radius y, we can write the total noise power

received as,

Pnoise =

Z
b�(y) b(y) dŷ

where ŷ = y=y is a unit vector in the direction of y and the integration is over

the unit sphere. We de�ne the ((2N + 1) � (2N + 1)) matrix Rnoise = [rnm] with

elements

rnm =
y2

4�

Z
eikky�xnk

ky � xnk
e�ikky�xmk

ky � xmk dŷ: (6.3)

(Note that Rnoise is Hermitian and positive de�nite). Then,

Pnoise = 4�wHRnoisew;

and equation (6.1) becomes a ratio of quadratic forms

G =
wHRsourcew

wHRnoisew
; (6.4)

which is known as Rayleigh quotient. The usual goal is to �nd the weights that

maximize G. Equation (6.4) is a well known result for array gain [1, p. 141], [4,

p. 164] andRsource andRnoise are commonly known as the source correlation matrix
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and noise correlation matrix respectively. The optimum array gain and weights for

the special case3 Rsource = aaH are given by [5]

Gopt = aHR�1
noisea (6.5)

and

wopt = R�1
noisea (6.6)

respectively.

Similar to the above optimization method, most statistically based beamformer

problems using conventional criteria require evaluation of the noise correlation ma-

trix. Until now, a far�eld isotropic noise model has been used to evaluate the noise

correlation matrix. In the next section, we establish an expression of the noise cor-

relation matrix for near�eld isotropic noise, which will enable us to use the above

statistically optimum beamforming method in near�eld applications.

6.2.3 Near�eld Isotropic Noise

In this section, we �nd an exact series representation for the noise correlation rnm

(6.3) between two sensors due to a near�eld isotropic noise �eld.

Let xn = kxnk and y = kyk. We write the wave�eld at the sensor location xn

due to a source at y using (2.39) as

yeiky
eikky�xnk

ky � xnk = 4�ik
1X
p=0

pX
q=�p

Rp(y; k)Ypq(ŷ)jp(kxn)Y
�
pq(x̂n); y > xn; (6.7)

where jp(�) is the spherical Bessel function, Rp(y; k) is de�ned in (2.20) and Ypq(�)
is de�ned in (2.13).

We can now obtain an exact expression for the near�eld isotropic noise correla-

tion matrix as follows: we substitute (6.7) and its conjugate into (6.3), interchange

integration and summations, and evaluate the resulting integral using (2.14) to

obtain

rnm = 4�k2
1X
p=0

pX
q=�p

jRp(y; k)j2 Y �
pq(x̂n)Ypq(x̂m)jp(kxn) jp(kxm); y > xn: (6.8)

Equation (6.8) is a novel result, which gives the noise correlation between a pair

3In general, maximization of (6.4) is a generalized eigenvalue problem.
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of sensors for a noise �eld generated by uniformly distributed point sources on the

surface of a sphere of radius y which encircles the pair of sensors. Another form of

(6.8) can be derived using the relationship [6, p. 27]

pX
q=�p

Y �
pq(x̂n)Ypq(x̂m) =

2p+ 1

2�
Pp(cos 
nm); (6.9)

where cos 
nm = x̂n � x̂m is the cosine of the angle between x̂n and x̂m and Pp(�)
are the Legendre functions. Combining (6.8) and (6.9), we write the correlation

between two sensors as

rnm = 2k2
1X
p=0

(2p+ 1)jRp(y; k)j2 jp(kxn) jp(kxm)Pp(cos 
nm); y > maxfxn; xmg:

(6.10)

An attractive feature of (6.10) is that for each term in the series, the dependence

on the distance to the noise source y, the angle between two sensors 
nm, and the

distance to the two sensors xn and xm appear as separate factors.

6.2.4 Linear array

For the simple case of a line array through the origin, 
nm would be equal to either

0 or � depending on the location of the origin, for all pairs of sensors. That is

cos 
nm = sgn(x̂n � x̂m)

where sgn(�) is the signum function. Since

Pp(� cos 
) = (�1)pPp(cos 
)

and

Pp(1) = 1 (6.11)

for all integers p [7, p. 208], the correlation between two sensors for a line array is

rnm = 2k2
1X
p=0

(2p+ 1)fsgn(x̂n � x̂m)gpjRp(y; k)j2jp(kxn)jp(kxm); y > maxfxn; xmg:

(6.12)
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6.2.5 Far�eld isotropic noise

The simplest special case of (6.10) is for far�eld isotropic noise, in which case

y !1. Making use of (2.21)

lim
y!1

jRp(y; k)j2 = 1

k2
;

we �nd that (6.10) reduces to

rnm = 2
1X
p=0

(2p+ 1)jp(kxn) jp(kxm)Pn(cos 
nm): (6.13)

Using [8, p. 366], (6.13) becomes

rnm =
2 sin(k

p
x2n + x2m � 2xnxm cos 
nm)

k
p
x2n + x2m � 2xnxm cos 
nm

=
2 sin(kkxn � xmk)

kkxn � xmk ; (6.14)

which is a well-known result for far�eld spherically isotropic noise �elds [1, p. 49].

For the simple case of a linear array with uniform half wavelength spacing, the

observed noises are uncorrelated between sensors; this fact is readily evident from

(6.14). Indeed this is one advantage of the half wavelength sensor spacing chosen

for many linear array designs. By comparing with (6.10), one can deduce that such

a simple relationship breaks down in the near�eld case.

6.2.6 Di�use Noise Field

A di�use sound �eld consists of waves emanating from point sources uniformly

distributed (over distance as well as direction) in R3 . Such �elds are used to model

the room reverberation in microphone array applications [9]. In this section we

will �nd a closed-form expression for correlation between two sensor elements in a

di�use noise �eld.

In this case, the total noise power received by the array is

Pnoise =

Z
R3

�
ye�iky b(y)

��
ye�iky b(y) dy; (6.15)

where the integration is over all of R3 . Note that the array response b(y) given by

(6.2) is in fact a normalized version of the true array response. This normalization
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was done by multiplying the true response by yeiky in (6.2). The purpose of this

normalization is to have a single expression for both far�eld and near�eld array

responses. However, if the sources are at di�erent radial distances from the array

origin, such a normalization must be removed. Thus, we have compensated for the

normalization implicit in (6.2).

By observing (6.15) and (6.2), we can see that the (6.15) does not exist due to

singularities at y = xq, for q = �Q; : : : ; Q. As was shown in [9], reverberation can

be approximately modeled by uniformly distributed point sources outside a sphere

of certain radius (say r). The justi�cation in [9] was that speech intelligibility

degrades only if re
ections are delayed by at least 50ms and noise sources are not

usually closer than some minimum distance. Following the same justi�cation we

rewrite (6.15) as

Pnoise =

Z
kyk>r

�
ye�iky b(y)

��
yeiky b(y) dy; (6.16)

where r is the radius of a suitable sphere centred at the origin, the correlation

between two sensor elements is given by

rnm =
1

4�

Z
kyk>r

eikky�xnk

ky � xnk
e�ikky�xmk

ky � xmk dy: (6.17)

As we did in Section 6.2.3, we substitute (6.2) and its conjugate in (6.17) and

evaluate the integration over the unit sphere (leaving the radial dependent part of

the integration untouched) to get

rnm = 4�k2
1X
p=0

pX
q=�p

Ap(r; k)Y
�
pq(x̂n)Ypq(x̂m)jp(kxn) jp(kxm); (6.18)

where

Ap(r; k) =

Z 1

r

jRp(y; k)j2
y2

dy: (6.19)

Using (3.21) and (3.19), we write

Rp(y; k) =
(i)p+1

k

pX
v=0

(p+ v)!

(p� v)!v!

� �i
2kr

�v
: (6.20)

Now we substitute the above series expansion in (6.19) and evaluate the integration
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Figure 6.1: Response of the optimum array based on near�eld noise model (solid
line) to sources at 3 and 30 wavelengths from the array origin. Also shown is the
response of the far�eld noise model based array response (dashed line).

to get

Ap(r; k) =
1

k2r

pX
u=0

pX
v=0

(p+ v)!

(p� v)!v!

(p+ u)!

(p� u)!u!

(�1)u
v + u+ 1

� i

2kr

�v+u
: (6.21)

When (6.21) is combined with (6.17), we obtain a closed-form solution for correla-

tion between two sensor elements in a di�use noise �eld.

6.2.7 Simulation Example

We now present a design example to demonstrate the use of near�eld isotropic

noise modeling for near�eld beamforming. Our demonstration is based on the

simple array gain optimization technique outlined in Section 6.2.2. However this

noise model can be applied to a wide class of optimization methods in beamforming

such as minimum variance (MV), maximum likelihood (ML) and mean square error

(MSE).

The design is for a double-sided linear array of 9 sensors with an inter-sensor

spacing of �=2, where � is the wavelength. Suppose that the desired source is

in the near�eld at 3� from the array origin, on the broadside of the array. We

calculate the optimum weight vector (6.6), with the noise correlation matrix Rnoise

for near�eld isotropic noise (6.12) at a sphere of radius 2�. The only requirement

that must be satis�ed in choosing the radius of the noise sphere is that the sphere

should encapsulate the array. In this example, the array aperture is 4�; thus a
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Figure 6.2: Response of the optimum array (near�eld noise model) at 3, 5, 10, 20
and 30 wavelengths from the array origin.

sphere of radius 2� just encloses the array. Even though the series (6.12) has an

in�nite number of terms, we approximate it by the �rst 21 terms for this example.

Generally these series expansions are convergent and could be approximated by

a �nite number of terms depending on the array con�guration and the desired

operating distance. In this case, 21 terms proved su�cient.

The responses of the resulting array (solid line) to a near�eld source at 3 wave-

lengths from the array origin and to a far�eld source at 30 wavelengths are given

in Figure 6.1. Also shown is the response of an optimum array designed using

the far�eld isotropic noise model (6.14) (dashed). Observe that the near�eld noise

model based design provides a better directional array gain in the near�eld and

simultaneously provides similar far�eld noise rejection when compared with the

far�eld noise model based design. For both design methods, the power received

from a source at 30� at the look direction is about 25dB less than that of the

desired source at 3� (one would expect only a 10dB di�erence for a single sensor).

The trade-o� for using the near�eld noise model is the better directional gain at

the expense of slightly wider main lobe width. Figure 6.2 shows the response of the

optimum array (designed to operate at 3� using the near�eld noise model) at dif-

ferent radial distances from the array origin. From this �gure, we can note that the

near�eld noise, other than in the look direction, and far�eld noise in all directions

are attenuated with respect to the signal from the desired source. Thus, we can

conclude that our design has acceptable performance in a mixed far�eld-near�eld

noise environment.
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6.2.8 Summary

In this section, we have introduced an exact series representation for near�eld-

far�eld isotropic noise �eld, which may be useful in sensor array applications in the

near�eld. For each term in the series representation, the dependence on the position

coordinates of the sensors is factored into components, each of which depends on a

single coordinate. This property of the series expansion facilitates the calculation

of the correlation matrix for various sensor orientations. While the model has only

been demonstrated here for a small line array, it is generally applicable to more

complex arrays (2D and 3D). More importantly, this result can be utilized to apply

well established far�eld array processing algorithms for the near�eld applications.

6.3 Coherent Broadband Source Localization

6.3.1 Preliminary

The problem of detecting and locating multiple broadband sources using an array

of sensors has attracted a great deal of attention over the past two decades due

to applications in areas such as radar, sonar, communications systems, and speech

acquisition systems. In these scenarios, the source signals may be completely cor-

related, e.g., some of them may be delayed version of others as in severe multipath

propagation situations. The study of this problem is termed as coherent array pro-

cessing in the literature. In this section, we brie
y review two major approaches to

the coherent (far�eld) source localization problem which have appeared in the liter-

ature, and outline how to simplify them using modal analysis techniques developed

in Chapter 2. Unlike in the rest of this thesis, here we only consider sources located

in the far�eld of the array. This is to show the simpli�cation a�orded by modal

analysis with respect to existing coherent far�eld source localization methods.

6.3.2 Problem formulation

Consider a linear double-sided array of 2Q + 1 sensors. Assume that V unknown

broadband signals arrive from directions � = [�1 � � � �V ], where �v is the direction of
the vth source, measured relative to the array axis. Without loss of generality, we

assume that the source signals and noise have �nite bandwidth k 2 [kl; ku], where

kl and ku are the lower and upper band edges respectively.

The received signals are discretized at each sensor and the resulting array data

is divided into blocks of J samples, and discrete Fourier transformed to produce
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M � J narrowband frequency bins within the design bandwidth . The array data

in the mth frequency bin is

z(km) =
VX
v=1

a(�v; km)sv(km) + n(km); (6.22)

where sv(�) is the signal received from the vth source at the origin, n(�) is the
uncorrelated noise data and

a(�; k) =
�
e�ikz�Q cos � � � � e�ikzQ cos �

�T
: (6.23)

Now (6.22) can be written in matrix form as

z(km) = A(�; km)s(km) + n(km); (6.24)

where

A(�; k) =
�
a(�1; k) � � �a(�V ; k)

�
; (6.25)

and

s(k) =
�
s1(k) � � � sV (k)

�T
:

The problem we address in this section is how to determine the direction of arrival

(DOA) angles � from the array data z(km), m = 1; : : : ;M .

The correlation matrix of the observed data in the mth frequency bin is de�ned

as

Rz(km)
�

= Efz(km)z(km)Hg: (6.26)

By substituting (6.24) in (6.26) and assuming that source signals and noise are

uncorrelated, we get

Rz(km) = A(�; km)Rs(km)A
H(�; km) + Efn(km)n(km)Hg; (6.27)

where

Rs(km)
�

= Efs(km)sH(km)g; (6.28)
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is the source correlation matrix.

6.3.3 Focusing Matrices for Coherent Wideband Process-

ing

Wang and Kaveh [10] introduced the use of focusing matrices for the purpose of co-

herent signal-subspace processing for DOA estimation of far�eld wideband sources.

These focusing matrices are used for the alignment of the signal subspaces of nar-

rowband components within the bandwidth of the signals, followed by the averaging

of narrowband array data covariance matrices into a single covariance matrix, thus

achieving a substantial reduction in data. Now, any signal subspace direction �nd-

ing procedure, (such as MUSIC [11] or its variants), maximum likelihood (ML),

or minimum variance (MV), can be applied to this averaged covariance matrix to

obtain the desired parameter estimates. We brie
y outline the focusing method

below.

The �rst step following the frequency decomposition of the array data vector

is to align or focus the signal space at all frequency bins into a common one at a

reference frequency by focusing matrices T (km) that satisfy

T (km)A(�; km) = A(�; k0); m = 1; : : : ;M; (6.29)

where k0 2 [kl; ku] is some reference frequency and A(�; k) is the direction matrix

de�ned by (6.25). The key problem here is how to �nd the focusing matrices and

it will be solved using the modal representation in the subsequent subsections.

Applying the M focusing matrices to the respective array data vectors (6.24)

gives the following focused array data vector,

T (km)z(km) = A(�; k0)s(km) + T (km)n(km) m = 1; : : : ;M:

Then the focused and frequency averaged data covariance matrix is given by

R =
MX
m=1

T (km)Efz(km)zH(km)gTH(km): (6.30)

We use (6.26), (6.27) and (6.29) to get

R = A(�; k0)RsA
H(�; k0) +Rnoise (6.31)
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where

Rs =
MX
m=1

Rs(km); (6.32)

and

Rnoise =
MX
m=1

T (km)Efn(km)nH(km)gTH(km): (6.33)

The focused data covariance matrix (6.31) is now in a form in which almost any nar-

rowband direction �nding procedure may be applied. Here, we apply the minimum-

variance (MV) method of spatial spectral estimation [12] to the frequency averaged

data covariance matrix R. The steps used for coherent DOA estimation using fo-

cusing matrices are summarized below.

1. Discrete Fourier transform the received signals to obtain the array data vector

z(km) for m = 1; : : : ;M .

2. Calculate an estimate of the frequency-averaged data covariance matrixR as

R̂ =
MX
m=1

T (km) z(km)z
H(km)T

H(km): (6.34)

3. Form the MV spectral estimate

Ẑ(�) =
1

a(�; k0)R̂
�1
aH(�; k0)

: (6.35)

Several methods of forming focusing matrices have been suggested in the liter-

ature. The focusing methods of [10, 13{15] require preliminary DOA estimates in

order to construct the focusing matrices. This constitutes a severe disadvantage in

practical applications since it leads to biased DOA estimates.

We now use modal analysis techniques to propose novel focusing matrices which

do not require preliminary DOA estimates and are completely independent of the

signal environment. Here we only consider a linear (possibly nonuniform) array

but it may be generalized to arbitrary array con�gurations.
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Figure 6.3: Plots of spherical Bessel functions of order n = 0; 5; 10; 15; 20.

Using (2.48) we may write

e�ikzq cos � =
1X
n=0

in(2n+ 1)jn(kzq)Pn(cos �); (6.36)

where jn(�) is the spherical Bessel function and Pn(�) is the Legendre function. The
series expansion (6.36) gives an insight into the spatial wave�eld along a linear

array. Observe that in each term of the series, the arrival angle � dependency is

separated out from the sensor location zq and the frequency k. Therefore we may

use the above expansion to write the array DOA matrixA(�; k) as a product of two

matrices, one depending on DOA angles and the other depending on frequency and

sensor locations. Before reaching this step, there are certain hurdles to overcome;

for example, expansion (6.36) has an in�nite number of terms, thus we can not use

it to represent �nite-dimensional matrices.

We claim that for a �nite aperture array with �nite bandwidth signal envi-

ronment, the series (6.36) can be safely truncated to a by �nite number of terms

(say N) without generating signi�cant modeling errors. We show this somewhat

informally below. A rigorous error analysis is not performed in this thesis but is

suggested for future research directions in Chapter 7.

Figure 6.3 shows plots of a few spherical Bessel functions jn(�) against its argu-
ment. We can observe from Figure 6.3 that for a given kz, the function jn(kz)! 0

as n becomes large. This observation is supported by the following asymptotic



150 Other Applications of Modal Analysis

form [16, p. 692]

jn(kz) � (kz)n

1 � 3 � 5 : : : (2n+ 1)
for kz � n: (6.37)

Therefore, we can notice that the factor (2n+1)jn(kzq) in (6.36) decays as n grows

larger beyond n = kzq. Suppose that the minimum frequency of the signal band is

kl. Then we can truncate (6.36) to N terms if N > klzQ, where zQ is the distance

to the Qth sensor (the maximum array dimension). It is di�cult to derive an

analytical expression for N , but a convenient rule of thumb is N � 2klzQ.

Now we substitute the �rst N +1 terms of (6.36) into (6.23) and thus write the

array steering vector for far�eld sources as

a(�; k) = J(k)

2664
P0(cos �)

...

PN(cos �)

3775 ; (6.38)

where

J(k) =

2664
i0(2 � 0 + 1) j0(kz�Q) : : : iN (2N + 1) jN(kz�Q)

...
. . .

...

i0(2 � 0 + 1) j0(kzQ) : : : iN(2N + 1) jN(kzQ)

3775 : (6.39)

Now we can use (6.38) in (6.25) to write the array DOA matrix for far�eld signal

environment as

A(�; k) = J(k)P (�); (6.40)

where the (N + 1)� V matrix

P (�) =

2664
P0(cos �1) : : : P0(cos �V )

...
. . .

...

PN(cos �1) : : : PN(cos �V )

3775 : (6.41)

The (2Q + 1) � (N + 1) matrix J(k) depends on the frequency k and the sensor

locations and is independent of the DOA of the signals. Suppose (2Q+1) > (N+1)

and J(k) has full rank N +1 if the sensor locations are chosen appropriately. With

this assumption and using (6.40), we can propose a set of focusing matrices T (km)
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given by

T (km) = J(k0)
�
JH(km)J(km)

��1
JH(km) m = 1; : : : ;M (6.42)

which satis�es the focusing requirement (6.29); recall that k0 is the reference fre-

quency.

The major advantage of the focusing matrices (6.42) over the existing methods

is that these matrices do not need preliminary DOA estimates and accurately focus

signal arrivals from all directions. Also note that these matrices can be calculated

beforehand for a given array geometry and frequency band of interest.

Spatial Resampling Methods

Spatial resampling is another method used to focus the wideband array data to a

single frequency so that existing narrowband techniques may be used to estimate

the DOA.

The spatial resampling method was �rst introduced by Krolik and Swinger [17]

and is motivated by treating the output of a discrete array as being the result of

spatially sampling a continuous linear array. The same concept is also known as

an interpolated array [18]. The basic idea of spatial sampling is outlined below.

Suppose we have a separate uniform array with half wavelength spacing for each

frequency bin with the same e�ective array aperture in terms of wavelength. Thus

for M frequencies, there are M arrays and the sensor separation of the mth array

is �m=2 where �m = 2�=km. If each array has 2Q + 1 sensors, then the aperture

length is the same for all frequencies in terms of corresponding wavelength. Then

the mth array steering vector for far�eld sources is given by

a(�; km) = [ei�Q cos �; � � � ; ei� cos �; 1; e�i� cos �; : : : ; e�i�Q cos �];

= a(�); m = 1; : : : ;M: (6.43)

That is the steering vectors of all arrays are equal and hence from (6.25) the DOA

matrices of all arrays are the same:

A(m)(�; km) = A(�); m = 1; : : : ;M; (6.44)

where A(m)(�; k) is the DOA matrix of the mth subarray. Hence if we have M

arrays for each frequency bin with the same aperture, then their covariance matrices

can be averaged over frequency without losing DOA information. The average
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covariance matrix can then be used with existing narrowband DOA techniques to

estimate DOA angles.

Of course it is not actually practical to have a separate array for each frequency.

This problem can be overcome by having a single array and using the received array

data to form the array data for M (virtual) arrays by interpolation/extrapolation

of the received array data. This is tantamount to constructing a continuous sensor

using the received array data and resampling it. There are several methods reported

in the literature. In [18] the �eld of view of the array is divided into several

sectors, and a di�erent interpolation matrix is calculated for each sector using a

least squares �t. Krolik and Swingler [17] used digital interpolation methods to

resample the array data. An alternative technique is explained below.

We will now show how to use the modal techniques to �nd a transformation

matrix to calculate array data for M virtual arrays given the output of a single

array. Sensor locations for the real array can be arbitrary on a line, i.e., there is

no requirement for it to be a uniformly spaced array. From (6.40) the real array

DOA matrix in the mth frequency bin is given by

A(�; km) = J(km)P (�); (6.45)

and the DOA matrix of the mth virtual array at frequency km would be

A(m)(�; km) = J (m)(km)P (�); (6.46)

where from (6.39) with kmzq = q�,

J (m)(km) =

2664
i0(2 � 0 + 1) j0(��Q) : : : iN (2N + 1) jN(��Q)

...
...

i0(2 � 0 + 1) j0(�Q) : : : iN(2N + 1) jN(�Q)

3775
= J ; m = 1; : : : ;M; (6.47)

and is seems to be a constant matrix, independent of m and km. Therefore we can

write

A(m)(�; km) = JP (�);

= A(�) m = 1; : : : ;M; (6.48)

which is same for all frequency bins. By manipulating, (6.45) and (6.48), and using
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the pseudo inverse of J(km) we obtain the least-square solution

A(m)(�; km) = T (km)A(�; km); m = 1; : : : ;M; (6.49)

where

T (km) = J [JH(km)J(km)]
�1JH(km); m = 1; : : : ;M; (6.50)

are the spatial resampling matrices. Now these spatial resampling matrices (they

act as focusing matrices) can be used to align the array data in di�erent frequency

bins, so that narrowband DOA techniques can be applied. Similar to the focusing

matrices (6.42), these spatial resampling matrices (6.50), do not require preliminary

DOA estimation and depend only on the array geometry and the frequency. Also

note that the proposed set of resampling matrices is same for the full �eld of view

of the array, unlike in the case of [18].

Modal Space Processing

Observe that the proposed focusing matrices (6.42) and the spatial re-sampling

matrices (6.50) have a common (generalized inverse) matrix factor

G(km)
�

= [JH(km)J(km)]
�1JH(km); m = 1; : : : ;M; (6.51)

and only di�er by the frequency independent factors J0(k0) and J . Also note that

from (6.40),

G(km)A(�; k) = P (�); m = 1; : : : ;M; (6.52)

i.e., G(km) transforms the array DOA matrix into a frequency invariant DOA

matrix. Therefore we can use G(km) instead of T (km) to align the broadband

array data to form a frequency averaged covariance matrix. Intuitively, one can

say that the matrices G(km) transform the 2Q + 1 array data vector z(km) into

a N + 1 modal data vector. Now we can estimate the frequency averaged modal

covariance matrix as

R̂ =
MX
m=1

G(km) z(km)z
H(km)G

H(km): (6.53)
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Figure 6.4: The estimated spatial spectrum of the sources in Section 6.3.4.

and the MV spectral estimate

Ẑ(�) =
1

h
P0(cos �) � � �PN (cos �)

i
R̂

�1

2664
P0(cos �)

...

PN(cos �)

3775
: (6.54)

Comments:

1. This method (one can refer it as the modal space method) involves less com-

putation compared to the other two methods since the modal space has less

dimensions (N + 1) than the signal subspace (2Q+ 1).

2. As for the other two methods, the modal space method does not require

preliminary DOA estimates.

3. One can consider the modal space method as a superset of focusing matrices

and spatial resampling methods.

6.3.4 Example

In this section, we consider a simple example to show that the proposed modal

space processing method can locate broadband coherent sources. Suppose the

signal band is 300� 3000 Hz and N = 15 is su�cient to model the wave�eld. We

have placed 45 sensors according to Section 4.5, which provides guidelines to design

a nonuniformly spaced sensor array for broadband applications.
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The signal environment consists of 5 far�eld sources at angles � = [20�; 35�;

95�; 102�; 150�] with the sources at 95� and 102� being completely correlated. All

sources have the same power of 0 dB SNR at the sensor origin and have 
at spectra.

The array noise was modeled as zero-mean Gaussian. The DFT of the received

array data for 55 frequency bins was modeled assuming their theoretical values.

We calculated the modal covariance matrix (6.53) and then the MV spatial

spectrum by (6.54). Figure 6.4 shows the resulting spatial spectrum. Observe

that there is a peak corresponding to each of the sources, and it also resolved the

two correlated sources which are apart by 70. Thus, we can state that the modal

space processing can locate coherent broadband sources without preliminary DOA

assumptions.

6.3.5 Summary

In this section, we have considered the application of modal analysis techniques to

coherent broadband source localization problems. Speci�cally, we have shown how

to formulate focusing and spatial resampling matrices to align received array data

to a single frequency. One can use narrowband source localization techniques to

estimate DOA once the received array data are aligned. Here, we have only consid-

ered a simple example but do not provide more detailed examples or case studies

(the reader is referred to [19] for a detailed description of the source localization

procedure). Our objective was to illustrate that modal analysis techniques can be

used e�ectively to solve coherent source localization problems. This was achieved

by proposing novel focusing matrices, spatial resampling matrices, and a modal

space processing technique with clear advantages, over the existing methods.

6.4 Summary and Contributions

In this chapter, the application of modal analysis techniques to the problems of

noise modeling and source localization were considered and a number of useful

results was established.

We itemize some speci�c contribution made in this chapter:

i. We established an exact series expansion for the near�eld isotropic noise �eld

which may be useful for array applications in the near�eld.

ii. We showed how to apply the novel representation of the noise �eld to an

optimum linear array design.
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iii. A closed-form expression for di�use noise �eld was established.

iv. We obtained a novel set of focusing matrices based on modal techniques to

align received array data to a single frequency. This result is useful in coherent

broadband DOA estimation problems.

v. A set of spatial resampling matrices was established using modal analysis

techniques, which is also useful in DOA estimation problems.
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Chapter 7

Conclusions and Future Research

In this chapter, we draw conclusions with respect to the questions1 posed in this

thesis and suggest possible future research directions.

7.1 Conclusions

i. The general broadband near�eld beamforming problem stated in Chapter 1

has been solved in Chapter 4. The proposed beamformer is capable of han-

dling both near�eld and far�eld broadband (over a few octaves) sources, and

possesses an e�cient parameterization with a single parameter to focus the

beamformer to a desired operating radius and another set of parameters to

control the actual broadband beampattern shape.

ii. A set of analysis tools, called modal analysis techniques has been developed

in Chapter 2, which is capable of analyzing and synthesizing wave�elds,

beampattern speci�cations, and spatial response of beamformers irrespec-

tive whether the sources of interest are in the near�eld or far�eld of the

beamformer. The usefulness of these tools has been demonstrated by their

applications in Chapters 3-6.

iii. The near�eld broadband adaptive beamforming problem has been answered

in Chapter 5. The proposed beamformer has the capability to overcome

desired signal cancellation and work well for broadband signal sources in the

near�eld of the array.

iv. An alternative solution to the near�eld beamforming problem is to trans-

form the desired near�eld beampattern speci�cation to an equivalent far�eld

1A list of questions is included in Section 1.3.
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beampattern and use far�eld design techniques. Three such transformation

techniques have been developed in Chapter 3 based on modal analysis.

v. An exact series representation for near�eld isotropic noise �eld has been for-

mulated in Chapter 6, which is useful in sensor array applications in the

near�eld. We also have established a closed-form expression for a di�use

noise �eld.

vi. The broadband coherent source localization problem could be simpli�ed by

using modal analysis. A set of focusing matrices (which does not require

preliminary location estimates and another single set of spatial re-sampling

matrices to cover the entire �eld of view of the array) has been proposed to

eliminate some of the shortcomings of existing coherent source localization

methods.

vii. An investigation into the presence of spatial aliasing due to the operation of

a linear array in the near�eld is presented in Appendix A. We have found

that the received signal from a point source in the near�eld is not bandlim-

ited in spatial frequency and hence the use of half-wavelength spaced arrays

introduces undesirable aliasing e�ects to the array output.

All of the above speci�c conclusions illustrate the usefulness of modal analysis tech-

niques in solving array signal processing problems. It also shows how a seemingly

simple modal representation can have a signi�cant e�ect on the problems consid-

ered in this thesis. Therefore, we believe that modal analysis techniques will be

an integral part of future investigations in many array signal processing problems,

especially those requiring operation in the near�eld.

7.2 Future Directions of Research

Based on the material in this thesis we propose three speci�c research directions out

of many possibilities for future research projects, which could lead to a deeper un-

derstanding of broadband beamforming and other areas in array signal processing

and provide solutions to related problems.

Modal Analysis: Remove Restrictions

The theory of modal analysis has been well established in this thesis as a useful tool

to solve a wide variety of array signal processing problems. However, this theory is
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only applicable when all sources are outside the smallest ball centered at the origin

that contains the aperture. This somewhat restricts the generality of the modal

analysis techniques. Thus, it is natural to extend these techniques to be valid for

more general sensor-source geometries, where both sensors and sources are located

within the same region.

Modal Analysis: Further Applications

In Chapter 6 we have shown that how one can use modal analysis techniques

to model isotropic noise and derive alternative focusing matrices associated with

source localization schemes. We believe that there is more to be done in both of

these areas. Speci�cally, we suggest considering the problem of source localiza-

tion (including near�eld sources) in an arbitrary distributed noise �eld and seek

solutions using modal analysis techniques.

Experimental Tests:

We have not conducted any experimental tests to con�rm that the theory devel-

oped in this thesis can be successfully implemented in practice. However, we have

performed a number of computer simulations to con�rm our results. Further, the

general theory related to aperture is well corroborated in the literature. Thus, we

have no reason to believe that our techniques are not readily applicable. Never-

theless, we suggest here to test our results using a real sensor array; for example

a microphone array system can be used to experimentally validate the near�eld

beamforming theory proposed in this thesis.





Appendix A

Spatial Aliasing for Near�eld

Sensor Arrays

A.1 Introduction

This appendix considers the e�ect of spatially sampling a spherical wavefront re-

ceived from a point source in the near�eld of a linear array, along the array axis.

It shows that the standard half wavelength sensor spacings rule, which guarantees

no aliasing in the operation of far�eld arrays, is not su�cient to prevent aliasing in

the near�eld. This claim is justi�ed by theoretical considerations and corroborated

by simulation results.

A.2 Spatial Aliasing

Consider a linear array aligned to the x axis and a point source at a distance r

from the array origin and angle � measured relative to end�re. Then the signal

received at a point x on the array is given by

sr;�(x) =
e�ik

p
r2+x2�2rx cos �

p
r2 + x2 � 2rx cos �

; (A.1)

where k = 2�=� is the wavenumber and � is the wavelength of the received signal.

If the source of interest is in the far�eld of the array, the normalized signal received

at a point x on the array is given by

s1;�(x) = lim
r!1

sr;�(x) re
ikr = eikx cos �: (A.2)
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By using an array, we e�ectively sample the signal sr;�(x) in the spatial domain.

To determine the sampling distance, i.e., array spacings, we need to examine the

spectral content of the signal sr;�(x) with respect to x. Let the Fourier transform

of s(x) be

S(�) =

Z 1

�1
s(x) e�i�x dx (A.3)

where � is the spatial frequency. Using (A.3), we can write the Fourier transform

of (A.2) as

S1;�(�) = 2��(� + k cos �)

where �(�) is the Dirac delta function. By the usual Nyquist criterion, we need

to sample s1;�(x) with a sampling distance of d � �=(kj cos �j) = �=(2j cos �j) to
avoid spatial aliasing. Since we assume the possible range of � 2 [0; �], it su�ces to

take dmax = �=2. This result, commonly known as the �=2 rule, is standard in the

array literature [1]. Until now, this rule has been used for designs in both far�eld

and near�eld (e.g., [2]). We show here that the �=2 rule is generally not valid in

the near�eld.

The Fourier Transform Sr;�(�) of sr;�(x) can be obtained from the results in [3,

p. 31]:

Sr;�(�) =

8><>:j� e
ir� cos �H

(1)
0

�
r sin �

p
k2 � �2

�
; j�j < k

2 eir� cos �K0

�
r sin �

p
�2 � k2

�
; j�j > k

where H
(1)
0 (�) is the Hankel function of the �rst kind of order zero and K0(�) is the

modi�ed Bessel function of order zero. Note that there is a singularity at j�j = k.

A graph of jSr;�(�)j versus normalized spatial frequency �=k for three di�erent

sets of values (r; �) is shown in Figure A.1. From this result, it is evident that the

function sr;�(x) is not bandlimited if the source is in the near�eld of the array at a

smaller angle measured relative to end�re, although it becomes more so as r!1
or � ! 90�. Thus, the use of the �=2 rule is not strictly su�cient to ensure no

aliasing error, and indeed no sampling distance will entirely eliminate such error.
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Figure A.1: Magnitude of the Fourier transform Sr;�(�) of the signal sr;�(x) plotted
against the normalized spatial frequency �=k for r = 3:5�, � = 1� (solid line);
r = 3:5�, � = 5� (dashed dot line); r = 3:5�, � = 90� (dashed line); and r = 100�,
� = 1� (dotted line).

A.3 Near�eld Rule of Thumb

To explain the above behaviour, we now examine Sr;�(�) when � > k for di�erent

values of r and �. Since K0(z) � � ln(z) for z ! 0 and K0(z) �
p
�=(2z)e�z

for large z > 1 [4, p. 203], jSr;�(�)j decays rapidly as the argument of K0(�) (i.e.,
r sin �

p
�2 � k2) increases. Suppose there exists positive numbers M and z0 such

that jSr;�(�)j < M for r sin �
p
�2 � k2 > z0 for a given r and �. Then for a suitably

small M we can assert that Sr;�(�) is approximately bandlimited by

�0 =

r
k2 +

z20
r2 sin2 �

; (A.4)

and a sampling distance of �=�0 or less reduces the aliasing to an acceptable level.

It is di�cult to �nd an analytic expression for z0 in terms of M or quantify an

acceptable level of aliasing. But a convenient rule of thumb is z0 � 1.

Note that when r ! 1, �0 ! k; hence Sr;�(�) is bandlimited by k for this

case. For the case of � = 90�, �0 =
p
k2 + 1=r2 � k for all practical values of r

in the near�eld. For example if r = 3� = 6�=k then �0 = k
p
1 + 1=36�2 � k.

Hence, for angles close to 90�, Sr;�(�) is bandlimited by k even for near�eld signals.

However, near�eld signals from small angles are not spatially bandlimited which

can be gleaned from (A.4).
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Figure A.2: Magnitude of the array response of a �=2-spaced 7-sensor array (dotted
line), �=4 spaced 13 sensor array (dashed line); and �=6-spaced 37-sensor array
(solid line) to a near�eld source at 3:5� from the array origin. The aperture length
of each of three arrays is equal to 3�.

A.4 Simulations and Conclusion

To conclude, we show the e�ect of spatial aliasing due to sampling a signal from

a near�eld source at 3:5� from an array origin, where � is the wavelength of the

signal. Figure A.2 shows the magnitude response of three arrays with di�erent

sensor spacings of �=2, �=4 and �=6, to the above source as a function of �. For

comparison purposes, we make all three arrays to have equal aperture length, thus

they have 7, 13 and 19 elements, respectively. The e�ect of aliasing is clearly

evident from the response of the �=2 spaced array, however there is little or no

e�ect of aliasing present in the response of the �=6-spaced array. This result is in

agreement with (A.4) which gives sensor spacing of �=5:6 to avoid aliasing for the

case of r = 3:5� and � = 1� degrees.

Thus, we can conclude that the received signal from a point source in the

near�eld is not bandlimited in spatial frequency and hence the use of standard

half wavelengths spaced arrays introduces undesirable aliasing e�ects to the array

output. The use of �ner sensor spacings can overcome limitations imposed by

aliasing.
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