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Abstract

Given a large network, local community detection aims at finding the community
that contains a set of query nodes and also maximises (minimises) a goodness met-
ric. Furthermore, due to the inconvenience or impossibility of obtaining the complete
network information in many situations, the detection becomes more challenging.

This problem has recently drawn intense research interest. Various goodness met-
rics have been proposed. And most of them base on the statistical features of com-
munity structures, such as the internal density or external spareness. However, the
metrics often result in unsatisfactory results by either including irrelevant subgraphs
of high density, or pulling in outliers which accidentally match the metric for the time
being. Further more, when in a highly overlapping environment such as social net-
works, the unconventional community structures make these metrics usually end up
with a quite trivial detection result.

In our work, we go for a alternative point of view on the formation of the com-
munities, namely the assembly of nodes with different roles in the structure. With
the new view point, we present two metrics which are proved to perform superiorly
in traditional and complex environment respectively. Moreover, on realising a single
metric is whatsoever limited in effectiveness as well as scope of application, we raise
up a complete framework for the collaboration of metrics in the field, which also lands
a base-stone for future innovations.

The experiment results collected from Amazon, DBLP, Youtube and LivingJournal
well certifies the effectiveness of the metrics.
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Chapter 1

An Introduction to My Thesis

1.1 Networks, Graphs and Community Structures

1.1.1 Networks in Real Life

Figure 1.1: Protein-Protein Network, reprinted from [Jonsson PF 2006]

When we talk about network, we refer to the concept of a system with a set of com-
ponents interacting or interdependent with each other, forming an integrated whole.

A basic knowledge is, where there is any connection or interaction between mul-
tiple entities, there is a network. And networks are all around us in life.

For example, the figure 1.1, 1.2, 1.3 respectively notates a network of different
kind. Figure 1.1 describes a protein-protein interaction networks. The graph pictures
the interactions between proteins in cancerous cells of a rat. Figure 1.2 visualise the
data of internet at the AS level. Figure 1.3 depicts the relationship network between
two families.

It’s clear that these connections are the bonds that integrate the whole networks.
And the study into these connections make great sense if we would like more infor-

1



2 An Introduction to My Thesis

Figure 1.2: Internet Network, reprinted from [Shai Carmi 2007]

Figure 1.3: People Relationship Network

mation about the networks all around us.

1.1.2 Networks and Graphs

Specially, the networks usually can be studied as graphs.
In order to study the networks in depth, an adequate representative form of it is in-

dispensable. And this is where the graph theory comes in. The origin of graph theory
dates back to 1736. As the amount of understanding and knowledge on graphs ob-
tained increases, especially their mathematical properties [Bollobás 1998], they grad-
ually become integral in network researches, as representation of a wide variety of
networks in different areas.

Especially, as shown with the example in last section, biological, social, technolog-
ical, and information networks can be studied as graphs; and the graph analysis skills
have become crucial to understand the features of these networks. For instance, so-
cial network analysis started in the 1930’s and has become one of the most important
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topics in sociology [Scott 2000]
In recent times, the age of information explosion, the technology dedicated in col-

lecting and storing data of unbelievable size evolves at an amazon speed. The human
kind is now capable of accessing seas of data which was like a dream. However, this
need to deal with such a large number of units, in the order of millions or billions,
has produced a deep change in the way graphs are approached [Albert and Barabasi
2002]

Before move on, we are going to formalise definitions for networks and graphs,
for the convenience of demonstration in the rest part.

Definition 1. Network, is a system in which the entities connect, interact and influence each
other in one way or another. Network would be only referred to as the existed networks in our
context.

Definition 2. Graph is a representation of a set of objects where some pairs of objects are
connected by links.

1.1.3 Graphs and Basic Concepts

Graphs are essentially data sets stored in the graph database. And now we are going
to give a more official definition to them and talk about the details they concerns.

Definition 3. Vertex (also called a ’node’) is a fundamental part of a graph. In many applica-
tions the vertex is behind the entity in the real world.

The vertexes can have a name, which we will call the ?key?.
In many applications the vertex is behind the entity in the real world. For exam-

ple, in social network like Facebook, one vertex is usually representing a single user
in real life; and for amazon commodity network, a node is often associated with a
specific good. Besides that, a vertex may also have additional information. We will
call this additional information the ?payload.? The quantity of the vertexes belong
to a particular graph stands for the amount of concerned objects in it. For example
the node number of a regional Facebook graph represents the Facebook user account
amount in the area.

Definition 4. Edge (also called an ’arc’) is another fundamental part of a graph. An edge
connects two vertices to show that there is a relationship between them in the graph.

Edges are radically reflections of connections in networks to graphs. They may be
one-way(undirected) or two-way(directed). If the edges in a graph are all two-way,
we say that the graph is a directed graph, or a digraph. The class prerequisites graph
shown above is clearly a digraph since you must take some classes before others. For
instance, an undirected edge would be established between two users in Facebook as
long as they friend each other on the website; and two goods may have a directed
edge in between if one is relied upon another according to some rule. While any edge
has to indicate explicitly the two nodes it sit between, sometimes it contains more
information.
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The quantity of edges shows the amount of existing connections between the
nodes(objects) of the same graph. For example, the edge number of a company co-
operation graph expresses the level of collaborating positiveness between the compa-
nies.

Definition 5. The fundamental parts of the graph, namely nodes and edges, may be attached
with a certain value demonstrate the difference between two in the graphs, which is called
weight.

Particularly, edges can be weighted to demonstrate a key attribute of the connec-
tions. For example, the attribute can be the cost to go from one vertex to another; as in
a graph of roads that connect one city to another, the weight on the edge might rep-
resent the distance between the two cities. Or the length or strength(based on some
particular rule) of a friendship on Facebook.

Some of the graphs also contain nodes with different weights. This kind of weight-
ing usually showcases the nodes? fit against a given standard. For example, in the
PageRank graph, the higher probability(weight) a website(node) with has, the bigger
impact it has on the rest of the graph.

Definition 6. The degree of a node is the number of edges connected to the node in the graph.

As far as the graph is concerned, the degree of a node is the number of edges
attached to it. And this also mirrors the relational density level of entities in the net-
works. Take social networks as examples, the vertex with very high node degree is,
without doubt, playing a core role in the group under normal circumstances. At the
same time, the node with few connections can be generally viewed as social-inactive.

1.1.4 The Existence of Community Structure

Definition 7. Random graph: The paradigm of disordered graph is the random graph, intro-
duced by P. Erdos and A. Renyi in [Erdos and I 1959]. In a random graph, the distribution of
edges among the vertices is highly homogeneous. For instance, the distribution of the number
of neighbours of a vertex, or degree , is binomial, so most vertices have equal or similar degree.
In it, the probability of having an edge between a pair of vertices is equal for all possible pairs

. There are some disciplines in the formation of real life networks, which means
that the graphs representing real networks are not usually as regular as frames. Graphs
are objects where order coexists with disorder. And they are not random graphs, for
they do need to express some level of order and organisation to represent the inho-
mogeneities in real-life networks.

The degree distribution of these graphs is broad, with a tail that often follows a
power law: therefore, many vertices with low degree coexist with some vertices with
large degree. Furthermore, the distribution of edges is not only globally, but also
locally inhomogeneous, with high concentrations of edges within special groups of
vertices, and low concentrations between these groups.
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Definition 8. Community(networks): Communities, also called clusters or modules , are
groups of vertices which probably share common properties and/or play similar roles within
the graph; usually marked with high concentrations of edges within these groups of vertices,
and low concentrations in between

.
If we have a look at the human society, we can find many organisations of clear

order, such as military, governments, nations, schools, towns and friend circles. In
recent years the online communities have made its appearance in organised groups
as well.

Social communities have been studied for a long time [R. Edward Freeman 2004].
And communities also occur in many networked systems from biology, computer sci-
ence, engineering, economics, politics, etc. If we have a look back at the network ex-
ample given at the first section, we may notice the existence of communities as well,
in the form of protein sub-structures, internet communities and families.

1.1.5 Other Special Concepts in Graphs Their Realistic Significance

For the rest of the work, we will give a formal definition and some notations to de-
scribe the graph. A graph can be represented by G where G=(V,E). For the graph G, V
is a set of vertices and E is a set of edges. Each edge is a tuple (v,w) where w,v?V. We
can add a third component to the edge tuple to represent a weight. G=(V,E,W)

Definition 9. Subgraph : A subgraph, H, of a graph, G, is a graph whose vertices are a subset
of the vertex set of G, and whose edges are a subset of the edge set of G. In reverse, a super-
graph of a graph G is a graph of which G is a subgraph. A graph, G, contains a graph, H, if H
is a subgraph of, or is isomorphic to G.

Apart from all above, the example graph in the example helps illustrate some other
key terms of concern:

Definition 10. Path in a graph is a sequence of vertices that are connected by edges.

Formally we would define a path as W1,W2,...,Wn such that (Wi,Wi+1)?E for all
1?i?n?1. The unweighted path length is the number of edges in the path, specifically
n?1. The weighted path length is the sum of the weights of all the edges in the path.
For example in Figure 1.4 the path from node i to node b is the sequence of vertices
(i,j,f,b). The edges are (i,j),(j-,f),(f-b).

Definition 11. Cycle in a graph is a path that starts and ends at the same vertex

For example, in Figure 1.4 the path (i,j,f,h) is a cycle. A graph with no cycles is
called an acyclic graph.

Definition 12. Structural similarity structural equivalence: Structural equivalence de-
scribes the extent two nodes being similar to each other in the sense of inter-node structure.
In another word, structural similarity shows how much two nodes are alike based on their
interactions with each other and the rest of graph.
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Figure 1.4: node a,b,c,d,e,f and the edges in between make up of a subgraph of the whole

graph presented; On the other the entire graph is the super-graph of the graph made up of

node a,b,c,d,e,f and the edges in between

Take the graph displayed below an example. We might try to assess which nodes
are most similar to which other nodes intuitively by looking at a graph. We would no-
tice some important things. It would seem that actors 2,5, and 7 might be structurally
similar in that they seem to have reciprocal ties with each other and almost everyone
else. Actors 6, 8, and 10 are ”regularly” similar in that they are rather isolated; but
they are not structurally similar because they are connected to quite different sets of
actors. But, beyond this, it is really rather difficult to assess equivalence rigorously by
just looking at a diagram.

Definition 13. Density:the density of a graph(subgraph) is the measurement demonstrating
how close the number of edges inside it is to the maximal number of edges for the same set of
nodes.

Intuitively, a dense graph is a graph with high density, while on the contrast, a
graph with only a few edges, is a sparse graph. The distinction between sparse and
dense graphs is rather vague, and depends on the context.

For undirected simple graphs, the graph density is defined as:

D =
2 ∗ |E|

|V| ∗ (|V|− 1)

For directed simple graphs, the graph density is defined as:

D =
|E|

|V| ∗ (|V|− 1)
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Figure 1.5: Knoke directed information network [Kno ]

where E is the number of edges and V is the number of vertices in the graph. The
maximum number of edges is —V— * (—V— - 1), so the maximal density is 1 (for
complete graphs) and the minimal density is 0 [Coleman and Moré 1983].

Definition 14. Isolation: Isolation expresses to which extent does a set of nodes(subgraph) in
the graph is separated from the rest part, by means of edge amount between nodes within and
out

1.2 Community Structures

1.2.1 key features of the community

Community is a widely accepted existence in real-world networks; however in the
context of graph, there is still no formal definition of it that is universally accepted; As
a matter of fact, the definition often depends on the specific system at hand and/or
application one has in mind.

On the other hand, we do have some concrete requirements that any community
should satisfy. Firstly, there must be more edges inside the community than edges
linking vertices of the community with the rest of the graph. This is the reference
guideline at the basis of most community definitions. Besides that, the community has
to be connected. It?s obvious that the combination of two disjoint subgraph would
hardly make a high-edge-concentration component. And even if they do, the sepa-
rated structures would probably make more sense.

The communities in the graphs are believed to exist as reflection of entities’ group-
ing and dense interaction in real world. Hence it makes much sense that the cor-
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responding nodes to entities belong to the same group in real life, sit in the same
communities, share common properties and/or play similar roles in the graphs.

And the picture above showcases some common community structures in net-
works.

Figure 1.6: Community structure in social networks [Fortunato 2010]

High (Edge) Density Majority of the statistics definition of the community con-
cerns fully or mostly about the edge density. As described in section 1.4, the nodes
inside a same community are expected to have more connections between each other.
Hence the edge density of the community is one of the most outstanding features of
the community. Especially, a subgraph of high edge density is usually found with
the existence of considerable cliques(subgraphs in which every node is connected to
every other node in the clique). The example is the amazingly huge amount of con-
nections between the students from the same college of the same university on social
networks.

High Isolation Similar to the high density feature of the communities, according
to formation of them in the graphs, the edge amount is expected to be relatively low
in between the communities. The idea is intuitive that if a node has a lot of edges
associated with the community, the chance is big that it belong to the community
as well. Admitted that the node may have even more connections with the outside
nodes, the choice of leaving it out of the community still help make a relatively higher
isolation(less edges across the boarder). The example is that a collection of Chinese
speakers(community) should have much lower connections with the speaker of other
languages than with the other native Chinese speaking people.

Sparse Inner Shortest Path The paths that connect vertices of distinct communities
must pass through at least one inter-cluster edge. Bearing in mind the fact that the
communities are loosely connected, one can expect that the inter-cluster edges usually
included in a rather big amount of shortest paths between node pairs. On the other
hand, the vertices within a community are tightly connected, so the intra-cluster edges
are associated with smaller number of shortest path between node pairs. [Network
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community-detection enhancement by proper weighting]. For example, if one needs
to contact someone of the same community, he might find multiple ways to get the
information about the target from very different people/channels. However, if the
target belongs to another community no matter who exactly he is, the chance is that
there is a couple of people you have to contact to retrieve the information of the target.

Cycle Existence The basic intuition of cycle is similar to that of the shortest path:
the nodes in a same community are expected to be connected in multiple ways. And
the representation from the graph perspective of the intuition is the existence of the
cycle (multiple cycles even) between the nodes in the cluster. The example is, when
one needs to contact another belong to the same college, even if he is not able to get in
touch with someone who can help him for sure, he will probably succeed in the task
through another trail.

Structural Similarity The nodes in a same community should be similar to each
other structurally, which means they share a great number of mutual friends. The
example is that two students in the same college are expected to have relatively high
rate of shared friends(other students in the college). Here the students of the college
form the whole community, and the property should be reflected clearly in the graph.

Multi-hierarchy Not all communities are equal or of a same hierarchy: a com-
munity can contain sub-communities, or be contained by super-communities. The
hierarchy is an organisation of actors in some latent space learned from the observed
network. And an entity may belong to a series of these communities at the same time.
This is a natural phenomenon for clustering and hence, for communities hidden in
the graph databases [Qirong Ho 2012]. Many networks in real life exhibits hierar-
chy. For example, cold-blooded animals and mammals are large super-communities
that can be sub-divided into smaller sub-communities, such as sharks and squid, or
toothed whales and pinnipeds. These sub-communities can in turn be divided into
even smaller communities (not shown).

Overlapping Since in most networks a single node is allowed (and very usually
seen) to be a part of multiple communities at the same time and the communities
may not always contain each other, it often appears that very different community
pair shared a fraction of the common nodes, also referred to as the overlapping com-
munities. Example are everywhere: I am a member of the college computer science
association and am a part of the racing club as well. Overlapping is one of the most
outstanding disturbing but ubiquitous features of the communities in the graph.

Definition 15. Traditional community structural model, a traditional community is one that
obeys the traditional view on the formation of a community, namely a subgraph within the
graph with high density and high isolation value.

Definition 16. Traditional graph model: a traditional community is one that obeys the tradi-
tional view on the formation of a graph, namely a graph in which high concentration of edge
signals the existence of community structures while low in it stands for the part is in between
community structures.

According to the definition of community, we may visualise a typical community
structure as figure 1.7. For convenience but without losing generality, more connected
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the node is to the outside, the the closer to the edge it would be located in the pic-
ture. And we place the node with all adjacencies within the structure in the centre.
Further more, the nodes most connected externally (speaking of its edge distribution
percentage, same with the following) form the boundary; while the nodes most in-
ternally connected make up of the core of the community structure. The definition is
qualitative, and for the purpose of demonstration only.

Figure 1.7: traditional community structure model

When a community is barely interacting with and very slightly influenpaced by
the outside structures or nodes like this, we say the community is a traditional com-
munity structure. And with the features of a community, namely the high edge den-
sity within and low conductance with the rest graph given above, the nodes on the
edges or the furthermost boundaries of the typical communities, is very likely to have
a higher internal edge amount than external. Otherwise, due to the internal thin con-
nection and unusual high conductance , the node might actually belong to some other
communities. For example, under traditional graph model, the node A in figure 1.8 is
very likely to be actually a part of the community made up by blue nodes.

Besides the model of subgraph analysed above(conductance of a subgraph can
measure how well it is separated from the remaining graph), [Yubao Wu 2015] men-
tioned another common-used model, where local community is separated from the
remaining graph by a set of low degree nodes. That is to say, the boundary nodes of
the communities tend to have low degrees.

The graphs of Amazon and DBLP well represent the model.

1.2.2 why is community important and its application

As described above, the information of connection distribution in graphs have good
reason to be looked into in detail. The graphs, especially unweighted indirected ones
of them, are often suffering from the lack of expressive capability in picturing the
real network. However, the network itself, especially the connections within, have
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Figure 1.8: Outside Node included

always important information whenever we try to manipulate with it. Communities
are among the hidden information of the graphs, and contain the potential of help
graph express itself better.

Hence communities can have concrete applications. Clustering Web clients who
have similar interests and are geographically near to each other may improve the
performance of services provided on the World Wide Web, in that each cluster of
clients could be served by a dedicated mirror server [Wang 2000].

In the network of purchase relationships between customers and products of on-
line retailers (like, e. g., www.amazon.com), getting the idea of the customer groups
with similar interests to a large degree help improve the efficient recommendation
systems[Agrawal 2011]. And the application is capable of guiding them through the
list of items of the retailer and enhancing the business opportunities.

Other than that, the clusters of large graphs can also be used to create data struc-
tures in order to generate compact touting tables while the choice of the communi-
cation paths is still efficient [clu 2001]. Identifying modules and their boundaries at
the same time allows for a classification of vertices, according to their structural po-
sition in the modules(this idea is fundamental idea of the node-centric point of view
on community structure to be mentioned ). So, vertices with a central position in their
clusters, i. e. sharing a large number of edges with the other group partners, may
have an important function of control and stability within the group; vertices lying
at the boundaries between modules play an important role of mediation and lead the
relationships and exchanges between different communities.

Another important aspect related to community structure is the hierarchical or-
ganisation displayed by most networked systems in the real world. Real networks
are usually composed by communities including smaller communities, which in turn
include smaller communities, etc. The human body offers a paradigmatic example of
hierarchical organisation: it is composed by organs, organs are composed by tissues,
tissues by cells, etc. One example is represented by business firms, who are charac-
terised by a pyramidal organisation, going from the workers to the president, with
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intermediate levels corresponding to work groups, departments and management.
Herbert A. Simon has emphasised the crucial role played by hierarchy in the struc-
ture and evolution of complex systems [Simon 1991]. The generation and evolution
of a system organised in interrelated stable subsystems are much quicker than if the
system were unstructured, because it is much easier to assemble the smallest subparts
first and use them as building blocks to get larger structures, until the whole system is
assembled. In this way it is also far more difficult that errors (mutations) occur along
the process.

1.3 what iscommunity detection and its application

As shown in the previous section, the community structure is of great use in many
ways however usually implicit. The knowledge about the community structure in a
graph requires the process of community detection, which is about exploration, ex-
traction and analysis on the graph.

Community detection in graphs is the process of identifying the communities and,
possibly, their hierarchical organisation, by only using the information encoded in the
graph topology [Fortunato 2010].

When the graph is constrained to be of a small size, containing as many as tens
of nodes, the detection process is trivial and fast. Merely with visualised presenta-
tion(with software like Graphviz) of the data set and human eyes can one identify the
community structures at this scale in no time. However, as the size of data sets in
graph database starts to rocket, the detection method evolved accordingly.

At this time and age, the community detection normally indicates the process of
inputing the edge information (sometimes with node information) to the computing
device, and receiving the formation of community(s) after a series of analysis and
computation steps.

Especially, current community detection methods can be roughly classified into
two categories, namely global ones and local ones.

Definition 17. global community detection, is a school of community detection methods ded-
icated in identifying community structures underlying in the graphs,with always a reference
to the whole graph. That means, the global methods needs consideration on the impact on the
other parts of graph when determine wether if a subgraph is a community. A representative
one belonging to this type is the algorithm of graph partitioning

Definition 18. local community detection is a school of community detection methods aiming
at identifying the community structures in the graphs by identifying the formative features of
subgraphs(how much this subgraph is like a community). Local methods make the decision
with only concern on the properties of current subgraph. The method in this category is nor-
mally greedy node addition or greedy node deletion

.
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1.4 Motivations

1.4.1 Current Challenges

The area of community detection has been studied for several decades, being a par-
ticularly intensive interest in recent years. After decades of exhaustive study and
experiments, a couple of detection methods with stable and robust performance has
already been raised up in the field. However, the new and big challenges keep com-
ing, causing problems to existed solutions. The major challenges are as below:

1.4.1.1 Retrieving and storing the information of the entire graph

When the node or edge amount in graph data set are frequently on the order of mil-
lions or even billions, you will notice the data retrieving and storage becomes a major
concern in the process of community detection. In this time of big data the networks
are often too large to comprehend and even a simple visualisation of the network is
often impossible.[Fast community detection using local neighbourhood search]. This
constraint is problematic for networks like the World Wide Web, which for all practi-
cal purposes is too large and too dynamic to ever be known fully, or networks which
are larger than can be accommodated by the fastest algorithms [Clauset 2005].

Moreover, due to the computational complexity and network bandwidth, this ac-
tion of retrievemcent from time to time take much more time than the community de-
tection itself, causing an enormous challenge for problems with strict time constraint.

1.4.1.2 The rapid change on the graphs

As described in section 1, the graphs are essentially data sets saved in graph databases.
Along with the fast growth in size, the rapid alterations on the existed data sets are
causing harsh problems at the same time. It is just too hard to get whole knowledge of
the networks evolving quickly or being too big ,such as the Internet [Tiantian Zhang
2012].

1.4.1.3 The problems with seeds

For most of the networks, a large proportion of it is out of our consideration ,we
only care about the community structure or other statistical characteristics of some
specific nodes. For example, in the book selling network, the purchaser only need
the knowledge of books related to some subject, namely the book community which
a certain book is in. Hence in the circumstance alike, it would be more appropriate
for community detection method to behave as community relegation algorithm of
particular nodes of interest [Tiantian Zhang 2012].

1.4.1.4 Dealing with the massive information

Given that the information of the entire graph is made clear and saved locally, to iden-
tify the communities within remains a challenge due to the computational complexity
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on the massive data. That is also because of most of the detection methods described
above (or ever existed) are products from the awareness and manipulations on the
complete graph.

For example, finding the optimal partition for a given cost function is in general
a difficult problem. Especially, maximising the modularity has been proven to be
NP-hard [Brandes 2008]. Hence, different algorithms have been developed to approx-
imate the optimal partition of a network. All the existing heuristics designed to extract
community structures have to balance the quality of the partition with respect to the
time complexity of the algorithm.

When it comes to the community detection tasks with pre-set query node sets,
the challenge can get even harder. Due to the attempt to include all the seeds into
one community and the intuition of executing the whole algorithm multiple times
until the goal is achieved, the detection process would be rather computationally in-
tensive for its pre-requirement of detecting all communities, especially for large scale
networks [Kwan Hui Lim 2013].

1.4.1.5 The limitation on ability of graphs to demonstrate relationships

Among all the challenges given above, the the limitation of graph database itself is
the most serious and almost unsolvable. The act of the graphs to express relationship
as edges, while the properties of the relationships as the features given to the edges, is
effective to some degree and the only way. However, it can also be quite problematic,
so as that under many occasions, the graphdoesn?t represent the relationships(such
as friendships /collaboration / chemical reactions) very well.

Furthermore, most current models make the assumption that networks are essen-
tially some variation of a random graph, while we know that real networks are far
from random on every level, e.g., certain motifs are much more likely than others
[Santo Fortunato 2012].

1.4.2 Our Contribution

Our work dedicates in seed-centric local community detection. Firstly, on the basis of
traditional graph model and community model, we raise up an alternative view on
the community structures which well explains the state-of-art metric in local detection
methods; Secondly, with the new view of point on the community formation in mind,
we design a new metric(core-seeker metric), trying to help get rid of the outstand-
ing issues in the process, namely outliers and free rider effect; thirdly, targeted at the
severely invalid detecting result on multi-layer graphs, we put forward a new com-
munity structure theory as well as graph theory based on empirical observations; we
then design another metric dedicated in the community identification in this overlap-
ping environment(boundary-seeker); last, we propose our SLUD framework, which
well describes the collaboration of metrics and formalises the majority attempts in the
local community detection field.



§1.5 The formation of the rest parts 15

1.5 The formation of the rest parts

In chapter two, we start with going through some state-of-art algorithms in the com-
munity detection field, with the focus on local community detection methods. After
those, we put the common metrics in local methods under a metric formation frame-
work for discussing and comparison; and we talk about the often ignorant way of
making better use of the metrics : better designing the stop time for the local algo-
rithms. At the end of this chapter, we mentioned a bunch of major problems with he
state-of-art metrics.

We then describes our contribution to the field in detail in chapter three. At the
beginning of chapter, we raise up a new viewpoint on the community structures, and
discusses the cause to current metrics? disability to function in complex environment
like social network graphs. Base on this alternative viewpoint, we then raise up two
new metrics, with the aims in identifying community structures in traditional graph
model and overlapping graph model environment respectively. At the end of this
chapter we bring up the SLUD framework, which is able to describe nearly all the
current attempts(metric+algorithm) in the field.

In chapter four, which is the experiment and discussion part, we gave proof in
program result for all the statement above. Especially we prove the effectiveness of
the new metrics as well as the application of SLUD metric.
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Chapter 2

Literature Review

2.1 A brief introduction to detection methods

Given the increasing popularity of graph database and the wide-range application, the
community detection has been a magnet attracting intensive research interest since its
origin as early as 1927, when Stuart Rice looked for clusters of people in small political
bodies, based on the similarity of their voting patterns. According to the definition5.2
in introduction part, many of the detection actions are based on the recognisable fea-
tures of the community structures in the graph, among which the high edge density,
high isolation are probably of the most common interest.

And other detection methods are usually associated with a statistical definition of
community structure, such as modularity (Q) which was originally introduced by Gir-
van and Newman as a stopping criterion for their algorithm. Modularity has rapidly
become an essential element of many clustering methods, which is by far the most
used and best known quality function. And it represented one of the first attempts
to achieve a principle understanding of the clustering problem, and it embeds in its
compact form all essential ingredients and questions, from the definition of commu-
nity, to the choice of a null model, to the expression of the strength of communities
and partitions.

In summary, there have been quite a number of algorithms, based on various the-
ories, attempting the task.

Up to today, the initial community detection area has been exhaustively studied
and various different but effective-in-some-aspect methods brought about. It?s worth
noting that, as the graph size explodes dramatically in the recent decades, nowadays
the research focus largely shifts to the time and space consumption of the algorithm.

The focus of our work is on the improvement of seed-centric community detection
methods. In the next sections we give out some common methods, of both global and
local community detection methods, in the field to begin with.

17
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2.1.1 global community detection methods

2.1.1.1 graph partitioning

The problem of graph partitioning consists in dividing the vertices in g groups of
predefined size, such that the number of edges lying between the groups is minimal.
The number of edges running between clusters is called cut size. Graph partitioning
is a method mainly dedicated in optimising the isolation property. And the cut size is
to be minimised for the target of a high isolation, which is also called the minimum
cut problem.

Figure 2.1: Graph partitioning. The dashed line shows the solution of the minimum bisection

problem for the graph illustrated, i. e. the partition in two groups of equal size with minimal

number of edges running between the groups. Reprinted figure from [Claudio Castellano and

Loreto 2009]

One of the best-known solutions in this category is the max-flow min-cut theorem
by Ford and Fulkerson [LR Ford 1956] . The theory states that the minimum cut be-
tween any two vertices s and t of a graph, i. e. any minimal subset of edges whose
deletion would topologically separate s from t , carries the maximum flow that can be
transported from s to t across the graph. Hence a equally reasonable partition can be
given as the result of a max-flow algorithm on the graph.

2.1.1.2 Hierarchical clustering

Taking advantage of the similarity between nodes in the graph is another effective
way to identify community structure in the graph. As raised by [J Friedman 2001],
one may also use Hierarchical clustering algorithms, such as clustering techniques,
to reveal the multilevel structure of the graph. The starting point of any Hierarchical
clustering method is the definition of a similarity measure between vertices. After a
measure is chosen, one computes the similarity for each pair of vertices, no matter if
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they are connected or not. At the end of this process, one is left with a new n*n matrix
X , the similarity matrix.

Hierarchical clustering techniques aim at identifying groups of vertices with high
similarity, and can be classified in two categories: 1. Agglomerative algorithms , in
which clusters are iteratively merged if their similarity is sufficiently high; 2. Divi-
sive algorithms , in which clusters are iteratively split by removing edges connecting
vertices with low similarity. In the context of normal community detection, we often
regard the first type as the Hierarchical clustering detection method.

Hierarchical clustering takes advantage of the member similarity feature of the
communities, and has very common applications in social network analysis, biology,
engineering, marketing, etc.

2.1.1.3 Partitional clustering

Partitional clustering indicates another popular class of methods to find clusters in
a set of data points. Here, the number of clusters is preassigned, say k. The points
are embedded in a metric space, so that each vertex is a point and a distance mea-
sure is defined between pairs of points in the space. The distance is a measure of
dissimilarity between vertices. The goal is to separate the points in k clusters such to
maximise/minimise a given cost function based on distances between points and/or
from points to centroids , i. e. suitably defined positions in space.

For example, for minimum k-clustering, the cost function here is the diameter of
a cluster, which is the largest distance between two points of a cluster. The points are
classified such that the largest of the k cluster diameters is the smallest possible. The
idea is that the clusters of compact pattern are more likely to form communities.

With different definition of distance, partitional clustering is capable of making
use of different features of the communities. For instance, the minimum k-cluster,
where the distance stands for essentially the hop number from one node to another,
also is based on the existence of massive edges inside the community structures.

2.1.1.4 Divisive Algorithms

The intuition of divisive algorithms is similar to that of graph partitioning, namely
to divide the original graph up and get out of it a couple of communities. However,
the divisive algorithms selects the edges based on the their chance of being the inter-
community edges instead of the effort to minimise cut size. This is the philosophy of
divisive algorithms. Hence the crucial point is to find a property of inter-community
edges that could allow for their identification.

One of the most famous example of attempts in this field is brought by [Finding
and evaluating community structure in networks]. Here edges are selected according
to the values of measures of edge centrality , estimating the importance of edges ac-
cording to some property or process running on the graph. The steps of the algorithm
are:

1. Computation of the centrality for all edges; 2. Removal of edge with largest
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centrality: in case of ties with other edges, one of them is picked at random; 3. Re-
calculation of centralities on the running graph; 4. Iteration of the cycle from step
2.

One of the metric they use as the standard of inter-community edge identifica-
tion is the edge betweenness, by which they are making efforts on the distribution of
shortest path between nodes on the graph(another feature of the communities).

2.1.2 local detection methods

2.1.2.1 Introduction

As defined in introduction part, Local detection methods, don?t require the informa-
tion about the whole graph of concern. This school of methods compare a series of
subgraphs containing the query nodes, and returns the one that looks most similar to
a community structure.

In this time and age of big data, the local community detection method of many
variants has become the trend for its superiority in time and space requirements. As
described above, a fraction of the detection methods makes use of the accurate statis-
tical numbers, such as the subgraph internal edge number, across-subgraph-boarder
edge amount and the quantity of shortest path going through a particular edge, in-
stead of general but vague features as the guide for community recognition. And the
greedy algorithm basically aims at greedily forming a subgraph in order to best suit a
given standard ( some selected statistics ) to achieve the community discovery goal.

For example, a greedy approach has been introduced by Blondel et al. [Fast un-
folding of communities in large networks], for the general case of weighted graphs.
Initially, all vertices of the graph are put in different communities. The first step con-
sists of a sequential sweep over all vertices. Given a vertex i , one computes the gain
in weighted modularity (Eq. 35 ) coming from putting i in the community of its neigh-
bour j and picks the community of the neighbour that yields the largest increase of Q ,
as long as it is positive. At the end of the sweep, one obtains the first level partition. In
the second step communities are replaced by super-vertices, and two super-vertices
are connected if there is at least an edge between vertices of the corresponding com-
munities.

2.1.2.2 Starting information of local community detection

Based on wether the entire knowledge on the graph is a necessity when one starts the
greedy algorithms, they can be divided into two kinds: the global greedy algorithms
omniscient about the graph, and the local greedy algorithms with merely the knowl-
edge(precisely edge and node information) of particular nodes. Based on their exact
action during the process, global greedy algorithm is also referred to as the greedy
deletion algorithm and local greedy algorithm greedy addition algorithm. The choice
of starting node set in greedy addition algorithms is also a research interest in the
field.
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Up-down local community detection When one has access to the information of
the complete graph, one way of detecting the communities containing the seeds is to
simply scan all results of a normal community detection method (excluding the local
greedy algorithms ) and retrieve the one including the seeds.

However, when it occurs that the seed amount exceeds one and they are organised
into different communities by the community detection algorithm(graph partitioning
for example), the result can be vague, overly general or inaccurate. Some methods in
this type choose to repeat the detection process based on the previous result until the
whole seed set being part of a single community, such as [Robust Local Community
Detection: On Free Rider Effect and Its Elimination].

Bottom-up local community detection The community detection of this kind, due
to the limitation of information, is hardly capable of making use of the features of
the community structures. Hence the detection methods falling into this category
normally make use of the statistical characteristics of the hidden communities, such
as a set of nodes with high internal edge density with relatively low externe density.
For the same reason, the greedy algorithm is often associated with the crawler-like
seed-centric community detection process.

This is the main research focus in this work.

2.1.2.3 The process of bottom-up local community detection

We begin the description of the process with some basic definitions.

Definition 19. Detected subgraph: detected subgraph is the latest result of the community
detection algorithm; especially, in the bottom-up detection methods, it starts as the subgraph
made of the query node set; and grows in size every iteration when another node gets pulled in

Definition 20. Ground-truth community: ground-truth communities are the given commu-
nity structures in particular graphs. These are often for testing purpose

Definition 21. Candidates: in bottom-up local community detection methods, candidates are
the node pool from which the algorithm needs to pick one up and merge it into the detected
subgraph every iteration till end

Definition 22. Internal connection amount: internal connection amount is the number of
edges between a node of concern and a ground-truth community it belongs to; if the node also
belongs to the community, the internal connection amount is usually big in traditional graph
models

Definition 23. External connection amount: external connection amount indicates the degree
of a node of concern minus its number of connections with current ground-truth community;
this is often used in the local detection methods, the internal connection amount is usually
small in traditional graph models

Definition 24. Internal edge amount: external edge amount indicates the number of edges
between a node of concern and the current detected subgraph; this is often used in the local
detection methods as a indicator of internal connection amount
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Definition 25. External edge amount: external edge amount indicates the degree of a node of
concern minus its number of connections with current detected subgraph; this is often used in
the local detection methods as a indicator of external connection amount

The process of bottom-up local community detection can be described like this:
Starting phase: The detection process starts with the query nodes being the detected
subgraph. And all the whole neighbour node set makes up the initial candidate node
set. Iteration phase: if the inclusion of any node in the current candidate node set
wouldn?t make the detected subgraph more similar to a community structure, the
detection algorithms stops; otherwise, the algorithm pull in the node making the most
benefit for the structure, and update the candidate and detected subgraph information
accordingly.

Figure 2.2: Detected subgraph before pulling in in this iteration

Figure 2.3: Detected subgraph after pulling in in this iteration
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2.2 The introduction of metric

With the knowledge given above, now the main problem is, what defines a subgraph
more or less like a community structure? Is there a line of similarity, above which we
may say this subgraph makes a community? And this is where metric goes in. Metric
is a standard to evaluating the similarity between subgraph structural information
and community structure in practical use.

This similarity information may come from the comparison between the detected
subgraph and the ground-truth communities. However, this can only be used for
testing purpose, because the community information in the graphs is usually un-
known(and that is above all why we need to detect the communities!). Especially, for
better showing experiment result we give out some indicator stating the effectiveness
of a metric(and its associated algorithm).

Suppose that the detected subgraph is notated by S, and the ground-truth commu-
nity that contains the query nodes is represented by C.

Definition 26. Precise: the accuracy of the detection result; Precise = |C
⋂

S|
|S|

Definition 27. Recall : the coverage of the detection result; Recall = |C
⋂

S|
|C|

Definition 28. Fscore: Fscore = Precise∗Recall
Precise+Recall ∗ 2

In the context of local community detection, the criteria of similarity often comes
from the outstanding features of community structure, including internal edge den-
sity and external isolation and others.

Definition 29. Metric in local community detection process: in our work, we refer to the
metric as a full-map function that defines the quantised quality for all subgraphs.

Furthermore, in our context, metric is often the only reference for measuring how
good a community the part of the graph is. And if the metric value associated with
a particular subgraph meets the definition of community or makes the best-match
against the community feature, we say this subgraph is the detected result of our
metric on the graph.

2.3 Main Elements Metrics Concern

As described above, the criteria of similarity often comes from the outstanding fea-
tures of community structure. In this section we are going to talk about some common
elements in concern of metric formulation.

It?s worth noticing that the usage of random graph here. P. Erdos and A. Renyi
[on random graph I] introduced the concept of random graph, in which the probabil-
ity of having an edge between a pair of vertices is equal for all possible pairs. In a
random graph, the distribution of edges among the vertices is highly homogeneous.
For instance, the distribution of the number of neighbours of a vertex, or degree , is bi-
nomial, so most vertices have equal or similar degree. Real networks are not random
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graphs, as they display big inhomogeneities, revealing the outline of the community
structures[community detection in graphs]. A random graph, for instance, is not ex-
pected to have community structure, as any two vertices have the same probability to
be adjacent, so there should be no preferential linking involving special groups of ver-
tices. Therefore, one can dene a null model , i. e. a graph which matches the original
in some of its structural features, but which is otherwise a random graph. The null
model is used as a term of comparison, to verify whether the graph at study displays
community structure or not. The most popular null model is that proposed by New-
man and Girvan and consists of a randomised version of the original graph, where
edges are rewired at random, under the constraint that the expected degree of each
vertex matches the degree of the vertex in the original graph [Newman and Girvan ,
2004].

Hence many of the elements in the metric are from statistical difference addressed
between the graph formation with clusters and without.

As far as the author is concerned, the common elements metrics contain include
but not least:

Internal Edge Quantity The number of edges existed between the node pairs sit-
uated inside the subgraph node sets. The internal edge quantity is highly associated
with one of the key features of communities: high (edge) density. Hence an recog-
nisable relatively high internal edge quantity, normally superior to that of a random
graph, is expected with the presence of the community structure.

External Edge Quantity Similar with the internal edge quantity, the number of con-
nected node pair with one end inside the subgraph and another outside is expected
to differ from the same subgraph belong located in a random graph. The idea is from
both another key feature of the community: high isolation, and a comparison to the
internal edge quantity. And that is because of the outstanding but homogenised in-
ternal and external edge quantity hardly make clear of the existence of community
structure.

Node Quantity The number of vertexes belonging to the community is another
major concern when we design metrics. Though a strict limitation on node number
is not common in any networks, but empirically we have the idea that there has to
be a range of implicit size setting for any kind of communities, whether it?s social
communities or good categories; Other than that, the node quantity makes good sense
when it is used in association with internal external edge quantity. The reason is that
the internal edge quantity and external edge quantity themselves are tremendously
misleading. The collaboration with the edge quantities with the node amount actually
produces the edge density, some particular distribution of which is the real indicator
of the clustering in the graphs.

There are many other elements can be used to evaluate community structures for
sure, for instance the betweenness centrality, the number of cliques included , the
structural similarity between nodes inside and the cycle amount between them.

However many of them are not applicable for our purpose, a seed-centric local
greedy search algorithm on large graphs. For example, the shortage of topology in-
formation about the entire graph disables the adoption of betweenness centrality in
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the metrics, the calculation of which needs information about every possible short-
est path between every pair of nodes. Another example is the existence of cliques.
Although the clique is a relatively good sign of the community structure even in a
complex overlapping context, as proved by [Uncovering the overlapping community
structure of complex networks in nature and society.] with Clique Percolation Method
(CPM), but the slim chance of cliques in considerable sizes containing the seeds makes
it not practical at all.

2.4 State-of-art Metrics

And according to [robust Yubao 2015], a goodness metric is usually used to measure
whether a subgraph forms a community in local community detection,. The existing
goodness metrics for local community detection can be categorised into three classes.
The first class optimises the internal denseness of a subgraph, i.e., the set of nodes
in a community should be densely connected with each other. Such metrics include
the classic density definition [Dense Subgraphs with Restrictions and Applications
to Gene Annotation Graphs], edge-surplus [Denser than the densest subgraph: ex-
tracting optimal quasi-cliques with quality guarantees], and minimum degree [The
community-search problem and how to plan a successful cocktail party]. The sec-
ond class optimises both the internal denseness and the external sparseness. That is,
the set of nodes in the community are not only densely connected with each other,
but also sparsely connected with the nodes that are not in the community. Such
metrics include subgraph modularity [Exploring local community structures in large
networks], density-isolation [Finding dense and isolated submarkets in a sponsored
search spending graph]. The local modularity measures the sharpness of the commu-
nity boundary and belongs to the third class [Finding local community structure in
networks.]. Using this metric, the set of nodes in the boundary of the community are
highly connected to the nodes in the community but sparsely connected to the nodes
outside the community.

We now will go through a fraction of the metrics mentioned above.

2.4.1 Internal Denseness

The metrics fall into this category are ones taking merely the edge quantity and node
quantity elements into account. The underlying idea is that the set of nodes in a com-
munity should be densely connected with each other.

2.4.1.1 Edge Density [MetricS = e(S)
|S| ]

Density is one quantitative measure of the connectedness of a subgraph and is de-
fined as the ratio of the number of induced edges to the number of vertices in the
subgraph.[Dense Subgraphs with Restrictions and Applications to Gene Annotation
Graphs]. It’s north noting that even though there are an exponential number of sub-
graphs, the problem of identifying optimal subgraph under the edge density metric
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can be solved exactly in polynomial time[Dense Subgraphs with Restrictions and Ap-
plications to Gene Annotation Graphs].

2.4.1.2 Edge Surplus [

MetricS = e(S)−α ∗

(

|S|
2

)

]

However, proved by [C.E. Tsourakakis, F. Bonchi etc] , densest subgraphs(with high-
est density) are typically large graphs, with small edge density and large diameter
which in many occasion doesn’t make an expected result. So people require another
way of making use of the edge density.

A clique is a subset of vertices all connected to each other. And it has been proved
that even in a most complex network the emergence of cliques probably lead to the
structure of community, since it is very unlikely that inter-community edges form
cliques: this idea was already used in the divisive method of [Defining and identifying
communities in networks]. However even if in a dense graph, the cliques are not
everywhere to be spotted; besides that, the problem of finding whether there exists a
clique of a given size in a graph is NP-complete.

Hence [C.E. Tsourakakis, F. Bonchi etc] introduced the concept of quasi-cliques. A

set of vertices S is anαs− quasi− cliquei f e[S]( |S|2 ), i.e., i f theedgedensityo f theinducedsubgraphG[S]exceedsathresh
(0, 1).Andtheamounto f internaledgesaseto f nodessharebeyondtheexpectedamounto f thisweakenedcliquede f initioni
surplus.Andthesubgraphsthatmaximize fα (S)asarere f erredtoastheoptimalquasi− cliques.

2.4.1.3 Minimum Degree [mindegree]

The internal denseness related metrics discussed above are both upon the average
internal degree of the nodes in the extracted community. However, the use of average
degree type of metrics in local community detection methods has the drawback of
being sensitive to free-riders, namely, irrelevant but dense subgraphs that may be
attached to the query nodes and yield unintuitive solutions. For this reason, another
a measure, the minimum degree, is attracting a part of research interest.

The density measure fm(H)basedonminimumdegreeisde f inedtobetheminimumdegreeo f anynodeo f VH intheind
(VH , EH).Asanymeasurethatseekstomaximiseaminimum, fm hasthedrawbackthatitissensitivetooutliers.However, it
relatedcommunity, asthemeasure fa does.

In the seed-centric detection context specially, with the collaboration of excluding
nodes that are far from the query nodes, as usually these nodes are less related to the
query nodes than those that are nearby, a somewhat satisfactory metric free from the
free rider effect can be designed under this scheme[how to organise a cock-tail party].

2.4.2 Internal Denseness and External Sparseness

The second class optimises both the internal denseness and the external sparseness.
That is, the set of nodes in the community are not only densely connected with each



§2.4 State-of-art Metrics 27

other, but also sparsely connected with the nodes that are not in the community. And
we are going through subgraph modularity and density-isolation here. According
to [Finding Dense and Isolated Submarkets in a Sponsored Search Spending Graph],
the tasks of identifying dense subgraphs and isolated subgraphs are different; the
subgraphs that are most isolated, having the smallest ratio cut score or conductance,
tend not to be dense, and the densest subgraphs tend to have large amounts of money
crossing their boundaries. More generally, there is some unknown tradeoff between
how dense a set can be and how isolated

2.4.2.1 Subgraph Modularity [

MetricS =
jnd(S)

outd(S)

]

[Exploring Local Community Structures in Large Networks ] proposed an interesting
metric based on both internal denseness and external sparseness: the subgraph mod-
ularity. The modularity M of a sub-graph S in a given graph G is defined as the ratio
of its internal degree amount, ind(S), and external degree amount. And obviously the
quantity of modularity will increase when sub-graph S has more internal edges and
fewer external edges(internal density and external spareness).

On top of this definition,they further give the definition of a proper community
structure: Given a graph G, a sub-graph S ⊂ Gisamodule/communityi f M > 1.Thissimplecommunityde

2.4.2.2 Density Isolation [

MetricS = M(H)−βB(H)−α|H|

]

[Finding Dense and Isolated Submarkets in a Sponsored Search Spending Graph] put
forward a metric for subgraphs that are simultaneously dense and isolated. For any
subgraph H, M(H) indicated the total edge amount(or weight, as expressed by the
original work) within the subgraph; B(H) means the total weight on edges crossing
the boundary between the subgraph and the rest of the graph; —H— represents the
total number of nodes inside the subgraph. And according to their work, for any fixed
value ofα0andβ0, thesubgraphthatoptimisestheob jective f unctioncanbe f ound.

2.4.3 Sharp Boundary

Given the features of communities such as high edge density and high isolation, it?s
intuitive to make sense of the statement that the nodes on the boundary of commu-
nities, vertices situated in the communities that have at least one external neighbour,
should make their appearance quite outstandingly for their edge distribution.
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The emergence of this is also upon one of the main issues with the metrics that
takes both internal denseness and external spareness into consideration: at the time
communities are big enough, the big portion of total internal edges(neither end locates
in the boundary) would make almost all subgraph look good under those metrics.

2.4.3.1 Local Modularity

If we restrict our consideration to those vertices in the subset of C that have at least one
neighbour in U, i.e., the vertices which make up the boundary of C, we obtain a direct
measure of the sharpness of that boundary. Additionally, this measure is independent
of the size of the enclosed community. Intuitively, we expect that a community with a
sharp boundary will have few connections from its boundary to the unknown portion
of the graph, while having a greater proportion of connections from the boundary
back into the local community

2.5 A General Framework of Metric Formation

2.5.1 The Metric Framework, and the relation to the state-of-art metrics

The framework is adapted and improved from the framework raised by [Denser than
the Densest Subgraph: Extracting Optimal Quasi-Cliques with Quality Guarantees].
The idea is, the equation containing the very basic elements in metric formation is
capable of expressing the constitution of most metrics in local search methods.

Let G = (V,E) be a graph, with —V — = n and —E— = m. For a set of vertices S ⊆
V, lete[S]bethenumbero f edgesinthesubgraphinducedbyS.Wede f inethe f ollowing f unction.

2.5.2 A Special Use of the Framework

Our framework is more than capable of describing most of the state-of-metric used in
local community detection methods: its essence as a function can be made good use
of.

For example, under the framework, to design a algorithm that gets out of a com-
munity containing the seeds in a given size from the graph is trivial; furthermore,
with proper design such as the application of piecewise function, the metric under
the framework can lead to communities of expected size.

MetricS =

{

FunctionA(S) if x ∈ (a, b)
FunctionB(S) otherwise

2.6 The Stopping signal of a local community detection pro-
cess

During the process of a local community detection, what matters not only include the
choice of metric, but also the time for the community detection process to stop.
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Figure 2.4: When the information about the whole graph topology is incomplete

This signal is particularly essential if we don?t have the detailed information about
the whole graph(like figure 2.4), or the time or space constraints doesn’t permit the
algorithms running over the whole graph before the result comes out. Given that the
seed-centric local bottom-up community detection method without the access to the
complete graph information is the main focus of our work, this aspect is therefore of
superior significance.

The ability of signalling a proper halt is not well made use of in algorithms, for
instance the algorithm described in [local modularity]. The algorithm given in the
work would not halt until the detected subgraph has reached a certain size. Figure 2.5
is the example.

Figure 2.5: The red circle specify current detected subgraph; the metric value has dropped

significantly and it?s not likely to recover though , the algorithm continues running
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Some of the metrics, such as the first algorithm in 6.1.2, use the possibility of metric
value increase as the measure of process: as soon as the metric stops increasing, the
detecting process terminates. We will refer to this kind of measure of process as greedy
addition in the later part of the work.

Meanwhile, last but not least, a third party of the metric usage exists which utilises
some of the elements in its formation instead of the entire equation as the measure
of the process. An outstanding example for this is [find local community structure
in networks], where the processing terminating signal is a user-setting result node
number.

There are often two types of signal indicting the end of the detecting, namely
threshold signal and optimum signal.

2.6.1 Threshold Signal

With the threshold signal, a community is ascertained and algorithm stopped as long
as the statistical information of the nodes and edges within met a fixed threshold.
And the detected subgraph is to be recognised as the community structure. However,
it?s evident that in this mode one may get back himself a great number of identified
communities unless he stops the detection process manually at some point.

Figure 2.6: In this graph, every K4 subgraph makes a ground-truth community; however, with

quasi-clique metric, it?s very likely to include unrelated parts

2.6.2 Optimum Signal

Another commonly accepted mode of signalling community existence is the optimum
mode, in which only the optimal result out of all subgraphs encountered is to be re-
turned as the community detected.

Take the local greedy approximation algorithm described in [Denser than the Dens-
est Subgraph: Extracting Optimal Quasi-Cliques with Quality Guarantees] as an ex-
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ample. This bottom-up algorithm starts initially with the prescribed seed set and then
it keeps adding vertices to the current set S while the objective improves. When no
vertices can be added, the algorithm tries to find a vertex in S whose removal may
improve the objective. As soon as such a vertex is encountered, it is removed from S
and the algorithm re-starts from the adding phase. The process continues until a local
optimum is reached.

The work gives additionally another instance in optimum signal mode: The algo-
rithm iteratively removes the vertex with the smallest degree from the graph. The out-
put is the subgraph produced over all iterations that maximises the metric(measure
of goodness).

2.7 problems with start-of-art metrics

2.7.1 Free Rider Effect with Raised Solutions

As defined and systematically proved by [Yubao 2015], most existing metrics tend
to include irrelevant subgraphs in the detected local community, also referred to as
the free riders. Specifically, if a goodness metric will include the global optimal sub-
graph,the subgraph with the largest possible goodness value, in the identified local
community, we say this metric causes the global free rider effect; at the same time, if
the metric will pull in the local optimal subgraphs, subgraphs whose goodness value
is greater than that of their any subgraph, in the identified local community, it is said
to be causing the local free rider effect. It?s obvious that the free rider emerges uni-
versally with almost every possible local detection metric.

Figure 2.7: universality of free ride effect, table reprinted from [Yubao]

Especially, by definition, the global optimal subgraph also belongs as well to local
optimal subgraph.

Definition 30 (Global Optimal Subgraph). The global optimal subgraph is the subgraph
G[Sm]whosegoodnessvalue f (Sm ) f (S), f oranyS ⊂ V.

Definition 31 (Local Optimal Subgraph). A local optimal subgraph is the subgraph G[Slm]whosegoodnessv
Slm.Thatis, deletinganynode(s) f romalocaloptimalsubgraphwilldecreaseitsgoodnessvalue.Notethatbyde f

Specially, given that our study focus is on identifying cluster structures with seed-
centric bottom-up local detection techniques, the specific subgraph with high density
however well separated from the seeds is out of concern due to the impossibility to
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be encountered. Hence, the free rider effect issue in our context equals the local free
rider effect as defined in [Yubao]’s work.

[The Architecture of Complexity] points out that hierarchic system structures, sys-
tems composed of interrelated subsystems, have crucial roles to play in the networks(complex
systems). And each of the latter being, in turn, hierarchic in structure until we reach
some lowest level of elementary subsystem. With the self-evident idea in mind that
the subsystems presenting in the graphs tend to form internally dense subgraphs, we
may further classify the free riders, with the knowledge, into two categories, as the
figure 2.8 shows. More specifically, the first type is the dense subgraph that is a part
of the ground-truth community at a particular scale; and the second is the dense sub-
graph which is not related to the seeds whatsoever. In other word, if the seeds belong
to two communities at the same time, one containing another, the free rider of first
kind might be included in the community of the larger scale while next to the smaller
small one; and the second kind won?t interact, from a ground truth point of view, at
any scale.

Figure 2.8: Some of the free riders may be members to community containing query node set

but at a larger scale; while some don’t interact with them whatsoever

Intuitively, the actual challenge brought by free riders, to during the detection how
do we distinguish between the two kinds of free riders, allow the first kind at a proper
time and keep rejecting the member nodes of the second type.

Luckily there are some previous studies on the problem already, among them is
the idea adapting Minimum Degree in the detection process instead of the Average
Degree, proposed by [The Community-search Problem and How to Plan a Successful
Cocktail Party]. The work states that In order to find densely connected communities
that contain the query nodes, one needs to define an appropriate measures of density.
Such measures can be the average or the minimum degree of the nodes in the extracted
community. While the average degree maximum often suffers from the free riders as
described, their focus is on the latter measure, the minimum degree. Their exact goal
is to find compact communities, containing the query nodes, and whose minimum
degree is maximised, by excluding nodes that are far from the query nodes, as usually
these nodes are less related to the query nodes than those that are nearby(nodes with



§2.7 problems with start-of-art metrics 33

less connections with the seeds).

However as what they admitted, the attempt with minimum degree has the deadly
drawback: it is sensitive to outliers. And this ’Rob Peter to pay Paul’ kind of act
obviously doesn’t suit our goal.

Another solution is raised by [Yubao], with a random-walk-based weighting scheme
beforehand to make nodes near the seeds more attractive. The solution seems to work
fine however need much time and information particularly in the context of a complex
graph. Hence it might not work as well under challenging constraints.

2.7.2 Outliers

This is another situation that leads to potential suboptimal solutions, which possibly
doesn’t make much sense. The situation can be explained as, some of the metrics, ones
with less concern on the node number increase in particular, allow the introduction
of the node that are in fact weakly connected to the community, and therefore result
in an unsatisfactory accuracy ¡Detecting Communities in Social Networks using Lo-
cal Information¿. For example, the subgraph modularity and the local modularity
metrics would include the outliers, such as two-edge node with one connecting the
community and another the outside, in the sparse graphs.

figure 2.9 shows a spare graph, where node 1,2,3,4 (a K4 subgraph) form a ground
truth community. However, under the metric of subgraph modularity(equation), the
metric value of this particular subgraph is less than 1; and this gives rise to greedy
introduction of the outlier node from 11 to 14.

Figure 2.9: K4; Ground-truth community
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Figure 2.10: Detected Subgraph

2.7.3 Local Optimum Traps

Because the metric concerns only about info on current nodes and their adjacencies,
and don’t care about the graph as a whole, or simply the relationship and structure
several steps away, the metric (often used in greedy addition algorithms) usually re-
sult in a solution that is better than all other solutions that are slightly different, but
worse than theglobal optimum ¡Paul E. Black, ”local optimum”, inDictionary of Algo-
rithms and Data Structures[online], Vreda Pieterse and Paul E. Black, eds. 17 Decem-
ber 2004. (accessed TODAY) Available from: http://www.nist.gov/dads/HTML/localoptimum.html
¿

In another word, when we use the metric in a node set expansion method looking
for the best suited community from seeds, the process may risk turning for a non-
member because of its inadvertently action in enhancing the goodness measurement.

For example, suppose the nodes in figure 3.1 are extracted from a larger graph
and form a community. However if we take the node 3 as the seed and utilise the
classical density metric, by the attempt to maximise the ratio of edge number and
node number gradually, we probably get out nodes 1,2,3,4,5,6,7 and omit the others.
It is obvious that 8,9,10,11,12,13 are forming a complete graph, and that is actually a
major contribution to the metric goodness. And the classical density is not the only
one that suffers the local optimum trap; as far as I know, the metrics of edge-surplus,
density-isolation and more fail to well settle the issue as well.
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Figure 2.11: The graph of concern

Figure 2.12: Detected Subgraph; result
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Chapter 3

Our methods

3.1 The alternative view of point on community formation

3.1.1 Intuition: phenomenon in real-world networks

From empirical observation, we got this impression that the majority of communities
have more constructional features in common, than ?high concentration of edges in-
side and lower in between the communities?. Especially we notice that the community
member entities in real-world networks can be divided into three categories, namely
the core community entities, boundary entities and other entities. For example, in a
particular research field, there is supposed to be a small number of groundbreaking
research works, which a considerable proportion of further papers base on and cite.
And these pioneering works are refereed to as the core entities in this research com-
munity. At the same time, there should also be a proportion of efforts in this field
absorbing the knowledge from another discipline(for instance, engineers learn from
biological structures to build machines like airplanes); and these attempts would pre-
sumably associate above-average number of researches in other fields, however the
base-stone conception and theories still belong to the field. And the works in this
type are believed to be the boundary entities in the community, in other words, they
will leave the community for one additional step. The examples are easily spotted in
social networks as well. If a social circle bases on a shared interest, the people mas-
tering the skills about the interest, offering to help others and making a great number
friends in the community are seen as the core of it; meanwhile, those do enjoy this
interest the most however have many other interests tent to form the boundaries of
the communities.

It’s worth noticing that the community formation we analysis here is based on
traditional graph model. And these are the ones most fit the traditional model of
community.

Correspondingly, the graphs dedicated to map these networks are expected to
have a similar structure: specifically, the nodes in graph communities are expected
to fall into three categories: the nodes on the boundary, core nodes, and other nodes
in the middle.

The nodes in the core are hence marked with the high node degree and the ma-
jority(many connection within the communities) of its neighbours locate in the same

37
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community; while the nodes on the boundary are believed to have a slightly big num-
ber of connections with outside nodes, however this number is lower than that of in-
ternal connections still. Therefore, we will refer to them as the core nodes, boundary
nodes and other nodes respectively in the following parts.

3.1.2 the alternative community formation theory

Based on the intuition of node classification in community formation, we then propose
the alternative community formation theory, base on which we will raise up some new
metrics later. This alternative community formation theory is fairly plain but of good
use. As far as we know, this formation theory is not previously adapted in the local
community detection field.

Figure 3.1: community structure under Node-centric view point

Definition 32. Node-based community formation theory: The traditional communities’ struc-
tural properties are the collective effect result from three types of nodes inside the community,
namely core nodes, boundary nodes and other nodes. All the three types have big interactive
connection amount. Especially, core nodes locate in the centre of the community, having good
number of neighbours most of whom in the same community; boundary node are on the edge,
related to outside nodes relatively more intensively but most adjacencies still in the commu-
nity; other nodes have properties in between.

Node-based community formation theory:

We are now going to review the state-of-art metric, with this alternative node-
based community formation theory in mind. Furthermore , we would bring forward
our innovative metric, which is based on the theory, in later sections.
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Figure 3.2: abstract community structure under Node-centric view point

3.2 A Review on State-of-art Metrics with the Node-centric

Community Formation Theory

Edge Density: We discussed that the idea behind the edge density metric, is to pull in
the node with the most connections with the current subgraph of interest; and stop at
a given time (usually when the average edge density starts to drop or the subgraph
reaches a certain size). And we know that in terms of connections with the query
node set, the nodes within a same community, whether from boundary or core, make
no outstanding difference; Hence, the goal of utilisation of edge density metric, from
the node-centric community formation point of view, is to continually include the
community member regardless of its role in it. Additionally, the algorithm(given that
it is set to stop when edge density has to drop after inclusion) stops with the boundary
nodes and prevents the inclusion of outside nodes.

Edge Surplus: The node goodness evaluation works identically for edge surplus:
tries to make community member outstanding and selects it for addition.

Subgraph Modularity: The idea behind the subgraph modularity is different from
above: the metric tries to underline the nodes maximising the ratio of internal con-
nection amount against external connection amount. In other word, the node with
relatively high level of association with query node and low with the rest parts would
be regarded as the best fit under subgraph modularity. And according to the node-
centric community formation theory, the core node, which is modelled with high-
degree property would hardly make it to be included(when we try to minimise the
external edge amount). And the nodes playing other parts of the community enjoy a
better chance of being added, due to their low conductance with the outside part and
presumably equal amount of connections to query node set.
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Figure 3.3: State-of-art Metrics Under Node-centric View Point

3.3 Core-seeker metric

In this section we are going to raise up our first contribution to the field, the core-
seeker metric; we will begin with the our original intuition about the design.

3.3.1 Intuition behind the metric

Based on the node-centric community formation model and especially the definition
of the core nodes, we know that they are of high degree, and most of their neighbours
belong to the community as well. The characteristics of the core make them the ideal
targets to be included in the early stage of the detection: intuitively, from these node
we may access quite a proportion of the nodes in the community; and the chance of
ending up with more connections with outside nodes after the addition operation is
small.

And we know that in the detection process if you
Especially, none of the metrics we talked about earlier have attempted for the iden-

tification of a certain type of community node to the most of our knowledge.

3.3.2 Core-seeker metric

We raise up the metric, which aims at identifying the nodes with most internal edges
at the beginning in each iteration(maximum △e(S)); andf romthenodeswiththesamebiggestamounto f internaledge

Additionally, when it occurs that any node with the highest internal connection
can not guarantee the increase of there conductance, the algorithm is to be stopped.
The requirement is a little bit strict, however only through this can we maximise the
possibility of the newly added nodes being core nodes.

Because of the metric is aiming at the most influential entities in the community
and very strict, it is more likely to be used as a first iteration method under the SLUD
framework(to be introduced later).

Essentially there isn’t much difference between core-seeker metric and edge den-
sity in deciding which node to get pulled in for the iteration, it’s the timing of stop
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that mostly makes the metric different. The significance of stopping at a proper time
has been discussed in ’Literature Review’.

Figure 3.4: Core-seeker metric Under Node-centric View Point

3.3.3 Effectiveness Analysis

The core-seeker metric makes sense not only in the context of node-centric community
formation theory, but also when dealing with different kinds of issues. And we are
now going through some of them to illustrate the idea.

3.3.3.1 The Challenges Under Traditional Community Model

Let’s have another look at the challenges in the local detection process, namely the
free rider effect, outliers and local optimum effect. Intuitively, if we design an algo-
rithm that is capable of getting rid of the problems and makes sense for community
identification, we get ourselves a well qualified method.

Free Rider Effect Free rider effect is a most common phenomenon. Moreover, the
detection methods are even more susceptible to them during the starting phase.

Theorem 3.3.1. The earlier inclusion of a member of free rider would do more harm

Intuitively, if the algorithm gets free rider members in the detected subgraph at the
very starting phase, due to the big proportion of them at this stage(reference nodes
incorrect), it is very likely for the algorithm to malfunction. However, if we start
with a safe and sound metric, doing the best we can to include accurate nodes in the
starting phase, the bigger amount of correct nodes(belong to the same ground-truth
community) would reward us with smaller chance of making mistakes.

Especially, the more free rider nodes or outliers we get, the bigger chance we may
include more of them. And the metric wouldn’t be affected much(or sometimes get-
ting even better!) by these mistakes. So as long as they are included, even with the
SLUD framework we are proposing later, it’s unlikely we can get rid of them. Hence,
the early inclusion of a member of free rider would do great harm to the detection.

Theorem 3.3.2. nodes in free riders to a community usually take up the boundary nodes of a
community.
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The free riders would form a densely interacted subgraph. Hence the core nodes
are not likely to be part of free riders.

This theorem demands us for an highly accurate result in the early stage of detec-
tion, to limit the free rider effect. Here is where our core-seeker metric goes in: this
strict but accurate metric aims only at the core entities in the cluster. Given the the-
orem X and X+1, the idea is clear that the effort on digging out the core nodes of a
community to begin at least to some degree lighten the free rider effect from the local
detection process.

And after that we are left with many choices. If the goal of detection is to determine
a bunch of nodes that are very sure to be in the same community with the query nodes,
or to identify the most influential entities in the community, we may simply stop here;
however, if the goal is, on the other hand, to retrieve a subgraph of relatively larger
size, we may apply all kinds of local community detection methods after this pre-
stage application, which better the result. This enhancement is proved by intuition as
well as experiment results as shown in ’experimentdiscussion’ section.

Outlier Outlier problem, as defined beforehand, is the issue of including unrelated
vertexes which accidentally met the requirement of metric at the time. Take the out-
liers under edge density metric as examples: these nodes might not be that connected
to the subgraph, however they are pulled in for sometimes the query node set situated
right next to them. The coincidence makes the outliers look sometimes as good as the
entities in the community against the metric.

Thus, to deal with the issue, the best and general solution is to take in only the
nodes with the highest internal edge amount. Our metric is capable of doing it. Fur-
thermore, the greatest hidden danger of putting emphasise on internal edge amount,
the free rider effect, has been solved with our metric, as described in the section above.

Parameterized Metric Unmatched with Graph of concern On top of the common
issues above, another issue concerning the design of metric is the parameter setting.
For example, the subgraph modularity metric in many occasions takeαas1/3, andedgedensitymetricusuallytake
2/5 ∗ϕ(S))ratherthan(e(S)), themetricper f orms f arbetterinthegrapho f Amazon.

However, these parameter sets are usually empirical and not widely applicable.
The good example is the (e(S) - 2/5*ϕ(S))metric, whichper f ormssuperiorlyonAmazonbutnotevenasgoodastrivial

Hence, another strong proof for the effectiveness of our core-seeker metric is its
broad applicability on different kinds of graphs(under traditional community struc-
ture model). The newly proposed metric doesn’t have any concerns on parameter
settings, hence the effectiveness is to be irrelevant to the amount of knowledge or
experience with the graph to be operated on.

3.4 A second community structure model

3.4.1 Intuition

As mentioned in introduction, at the current stage almost all of the local community
detection methods suffer from intolerably low correct rate in dealing with graphs of
social networks.
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Figure 3.4 shows us clearly the situation on Youtube, a social network. This exper-
iment is done by [Yubao], during which the access to the whole graph information is
guaranteed.

Figure 3.5: F-score of state-of-art metric on Youtube

Furthermore, the situation exists not as an extreme isolated case with the local
bottom-up community detection methods, but a common one even the information of
the whole graph is made good use of, as proved by [Yubao].

And [Jaewon Yang] and some fellow pioneers, with their observation and anal-
ysis, brought forward a new and organised explanation on the weird situation on
social networks. Their work starts with a novel, and in retrospective very intuitive,
observation that overlaps of communities tend to be more densely connected than the
non-overlapping parts [33, 35]. In particular, they empirically observe that the more
communities a pair of nodes shares the more likely they are connected in the network.

For example, people sharing multiple hobbies (i.e., interest based communities)
have higher chance of becoming friends [23], researchers with many common inter-
ests (i.e., many common scientific communities) are more likely to work and publish
together [26].

The result of experiments claims that the algorithm do identify the community
structure under the traditional model(represented by the metric). However, the cor-
rectness of the detection under the traditional model doesn’t stand for the success on
identification of real communities in these graphs.

The situation in these complex graphs has its foundation in real-world networks.
As discussed in the introduction part, the traditional community model often repre-
sents well the gathering of entities when the relationships of concern between them
is of a single type(single-layer graph). For example, the relationship in Amazon net-
work/graph is mostly about the commodity classification. However, it occurs that the
network on human issues on the contrast is a multi-layer one. For example, within the
network of Youtube, people tend to form communities based on their interest/taste
as well as their background. And the different communities are not likely to influence
the structure of each other but overlapping irregularly.

Even though the intuition and observations are self-evident and make sense in the
board context, these empirical knowledge do not align with the traditional commu-
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nity structure, where the intensive inter-node relationship signals the existence of a
community.

3.4.2 A second community structural model : in the context of intensive
overlapping

In this section we put forward another community structural model dedicated to
make sense of the clustering conditions in the graphs of this kind. Additionally, we
would also analysis the model under the node-centric point of view later.

Figure 3.6: Overlapping graph under node-centric point of view

Definition 33. Overlapping community model aims at describing the communities situated
in intensive structural overlapping environment.

Definition 34. Overlapping graph model: this is a model to showcase the environment in
which a majority of the community structures have severe mutual penetration. In this model,
the high and low concentration of edges no longer indicates the community structures and
inter-cluster edges respectively.

This graph model well explains the failure of application of the state-of-art metrics,
whose bases are still the graph model I and community formation model I, on social
networks these graphs just don’t follow the same rules.

Additionally, when we view the community model under our node-centric com-
munity formation theory, we may notice the difference layer overlapping brings to the
nodes of different roles, as shown in the table below.
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Figure 3.7: Node property analysis under node-centric point of view

3.5 Boundary-seeker metric

3.5.1 intuition

As the topology rules being confused and complexed by the overlapping of multi-
layer graphs/communities, the metric designed for single-layer graphs and tradi-
tional community structures suffer serious problem when dealing with them. Even
the effective core-seeker metric we proposed earlier wouldn?t help. And the reason
for that is trivial: the connection information of core node has now modified greatly,
hence the result of core-seeker metric here might be simply a combination of nodes of
different kinds. This idea is proved by experiment later.

Figure 3.8: Node property with their possible roles under node-centric point of view

It’s worth noting that we are not stating the nodes belong to other parts cannot
have high internal connection and low external; the information above are based on
qualitative statistical analysis. And that means, the chance of a node with small in-
ternalexternal edge amount being of outside nodes is larger than that being of other
types.

Figure 3.9: Boudary-seeker metric under node-centric point of view

However, when we try to have a look of above from another perspective, we can
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get information above. Especially it is very interesting to notice that, when a node
is associated with a big internal edge amount as well as small external amount, the
chance is big that it falls into the category of boundary nodes or outside nodes. This
information seems useless at a first glance, however, given that the whole traditional
community features exist no more under the overlapping environment, it would do
us great favour if we can get ourself back this group of nodes.

3.5.2 The Design of boundary-seeker metric

With the analysis we did above, we then raise up our metric dedicated to identify
clusters in this complex overlapping environment(multi-layer graphs). This metric,
called boundary-seeker, focuses on the identification of the boundary nodes of the
community containing query nodes. The reason is that the boundary nodes are the
only target we can possibly shoot at in the overlapping environment as shown above.
Especially, the distinguish between the real boundary nodes and outside nodes can
be left for further processing, under the SLUB framework to be introduced in the next
section.

The whole idea is, in every iteration, we first compare the internal edge amount
between the candidates; and then select the ones with the least external connection
among the most internally connected nodes.

3.5.3 Effectiveness Evaluation

We did experiment with the metric on social network graphs, such as Youtube and LJ.
And the result shows that they do perform superiorly than state-of-art metrics. The
experiment result are given in ’experiment discussion’ section.

3.6 Collaboration of Multiple Metrics

There are a number of main elements in the formation of metrics, and the difference
in elements adoption and weight of them in the metric formation makes disparity
between the results of them. And this is when the collaboration of metrics makes
sense.

For example, the metrics focusing on the optimisation of internal edge density,
such as edge density or edge surplus, are quite likely to include local free riders, as
suggested by [Yubao]; meanwhile, a few other metrics (maybe metrics in global meth-
ods), such as distance threshold [The Community-search Problem and How to Plan a
Successful Cocktail Party] are sensitive to a lot of mistakes but the free rider. A proper
combination of them has the potential of making a better compound metric for local
methods.

And in this section we will introduce several common metrics, other than the ones
discussed above, which are repeatedly made use of in the compound metrics for their
special features; and we will present two main schemes of multiple metrics collabo-
rating.
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3.6.1 Assisted Metrics

They could not be used directly for our purpose, still they can make good assisted
schemes with local detection metrics.

3.6.1.1 Distance to the seeds

Intuitively enough, as the nodes in a same community as the seeds, they are not sup-
posed to be well separated from the seeds themselves. Though the entities quite close
to the seeds still have a good chance not staying in the same communities with them,
the possibility for those far away from them is close to no. And the idea is well sup-
ported particularly in social networks, where the small-world theory illustrates it that
the community should be quite limited in diameter (longest shortest path).

Based on the viewpoints above, [The Community-search Problem and How to
Plan a Successful Cocktail Party] raised a distance constraint, which can be defined as
follows. First let dG(v, q) denote the length of the shortest path between nodes v and
q in the graph G. If v and q are in different connected components, then we define
dG(v, q) to be infinity. Now, given a node v in the graph G, we define the distance of v
from the query nodes Q to be DQ(G, v) = q?Q dG(v, q)2, (1) and we also define DQ(G)
= max v?V (G) DQ(G, v), (2) the distance of the furthest node from the query nodes.
For defining DQ(G, v) other alternatives are possible, for instance, not using squares,
or using max instead of .

While [Yubao] adopts a different scheme in achieving this. They first compute the
proximity value of each node with regard to the query nodes. The reciprocal of the
proximity value is used as the node weight, thus the nodes closer to the query nodes
will have smaller weights. Particularly, they chose a variant of degree normalised
penalised hitting probability in realising it.

Although these solution may not accurate,mainly due to its failure in well taking
the denseness of edges between the nodes inside the community (other than seeds
themselves) into account, it can make a good weighting scheme for later processing
in local community detection methods. And this has been proved by the good perfor-
mance of [Yubao] algorithm.

3.6.1.2 Edge Betweenness

Another metric of this kind is the edge betweenness, served as a map of one of com-
munity key features: sparse inner shortest path distribution. [Network community-
detection enhancement by proper weighting] discusses the action in detail. The ba-
sic idea of that is, the paths that connect vertices of distinct communities must pass
through at least one inter-cluster edge. Bearing in mind the fact that the commu-
nities are loosely connected, one can expect that the inter-cluster edges have usu-
ally rather high EBC scores. On the other hand, the vertices within a community
are tightly connected, so the betweenness centrality of intra-cluster edges is usually
smaller[Network community-detection enhancement by proper weighting]. Hence a
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reference to the edge betweenness distribution would make the difference between
internal and external edges more clear.

3.6.1.3 Metric used in deletion

This is a little bit different from above, in which the metrics to be used would be still
the state-of-art metrics ; however, the aim for the comparison is to pick up from the
detected subgraph a node that could mostly improve it’s performance in terms of
metric value. The act is introduced by [subgraph modularity].

3.6.2 Collaboration Schemes

There are normally two ways to set up the chemical reaction on local detection met-
rics and the assisted metrics, respectively the weighting scheme and iteration scheme.
And we will have a closer look at them, especially the latter which is another focus of
our newly raised method.

3.6.2.1 Weighting Scheme

The basic function of the weighting scheme is to give nodes or edges of certain prop-
erty a proper weight so as it is more or less likely to be recognised as a part of a
community during the application of the next metric. The weighting scheme usually
goes like this: the weighting metric is initially applied on the graph globally, following
the algorithm with a second metric.

One example of this kind is the Query Biased Density(referred to as QBD in the
rest part) metric proposed in [Robust Local Community Detection: On Free Rider
Effect and Its Elimination]. QBD is essentially a metric focused on the internal edge
density , with pioneering consideration to the diameter of the community structure.
On observing that the local community is not very likely to include the nodes quite
far away from it, QBD involves a node weighting scheme based on random walk.

Intuitively, if all the nodes weight 1, the query biased density is essentially the
same as the classical density definition.

Another example is one of the weighting schemes adapted in the [Network community-
detection enhancement by proper weighting], with regard to the edge betweenness
centrality. The metrics is one based on modularity. And with the intuition that the
nodes very frequently involved in the shortest paths between nodes are probably the
intra-cluster nodes, the links to the nodes are somehow weighted for later computa-
tion. This method would not be discussed in detail since it doesn’t have a lot to do
with our work.

The weighting scheme is proved to be effective in improving community detection
accuracy considerably, at least with the two examples given above. And that from
a side delivers the message that the collaboration of metrics dedicated in different
aspects of community structural characteristics is capable of bettering the result.
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3.6.2.2 Iteration scheme

Besides the weighting scheme, another pattern of metric collaborating is also com-
monly accepted, which we name the iteration scheme. With local community detec-
tion algorithm of iteration scheme, the process would be repeated a couple of times
with various metrics. It?s worth-noting that in iteration scheme, the latter iterations
of the detection would be directly relied upon the results from the previous. The it-
eration scheme usually goes like this: the detecting algorithm with the first metric is
applied on the graph, with a subgraph as its outcome; subsequent algorithms with
other metrics are then used with the information on the initial graph as well as the
outcome subgraphs of prior iterations.

The current number of research adapting the iteration scheme in the field is not
great, however, as what we would prove with our own method later in the next sec-
tion, the iteration scheme can be a good way to make metrics of different kind work
together cohesively.

3.7 The SLUD framework

At last, we are going to put forward the SLUD framework in this section. SLUD
framework is one capable of precisely describing almost every existing method in
the local community detection field. It supports the weighting scheme and iteration
scheme, with every weighting algorithm/iteration algorithm specified with its partic-
ular goodness metric and stop sign.

And this framework not only gives us a overall idea of the local community detec-
tion field, but also the possible ways of improvement.

We are now giving out the framework to begin with, followed by explanations and
example at later sections.

The soul of the SLUD framework is to enhance collaboration between metrics. This
collaboration can be expressed by not only their instinct complementarity, but also the
extra and organised information multiple rounds of algorithms could bring.

3.7.1 SLUD framework

As shown in above, the SLUD framework is one utilising multiple metrics, and get-
ting out of them a better-off combined method by selectively adapting weighting or
iteration schemes.

3.7.2 State-of-art algorithms with metrics, under the viewpoint of SLUD
framework

This is a good example of the application of SLUD metric, in which we further up-
grade the core-seeker metric. By regarding it as a reasonable choice for the iteration
scheme and end up with a bigger accuracy-guaranteed node set, the overall perfor-
mance of the detection better off, as shown in the next part.
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Chapter 4

experiment and discussion

We perform evaluation experiments to determine the effectiveness and efficiency of
the proposed metrics,namely core-seeker and boundary-seeker, using a variety of real
graphs with ground-truth communities know. All the programs are written in C++.
All experiments are performed on local computer with 16G memory, 2.5 GHz Intel
Core i7 CPU.

The statistics of the real networks used in the experiments are shown in right hand
side Table . These datasets are provided with ground-truth community memberships
and are publicly available at http://snap.stanford.edu.

Figure 4.1: Test data sets information

We compare our core-seeker metric with several state-of-art local community de-
tection metrics, which are summarised in Figure 4.2

Figure 4.2: Ground-truth Community subgraph modularity

Before we move to the experiments, we need to bring about another experiment.
The result of test on the subgraph modularity value on the ground-truth communities
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in Amazon, DBLP, Youtube and LJ shows that, the former two graph data sets follow
the definition of a typical graph model, where the community structures are clear and
interacting less; while the latter graphs, Youtube and LJ, suffer a loss in an order of
magnitude in subgraph modularity. Hence in the experiments we use Amazon and
DBLP for the purpose of testing metric performance in traditional community struc-
ture environment; while Youtube and LJ would be used when we need evaluation on
overlapping environments.

4.1 Evaluating Criteria

To evaluate the performance, we use three criteria to evaluate the selected methods:
precise, recall and F-score, the definition of the which has been given in the introduc-
tion part. And it’s their realistic significance that is noteworthy: precise measures the
correctness of the detected community; recall weights how big part of the ground-
truth community has been identified by the detection algorithm; while F-score is an
overview of the precise and recall, often used as the core evaluation standard.

4.2 The Evaluation and Comparison on the New Metrics

The utilisation of edge surplus metric will be universally associated aαbeing1/3, assuggestedintheexperimento f
o f − artmetrico f ourknowledgetocomparewiththenewlyraisedmetric.

4.2.1 The Evaluation and Comparison on the Typical Graphs with Core-
seeker Metric

Figure 4.3: Accuracy of core-seeker test

The result shows that the core-seeker metric is a stable and broadly applicable
metric, which doesn’t rely on a lucky or experienced choice of any parameter. But its
results are ideal either as the result of a core-node-seeking algorithm, or as the first
iteration metric(under SLUD framework) targeting at a subgraph of small size but
high accuracy.
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Particularly some may notice the edge surplus metric perform equally as the core-
seeker metric on Amazon graph, the reason for that is Amazon is a very typical single-
layer graph. Hence, normally as long as a metric chooses the edge density as its major
component and limit the expansion of detection process, the result quality is almost
guaranteed. Edge surplus withαbeing1/3issurelyoneo f those.

4.2.2 The Evaluation and Comparison on the Overlapping Graphs with
Boundary-seeker Metric

Figure 4.4: boundary-seeker F-score test 1

4.2.3 The Evaluation and Comparison on the Overlapping Graphs with
Boundary-seeker Metric

Figure 4.5: boundary-seeker F-score test 2

The result shows that the boundary-seeker metric is a stable and broadly appli-
cable metric, which doesn’t rely on a lucky or experienced choice of any parameter.
But its results are ideal either as the result of a core-node-seeking algorithm, or as the
first iteration metric(under SLUD framework) targeting at a subgraph of small size
but high accuracy.
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4.3 The Evaluation of the SLUD framework

The evaluation of weighting scheme under SLUD with the collaboration of hitting
probability metric and edge density metric has proved its superiority in [Yubao]. And
we are going to evaluate the application of SLUD framework on the enhancement of
detection on typical graphs here.

Figure 4.6: SLUD framework testing: core-seeker as pre-stage dealer

These results demonstrate that the metric collaboration has its significance in op-
timising the local community detection.

This result proved that the result of the edge surplus are more likely to be core
node in the communities; Hence even if the accuracy of core-seeker is slightly sec-
ond to edge surplus, when we need to expand the detected community from the first
iteration result, core-seeker shows good superiority as first round metric .



Chapter 5

Conclusion

Local community detection is a fundamental problem in network analysis and has at-
tracted intensive research interests. However, in many occasions the lack of informa-
tion and the complexity and limitation on expressibility of graphs themselves make
the problem challenging.

In this work, we try to analysis the community structure with an alternative viewpoint(node-
centric viewpoint), and proposed two new metrics dedicated to better identify cluster
structures in single-layer and overlapping environments respectively base on the new
point of view. And the experiment results have shown the effectiveness of the new
metrics.

Most importantly, we then propose a general framework of the local community
detection. This framework well and precisely describes most of the state-of-art at-
tempts and innovations in the field as discussed. With the help of the SLUD frame-
work, the further study in the area may acquire some convenience, better organisation
of ideas and make better use of current metrics by collaborating them in some new
way.
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