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FACTORIZATION OF THE TENTH AND ELEVENTH

FERMAT NUMBERS

RICHARD P. BRENT

Abstract. We describe the complete factorization of the tenth and eleventh Fermat numbers.
The tenth Fermat number is a product of four prime factors with 8, 10, 40 and 252 decimal
digits. The eleventh Fermat number is a product of �ve prime factors with 6, 6, 21, 22 and 564
decimal digits. We also note a new 27-decimal digit factor of the thirteenth Fermat number.
This number has four known prime factors and a 2391-decimal digit composite factor. All the
new factors reported here were found by the elliptic curve method (ECM). The 40-digit factor
of the tenth Fermat number was found after about 140 M
op-years of computation. We discuss
aspects of the practical implementation of ECM, including the use of special-purpose hardware,
and note several other large factors found recently by ECM.

1. Introduction

For a nonnegative integer n, the n-th Fermat number is Fn = 22
n
+ 1. It is known that Fn is

prime for 0 � n � 4, and composite for 5 � n � 23. Also, for n � 2, the factors of Fn are of the
form

k2n+2 + 1 : (1)

In 1732 Euler [36, p. 104] found that 641 = 5 � 27 + 1 is a factor of F5, thus disproving Fermat's
belief [38, pp. 206{208] that all Fn are prime. Euler apparently used trial division by primes of
the form 64k+1, see [37, p. 33]. No Fermat primes larger than F4 are known, and a probabilistic
argument makes it plausible that only a �nite number of Fn (perhaps only F0; : : : ; F4) are prime.
The complete factorization of the Fermat numbers F6; F7; : : : has been a challenge since Euler's

time. Because the Fn grow rapidly in size, a method which factors Fn may be inadequate for
Fn+1. In this section we give a summary of what has been achieved since 1732. Additional
historical details and references can be found in [20, 45, 53], and some recent results are given
in [26, 27, 40].
In the following, pn denotes a prime number with n decimal digits, e.g. p3 = 163. Similarly,

cn denotes a composite number with n decimal digits, e.g. c4 = 1729. In cases where one factor
can be found by division, we usually write it as pn or cn and leave its computation as an exercise.
For example, Morain [63] showed that 23539 +1 = 3 � p1065. It would be tedious to write out the
1065-digit prime in decimal (though easy in binary).
In 1880, Landry [50] factored F6 = 274177 �p14 : Landry's method was never published in full,

but Williams [82] has attempted to reconstruct it.
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In the period 1877{1974, several small factors of Fn for various n � 9 were found by taking
advantage of the special form (1) of these factors. For example, in 1903 Western [29] found the
factor p7 = 2424833 = 37 � 216 + 1 of F9. Other examples may be found in [41, Table 2].
Signi�cant further progress was only possible with the development of the digital computer

and more e�cient algorithms. In 1970, Morrison and Brillhart [64] factored

F7 = 59649589127497217 � p22
by the continued fraction method. Then, in 1980, Brent and Pollard [17] factored

F8 = 1238926361552897 � p62
by a modi�cation of Pollard's \rho" method [5, 67]. The modi�cation improved the e�ciency
of Pollard's original algorithm, for factors of the form (1), by a ratio conjectured to be of order

2n=2=n; for F8 the ratio is about 6. The larger factor p62 of F8 was �rst proved prime by
Williams [17, x4] using the method of Williams and Judd [83].
The rho method could have factored F7 (with a little more di�culty than F8, see [17, Table 2])

if it had been invented earlier. Similarly, the multiple-polynomial quadratic sieve (MPQS)
method [78], which is currently the best \general-purpose" method for composite numbers of
up to about 100 decimal digits, could have factored both F7 and F8, but it was not available in
1980.
Logically, the next step after the factorization of F8 was the factorization of F9. It was known

that F9 = 2424833 � c148. The 148-digit composite number resisted attack by methods such
as Pollard rho, Pollard p � 1, and the elliptic curve method (ECM), which would have found
\small" factors. It was too large to factor by the continued fraction method or its successor,
MPQS. The di�culty was �nally overcome by the invention of the (special) number �eld sieve
(SNFS), based on a new idea of Pollard [52]. In 1990, Lenstra, Lenstra, Manasse and Pollard,
with the assistance of many collaborators and approximately 700 workstations scattered around
the world, completely factored F9 by SNFS [53, 54]. The factorization is

F9 = 2424833 � 7455602825647884208337395736200454918783366342657 � p99 :
F10 has been a \most wanted" number in various lists of composite numbers ever since the

factorization of F9 in 1990, and in recent years it has usually been the most wanted number (see,
for example, the list in Update 2.9 of [20]). F10 was proved composite in 1952 by Robinson [71],
using P�epin's test on the SWAC. A small factor, 45592577, was found by Selfridge [72] in 1953
(also on the SWAC). Another small factor, 6487031809, was found by Brillhart [19] in 1962 on
an IBM 704. Brillhart later found that the cofactor was a 291-digit composite. Thus, it was
known that F10 = 45592577 � 6487031809 � c291.
This paper describes the complete factorization of F10. Using ECM we found a 40-digit factor

p40 = 4659775785220018543264560743076778192897 on October 20, 1995. The 252-digit cofac-
tor c291=p40 passed a probabilistic primality test and was soon proved to be prime using the
method of Atkin and Morain (based, appropriately, on elliptic curves). Later, a more elemen-
tary proof was found, using Selfridge's \Cube Root Theorem" (see x9). Thus, the complete
factorization is

F10 = 45592577 � 6487031809 � 4659775785220018543264560743076778192897 � p252
where p252 = 13043 � � � 24577.
In xx2-4 we describe some variants of ECM and their performance, and in x5 we describe some

implementations of ECM with which we attempted to factor F10 and other Fermat numbers.
Details of the factorization of F10 are given in x6.
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So far, this summary has been chronological, but now we backtrack, because F11 was com-
pletely factored in 1988, before the factorization of F9 and F10. In fact,

F11 = 319489 � 974849 � 167988556341760475137 � 3560841906445833920513 � p564
where p564 = 17346 � � � 34177. The two 6-digit factors were found by Cunningham [20, 30] in
1899, and remaining factors were found by the present author in May 1988. The 564-digit factor
passed a probabilistic primality test, and a rigorous proof of primality was provided by Morain
(see x9). As details of the factorization of F11 have not been published, apart from two brief
announcements [8, 10], we describe the computation in x7.
The reason why F11 could be completely factored before F9 and F10 is that the di�culty of

completely factoring numbers by ECM is determined mainly by the size of the second-largest

prime factor of the number. The second-largest prime factor of F11 has 22 digits and is much
easier to �nd by ECM than the 40-digit factor of F10 or the 49-digit factor of F9. Thus, the
di�culty of completely factoring Fn by the fastest known method is not a monotonic function
of n.
A brief summary of the history of factorization of F5; : : : ; F11 is given in Table 1. For a similar

history of F12; : : : ; F22, see [25, p. 148].
In x8 we outline a project to �nd more factors of Fermat numbers by ECM, using inexpensive

special-purpose hardware, and give the one success so far { a 27-digit factor of F13, found in
June 1995.
Rigorously proving primality of a number as large as the 564-digit factor of F11 is a nontrivial

task. In x9 we discuss primality proofs and \certi�cates" of primality for the factors of Fn,
n � 11.
The smallest Fermat number which is not yet completely factored is F12. It is known [20]

that

F12 = 114689 � 26017793 � 63766529 � 190274191361 � 1256132134125569 � c1187 :
Thus, F12 has at least seven prime factors. If the distribution of second-largest prime factors of
large random integers [47, 48] is any guide, it is unlikely that c1187 can be completely factored
by ECM. For further discussion, see x10.
For one possible application of factorizations of Fermat numbers, observe that the factorization

of F0; F1; : : : ; Fn�1 is necessary to determine the structure of a �nite �eld with 22
n
elements,

because the multiplicative group of such a �eld has order 22
n � 1 = F0F1F2 � � �Fn�1. We now

know the structure of such �elds for 0 � n � 12.

1.1. Acknowledgements. Thanks are due to Hendrik Lenstra, Jr., for the ECM algorithm
which made the factorization of F10 and F11 possible; and to Peter Montgomery and Hiromi
Suyama for their practical improvements to ECM. John Pollard provided some of the key ideas
with his \p � 1" and \rho" methods. John Brillhart, Richard Crandall, Wilfrid Keller, Donald
Knuth, John Selfridge and Daniel Shanks provided historical information, references, and/or
corrections to drafts of this paper. Bruce Dodson, Arjen Lenstra, Peter Montgomery, Robert
Silverman and Sam Wagsta�, Jr. provided information about other attempts to factor F10.
Fran�cois Morain proved the primality of the 564-digit factor of F11. Craig Eldershaw ported my
ECM program to the AP1000. Harvey Dubner provided a Dubner Cruncher and encouraged
me to implement ECM on it. Dennis Andriolo and Robert Dubner provided assistance with
aspects of the Cruncher hardware and software. John Cannon and Herman te Riele provided
other assistance and encouragement. Bob Gingold graciously volunteered spare computer cycles
on a SparcCenter 2000. The ANU Supercomputer Facility provided computer time on a Fujitsu
VP100 and VP2200/10, and the ANU-Fujitsu CAP Project provided access to a Fujitsu AP1000.
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Table 1. Complete factorization of Fn, n = 5; : : : ; 11

n Factorization Method Date Comments
5 p3 � p7 Trial division 1732 Euler
6 p6 � p14 See text 1880 Landry
7 p17 � p22 CFRAC 1970 Morrison and Brillhart
8 p16 � p62 B-P rho 1980 Brent and Pollard (p16; p62)

See text 1980 Williams (primality of p62)
9 p7 � p49 � p99 Trial division 1903 Western (p7)

SNFS 1990 Lenstra et al (p49; p99)
10 p8 � p10 � p40 � p252 Trial division 1953 Selfridge (p8)

Trial division 1962 Brillhart (p10)
ECM 1995 Brent (p40; p252)

11 p6 � p06 � p21 � p22 � p564 Trial division 1899 Cunningham (p6; p
0
6)

ECM 1988 Brent (p21; p22; p564)
ECPP 1988 Morain (primality of p564)

2. Variants of ECM

The elliptic curve method (ECM) was discovered by H. W. Lenstra, Jr. [55] in 1985. Various
practical re�nements were suggested by Montgomery [58, 59], Suyama [80], and others [1, 7, 23].
We refer to [54, 60, 79] for a general description of ECM, and to [24, 44, 77] for relevant
background.
Lenstra's key idea was to apply Pollard's \p � 1" method [66] but to work over a di�erent

group G. If the method fails, another group can be tried. This is not possible for the p � 1
method, because it uses a �xed group.
To be speci�c, suppose we attempt to �nd a factor of a composite number N , which we can

assume not to be a prime power [53, x2.5]. Let p be the smallest prime factor of N . In practice
it is desirable to remove small factors (up to say 104) by trial division before applying ECM,
but we only need assume p > 3.
Although p is unknown, we describe the algorithms in terms of operations in the �nite �eld

K = GF (p) = Z=pZ. In practice we work moduloN (or sometimes modulo a multiple ofN , if the
multiple has a convenient binary representation), and occasionally perform GCD computations
which will detect any nontrivial factor of N (probably p, though possibly a di�erent factor of
N). Working modulo N or modulo a multiple of N can be regarded as using a redundant
representation for elements of K.
In Pollard's p�1 method the group G is the multiplicative group of the �nite �eld K, i.e. the

multiplicative group of integers modulo p. In ECM the group G is de�ned on an elliptic curve.
There is no loss of generality in assuming that the elliptic curve is given in Weierstrass normal
form

y2 = x3 + ax+ b ; (2)

where a and b are constants such that

4a3 + 27b2 6= 0 (3)

inK. G consists of the set of points (x; y) 2 K�K which lie on the curve and a \point at in�nity"
O. A commutative and associative group operation is de�ned in a standard way [7, 23, 58, 77]. In



FACTORIZATION OF FERMAT NUMBERS 5

accordance with the usual convention we write the group operation additively1. The (additive)
zero element of G is O.
Let g = jGj be the order of G. In the p�1 method g = p�1, but in ECM we have g = p+1�t,

where, by a theorem of Hasse [42], t = t(G) satis�es

t2 < 4p : (4)

By a result of Deuring [31], the result (4) is best possible, in the sense that all integer t 2
(�2pp;+2pp) arise for some choice of a and b in the Weierstrass form (2). The number of

curves with given t can be expressed in terms of the Kronecker class number of t2�4p (see [55]).
In practice, to avoid computation of square roots, we select a pseudo-random parameter a

and initial point (x1; y1) on the curve, and then compute b from (2). The condition (3) can be
checked by taking a GCD; in the unlikely event that it fails to hold then the GCD probably
gives the factor p immediately. In practice the test is usually omitted.

2.1. Other models. We use the words \model" and \form" interchangeably. The Weierstrass
form (2) is not necessarily the most e�cient for computational purposes. With (2) we have
to perform divisions modulo N . These are expensive because they involve an extended GCD
computation. To avoid them, we can replace (x; y) by (x=z; y=z) in (2) to get a homogeneous
Weierstrass equation

y2z = x3 + axz2 + bz3 : (5)

The points (x; y; z) satisfying (5) are thought of as representatives of elements of P 2(K), the
projective plane over K, i.e. the points (x; y; z) and (cx; cy; cz) are regarded as equivalent if
c 6= 0 mod p. We write (x : y : z) for the equivalence class containing (x; y; z). The additive zero
element O is (0 : 1 : 0) and we can test for it by computing GCD(N; z).
The equation (5) lacks symmetry. An elegant symmetrical alternative is the Cauchy form [23,

x4.2]
x3 + y3 + z3 = Dxyz ; (6)

where D is a constant. In practice we choose a pseudo-random point (x1 : y1 : z1) which de�nes
D, but D does not have to be computed. The group operation has a symmetrical form given
in [23, (4.21)], and (x : y : z) + (y : x : z) = O.
Montgomery [58] suggested using the form

by2 = x3 + ax2 + x (7)

or, replacing (x; y) by (x=z; y=z) as above,

by2z = x3 + ax2z + xz2 : (8)

Corresponding to the condition (3) we now have the condition a2 6= 4.
Not every elliptic curve can be expressed in the form (7) or (8) by rational transformations.

However, by varying a in (7) or (8), we get a su�ciently large class of pseudo-random curves.
The exact value of b in (7) or (8) is not important, but it is signi�cant whether b is a quadratic
residue (mod p) or not. In general we get two di�erent groups, of order p+ 1� t, by varying b.
Assume that we start with a point P1 = (x1 : y1 : z1) on (8). For positive integer n, we write

Pn = nP1 and suppose Pn = (xn : yn : zn). Montgomery [58, x10] shows in a direct way that,
for positive integer m;n such that Pm 6= �Pn, we have an addition formula

xm+n : zm+n = zjm�nj(xmxn � zmzn)2 : xjm�nj(xmzn � zmxn)2 (9)

1In [7, 10, 11] we wrote the group operation multiplicatively because of the analogy with the multiplicative
group of GF (p) in the p� 1 method, and spoke of O as the identity element.
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and a duplication formula

x2n : z2n = (x2n � z2n)2 : 4xnzn(x2n + axnzn + z2n) : (10)

An alternative derivation of (9){(10), using addition and duplication formulas for the Jacobian
elliptic function sn2(u), is given in [23, p. 422]. This derivation makes the reason for associativity
clear.
Note that (9){(10) do not specify the y-coordinate. Fortunately, it turns out that the y-

coordinate is not required for ECM, and we can save work by not computing it. In this case we
write Pn = (xn : : zn). Since (x : y : z) + (x : �y : z) = O, ignoring the y component amounts
to identifying P and �P .
Montgomery [58, x10] shows how (9) and (10) can be implemented to perform an addition

and a duplication with 11 multiplications (mod N). The number 11 can be reduced under some
circumstances.

2.2. The �rst phase. The �rst phase of ECM computes Pr for a large integer r. Usually r
is the product of all prime powers less than some bound B1. There is no need to compute r
explicitly. By the prime number theorem, log r � B1 as B1 ! 1. (Here and below, \log"
without a subscript denotes the natural logarithm.)
From (9){(10), we can compute the x and z-components of (P1; P2n; P2n+1) or (P1; P2n+1; P2n+2)

from the x and z-components of (P1; Pn; Pn+1). Thus, from the binary representation of the
prime factors of r, we can compute (xr : : zr) in O(log r) = O(B1) operations, where each
operation is an addition or multiplication mod N . In fact, (xr : : zr) can be computed with
about K1B1 multiplications mod N and a comparable number of additions mod N , where
K1 = 11= log 2. If z1 = 1 then K1 can be reduced to 10= log 2. For details, see Montgomery [58,
x10].
At the end of the �rst phase of ECM we check if Pr = O by computing GCD(zr; N). If the

GCD is nontrivial then the �rst phase of ECM has been successful in �nding a factor of N .
Otherwise we may continue with a second phase (see x3) before trying again with a di�erent
pseudo-random group G.

2.3. The starting point. An advantage of using (7) or (8) over (2) or (5) is that the group
order is always a multiple of four (Suyama [80]; see [58, p. 262]). Also, it is possible to ensure
that the group order is divisible by 8; 12 or 16. For example, if � > 5 is a pseudo-random integer,

u : v = �2 � 5 : 4�;

x1 : z1 = u3 : v3; (11)

a0 : a00 = (v � u)3(3u+ v) : 4u3v;

then the curve (8) with a+ 2 = a0=a00 has group order divisible by 12. As starting point we can
take (x1 : : z1).

3. The second phase

Montgomery and others [7, 58, 59, 62] have described several ways to improve Lenstra's
original ECM algorithm by the addition of a second phase, analogous to phase 2 of the Pollard
p� 1 method. We outline some variations which we have implemented. Phase 1 is the same in
all cases, as described in x2.2.
We usually assume that Montgomery's form (8) is used with starting point P1 = (x1 : : z1)

given by (11). Bounds B2 � B1 > 0 are chosen in advance. For example, we might choose
B1 = 106 and B2 = 100B1 (see x4.4). In the following we assume that B2 � B1, so B2�B1 ' B2.
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We de�ne B3 = �(B2) � �(B1) ' B2= logB2. The time required for phase 2 is approximately
proportional to B3.
Suppose the group order g has prime factors g1 � g2 � � � � . Phase 1 will usually be successful

if g1 � B1. We say \usually" because it is possible that a prime factor of g occurs with higher
multiplicity in g than in r, but this is unlikely and can be neglected when considering the average
behaviour of ECM. Phase 2 is designed to be successful if g1 � B2 and g2 � B1. To a good
approximation, phase 1 is successful if all prime factors of g are at most B1, and phase 2 is
successful if all but one prime factors of g are at most B1, and that one factor is at most B2.
In the following we describe several di�erent versions of phase 2 (also called \continuations"

because they continue after phase 1). Some versions are di�cult to implement using only the
formulae (9){(10). For this reason, some programs use Montgomery's form (8) for phase 1 and
convert back to Weierstrass form (2) or (5) for phase 2. For details of the transformation see [3,
x4.2].
3.1. The standard continuation. Suppose phase 1 has computed Q = Pr such that Q 6= O.
The \standard continuation" computes sQ = (xrs : : zrs) for each prime s, B1 < s � B2, and is
successful if GCD(zrs; N) is nontrivial for some such s. We can amortize the cost of a GCD by
following a suggestion of Pollard [67]. We compute

GCD

 Y
s

zrs mod N;N

!

where the product mod N is taken over a su�ciently large set of s, and backtrack if the GCD
is composite. This reduces the cost of a GCD essentially to that of a multiplication mod N .
There is no advantage in using phase 2 if sQ is computed using the standard binary method,

which takes O(log s) group operations. It is much more e�cient to precompute a small table
of points 2dQ, where 0 < d � D say. Then, given s1Q for some odd s1, we can compute
min(s1 + 2D; s2)Q, where s2 is the next prime, using only one group operation. Thus, we
can compute sQ for a sequence of values of s including all primes in (B1; B2] and possibly
including some composites (if 2D is smaller than the maximal gap between successive primes in
the interval), with one group operation per point. Provided D is at least of order logB2, the
work for phase 2 is reduced from O(B2) group operations to O(B3) group operations.
The standard continuation can be implemented e�ciently in O(logN logB2) bits of storage.

It is not necessary to store a table of primes up to B2 as the odd primes can be generated by
sieving in blocks as required. Even storing the primes to

p
B2 is unnecessary, because we can

sieve using odd integers 3; 5; 7; 9; : : : . The sieving does not need to be very e�cient, because
most of the time is spent on multiple-precision arithmetic to perform group operations. Sieving
could be replaced by a fast pseudo-prime test, because it does not hurt ECM if a few composites
are included in the numbers generated and treated as primes.

3.2. The improved standard continuation. The standard continuation can be improved {
Montgomery's form (8) can be used throughout, and most group operations can be replaced by a
small number of multiplications mod N . The key idea [58, x4] is that we can test if GCD(zrs; N)
is nontrivial without computing sQ. We precompute 2dQ for 0 < d � D as above, using O(D)
group operations. We can then computemQ form = 1; 2D+1; 4D+1; : : : , using one application
of (9) for each point after the �rst. The points mQ are updated as necessary, so only require
O(logN) storage. Suppose s = m+n is a prime, where n is even and 0 < n � D. Now sQ = O
impliesmQ = �nQ. SincemQ = (xmr : : zmr) and �nQ = (xnr : : znr) are known, it is su�cient
to test if GCD(xmrznr � xnrzmr; N) is nontrivial. We can avoid most of the GCDs as in x3.1,
by computing

Q
(xmrznr � xnrzmr) mod N , where the product is taken over several m and n.

Thus, the work is reduced to about three multiplications mod N per prime s. It can be reduced
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to two multiplications mod N by ensuring that znr = 1, which involves a precomputation of
order D. A reduction to one multiplication mod N is possible, at the cost of one extended GCD
computation per point mQ. This is worthwhile if D is su�ciently large. Another reduction by
a factor of almost two can be achieved by rational preconditioning [65]. For future reference,
we assume K2 multiplications mod N per comparison of points, where 1=2 � K2 � 3, the exact
value of K2 depending on the implementation.
There is an analogy with Shanks's baby and giant steps [74, p. 419]: giant steps involve a

group operation (about 11 multiplications) and possibly an extended GCD computation, but
baby steps avoid the group operation and involve only K2 � 3 multiplications.
To decide on the table size D, note that setting up the table and computation of the points

mQ requires of order D + B2=(2D) applications of (9). If storage is not a consideration, the
optimal D is approximately

p
B2=2. However, provided

p
B2 > D � logB2, the setting up

cost is o(B3), and the overall cost of phase 2 is about K2B3 multiplications mod N . Thus,
storage requirements for an e�cient implementation of the improved standard continuation are
not much greater than for the standard continuation.

3.3. The birthday paradox continuation. The \birthday paradox" continuation is an al-
ternative to the (improved) standard continuation. It was suggested in [7] and has been imple-
mented in several of our programs (see x5) and in the programs of A. Lenstra et al [3, 33, 54].
There are several variations on the birthday paradox idea. We describe a version which is easy

to implement and whose e�ciency is comparable to that of the improved standard continuation.
Following a suggestion of Suyama, we choose a positive parameter e. The choice of e is considered
below. For the moment the reader can suppose that e = 1.
Suppose, as in x3.1, that Q is the output of phase 1. Select a table size D. If storage permits,

D should be about
p
B3; otherwise choose D as large as storage constraints allow (for reasonable

e�ciency we only need D � e logB3). Generate D pseudo-random multiples of Q, say Qj = qejQ
for j = 1; : : : ;D. There is some advantage in choosing the qj to be linear in j, i.e. qj = k0+k1j
for some pseudo-random k0; k1 (not too small). In this case the Qj can be computed by a \�nite
di�erence" scheme with O(eD) group operations because the e-th di�erences of the multipliers
qej are constant. Another possibility is to choose qj to be a product of small primes. For example,

in our programs C{E (see x5) we use a set of 2dlog2De odd primes and take qj to be a product of
dlog2De odd primes from this set, the choice depending on the bits in the binary representation
of j � 1. This scheme requires O(eD log logD) group operations and can be vectorized.
After generating the D points Qj, we generate bB3=Dc further pseudo-random points, say

Qk = qekQ, where the qk are distinct from the qj. The choice qk = 2k is satisfactory. For

each such point Qk, we check if Qk = �Qj for j = 1; : : : ;D. This can be done with K2D
multiplications mod N , as in the description of the improved standard continuation in x3.2. If
D is su�ciently large, it is worthwhile to make the z-coordinates of Qj and Qk unity by extended
GCD computations, which reduces K2 to 1. (To reduce the number of extended GCDs, we can
generate the points Qk in batches and reduce their z-coordinates to a common value before
performing one extended GCD.) Note that the points Qk do not need to be stored, as only one
(or one batch) is needed at a time. We only need store O(D) points.
It is easy to see that most of the computation for the birthday paradox version of phase 2

amounts to the evaluation of a polynomial of degree D at bB3=Dc points. Thus, fast polynomial
evaluation schemes can be used [7, 47, 65, 84].
Both the improved standard continuation and the birthday paradox continuation make ap-

proximately B3 comparisons of points which are multiples of Q, say nQ and n0Q, and usually
succeed if g2 � B1 and n�n0 is a nontrivial multiple of g1. The improved standard continuation
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ensures that jn � n0j is prime, but the birthday paradox continuation merely takes pseudo-
random n and n0. Since g1 is prime, it would appear that the improved standard continuation
is more e�cient. However, taking the parameter e > 1 may compensate for this. The number
of solutions of

x2e = 1 mod g1 (12)

is GCD(2e; g1 � 1). Thus, by choosing e as a product of small primes, we increase the expected
number of solutions of (12). In fact, if 2e = 2e13e25e3 � � � , it can be shown that the expected
value of GCD(2e; q � 1) for a random large prime q is (e1 + 1)(e2 + 1)(e3 + 1) � � � . Since g1 is
the largest prime factor of the group order g, it is reasonable to assume similar behaviour for
GCD(2e; g1�1). The number of solutions of equation (12) is relevant because we expect phase 2
to succeed if g2 � B1 and (qj=qk)

2e = 1 mod g1.
The parameter e should not be chosen too large, because the cost of generating the points Qj

and Qk is proportional to e. To ensure that this cost is negligible, we need e� D. In practice,
assuming D < 512, a reasonable strategy is to choose the largest e from the set f1; 2; 3; 6; 12g
subject to the constraint 32e < D.

3.4. The FFT continuation. Pollard suggested the use of the FFT to speed up phase 2 for
his p� 1 method, and Montgomery [59] has successfully implemented the analogous phase 2 for
ECM. The FFT continuation may be regarded as an e�cient generalisation of both the improved
standard continuation and the birthday paradox continuation. We have not implemented it
because of its complexity and large storage requirements.

3.5. Comparison of continuations. It is natural to ask which of the above versions of phase 2
is best. We initially implemented the birthday paradox continuation because of its simplicity.
Also, the asymptotic analysis in [7, x7] indicated that it would be faster than the (improved)
standard continuation. However, this was on the assumption that an asymptotically fast poly-
nomial evaluation scheme would be used. In practice, D is rarely large enough for such a scheme
to be signi�cantly faster than standard polynomial evaluation. In our most recent implementa-
tion of ECM (program G of x5) we have used the improved standard continuation because of its
slightly lower storage requirements and better (predicted) performance for factors of up to 40
decimal digits. If storage requirements and program complexity are not major considerations,
then the FFT continuation is probably the best.

4. Performance of ECM

4.1. Prime factors of random integers. Let n1(N) � n2(N) � : : : be the prime factors of a
positive integer N . The nj(N) are not necessarily distinct. For convenience we take nj(N) = 1
if N has less than j prime factors.
For k � 1, suppose that 1 � �1 � : : : � �k � 0. Following Vershik [81], we de�ne �k =

�k(�1; : : : ; �k) by

�k = lim
M!1

# fN : 1 � N �M; nj(N) � N�j for j = 1; : : : ; kg
M

:

Informally, �k(�1; : : : ; �k) is the probability that a large random integer N has its j-th largest
prime factor at most N�j , for j = 1; : : : ; k. The cases k = 1 and k = 2 are relevant to ECM
(see xx4.2-4.4). It is convenient to de�ne �1(�1) = 1 if �1 > 1, and �1(�1) = 0 if �1 < 0.
Vershik [81, Thm. 1] shows that

�k =

Z �k

0

Z �k�1

�k

� � �
Z �1

�2
�1

�
�k

1� �1 � � � � � �k

�
d�1 : : : d�k�1d�k
�1 : : : �k�1�k

: (13)
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Knuth and Trabb Pardo [48] observe an interesting connection with the distribution of cycle
lengths in a random permutation. In fact, the distribution of j-th largest prime factors of n-digit
random integers is asymptotically the same as the distribution of j-th longest cycles in random
permutations of n objects. Thus, the literature on random permutations [39, 75] is relevant.
We de�ne

�(�) = �1(1=�) for � > 0 ;

�2(�) = �2(1; 1=�) for � � 1 ; (14)

�(�; �) = �2(�=�; 1=�) for 1 � � � � :
Informally, �(�) is the probability that n�1 � N , �2(�) is the probability that n�2 � N , and
�(�; �) is the probability that both n�2 � N and n�1 � N�, for a large random integer N
with largest prime factor n1 and second-largest prime factor n2. Note that �(�) = �(�; 1) and
�2(�) = �(�; �).
The function � is usually called Dickman's function after Dickman [32], though some authors

refer to �1 as Dickman's function, and Vershik [81] calls '1 = �01 the Dickman-Goncharov
function.
It is known (see [7]) that � satis�es a di�erential-di�erence equation

��0(�) + �(�� 1) = 0 (15)

for � � 1. Thus, �(�) may be computed by numerical integration from

�(�) =
1

�

Z �

��1
�(t) dt (16)

for � > 1. The function � may be computed from [7, eqn. (3.3)]

�(�; �) = �(�) +

Z ��1

���

�(t)

�� t dt : (17)

for 1 � � � �. The formula for � given in [79, p. 447] is incorrect, as can be seen by considering
the limit as � ! 1+.
The results (15){(17) follow from Vershik's general result (13), although it is possible to derive

them more directly, as in [7, 47, 48].
Sharp asymptotic results for � are given by de Bruijn [21, 57], and an asymptotic result for �

is stated in [7]. To predict the performance of phase 1 of ECM it is enough to know that

�(�� 1)

�(�)
� � log �(�) � � log� (18)

as �!1.

4.2. Heuristic analysis of phase 1. We �rst give a simple, heuristic explanation of why
phase 1 of ECM works. Assume that, so far as its largest prime factor g1 is concerned, the
group order g behaves like a random integer near p. This is not quite correct, but is an accurate
enough approximation to obtain asymptotic results. In x4.4 we take known divisors of g into
account.
Let � = log p= logB1, so B1 = p1=�. The probability that one curve succeeds in �nding the

factor p is close to the probability that g1 � B1, and can be approximated by �(�). Thus, the
expected number of curves for success is C1 = 1=�(�). As each curve requires about K1B1 =

K1p
1=� multiplications (mod N), the expected number of multiplications (mod N) is

W (�) = K1p
1=�=�(�) : (19)
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Di�erentiating with respect to �, we see that the minimum W (�) occurs when

log p = ��2�0(�)=�(�) :
Using (15) and (18), we obtain the following asymptotic results for the optimal parameters:

log p =
��(�� 1)

�(�)
� �2 log� ; (20)

logB1 =
�(�� 1)

�(�)
� � log� ; (21)

logC1 = � log �(�) � � log� ; (22)

logW = logK1 � d

d�
(� log �(�)) � 2� log� ; (23)

log(B1=C1) = ��2 d
d�

�
log �(�)

�

�
� � : (24)

The result (24) is more delicate than the other asymptotic results because it involves cancellation
of the terms of order � log� in (21) and (22).
From (20) and (23) we obtain

logW �
p
2 log p log log p (25)

as p!1. Thus, W = O(p�) for any � > 0.

4.3. Lenstra's analysis of phase 1. Modulo an unproved but plausible assumption regarding
the distribution of prime factors of random integers in \short" intervals, Lenstra [55] has made
the argument leading to (25) rigorous. He shows that phase 1 of ECM, when applied to a
composite integer N with smallest prime factor p, will �nd p in an expected number

W1(p) = exp

�q
(2 + o(1)) log p log log p

�
; (26)

of multiplications (mod N), where the \o(1)" term tends to zero as p ! 1. The expected
running time is

T1(p;N) =M(N)W1(p) ; (27)

where M(N) is the time required to multiply numbers modulo N .
The factorM(N) is important because we are interested in Fermat numbers N = Fn = 22

n
+1

which may be very large. By way of comparison, the obvious method of squaring (mod q) n
times, for each q � p of the form (1), takes time

TS(p;N) = O
�
2�nnp(log p)2

�
: (28)

Comparing the bounds (27) and (28), we see that the second method is preferable if (log p)=n
is su�ciently small (though it can not be too small, in view of (1)). In practice, ECM is only
feasible on Fn for moderate n: the limit is about the same as the limit of feasibility of P�epin's
test (currently n � 22, see [26, 27]).

4.4. Heuristic analysis of phase 2. Lenstra's result (26) applies only to phase 1 and assumes
that the Weierstrass form is used. To predict the improvement derived from phase 2 and the
use of Montgomery's form, we have to use heuristic arguments. We assume that the group
order g behaves (so far as the distribution of its largest two prime factors are concerned) like a
random integer near p=d, where d takes account of known small divisors of g. If Montgomery's
form is used with the curve chosen as in x2.3, then d = 12. A limited amount of experimental
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data [7, 54, 59] con�rms that this assumption is reasonable, though perhaps slightly conservative;
ECM may perform slightly better than predicted.
If ECM is used with parameters B1 and B2, and the (improved) standard continuation is

applied, then we expect a factor to be found if g2 � B1 and g1 � B2. If � = log(p=d)= logB1

and � = logB2= logB1, then (by our heuristic assumption) the probability that this occurs for
any one curve is �(�; �). Thus, the expected number of curves required by ECM is C(�; �) =
1=�(�; �), and (assuming that � is small) the probability of success after at most t curves is

1� (1� �(�; �))t ' 1� exp(�t=C) : (29)

If the birthday paradox continuation is used, the performance depends on the exponent e,
and it is possible for phase 2 to succeed with g1 > B2. From (13), the probability of success for
one curve is approximately

1

�(2e)

XZ
1=�

0

Z
1� 

 

�
1� exp

�
�
B3(d=p)

�
��
�1

�
 

1� � �  
�
d�d 

� 
;

where the sum is over the �(2e) possible values of g1 mod 2e, 
 ranges over the corresponding
values of GCD(2e; g1 � 1), and � = log(p=d)= logB1 > 2. Assuming close to the optimal choice
of parameters for factors of 30 to 40 decimal digits, numerical integration indicates that the
expected cost of the birthday paradox continuation (without fast polynomial evaluation) is 15%
to 20% more than for the (improved) standard continuation if e = 6, and 9% to 14% more
if e = 12. Because the analysis is simpler, in the following we assume the improved standard
continuation.
To choose optimal parameters, we note that the time to perform both phases on one curve

is proportional to K1B1 +K2B3, provided overheads such as table initialization are negligible.
The constants K1 and K2 depend on details of the implementation (see x3).
In principle, if we knew p in advance, we could choose B1 and B2 to minimize the expected

run time, which is proportional to the expected number of multiplications mod N :

W = (K1B1 +K2B3)=�(�; �) :

Recall that � and � are functions of B1 and B2, so this is a simple problem of minimization
in two variables. Suppose that the minimum is Wopt. Tables of optimal parameters are given
in [3, 7, 54, 59, 79], with each paper making slightly di�erent assumptions. In Table 2 we give a
small table of log10Wopt for factors of D decimal digits. We assume that K1 = 11= log 2, K2 = 1,
and log10 p ' D � 0:5. Some computed values of �(p) are also shown in Table 2, where

�(p) =
(logWopt)

2

log p log log p
;

so

Wopt = exp

�q
�(p) log p log log p

�
:

Since the expected run time is insensitive to changes in B1 and B2 near the optimal values,
it is not important to choose them accurately. In practice, the signi�cant point is that we do
not know p in advance. Various strategies have been suggested to overcome this di�culty. Our
strategy has been to increase B1 as a function of the number of curves t which have been tried,
using the fact that for the optimal choice we expect B1=t to be about 330 for 30-digit factors
and to be fairly insensitive to the size of the factor. Given B1, we choose B2 so the time for
phase 2 is about half that for phase 1 (this choice is not far from optimal). If B1 ' 106 this
gives B2 ' 100B1.
Once a factor p has been found, we can compute the e�ciency E, de�ned as the ratio of

the expected time to �nd p with optimal parameters to the expected time with the parameters
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Table 2. Expected work for ECM

digits D log10Wopt �
20 7.35 1.677
30 9.57 1.695
40 11.49 1.707
50 13.22 1.716
60 14.80 1.723

actually used. For an example in which we started with B1 too small but gradually increased it
to a value close to optimal, see Table 3.
From the asymptotic behaviour of the functions �(�) and �(�; �), it can be shown that the

expected speedup S because of the use of phase 2 (standard continuation), compared to just using
phase 1, is of order log log p. It is argued in [7, x7] that the birthday paradox continuation gives
a speedup of order log p (though only if asymptotically fast polynomial evaluation is used; for
our implementations the speedup is of order log log p). The speedup for the FFT continuation
is probably of order log p at most. Although these speedups are important in practice, they
are theoretically insigni�cant, because they can be absorbed into the o(1) term in Lenstra's
result (26). Thus, we expect �(p) ! 2 as p ! 1, independent of whether phase 2 is used.
Table 2 shows that the convergence is very slow and that �(p) ' 1:7 for p in the 25 to 45 digit
range.
We note a lack of symmetry in (29) which may be of interest to cryptographers [70]. If t

is much larger than C, say t = 100C, then the probability of failure is exp(�100), so we are
almost certain to �nd a factor. On the other hand, if t is much smaller than C, say t = C=100,
then 1 � exp(�t=C) ' t=C ' 0:01 is small, but not exponentially so. Thus, ECM has a non-
negligible chance of �nding factors which are much larger than expected. For example, if the
work performed is su�cient to �nd 30-digit factors with probability 0.5, then with the same
work there is about one chance in 100 of �nding a factor of 40 digits and about one chance in
10000 of �nding a factor of 50 digits (we do not attempt to be precise because the probabilities
depend to some extent on how the parameters B1 and B2 are chosen).

5. Some ECM implementations

For future reference, we describe several of our implementations of ECM.
A. Our �rst implementation was written in 1985, mainly in Pascal, but with some assembler

to speed up large-integer multiplications. It used Montgomery's forms (7) and (8) for phase 1,
and converted back to Weierstrass normal form (2) for phase 2, which used the birthday paradox
idea. Rational preconditioning [65] was used to speed up polynomial evaluation in phase 2. The
implementation achieved K1 = 10= log 2 and K2 = 1=2 (recall that, as in x2.2{x3.3, the number
of multiplications mod N per curve is aboutK1B1+K2B3). Program A ran on various machines,
including Sun 3 and VAX, and found many factors of 25 decimal digits or less [18].

B. A simple Turbo Pascal implementation was written in 1986 for an IBM PC [9]. Program B
uses the Cauchy form (6) and only phase 1 is implemented. The implementation of multiple-
precision arithmetic uses strings of decimal digits, so is simple but ine�cient. Program B is
mainly used to generate tables [18], taking into account algebraic and Aurifeuillian factors [14],
and accessing a database of over 190; 000 known factors. As a byproduct, program B can produce
lists of composites which are used as input to other programs, e.g. programs C{E below.
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C.When a vector processor2 became available early in 1988, a Fortran program MVFAC was
written (based on program A, with some improvements and simpli�cations [11]). Vectorization
is accomplished by working on a number of elliptic curves in parallel during phase 1. Phase 2
implements the birthday paradox idea as in x3.3. During phase 2 the program works on only one
curve at a time, but takes advantage of the vector units during polynomial evaluation. Unlike
program A, both phases use Montgomery's form (8), withK1 = 11= log 2 andK2 = 1. The initial
point is usually chosen to ensure that the group order is divisible by 12, as described in x2.3.
Multiple-precision arithmetic (with base 226) in the inner loops is performed using double-
precision 
oating-point operations. INT and DFLOAT operations are used to split a product into
high and low-order parts. Operations which are not time-critical, such as input and output, are
performed using the MP package [4]. Program C found the factorization of F11 (see x7) and
many factors, of size up to 40 decimal digits, needed for [15, 16, 18]. Keller [46] used program C
to �nd factors up to 39 digits of Cullen numbers.

D. MVFAC also runs with minor changes on other machines with Fortran compilers, e.g.
Sun 4 workstations. For machines using IEEE 
oating-point arithmetic the base must be reduced
to 224. Although the workstations do not have vector units, the vectorized code runs e�ciently
because of the e�ect of amortizing loop startup overheads over several curves and keeping most
memory accesses in a small working set (and hence in the cache). Program D found the p40
factor of F10 (see x6).

E. Late in 1994, our Sun 4 code was ported to the Fujitsu AP1000, which is a parallel machine
using 25 Mhz Sparc processors [35, 43]. The machine available to us has 128 processors. Each
processor works on one or more curves independently, and communicates results (if any) after
each phase. Program E found the p41 factor mentioned in x5.2, and other factors for an extension
of the Cunningham project [18].

F. In December 1994, a new implementation was written in C for the Dubner Cruncher
(see x8). Initially the C code was modelled on program B, so used the Cauchy form. Phase 2
was implemented using a storage-e�cient version of the birthday paradox idea, much as described
in x3.3. Program F found a p27 factor of F13 (see x8).

G. In June 1995 the Cruncher program was rewritten to use the Montgomery form (8)
throughout, and to use a storage-e�cient improved standard continuation for phase 2 (as de-
scribed in x3.2). Program G is signi�cantly faster than program F (about 35% faster on each
curve, and the expected number of curves is reduced because the group order is divisible by
12). The Cruncher programs F and G do not use extended GCD computations. For this reason,
the constants K1 = 12= log 2 (for program G) and K2 = 3 are larger than for programs C{E.
The e�ect on relative performance is less than might appear, because the overall performance is
more sensitive to K1 than to K2.

5.1. The multiplication algorithm. Most of the cost of ECM is in performing multiplications
mod N . Our programs A-G all use the classical O(n2) algorithm to multiply n-bit numbers.
Karatsuba's algorithm [47, x4.3.3] or other \fast" algorithms [26, 28] would be preferable for
large n. The crossover point depends on details of the implementation. Morain [62, Ch. 5] states
that Karatsuba's method is worthwhile for n � 800 on a 32-bit workstation. The crossover point
on a 64-bit vector processor is probably slightly larger. On a Cruncher the crossover is much
larger because the multiplication time is essentially linear in n for n < 10000 (see Table 4).
Programs B{E do not take advantage of the special form of Fermat numbers when doing

arithmetic mod N . However, the mod operation is implemented e�ciently. For programs C{E

2Initially a Fujitsu VP100 with 7.5 nsec clock cycle; this machine was upgraded in mid-1991 to a Fujitsu
VP2200/10 with 4.0 nsec (later 3.2 nsec) clock cycle and theoretical peak speed of 1000 M
op (later 1250 M
op).
Times quoted for the VP2200 are for the faster version.
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the operation X  Y �Z mod N is coded as a single routine. As Y is multiplied by each digit
d1 of Z (starting with the most signi�cant digit) and the sum accumulated in X, we also predict
a quotient digit d2, multiply N by d2, and subtract. The predicted quotient digit can di�er
from the correct value by one, because a slightly redundant representation of the intermediate
results allows a small error to be corrected at the next step (when working in base B, digits in
the range [0; B] are permitted). Also, the result of the operation is only guaranteed to lie in the
interval [0; 2N) and to be correct mod N . With these re�nements, X  Y � Z mod N can be
performed almost as fast as X  Y �Z. For t-bit numbers, program C performs 9(t=26)2+O(t)

ops per multiplication mod N ; this takes 4(t=26)2 +O(t) clock cycles on the VP2200/10.
For the Cruncher programs F-G, we avoid the mod operation as much as possible. If the

number N to be factored is a composite divisor of 2n � 1, then the elliptic curve operations are
performed mod 2n � 1 rather than mod N . At the end of each phase we compute a GCD with
N (not with 2n � 1 because this would give known factors of (2n � 1)=N). A minor penalty
is that we work with n or (n + 1)-bit numbers rather than with dlog2Ne-bit numbers. The
advantage is that we can perform the reductions mod 2n�1 using binary shift and add/subtract
operations, which are much faster (for large n) than multiply or divide operations. Thus, the
Cruncher programs F-G run about twice as fast on Fermat or Mersenne numbers as on \general"
numbers.

5.2. Some examples. By the end of 1995, at least 17 factors of 40 or more decimal digits had
been found by ECM. To illustrate the performance of ECM, we mention three of these factors
here. Details are available in [12]. Because of the selection criterion, these examples do not
illustrate typical behaviour of ECM; rather, they illustrate the asymmetry noted at the end
of x4.4.
The largest factor found by the author is

p41 = 25233450176615986500234063824208915571213 ;

a factor of 55126 + 1. It was found using program E with B1 = 240000, D = 15, e = 1. The
curve is de�ned by � = 805816989, and the group order is

g = 22 � 32 � 47 � 61 � 89 � 233 � 829 � 3607 � 18451 � 54869 � 75223 � 149827 � 345551 :
The group order g is exceptionally smooth. From x4.1, the probability that a random integer
near g=12 has largest and second-largest prime factors as small as those of g is about

�

�
log(g=12)

log 149827
;
log 345551

log 149827

�
' 3:6 � 10�7 :

Another large factor found by the author, using program C with B1 = 370000, D = 255,
e = 6, is the 40-digit factor

p040 = 9409853205696664168149671432955079744397

of p252 � 1, where p252 is the largest prime factor of F10. See x9 for the application to proving
primality of p252. The curve is de�ned by � = 48998398, and the group order is

g = 22 � 3 � 5 � 17 � 312 � 53 � 67 � 233 � 739 � 5563 � 7901 � 20201 � 57163 � 309335137 :
The largest prime factor g1 of g is about 836B1 which shows the virtue of the birthday paradox
continuation. Note that GCD(2e; g1 � 1) = 12.
The largest factor known to have been found by ECM up to the end of 1995 is the 47-digit

factor

p47 = 12025702000065183805751513732616276516181800961



16 R. P. BRENT

of 5256 + 1, found in November 1995 by Peter Montgomery [61], using B1 = 3000000 with his
FFT continuation. For more details, see [12]. The group order is

g = 26 � 3 � 5 � 7 � 23 � 997 � 43237 � 554573 � 659723 � 2220479 � 2459497 � 903335969 :
6. Factorization of F10

When ECM was implemented on the Fujitsu VP100 in March 1988, some of the �rst numbers
which we attempted to factor were the Fermat numbers F9; F10; F11 and F12, using variants of
program C. We were soon successful with F11 (see x7), but not with the other Fermat numbers,
apart from rediscovering known factors. We continued attempts to factor F9 by ECM (until it
was done by SNFS, see x1), F10 and F12, devoting of the order of 25% of available computer
time to these Fermat numbers and the remainder to other projects. The phase 1 limit B1 was
increased as it became apparent that the unknown factors were di�cult to �nd. However, there
were some constraints on B1. Batch jobs were limited to at most two hours and, to make e�cient
use of the vector units, we had to complete several curves in that time. The time for t curves
done simultaneously was proportional to t + t1=2, where t1=2 depended on the startup cost of
vector operations.
We ran about 2000 curves with B1 = 60000 on the VP100 in the period March 1988 to late

1990. Each run on the VP100 took slightly less than two hours for 63 curves, with t1=2 ' 10. The
VP100 was upgraded to a VP2200 in 1991, and we ran about 17360 curves with B1 = 200000 on
the VP2200 in the period August 1991 to August 1995. Each run on the VP2200 took slightly
less than two hours for 62 curves, with t1=2 ' 14. The improvement in speed over the VP100 was
partly due to rewriting the inner loop of program C to reduce memory references and improve
the use of vector registers.
In September 1994 we started running program D on one or two 60 Mhz SuperSparc proces-

sors. Usually we used one processor for F10 and one for F12. In July 1995 six more 60 Mhz
SuperSparc processors became available for a limited period. We attempted to factor F10 on all
eight SuperSparcs using computer time which was not required by other users. Details are given
in Table 3. At the same time we were attempting to factor F12 to F15 using ECM on Dubner
Crunchers (see x8).
In Table 3, F is an estimate of the expected number of times that the factor p40 should be

found with the given B1 and number of curves (see x4.4). E is an estimate of the e�ciency
compared to the optimal choice of B1 ' 3400000. The programs used the birthday paradox
continuation, but the estimates of E and F assume the improved standard continuation with
B2 = 100B1, so they are only approximate (see x4.4). The last row of the table gives totals (for
number of curves and F ) and weighted means (for B1 and E).
The p40 factor of F10 was found by a run which started on Oct 14 and �nished on Oct 20,

1995. The run tried 10 curves with B1 = 2000000 in about 114 hours of CPU time, 148 hours
elapsed wall-clock time.
From the factorizations of p40 � 1 given in x9, it is easy to prove that p40 is prime, and also

to see why the Pollard p� 1 methods did not �nd p40.
The 252-digit cofactor c291=p40 was rigorously proved to be prime by two independent methods

(see x9).
6.1. In retrospect. From column F of Table 3, it appears that we were fortunate to �nd p40
as soon as we did. The probability is about 1 � exp(�0:2434) ' 0:22. We know of some other
attempts. Bruce Dodson tried about 100 curves with B1 = 2 � 106, Peter Montgomery tried
about 1000 curves with B1 � 107 (mean value unknown), Robert Silverman tried about 500
curves with B1 = 106, and Samuel Wagsta� tried \a few dozen" curves with 150000 � B1 �
400000. There were probably other attempts of which we are unaware, but the size of the known
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Table 3. ECM runs on F10

B1 curves F E machine(s) and dates

6� 104 2000 0.0010 0.14 VP100, Mar 1988 { Nov 1990
2� 105 17360 0.0910 0.42 VP2200, Aug 1991 { Aug 1995
5� 105 700 0.0152 0.69 Sparc � 2, Sep 1994 { Jul 1995
106 480 0.0262 0.87 Sparc � 8, Jul 1995 { Aug 1995

2� 106 900 0.1100 0.98 Sparc � 8, Aug 1995 { Oct 1995

2:9� 105 21440 0.2434 0.63

composite factor of F10 (291 decimal digits) reduced the number of attempts. For example,
Montgomery's Cray program was restricted to inputs of at most 255 digits, and Wagsta� did
not use the Maspar [33] because it would have required a special \size 33" program.
From columnE of the table, it is clear that the runs on the VP100 and VP2200 were ine�cient.

We should have implemented a form of checkpointing so that B1 could be increased to at least
106, allowing us to take more than two hours per set of curves. At the time we did not know that
the unknown factor had 40 decimal digits, though by mid-1995 we were reasonably con�dent
that it had at least 35 digits. Our general strategy was to increase B1 gradually, guided by
estimates of the optimal B1 and the expected number of curves for factors of 30{40 digits. We
did not expect to �nd any factors much larger than 40 digits.

6.2. The computational work. Each curve on a 60 Mhz SuperSparc takes about 5:7�10�6B1

hours of CPU time. If a 60 Mhz SuperSparc is counted as a 60-Mips machine, then our com-
putation took about 240 Mips-years. This is comparable to the 340 Mips-years estimated for
sieving to factor F9 by SNFS [53]. (SNFS has since been improved by Montgomery and others,
so the 340 Mips-years could probably be reduced by an order of magnitude.)
Since the inner loops of programs C{E use 
oating-point arithmetic, M
ops are a more ap-

propriate measure than Mips. The VP2200/10 is rated at 1250 M
op (peak performance). If
our factorization of F10 had been performed entirely on the VP2200, it would have taken about
6 weeks of machine time, or 140 M
op-years. Cryptographers should note that this amounts to
about 75 minutes on a 1 Tera
op machine.
The number of multiplications (mod N) is a machine-independent measure of the work to

factor N . Each curve takes about 22:9B1 such multiplications. Overall, our factorization of F10
took 1:4� 1011 multiplications (mod N), where N = c291. (Table 2 predicts 3:3� 1011 with the
optimal choice of parameters.) Numbers mod c291 were represented with 38 digits and base 226

(on the VP100/VP2200) or with 41 digits and base 224 (on the Sparc), so each multiplication
(mod N) took more than 104 
oating-point operations.

6.3. The group order. The successful elliptic curve and starting point are de�ned by (8)
and (11), with � = 14152267 (derived from the starting date and time October 14, 15:22:54).
Explicitly, we can take the elliptic curve in the form (7) as

by2 = x3 + 1597447308290318352284957343172858403618x2 + x mod p40 :

This may also be written as by2 = x(x� k)(x� 1=k) mod p40, where

k = 1036822225513707746153523173517778785047 :

b is any quadratic non-residue (mod p40), e.g. b = 5. The group order is

g = p40 + 1� 3674872259129499038

= 22 � 32 � 5 � 149 � 163 � 197 � 7187 � 18311 � 123677 � 226133 � 314263 � 4677853 :
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The probability that a random integer near g=12 has largest prime factor at most 4677853 and
second-largest prime factor at most 314263 is about 5:8 � 10�6. The phase 1 limit for the
successful run was B1 = 2� 106, but programs C{E and G �nd p40 with B1 as small as 314263
if the same curve and starting point are used.

7. Factorization of F11

After the factorization of F8 in 1980, no one predicted that F11 would be the next Fermat
number to be completely factored. Program C, described in x5, was implemented on a Fujitsu
VP 100 in March 1988. After failing to �nd any new factors of F9 and F10, we compiled \large"
versions of program C suitable for F11 and F12. We knew four prime factors of F12 from [41].
On May 6, 1988, a run found a �fth factor

p16 = 1256132134125569 = 214 � 72 � 53 � 29521841 + 1

of F12. Later we learned that R. Baillie had already found this factor in July 1986, using the
Pollard p� 1 method3.
A large version of program C took slightly less than one hour for 20 curves with B1 = 16000

on the number c606 = F11=(319489 � 974849). On May 13, 1988, a 22-decimal digit factor

p22 = 3560841906445833920513 = 213 � 7 � 677 � p14 + 1

was found by phase 2. We had previously tried 68 curves unsuccessfully with B1 ' 15000.
Overall it took about 2:8 � 107 multiplications (mod c606) and slightly less than four hours of
machine time to �nd p22. Dividing c606 by p22 gave a 584-digit composite number c584.
The next run of program C, on May 17, 1988, found a 21-digit factor

p21 = 167988556341760475137 = 214 � 3 � 373 � 67003 � 136752547 + 1

of c584, again using 20 curves with B1 = 16000. It was surprising that a larger factor (p22)
had been found �rst, but because of the probabilistic nature of ECM there is no guarantee that
smaller factors will be found before larger ones. Overall, it took about 3:6� 107 multiplications
(mod c606 or c584) and less than �ve hours of machine time to �nd both factors by ECM. It
would have been feasible to �nd p21 (but not p22) by the Pollard p� 1 method.
The quotient had 564 digits and, to our surprise (see x10), it passed a probabilistic primality

test [47, p. 379]. If this test is applied to a composite number, the chance that it incorrectly
claims the number is prime is less than 1=4. We ran many independent trials, so we were
con�dent that the quotient was indeed prime and that the factorization of F11 was complete.
This was veri�ed by Morain, as described in x9. The complete factorization of F11 was announced
in [8]:

F11 = 319489 � 974849 � 167988556341760475137 � 3560841906445833920513 � p564

8. A new factor of F13

The Dubner Cruncher [22, 34] is a board which plugs into an IBM-compatible PC. The board
has a digital signal processing chip (LSI Logic L64240 MFIR) which, when used for multiple-
precision integer arithmetic, can multiply two 512-bit numbers in 6.4 �sec. A software library
has been written by Harvey and Robert Dubner [34]. This library allows a C programmer to
use the Cruncher for multiple-precision integer arithmetic. Some limitations are:

3The resulting confusion explains why the �fth factor of F12 is not correctly attributed to Baillie in [25, p. 148].
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1. Communication between the Cruncher and the PC (via the PC's ISA bus) is relatively
slow, so performance is much less than the theoretical peak for numbers of less than say
1000 bits. For example, when multiplying 512-bit numbers on a Cruncher running in an
80386/40 PC, only about 10% of the peak performance is achieved.

2. Because of the slow communication it is desirable to keep operands in the on-board memory,
of which only 256 KByte is accessible to the C programmer.

Program F (see x5) was implemented and debugged early in December 1994. Because of
memory limitations, it could not be used for Fermat numbers larger than F15 (a number the
size of F15 requires 4 KByte of storage). In the period January { June 1995 we used a Cruncher
in an 80386/40 PC to attempt to factor F13 and F14 (and some non-Fermat numbers). We
mainly used phase 1 limit B1 = 100000. On F13 each curve took 137 minutes (91 minutes for
phase 1 and 46 minutes for phase 2); on F14 each curve took 391 minutes. For comparison,
program D running on a 60 Mhz SuperSparc on the much smaller number F10 takes 34 minutes
per curve, and the Cruncher takes 17 minutes per curve. The Cruncher's advantage over the
Sparc ranges from a factor of 2 near F10 to a factor of 22 for F14. For numbers as large as
F14 the Sparc program could be improved by using a faster multiplication algorithm such as
Karatsuba's algorithm (see x5.1). However, since 391=137 < 3, Karatsuba's algorithm would
not be helpful on the Cruncher.
Three prime factors of F13 were known:

F13 = 2710954639361 � 2663848877152141313 � 3603109844542291969 � c2417 :
The �rst factor was found by Hallyburton and Brillhart [41]. The second and third factors were
found by Crandall [25] on Zilla net (a network of about 100 workstations) in January and May
1991, using ECM.
On June 16, 1995 our Cruncher program F found a fourth factor

p27 = 319546020820551643220672513 = 219 � 51309697 � 11878566851267 + 1

after a total of 493 curves with B1 = 100000, B3 = 485301, and table size D = 83 (see x3.3).
The overall machine time was about 47 days. We note that p27 + 1 = 2 � 3 � 73 � 59 � p22. The
factorizations of p27 � 1 explain why Pollard's p� 1 methods could not �nd the factor p27 in a
reasonable time.
The successful curve was of the form (6) with initial point

(x1 : y1 : z1) = (150400588188733400929847531 : 277194908510676462587880207 : 1) mod p27

and group order (not divisible by 4 in this case)

g = 32 � 72 � 13 � 31 � 3803 � 6037 � 9887 � 28859 � 274471 :
Using Fermat's little theorem [20, p. lviii], we found c2417=p27 to be composite. Thus, we now

know that

F13 = 2710954639361 � 2663848877152141313 �
3603109844542291969 � 319546020820551643220672513 � c2391 :

At about the time that the p27 factor of F13 was found, program F was modi�ed to give
program G (see x5). Testing program G, we \rediscovered" the p27 factor after 871 curves with
B1 = 100000, B2 = 3542000. After increasing B1 to 500000, we found p27 again (this time by
phase 1), after 216 curves. The expected numbers of curves, predicted as in x4.4, are 537 and
137 respectively. The successful curves are de�ned by (11) with � = 4009189 and � = 8020345
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Table 4. ECM runs on Fn, n = 12; : : : ; 15

n B1 curves hours/curve

12 106 550 5.9
13 5� 105 430 6.6
14 5� 105 300 17.2
15 2� 105 360 21.9

respectively, and the group orders are

g = 27 � 3 � 127 � 3083 � 3539 � 9649 � 18329 � 3395653 and

g = 23 � 3 � 17 � 23 � 41 � 113 � 271 � 3037 � 10687 � 12251 � 68209 :
The fact that programs F and G found the same 27-digit factor three times suggests (but does
not prove) that the unknown factors of F13 are larger than p27.

8.1. Factorization using Crunchers. The combination of a cheap PC and a Cruncher board
($US2,500) is very cost-e�ective for factoring large integers by ECM. Given the initial value
� = 14152267, the Cruncher program G running in an 80386/40 PC with B1 = 320000 can �nd
the p40 factor of F10 in only 56 minutes (this is reduced to 38 minutes in an 80486/50 PC). One
Cruncher in an 80386/40 PC could have done our 240 Mips-year computation to factor F10 in
approximately two years. For numbers approximately as large as F14, the Cruncher runs about
half as fast as the VP2200/10.
In collaboration with Harvey Dubner, we are using several Crunchers in an attempt to �nd

more factors of F12; : : : ; F15 by ECM. F14 is particularly interesting because it is known to be
composite [73], but no prime factor is known. In Table 4 we give the current phase 1 limit B1,
the total number of curves (weighted in proportion to the phase 1 limit used) up to February
1996, and the time required per curve. The times are for program G running under DOS on a
Cruncher installed in an 80386/40 PC, with B2 chosen so phase 2 takes half as long as phase 1
(see x4.4).

9. Primality proofs

In [6] we give primality certi�cates for the prime factors of F5; : : : ; F8, using essentially the
method pioneered by Lucas [56, p. 302], Kraitchik [49, p. 135] and Lehmer [51, p. 330]. To prove
p prime, we completely factor p� 1 and �nd a primitive root (mod p). The method is applied
recursively to large prime factors of p� 1.
Similar certi�cates can be given for the factors p49 and p99 of F9, using Crandall's factoriza-

tions [53] of p49 � 1 and p99 � 1:

p49 � 1 = 211 � 19 � 47 � 82488781 � 1143290228161321 � 43226490359557706629 ;
p99 � 1 = 211 � 1129 � 26813 � 40644377 � 17338437577121 � p68 ; and

p68 � 1 = 2 � 33 � 13 � 1531 � 173897 � 1746751 � 12088361983 �
1392542208042011209 � 3088888502468305782559 :

In these three cases the least primitive roots are 3.
For the penultimate factor p40 of F10, the least primitive root is 5, and we have

p40 � 1 = 212 � 3 � 5639 � 8231 � 433639 � 18840862799165386003967 ;
p40 + 1 = 2 � 2887 � 52471477 � 31186157593 � 493177304177011507 :
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The same method can not be applied to prove primality of the largest prime factors of F10
and F11, because we have only incomplete factorizations:

p252 � 1 = 213 � 3 � 13 � 23 � 29 � 6329 � 760347109 �
211898520832851652018708913943317 �
9409853205696664168149671432955079744397 � c158 ;

p252 + 1 = 2 � 24407 � 507702159469 � c235 ;
p564 � 1 = 213 � 139 � 1847 � 32488628503 � 1847272285831883 �

92147345984208191 � 23918760924164258488261 � c489 ;
p564 + 1 = 2 � 32 � 65231833 � c555 :

We can apply Selfridge's \Cube Root Theorem" [20, Theorem 11] to p252, since p252�1 = F �c158,
where F > 2 � 1093 is completely factored, p252 < 2F 3 + 2F , and the other conditions of the
Cube Root Theorem are easily veri�ed. Thus, p252 is prime, and the factorization of F10 is
complete.
The large factor p564 of F11 was proved prime by Morain (in June 1988) using a distributed

version of his ecpp program [62, p. 13]. We have used the publicly available version of ecpp,
which implements the \elliptic curve" method of Atkin and Morain [1, 2], to con�rm this result.
Version V3.4.1 of ecpp, running on a 60 Mhz SuperSparc, established the primality of p564 in 28
hours. It took only one hour to prove p252 prime by the same method. Primality \certi�cates"
are available [13]. They can be checked using a separate program xcheckcertif.

10. When to use ECM, and prospects for F12

When factoring large integers by ECM we do not usually know the size of the factors in
advance. Thus, it is impossible to estimate how long ECM will require. In contrast, the running
times of the MPQS and general number �eld sieve (GNFS) methods can be predicted fairly well,
because they depend mainly on the size of the number being factored, and not on the size of the
(unknown) factors [68]. An important question is how long to spend on ECM before switching
to a more predictable method such as MPQS/GNFS.
Theorem 3 of Vershik [81] may be helpful. Roughly, it says that the ratios log q= log p of

logarithms of neighboring large prime divisors q, p (q < p) of large random integers are asymp-
totically independent and uniformly distributed in (0; 1). Using this theorem (assuming the
numbers to be factored behave like random integers) or past experience gained by factoring a
class of numbers (such as Cunningham numbers), we can make a rough estimate of the probabil-
ity P that ECM will factor a given number in one unit of time (say one day of computer time).
This estimate should take into account the information that ECM has already spent some (say
U0) units of time unsuccessfully searching for a factor. Silverman and Wagsta� [79, x7] suggest
a Bayesian approach. As a simple approximation, we could use the results of x4.4 to estimate q
such that the expected time for ECM to �nd a factor close to q is U0, and then assume a lower
bound q on the unknown factor. (This amounts to approximating the function in (29) by a step
function.)
For example, if we are factoring N ' 10100 and U0 is such that q ' 1030, then we could

assume that the unknown factor p lies in the interval
�
1030; 1050

�
and that 1= log10 p is uniformly

distributed in the corresponding interval (1=50; 1=30). The probability P can now be estimated,
using the results of x4.4, if we assume that the parameters B1 and B2 are chosen optimally to
�nd factors of size close to q. The estimate might, for example, be 1=P ' cU0, where c ' 9.
If the predicted running time of MPQS/GNFS exceeds 1=P units, then it is worthwhile to

continue with ECM for a little longer. If ECM is unsuccessful, we repeat the procedure of
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Table 5. Second-largest prime factors of Fn

n 7 8 9 10 11
�2 0.98 0.45 0.82 0.27 0.06

estimating P . Eventually, either a factor will be found by ECM or the estimate of P will
become so small that a switch to MPQS/GNFS is indicated. If a factor p is found by ECM,
then the quotient N=p is either prime (so the factorization is complete) or much smaller than
the original composite number N , and hence much more easily factored by MPQS/GNFS. (This
is not true for SNFS, because knowledge of a non-algebraic factor does not greatly speed up
SNFS, see [52, 53].)
Note that our approach is reasonable in the limiting case N ! 1, because the assumption

that 1= log p is uniformly distributed in (0; 1= log q) gives a positive estimate for P . For example,
replacing N ' 10100 by N ' F15 in the example above multiplies the constant c by a factor of
about 2:5 = (1=30)=(1=30 � 1=50).
For the Fermat numbers Fn, 12 � n � 15, the predicted probability of success for ECM is

low, but the predicted running time of other methods is so large that it is rational to continue
trying ECM. There is no practical alternative except the old method of trial division (see the
discussion at the end of x4.3).
Although the Fermat numbers are not random integers, it is interesting to compute �2(�) for

� = logFn= log p2, where p2 is the second-largest prime factor of Fn and �2(�) is de�ned by (14).
The values for n = 7; : : : ; 11 are given in Table 5. For large random integers, we expect �2(�)
to be uniformly distributed (see x4.1). We see that F11 has a surprisingly small second-largest
factor, and F7 has a surprisingly large second-largest factor. The second-largest factors of F8,
F9 and F10 are not exceptionally small or large.
The probability that a random integer N close to F12 has second-largest prime factor p2 <

1040 is 0:059. F12 has �ve known prime factors (see x1), and G. B. Gostin has shown by
exhaustive search that these are its �ve smallest prime factors. The �fth-smallest is Baillie's
p16 = 1256132134125569 (see x7). An indication of the likely size of the sixth-smallest prime
factor can be obtained from Vershik's result [81, Thm. 3], which is paraphrased above. On the
other hand, Harvey Dubner and the author have tried more than 500 curves with B1 = 106, in
an attempt to factor F12, without �nding more than the �ve known prime factors. Thus, from
Table 2 and (29), we can be reasonably con�dent that the sixth-smallest prime factor of F12 is
at least 1030; a smaller factor would have been found with probability greater than 0:9.
The complete factorization of F12 may have to wait for the physical construction of a quan-

tum computer capable of running Shor's algorithm [76], or a surprising new development such
as a classical (deterministic or random) polynomial-time integer factoring algorithm. Here,
\polynomial-time" means that the expected run time should be bounded above by a polynomial
in the length (not the index) of the number to be factored.
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