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ABSTRACT

WELSH, A. H., and E. J. KNIGHT. ‘‘Magnitude-based Inference’’: A Statistical Review. Med. Sci. Sports Exerc., Vol. 47, No. 4,

pp. 874–884, 2015. Purpose: We consider ‘‘magnitude-based inference’’ and its interpretation by examining in detail its use in the

problem of comparing two means. Methods: We extract from the spreadsheets, which are provided to users of the analysis (http://

www.sportsci.org/), a precise description of how ‘‘magnitude-based inference’’ is implemented. We compare the implemented version of the

method with general descriptions of it and interpret the method in familiar statistical terms. Results and Conclusions: We show that

‘‘magnitude-based inference’’ is not a progressive improvement on modern statistics. The additional probabilities introduced are not directly

related to the confidence interval but, rather, are interpretable either as P values for two different nonstandard tests (for different null

hypotheses) or as approximate Bayesian calculations, which also lead to a type of test. We also discuss sample size calculations associated

with ‘‘magnitude-based inference’’ and show that the substantial reduction in sample sizes claimed for the method (30% of the sample size

obtained from standard frequentist calculations) is not justifiable so the sample size calculations should not be used. Rather than using

‘‘magnitude-based inference,’’ a better solution is to be realistic about the limitations of the data and use either confidence intervals or a

fully Bayesian analysis. Key Words: BAYESIAN, BEHRENS–FISHER, CONFIDENCE INTERVAL, FREQUENTIST

O
ver the last decade, ‘‘magnitude-based inference’’
has been developed and promoted in sport science
as a newmethod of analyzing data. Information about

the approach is available from Excel spreadsheets, pre-
sentations, notes, and articles (4,5,11,12,14), many of which
are available from the Web site http://www.sportsci.org/.
More recently, the approach has been recommended by
Wilkinson (25,26). Although ‘‘magnitude-based inference’’ is
a statistical approach that is intended to replace other statis-
tical approaches, it has so far attracted minimal scrutiny by
statisticians; as far as we know, the only published comments
on it by statisticians are those of Barker and Schofield (3)
who showed that the approach can be interpreted as an ap-
proximate Bayesian procedure. The purpose of this article is

to present a detailed examination of ‘‘magnitude-based in-
ference’’ as a statistical method, examining it both as a
frequentist and a Bayesian method.

The development of ‘‘magnitude-based inference’’ seems
to have been motivated by 1) some legitimate questions
about the use of frequentist significance testing (P values) in
clinical practice and 2) by the perception that significance
tests (at the 5% level) are too conservative when looking for
small effects in small samples. In response to such questions
about significance testing, a number of researchers advo-
cate the use of confidence intervals instead of P values
(6,7,9,17,20) but ‘‘magnitude-based inference’’ tries to go
further, replacing the confidence interval with probabilities
that are supposedly based on the confidence interval.

The first essential step in discussing ‘‘magnitude-based
inference’’ is to obtain a clear description of the approach,
for which we take the spreadsheets as the definitive imple-
mentation of the method. For simplicity, we focus on two
specific spreadsheets, describe the ‘‘magnitude-based infer-
ence’’ calculations presented in these spreadsheets, and
evaluate the method by interpreting the calculations against
the explanations given in the published articles (4,5,11,12,14).
The spreadsheets we used are xParallelGroupsTrial.xls and
xSampleSize.xls (see spreadsheets, Supplemental Digital
Content 1, http://links.lww.com/MSS/A429, and Supplemental
Digital Content 2, http://links.lww.com/MSS/A430, obtained
from http://www.sportsci.org/ on 22 May 2014 under the links
‘‘Pre–post parallel groups trial’’ and ‘‘Sample size estima-
tion’’), which implement ‘‘magnitude-based inference’’ cal-
culations for what is often loosely described as the problem
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of comparing two means. We reverse-engineered parts of
these spreadsheets and rewrote the spreadsheet calculations
in R (19) to check that we got the same numerical results
and thereby confirm that our transcription of the calculations
is correct.

We describe the problem of comparing two means to set the
context for using xParallelGroupsTrial.xls and xSampleSize.xls
to describe and discuss ‘‘magnitude-based inference’’ in sec-
tion 2. We then describe the calculations used in ‘‘magnitude-
based inference’’ for the problem of comparing two means in
section 3. At the end of the section, we introduce a new
graphical representation to illustrate how the approach works.
We provide evaluation and comment regarding the calcula-
tions in section 4 and describe the ‘‘magnitude-based infer-
ence’’ sample size calculation for the problem of comparing
two means in section 5. We present further discussion in
section 6 and some concluding remarks in section 7. Our
conclusion is that ‘‘magnitude-based inference’’ does not get
away from using P values as it purports to do but actually uses
nonstandard P values and very high thresholds to increase the
probability of finding effects when none are present. Fur-
thermore, the smaller sample size requirements are illusory
and should not be used in practice.

THE PROBLEM OF COMPARING TWO MEANS

The problem considered in xParallelGroupsTrial.xls
(see spreadsheet, Supplemental Digital Content 1, http://
links.lww.com/MSS/A429) is the problem of comparing two
means. More specifically, it is the problem of making in-
ferences about the difference in the means of two normal
populations with possibly different variances, on the basis of
independent samples from the two populations. This prob-
lem is illustrated in xParallelGroupsTrial.xls by an example
with data from a control group of 20 athletes (in cells E42 to
H61) and an experimental group of 20 different athletes
(in cells E73 to H92). There are four measurements on each
athlete (two before-treatment measurements labeled pre1
and pre2 and two after-treatment measurements labeled
post1 and post2). The data are approximately normally dis-
tributed, so there is no need to transform the data and the
individual treatment effects can be estimated by post1 j

pre2 (as is done in cells L42 to L61 and L73 to L92). These
individual treatment effects are assumed to be independent,
and the problem is to make inferences about the effect of the
treatment on a typical (randomly chosen) individual; this
effect is summarized by the difference in the means of the
separate populations represented by the experimental and
control athletes.

The mentioned scenario is a particular example of a gen-
eral problem in which we have n1 subjects in a control group
and different n2 subjects in an experimental group, and we
have observed individual effects Y11,I , Y1;n1 on the control
group and observed individual effects Y21, I , Y2;n2 on the
experimental group. Here, the first subscript represents the

group (‘‘1’’ identifies the control group, and ‘‘2’’ identifies
the experimental group) and the second subscript identifies
the subject in the group. The observed effects are concep-
tualized as realizations of mutually independent normal
random variables, such that the n1 subjects in the control
group have mean K1 and variance R2

1 and the n2 subjects in
the experimental group have mean K2 and variance R2

2, and
we want to make inferences about the difference in means
K2 j K1. For simplicity, we assume throughout this article
that positive values of K2 j K1 represent a positive or ben-
eficial effect. The general problem of making inferences
about K2 j K1 in this normal model with R2

1 m R2
2 is known

as the Behrens–Fisher problem (see for example, Welsh
(23)). The Behrens–Fisher problem seems simple on the
surface but is in fact a difficult problem that has generated
substantial literature. We could simplify to the equal variance
problem (R2

1 ¼ R2
2) but chose to follow the spreadsheets.

‘‘MAGNITUDE-BASED INFERENCE’’
CALCULATIONS

The calculations for ‘‘magnitude-based inference’’ that we
have extracted from the spreadsheet xParallelGroupsTrial.xls
are expressed in this article in standard mathematical notation
rather than as spreadsheet commands. In xParallelGroupsTrial.xls,
all probabilities p are specified as percentages (i.e., 100p) and
as odds. The definition used in xParallelGroupsTrial.xls,
1:(1 j p)/p if p G 0.5 and p/(1 j p) if p Q 0.5, is more
complicated than the standard definition p/(1 j p) of odds.
Percentages and odds are mathematically equivalent to spec-
ifying the probabilities, but we use the probabilities because
they are simpler for mathematical work and avoid using the
nonstandard definition of odds.

‘‘Magnitude-based inference’’ is described as being based
on a confidence interval for the quantity of interest (here,
K2 j K1), which is then categorized on the basis of some
additional probability calculations.We introduce the notation and
the setup by describing the confidence interval used forK2 j K1

and then describing the additional probability calculations.
Confidence intervals: approach 1. The first step in

‘‘magnitude-based inference’’ is to compute the approximate
100(1 j >)% Student’s t confidence interval (default level
90% entered in E33 or > = 0.1) for K2 j K1, which does not
assume equal population variances and uses Welch’s (22)
approximation to the degrees of freedom. Specifically, we
estimate K2 j K1 by the difference in sample means as
Ȳ2jȲ1 (in L117), compute the SE of the difference in
sample means as SEðȲ2jȲ1Þ (in L123), and then the ap-
proximate confidence interval (in L130 and L131) as

½Ȳ2 j Ȳ1j t>SEðȲ2 j Ȳ1Þ; Ȳ2 j Ȳ1 þ t>SEðȲ2 j Ȳ1Þ� ½1�

where t> is the critical value (see Appendix, Supplemental
Digital Content 3, http://links.lww.com/MSS/A431, Back-
ground information and formulas for the P values and con-
fidence interval for the problem of comparing two means).
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The next step is to specify the smallest meaningful posi-
tive effect, C 9 0. The smallest negative effect is then set
automatically to jC (this symmetry is not obligatory, but it
is the default in xParallelGroupsTrial.xls where enteringjC

in C27 as the ‘‘threshold value for smallest important or
harmful effect’’ automatically populates the cells where C is
required). The specified C defines three regions on the real
line, as follows: the ‘‘negative or harmful’’ region (jV,jC),
the ‘‘trivial’’ region (jC, C) inside which there is no effect,
and the ‘‘positive or beneficial’’ region (C, V). The confi-
dence interval is then classified by the extent of overlap with
these three regions into one of the four categories, as fol-
lows: ‘‘positive,’’ ‘‘trivial,’’ ‘‘negative,’’ or ‘‘unclear,’’ where
this last category is used for confidence intervals that do not
belong to any of the other categories. The way this was done
is illustrated, for example, in Figure 2 of the articles of
Batterham and Hopkins (4,5).

Probability calculations: approach 2. ‘‘Magnitude-
based inference’’ as implemented in xParallelGroupsTrial.xls
does not directly compare the confidence interval (equation 1)
with the three regions defined by C but instead bases the
classification on new probabilities supposedly associated with
each of these three regions. As we will see in the following
sections, these quantities are P values (from particular tests)
and are not obtained directly from the confidence interval.

The three quantities calculated (described as ‘‘chances’’ or
‘‘qualitative probabilities’’ in I135 in xParallelGroupsTrial.xls)
are the ‘‘substantially positive (+ve) or beneficial’’ value

pb ¼ 1jGvf½Cj ðȲ2 j Ȳ1Þ�=SEðȲ2 j Ȳ1Þg ½2�

computed in L135, the ‘‘substantially negative (jve) or
harmful’’ value

ph ¼ Gvf½jCj ðȲ2 j Ȳ1Þ=SEðȲ2 j Ȳ1Þ�g ½3�

computed in L139, and the ‘‘trivial’’ value 1 j pb j ph com-
puted in L137. In these expressions, Gv is the distribution
function of the Student’s t distribution with v degrees of free-
dom. The values pb, ph, and 1 j pb j ph are interpreted (in
L136, L140, and L138) against a seven-category scale of
‘‘most unlikely,’’ ‘‘very unlikely,’’ ‘‘unlikely,’’ ‘‘possibly,’’
‘‘likely,’’ ‘‘very likely,’’ and ‘‘most likely,’’ as shown in Table 1.
Note that the definitions of the categories are not always the
same (0.01 and 0.99 are sometimes used instead of 0.005 and
0.995, see for example Batterham and Hopkins (4)) and the
words attached to the interpretation are not always the same
(‘‘almost certainly not’’ and ‘‘almost certainly’’ are sometimes
used instead of ‘‘most unlikely’’ and ‘‘most likely,’’ see for
example Batterham and Hopkins (4) and Hopkins et al. (14)).

We describe these categories (in L136, L140, and L138)
as the status of the value and refer to the descriptions of pb,
1 j pb j ph, and ph as the beneficial, trivial, and harmful
status, respectively.

The next step requires us to specify threshold values
against which to compare pb and ph. Hopkins (12) and
Hopkins et al. (14) discuss two kinds of ‘‘magnitude-based
inference,’’ namely, ‘‘clinical inference’’ and ‘‘mechanistic
inference.’’ For ‘‘clinical inference,’’ we have to specify the
‘‘minimum chance of benefit’’ (default Gb = 0.25 in E37) and
the ‘‘maximum risk of harm’’ (default Gh = 0.005 in E36).
For ‘‘mechanistic inference,’’ there is no direct clinical or
practical application and positive and negative values rep-
resent equally important effects, so a single value is required
(default >/2 = 0.05, obtained by setting Gb = Gh = 0.05). In
practice, the threshold values for the two types of study are
used in the same way, so the key practical distinction is
between possibly unequal and equal threshold values. In
either type of study, we classify the data as supporting one of
the four conclusions shown in Table 2. The classifications
‘‘beneficial,’’ ‘‘harmful,’’ and ‘‘trivial’’ are qualified in L141
and L142 by the corresponding classifications of pb, ph, and
1 j pb j ph.

To see how the calculations work, we ran them through
the spreadsheet xParallelGroups.xls and our own R code using
the post1 j pre2 example data given in xParallelGroups.xls.
We report the results for the analysis on the raw scale. The
90% confidence interval for the difference of the means is
j0.3 to 14; the P value for testing the null hypothesis that the
difference of the means is zero (so the means are the same)
rounds to 0.12. Both these calculations show that there is only
weak evidence of a treatment effect. For C = 4.41 (which
corresponds to 0.2 SD, one of the suggested default values,
entered into cell C27 as j4.41) and the default values for
Gb = 0.25 and Gh = 0.005 in the spreadsheet, the comparison
of the post1 j pre2 measurements in the experimental and
control groups in the example data produces pb , 0.72,
ph , 0.01, and 1j pb j ph , 0.27 (xParallelGroups.xls gives
1 j pb j ph , 0.28 because it handles the rounding differ-
ently), so the default ‘‘mechanistic inference’’ is ‘‘possibly
beneficial’’ and the default ‘‘clinical inference’’ is ‘‘unclear,
get more data.’’ We give a brief explanation of how these
conclusions are reached from Tables 1 and 2. For default
‘‘mechanistic inference,’’ we have pb 9 0.05 and ph G 0.05 so
the Table 2 classification is positive. Because pb is classified
already as possibly positive according to Table 1, the

TABLE 1. The ‘‘qualitative probabilities’’ used in xParallelGroupsTrial.xls.

Range of P Interpretation

P G 0.005 Most unlikely
0.005 e P G 0.05 Very unlikely
0.05 e P G 0.25 Unlikely
0.25 e P G 0.75 Possibly
0.75 e P G 0.95 Likely
0.95 e P G 0.995 Very likely
0.995 G P Most likely

TABLE 2. ‘‘Clinical inference based on threshold chances of harm and benefit’’ as specified in
xParallelGroups.xls.

Range of pb Range of ph Report

Gb G pb Gh G ph ‘‘Unclear, get more data’’
Gb G pb ph G Gh ‘‘Positive’’
pb G Gb Gh G ph ‘‘Negative’’
pb G Gb ph G Gh ‘‘Trivial’’

Gb is the ‘‘minimum chance of benefit’’ (default Gb = 0.25), and Gh is the ‘‘maximum
risk of harm’’ (default Gh = 0.005). To carry out ‘‘mechanistic inference,’’ set Gh = Gb

(default = 0.05).
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‘‘mechanistic inference’’ inherits ‘‘possibly’’ and is reported
as ‘‘possibly positive.’’ For default ‘‘clinical inference,’’ we
have pb 9 Gb = 0.25 and ph 9 Gh = 0.005, so the Table 2
classification is ‘‘unclear, get more data.’’ If we change Gh

and/or Gb, we do not change the probabilities pb, ph, or 1 j

pb j ph, but we may change their classification. For example,
if we increase Gh from 0.005 to 0.05 (by changing E36 to 5),
the ‘‘clinical inference’’ changes to ‘‘possibly beneficial.’’

We find it helpful for understanding how the probabilities
pb, ph, and 1 j pb j ph are being used to look at a graph-
ical representation of the classification schemes used in
‘‘magnitude-based inference.’’ The three probabilities pb, ph,
and 1 j pb j ph add up to one (only two of them are needed
to determine the third), so they can be plotted in a triangle
(called a ternary plot) together with the regions corresponding
to the four possible conclusions presented in Table 2. The
solid point in the lower left corner of the triangle represents
the values of pb, ph, and 1 j pb j ph computed using the
post1 j pre2 data in xParallelGroups.xls. As the point lies
in the beneficial region, the ‘‘clinical inference’’ for Gh =
0.05 is ‘‘beneficial.’’ The underlying gray grid (representing
the threshold values from Table 1) refines this to ‘‘possibly
beneficial.’’ Note that changing Gh from 0.05 to 0.005
changes the regions by moving the edge of the beneficial
region closer to the left hand side of the triangle, and, in this
case, the point is in the ‘‘unclear’’ region (note that in L142,
Gb is hard-coded to 0.25). For ‘‘mechanistic inference,’’ we
set Gb = Gh = 0.05, which corresponds to moving the
boundary of the harmful region toward the right hand side of
the triangle (to the gray pb = 0.05 line) and makes the ben-
eficial and harmful regions symmetric (note that in L141, Gb

and Gh are hard-coded to 0.05).
In summary, the confidence interval gives an estimate of

the treatment effect and its uncertainty and shows that there
is only weak evidence of a beneficial treatment effect. For-
mally, the confidence interval and the P value show that the
treatment effect is not significant. ‘‘Magnitude-based infer-
ence’’ produces the more optimistic conclusion that there is
evidence of a possibly beneficial treatment effect. Is this
‘‘magnitude-based inference’’ conclusion meaningful, and
should we use it?

INTERPRETATION

The confidence interval in equation 1 is a standard con-
fidence interval for the Behrens–Fisher problem (e.g.,
Snedecor and Cochran (21) and has the usual interpretation,
as follows: if we draw a very large number of samples in-
dependently from the normal model and we compute a
confidence interval like equation 1 for K2 j K1 from each
sample, then 100(1 j >)% of the confidence intervals will
contain K2 j K1. This is a frequentist interpretation because
the level [100(1 j >)%] is derived from the sampling dis-
tribution of Ȳ2jȲ1 and interpreted in terms of repeated
samples. Precision and care are needed in the definition of a
confidence interval, and attempts to give ‘‘informal’’ or

‘‘friendly’’ working definitions are almost inevitably not
correct.

The graphical classification based on the confidence in-
terval as showing evidence of ‘‘negative,’’ ‘‘trivial,’’ ‘‘posi-
tive,’’ or ‘‘unclear’’ effects according to its relation to regions
defined in the parameter space is used for ‘‘explaining’’
‘‘magnitude based inference,’’ but Batterham and Hopkins (5)
describe it as ‘‘crude,’’ do not recommend using it, and do not
implement it in xParallelGroupsTrial.xls, instead preferring
to base the conclusion on the values pb, ph, and 1 j pb j ph.

The interpretation of the values pb, ph, and 1 j pb j ph is
quite complicated. Different interpretations of these values
are given, sometimes in the same article. For example,
Hopkins (12) states that

‘‘The calculations are based on the same assumption of a
normal or t sampling distribution that underlies the cal-
culation of the P value for these statistics.’’

and

‘‘Alan Batterham and I have already presented an intui-
tively appealing vaguely Bayesian approach to using the
confidence interval to make what we call magnitude-based
inferences.’’

The first statement claims that the values have a frequentist
sampling theory interpretation (it is interesting that it refers to
P values rather than to confidence intervals), whereas the
second claims that they have a ‘‘vaguely Bayesian’’ interpre-
tation. These statements both need careful analysis.

From our calculation presented in the Appendix (see Ap-
pendix, Supplemental Digital Content 3, http://links.lww.com/
MSS/A431), when C = 0, ph is the one-sided P value for
testing the null hypothesis that K2 j K1 = 0 against the al-
ternative that K2 j K1 9 0 and pb = 1 j ph, so the third
probability 1 j pb j ph = 0. Similarly, pb is the one-sided
P value for testing the null hypothesis that K2 j K1 =
0 against the alternative that K2 j K1 G 0. Thus, if we let p be
the two-sided P value, when C = 0, we have pb = 1j p/2 and
ph = p/2. The switch from two-sided to one-sided P values
and the relation to ‘‘magnitude-based inference’’ terminology
are important; the small p case corresponds to both a small
‘‘risk of harm’’ ph and a large ‘‘chance of benefit’’ pb. If C 9 0,
we can interpret ph as the one-sided P value for testing the
null hypothesis that K2 j K1 =jC against the alternative that
K2 j K1 9 jC. Similarly, pb can be interpreted as the one-
sided P value for testing the null hypothesis that K2 j K1 = C

against the alternative that K2j K1 G C. Starting from P values
leads to an interpretation in terms of tests and shows that
‘‘magnitude-based inference’’ has not replaced tests by confi-
dence intervals but is actually based on tests and can itself be
regarded as a test. As we increase C, the effect is to increase
1 j pb j ph and eventually decrease both pb and ph. For a
P value in the range 0.05–0.15, this shifts the analysis toward
a positive conclusion; we decrease the ‘‘risk of harm,’’ ph, at
the cost of also decreasing the ‘‘chance of success,’’ pb, but
usually not by enough to lose the ‘‘evidence’’ for a positive
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effect (given that Gb is kept small). Because Gb = 0.25 is rel-
atively small (compared with, say, 0.95), the important
threshold for obtaining a positive result is actually Gh. This is
shown by the curve drawn along the left hand side of the tri-
angle to the base in Figure 1 to show how pb, ph, and 1j pbj
ph change as C changes. The cross on the base of the triangle
corresponds to C = 0 when ph equals half the usual P value and
represents the weakest evidence of a positive effect; increasing
C initially strengthens the evidence of a beneficial effect but
eventually makes the evidence trivial. If the threshold values
are not well calibrated, we can also strengthen the evidence by
changing the threshold values (particularly by increasing Gh).

Alternatively, we can try to interpret pb and ph as quan-
tities derived from the confidence interval, as shown in
equation 1. Starting from a confidence interval actually leads
naturally to a Bayesian rather than a frequentist interpreta-
tion for pb and ph. In the Bayesian framework, we need to
make K2 j K1 a (nondegenerate) random variable with a
(prior) distribution specified before collecting the data.
The data are combined (using the laws of probability) with
the prior distribution to produce the conditional distribu-
tion of K2 j K1 given the data, which is called posterior
distribution. If we adopt the improper prior distribution with

probability density function, gðK1;K2;R
2
1;R

2
2Þò1=R2

1R
2
2,

then, given the data, ½K2jK1jðȲ2jȲ1Þ�=SEðȲ2jȲ1Þ has
the Behrens–Fisher distribution. The prior distribution is im-
proper because its integral is not finite so it cannot be stan-
dardized (like a proper probability density function) to have
integral one; the Behrens–Fisher posterior distribution is a
proper distribution and hence can be used in the usual way to
compute posterior probabilities. In fact, the Behrens–Fisher
distribution is not particularly tractable and it is often ap-
proximated by simpler distributions. If we approximate the
Behrens–Fisher distribution by the Student’s t distribution
with v degrees of freedom, the expressions equations 2 and 3
can be rearranged as

pb ¼ Prf½K2jK1jðȲ2jȲ1Þ�=SEðȲ2j Ȳ1Þ Q ½Cj ðȲ2j Ȳ1Þ�=SEðȲ2j Ȳ1Þjdatag

¼ PrðK2j K1 Q CjdataÞ

and, similarly,

ph ¼ PrðK2jK1ejCjdataÞ:

That is, pb and ph can be interpreted as approximate
posterior probabilities under a specific choice of prior dis-
tribution that the difference in population means is greater/
less than C/jC, respectively. Both choices, the specific prior
distribution and the approximation to the Behrens–Fisher
distribution, can be replaced by other choices.

Batterham and Hopkins (5) state that

‘‘The approach we have presented here is essentially
Bayesian but with a Fflat prior_; that is, we make no prior
assumption about the true value.’’

The improper prior used in the analysis is an example of a
vague prior. A vague prior does not impose strong as-
sumptions about the unknown parameters on the analysis.
This does not mean that it imposes no assumptions because,
in fact, it imposes a quite definite assumption. Moreover, as
Barker and Schofield (3) carefully explained, the appearance
of imposing only vague information is dependent on the scale
on which we look at the parameters because a prior on one
scale actually imposes strong information on some functions
of the parameters. If we take ‘‘flat’’ to mean ‘‘vague,’’ the prior
with probability density function gðK1;K2;R

2
1;R

2
2Þò1=R2

1R
2
2

is literally flat or constant if we transform the variances to
log variances but it is not flat on the variance scale. This
explicitly shows that the information depends on the scale of
the parameters.

In response to Barker and Schofield (3), Hopkins and
Batterham (13) dismissed what they refer to as ‘‘an imaginary
Bayesian monster.’’ However, what Barker and Schofield (3)
wrote is correct. It is not possible to squash a prior flat on the
real line while maintaining an area of unity. Both the mean and
the variance are infinite, so it is not correct to write that ‘‘the
mean of a flat prior may as well be zero.’’ It is also not correct
to claim that ‘‘All values of the statistic from minus infinity to
plus infinity are therefore equally infinitesimally likely—hence
the notion of no assumption about the true value.’’ The

FIGURE 1—Ternary plot of the probabilities pb, ph, and 1 j pb j ph
showing the four regions corresponding to the different possible con-
clusions ‘‘beneficial,’’ ‘‘trivial,’’ harmful,’’ and ‘‘unclear’’ when Gb =
0.25 and Gh = 0.05. The threshold values from Table 1 are represented
by gray lines. Note that the 0.005 and 0.995 lines are not actually visible
because they are very close to the side of the triangle and the vertex of
the triangle, respectively; the lines we can see represent the probabilities
0.05, 0.25, 0.75, and 0.95. The gray pb labels on the left hand edge of the
triangle are for the lines running parallel to the right hand side, and the
gray ph labels on the right hand edge of the triangle are for the lines
running parallel to the left hand side. The horizontal lines for 1 j pb j
ph are drawn in but not labeled to reduce clutter. We have also
partitioned the triangle into the regions specified in Table 2 using the
threshold values Gb = 0.25 and Gh = 0.05 (we use Gh = 0.05 rather than
the default 0.005 to make the region visible.) The regions are shaded to
make them easier to distinguish. The region labels are written outside
the triangle adjacent to the region. The black point represents values of
pb, ph, and 1 j pb j ph (from the example in the spreadsheet), which
lead to the conclusion ‘‘possibly beneficial.’’ The cross on the base
represents the values of pb, ph, and 1 j pb j ph when C = 0, and the
curve through the cross and black point shows the effect of changing C

on pb, ph, and 1 j pb j ph.
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distribution is actually that of a parameter rather than a
statistic as claimed, and the flatness is not equivalent to
making no assumption about the true value. Taking the
limit of a posterior on the basis of a proper prior as the
prior becomes improper does not correspond to using ‘‘no
prior real information about the true value’’ any more than
using the corresponding improper prior does. The ‘‘empirical
evidence’’ based on bootstrapping presented by Hopkins and
Batterham (13) is not relevant to the argument.

As we noted, the calculations implemented in the spread-
sheet can be interpreted as approximating the Behrens–Fisher
distribution by the Student’s t distribution with v degrees of
freedom. Patil (18) states that this is not a satisfactory ap-
proximation; other approximations have been provided by
Cochran (8), Patil (18), and Molenaar (16). Although the
different approximations often give similar results, this means
that the approximation used in the spreadsheet is not the one
that you would choose to use for a Bayesian analysis. This
suggests that the Bayesian interpretation was not intended in
the original formulation.

One of the consequences of the fact that pb and ph are not
directly related to the confidence interval, equation 1, is that
conclusions based on pb and ph can sometimes seem unsat-
isfactory when compared with the confidence interval. The
conclusion is determined solely by which region the point
(pb, ph, 1 j pb j ph) falls into. This shows that the con-
clusion is based on a type of hypothesis test. It is not a
standard frequentist significance or hypothesis test (this
would treat fewer hypotheses and allow fewer outcomes) or
a standard Bayesian hypothesis test (this would choose be-
tween the hypotheses that the difference in population
means is positive, trivial, or negative by adopting the hy-
pothesis with the largest posterior probability) because of the
additional requirements imposed by the fixed threshold
probabilities Gb and Gh. Nonetheless, it has much more to do
with hypothesis testing than interval estimation, showing
that hypothesis testing has been replaced by a different kind
of test rather than been avoided. This is inevitable when, as
in ‘‘magnitude-based inference,’’ the outcome of the analysis
is one of a simple set of possible categories.

One advantage of recognizing that ‘‘magnitude-based in-
ference’’ is a type of test is that we can evaluate its properties
as a test. In particular, we can compute the probability of
reaching beneficial, harmful, or trivial conclusions by sim-
ulating 10,000 samples from the model, computing pb, ph,
and 1 j pb j ph for each sample and calculating the
proportion of times these probabilities lead to each of the
conclusions of interest. The results of performing this sim-
ulation for the case K2 j K1 = 0 (so K2 = K1 and there is no
effect) for samples with similar other characteristics to the
example data (n1 = n2 = 20, R2

1 ¼ 152, R2
1 ¼ 112), for a fine

grid of C values and for choices of Gb and Gh, are shown
in Figure 2. The probability of finding a beneficial effect
equals Gh when C = 0 increases as we increase C until it starts
decreasing and eventually decays to zero. The probability of
finding a harmful effect behaves similarly but starts at Gb

when C = 0. The probability of finding a trivial effect (the
correct answer because the simulation is for the case K2 j

K1 = 0) equals zero for small C and then increases to one as C
increases. Other than at C = 0, the probabilities of the dif-
ferent conclusions are not simply related to Gb or Gh because
they also depend on C. The vertical dashed gray line corre-
sponds to C = 4.418, the value used in our analysis. Using
this C for default ‘‘mechanistic inference’’ (Gb = Gh = 0.05),
we find that the probability of finding an effect (beneficial or
harmful) when there is no effect is 0.54. That is, the proba-
bility of a Type I error is more than 10 times the standard
value of 0.05. This increase in the probability of a Type I
error explains why ‘‘magnitude-based inference’’ is less
conservative than a standard test; it is equivalent to using the
usual P value with a 0.5 threshold, an increase that is un-
likely to be acceptable. Similarly, for default ‘‘clinical in-
ference’’ (Gb = 0.25, Gh = 0.005), we find that the probability
of finding a beneficial effect is 0.057 and the probability of
finding a harmful effect is 0.657 when there is no effect.
That is, the probability of a Type I error is 0.714. Increasing
Gh to 0.05 increases the probability of finding a beneficial
effect to 0.255 and slightly decreases the probability of
finding a harmful effect to 0.647 when there is no effect (so
the probability of a Type I error is 0.902). These results may

FIGURE 2—Plots of the probabilities of finding beneficial, trivial, or harmful effects as functions of C for four values of (Gb, Gh) when there is no effect.
The 10,000 data sets were simulated to have K2 j K1 = 0, with similar other characteristics to the example data (n1 = n2 = 20, R2

1 = 152, R2
2 = 112). The

vertical dashed gray line corresponds to C = 4.418, the value used in our analysis.
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be easier to understand if we plot a random sample of pb, ph,
and 1 j pb j ph triples on a ternary diagram. When C = 0,
the points are distributed uniformly along the base of the
triangle. As C increases, the points are distributed along and
around a curve; Figure 3 shows the distribution for C =
4.418. If we continue to increase C, the curve moves up the
triangle until, eventually, all the points lie on the 1 j pb j
ph vertex. The message from the simulation is that 1) we
cannot simply interpret Gb and Gh as frequentist thresholds
that directly describe standard properties of the test and 2)
the probability of a Type I error (finding an effect that is not
there) is surprisingly high.

In summary, ‘‘magnitude-based inference’’ is based on
testing rather than interval estimation. It does not fit neatly
into either the standard frequentist or the standard Bayesian
testing frameworks. Using confidence intervals or moving to
a full explicit Bayesian analysis would resolve the difficul-
ties of justifying ‘‘magnitude-based inference.’’ However,
for a convincing Bayesian analysis, the prior distribution
needs to be well justified (for example, being based on solid
empirical evidence).

SAMPLE SIZE CALCULATIONS

The second spreadsheet xSampleSize.xls (see spreadsheet,
Supplemental Digital Content 2, http://links.lww.com/MSS/
A430) provides various sample size calculations; we discuss
only the calculations presented for the problem of compar-
ing two means described previously. The sample size cal-
culations implemented in xSampleSize.xls are actually for
the simpler equal variance case R2

1 ¼ R2
2 ¼ R2 rather than the

full Behrens–Fisher problem. In the equal variance case,
the distribution theory is much simpler; it is based on the
Student’s t distribution, which is simpler than the Behrens–
Fisher distribution (so no approximation is required), and
the degrees of freedom is a function of n1 and n2 but not
of R

2 and hence does not have to incorporate estimates

of R
2 (see Appendix, Supplemental Digital Content 3,

http://links.lww.com/MSS/A431).
Let r2 be the proportion of observations in the second

group. Then, we can write n2 = nr2 and n1 = n(1j r2) (so the
sample size is n) and the variance of Ȳ2jȲ1 is

Var Ȳ2j Ȳ1

� �
¼ R2 1

n2
þ 1

n1

� �
¼ R2 1

nr2
þ 1

nð1jr2Þ

� �
¼ R2

nr2ð1jr2Þ
:

The standard frequentist sample size calculation for this
problem (e.g., Snedecor and Cochran (21)) is derived by
working out the value of n that we require to carry out a two-
sided hypothesis test with the probability of a Type I error
(that we reject the null hypothesis when it is correct) equal to
the level > and the probability of a Type II error (that we
accept the null hypothesis when it is false) equal to A (so the
power is 1j A) when the true difference between the means is
K1j K2 = C. The value of C is usually taken to be the smallest
meaningful difference between K2 and K1. The smallest
meaningful difference is the minimum size of the difference
that is scientifically or clinically important; this is the reason
we have used C as before and not introduced a new symbol.
Standard calculations lead to the equation

n ¼ R2½Gj1
nj2ð1j >=2Þ þ Gj1

nj2ð1j AÞ�2

r2ð1jr2ÞC2
: ½4�

(For a one-tailed test, replace Gj1
nj2ð1j>=2Þ byGj1

nj2ð1j>Þ.)
Because n appears on both sides of this equation, we need to
solve it by successive approximation. That is, we start with an
initial value n0, substitute it into the right hand side of the
equation to compute n, replace n0 by n, and repeat the process
a few times or until it converges, meaning that the value of n
stops changing between iterations.

In fact, the spreadsheet xSampleSize.xls implements a
different calculation for ‘‘sample size for statistical signifi-
cance.’’ It starts with n0 = 22 and makes three iterations to
calculate n in I103 from

n ¼ 2R2½Gj1
nj2ð1j >=2Þ þ Gj1

nj2ð1j AÞ�2

r2ð1j r2ÞC2
: ½5�

The factor 2 in the numerator is not needed because it is

incorporated into r2(1 j r2); its effect is to make the sam-

ple size twice as large as it should be (as calculated from

equation 4).
Batterham and Hopkins (5) state that ‘‘Studies designed

for magnitude-based inferences will need a new approach to
sample size estimation based on acceptable uncertainty,’’ but
they do not derive a new approach. As before, we treat what
is implemented in the spreadsheet xSampleSize.xls as de-
finitive. The calculation starts with n0 = 12 and makes four
iterations to calculate n in I34 from

n ¼ 2R2½Gj1
nj2ð1j GhÞ þ Gj1

nj2ð1j GbÞ�
2

r2ð1j r2Þð2CÞ2
: ½6�

No derivation for this formula is given, but its similarity
to equation 5 is striking, and we think that it has been
adapted from equation 5. This belief is strengthened by the

FIGURE 3—Ternary plot showing the distribution of 3000 realizations
of the triple pb, ph, and 1 j pb j ph when C = 4.418. The data were
generated in the same way as the data used in Figure 2.
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identification of Gh and Gb with acceptable Type I and Type II
‘‘clinical error rates’’ (11). A ‘‘Type I clinical error’’ is using
an effect that is harmful, and a ‘‘Type II clinical error’’ is not
using an effect that is beneficial. This identification is incor-
rect, and we cannot equate Type I and Type II errors to
‘‘clinical errors.’’ As we have seen, Gh and Gb are the levels of
two different tests and not the level and power of a single test.
They affect the performance of the test but are not simply
summaries of the performance of the test (because this also
depends on C). We cannot justify taking a formula, making up
the quantities it is applied to, and pretending that the result
means something.

‘‘Magnitude-based inference’’ claims to require smaller
sample sizes. For example, applying equation 5 with the
default values in xSampleSize.xls (namely, the ‘‘proportion
in the second group’’ r2 = 1/2 the ‘‘smallest change’’ C =
0.05, Type I error > = 0.05, Type II error A = 0.2, and
‘‘within-subject SD (typical error)’’ R2 = 1), the sample size
is n/2 = 127 in each group (from equation 4, it should ac-
tually be 64). Applying equation 6 with the same settings but
with ‘‘Type 1 clinical errors,’’ Gh = 0.005, and ‘‘Type II
clinical errors,’’ Gb = 0.25, instead of the Type I and Type II
errors, the sample size is n/2 = 44 in each group. This rep-
resents a reduction in the required sample size of 44/127 =
0.35, which is substantial.

Ignoring the critical issue of whether equation 6 is a valid
formula in ‘‘magnitude-based inference,’’ we compare the
numerical values equation 6 produces with those obtained
from equation 5 and show that the reduction in sample size
occurs simply because it is looking for larger effects rather
than obtaining a true advantage. The comparison entails
comparing both the numerators and denominators in equa-
tions 5 and 6, noting that the main important difference oc-
curs in the denominators. The only differences in the
numerators on the right hand sides of equations 5 and 6 are
in the replacement of >/2 = 0.025 by Gh = 0.005 and A = 0.2
by Gb = 0.25. The effect is to increase the numerical value
of the numerator; using the default values, the increase in the
numerator of equation 6 over the numerator of equation 5 is
by the ratio 10.581/7.857 = 1.34 , 4/3. The only difference
in the denominators on the right hand sides of equations 5
and 6 is in the replacement of C by 2C. This means that
equation 6 is effectively dividing the numerator in equation 6
by 4 times the denominator used in equation 5. Combining
the increases in the numerator and denominator of equation 6,
we see that the overall change in the computed sample size
is by a factor 4/3 � 4 = 1/3, explaining the claimed reduc-
tion of 30% in the sample size (for example, Batterham and
Hopkins (5) state that ‘‘Sample sizes are approximately one-
third of those based on hypothesis testing, for what seems
to be reasonably accepted uncertainty’’). The sample size
for ‘‘magnitude-based inference’’ is 1/3 of the size of that
for equation 5 simply because, for no stated reason, the con-
ventional frequentist sample size has been divided by three.
That is, it is smaller because it is defined to be smaller.
If we are meant to treat 2C in equation 6 as the minimum

important difference, then this has been made twice as large
as that in equation 5. This means that, in its own terms,
‘‘magnitude-based inference’’ is solving easier (rather than
the popularly perceived more difficult) problems. It requires
smaller sampler sizes not because it is less conservative as
hoped but because it is effectively looking for larger effects
and, hence, in sample size calculations, is less ambitious
about what it is trying to achieve.

Hopkins (11) also discusses the use of a confidence in-
terval method (that he calls method II to distinguish it from
method I based on equation 6) to choose the sample size,
although this is not implemented in the spreadsheet. The
method is to choose the sample size to make the length of
the 90% confidence interval less than the length of the trivial
region 2C. For the equal variance case with n1 = n2 = n/2,
this leads to the equation n ¼ 4R2Gj1

nj2ð1j>=2Þ2=C2, which
again has to be solved by successive approximation. Hopkins
(11) claims that with > = 0.1, this gives almost identical
results to those of equation 6. For the suggested default
values, the numerator is smaller than that in equation 6 by
roughly a factor of 2 (1/2)2, so the sample size from method II
is roughly half the sample size from the method described in
the previous paragraphs (method I). However, because the
extra 2 in the numerator of equation 6 should not be there
(to the extent that one can say what should and should not be
included in a formula adopted without derivation), the sample
size from method II should actually be the same as that from
method I. Looked at on its own merits, method II is a standard
calculation with a proper frequentist interpretation whereas
method I is not.

DISCUSSION

The distinction between nonclinical or ‘‘mechanistic in-
ference’’ and ‘‘clinical inference’’ is emphasized in ‘‘magnitude-
based inference’’ but not clearly explained, and no specific
examples or context for using the one or the other are given.
Generally, the clinical and nonclinical descriptions are used
informally to distinguish between studies done on people and
studies (including animal studies) that are not. This is not what
is meant by ‘‘mechanistic’’ and ‘‘clinical’’ in ‘‘magnitude-
based inference’’ because both can be applied to studies on
people. As far as we can tell, ‘‘mechanistic inference’’ is ap-
plied to studies carried out without a specific context or end
use in mind so that no distinction is made between positive
and negative effects and these are treated as equally important.
‘‘Clinical inference’’ is used in studies wherein there is enough
context or a sufficiently clear end use to identify an effect in
one direction as beneficial and an effect in the other as harmful
and therefore to allow these two directions to be treated
asymmetrically. In a sense, ‘‘mechanistic inference’’ is like a
two-sided hypothesis test that simply looks for an effect and
‘‘clinical inference’’ is like two one-sided hypothesis tests at
different levels looking for an effect in one direction and the
absence of an effect in the other. In fact, as we have seen, in
‘‘magnitude-based inference,’’ both problems are treated like
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two one-sided hypothesis tests and this is one reason weak
(classical) evidence appears as a stronger (‘‘magnitude-based
inference’’) evidence.

A key criticism explicitly mentioned as motivating
‘‘magnitude-based inference’’ is that ‘‘the null hypothesis of
no relation or no difference is always false—there are no
truly zero effects in nature’’ (4,5). This is not strictly true
and, as pointed out by Barker and Schofield (3), the null
hypothesis of no effect can be a useful idealization. How-
ever, we believe that the most important overriding moti-
vation is the perception that significance testing with a 5%
threshold is too conservative, particularly when looking for
small effects in small samples.

Many statisticians choose to report confidence intervals
rather than P values not because the 5% threshold for
P values is too conservative but because confidence in-
tervals present more information more directly about effects
of interest. Confidence intervals and tests are linked in the
sense that we can carry out a test either by computing a
P value or a confidence interval; whether a confidence in-
terval set at the usual 95% level contains zero or not tells us
whether the P value is below or above 5%, effectively en-
abling us to carry out the same test. The level (like the P value
threshold) can be varied, but journals and readers (reason-
ably) tend to prefer to see the standard values being used.

Although confidence intervals are used as an explicit
starting point for ‘‘magnitude-based inference,’’ Batterham
and Hopkins (5) argued that confidence intervals are them-
selves flawed and used this to motivate the development of
the additional probabilities pb, ph, and 1 j pb j ph:

‘‘We then show that confidence limits also fail and then
outline our own approach and other approaches to mak-
ing inferences based on meaningful magnitudes.’’

Batterham and Hopkins (4,5) believe that they fail because
the correct interpretation of confidence intervals is too com-
plicated. The interpretation is complicated, but this cannot be
avoided in a frequentist analysis. Confidence intervals may or
may not be exactly what we want from an analysis, but in
frequentist inference, they represent what we can legitimately
obtain and no amount of wishful thinking can get around this.
Other answers suggested by Batterham and Hopkins (4) re-
volve around the choice of a standard 95% level:

‘‘We also believe that the 95% level is too conservative
for the confidence interval; the 90% level is a better de-
fault, because the chances that the true value lies below
the lower limit or above the upper limit are both 5%,
which we interpret as very unlikely (Hopkins, 2002). A
90% level also makes it more difficult for readers to re-
interpret a study in terms of statistical significance.’’

That is, like tests, confidence intervals are also seen as too
conservative. However, the level of a confidence interval
seems to be perceived as somewhat easier to change than the

level of a test. A further concern made explicit in the final
sentence is that confidence intervals are too closely related to
tests; the fact that confidence intervals can be used to carry out
tests is seen as a weakness, regardless of the fact that confi-
dence intervals contain other useful information. Lowering the
level of the confidence interval to 90% breaks the link to the
usual 5% threshold used in testing and makes the analysis
less conservative (i.e., apparently strengthens weak effects) by
effectively increasing the P value threshold for significance
from 0.05 to 0.10.

In the way ‘‘magnitude-based inference’’ implements
‘‘mechanistic inference,’’ weak evidence for an effect is
strengthened by replacing the P value by half the P value
(ph with C = 0) and then decreasing the P value further by
changing the null hypothesis from K2 j K1 = 0 to K2 j K1 =
jC, with C 9 0. The standard threshold Gb = Gh could also be
increased to further strengthen the evidence, but this is a
more obviously doubtful change for less gain and the default
value does not do this. Partly, it is unnecessary to change the
threshold because the standard threshold is large enough
after the other changes (which are less easy to track) and it is
comforting that the thresholds have not apparently changed.
‘‘Mechanistic inference’’ in ‘‘magnitude-based inference’’
does not abandon the use of P values but promotes a com-
plicated and confusing way of bringing about changes that
have the same effect as simply increasing the usual P value
threshold. If changing a threshold is not acceptable, then
redefining the P value to achieve the same effect should not
be either. Although we can sympathize with the frustration
of the researcher finding that the evidence they have for an
effect is weaker than they would like, we have to recognize
the limitations of the data and be careful about trying to
strengthen weak evidence just because it suits us to do so.

‘‘Clinical inference’’ in ‘‘magnitude-based inference’’ can
be seen as a response to another motivating issue for
‘‘magnitude-based inference,’’ namely, the question of how
to use P values for ‘‘clinical inference.’’ Batterham and
Hopkins (5) referred to the approach of Guyatt et al. (10)
who introduced a threshold for a clinically significant effect
and suggested that a trial is ‘‘positive and definite’’ if the
lower boundary of the confidence interval is above the
threshold and ‘‘positive’’ but needing studies with larger
samples if the lower boundary is somewhat below the
threshold. This is more stringent than ordinary statistical
significance (unless the threshold is zero), so it is not sur-
prising that Batterham and Hopkins (5) wrote, ‘‘This posi-
tion is understandable for expensive treatments in health
care settings, but in general we believe it is too conserva-
tive.’’ The other approaches to clinical inference in the lit-
erature (see Man-Son-Hing et al. (15) and Altman et al. (1)
for reviews) also tend to require more than simple statistical
significance so would likely also be deemed too conserva-
tive for ‘‘magnitude-based inference.’’

‘‘Magnitude-based inference’’ achieves a less conservative
‘‘clinical inference’’ by making the same steps as in ‘‘mech-
anistic inference’’ and, in addition, changing the thresholds.
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The increase in Gb looks spectacular, but this is misleading
because Gb is not actually important when the P value is in
the range 0.05–0.15 and, although the decrease in Gh works
against the other changes (in the P value and C), the gains
from the other two changes have larger effects and outweigh
the decrease in Gh. The key question is, if other researchers
feel that clinical conclusions should be more conservative than
mere statistical significance, should we use a method for clin-
ical inference that is explicitly designed to be less conservative?

Throughout this article, we have proceeded as if the nor-
mal model holds exactly and the Behrens–Fisher problem of
comparing two sample means is the appropriate problem to
treat. This is standard in theoretical discussion of statistical
methods and therefore also appropriate for our analysis of
‘‘magnitude-based inference,’’ but it ignores other important
statistical issues that arise in practice when we choose an
analysis. These include the following: 1) using the structure
of the data properly (e.g., in many sport science studies,
including in the example data included in the spreadsheet,
repeated observations are taken on each subject and there are
often more than two groups of subjects so a more flexible
analysis than that offered in xParallelGroupsTrial.xls is
appropriate), 2) including covariates in a more flexible
analysis (xParallelGroupsTrial.xls allows only a single co-
variate), 3) choosing the right distribution (binary and count
data are best analyzed using more appropriate models), 4)
choosing the scale for analysis (data transformation is often
but not always needed, and it is largely an empirical question
when it is), and 5) choosing an appropriate effect size to
present results (when they are available, Cohen standardized
effect sizes can be useful for comparing results across studies
that have measured different variables or have used different
scales of measurement, but, in general, direct unstandardized
effect sizes are more meaningful in practice and are easier to
interpret (2,24)). These issues are common to all statistical
analysis, but the limitations of the spreadsheets may make it
easier to overlook them in ‘‘magnitude-based inference.’’

CONCLUSIONS

We have given a precise description of ‘‘magnitude-based
inference’’ for the problem of comparing two means and
discussed its interpretation in detail. ‘‘Magnitude-based in-
ference’’ begins with the computation of a confidence in-
terval (that has the usual frequentist interpretation in terms
of repeated samples). We show that the calculations can be
interpreted either as P values for particular tests or as ap-
proximate Bayesian calculations, which lead to a type of
test. In the former case, this means that 1) the ‘‘magnitude-
based inference’’ calculations are not derived directly from
the confidence interval but from P values for particular tests
and 2) ‘‘magnitude-based inference’’ is less conservative
than standard inference because it changes the null hypoth-
esis and uses one-sided instead of two-sided P values.
The inflated level of the test means that it should not be
used. Finally, the sample size calculations should not be
used. Rather than use ‘‘magnitude-based inference,’’ a
better solution is to be realistic about the limitations of the
data and use either confidence intervals or a fully Bayesian
analysis.
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