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For many decades, T helper 2 (TH2) cells have been considered to predominantly regulate

the pathogenic manifestations of allergic asthma, such as IgE-mediated sensitization,

airway hyperresponsiveness, and eosinophil infiltration. However, recent discoveries have

significantly shifted our understanding of asthma from a simple TH2 cell-dependent

disease to a heterogeneous disease regulated by multiple T cell subsets, including T

follicular helper (TFH) cells. TFH cells, which are a specialized cell population that provides

help to B cells, have attracted intensive attention in the past decade because of their

crucial role in regulating antibody response in a broad range of diseases. In particular,

TFH cells are essential for IgE antibody class-switching. In this review, we summarize the

recent progress regarding the role of TFH cells and their signature cytokine interleukin

(IL)-21 in asthma from mouse studies and clinical reports. We further discuss future

therapeutic strategies to treat asthma by targeting TFH cells and IL-21.

Keywords: T follicular helper (TFH) cell, interleukin-21 (IL-21), T follicular regulatory (TFR) cell, asthma,
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INTRODUCTION

Asthma, one of the most common chronic and non-infectious diseases, affects around 334
million people worldwide (1). Although the mortality rate associated with asthma has declined
remarkably with the regular use of inhaled corticosteroids or oral systemic corticosteroids (2, 3),
the overall effectiveness of this therapeutic approach has remained debatable, since 5–25% of
asthmatic patients are refractory and show resistance to current corticosteroid-based treatments
(4). Concurrently, side effects such as poor immune response to infection and increased risk of
osteoporosis are associated with long-term corticosteroid treatment in patients with asthma (5, 6).
Therefore, novel treatments that can replace the current steroid-based therapies in a larger cohort of
asthma patients and reduce the risk of side effects are urgently needed to not only improve patient
outcomes but also reduce the economic burden associated with the management of severe asthma.

Because of their myriad effects on inflammatory responses in the respiratory tract, CD4+ T
cells have been identified as potent regulators of asthma pathogenesis (7). In this regard, T helper
2 (TH2) cells have gradually gained recognition in studies on asthma biology (8, 9). Interleukin
(IL)-4, IL-5, and IL-13, which are canonical type 2 cytokines produced by TH2 cells, prominently
mediate the development of asthma and airway inflammation, manifesting as enhanced
IgE-mediated sensitization, airway hyperreactivity (AHR), as well as eosinophil infiltration (1, 10).
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However, emerging evidence suggests that T follicular helper
(TFH) cells, rather than TH2 cells, predominantly produce IL-
4 and IL-21 in B cell follicles and closely regulate IgE class-
switching during severe asthma development in both mice and
humans (11–15). Therefore, a thorough understanding of TFH

cells and their signature cytokine IL-21 is important to fully
elucidate the pathogenesis of asthma. In this review, we have
summarized recent discoveries related to the role of TFH cells and
IL-21 in mouse models and patients with asthma. In addition,
we have discussed the therapeutic strategies for asthma that
are based on modulation of TFH cells and IL-21, which may
potentially be translated into clinical use in the near future.

BIOLOGY OF TFH CELLS

Generation and Development of TFH Cells
T cell and B cell interactions, particularly the help provided by
T cells to B cells, have been demonstrated for decades (16–19).
However, the cellular processes underlying this “help” provided
to B cell follicles were not fully understood until a specialized
CXCR5-expressing CD4+ T cell population, which is uniquely

FIGURE 1 | TFH cell and related subsets in secondary lymph organs and in peripheral circulation. In secondary lymphoid organs, T follicular helper (TFH) cells are

composed of subsets with distinct phenotypes. These subsets include pre-TFH cells, germinal center (GC) TFH cells, and memory TFH cells. Through the upregulation

of programmed cell death protein 1 (PD-1) and CXC-chemokine receptor 5 (CXCR5), regulatory T (Treg ) cells migrate into B cell follicles and become immature T

follicular regulatory (TFR) cells and germinal center TFR cells. In the peripheral circulation, circulating TFH (cTFH) cells can be categorized into effector memory (cTFH−EM)

cells and central memory (cTFH−CM) cells on the basis of the expression of PD-1 and CC-chemokine receptor 7 (CCR7). cTFH cells can also be sub-grouped into

cTFH1, cTFH2, cTFH13, and cTFH17 cells on the basis of the differential expression of CXCR3 and CCR6 as well as the secretion of interleukin-4 (IL-4) and IL-13.

Circulating TFR cells are similar to Treg cells but express CXCR5. Notably, T peripheral helper (TPH) cells do not express CXCR5 but can produce IL-21 and CXCL13,

which allows them to provide help to B cells.

regulated by Bcl-6, was identified (20–22). These cells, termed
as TFH cells, can access B cell follicles and regulate the germinal
center response (23). Over the past decade, significant progress
has been achieved in studying TFH cells. These “help”-providing
T follicular cells have been revealed tomarkedly express inducible
co-stimulator molecules (ICOS), programmed cell death 1 (PD-
1), and CD40-ligand (CD40L), which are essential for interacting
with B cells (24). Moreover, TFH cells produce high amounts of
the cytokine IL-21 in the B cell follicles (25, 26).

These molecules are not only determinative of the
commitment of TFH cells but are also pivotal for the migration
and full functionality of these cells in follicles. After activation by
dendritic cells in T cell zone, primed T cells become precursor
TFH (pre-TFH) cells and downregulate CCR7 and PSGL1 while
upregulate CXCR5 for their migration into B cell follicles,
where CXCL13, the ligand for CXCR5 is plentifully accumulated
(24, 27) (Figure 1). Additionally, EBI2 and PD-1 are critical
for the positioning of pre-TFH cells near the T-B border
(28, 29). With sustained ICOS stimulation by B cells as well as
downregulation of the adhesion molecules EBI2 and S1PR1,
TFH cells are allowed to further develop into B cell follicles and
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are retained in the germinal centers to become germinal center
TFH (GC-TFH) cells (23, 30, 31) (Figure 1). Bcl-6 is essential
for this complex cellular process, since it promotes CXCR5
expression while repressing the expression of the transcription
factors T-bet, GATA-3, and RORγt, molecules that are essential
for the induction of other subsets of effector CD4+ T cells such
as TH1, TH2, and TH17 cells (32, 33). Moreover, Bcl-6 inhibits
CCR6, PSGL1, CCR7, and S1PR1, the cell surface molecules that
regulate non-follicular localization of effector CD4+ T cells (23).
Antagonistically, the transcriptional repressor B lymphocyte-
induced maturation protein 1 (Blimp-1) negatively acts on
Bcl-6 to inhibit TFH development. Transcription factors such as
c-Maf, FOXO1, Id3, TCF-1, IRF4, and ASCL2 are also known
to play important roles in fine-tuning the sophisticated cellular
regulatory network during TFH development and function (23).

Cytokine Milieu Regulates TFH Cell
Development and Differentiation
Development of TFH cells is also dependent on the cytokine
milieu. Mouse studies have revealed that IL-6, IL-12, and IL-
27 induce the expression of Bcl-6 and promote TFH lineage
differentiation through the activation of the transcription factors
STAT3 and/or STAT4 (34–38). In humans, TGF-β together with
IL-12 and IL-23 may contribute to the generation of human TFH

cells (39). In contrast, the TGF-β signal exerts suppressive effects
in regulating the production of IL-21 and expression of ICOS and
Bcl-6 in mouse TFH cells (39). Nevertheless, IL-2 is a suppressive
molecule that inhibits the generation of both human and mouse
TFH cells in a STAT5- and Blimp1-dependent manner (40, 41).

Circulating TFH Cells and Subsets of TFH

Cells
Although TFH cells possesses distinctive characteristics in
comparison with other subsets of CD4+ T cells, they can produce
TH1, TH2, and TH17-type cytokines. Indeed, Reinhardt et al. (42),
Zaretsky and Hirota etc. have shown that TFH cells, especially
circulating or tissue-resident TFH cells, produce IL-4 or IL-17 to
modulate antibody responses (43, 44). Bona fide germinal center
TFH cells can also produce IL-4, IFN-γ, or IL-17 to regulate
antibody outcomes (42–44).

After the contraction phase of the immune response, a
small proportion of CD4+ T cells give rise to memory T cells,
which confer long-lasting immunity to the host to defend it
against recurrent invasions of pathogens. Indeed, MacLeod et al.
(45) have shown that CXCR5+ memory CD4+ T (memory
TFH) cells (Figure 1) accelerate the generation of functional
TFH cells and promote OVA-specific IgG1 titers in OVA
immunization. Moreover, influenza vaccination promotes the
levels of circulating TFH cells (cTFH) cells in human blood, and
these cTFH cells correlate with a boosting of antigen-specific B
cell response (46). These data strongly suggest that memory TFH

cells exist in circulating blood and that these cells can foster rapid
and high-quality antibody response.

Interestingly, memory TFH cells in circulation are not only
able to promote recall response, but are with plasticity to give rise
to other functional effector T cells in different contexts (47, 48).

It is also noticed in germinal center that GC-TFH cells switch to
produce IL-4 from IL-21 as the germinal center reaction evolved
(49). These evidences suggest that TFH cells are not terminally
differentiated cells and maintain flexibility to convert into other
functional CD4+ T cell subsets.

On the basis of the differential expressions of the
chemokine receptors CXCR3 and CCR6, peripheral
circulating TFH (cTFH) cells can be divided into three
major subsets: cTFH1 cells (BCL6−CXCR3+CCR6−),
cTFH2 cells (BCL6−CXCR3−CCR6−), and cTFH17
(BCL6−CXCR3−CCR6+) cells (50) (Figure 1). These subsets
are transcriptionally different and produce distinct cytokines to
regulate humoral response (50). Of note, cTFH2 and cTFH17 cells,
but not the cTFH1 population, are characterized as efficient helper
TFH cells to promote the class-switching of immunoglobulin
(50). cTFH2 cells promote IgG and IgE secretion, whereas blood
cTFH17 cells induce IgG and IgA secretion (50). Interestingly,
a group of peripheral T cells defined as T peripheral helper
cells (TPH) do not express CXCR5 but can produce IL-21 and
CXCL13 (Figure 1), which allows them to provide help to B cells
(51, 52). Meanwhile, a group of CD4+ T cells expressing CXCR3
and PD-1 but not CXCR5 have been found in both blood and
tubulointerstitial areas in lupus patients (53). These cells provide
the help to B cells through the production of IL-10 and succinate
instead of IL-21 (53). It is with interest to know in the future
how these non-classic “B cell help” CD4+ T cells correlate with
each other and with classic TFH cells. Notably, classic human
circulating TFH cells can also be categorized into distinct effector
stages by evaluating the expression levels of ICOS, PD-1, and
CCR7 (54, 55). On the basis of this strategy, activated-stage
(effector memory) cTFH (cTFH−EM) cells are defined as PD-
1+CXCR5+BCL6−ICOS+CCR7low cells, which are similar to
pre-TFH cells, while PD-1−CXCR5+BCL6−ICOS−CCR7+ cells
are characterized as central memory cTFH cells (cTFH−CM)
and can persist for weeks after antigen stimulation (54, 55)
(Figure 1). Interestingly, within blood cTFH1 cells, the helper
ability is restricted mostly to the activated ICOS+PD-1+CCR7low

subset, while within cTFH2 and cTFH17 cells, both activated and
central memory subsets are capable of providing help signals to
the B cells (56, 57). In fact, the activated ICOS+PD-1+CCR7low

subset represents the most efficient helper cells among cTFH cells
(56, 57). Beyond this classification, a study using a murine model
with dedicator of cytokinesis 8 (Dock8) deficiency revealed a
subset of IL-13-producing TFH cells associated with high-affinity
IgE production (58) (Figure 1). These “TFH13” cells, which
are present in both mice and humans, have a unique cytokine
profile (IL-13+IL-4+) and co-express Bcl-6 and GATA-3 (58).
These cells were further demonstrated to be responsible for the
production of high-affinity anaphylactic IgE but not low-affinity
IgE (58).

ROLE OF TFH CELLS IN ASTHMA
PATHOGENESIS

Since TFH cells are indispensable for antibody maturation,
investigators have studied the role of these cells in many disease
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contexts, including asthma (23). Emerging evidence from both
mouse and human studies has elucidated that subsets of TFH cells
differentially contribute to the development of asthma (Table 1).
These observations have broadened our understanding of asthma
and provided novel options to treat asthma by targeting TFH cells
from different angles.

TFH Cells in Murine Asthma Models
Like in the case of other immune diseases, animal models
serve as a feasible approach to investigate the pathogenesis of
asthma. To fully understand how TFH cells participate in asthma
development, multiple allergens such as house dust mite (HDM),
ovalbumin (OVA), molds, and cockroach antigens have been
utilized to induce asthma symptoms in mice (74).

Using an HDM-induced asthma mouse model, Ballesteros-
Tato et al. (11) showed that the initial intranasal sensitization
with HDM directly induces IL-4-producing TFH cells, and
these cells then become IL-4+IL-13+ TH2 cells after the
HDM challenge. Interestingly, depletion of TFH cells after
HDM sensitization successfully prevents TH2 cell-mediated
immunity after secondary exposure (11). These results are
supported by recent studies showing that TFH cells can further
differentiate into functional subsets to regulate antibody response
(11, 47, 75, 76). Meanwhile, studies have also shown that
the airborne allergen HDM independently induces TH2 or

TFH cells to regulate eosinophilic airway inflammation and
IgE production, which raises more questions related to the
clear definition of the different roles of TH2 and TFH cells
in HDM-induced asthma (12, 13). More importantly, these
studies have revealed a rare but important IL-21 producing
CD4+ T cells that are highly pathogenic and can synergize
airway inflammation in the lung tissue (12, 60). These cells
are different from classical TFH cells as they lack expression
of Bcl-6 and CXCR5 and don’t require ICOS signaling (12,
60, 61). In another peanut-induced asthma mouse model,
TFH cells robustly promoted peanut-specific IgE production
(59). In this model, depletion of TFH cells decreased IgE
production and protected mice from anaphylaxis without
affecting TH2 cells (59). Thus, TFH cells are necessary and
sufficient for the B cell class-switching and sustained IgE
production in the absence of TH2 cells (13, 59). In line
with this result, mice with T cell specific IL-6R deficiency
exhibit limited TFH expansion after HDM sensitization and
significantly impaired IgE response (14). Moreover, a rare
population defined as IL-13 producing TFH (TFH13) cells is
reported to be essential for the production of high-affinity
IgE antibody and the subsequent allergen-induced anaphylaxis
(58). Eliminating TFH13 cells or TFH cell-derived IL-13 during
allergen immunization results in the abrogation of high-affinity
anaphylactic IgE (58).

TABLE 1 | T follicular cells in mouse/human asthma and related allergic diseases.

Species Model/Patients Location Dysfunction Effect References

Mouse Peanut mLN TFH1↑ TFH cells promote peanut-specific IgE production. (59)

HDM mLN TFH2↑ TFH cells are precursors of HDM-specific TH2 cells. (11)

HDM mLN TFH2↑ TFH cells amplify TH2 cell function in allergic airway inflammation;

TFH cells support the sustained production of IgE antibody in vivo.

(12–14)

HDM Lung CD4+ IL-21+↑ Promotes local inflammation in the airway (12, 60, 61)

HDM and Peanut mLN TFH13↑ TFH cells are required for production of high-affinity, but not

low-affinity, IgE and subsequent allergen-induced anaphylaxis.

(58)

HDM mLN TFH13↑, TFR ↓ TFR cells can limit TFH13 cell-promoted IgE production. (62)

Transplantation (not

clear in Asthma)

mLN, Spleen TFH17↑, TFR ↓ IL-10-producing marginal zone precursor B cells control the

differentiation of TFH cells and are necessary for immune tolerance.

(63)

OVA Immunization mLN, Spleen TFR ↓ Deficiency of TFR cells leads to excessive humoral immune

responses.

(64, 65)

Human Juvenile

Dermatomyositis (not

clear in Asthma)

Blood cTFH1↓, cTFH2↑,

cTFH17↑

cTFH2 and cTFH17 cells, but not cTFH1 population, are

characterized as efficient helper TFH cells to promote the

class-switching of immunoglobulins.

(50)

Allergic Asthma Blood cTFH2↑ TFH cells positively correlate with the total IgE level. (66–68)

Peanut-Allergen Blood cTFH13↑ / (58)

HDM-Allergen Blood cTFH↑, cTFR ↓ AIT efficiently modulates the balance of circulating TFH and TFR. (69)

Allergic Rhinitis Blood cTFR ↓ AIT efficiently reinvigorates TFR cells to control IgE production. (70)

Asthma Blood cTFR ↓ TFR cells produce high amounts of IL-10, which may inhibit the

generation of pathogenic TFH cells.

(71–73)

Rheumatoid Arthritis

(not clear in Asthma)

Blood TPH↑ TPH cells promote B cell responses and antibody production. (51)

Lupus (not clear in

Asthma)

Blood TPH↑ TPH cells stimulate B cell responses via IL-21. (52)

HDM, house dust mite; mLN, mediastinal lymph node; AIT, allergen-specific immunotherapy.
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TFH Cells in Human Asthma
In human studies, our group and other groups have found
significantly higher circulating TFH cell (CXCR5+CD4+) levels
in both child and adult asthma patients in comparison with
healthy cohorts (66, 67). Additionally, a skewed peripheral TFH

cell phenotype toward the TFH2 phenotype has been identified
in asthma patients, where the frequency of TFH2 cells positively
correlated with total IgE levels in the blood (66). We have further
observed that circulating TFH cells enhance IgE production,
which can be reduced by blocking IL-4 or IL-21 (77). Moreover,
the levels of IL-4+IL-21+CXCR5+CD4+ T cells have been shown
to positively correlate with the total IgE level in vivo (77).
These results indicate that circulating CXCR5+CD4+ TFH cells
support the germinal center production of IgE in asthma patients.
Interestingly, studies using microRNA have revealed that miR-
192 is a promising therapeutic target in asthma patients as it
inhibits TFH cell differentiation (67, 78). Of note, allergen-specific
immunotherapy (AIT), which leads to improved prognosis in
allergic patients, efficiently reduces circulating TFH cell levels
(68, 69). AIT treatment also markedly increases the frequency of
T follicular regulatory (TFR) cells, which are known to suppress
the germinal center reaction (69, 70).

BIOLOGY OF IL-21

IL-21 and IL-21R were discovered in 2000 (79, 80). As a
pleiotropic type I four-α-helical bundle cytokine, IL-21 is
predominantly produced by NKT cells and activated CD4+ T
cells such as TH9 cells, TH17 cells, and TFH cells (81, 82). IL-
21 exerts its biological function via binding to its heterodimeric
receptor. This receptor is composed of the common γ-chain
subunit shared with IL-2 family cytokines, including IL-4, IL-7,
IL-9, and IL-15, and its own unique receptor (designated IL-
21R), a member of the class I cytokine receptor family (83).
Although the production of IL-21 is restricted to lymphocytes,
IL-21R is universally expressed on a large range of immune
and non-immune cells, indicating its broad physiological effects
(79, 80). Recent advances have revealed that IL-21 promotes the
activation and cytotoxic function of NK and NKT cells (84, 85).
IL-21 also enhances the anti-viral and tumor function of CD8+

T cells (82, 86, 87). In particular, IL-21 regulates the formation
and function of CD4+ T cell subsets, including the promotion of
IL-17-producing T cells (TH17) (88, 89), efficient development of
TFH cells (90), and limitation of TFR cells (64). IL-21 is essential
for B cell differentiation and activation. In this context, IL-21
induces B cell proliferation and differentiation to either memory
B cells or terminally differentiated plasma cells egressing from the
germinal center (82, 91). In addition, IL-21 plays fundamental
roles in regulating Ig class-switching and maintaining germinal
center reaction (82, 92, 93).

As a potent cellular modulator, IL-21 binds to the IL-21R
and stabilizes the IL-21R-γc (common cytokine receptor γ chain)
complex, which leads to the activation of downstream signaling
cascades (94). Which signaling pathways are particularly
important to regulate the formation, function, and fate of T and
B cells? Janus kinase 1 (JAK1) and JAK3 have been shown to be

largely activated by the IL-21R-γc complex. This activation leads
to strong phosphorylation of signal transducer and activator of
transcription protein 3 (STAT3), which will further dimerize
and translocate into the nucleus for target genes (94). In T
cells, activated STAT3 signaling results in increased expression
of retinoic acid receptor-related orphan receptor-γt (RORC) and
enhanced production of IL-17 and IL-21 (88, 89, 95, 96). This
IL-21-STAT3 axis can also directly promote IL-6 mediated Bcl-
6 expression, which induces the upregulation of CXCR5, ICOS,
and PD-1 during TFH cell development (23, 25, 97) (Figure 2).
Although future studies are required to determine whether IL-21
is superior to other STAT3 inducing cytokines such as IL-6 on
the regulation of TFH cells in vivo (98), IL-21 is at least partially
required for the potentiation of TFH-like cells in vitro (90, 99).
Additionally, IL-21 also regulates the target genes in T cells
through BATF, JUN, and IRF4 (100). In B cells, IL-21 maintains
Bcl-6 expression in germinal center B cells (101, 102) while it
increases the expression of Blimp1 (Prdm1), which promotes
plasma cell differentiation (91). IL-21 also regulates the apoptosis
of B cells through the modulation of BIM (Bcl-2 interacting
mediator of cell death) (103, 104) (Figure 2).

These IL-21-initiated pivotal signaling pathways can be
targeted through agonists or antagonists (inhibitors) to
modulate T and B cell development and function, and more
importantly, intervene and treat multiple immune related
diseases, including asthma.

ROLE OF IL-21 IN ASTHMA
PATHOGENESIS

IL-21 in the Pathogenesis of Murine
Asthma
The IL-21 transcript is upregulated in the lung and lung-
draining lymph nodes during allergic airway response
(12, 105). The protein levels of IL-21 and IL-21R are
also increased in the pulmonary tissues of asthmatic rats
(106). Additionally, IL-21 level is elevated in the serum
and bronchoalveolar lavage fluid (BALF) of asthmatic mice
(107, 108).

IL-21 has anti-IgE and anti-inflammatory effects (93, 109–
113). Indeed, Il21r-deficient mice exhibit high levels of
IgE, and IL-21 inhibits IL-4-induced IgE secretion by B
cells (105, 114). In the OVA-induced asthma model, the
administration of exogenous IL-21 reduced IgE production
and decreased eosinophil recruitment into the airway (109).
Consistent with this data, Lin et al. have confirmed in vivo
that intranasal administration of IL-21-expressing adenovirus
suppresses allergic responses (115). Additionally, in this model,
administration of IL-21 not only reduces the frequency of TH2
cells but suppresses the secretion of TH2-associated cytokines
such as IL-4, IL-5, and IL-13 (115). In line with this observation,
Wu et al. have shown that nasal administration of rmIL-21
significantly reduced the AHR, inflammatory cell infiltration,
IgE-producing B cell level, and total serum IgE level (116). As
mentioned above, serum total and HDM-specific IgE antibody
titers are markedly higher in Il21r-deficient mice (105). However,

Frontiers in Immunology | www.frontiersin.org 5 December 2019 | Volume 10 | Article 2918

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gong et al. TFH Cells and IL-21 in Asthma

FIGURE 2 | Role of IL-21 in TFH cell and B cell differentiation. IL-21 binds to the IL-21 receptor (IL-21R), which dimerizes with the common cytokine receptor-γ chain

(γc) to form the IL-21R complex. In TFH cells, IL-21 signaling activates Janus kinase 1 (JAK1) and JAK3 to induce phosphorylation of signal transducer and activator of

transcription 3 (STAT3, also STAT1 and STAT5 to some extent). STAT3 protein translocates into the cell nucleus and regulates the transcription of target genes,

including IL-21, Maf, and Bcl6. This regulation leads to the autocrine IL-21 by TFH cells and the transcriptional program that upregulates genes encoding CXCR5,

ICOS, and PD-1. In B cells, at least partially through STAT1 and STAT3, IL-21 signaling can regulate the gene expression of Prdm1 (Plasma cell differentiation), Acida

(Affinity maturation), Bcl6 (Germinal center B cells), and Bcl2l11 (B cell apoptosis) which leads to the differentiation of B cells to multiple directions.

Il21r-deficient mice develop unexpectedly less AHR in an HDM
model of asthma (105). Similar results showing a decline
in AHR are also observed in an OVA-induced experimental
asthma model using Il21r-deficient mice (114). These findings
suggest that IL-21 is importantly involved in the development
of asthma. While the mechanisms underlying the dichotomy
in the role of IL-21 in regulating IgE and AHR remain
poorly understood, they are presumably related to the location
and timing of the differential accumulation of IL-21 during
disease development.

IL-21 in Human Asthma
The main obstacle in studying the immunopathology of asthma
in human subjects is the relative inaccessibility of inflamed
tissues. Nonetheless, using bronchial biopsies, IL-21 expression
has been shown to be elevated in both moderate and severely
asthmatic individuals (105). Additionally, an increased IL-21
level appears to be associated with increased infiltration of
inflammatory cells in the submucosa and is correlated with
asthma severity (105). In addition, the plasma level of IL-21
is significantly elevated in asthma patients in comparison with
healthy controls (117). Consistently, an increased frequency
of IL-21-expressing CD4+ T cells is also observed in asthma
patients. This increased frequency positively correlates with total
IgE levels in the blood (77). Moreover, in vitro experiments
have demonstrated that blocking IL-21 in the coculture assay
of B cells with CXCR5+CD4+ T cells results in decreased IgE
antibody production by B cells (77). Besides, Chatterjee et al.
have reported that the exon-3 polymorphismC5250T of the IL-21

gene was significantly associated with atopic asthma and total IgE
level (118).

CLINICAL IMPLICATIONS

The increasing number of studies on TFH cells and IL-
21 have inspired numerous possibilities for the development
novel immunotherapies to treat asthma. As mentioned above,
modulating IL-21 and TFH cell-regulated IgE production
may effectively control asthma development and alleviate
inflammatory and hyperresponsiveness symptoms in patients.

TFH Cells and Serum IL-21 as Biomarkers
in Asthma
Precise and early diagnosis of asthma and related syndromes
is critical for the prompt control of disease development in
patients. Lung function tests for timely and accurate diagnosis
of asthma are not as feasible in children as they are in adults.
As evidenced in recent clinical studies, the frequency of cTFH

cells and/or the IL-21 level in peripheral blood mononuclear cells
(PBMCs) appear to be the promising diagnostic biomarkers for
IgE production and asthma symptoms (66, 67, 77). cTFH cells
and IL-21 levels can be potentially included in future diagnostic
criteria for asthma. Moreover, future portable devices equipped
with a method to analyze cTFH cells and IL-21 may allow efficient
and precise diagnosis of asthma in those who have a family
history of the disease or are highly susceptible to severe asthma
due to genetic defects and environmental factors.

Frontiers in Immunology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 2918

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gong et al. TFH Cells and IL-21 in Asthma

Limiting Pathogenic TFH Cells in Asthma
Many approaches can be utilized to target pathogenic TFH

cells. For example, Treg cells are known to reinstate immune
tolerance and prevent exaggerated immune response through
their immune-suppressive function (119). Deficiency of Treg

cells in both mice and humans leads to the excessive humoral
immune responses characterized by spontaneous germinal center
formation and increased frequency of pathogenic TFH cells
(65, 120, 121). Indeed, temporary depletion of Treg cells leads
to enhanced secondary immune response upon antigen re-
challenge (65). This enhanced memory immune response occurs
partially through the reduction of CTLA-4-directed inhibition of
CD80/CD86 on B cells, which results in an increased frequency
of TFH cells (65).

Furthermore, by upregulating CXCR5, a significant
proportion of Treg cells migrate into B cell follicles and exert
suppressive functions on TFH cells and GC B cells (122, 123).
These cells, which are termed as TFR cells, are considered
to control autoimmunity and germinal center reaction (124)
(Figure 1) as well as autoreactive B cell clones in infection (125).
Human clinical studies have shown that allergen immunotherapy
reinvigorates the TFR cells in patients with allergic rhinitis, and
the addition of human TFR cells in the TFH and B cell coculture
system remarkably reduced TFH cell-promoted IgE production
(70). It is thus of interest to see how TFR cells respond in
asthma patients in future studies. Moreover, specialized human
IL-10-producing CD25+Foxp3− TFR cells effectively control
IgE production (126). In the most recent study, Clement et al.
revealed that TFR cells can limit TFH13 cell-promoted IgE in
mouse, and depletion of TFR cells enhances antigen-specific IgE
antibody and exacerbates lung inflammation (62). These studies
suggest promising paths to inhibit pathogenic TFH cells and IgE
production in asthma, and also shed light on the development
of novel immunotherapies in asthma patients by promoting
Treg/TFR cell-mediated suppression of TFH cells.

Administration of cytokine and/or antibodies has been
considered to be an effective method to reinstate the balance of
immune response in many types of diseases including asthma
(127). IL-2 has been shown to vigorously suppress TFH cells
(40). Indeed, clinical studies have proven that low-dose IL-2
treatment in systemic lupus erythematosus (SLE) patients safely

and effectively limits autoimmunity partially through direct
inhibition of self-reactive TFH cells (41). Besides, other cytokines
may also potentiate the repression of pathogenic TFH cells in
asthma. For example, IL-7 is reported to repress Bcl-6 and the
gene profile of TFH cells in chronic viral infection, which leads
to the generation of a memory pool of effector T cells (128).
Although lack of CXCR5 and Bcl-6 expression, a specialized IL-
21 producing CD4+ T cell population is reported to provide
help to B cells and synergize airway inflammation in lung tissue
(12, 60). The role of these cells in human asthma is still unknown,
nevertheless, it is of great interest to understand these non-classic
TFH cells in the future as targeting on their IL-21 production
may ameliorate lung inflammation in asthma. Moreover, IL-
10 resolves the inflammation in asthma (71–73). Studies have
shown that IL-10-producing marginal zone precursor B cells
control the differentiation of TFH cells and are necessary for

immune tolerance (63). Treg cells and TFR cells produce high
amounts of IL-10, which may be the underlying mechanism of
the Treg/TFR cell-mediated inhibition of pathogenic TFH cells
and allergen-specific IgE antibody production. Type I interferon
counteracts with STAT3 to restrain TFH cells (129). Interestingly,
type I interferon has been also shown to suppress infection-
induced asthma (130, 131). In particular, future studies should
aim to determine whether targeting of type I interferons will
eliminate pathogenic TFH cells and resolve asthma in patients.
Of note, combination therapy with mixed cytokines, cytokine-
cells, and cytokine-chemical may provide even better suppression
of pathogenic TFH cells. For example, the combination of
IL-10 or IL-2 with Treg or TFR cells may synergize the
immuno-suppressive function of pathogenic TFH cells and confer
improved control of asthma symptoms in patients.

Modulating IL-21 Signaling in Asthma
IL-21 and IL-21R are emerging as promising targets for novel
cytokine-based immunotherapies in many diseases, including
SLE, primary immunodeficiency (PID), chronic lymphocytic
leukemia (CLL), multiple myeloma (MM), and lymphoma (132–
134). Phase I and phase II clinical trials have tested the
efficacy and safety of IL-21 administration in limiting malignant
melanoma (135–138). These studies provide evidence for the use
of IL-21 as a safe and effective immunotherapeutic agent in a
broad range of diseases. Because of IL-21’s profound effects in
controlling IgE production, supplementation of IL-21 may be
useful to rebalance the elevated IgE level in asthma (93). It is
possible that IL-21 may have multiple roles in asthma, wherein
it may sustain germinal center reaction while limiting Ig class-
switching toward IgE. This dichotomy in the effects of IL-21
in asthma may be due to the timing and location at which IL-
21 is preferentially accumulated. Nevertheless, it is worthwhile
to point out that IL-21 administration in other allergic mouse
models, including skin allergy, allergic rhinitis, and anaphylaxis,
impressively reduces allergen-specific IgE production (111–113).
Again, these points of evidence provide confidence for the
development and assessment of IL-21-based immunotherapy in
allergic asthma.

On the other hand, amelioration of disease symptoms
and improved health were observed after delivery of IL-21
neutralizing antibodies or IL-21R blockade in mice in multiple
autoimmune and inflammatory disease models, including SLE
(139), arthritis (140), graft-vs.-host disease (GVHD) (141, 142),
and Crohn’s Disease (143). Although it is still not very clear why
IL-21 and IL-21R signaling play different roles in asthma, it will
be very exciting to see more studies provide definitive evidence
on IL-21’s immunomodulating functions in regulating TFH cells,
IgE production, and germinal center response in asthma.

CONCLUSION

In our review of the research using animal models and human
patient samples, TFH cell and its signature cytokine IL-21
were evidenced to be largely involved in asthma. In particular,
specialized subsets of TFH cells, such as TFH2 cells, TFH13 cells,
and TFR cells closely regulate IgE production in asthma. Future
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studies using single-cell technology can help us better understand
this heterogeneity of the TFH cell population in asthma patients
and healthy cohorts. Future studies are also required to elucidate
the connection between IL-21 and different subsets of TFH cells as
well as TFR cells, and to determine how can we use this follicular
regulatory network to control asthma disease. It also remains
to be seen how TFH, TFR cells and IL-21 are used to better
classify the asthma patients, which may help clinicians design
personalized and precise medicine for different individuals
with asthma.
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