
The Australian National University

TR-CS-95-01

Factorisation of Large Integers on
some Vector and Parallel Computers

Craig Eldershaw and Richard P. Brent

January 1995

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports
Department of Computer Science
Faculty of Engineering and Information Technology
The Australian National University
Canberra ACT 0200
Australia

or send email to:

techreports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

file://dcssoft.anu.edu.au/pub/www/dcs/techreports/

Recent reports in this series:

TR-CS-94-10 John N. Zigman and Peiyi Tang. Implementing global address
space in distributed local memories. October 1994.

TR-CS-94-09 Nianshu Gao and Peiyi Tang. Vectorization using reversible
data dependencies. October 1994.

TR-CS-94-08 David Sitsky. Implementation of MPI on the Fujitsu AP1000:
Technical details release 1.1. September 1994.

TR-CS-94-07 Markus Hegland. Real and complex fast fourier transformations
on the Fujitsu VPP500. June 1994.

TR-CS-94-06 Richard P. Brent. Uses of randomness in computation. June
1994.

TR-CS-94-05 Trevor Vickers and Paul Gardner. A language of refinements.
May 1994.

Factorization of Large Integers on some

Vector and Parallel Computers�

Craig Eldershaw

Mathematics Department

University of Queensland

St Lucia, Queensland 4072
cs324391@student.uq.edu.au

Richard P. Brent

Computer Sciences Laboratory

Australian National University

Canberra, ACT 0200
rpb@cslab.anu.edu.au

Report TR-CS-95-01
31 January 1995

Abstract

We compare implementations of two integer factorization algorithms, the elliptic curve
method (ECM) and a variant of the Pollard \rho" method, on three machines with parallel
and/or vector architectures. ECM is scalable and well suited for both vector and parallel
architectures. The \rho" method is simpler than ECM but is not scalable.

1 Introduction

The factorization of large integers is a signi�cant mathematical problem with practical ap-
plications to public-key cryptography [16]. Although the theoretical complexity of factorization
is unknown, it is a computationally expensive task with the best known algorithms. The devel-
opment of new algorithms and faster machines has made the factorization of \general" integers
with 100{120 digits feasible.

Several authors have considered vector and parallel implementations of the MPQS and NFS
algorithms [5, 8, 10, 14, 15]. These algorithms have the property that the run-time depends
mainly on the size of the number N to be factored. For another class of algorithms the run-time
depends mainly on the size of the factor found. This class includes Lenstra's \elliptic curve
method" (ECM) [11] and Pollard's \rho" method [13], which are considered in this paper.

We have implemented variants of ECM and Pollard \rho" on three computers with di�erent
architectures {

� The Fujitsu AP1000, which is a parallel machine with up to 1024 processors [9]. Each
processor is a 25MHz RISC microprocessor with 16MB of memory. The processors are
connected by a torus with wormhole routing. Each processor has a
oating-point unit
with a peak speed of 5.6 M
op in double-precision. Our machine has 128 processors, so
its peak speed is about 0.7 G
op.

� The Fujitsu VP2200/10, which is a vector processor with a peak speed of 1.25 G
op [17].

� The Fujitsu VPP500, which is a parallel machine with up to 224 vector processors con-
nected by a crossbar network [6]. Each processor is similar to the VP2200/10 and has a
peak speed of 1.6 G
op. The machine available to us had 4 processors and peak speed
6.4 G
op.

�Copyright c
 1995, the authors. To appear in Proceedings of Neural, Parallel and Scienti�c Computations

(edited by M. Sambandham), Vol. 1, 1995. rpb156tr typeset using LaTEX

In the following Sections we describe the implementation of ECM and Pollard \rho" on the
AP1000, VP2200 and VPP500, and compare their performance. Many examples of successful
factorizations may be found in [4, 5, 7], so here we concentrate on vectorization and paralleliza-
tion aspects of the implementations.

2 The Elliptic Curve Method

The elliptic curve method (usually abbreviated ECM) was proposed by Lenstra [11]. Prac-
tical improvements, such as the addition of a second phase, were suggested by Brent [3], Mont-
gomery [12] and others. Each \trial" of the algorithm depends on a random seed and has a
positive (but generally small) probability of �nding a factor f . Because many independent trials
can be performed in parallel, ECM is obviously amenable to a parallel implementation. The
speedup is expected to be proportional to the number of processors provided f is not too small.

A vectorized implementation of ECM on the Fujitsu VP100 was written in 1988. The
language used was a dialect of Fortran (close to Fortran 77 with directives for vectorization). An
improved version was implemented in 1991 on the Fujitsu VP2200. Because the Fujitsu vector
processors are designed for fast
oating-point arithmetic, the inner loop uses 64-bit
oating-
point multiply, add, INT and DFLOAT operations (for details see [5]). The base � = 226 of the
multiple-precision number representation is chosen so that integers up to �2 can be represented
exactly in
oating-point format. Operations which are not critical to performance, such as input
and output, are done with the MP package [1], which is convenient but slow because it was not
written with vectorization in mind.

In 1994 Eldershaw modi�ed Brent's VP2200 implementation of ECM to obtain AP1000
and VPP500 implementations. The modi�cations were along the lines suggested in [4]. On
the AP1000 each processor performs one or more independent trials (without vectorization)
and reports back to the host processor if a factor is found. On the VPP500 it is important
for each processor to perform several trials, since the vector length of inner-loop operations is
proportional to the number of trials per processor.

In more detail: P blocks of R trials (phase 1) are carried out simultaneously on P processors.
The trials within each block have consecutive seed values, and the �rst seed value for each block
is R larger than that for the previous block. In e�ect R � P trials are being carried out with
consecutive seeds. At the end of the block of R trials (phase 1), each processor checks if a factor
has been found. If not, each processor carries out phase 2 of the algorithm for each of its R
trials using the corresponding �rst phase results.

In [4, 5] Brent gave the theoretical expected run-time TP for a machine with P processors:

TP = T1=P +O(T
1=2+�
1) (1)

Tests were run on the AP1000 with varying numbers of processors (powers of 2 from 20 to 27).
The results con�rmed (1). Typical results are shown in Figure 1. Linear regression shows that
there is less than 3% error in the gradient of a linear �t to the data points. We can say that
ECM is scalable, meaning that the speedup for su�ciently large problems on a parallel machine
with P processors is proportional to P .

The VP2200 and VPP500 programs were very e�ectively vectorized { in a typical run, at
least 90% of the overall time was spent using the vector unit. The AP1000 ran only in scalar
mode, but the multiple processors reduced the time by two orders of magnitude (as predicted
in (1)) in comparison to a single processor run.

2

����������������
�

�
�

�
�

�
�!!!!!!

""
��

Time

1/P
0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Figure 1: Time TP (arbitrary units) versus 1=P for ECM on AP1000

To give one example of the performance of the programs: a test run found a 32-digit factor

12567880628356583361572166052961

of a 79-digit number (9885 + 1 divided by known factors) in 1555 seconds on the �rst attempt
on the AP1000, using the �rst phase of ECM with limit 100000 and 256 trials. The same
computation could be performed on the VP2200 in 915 seconds.

The Fortran compilers on the VP2200 and VPP500 can achieve close to peak speed for well-
vectorized loops. Considering their peak speeds, the VPP500 should have performed about 5
times faster than the VP2200. However, various overheads due to the parallelisation reduced
this ratio for short runs. Times typical of small runs on the three machines are: on the VP2200,
30 seconds; on the AP1000, 68 seconds; and on the VPP500, 23 seconds (all to perform the
same amount of work). However for longer runs, the VPP500 performed better. For example,
on one run the VP2200 took 292 seconds and the VPP500 took only 50 seconds. The ratio
(5.84) is greater than the ratio of peak speeds (5.12). This may be because the VPP500 has
a better memory bandwidth per
op, so it is easier for the compiler to achieve close to peak
performance in vectorized loops. If INT and DFLOAT are counted as
oating-point operations
(which is reasonable, since they use the vector pipelines) then our programs achieve greater
than 55% of peak performance on the VP2200 and about 64% on the VPP500.

3 Brent-Pollard \rho"

The Brent-Pollard \rho" programs, written by Eldershaw, were based on algorithm P 00

2 in
Brent's paper [2] which improved the e�ciency of Pollard's original \rho" method [13]. On the
AP1000 the calculations are performed using MP [1]. Parallelization is carried out as suggested
in [4]. That is, each processor independently repeats the same procedure using a di�erent
function F (the di�erence depending upon a single parameter) to generate a pseudo-random
sequence.

3

,
,

,
,

,
,

,
,

,
,

�
�

�
�

�
%
%
%
%

((�
��

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8

Figure 2: Time TP (arbitrary units) versus 1=
p
P for Brent-Pollard Rho

As pointed out in [4], a speedup of order
p
P is all that can be expected when using P

processors. This gives an expected run time of:

TP � T1=
p
P (2)

assuming that the computation stops as soon as one processor �nds a factor.

Tests were run on the AP1000 with the number of processors varying in powers of two (from
20 to 27). The results were reasonably consistent with the prediction (2). Linear regression
of TP vs 1=

p
P shows an error of less than 10% in the gradient of a linear �t to the data

points. Experimental data points along with the �tted line (dotted) are shown in Figure 2.
Parallelization of the \rho" algorithm is not nearly as e�ective as for the ECM, i.e. \rho" is not
scalable.

Consider implementing the \rho" algorithm on a vector machine with vector lengths v.
Because of vector startup times and parts of the code which run in scalar mode, we can expect
the time for v independent function evaluations to be proportional to v + v1=2, where v1=2 is a
constant. Since the expected number of function evaluations to �nd a factor is proportional top
v, the expected run time Tv is proportional to

v + v1=2p
v

(3)

The function in (3) has a minimum of 2
p
v1=2 at v = v1=2. Thus, the maximum speedup is

approximately
p
v1=2=2.

A vectorized version was implemented on the VP2200. The e�ect of varying the vector length
v is shown in Figure 3. Note that the units of time are arbitrary and T1 = 19:4 is well o� the
page. The results are roughly as predicted by (3). For the optimal value of v (a few hundred)
the speedup over v = 1 is about 12.

4

DDD

E
E
E�
�
�B
B
B
DDD ��((�

�
T
T
T((((((((`̀ (((((((

(((

4

3

2

1

0
0 300

v

600 900

Figure 3: Time versus vector length v for Brent-Pollard Rho

4 Conclusion

The e�ect of parallelization was as predicted { ECM obtains close to linear speedup, but
\rho" only obtains a speedup of order

p
P on a machine with P processors. Nevertheless, \rho"

is much simpler than ECM and should be faster than ECM for small factors and a small number
of processors, provided both implementations are equally well vectorized.

A good factorization strategy is to use trial division to remove very small factors, possibly
followed by Brent-Pollard \rho" and/or Pollard \p � 1" [12], and then ECM. If ECM can not
complete the factorization in a reasonable time, MPQS (or NFS) is needed. Even in this case,
the time spent on ECM is not wasted, because the time required by MPQS is greatly reduced
for each factor found by ECM. Most of the nontrivial factorizations listed in [7] were found using
a combination of methods, and could not have been found in a reasonable time with a single
method.

Acknowledgements

The work of the �rst author was performed during a visit to the Research School of Infor-
mation Sciences and Engineering at the Australian National University as a summer scholar.
The ANU Supercomputer Facility, the ANU-Fujitsu CAP Project, and Fujitsu Ltd. kindly pro-
vided access to the VP2200, AP1000 and VPP500 respectively. We thank Dr M. Hegland, Dr
I. Macleod, Mr D. Sitsky and Dr B. Zhou for their assistance.

5

References

[1] R. P. Brent, \Algorithm 524: MP, a Fortran multiple-precision arithmetic package [A1],
ACM Trans. on Mathematical Software 4 (1978), 71{81.

[2] R. P. Brent, \An improved Monte Carlo factorization algorithm," BIT 20 (1980), 176{184.

[3] R. P. Brent, \Some integer factorization algorithms using elliptic curves," Australian Com-

puter Science Communications 8 (1986), 149{163.

[4] R. P. Brent, \Parallel algorithms for integer factorisation", in Number Theory and Cryp-

tography (edited by J. H. Loxton), Cambridge University Press, 1990.

[5] R. P. Brent, \Vector and parallel algorithms for integer factorisation", Proc. Third Aus-

tralian Supercomputer Conference, Melbourne, 1990.

[6] R. P. Brent, A. J. Cleary, M. Hegland, J. H. Jenkinson, Z. Leyk, M. Nakanishi, M. R. Os-
borne, P. J. Price, S. Roberts and D. B. Singleton, \Implementation and performance of
scalable scienti�c library subroutines on Fujitsu's VPP500 parallel-vector supercomputer",
Proc. Scalable High Performance Computing Conference, (Knoxville, Tennessee, 23-25 May,
1994), IEEE Computer Society Press, Los Alamitos, California, 1994, 526{533.

[7] R. P. Brent and H. J. J. te Riele, \Factorizations of an � 1, 13 � a < 100", Report NM-
R9212, Centrum voor Wiskunde en Informatica, Amsterdam, June 1992, v+363 pp. ISSN
0169-0388.

[8] T. R. Caron and R. D. Silverman, \Parallel implementation of the quadratic sieve", J.
Supercomputing 1 (1988), 273{290.

[9] H. Ishihata, T. Horie and T. Shimizu, \Architecture for the AP1000 highly parallel com-
puter", Fujitsu Sci. Tech. J. 29 (1993), 6{14.

[10] A. K. Lenstra and H. W. Lenstra (editors), The Development of the Number Field Sieve,
Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.

[11] H. W. Lenstra, Jr., \Factoring integers with elliptic curves", Annals of Math. (2) 126 (1987),
649{673.

[12] P. L. Montgomery, \Speeding the Pollard and elliptic curve methods of factorisation",
Mathematics of Computation 48 (1987), 243{264.

[13] J. M. Pollard, \A Monte Carlo method for factorisation", BIT 15 (1975), 331{334.

[14] C. Pomerance, J. W. Smith and R. Tuler, \A pipeline architecture for factoring large
integers with the quadratic sieve algorithm", SIAM J. on Computing 17 (1988), 387{403.

[15] H. J. J. te Riele, W. Lioen and D. Winter, \Factoring with the quadratic sieve on large
vector computers", Belgian J. Comp. Appl. Math. 27(1989), 267{278.

[16] R. L. Rivest, A. Shamir and L. Adelman, \A method for obtaining digital signatures and
public-key cryptosystems", Comm. ACM 21 (1978), 120{126.

[17] N. Uchida, \Fujitsu VP 2000 series supercomputers", Int. J. High Speed Computing 3 (1991),
169{185.

6

