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Abstract 

Telerobotics refers to a branch of technology that deals with controlling a robot from a distance. 

It is commonly used to access difficult environments, reduce operating costs, and to improve 

comfort and safety. However, difficulties have emerged in telerobotics development. Effective 

telerobotics requires maximising operator performance and previous research has identified 

issues which reduce operator performance, such as operator attention being divided across the 

numerous custom built interfaces and continuous operator involvement in a high workload 

situation potentially causing exhaustion and subsequent operator error. 

This thesis evaluates mixed reality and human supervisory control concepts in a gaming 

engine environment for telerobotics. This concept is proposed in order to improve the 

effectiveness of current technology in telerobotic interfaces. Four experiments are reported in 

this thesis which covers virtual gaming environments, mixed reality interfaces, and human 

supervisory control and aims to advance telerobotics technology. 

This thesis argues that gaming environments are useful for building telerobotic interfaces 

and examines the properties required for telerobotics. A useful feature provided by gaming 

environments is that of overlying video on virtual objects to support mixed reality interfaces. 

Experiments in this thesis show that mixed reality interfaces provide useful information without 

distracting the operator from the task. 

This thesis introduces two response models based on the planning process of human 

supervisory control: Adaptation and Queue response models. The experimental results show 

superior user performance under these two response models compared to direct/manual control. 

In the final experiment a large number of novice users, with a diversity of backgrounds, used a 

robot arm to push blocks into a hole by using these two response models. 

Further analyses on evaluating the user performance on the interfaces with two response 

models were found to be well fitted by a Weibull distribution. Operators preferred the interface 

with the Queue response model over the interface with the Adaptation response model, and 

human supervisory control over direct/manual control. 

It is expected that the increased sophistication of control commands in a production 

system will usually be greater than those that were tested in this thesis, where limited time was 

available for automation development. Where that is the case the increases in human 
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productivity using human supervisory control found in this experiment can be expected to be 

greater.  

The research conducted here has shown that mixed reality in gaming environments, when 

combined with human supervisory control, offers a good route for overcoming limitations in 

current telerobotics technology. Practical applications would benefit by the application of these 

methods, making it possible for the operator to have the necessary information available in a 

convenient and non-distracting form, considerably improving productivity.  
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Chapter 1 

Introduction 

1.1 Telerobotics 

1.1.1 What is Telerobotics? 

The term telerobotics consists of two words ―tele‖ and ―robotics‖, and refers to a branch of 

technology that utilises a computer system for control, sensor feedback and the processing of 

information from a robot at a distance. There are several definitions of telerobotics used by 

different researchers [1-3]. In general, telerobotics is defined as an interaction between the 

human operator and the remote machine. Figure 1.1 shows the general architecture of 

telerobotics.  

 

Figure 1.1: General telerobotics architecture. In the local area, the operator generates 

commands, performs manipulation and receives feedback from the system interface; 

while the remote machine performs the command, sends feedback and has some level of 

autonomy. 

Using internet connection, telerobotics is widely used in many areas, such as mining, 

space and medical areas [1, 4, 5]. The technology has been applied in various applications such 

as from navigation systems [6-9], underwater telerobot [10, 11] and tele-surgery [12].   

The advantages of using telerobotics technology are being able to allow the operator to 

interact with an uncertain or dangerous environment; to reduce operating costs; and to increase 

human comfort in operating a machine. Moreover, this technology allows the operator to 

perform a range of undefined tasks from a remote location [13]. However, telerobotics systems 

can face several problems. These problems can significantly degrade the effectiveness of control 

and could lead to safety issues. These problems are: Firstly, human operator cognitive fatigue 

[14], which is caused by telerobots that force the operator to be focused on the screen at all 

times. Secondly, in real-time control interactions, latency affects the efficacy of 
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telemanipulation under manual control [15, 16]. In direct/manual control, the operator 

continually controls the robot movement. Delay in the response from the telerobot can cause the 

operator to overcorrect for errors that are different from the actual robot errors. This causes the 

robot to move in ways unexpected by the operator and the operator to provide further 

corrections, which again do not reflect the errors at the robot. Errors tend to grow and this is 

often referred to as instability. With some forms of feedback e.g. force feedback it is impossible 

for the operator to avoid instability when the delay is too great. With other forms of feedback, 

and where the situation at the robot is not varying much, an operator can sometimes avoid 

instability by making a series of movements, then stopping and waiting longer than the delay 

period to observe the result before repeating the process. Thirdly, incomplete information from 

the remote location. According to a number of researchers [3, 6, 10, 13], providing complete 

information about the remote location into a single interface is a major challenge in telerobotic 

scenarios.  For example, a limited range of vision from a remote video camera cannot replace 

operator eyes that are able to explore the remote environment directly and which can be moved 

to a different view point if required. This missing information can lead to degradation in 

operator performance. The fourth issue is having unfriendly user interfaces. Interfaces 

sometimes can be difficult to use which can be caused by using too many graphical components 

(e.g., buttons, sliders or graphics) to control the telerobot or non-intuitive graphical 

representations and controls [28, 33]. This can make the operation unnecessarily complicated.  

Currently, the Line-of-sight remote control is a form of telerobotics technology, which is 

widely used in mining and other industries [6]. This technology has been proven to be effective 

in protecting the operator from hazards, for example the underground Load-Haul-Dump (LHD) 

vehicle operating in a location where the roof is unsupported and there is occasioned rock falls. 

Nonetheless, the operator still needs direct vision to control the machine, which may 

compromise the safety of the operator. According to Fong and Thrope [1], there are three 

characteristics which distinguish the term telerobotics from the remote control (Line-of-sight 

remote control). As the impact of the different location between operator and remote machine, 

compare to remote control, telerobotics requires: Firstly, a more reliable navigation system; 

Secondly, more efficient motion commands; and Thirdly, better remote sensors to provide the 

information that is needed by the operator. 

1.1.2 Type of Telerobotics 

According to Fong et al. [17], telerobotics can be categorised into vehicle telerobotics and 

telemanipulation. The general difference between these two categories relates to the function of 

the remote machine. Vehicle telerobotics can explore areas that are difficult for humans to 
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reach; for telemanipulation, however, the remote machine typically performs its tasks in one 

static position. Many telerobotics systems are built using a combination of these two categories, 

depending on their purpose and task.  

A vehicle telerobotic is widely used to explore an area or space when it is hard or 

dangerous for a human to reach yet still requires human intelligence [18]. Research conducted 

by Monferer and Bonyuet [11] is one of many examples of vehicle telerobotics. Their research 

investigated cooperative control for underwater telerobotics also known as ‘GARBI’ 

(underwater robot). Utilising a virtual reality (VR) interface, Monferer and Bonyuet tested the 

possibility of sharing information and collaborating in the underwater environment with two 

users. Lin and Kuo [10] conducted a similar experiment which investigated pilot training for 

underwater telerobotics using a VR environment. 

For telemanipulation applications, research as reported by Duff et al [5] shows the 

telemanipulation of a large Rockbreaker robot (Figure 1.2) in iron ore mining. They built a 

telerobotics system for a large Rockbreaker that was located over 1,000 km from the operator.  

 

Figure 1.2: Rockbreaker robot arm from [5] 
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Figure 1.3: TUI (Telerobotics User Interfaces) for telerobotics Rockbreaker from [5] 

In their research, Duff‘et al‘s telerobotics user interface (Figure 1.3) consisted of three 

live videos and a 3D model of the robot arm Rockbreaker in a single display. The three live 

videos showed different viewpoints from remote cameras. Two cameras showed information on 

the bin and the arm‘s position from different angles. The third camera provided information on 

the view from the front of the bin, where the truck loads the rocks into the bin.  

As indicated by Duff et al‘s research [5], when the operator is collocated with the 

machine, the operator can concentrate on the task and simultaneously manage other duties. On 

the contrary, when the operator was in a remote location, their attention was divided across 

monitoring numerous custom built interfaces, hence potentially reducing operator performance. 

Hainsworth [6] identified a related problem. He argued that implementing direct/manual 

operator control using multiple screens for telerobotic interfaces has ergonomic disadvantages 

(see Figure 1.4), whereby the operator is forced to continuously focus on the screen in order to 

identify the position of the desired control and the degree of control input being applied. When 

compounded by a high workload, this becomes exhausting and eventually leads to operator 

error. 
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Figure 1.4: Mining telerobotics user interface from [6]  

1.1.3 Human Factor in Telerobotics  

In building a good telerobotics system, it is essential to identify the operator‘s requirements as 

part of a closed loop telerobotics model [19]. Given the range of applicability of telerobotics 

technology, the operator's needs and the interface characteristics can be vary for different 

scenarios. 

Telerobot interfaces have two important functions, which are to communicate to the 

operator the status of executed tasks in the remote location and to accept commands from the 

operator in order to properly control the telerobot [19]. In order to reduce the ergonomic 

disadvantages, which were identified from research conducted by Duff et al. [5] and Hainsworth 

[6], a challenge in building telerobotic interfaces is to reduce ergonomic disadvantages by 

designing multi-modal or different human sense system interfaces. The challenge can be 

addressed by considering human perception capabilities to obtain improved interface interaction. 

For example: (1) by displaying information to represent the remote environment in a natural 

manner (telepresence), which implies a feeling of presence at the remote site and; (2) by 

providing  multi modal interfaces such as haptic input devices . ―A good degree of telepresence 

guarantees the feasibility of the required manipulation task‖[19]. 

Telerobotic scenarios, such as task manipulation in mining operations, require operator to 

be aware of the situation at a remote location [5]. A limited multi-modal system can display an 

incorrect target object (e.g., rocks), resulting in delay of the manipulation process, which can 

endanger the telerobot and lead to interruption of the entire production process. As with 
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telerobotics used in space [21] or forestry operations [22], inaccurate or missing information 

about the remote environment can put the operation at risk; it can trigger a situation that 

damages the environment, including the telerobot. Besides sufficient information of the remote 

environment, the operator needs feedback on the congruence between the commands given and 

the telerobot's execution of those commands. Aracil [19] describes a situation where incorrect 

visual adjustments between commands and the observed motion of the telerobot existed (shown 

in Fig. 1.5). In this instance, the incorrect adjustments resulted from kinematic transformation 

and the relative movements between object and camera resulting in incoherence in the visual 

reference, giving the operator a false perception of the actual remote conditions. Using 

techniques such as information redundancy, and providing stimulus fidelity of the information is 

essential for providing the operator with an accurate perception of the remote environment [19]. 

 

Figure 1.5: An example of incorrect visual adjustment due to kinematic transformation 

(left) or relative movements (right) from [19] 

The role of the human operator is an important consideration in developing telerobotics 

technology Sheridan‘s [2] and Verna‘s [23] closed loop models for the telerobotics system 

demonstrate that the human operator is an integral part of telerobotics systems - regardless of 

the specific telerobotic scenario, the human operator affects the system effectiveness. Hence, 

any study of the effectiveness of such systems requires experiments that involve a human 

operator. 

Steinfeld et al. [24] identified a common metrics of human-robot interaction for 

telerobotic applications. Even though it is not feasible to identify a metric to accommodate all 

human-robot applications, common methods of subjective rating scales (e.g., the Likert scale) 

can be used to identify telerobot performance based on operator perspective. 
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1.1.4 Technology of Telerobotics  

Direct/manual control is the most common type of control method for telerobotics [1, 6 , 39, 60]. 

In this control model, the operator controls a remote machine directly using a hand-controller, 

specifies the speed and direction of movement, and monitors and adjusts the controls 

continually. A number of studies have attempted to improve this direct/manual model control 

through adding multiple modalities, including haptic [25, 26] and other input devices [27]. In a 

situation where communications are substantially delayed, relative to the speed of movement, 

the resulting instability requires that the system be able to run independently—requiring little 

input from the human operator. HSC [2] addresses this issue, increasing productivity and 

making it easier for the operator to perform tasks. HSC allows the operator to specify tasks for 

an intelligent system without continuous operator involvement. This also reduces operator 

workload.  

In terms of further development of telerobotics, previous research has been undertaken 

related to gaming environments with telerobotics systems. Wang et al [28] used a virtual 

tournament computer game as a USAR (Urban Search and Rescue) facility simulation for 

simple telerobotics. They built a simulated telerobot in a gaming environment and controlled it 

from their custom built interface as a telerobotics scenario (see Figure 1.6). Furthermore, Ponto 

et al [29] introduced a mixed reality (MR) environment called ‗Virtual Bounds’ that utilised a 

combination of physical and computer-generated objects for the simulation of a remote control 

environment (see Figure 1.7). Based on their case study, they mentioned that the pervasive 

nature of computer games and interface technology are well suited as a MR test bed, and the 

exposure (previous experience) of users allow for a natural and intuitive transition of skills in 

their application in telerobotics. Other MR projects have used remote control vehicles for 

gaming purposes [30, 31]. These systems have a control structure similar to the ‘Virtual 

Bounds‘ application.  
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Figure 1.6: Architecture of USAR system application which was utilising a gaming 

engine as simulation telerobot [28] 

 

 

Figure 1.7: Mixed reality test bed environment in ‘Virtual Bounds’ application interface 

[29]  
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A review of existing literature indicates that advances in the gaming environment may 

allow it to be utilised as a telerobotic interface. Moreover, virtual gaming provides a 

sophisticated setting to build and define a 3D model. It can also be used to communicate 

information within the virtual world or between virtual and real world applications (e.g. client-

server communication). Virtual gaming is usually designed to be easy to operate (user friendly). 

By utilising the multiplayer functions, a virtual gaming environment, which is played online 

through the internet, can possibly be utilised for collaborative control of telerobotics systems. 

However, there are some differences between a telerobotic interface and a virtual gaming 

environment. Firstly, virtual gaming has task scenarios without any consequences if the user 

fails to accomplish the task. While in telerobotics, a failure in task accomplishment would not 

be acceptable as it has real-life consequences. Secondly, in providing incomplete simulated 

information, gaming visualisations are already video simulations, and telerobotic interfaces can 

be equipped with video. 

Regardless of the advances in virtual gaming environments, it is difficult to provide real-

time complete information of remote situations. This occurs because of inadequate sensing that 

leads to inaccurate and incomplete models of the remote environment sensor cannot provide the 

information due to frequently changing conditions in many mining. A simulation is easier 

because the robot situation is precisely understood by the operator interface. In a real system 

there is only limited knowledge of the external system state.  

To overcome these shortcomings, I propose building telerobotic interfaces using gaming 

environments with a concept of mixed-reality (MR) environment and the principle of human-

supervisory-control (HSC). Both MR and HSC have been utilised in many applications [32]. 

However, applying these two concepts into a gaming environment for the telerobotics scenario 

is not common, since gaming and telerobotic interface are seen as different domains. This thesis 

explores the features of the gaming environments, which are useful in applying MR and HSC, to 

improve the system and overcome the existing limitations from the current telerobotics scenario. 

Further exploration on MR and HSC concepts in gaming environments are discussed through 

the conducted experiments in the following chapters.  

1.2 Research Topic 

The thesis evaluates gaming environments for mixed reality (MR) interface and human 

supervisory control (HSC) in telerobotics.  

The research project goals are to improve telerobotics interfaces for manipulation 

scenarios, and apply an alternative remote interface with current immersive technologies, 

normally used for gaming.  
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The research project aims to develop an application prototype for telerobotics in remote 

mining equipment scenarios by utilising the features of gaming environments. This project 

investigates MR interfaces and the use of HSC concepts for the control model, and conducts 

usability testing to determine the effectiveness of the scenario based on operator satisfaction.  

This research is associated with the ―Future Mining‖ theme under the CSIRO Minerals 

Down Under (MDU) Flagship, with supervision by Dr. Ken Taylor (ICT Centre, CSIRO), Prof. 

Tom Gedeon (Research School of Computer Science, ANU) and Assoc. Prof. Henry Gardner 

(Head School of Computer Science, ANU). 

1.3 Research Outcomes 

The major outcome of this research is to improve user interfaces for telerobotics designs, 

particularly in telemanipulation for mining scenarios. The key components of the potential 

outcomes are listed below: 

1. Enhanced knowledge of the features of gaming environments for telerobotics user 

interfaces, including assessing its feasibility and evaluating its performance. 

2. Prototype telerobotic system interface: 

 Applying telerobotics user interfaces that integrate real world sensor information 

from remote locations (e.g. cameras) into a model in a virtual environment (which 

can be called a MR environment) providing sophisticated information on a single 

screen for the operator.  

 Applying the principle of HSC in the design of telerobotic user interfaces improves 

the autonomy of the remote machine and allows it to adapt to dynamic 

environments. This method also enables the operator to monitor and interrupt the 

process when needed. 

1.4 Contributions  

Contributions from this research are: 

1. Exploring a number of virtual gaming environments that may be used as telerobotic 

interfaces, especially for telemanipulation in mining. This includes: 

 Identification of virtual reality interface (gaming environments) components 

and functionalities that are necessary and useful for telerobotics and those that 

are not. 
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 Evaluation of user satisfactions and preferences regarding the ideal source of 

information and the required feature set from the gaming engine for telerobotic 

interfaces. 

2. Evaluating user performance in using gaming environment with the principle of human 

supervisory control (HSC) and mixed reality (MR) for telerobotic interfaces. 

3. Applying HSC and MR concepts to telerobotic interfaces in a gaming environment 

addresses a number of issues raised by Duff et al [5] and Hainsworth [6], including:  

 Regardless of the different types of input devices, determining whether the use 

of multiple information displays increases operator cognitive fatigue, which 

affects their attention to the interface and reduces performance. 

 Improving effectiveness and user friendliness of the telerobotic interface. 

 Reducing safety concerns and implicitly decreasing the effect of latency. 

The next section presents the research design as guidance for my research direction and 

limitation. 

1.5 Research Design 

In this research, investigating gaming environments for MR interface and HSC concepts for 

telerobotic interfaces is proposed.  

Gaming environments have been utilised by a number of previous studies such as: (1) 

Richer and Drury [33] which successful classify a video gaming based framework for human 

machine interaction. They grouped video gaming users‘ interaction using this framework which 

could potentially be used for human machine interaction design. (2) Bourke [34] who 

mentioned a gaming technology is advanced as it provides a sophisticated environment for 

creating 3D models or programming, and (3) Chung[25] and Schou [35, 36] that demonstrated 

virtual gaming environments to provide an immersive environment. Based on these previous 

studies, I proposed to utilise a gaming environment for telerobotic interfaces. 

A number of virtual gaming environments, such as Unity3D and Second Life (see Figure 

1.8) can be used as a basic environment for building telerobotic interfaces. For future 

development, the multiplayer function provided by virtual gaming environments can be utilised 

for collaborative telerobotics control. Collaborative control can be defined as the collaboration 

of humans and semi-autonomous systems to perform a task and achieve a goal. This is 

described in research conducted by Fong on multi-robot remote driving [37, 38] and that 

conducted by Monferrer [11] on cooperation among operators in controlling telerobots. 
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Figure 1.8: Second Life viewer, Unity3D editor, and 3D gaming editor 

As part of the research design, in the following sub-sections, I present a methodology and 

research framework to explain the direction and limitations of my research area. In order to 

achieve the objectives of this research, I also describe a number of model analyses and research 

stages, including time frames for overall research experiments.  

1.5.1 Methodology 

The research aims to identify the generic properties common to gaming environments that are 

advantageous for telerobotics experiments and methods for effectively incorporating MR and 

HSC into gaming environments. This is investigated through a series of experiments. 

The series of experiments assessed the concept of MR interface, and the principle of 

HSC, for low level telemanipulation based on a mining scenario. At the initial stage of this 

research, the gaming environments are explored as the basic platform to build a telerobotics user 

interface, followed by application of the proposed telerobotic model.  

1.5.2 Research Framework, Variable and Instrument 

A framework was designed to describe the area of this research. The research variables were 

categorised into two groups (discussed in more detail in the research variable sub-section), 

followed by a general description of all the research instruments used in this research.   
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1.5.2.1 Research Framework 

The research commenced with the exploration of the gaming environment. Then, it was 

followed by the utilisation and investigation of the MR concept and the principle of HSC to 

improve human machine interfaces in a telerobotics mining scenario. 

The main environment in this research is a gaming environment modified for telerobotic 

interfaces. The user was provided with information on the remote location through this 

environment. Communication between the user and the remote machine was tested and 

recorded. Performance variables and the times needed for accomplishing the experimental tasks 

were recorded, with user preferences and feedback captured in a questionnaire.   

I began the research with a review of existing literature and those applications that 

utilised MR or HSC in the telerobotics area. A number of gaming environments were 

investigated to assess the feasibility of using their technologies to communicate with a number 

of remote machines/servers. Then, four experiments were conducted to evaluate the user 

performance on the proposed telerobotic interfaces. These four experiments are further 

discussed in the following paragraphs.   

The first experiment primarily covered an exploration of the number of gaming 

environments. Features of gaming environments were also evaluated to encompass more detail 

about the effectiveness of using MR concepts for telerobotic interfaces. Since all of the 

information was presented on a single display, it suggested that the operators might have more 

or less focused into a telerobotic interface. Hence, there is an attempt to evaluate operator 

performance based on their level of attention in using mixed information in a single display 

interface. 

Based on the first experimental result, it was possible to improve the MR environment by 

applying additional sensing to detect the block position and provide an additional 3D model of 

the block. Hence, the second experiment covered an evaluation of user performance in gaming 

environments with this additional sensing. Here, the gaming environment was also tested with 

additional input devices, gamepad and eye-tracking, for virtual camera control.  

The third experiment encompassed an evaluation of gaming environments for human 

supervisory control (HSC). In this experiment, a number of features from the gaming 

environment were utilised. These features included the concept of the first person viewpoint for 

camera control, a path finding algorithm, and additional virtual information such as planning 

and feedback. These features were tested using two response models, the Queue and the 

Adaptation response models, as a method of dealing with multiple commands in HSC. A 

gaming feature, such as predictive display for the planning process, was also used in this 
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experiment. Hence, a sub experiment of direct/manual control was also performed to compare 

operator performance. 

In the fourth experiment, I tested the gaming environment using random participants from 

a variety of backgrounds. This gaming environment was located in an exhibition for period of 

three months. This gaming environment successfully recorded the variables ‗commands‘ and 

‗usage time‘ of the participants. This experiment described general operator behaviour and 

satisfaction of the developed telerobotic system interfaces. I presented a distribution analysis to 

describe the trend of user performance in this experiment. The design of the research framework 

can be seen in Figure 1.9, and a description of each stage of the research can be seen in Figure 

1.10. 



Chapter 1    Introduction 15 

 

 

 

Telerobotics System Interface

Literature and 

Problems Review 

Mixed Reality in Gaming 

Environment

Human Supervisory 

Control in Gaming 

Environment

Gaming 

Features

Telerobot

Interfaces Model

Situated Virtual Model

Augmented Reality/

Virtuality

Operator Attention

Type Control

(Clicking vs Dragging)

Compare Study:

Direct/Manual 

Control

Response Model

(Queue & Adaptation)

Predictive Display / 

Feedback Information

Similarities and 

Differences 

between 

Telerobotics 

and 

Game 

Environment

Research Statement: Evaluate the effectiveness of mixed reality interfaces and human 

supervisory control concept for telerobotics based on gaming environment 

Information Provision

Telerobot

Control Model

Prototype of Telerobotics System Interface : 

By using Mixed Reality Interfaces and of Human Supervisory Control in Gaming Environment

Evaluation on User Satisfaction and Reliability of the Built 

System In Telemanipulation Scenario 

Pre Research

Experiments 1 and 2

Experiment 3

Experiment 4

Research Framework

Compare Study: 

Telerobotics Video 

Interfaces

Input Devices and Sensor

Low Level 

Telemanipulation Task

 

Figure 1.9: Research framework  

 

 



16 1.5 Research Design Chapter 1 

 

 

 

Research 

Proposal

Initial 

Research

Literature Survey 

and Problems 

Review 

Concept 

Approval

Prototype 

Development

Experimental 

Design

Testing

and

Evaluation

Analysis

Data 

Result

Possible

Publication

Experiment 1 Experiment 2 Experiment 3

Situated Virtual 

Model

Compare with

Video Interface

Possible Input 

Device and 

Sensors

Mixed Reality 

Environment

Evaluation of 

Operator 

Attentions

Collaboration 

Information

Testing for 

Simple Model 

Input

Human 

Supervisory

Planning & 

Feedback 

Information

Enhanced 

Game Features

Response 

Model  on Multi 

commands

Experiment 4

Test 

Reliability

Of User 

Behaviour

Telerobotics 

Interfaces

Start

Final Prototype

Final 

Report
Finish

Cycle Process per Experimental

List of Experiments (include sub-experiments)

Three and a half years Period

Virtual Gaming 

Environment

Telerobotics 

Model Control

Possible Input 

Device and 

Sensors

Telerobotics 

Interfaces

 

Figure 1.10: Stage of research  

1.5.2.2 Research Indicators 

During the experiments, information was collected through two main indicators: user 

performance and preference. These two indicators were analysed based on the interaction 

between the participant/user and the remote machine through the developed interface and are 

detailed in point ‗a‘ and ‗b‘ below: 

a. User Performance Indicators 

In each experiment, a number of design scenarios were tested. Most scenarios involved 

the manipulation of a remote machine. I defined a number of variables as user performance 

indicators such as success rate variables and the time taken to perform each test. A total number 
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of requests to the telerobot were also recorded as an additional performance indicator for further 

analysis. 

b. User Preference Indicators 

After conducting the experiment, each participant was asked to complete a questionnaire 

using the Likert-scale model and ranked their model preference, while other questions were 

open-ended. Some participants were also asked to undergo an informal interview to provide 

further detail on the user prototype interaction performance.  

In general, data collected in the questionnaire included a number of components: (1) 

personal information such as: name, age, educational background, and also how long they 

usually spend using computers and using computer games; and any prior knowledge of the 

prototype tested; (2) the performance of each model tested, and the effectiveness of the system 

in helping them to perform the given task. For comparison purposes, participants were also 

asked which model they thought was the best; and (3) feedback on the system prototype and 

suggestions to improve the system. 

In this research, I conducted all the experiments by using participants with general 

background, and not directly by the user with specific knowledge (e.g. mining operator). 

Besides the limited access to test the application prototype with real mining devices and 

operator, I assumed using general participants in this research were able to produce conception 

about the gaming environment is reliable and capable to be used for telerobot interfaces.    

1.5.3 Model Analysis.  

In this study, the data obtained were analysed by using a number of statistical tests (e.g. analysis 

of variance, Chi-squared goodness fit test and Logistic Regression) and; further analysed using 

the F1-score and Weibull distribution. I have presented the descriptive data in accordance with 

observations in the field, which include: 

 Investigation of the gaming engine 

 Testing of operator performance in a MR environment 

 Testing of multi command control with the principle of supervisory control  

 Analysis of user performance using the Weibull distribution. 
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1.5.4 Timeline and Places  

The design and development of the prototype for this research took place in the Immersive 

Laboratory CSIRO ICT Centre in the CSIT Building at ANU. A number of remote connections 

were available in Sydney, Brisbane, and Perth, and the prototype design was also tested publicly 

at the CSIRO Discovery Centre. The study was conducted between October 2009 and April 

2013. The specific timeline‘s activities for this project are shown in Figure 1.11. 
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1.6 Organisation of the Dissertation 

This thesis was completed as part of a collaborative project between the Information Human 

Centred Computing (iHcc) Group in the Research School of Computer Science (RSCS) at the 

Australian National University and the Information Communication Technologies (ICT) Centre 

at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), with funding 

provided from the Minerals Down Under (MDU) National Research Flagship. 

This thesis consists of seven chapters: an introduction, a background on telerobotics and 

related work that has been undertaken in this field; four chapters on the designed prototype, user 

studies, evaluation, discussion, and a summary of the entire work in the conclusion. The 

remainder of this dissertation is organised as follows: 

Chapter 2 presents the literature review regarding the concepts of telerobotics systems, 

interface design (e.g. the possibility of utilising the gaming environment for telerobotics user 

interfaces) and control model (e.g. the possibility of improving the control model from one that 

was based on direct/manual control to one that is based on HSC), including introducing related 

research. This review also describes the MR environment, including types of current telerobotic 

interfaces, and HSC - including the spectrum of current telerobotic control models. At the end 

of this chapter, I demonstrate the communication implementation between a gaming 

environment and a number of telerobots or simulation telerobot as initial gaming features 

evaluation. 

Chapters 3 to 6 provide descriptions of the whole evaluation and the experiments 

including sub-experiments that were conducted during the research. These chapters discuss the 

implemented prototype model for telerobotics systems MR and situated virtual model interfaces 

and the combination of manual and supervisory control models.  

Chapter 3 discusses the utilisation of a MR interface, which combines information from 

streaming video and 3D generated computer visualisation, as telerobotics user interfaces. Based 

on previous work in Chapter 2, the MR concept is applied to a number of gaming environments. 

The experiment result was also analysed in relation to the operator‘s level of attention to the 

telerobotic interfaces. This experiment is designed to compare the effectiveness of a MR 

telerobotic interface in providing suitable information to the operator, as an alternative to 

telerobotic user interface using streaming video or fully virtual interfaces.    

Chapter 4 discusses a further evaluation of gaming engines in providing effective virtual 

modelling where the object is adapted to the physical setting. I demonstrate the usage of a 

scanner application in providing information of position and size of moving objects to build the 

3D models. This chapter also shows the possibility of using the gaming environment to work 



Chapter 1    Introduction 21 

 

 

 

with other potential input devices for virtual camera movements. This chapter evaluate the user 

performance of the improved model interfaces by closely adhering to the experimental settings 

of Zhu et al‘s experiment [39].  

Chapter 5 discusses the principle of HSC as a substitute for direct/manual control in 

telerobotics to improve automation and reduce the dependence of human operators on the 

system. The MR interfaces from the previous experiment in Chapter 4 are combined with the 

HSC concepts. Besides focusing on the planning process which is one of the five generic 

functions of HSC, the predictive and feedback information associated with the MR concept is 

also explored in more detail in this chapter. There are two proposed response models for HSC 

models which are tested. An experiment is designed to analyse the user performance of each 

response model interface, including a sub experiment for direct/manual control as a comparison 

study.  

Chapter 6 provides an analysis using the Weibull distribution to evaluate the user 

performance of the latest prototype telerobotics user interface. This evaluation data was 

recorded from the implementation of the telerobotic system at a public exhibition held for a 

period of three months. In this chapter, a Weibull model is applied with three parameters to 

describe the observed sampling data from three model interfaces, including two interfaces for 

the HSC response model and one interface for the direct/manual model. Two statistical model 

approaches, the Chi-square goodness fit test and the Coefficient of determination test, are also 

used to test the suitability of fitting the Weibull curve to the observed data.  

Chapter 7 presents a conclusion of the whole evaluation and a discussion of the proposed 

prototype telerobotics system. I determine the potential components/results from each chapter as 

the benefits of our prototype telerobotic interfaces, such as: (1) whether a gaming engine is able 

to be used as a basic environment for building telerobotic interfaces; (2) whether the MR 

concept succeeds in providing missing information by using a combination of streaming video 

and a situated VR environment; and (3) whether predictive display information, as a 

combination of MR and HSC concepts, succeeds in reducing operator involvement and 

decreases the effect of latency compared to direct/manual control. However, there are a number 

of shortcomings of the proposed prototype due to the limitations of research time which I 

describe in the suggestions and recommendations for potential further research, such as: (1) the 

possibility to test the telerobotics user interface by using a wide variety of telerobotic scenarios, 

including testing within a real telerobotic situation; (2) the possibility of utilising the multiuser 

function for collaboration work; and (3) the possibility to improve the machines intelligence; 

and (4) the possibility to evaluate other input devices and sensors.  
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Chapter 2 

Gaming Environments for Telerobotics User 

Interface 

This chapter presents the literature review related to my research topic, which evaluates the 

gaming environment for mixed reality (MR) and human supervisory control (HSC) concepts to 

improve telerobotics interfaces, especially in mining and related scenarios. This chapter consists 

of three main parts: gaming environment, interfaces and control models. Each group describes 

information and examples from related work that supports this research. At the end of this 

chapter, I discuss a preliminary research in testing a gaming environment to communicate with 

a number of remote applications. 

2.1 Gaming Environment  

2.1.1 Utilising Gaming Engines in Telerobotic Interfaces 

In this research, gaming environments were selected due to its user friendly features. They serve 

as a powerful tool for applying MR and HSC, which are proposed to address the telerobotic 

interface problems discussed in the previous chapter. Moreover, gaming engines provide 

sophisticated and suitable environments for building and customising 3D computer-generated 

virtual objects, which can be used to replace conventional information displays, such as: texts, 

pictures and graphs. Most gaming engines also provide custom programming environments that 

can configure the actions and behaviour of virtual objects. 

A virtual reality (VR) concept inside a gaming environment is suitable for simulating the 

actual environment and parameters needed locally. For telerobotic purposes, it works to reduce 

the bandwidth requirements and provide unlimited viewpoints of the remote location. In 

addition, according to Richer et al [33], successful gaming environments are able to offer users 

with required information and control capabilities in an engaging and enjoyable way. Richer et 

al [33] also mentioned that a gaming environment can bring new ideas to interface design, 

especially in the highly dynamic and multimedia world of robotic interfaces. 

Telerobotic interfaces and gaming environments have been seen as unrelated, but I argue 

that they share many similarities making it possible for them, to be regarded as being in the 

same domain. This is supported by Gazzard [40] who stated that computer games and VR are 

developed using the same displays and technology. A video gaming based framework had also 
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been introduced by Richer and Drury [33], who characterised video gaming components for 

human machine interaction design.  

2.1.2 Type of Gaming Platforms 

In this research, I explored three platforms of virtual environment which is can be categorised as 

a gaming engines for building a telerobotic interface. These three platforms are Second Life, 

Mycosm, and Unity3D. The details of each platform are explained in more detail below. 

2.1.2.1 Second Life  

The first virtual platform used in this research is Second Life (SL) [41-43]. White [43] defined 

Second Life as an Internet-based 3D world that emphasises creativity, socialising, collaboration, 

and self-government. Second Life is a 3D multiplayer virtual world and online gaming 

environment developed by Linden Labs [44, 45]. Since SL was introduced to the public in 2003, 

it has been played by millions of users around the world. SL has provided an environment with 

3D artefact objects, buildings and social spaces where people can interact. 

SL is also known as a modern gaming environment since it has distinguished 

environment compare to traditional gaming environment. Unlike traditional gaming, SL is not 

built to have specific goal to achieve or rule to play. SL provides a freedom to the player to set 

their own goal and the rule to play. Here, each player can explore and set SL environment 

according to their creativity since it is supported by sophisticated virtual environment to build 

and manipulated the virtual objects.  

 

Figure 2.1: A Second Life client interface showing an avatar that is creating virtual 

objects; and the Second Life logo [46] 
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SL provides a programming language, the Linden Scripting Language (LSL) [42]. Similar 

to other programming languages, LSL consists of variables, library functions, constants, flow 

control, and one or more named states. As a state-event driven scripting language, the state 

contains a guide to behaviours based on events that occur when the program is in that state. 

When the system sends commands to the script, the script will check for compatible events, and 

is then able to change most aspects of the state of the object and communicate with other objects 

as well as an avatar (replication of user in SL). As soon as a script is added into an object, it will 

start to execute. As a multiuser gaming environment, SL has the ability to continue to run every 

action or behaviour inside the script embedded in an object even when the owner user/avatar is 

not logged in. In addition, any objects in the SL world can communicate with objects outside 

the virtual world through the Internet via email, XML-RPC and HTTP requests.  

For my research purpose, I used SL viewer (SL client interfaces) as a telerobotics 

interface. The communication between the gaming interface and the telerobot is built through a 

third party server, in this case refers to the SL online server. Figure 2.1 shows the 

communication flow diagram among SL viewer as a telerobotic user interface, SL server as a 

third party server, and telerobot.  

 

Figure 2.2: Communication flow diagram between telerobotics interface and telerobot 

through third party server 

A number of advantages and disadvantages of using SL platform as telerobotic interfaces 

can are summarised in Table 2.1. 



26 2.1 Gaming Environment Chapter 2 

 

 

 

Table 2.1: The advantages and disadvantages of the SL platform 

Advantages Disadvantages 

1. Easy access anywhere (by logging in to 

client games); 

2. The client application can be run on most 

computer OS, such as Windows OS and 

Macintosh OS. 

3. Easy to communicate with other people 

around the world through the use of 

avatars (multiuser functions default); 

4. Administrative reason: less effort to 

maintain the network as the third party 

server will do it by default. 

1. Reliability and availability issues: 

Although it requires less effort to 

maintain the network, there is no 

guarantee that the service will always 

be available when needed. However, 

many computer games have high 

availability and one way they achieve 

this is by distributed game servers, 

sometimes operated by multiple 

organisations (e.g. Beatle Field, Team 

Fortress 2 or Minecraft). This 

functionality is already built into 

gaming environments and can be used 

to make them more resilient to the 

failure of a single server than the 

telerobotic interface development tools 

I am aware of. 

2. Security issues: e.g. distribution data 

and 3D objects can possibly be 

accessed by unauthorised users;  

3. Possibility to have high network 

communication cost or low graphic 

quality since this environment can be 

freely accessed by multiple users; 

4. Limited privilege to develop/to modify 

virtual object; 

5. Requires an Internet connection for the 

development process (only online 

development); 

6. Second Life (SL) has only limited 

communication protocols (only TCP/IP 

and XML-RPC). Since SL only allows 

limited access in modifying the 

configuration of communication 

protocol. This limitation cause 

impediment in terms of the setting of 

communication patterns (i.e., query 

response), data types, quality of service 

and prioritization, and others. 

2.1.2.2 Mycosm 

Mycosm is an real-time 3D visualization and simulation platform developed by Simmersion 

[47]. This platform is designed for a broad range of areas such as: education, engineering 

simulation, visualisation, decision support, gaming environment and more. Unlike other virtual 
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reality software (e.g. WorldToolKit or VRML), Mycosm is supported by an IDE (Integrated 

Development Environment) besides the 3D development tools (Mycosm studio editor). Mycosm 

uses a client application which can distribute freely to be used to run 3D environment built from 

Mycosm studio editor. Mycosm environments also can be imported from, and exported to XML 

to allow interoperability with external applications, including dot NET application and 

databases. By using Phyton and C++ language as programming language, it offers powerful 

features to create 3D virtual environment and communicate it with other application which is 

suitable for telerobotics interface. The major weakness of this platform compare the others is 

that it is only able to run on Windows OS. An image of the Mycosm studio editor and logo are 

shown in Figure 2.3.  

 

Figure 2.3: Mycosm studio editor and logo [47] 

2.1.2.3 Unity3D 

Unity3D can be defined as a fully integrated development engine which provides sophisticated 

functionality to create games and other interactive 3D content [48]. Similar to the two previous 

virtual platforms, this environment is also supported by a sophisticated 3D model editor and 

programming languages (e.g. C# and JavaScript which is possible to be enhanced with other 

programing languages as a plug in). Unlike the other two platforms, Unity3D does not provide 

specific client application to be used. Otherwise, Unity3D-generated applications can be played 

on most computer operating systems (OS), such as Macintosh OS and Windows OS; on mobile 

operating systems, such as iOS and Android; and on a WEB browser. The Unity3D editor and 

logo are shown in Figure 2.4. 
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Figure 2.4: Unity3D editor and logo [48] 

The Unity3D and Mycosm which are described in two subsubsection above can be 

referring as a ‗similar platforms‘ since the communication between the telerobotics user 

interface and the telerobot server is directly through the Internet without any third party server. 

Figure 2.5 shows the direct communication between the interface and the telerobot. These two 

platforms do not seem have fundamentally different than existing 3D simulation tools (e.g. 

Player-Stage-Gazebo, Actin, or Microsoft Robotics Developer Studio), but these two platforms 

are different from those 3D simulation tools since they provides an ultimate integrated package 

tool for creating gaming environment, especially for Unity3D which is claimed as the most 

powerful gaming engines platform[48]. This is the background why these two platforms are 

included in my research. A number of general advantages and disadvantages from these two 

platforms are summarised in Table 2.2. 

 

Figure 2.5: Direct communication flow diagram 
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Table 2.2: The advantages and disadvantages of locally-based gaming environments 

Advantages Disadvantages 

1. Flexible access for offline development, 

including flexibility for interaction with 

several input devices; 

2. Reliable in term of the availability of the 

services provided since full access to the 

system is allowed. 

3. Customisable environment and easy to 

configure or update; 

4. Unity3D and MyCosm support more 

communication protocols than the SL 

platform (i.e., UDP, TCP/IP and XML-

RPC). These gaming platforms provide 

more flexibility in terms of 

communication patterns (i.e., query-

response). Furthermore, flexibility access 

into the data properties can also make the 

customisation of data types and data 

prioritization easier. 

1. Limited access for some debugging 

functions for free users; 

2. Administrative issue: more effort 

required for maintenance of the 

network compared to an Internet-based 

gaming engine environment. 

 

I delved deeper into the three platforms regarding to the features which are suitable for 

building telerobotics interface, especially in term of applying HSC and MR concept to improve 

the telerobotics system, and Table 2.3 shows the comparison of features among the three 

gaming platforms discussed in this thesis.  

Table 2.3: Comparison of available gaming features suitable for telerobotic interfaces, 

taken from [34, 41, 43, 45-54]  

Classification 

Platforms 

Second Life 
Simmersion 

Mycosm 
Unity3D 

Type telemanipulation, vehicle teleoperation 

Control Supervisory Control 

 Direct Control 

Interface Full Virtual Reality, Mixed Reality 

User Single, multi user 

Input Device Mouse + Keyboard, Joystick, Haptic 

Feedback 2D, 3D vision, force feedback, predictive display, shadow object 

Platform Desktop application 

   web application, 

mobile application 
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Classification 

Platforms 

Second Life 
Simmersion 

Mycosm 
Unity3D 

Media 

Transmission 

Internet 

OS Microsoft 

Windows, Unix, 

Mac OS 

Microsoft Windows Microsoft 

Windows, Mac OS. 

Multi OS for Web 

Based, iOS, 

Android OS 

Others 

Access to 

environment 

Free, limited Paid Free, limited 

profiling feature 

Support Import 

model from 

industry-

standard CAD 

applications 

Yes 

.obj (less than 256 

prim for 1 object), 

Sculpt prime 

texture 

Yes 

.max, .fbx, .dae, .3ds, 

.dxf, .obj 

Yes 

.3ds, .fbx, .vrml, 

.x3d, .obj. 

Security (Login, 

Access to script) 

Yes (Built in) 

Login, object and 

script privilege, 

property right 

Yes (Manual) 

Login, compiling 

script 

Yes (Manual) 

Login, compiling 

script 

Communication TCP, XML RPC 

 UDP 

Manipulating 3D Yes (Built in) 

Drag n Drop 

Yes 

Full script 

Yes 

Drag n Drop 

Scripting Yes 

LSL (Linden 

Scripting 

Language), xml 

Yes 

C++, embedded 

python, other plugins 

possible 

Yes 

Java, C# embedded 

C++, python, other 

plugins possible 

Server Online Offline, Online Offline, Online 

Multiuser Yes (Builtin) Possible (Manual) Possible (Manual) 

Chat & 

communication 

Yes (Builtin) Possible (Manual) Possible (Manual) 

Audio Yes (Builtin) Possible (Manual) Possible (Manual) 

Support inverse 

kinematics for 

the link of 3D 

robot model  

No (Manual 

calculation) 

Yes Yes 

Third party 

administrative 

maintenance 

Yes, default Yes, self-organised Yes, self-organised 
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2.1.3 Characteristics of Telerobotics User Interfaces 

For a gaming environment to be effective as an interface, it must possess characteristics that 

match those of telerobotic interfaces. Table 2.4 summarises the key characteristics essential to 

such a user interface.  

Table 2.4: Characteristics of telerobotic interfaces and their varieties, taken from [1-3, 6, 

7, 10, 12, 13, 17, 26, 28, 37, 38, 55-62] 

No Characteristics Varieties 

1 Type   Telemanipulation 

 Vehicle telerobotics 

2 Control  Direct/manual control 

 Human supervisory control 

3 Interface  Full video only 

 Virtual reality (VR) 

 Graphical user interface (GUI)—for example, 

text, pictures, graphics (including buttons and 

sliders, and map-based points). 

 Mixed reality (MR) 

Note: augmented reality (AR) and augmented 

virtuality (AV) are considered as part of MR. 

4 User  Single user 

 Multi user 

5 Input device  Mouse and keyboard 

 Joystick 

 Haptic device 

 Gloves 

 Touch screen 

6 Feedback  2D vision  

 3D vision  

 Audio 

 Force feedback 

 Vibration 
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No Characteristics Varieties 

7 Platform  Mobile application 

 WEB application 

 Desktop application 

8 Media transmission  Internet 

9 Target performance  Easy (user friendly and adaptable) 

 Efficient 

 Enjoyable 

 Enables immersion with real task 

consciousness 

 Safety 

10 Current applications of 

telerobotics 
 Space 

 Undersea, oil and science application 

 Nuclear power plants and radioactive 

 Toxic waste clean-up 

 Construction 

 Agriculture 

 Mining 

 Warehousing and mail delivery 

 Fire fighting and lifesaving 

 Policing 

 Military operation 

 Assistance devices 

 Tele-diagnosis and telesurgery 

 Entertainment 

2.1.4 Telerobot Model  

Gaming environments present a number of possibilities in building an interface [33], as have 

been outlined above. However, building telerobotic interfaces by utilising a virtual gaming 

environment requires some description of possible features of the gaming environment itself to 

fit with the requirement of telerobotic interfaces. Before that, next subsections describe a 

number of models applied to build my proposed telerobotic interface.   
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2.1.4.1 Virtual Reality Model for Controlling Process  

In this thesis, a number of gaming environments are used for operation control. The proposed 

telerobotic model utilises a VR as the simulator to generate integrated simulation interface 

(Graphical User Interface) and control to run the telerobotic process (see Figure 2.6).  

 

Figure 2.6: Control based on the virtual reality (VR) model 

This proposed model is contrast to the conventional model from previous work in the 

telerobotics area, which used a virtual reality (VR)/gaming environment as a simulated telerobot 

to test their custom built interfaces [28, 29], The conventional model (see Figure 2.7) uses 

simulation as an independent element for information display separately from the control 

function to run the telerobotic process. This could prove problematic in presenting different 

information on the display and actual remote device. 

 

 

Figure 2.7: Control based on the classic model 

For the proposed telerobotic model, VR is applied to handle most of the telerobotic 

processes including receiving the user‘s commands and the telerobot‘s feedback, and generating 

commands for the model simulation and telerobot. Figure 2.8 shows the scheme of the 

coordinated control system based on a VR model between the operator and telerobot. 
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Figure 2.8: Coordinated telerobotic control system based on the virtual reality (VR) 

model 

2.1.4.2 Looping Control System Model. 

In building a telerobotics system based on VR simulation, I developed a control system from a 

classic looping control system model. It consists of three main elements: control, process, and 

feedback (see Figure 2.9). This system locates all elements of the simulation looping control 

system inside the telerobotic control element, which itself is one of the looping control elements 

in the telerobotic system (see Figure 2.10).  

 

Figure 2.9: Classic looping control system 

 

Figure 2.10: Proposed control system design based on control by virtual reality (VR) 

simulation 

2.1.4.3 Telerobot System Architecture 

The client-server communication model is a common computing model for telerobotic systems. 

Basically, it consists of three main parts – client, server, and telerobot (see Figure 2.11). The 
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client side is the sub-system that is connected directly to the user/operators. It includes some 

input devices (e.g. keyboard, mouse, joystick, etc.) and interface displays. In the proposed 

system, the client side consists of a 3D telerobot model, remote environment model, and 

feedback information from the server. 

The server side is connected directly to the telerobot controller, and communicates with 

the client through the Internet. In remote applications, the server manages a number of 

connections from several sensor devices (e.g. remote cameras and other sensors used for a 

different purpose) and is responsible for delivering information between clients, the telerobot 

and other remote sensors. 

The telerobot part consists of the controller and remote machine (robot). The telerobot 

controller processes all generated commands from the user through the computer server to 

operate the robot. Besides controlling and checking the robot mechanism, the controller also 

collects information from each motor in the robot‘s joint to calculate the position feedback. 

 

Figure 2.11: Telerobot system architecture [3] 

2.1.4.4 Software Telerobot Architecture Model 

Figure 2.12 shows the software architecture for the proposed telerobotic system. In general, the 

information shared between the operator and telerobot are request commands and feedback. 

Based on this control model, the software runs on the client side and processes all responses into 

the virtual model form. The display interface shows the generated response from the user 

command and telerobot feedback. There are two main responses generated on the client side: 

VR of the telerobot and workspace, and virtual prediction information models.  
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On the client side, the 3D model simulates most processes occurring at the telerobot and 

the remote workspace, based on operator commands. The operator selects the targets and the 

information is translated and simulated automatically in the 3D telerobotic representation. The 

information automatically provides the operator with predictions of the telerobot‘s movements 

and sends control commands to move the actual telerobot. The simulation process assists in the 

planning process that runs inside the telerobotic interface. 

On the server side, the server‘s software manages the process of delivering generated 

commands to the telerobot controller and also feedback information to the client based on 

sensors and robot responses. The scanning software works by processing information from the 

attached remote sensors (e.g. from a remote camera).  
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2.1.4.5 System Configuration Model 

For the proposed telerobotics system, I group the system into several elements as follows: 

human operator, interaction devices, master and slave applications, and the communication 

between them. Figure 2.13 shows the schema bloc of the system‘s configuration. 

Keyboard Mouse Joystick

3D Model

Virtual Reality Environment

Remote 

Environment

Simulation Communications

Telerobot Sensors

Operator

Interaction 

Devices

Master 

Environment

Control 

Communications

Slave 

application

User

 

Figure 2.13: System configuration 

 

Descriptions: 

1. Operator: refers to the human operator or the user who has an interaction with the 

telerobotic system. 

2. Interaction Devices: the system focused on exploring common input devices that are 

normally used in gaming interaction, such as the mouse, keyboard and joystick. However, 

in order to applying HCS concept, most of the conducted experiments were using mouse 

as the main input device in delivering commands to the interfaces.   

3. Master Environment: in general, the master environment is created as a VR environment 

which includes a 3D virtual model of the telerobot and the remote environment. 
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4. Slave Application: consists of a controlled robot as a remote machine and a number of 

sensors that provide remote information.  

5. Control communications: the telerobotics system is based on VR simulation that manages 

most control processes and the communication of information. Thus, the communication 

schema bloc consists of generated commands and feedback information between the 

operator and telerobot, which are tested in two model communication protocols TCP/IP 

and UDP. 

In the previous sections, I have described a number of models to build telerobotic 

interfaces. In terms of evaluating the effectiveness of gaming environment with the MR concept 

for telerobotic interfaces, the next section describes in more detail the definition and examples 

of MR including information on general telerobotic interfaces.  

2.2 Mixed Reality Concept for Telerobot Interfaces? 

Obtaining accurate information for telerobotic interfaces remains a challenge. It is not unusual 

for information received by the operator at the remote location to be different from that received 

by the local operator, leading to reduced productivity [6]. Moreover, in some cases, such as in 

mining, the interface for telerobotics contains more than one custom built sub-interface to 

monitor each process [5] (see Figure 2.14 for more detail). The complexities of the multiple 

screens can distract the operator‘s attention from the actual task and hence result in 

inefficiencies. 

 

Figure 2.14: Telerobotics user interface with multiple screens to monitor each sub- 

telerobotics process [5]  

Monitor Screen 

Sub interface 

with each  

process 

Another sub-process 
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An important aspect of telerobotics is situational awareness (SA). Situational awareness 

is defined as the perception of complex environmental elements with respect to time or space. It 

plays a significant role in telerobotics and is critical for decision makers [63]. In a telerobotic 

scenario, where the operator has limited information concerning the remote situation compared 

to an operator with direct onsite control, the role of the interface is to provide adequate 

information to complete the task, using simple visualisations from the remote location. 

MR is able to harness the strengths of both the virtual reality model and video streaming 

in its delivery of information [64]. It can be used with simple displays without any loss of 

necessary information compared to the use of multiple streaming video. Hence I argue that 

integrating MR environments into telerobotic interfaces can provide most of the information the 

operator requires to perform the task.  

Before discussing in more detail the MR concept for telerobotic interfaces, and how this 

concept provides all the information required, it is necessary to understand the current 

technology of existing interfaces. The next section describes telerobotic interfaces.  

2.2.1 Telerobot Interfaces 

Interfaces play an important role in providing information to the operator in a telerobotics 

system. An interface should also be designed to be user friendly, efficient and reliable. 

Therefore, two essential points should be taken into consideration when developing interfaces: 

the process of controlling/operating and observing/monitoring.  

In describing the various forms of interfaces, based on the two essential points above, 

Fong and Thorpe [1] categorised the interfaces into four groups: direct interface, supervisory 

control interface, multimodal interface, and novel interface. The direct and supervisory control 

interfaces are a group of interfaces that are categorised by their control model, whereas a 

multimodal interface is a group of interfaces which are categorised based on the usage of more 

than one remote sensor to provide information. Besides the three categories of interfaces 

mentioned above, the other interfaces can be classified into the novel interfaces group. 

Examples of novel interfaces, related with telerobotics, include: 

a. interfaces with particular input devices:  

(1) by using muscle and brainwave movement monitors for hands-free remote driving 

interfaces [27],  

(2) by using a Haptic feedback device for remote control devices [25, 26],  

(3) by using a Wii sensor as a Gesture Driver [65], and  
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(4) by using head and gaze tracking for a telerobotics camera control interface [66];  

b. interfaces for particular platforms:  

(1) WEB-based platform for telerobotics [67], and  

(2) Personal Data Assistant (PDA) devices for remote driving control [7].  

The interfaces can also be classified into three groups based on the type of information 

provided. These classifications will be explained in more detail in the following sub-sections.  

2.2.1.1 Video Interfaces 

The first classification is the video interface. Common telerobotic interfaces utilise image 

transmission from remote cameras over the Internet, via live video/streaming video. In a short 

distance telerobotics scenario, Massimino and Sheridan [68] mentioned that the video interface 

could provide information to the operator as well as if they were using their direct vision. 

Through simple block insertion task, Massimino and Sheridan successfully compared remote 

operation via direct operator vision and through video interface and found that there was no 

significant differences between direct viewing and seeing through video interfaces, when the 

total visual field object to be manipulated was the same.  

Video interfaces suffer from some limitations. Firstly, the usual fixed-position of remote 

cameras restricts their range of vision, making exploring the remote environment difficult, 

despite the pan, tilt and zoom functions. Secondly, real-time image transmission with high 

resolution requires high bandwidth. Images from video interfaces can suffer from other 

problems, including spatial resolution, signal noise and distortion. Thirdly, the instability of the 

Internet connection including network delays in data transmission severely limits real-time 

control and feedback, particularly when there is more than one camera installed. Fourthly, when 

using a single camera, the method transmits two-dimensional (2D) images. It is difficult for the 

operator to visualise the object‘s position in a single projector line. Fourthly, when using a 

single video camera, the method transmits two-dimensional (2D) images. It is difficult for the 

operator to visualise the object‘s position in a single projector line. While a stereo video system 

can achieve 3D visualisation easily, it can only do this from a static single viewpoint. On the 

other hand, a virtual camera offers the operator freedom to view the object from any direction.  

Figure 2.15 shows that any point on the projector line between A and A‘ is projected as 

A‘ on the projection plane (2D screen monitor), and similarly any point between B and B‘ is 

projected as B‘. The fifth issue is the high cost of producing bespoke telerobotics user 

interfaces. 
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Figure 2.15: Perspective: determined by centre of projection 

The video interfaces provide views from cameras that are installed at the remote location. 

Remote cameras provide information of the real world‘s views (in telerobotics this refers to the 

remote location), which can be viewed as if the operator is at the local site. However, this type 

of interface requires high bandwidth and constant human attention. Also, each camera only 

provides images from one viewpoint even with a PTZ (pan, tilt, and zoom) camera function. 

Recent research on live video interfaces has been performed by Hughes [69], who studied the 

effectiveness of video system designs in telerobotics, and Zhu [70], who analysed natural 

human interaction in the control of remote cameras in a telerobotics system. An example of a 

video interface is shown in Figure 2.16 which illustrates streaming video as part of a UAV 

(Unmanned Aerial Vehicle) control system [71]. 

 

Figure 2.16: Examples of video interfaces in a monitor as part of a UAV play load and 

control mechanism[71] 
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2.2.1.2 Virtual Reality Interface 

The virtual reality (VR) environment can be used to build visualisation [72], and as a medium 

(or in this case an interface) to represent the real environment [73]. Yang and Chen [3] state that 

in order for efficient implementation, most telerobotics systems simulate the real environment 

by using 3D virtual environments. They showed that a telerobot virtual model could 

considerably reduce system traffic compared to video image transmission. It allows the robots 

to be controlled successfully, even when communication rates are slow (0.1-0.5 KB/sec). Hence, 

it is suitable for situations with poor/low bandwidth network communication. They also believe 

that VR interfaces can increase the efficiency of operator performance as they can choose 

appropriate viewpoints and additional virtual-generated information (e.g. overlay text, virtual 

arrows, object transparency, etc.) that are not available on live video interfaces.  

Another advantage of this technology includes the possibility of achieving a quick 

response from the operator‘s actions due to the instantaneous update of the virtual robot and its 

environment. Moreover, the virtual environment can also be used to create better visualisations, 

and help the operator achieve immersion in the environment to perform the task.  

Figure 2.17 is an example of VR interfaces for The Rover Sequencing and Visualization 

Program (RSVP) developed by Jet Propulsion Laboratory NASA on 1997[21]. This type of 

interface provides all information through 3D computer-generated virtual objects and effectively 

replicates the remote location and the operating machine.  

 

Figure 2.17: This example of a VR interface shows the RSVP-HyperDrive, which 

displays a graphical version of the rover that is used to drive the MER Spirit rover and 

place its robotic arm on rocks [21] 
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The VR environment is suitable for poor/low bandwidth network communication 

situations [3]. Monferrer [11] and Hainsworth [6] recommend VR for vehicle telerobotics as 

operators are not limited by the camera view being fixed in one position on the vehicle body. 

However, situational awareness can be reduced when relevant information is included in the 

model[28].   

In VR environments, the operators are able to adjust their viewpoints to angles that are 

not available via live video interfaces. A VR interface also conquers the ‗deep feeling‘ problem 

that is commonly found when defining three-dimensional positions from a two-dimensional 

screen monitor. In addition, virtual objects can be utilised in a predictive display [74, 75] to 

reduce the effect of time delay and to offer an immersive environment which is usually required 

by the human operator. However, whilst fast-changing conditions can occur in remote locations, 

an inadequate sensor with inaccurate sensors can also result in different conditions being 

presented between the remote location and the VR environment simultaneously. Therefore this 

environment would be best if an accurate representation of the remote scene could be projected. 

Hence, a further innovation would be to use of an alternative technology, such as the 

combination of information between a live scene and a virtual environment to minimise issues, 

which is described in the following sub sections. 

2.2.1.3 Mixed Reality Interfaces 

The third classification of interfaces which combines information from the real scene and the 

virtual world is known as mixed reality (MR). Milgram [64] states that the definition of MR is a 

representation of real and virtual world objects which are offered together within a single 

display (see Figure 2.18 for sample of a MR concept). It aims to link the virtual entities with the 

real world. This is supported by the definition from Tamura et al [32], which states that MR 

covers the continuum from augmented reality (AR) to augmented virtuality (AV).  



Chapter 2    Gaming Environments for Telerobotics User Interface 45 

 

 

 

 

 

Figure 2.18: Sample of mixed reality (MR) concept 

The utilisation of MR can be found in a number of publications by Jean-Yves [76] 

regarding the framework of MR environments, Stapleton [77] who introduced the concept of 

MR for entertainment, and Thomas [78] who utilised the MR concept for virtual studios in TV 

production.  

In the field of telerobotics, the concept of MR technology is also widely used. MR can be 

used as an interface that mixes different pathways of visualisation, namely direct visualisation 

through low bandwidth video and synthetic visualisation derived from a dynamic software 

model of the state of the world [5]. One research example is the experiment conducted by Ponto 

[29], which tests a MR workspace to allow the user to control and simulate teleoperated 

vehicles (probes). Another example is the telerobotic Rockbreaker application interface with a 

distance of over 1,000 km between the robot and the operator developed by Duff et al [5]. They 

successfully applied a combination of information from a 3D model of the Rockbreaker 

machine and the workspace environment, three video views from a remote camera, and a 

generated image model of the rock from a stereo camera.  

In Duff et al‘s research[5], the operator is allowed to switch between the virtual view and 

the camera view on the main screen. However, based on the operator‘s comments, it can be 

concluded that they still needed an interface that could reduce the cognitive load of switching 

from one view to another in a single display. 

MR has also been a popular technique used in human computer interaction for combining 

virtual and real elements [79]. In 1991-1992, the term MR was commonly used only for 

interface concepts [64], before it rapidly expanded to many areas such as computer instruction 

[29], industry [5], entertainment [31, 77, 78, 80], and medical visualisation [4]. 
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Tamura [32] mentioned that AR and AV have been used to provide enhanced information 

for an interface – AR brings virtual information into the real world view, while AV delivers real 

world information to virtual environments. MR technology has become a new interaction 

concept between a person and the real world, for example by providing information that was not 

available in the real world [81]. Hence, the term MR has a broad meaning, but can be simplified 

to combining information between the real and the virtual environments in a single display. A 

simplified representation diagram of a MR environment is shown in Figure 2.19. 

 

Figure 2.19: Simplified representation of MR (referred to [64]) 

AR and AV interfaces are described as:  

a. Augmented Reality Interfaces 

Augmented reality (AR) has a technology that combines information from both the live 

scene and the virtual world. It is a concept of interactive technology which can be simply 

described as the expansion of the real world with synthetic electronic data. Xiong et al [82] 

described AR as an advanced human machine interactive technology which enhances visual 

information from a real scene through embedding the 3D computer-generated virtual objects 

and text superimposed in  real-time. Recently developed AR applications include medical 

visualisation [4, 83], mobile phone gaming applications [80], and human machine interaction 

with predictive display technology [82]. The examples of AR interfaces are shown in Figure 

2.20. 
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Figure 2.20: Examples of AR interfaces. (Left) Embedded country flags and the names 

of sailors are displayed on the screen for the America‟s Cup race tracking display [84], 

and (Right) An arrow object as additional navigation interface [85] 

b. Augmented Virtuality Interfaces 

Augmented virtuality (AV) has the opposite concept of the AR interfaces. AV enhances 

virtual environments with information from the real world. Even though this concept is not as 

popular as AR, it contributes to technology that combines information between the real scene 

and the virtual environment.  

The concept of AV is to bring information from the real scene into the virtual world. The 

video conferencing system from Regenbrecht et al [86, 87] clearly illustrates the definition of 

AV. Another example of this technology interface is also shown in Figure 2.21 where TV 

newscasters sit at a real table in a virtual studio [88]. 

 

Figure 2.21: Example of an AV interface concept from TV newscasters who sit at a real 

table in a virtual studio [88] 
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Another research that utilised AV interface is reported by Paul et al [12]. They report the 

results of six surgical cases where AV was used in conjunction with AR. They used AV to give 

an overview of the surgical area and to enable vision beyond the cortical surface. They used this 

method to facilitate understanding of the spatial relationship between the operative field and the 

preoperative 3D images of the patient.  

2.2.2 Advantages of Mixed Reality Interfaces 

The advantage of mixed reality (MR) interfaces is that it combines most of the benefits from 

both VR and video interfaces. The benefits of the adopted VR environment, such as: (1) an 

immersive environment (easy to build and manipulate the model); (2) lower bandwidth support 

for communication compared to using streaming video; (3) providing the ability to analyse, 

predict and plan information which is useful for reducing the effect of latency in 

communication; (4) adjustable and free movement of virtual camera viewpoints; and (5) gives 

extra information/data which is not provided in the workspace (e.g. number, text, graphic, and 

other virtual information). However, a VR environment that is built to simulate the real world 

can be incomplete. Hence, the MR concept provides the missing information by combining low 

bandwidth video information from the workspace, which helps the operator to evaluate the 

results of their performance. Current telerobotics video interfaces have successfully presented 

information on the actual conditions of the remote location. However, as mentioned earlier, its 

limitation is in its inability to convey information from all necessary directions. 

Another requirement for successful telerobotics is situational awareness through 

visualisation. The MR environment can improve situational awareness by using information 

received from the virtual model, to supplement low quality and therefore low bandwidth video 

from the remote location rather than requiring transmission of multiple high quality video 

streams. The view from video is used to complement the missing information on the 3D model. 

This means the merits of MR is better than only using pure modelling. Implementing MR in 

telerobotic interfaces does require attention to avoid problems that can misdirect the operator. 

These include registration error between the 3D model and the telerobot, misalignment errors of 

the robot or target object positions, and temporal mismatches dues to delays between giving 

commands and actual robot movement.    

In addition, a gaming engine offers a sophisticated environment that is compatible with 

most input devices and sensors. Since a gaming engine serves as a virtual environment, it has all 

the advantages of a VR environment. Hence, applying a MR concept in a gaming environment 

can provide better interaction between the human operator and the telerobotic interface. In 
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addition, combining both sources of information (virtual model and video) in a single screen can 

reduce cognitive load cause by diversion of the operator‘s attention between multiple screens. 

Despite of the ability of MR in enhancing information to the operators, there is no 

guarantee that MR interfaces can be better for user performance compared to other types of 

interfaces. In addition, providing all information on one single screen can possibly lead to 

confusion for the human operator and hence result in lower performance. In this chapter the 

results from the application of the MR interface in a telerobotic scenario are discussed.  

2.2.3 Design of Mixed Reality Interface in Gaming Environment 

Most current telerobotic systems, especially those used in mining, contain a number of custom-

built user interfaces. Typically one interface for each mining process, which needs to be 

monitored by the operator; hence an alternative, to reduce the cognitive load of switching from 

one interface to another, is to present the operator with a single interface. Besides that, the 

telerobotic interface should be interactive and reconfigurable, which can be achieved by using 

platforms built for creating virtual games environments. 

The basic environment of the proposed interface is a ‗VR in a gaming environment‘ with 

augmented streaming video (see Figure 2.22). Information from streaming video was brought 

into a virtual world to give information on a remote location. I used the LiSA (Localization and 

Semantics of Assistance) model as a basis for the experiment design. This is a common model 

in telerobotics systems, which defines a relationship between the operator, interface, network 

systems, manipulator, and environment. This model can also be used to describe a VR system 

that uses information from the real world [23]. Further details about the LiSA model will follow 

in the next section, which discusses human supervisory control (HSC) and the general spectrum 

of control model in the telerobot. 
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Figure 2.22: MR environment in gaming environment 

2.3 Human Supervisory Control for Telerobot Control Model 

The advancement of telerobotic control technology allows a move from manual operation 

towards full automation. Manual operation is the most common control model applied in mining 

areas. However, unlike factory or industrial areas which utilise machines to perform a repetitive 

task [2], in mining areas most scenarios are varied and require human operators to make 

decisions in performing the task. Hence, it is hard to change the manual control model into a full 

automation model. 

Human supervisory control (HSC) is an alternative to manual operation that minimises 

human operator involvement without interfering with the machine‘s performance [2, 89, 90]. In 

general, HSC can be defined as an interaction between a human, who acts as the supervisor, and 

the machine/system, which acts as the subordinate. Tendick [91] stated that HSC is a system 

where a human operator acts as a supervisor who has the ability to plan, monitor and interrupt 

the process during the execution carried out by machines.  

HSC offers a number of benefits, including the ability to simplify the control process by 

defining movements and goals rather than requiring hands-on control; it can minimise 

communications latency [10, 72, 89]; and it can eliminate the requirement for continuous human 

attention, thereby reducing the operator workload and increasing productivity. However, HSC 

has some limitations that can degrade performance. HSC can suffer from: (1) information 
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overload; (2) inappropriate levels of automation; and (3) distributed decision-making and team 

coordination. These limitations has been discussed extensively by Cummings [92]. 

According to Sheridan [60], there are five generic supervisory functions that have been 

delineated: planning, teaching, monitoring, intervening, and learning (see Figure 2.23). 

However, in contrast to industrial robot settings which mostly work by providing repetitive 

responses in predictable tasks within controlled environments, the learning function for a 

telemanipulator can be neglected since most scenarios have no repetition of the same task. 

Sheridan also added that the important aspect of HSC is the ability of the system (computer) to 

package consolidated information in a visual display to the human operator. This information is 

useful for planning and examining the task performance and for making a quick decision to 

override the process when needed. 

 

Figure 2.23: Five generic supervisor functions as nested control loop 

HSC offers the advantages of: (1) achieving greater accuracy from the machine with less 

human effort; (2) easier control, as the operator frames instructions in terms of the goals to be 

met instead of operating the machine directly; (3) eliminating the requirement for continuous 

user attention and hence reduces the operator's workload; and (4) maintaining  control even 

when there are time delays in the communication between the human and the remote machine 

(effectively reducing the adverse effects of latency[2]). 
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2.3.1 Telerobot Control Model 

This section provides several descriptions of the telerobotic control model. In order to evaluate 

the effectiveness of a HSC concept for telerobotics system control, it is necessary to know the 

variant of the existing control model.  

The telerobotic control model could be grouped into two types of control: direct/manual 

and HSC [1]. For further understanding of the differences between the types of control, 

Sheridan‘s spectrum control diagram [2] (Figure 2.24) describes the information flow between a 

human operator and task in three types of control. In this spectrum control diagram, human 

operator involvement is still required even in ‗fully automatic control‘ mode. Implicitly, besides 

the monitoring process, the human operator still has some form of external control which can be 

executed by, for example, turning on/off the power.  
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Figure 2.24: Spectrum control diagram (referred to by Sheridan [2])  

In the case of a human operator as part of the spectrum model, in the LiSA (Localization 

and Semantics of Assistance) model for telerobotics [23] (see Figure 2.25), the human operator 

is the part of the loop which generates commands and also receives feedback information from 

remote locations. However, in ‗full automation‘ mode the operator receives information from 

monitoring processes only. Hence ‗full automation‘ cannot be considered as telerobotics 

because the operation is run independently without continuity of human interaction. 
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Figure 2.25: The LiSA (Localization and Semantics of Assistance) model concept with 

perception reconstruction, virtual execution, action generation, and action reconstruction 

model assistance (from [23]) 

Besides describing the relationship between the human operator and environment (in this 

case referring to ‗telerobot‘), the LiSA model provides a framework to describe the common 

forms of assistance used in telerobotics systems [23]. There are eight common components from 

the LiSA assistance models, but only four of eight common components are largely applied in 

this telerobotic systems based on VR environment. The four common components from the 

assistance model are known as Perception Reconstruction and Virtual Execution which relate to 

assistance provided to the interface, and the last two are known as Action Generation and Action 

Reconstruction which relate to assistance provided to the operator. Descriptions of the four 

common components of assistance models are as follows: 

A. Perception Reconstruction 

The Perception Reconstruction model is a common component assistance model which 

works where the conditions of the interface are an incomplete model. This assistance model 

uses a substitute perception to provide additional information, for example: in VR interfaces, an 

enhanced video camera view is used to replace the missing information. 

B. Virtual Execution 

The Virtual Execution model is a common component assistance model that provides a 

pre-prepared test prior to task execution. For example: in the planning process of the telerobotic 

system scenario, the preparation and test phase provide a simulated outcome that allowed the 
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operators to validate their instructions before they were transmitted to the robot. This form of 

assistance is known as Virtual Execution.  

C. Action Generation 

This common component of assistance corresponds to Sheridan‘s [2] concept of 

supervisory control. In an example of a telerobotics control scenario, the human operator is 

allowed to specify the target positions. Then the system generates the required actions to move 

the robot arm to that position without continual human input. This process of assistance is an 

example of Action Generation. 

D. Action Reconstruction 

An example of this common component assistance model in telerobots control scenario is 

the usage of a standard keyboard and mouse as input devices. Neither the mouse nor keyboard is 

an anthropomorphic manipulator, thus preventing the operators from controlling the robot with 

natural arm movements. However, a substitution action that utilises the mouse and keyboard can 

be used to reconstruct the missing arm movement and this is known as Action Reconstruction. 

Based on the description above, Action Reconstruction is also known as the opposite of 

Perception Reconstruction. 

As mentioned above, direct/manual control is still more common compared to 

supervisory control. In direct/manual control, the operator guides the remote machine directly 

using the hand-controller. This means that direct/manual control depends totally on real-time 

human decision control. Meanwhile, in HSC, the remote machine relies on its own intelligence 

to generate commands and perform the task without continual human involvement.  

Related to the types of telerobotics, Fong et al [17] stated that the majority of research in 

HSC has concentrated on telemanipulation rather than vehicle telerobotics. However, there are 

many possibilities in the application of supervisory control in vehicle telerobotics. Recently, 

HSC for vehicle telerobotics has been utilised with a variety of control modes (e.g. coordinated 

control or individual actuator) and feedback (e.g. visual or haptic). Moreover, HSC is used to 

address the problem of poor communication which is often found in vehicle telerobotics [17]. 

As mentioned in subsection 1.1.3, to identify the effectiveness and performance of my 

telerobot application, I designed all the experiments using the common metrics developed by 

Steinfeld et al. [24]. These metrics are grouped into two categories: system and operator 

performance. In this manipulation scenario, the system's effectiveness can be identified by task 

metrics, such as the percentage of navigation tasks successfully completed. The system 
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efficiency can be measured by using a number of task metrics, such the time to complete the 

task, or the operator time spent on the task, and the average time to obstacle extraction. Operator 

performance can be measured with subjective measurement techniques (e.g., Likert scale or 

open-ended questionnaire). Design of performance effectiveness experiments for the proposed 

telerobot application is discussed in more detail in the chapters describing the experiments. 

2.3.2 Utilising Gaming Concept for Human Supervisory Control 

I utilised a number of features commonly used in gaming environments, such as the ‗path 

finding algorithm‘, ‗first person view‘ concept, and other gaming features to build a HSC 

concept for the telerobotic interfaces. As well as being suitable for gaming environments, these 

features are also useful to improve the effectiveness of telerobotic interfaces.  

The first utilised feature is a path-finding algorithm. The A-star (A*) algorithm is a 

common path-finding algorithm in gaming environments [93]. Patel [94] stated that the A-star 

algorithm was developed in 1968 to combine the best heuristic approach between Best-First-

Search and Dijsktra’s algorithm. It is generally used to calculate the shortest and fastest way for 

an object to move to a defined target position (e.g. Path Finding in the Maze [95]).  

 

Figure 2.26: An example of path finding implementation for the gaming environment 

[95] 

I applied the A-star algorithm to develop an intelligence function for the HSC concept, 

which allows the system to possess the knowledge to run select processes by itself. Hence, by 

applying the A-star algorithm, this telerobotic system will have the ability to generate a number 

of efficient paths which allow the robot to avoid the obstacles automatically.  
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Another feature is the ‗game viewpoint‘ on virtual camera. In a gaming environment, 

virtual cameras play an important role in providing information about the VR environment. 

Users can interact with the virtual object through the ‗remote-person view‘ or ‗first person view‘ 

as a basic viewpoint. Sko [96] mentioned that gamer/user performance when playing a game 

can be improved by better viewpoint control. Hence, I suggest this feature also affects the 

operator performance for this telerobotic interfaces. 

For ‗input device‘ features, besides the gamepad (joystick), the mouse and keyboard are 

the most common input devices for the gamer, especially for PC (personal computer) game 

types. I argue the mouse device is also suitable to apply HSC in this telerobotic scenario. A 

number of benefits of using a keyboard and mouse are: (1) commonly used and very compatible 

for almost all PC applications, (2) cheaper compared to other input devices (e.g. haptic devices 

and gamepad), (3) easy to use.  

Another important feature in a gaming environment is the ability to provide some ‗extra 

information‘. This feature is commonly used to provide additional information needed by 

gamers (e.g. background and goals of the games). This feature can take the form of a virtual 

object or text, which is very useful for gamers in completing their gaming tasks. In telerobotic 

interfaces, providing extra information that is not available in a remote location can be very 

useful for the operator (e.g. predictive display and visual feedback information). I consider that 

both predictive displays and visual feedback information as useful in planning, monitoring and 

performing the task. Besides, it could be argued that this predictive display concept can 

minimise the effect of time delay to the operator [75].  

All the gaming features above are used to build the MR and HSC concept for the 

proposed telerobotic interfaces. These features can provide comfort in operating the telerobot 

and improve the efficiency of user performance. 

2.3.3 The Model of Response Movement based on Multi-Command Input 

In contrast to direct/manual control of manipulators, telerobotics interaction based on HSC 

allows human operators to plan the movement of the remote machine by entering a series of 

commands as pre-defined positions. There are two possible kinds of response movements. 

Firstly, the robot moves towards the newly defined position immediately; or, secondly, the robot 

moves to achieve the queued series of positions one by one. I grouped the possible kinds of 

response movements into two models, as follows.  
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a. Adaptation response model 

This response model can respond to the operator‘s commands by moving to a new 

position immediately. The algorithm in the Adaptation model causes the 3D model or the 

manipulator to cancel the current process, update its target according to the new position 

specified, and continue the process towards the new target. Thus this model assumes the 

operator has abandoned their previous plan and formulated a new one. It responds more quickly 

and achieves the goal in less time compared to the Queue response model which adds a new 

operator command to the existing queue of commands. The difference between the Adaptation-

response model and direct or manual control is that the manipulator works towards achieving a 

newly defined goal without continuous input from the operator as is required by direct or 

manual control. 

b. Queue response model 

This response model adopts the logic of queuing services. Queuing services work by 

following a FIFO (First-In-First-Out) concept where the system needs to complete servicing one 

entity before continuing to the next entity. This system is shown in Figure 2.27 where the 3D 

model or the manipulator moves to reach all the positions sequentially. 

Enter (N) 

Position

Move to (N) 

Position

Enter 

(N+1) 

Position

Cancel (N) 

Position

Continue to 

(N) Position

Reach (N) 

Position

Move to 

(N+1) 

Position

Reach 

(N+1) 

Position

Queue

Response 

Model

Adaptation

Response 

Model

 

Figure 2.27: Diagram of Adaptation and Queue response model  

In comparison to the Queue model, the Adaptation model is closer to direct/manual 

operation, where a human operator has more control for model movement, rather than in 

planning a number of positions for the intended target. Hence, the adaptation model is likely to 

perform faster for conditions that do not require a great deal of planning. However, in a situation 
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where the delay in the response or feedback is large, the operator will feel its effects. In 

designing the experiment, I addressed this issue by requiring the participants to plan their 

movements by following a random path arrow. This will be discussed in more detail in the 

section on experimental design and procedures, section 5.3.3. 

To evaluate more information about the telerobotic model and exploring the suitable 

features of virtual gaming environments, I have begun initial research which is described in the 

next section. 

2.4 Telerobot Communication by Gaming Environment  

In applying a virtual gaming environment for telerobotic interfaces, it is necessary to explore 

and evaluate the game features, especially their ability to deliver information between the 

operator and telerobot, and vice versa. This is an important step before I start to evaluate 

application of the MR and HSC concept in the gaming environment. I commenced this research 

study based on previous work performed by Duff et al [1]. They introduced the development of 

shared autonomy in control systems and a MR interface of a telerobotic Rockbreaker which was 

used in a mine over 1,000 km from the operator. The system architecture used in the project is 

shown in Figure 2.28. 
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I investigated Second Life (SL) as the first gaming environment. I built a robot arm 

Rockbreaker model in Figure 2.29(a) as a VR telerobot. This robot arm model consists of four 

main parts namely the: base, swivel, boom, jib, and hammer. This model has four degrees of 

freedom (DOF) and all parts are linked together in sequence as shown in Figure 2.29(b). 

Initially, I modelled the robot arm by using simple 3D shapes called cube prims (prim or 

primitive object is a single object inside SL[44, 45]) to represent the base, swivel, boom, jib, 

and hammer. In addition, I also added a sphere prim as a tip pointer to represent the hammer tip 

position (shown in Figure 2.29(c)). I located them on one of the private virtual servers inside 

SL, which prevents unauthorised users/players from accessing the 3D virtual model. A 3D robot 

arm was made with several 3D shapes.  

The interaction between the operator and the 3D model is conducted using the avatar to 

control the tip pointer (an avatar is a user representative in the SL world with a remote-person 

viewpoint). The tip pointer could be manipulated to specific positions in 3D coordinates. After a 

position is defined, it automatically triggers certain functions to move all links of the 3D robot 

model to match the defined position. This movement works by calculating the inverse 

kinematics of the arm with its position indicated by the defined tip position. Each link of the 3D 

model will move one at a time since SL only allows the linked objects to be rotated about its 

root object, so the base of the arm is rotated first then it is detached from the model, the second 

link then becomes the root object and the model is rotated to the required angle for the second 

joint and so on. 

In this VR model, the telerobotics scenario is required to deliver and receive information 

from other servers (e.g. telerobotic server) through the Internet. In order to test the 

communication between SL and other servers, I utilised a HTTP request protocol as it is one of 

the limited communication protocols that is allowed in SL. Due to limited access to real mining 

robots, I considered alternative remote devices for these communication tests. For an alternative 

telerobotics, I utilised three different telerobotic servers. The first communication test was using 

a Rockbreaker simulator web-based server (see Figure 2.29(e)). The second communication test 

was using the UWA ABB robot as a telerobot (see Figure 2.29(g)), and the third was using a 

custom built server that connected to a small robot arm (see Figure 2.29(f)). 
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Figure 2.29: First trial overview of telerobotics using the Second Life (SL) environment 
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2.4.1 Web-based Telerobotics Simulator 

The web-based server control system is built based on DDX (Dynamic Data eXchange) which 

is used as a core platform for building distributed robot controllers for the telerobot 

Rockbreaker project [5]. It aims to simulate the actual Rockbreaker arm, and also to trial the 

communication between their custom built interface and Rockbreaker. 

DDX refers to software which is packaged from both the application and the controller. It 

was developed by CSIRO (Commonwealth Scientific and Industrial Research Organisation) 

over the last ten years under an LGPL open source to assist the rapid development in robotics 

systems. The advantages of DDX are that it provides a safe mechanism for sharing data between 

processes, and provides load balancing between different processes from different machines to 

deal with hardware failure.  

The DDX framework provides shared memory access to several clients, and uses UDP 

(User Datagram Protocol) to copy shared memory content inside one client. The mechanism of 

DDX uses a communication system to deliver data among processes on the networked 

computer. It consists of two elements (the store and catalog) which can be seen in Figure 2.30. 

The store is used as a data repository while the catalog maintains the contents of each store. 

Store Store

Catalog

Shared 
Memory

Client

Shared 
Memory

Client Client

Machine # 1 Machine # 2

Request

Request

TCP

UDP

 

Figure 2.30: DDX framework 

In general, the web-based server works via two-way communication, by receiving a 

number of arm link positions, and then sending the simulated feedback positions back to the 

client application. The feedback positions were used to update the 3D model inside SL.  
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From the first communication test, I discovered that SL enforces a delay of one second to 

create a link between the prims and 0.2 seconds between rotations of the same object, which 

was done to ensure the server would have the capacity to keep the world synchronised with all 

the clients viewing an action. Any multiplayer online gaming has to address the issue of 

maintaining concurrency and must find a method of limiting the rate of change in the world to 

achieve this. However, this means a full pose takes nearly four seconds which is too long. 

Hence a quicker method of displaying the new position was required. 

Furthermore, in order to provide reliable information on the telerobot through a virtual 

model for the user, the 3D arm model and the workspace must also be built to closely represent 

the real conditions (shown in Figure 3.29(d)). For that reason, I used another method to model 

the arm. Each link of the arm is made of several prims but rather than joining the links into a 

single object, they are placed in the right location to look like a linked arm. Then, when the arm 

is moved the new position is calculated for each link and each link is moved independently. 

This method reduces the total movement time to 0.4 seconds. However, because each prim 

moves independently at the same time, it causes the arm to momentarily appear to fly apart and 

reassemble. 

2.4.2 UWA ABB Robot 

Since it is not possible to test this gaming environment in actual Rockbreaker robot, I used 

another telerobot, the ABB robot, from the UWA Telerobot (http://telerobot.mech.uwa.edu.au/ 

Telerobot/index.html). Using this ABB robot as the API (Application Programming Interface) 

of the ABB robot allows modification of the ABB controller to communicate directly to a server, 

which worked with HTTP requests. Another purpose of this trial was to show that SL could also 

work with a real machine, not just with the simulator.  

http://telerobot.mech.uwa.edu.au/%20Telerobot/index.html
http://telerobot.mech.uwa.edu.au/%20Telerobot/index.html
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Figure 2.31: ABB robot telerobotic client interface [67]  

Based on the ABB robot client application, shown in Figure 2.31, the robot can be 

controlled by sending the three coordinates of the tip position. To adapt to a different shape and 

the number of links of the robot arm without changing the 3D model, I performed the 

registration and rescaling of positions between the tip pointer and the ABB robot tip, and only 

used these tip positions for commands and feedback of communication. 

In sending a command to this telerobot, I moved the tip pointer to the small robot arm 

using the avatar. The small robot arm moved to the position sent by SL as far as possible, and 

returned the final position it achieved which was used to update the model in SL. Even though 

the arm was shaped differently I was able to move the ABB robot located more than 1,000 Km 

from the operator. 

2.4.3 Custom Built Server with Arm Robot (a modified haptic device) Attached 

For further evaluation, it is important on this research to have a telerobot with full access on it. 

Hence, I tested this SL game to communicate with a custom built telerobot made by haptic 

device. The idea was to utilise an X3D application as a simulation telerobot to receive the 

command from SL. In addition, this application is connected to a haptic device which read the 

command on X3D application as a force feedback. This enabled the haptic device to act as a 

telerobot. The X3D is a successor of Virtual Reality Modelling Language (VRML) which is 

commonly used in presenting 3D computer graphics.  
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Due to the limitations of X3D API in communicating with the TCP protocol, which was 

the only way to communicate with the SL server, I utilised an XML file as an alternative 

mediator between the SL and X3D applications. I created a PHP server and ran a PHP script 

which could receive the HTTP request from SL, and at the same time update the XML file. On 

the other side, by merging X3D and AJAX, it allowed the application to read the updated XML 

file, update the 3D model in X3D application and the haptic device. This X3D application 

rewrote the XML file with the last position of the haptic device as the feedback. Thus, the PHP 

script continued to gather feedback from the XML file and send it back to the SL server. I 

located the XML file on a PHP server machine which could be accessed by the X3D 

application. 

A concept of file lock was applied in order to avoid logic errors when the PHP updating 

process ran together with the X3D application reading process (Figure 2.32). 
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Figure 2.32: File lock concept applied 

 

Based on Figure 2.32, there are two separate closed loops which were running in the 

system. The locking steps are described below: 

1. After receiving the HTTP request from the SL server, the PHP locked the XML file and 

wrote the request value into the command variable. Then PHP automatically unlocked the 

file after the writing process was complete.  
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2. On the other side, while the PHP locked the file, the X3D application did a looping process 

trying to access and read the XML file. When the file was unlocked, the X3D took over 

and locked the file, then received the value of the command variable as the request position 

to move the 3D model and the attached robot. The X3D application kept the XML file 

locked until it wrote a feedback response into the response variable on the XML file. 

3. Meanwhile, during the second step, the PHP continued to try to gain access to read the 

response variable. When the file was unlocked, the PHP would automatically read the 

response variable and send the HTTP response back to the SL. 

During the communication test, besides the delay in getting feedback information from 

the HTTP response, the applied file lock concept caused additional time delay in 

communication. However, the remote simulation server and the robot successfully moved 

following the request from the SL interface (with 0.3 – 0.5 seconds in a one-way 

communication – for requests only). Moreover, the 3D model on SL succeeded in implementing 

the feedback response from the telerobot. For example, when the telerobot gave a different 

position from the request input because of particular condition, the 3D model would update the 

position according to the last telerobot position.  

Based on this preliminary test, SL has a number of limitations such as: (1) requires up to 

two seconds in total for receiving the feedback and updating the telerobot model and (2) only 

allows TCP/IP protocol to communicate with remote devices. However, this gaming 

environment also provided satisfactory features to continue the research in evaluating the 

effectiveness of MR interfaces and HSC for a telerobotic based on a gaming environment. To 

explore the evaluation in more detail, the next chapter discusses the experiment of utilising MR 

concept in a gaming environment.   
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Chapter 3  

Evaluation of Gaming Environments with MR 

Concept 

This chapter discusses further exploration of the use of gaming engines as telerobotic interfaces. 

A concept of mixed reality (MR) environment, which combines information from streaming 

video and 3D computer visualisations inside the gaming environment, was evaluated as an 

alternative to streaming video interfaces. This chapter discusses user performance from a 

number of sub-experiments from two gaming engines and the feasibility of using the MR 

concept in telerobotic interfaces. I demonstrate that the MR concept in a gaming engine can 

provide an effective telerobotic interface.  

3.1 Introduction 

In this thesis, I explored the use of gaming environment technology for building telerobotic 

interfaces. These have previously been viewed as different domains. In my initial stage of 

research, as described in section 2.4 above, I showed that a virtual gaming environment (Second 

Life - SL) has similarities features to telerobotic interfaces.  According to Richer et al [33], 

gaming environments have similarity to 3D graphics interfaces but also offer more features, 

essentially a superset, compared to other 3D applications. They also mentioned that ―Unlike 

most computer applications in which the interface serves as a means of interacting with some 

underlying functionality, the sole purpose of a video game's interface is for the player to interact 

with it‖. Hence, the gaming environment offers many similar features to telerobotic interfaces, 

as well as its advantages in comparison to the existing computer 3D applications. Furthermore, 

a number of existing telerobotic interfaces [1, 11, 21] have successfully used 3D graphics as an 

alternative to video interfaces. This opens up the possibility of using a virtual-gaming 

environment to build an interface, as it contains most of the technologies found in existing 3D 

application interfaces. Besides providing a sophisticated environment for 3D modelling and the 

freedom to define the actions and behaviour of the 3D model, a gaming environment offers 

features, such as ease of integration with a variety of sensors and input devices, a wide range of 

custom-built libraries and functions and an environment that is easy to use [33]. The multiuser 

features in gaming environments can be used to share information and for collaborative-control 

scenarios in future telerobotic system.  
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Video feedback has been used for telerobotics since the 1950s, but streaming video on the 

Internet only started to become popular at the end of the 1990s [2]. Initially, the main technical 

limitations of streaming video were its requirement for high CPU load and Internet bandwidth 

to support the required data transmission rates, especially if the TUI (Telerobotics User 

Interfaces) was using more than one video stream [6]. With current devices available, the CPU 

load is not an issue anymore. On the other hand, while high bandwidth is becoming more 

readily available, it still has practical limitations. Other limitations include the restriction of 

viewpoints in camera positions, difficulty in conveying non-visual information and the lack of 

machine-readable information to support automation. 

This chapter reports the experiment that was conducted to assess the effectiveness of the 

MR concept on two gaming environments (Second Life and Simmersion‘s Mycosm) as 

telerobotics user interfaces. Besides, the experiment also tried to assess the effect of the level of 

user attention on the interface while performing the task. Before further description about the 

experimental setting, the result and the discussion, the next section describes telerobotics 

implementation which was used for the experiment.     

3.2 Prototype Implementation 

Based on the initial communication implementation on Chapter 2, and due to limited access to 

real mining robots to test the proposed telerobotic interfaces, I built a smaller replica robot arm 

as a telerobot. This robot has been built to replicate the Rockbreaker robot function 

(manipulation robot arm).  

I built the robot by modifying a haptic device. Despite this robot arm having a different 

shape compared with the real Rockbreaker with three rather than four links, I added an engraver 

as a hammer tip to this haptic device to transform this robot into a miniature Rockbreaker robot. 

Figure 3.1 shows the modified shape of the telerobot model. 
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Figure 3.1: Robot arm, workspace and two remote cameras 

For the interfaces, a 3D model of the modified robot arm including the workspace was 

built inside the gaming environments. In order to apply the MR concept, the streaming video 

from a remote camera was embedded in the virtual environment to show the elements of the 

scene which were not represented in the model (e.g. people or any undefined modelled objects) 

and to allow operators to monitor their performance. The streaming video worked by replacing 

the surface texture of a virtual object inside the virtual world, so it acts as a video window. In 

addition, the overlaying virtual dot pointer was attached to the video stream to show the position 

of the robot tip, which was determined by calculating inverse kinematics from the measured 

joint angles and projecting the three dimensional tip positions onto the plane of the video. 

In order to test the possibility of using a gaming environment as a basic platform for 

telerobotic user interfaces, I applied the MR concept on the two different engines, Second Life 

(SL) and Simmersion-Mycosm (Sm), as described below. 

3.2.1 Utilisation of Second Life as Mixed Reality Telerobotics Interface 

The first interface to which the MR concept was applied was Second Life (SL) from Linden Lab. 

Figure 3.2 shows that the 3D model of the robot arm was built together with the workspace. 

Based on the experiment scenario, which will be explained in the following section of this 

chapter, an arena marked with various coloured stars was used as a workspace and also added as 

Engraver 
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a virtual model. Two live videos were included in the virtual environment and they work by 

presenting the virtual object inside the virtual world. The position of the robot model was 

represented by the virtual object in the form of two dots that were embedded in the streaming 

video surface.  

As discussed in Section 2.1.2 regarding the SL gaming environment, the limitation of SL 

is that interaction between the human operator and the model is only available through an 

avatar. The operator controls the avatar to move the pointer by clicking a desired position or by 

dragging the model pointer (e.g. the users clicks and holds the tip model and also moves it 

around). To send a command to the telerobot, a clicking function was also provided on the 

streaming video. The operator can move the robot arm by clicking on the streaming video 

surface. The robot will then move in a plane perpendicular to the video camera lens axis. The 

two cameras are perpendicular to each other to allow movements that are commanded from any 

direction. 

 

Figure 3.2: MR concept built in Second Life (SL) 

Each defined position was sent as a single command to move the telerobot. The SL 

triggered an event on the script to send a single command each time the users clicked a position 

on the workspace/screen, or each time they released their finger after dragging the tip model 

causing the 3D model to move to that position. 

Dot Tip Pointer 
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3.2.2 Utilisation of Simmersion as a Mixed Reality Telerobotics Interface 

Figure 3.3 shows the Simmersion-Mycosm (Sm), another gaming engine that used to apply MR 

concept for telerobotic interface. The interface was built using the Mycosm library from 

Simmersion Holdings Pty Limited. 

A similar MR concept was applied in this gaming environment. A robot arm model and a 

workspace were built inside the virtual world including streaming video. In contrast to the 

streaming videos positions in SL, I placed the videos at various places behind the robot arm 

model. The front view of the streaming video was set to always facing the users, so the users did 

not lose any information from the streaming video.  

This Sm environment allows the users to give a command to a 3D model without using 

the avatar (the avatar model could be disabled), which I believe does not greatly affect user 

performance. This environment also allows the 3D robot model to move together with the user 

commands, (this feature was limited in the SL environment). Similar to the SL environment, the 

virtual dot tip pointer was also added to the streaming video surface. The clicking and dragging 

model input was also applied to this Sm environment, by using a mouse as an input device.  

 

Figure 3.3: MR concept built in Simmersion (Sm) 

The pointer movement was in accordance with the tip position on both interfaces. The 

difference between the Sm and SL environments was that the pointer moves as the model moves 

Dot Tip Pointer 
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in the Sm interface, but in SL the script that moves the pointer can only run on completion of 

the user action, so the pointer is updated after the new robot position is defined.  

As mentioned in previous chapters, the virtual camera enables the operator to see from 

any direction. However, the view of the real scene from both cameras is fixed, that is a common 

limitation of remote cameras in a telerobotic application. Most remote cameras in telerobotic 

applications can only pan and tilt, and for ease of implementation of this experiment the 

cameras were rarely repositioned.  

3.3 User Study  

In accordance to one of the aims of this research, which is to evaluate the effectiveness of user 

performance in gaming environments with MR telerobotic interfaces, I conducted two sub-

experiments by using two different gaming engines, SL and Sm. The gaming features available, 

which are described in Section 3.2.1, were explored to apply a MR interface. 

In an implementation of telerobotics to control a large Rockbreaker in an iron-ore mining 

operation, as reported by Duff et al. [5], the operator was required to dedicate more attention to 

performing the tasks than when they were performed on site. In this experiment, I evaluated the 

user performance for two MR gaming interfaces based on the level of attention the operator 

gave to the interface. A description of how information was collected, and how the level of 

attention was categorized is given in detail in sub-subsection 3.3.3. 

Figure 3.4 illustrates an overview of the experiment‘s architecture. The setting was 

designed to emulate, as closely as possible, the telerobotics setting of the real telerobot machine. 

In this experiment, the operator used only a standard keyboard and mouse as input devices to 

move the 3D model and the telerobot. 

 

Figure 3.4: An overview of the experiment‟s architecture: (1 and 3) streaming video 

from the camera, (2 and 4) 3D model white board 
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3.3.1 Apparatus 

The two gaming environments with the MR interface applied were run on a desktop PC on the 

client site, with the following specifications: NVIDIA Quadro FX 1700 for VGA and 2814 MB 

in memory RAM. The display used a standard 19‖ monitor with a resolution of 1280 x 1024 

pixels to run the interfaces. 

In this experiment, a standard keyboard and optical mouse served as the user inputs to the 

interfaces. Unlike the previous work, conducted by Duff et al. [5] and Hainsworth [6], which 

used a gamepad, I chose the standard keyboard and optical mouse because they are suitable for 

use with HSC for clicking and dragging. They are also ergonomic tools, familiar to users and 

compatible with all computer gaming environments. 

Based on a gaming control standard system, I set the four key arrows or ‗A‘,‘W‘,‘S‘,‘D‘ 

as left, up, down, and right respectively; and keys ‗E‘,‘C‘ or ‗Page up‘, ‗Page down‘ for zoom 

in/zoom out to control the virtual camera viewpoint. By holding the ‗Alt‘ key together with a 

‗left-click‘ of the mouse will allow the virtual camera to be repositioned. To control the robot 

arm, ‗left clicking‘ the mouse will allow the robot tip to be moved forward, backward, right and 

left; depressing the ‗Ctrl‘ key and ‗left clicking‘ the mouse will allow the mouse to control the 

height of the tip. 

The remote location consists of a robot arm with an engraver, which was used as a replica 

Rockbreaker telerobot, and two Canon cameras of type VB-C50iR. One camera was placed 30 

cm in front of the centre of the robot‘s workspace and 25 cm above the work surface. The other 

camera was placed 10 cm to the right of the centre of the robot‘s workspace and 25 cm above 

the work surface. Both cameras pointed to the centre of the scene.  

I designed a remote workspace to conduct a simple task by using the robot arm to 

push/move a target object from one position to another. Hence, a white board with 16 symbol 

stars in four different colours (red, yellow, black, and green) were used as a position target 

(shown in Figure 3.1), with these specifications, each symbol star of the same colour was placed 

10 cm apart.  

3.3.2 Participants 

A total of 19 volunteers (12 males, seven females) participated in the experiment, all of whom 

are students in various fields at the university. They range from 18 to 49 years of age (Mean 

22.9, SD = 7.8). All participants were regular computer users with no previous experience in 

this telerobotic scenario system. Nine of them played computer games ―often‖ (more than one 
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hour per day), another six played computer games ―occasionally‖ (less than one hour per day) 

and the remaining four never played computer games. Since a coloured star was utilised as a 

target position, no participants were colour blind. A complete list of the characteristics of 

participants is found in Table 3.1. 

Table 3.1: Characteristics of the participants 

Characteristics Percentage (%) 

Gender 

 Male 

 Female 

 
63.15 
36.85 

Frequency of playing computer games (habits) 

 Often ( > 1 hour/day) 

 Not often (occasionally or never) 

 

 
47.37 
52.63 

Experienced in Second Life (SL) environment 

 Yes 

 No 

 
68.42 
31.58 

Experienced in Simmersion-Mycosm (Sm) environment 

 Yes 

 No 

 
15.79 
84.21 

3.3.3 Experimental Design and Procedure 

The experiment has two task scenarios and participants were asked to use two different 

interfaces. The two tasks were: 

1. Move the robot arm to touch a star of one colour and then to touch another star of the 

same colour. In total I asked the participants to perform the task four times in both 

clockwise and counter-clockwise directions within a time limit of two minutes for each 

direction. The participants received the same information regarding the arm and target 

positions in both the 3D model and streamed video. 

2. Push a rock continuously to four different target positions. Each target position must be 

reached within two minutes. The participants received the same information regarding the 

arm and target positions in both the 3D model and streamed video while the rock position 

was provided by video views only.  

At the beginning of the experiment, participants were given a short verbal introduction 

including a brief description about the interfaces, instruction on how to use the interfaces, and 

the requirements of the tasks. All participants were asked to confirm their understanding of how 

both interfaces worked and the tasks. Prior to the experiment, pre-training for each interface was 

also provided for approximately five minutes. Each participant was randomly assigned to 
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different orders of gaming environments to eliminate any order effect (ten participants had SL 

first then Sm, and the rest had the opposite). The maximum time for each task was set based on 

the pre-trial experiment.  

As an objective measurement of user performance, I recorded the time taken to reach 

each target position. The subjective assessment employed a Likert-scale based questionnaire to 

determine the level of attention to the interfaces by grouping the scale into high and low 

attention. A detailed explanation of the grouping process is given in section 3.4.1. The Likert-

scale based questionnaire was also used to determine the time taken by each participant to 

become familiar with the interface, and their estimation of its user friendliness and performance. 

3.4 Result 

I collected data of two user performance indicators, the task completion time and the total 

commands sent, on MR telerobotic interfaces built based on both gaming environments.  The 

results on user performance are presenting based on two gaming environment, SL and Sm, 

following by further discussion in the next section. 

3.4.1 User Performance Based on MR Telerobot Interface in SL Environment 

In order to evaluate the MR concept in gaming environments, with regard to evaluate the effect 

of user attention on task performance, I divided the participants into two level attention groups. 

Based on data collected from the questionnaire regarding the level of attention applied to the 

interface, the first group consisted of participants who paid a low level of attention to the 

interface, and the second group consisted of those who paid a high level of attention to the 

interface.  

Based on their level of attention, subjects were grouped by low level of attention and high 

attention. Next, the t-test method with equal variances was applied to estimate the Mean 

differences of completion times and number of commands sent between the two groups (Table 

3.2 and Table 3.3)  
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Table 3.2: Mean difference of task completion time between low and high level of attention 

groups by task, SL environment 

 

Level of attention 

Task completion time (s) 

Task 1 Task 2 

Mean SD Mean SD 

Low attention 11.96 1.17 68.73 6.90 

High attention 22.39 3.75 82.45 11.11 

 t = -2.29 

p = 0.03 

t = 1.02 

p = 0.32 

 

Table 3.3: Mean difference of total number of commands sent by participants between low 

and high attention groups by task, SL environment 

 

Level of attention 

Total commands sent 

Task 1 Task 2 

Mean SD Mean SD 

Low attention 1.78 0.27 12.9 0.98 

High attention 2.94 0.86 11.13 1.28 

 t = -1.39 

p = 0.18 

t = 0.79 

p = 0.44 

As shown in Table 3.2, out of all participants who did the first task, those who paid a low 

level of attention to the interface recorded a significantly lower mean completion time than 

those who paid a high level of attention to the interface (p<0.05). Out of all participants who did 

the second task, the group with a low level of attention recorded a lower mean completion time, 

although this difference was not statistically significant, and this could be due to the complexity 

of the task or having incomplete information.  

There is no significant mean difference in the number of commands sent between 

participants who paid a low level of attention and those who paid a high level of attention to the 

interface (see Table 3.3). However, the total number of commands sent for those who paid a low 

level of attention was smaller than that for those who paid a high level of attention in the first 

task but the opposite was true in the second task.  
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Hence, based on two user performance indicators in this SL environment, the completion 

times and the number of commands sent, people who paid low level of attention to the interface 

perform better compared to people who paid a high level of attention. However, in a situation 

where the information of rock position was only received from video (task 2), the results show 

no significant difference between participant who paid low and high levels of attention to the 

interface. 

Also to assess the effect of the level of user attention in the SL environment, a Chi-square 

method was applied to compare the association between the level of attention spent on the 

interface and the level of perceived difficulty for both tasks. (Table 3.4 and Table 3.5) 

Table 3.4: Proportion of self-perceived difficulty in task 1 by level of attention, SL 

environment 

 

Level of 

attention 

Perceived difficulty in task 1 (%) 

χ2 p 
Very 

easy 
Easy Moderate Hard Very 

hard 

Low attention 25.0 50.0 25.0 0.0 0.0 8.88 0.03 

High attention 9.0 9.0 18.0 64.0 0.0 

 

Table 3.5: Proportion of self-perceived difficulty in task 2 by level of attention, SL 

environment 

 

Level of 

attention 

Perceived difficulty in task 2 (%) 

χ2 p 
Very 

easy 
Easy Moderate Hard Very 

hard 

Low attention 0.0 40.0 40.0 20.0 0.0 8.23 0.08 

High attention 7.0 0.0 22.0 57.0 14.0 

 

The data showed that for the first task, there is an association between both variables, 

where those who paid a low level of attention to the interface perceived that the task was easier 

compared to those who paid a high level of attention (p = 0.03). However, for the second task, 

even though fewer participants who paid a low level of attention to the interface perceived the 

task as difficult or very difficult (20%) compared with those who paid a high level of attention 

to the interface (71%), a significant association between both variables was found only at the 

90% confidence level. 
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Based on the questionnaire, all participants paid attention to the information provided by 

the 3D model (Figure 3.5). When performing the first task, where the 3D model and video 

provided the same information (task 1), nearly 80% of the participants paid a moderate to higher 

level of attention to the 3D model. Even in a situation where information on the rock‘s position 

was not provided by the 3D model (task 2), 68% of participants still paid the same level of 

attention to the 3D model. 

 

Figure 3.5: Attention level of participants to the 3D model for the first and second tasks 

using SL environment 

Data from the questionnaire also showed that 74% of participants assessed this SL 

environment with MR interface as user friendly, noting that many did not have prior experience 

with SL or did not play computer games often. 

3.4.2 User Performance Based on MR Telerobot Interface in Sm Environment 

In Sm environment, the t-test method with equal variances was also applied to compare the 

completion times and the number of commands sent between subjects who paid a low level of 

attention and those who paid a high level of attention to the interface. The analysis results for 

this Sm environment are presented on Table 3.6 and Table 3.7. 
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Table 3.6: Mean difference of task completion time between low and high attention groups 

by task, Sm environment 

 

Level of attention 

Task completion time (s) 

Task 1 Task 2 

Mean SD Mean SD 

Low attention 13.06 5.82 48.40 28.46 

High attention 17.27 7.04 54.22 25.95 

 t = -1.41 

p = 0.17 

t = -0.46 

p = 0.65 

 

 

Table 3.7: Mean difference of total number of commands sent by participants between low 

and high attention groups by task, Sm environment 

 

Level of attention 

Total commands sent 

Task 1 Task 2 

Mean SD Mean SD 

Low attention 2.04 0.77 11.95 4.7 

High attention 2.35 0.51 8.92 2.89 

 t = -0.95 

p = 0.36 

t = 1.67 

p = 0.11 

 

As shown in Table 3.6, the Mean of task completion time for the participants who paid a 

low level of attention to the interface was also lower than those who paid a high level of 

attention to the interface. However, this is not statistically significant (p> 0.05). For both tasks 

there was no significant difference in term of the number of commands sent between 

participants who paid a low level of attention and those who paid a high level of attention to the 

interface (see Table 3.7).  

Similar to the results for the SL environment, the number of commands sent for those 

with a low level of attention was also smaller than for those with a high level of attention in the 

first task, but the opposite was true for the second task. Hence, it was indicated that where 

information of rock position was not modelled or was not available in the virtual environment, 
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paying more attention to the interface was necessary to effectively send commands to complete 

the task.  

In assessing more further about the effect of level of user attention in Sm environment, 

Table 3.8 and Table 3.9 shows the result of Chi-square analysis for association between level of 

attention groups and proportion of self-perceived difficulty in task 1 and task 2. 

Table 3.8: Proportion of self-perceived difficulty in task 1 by level of attention, Sm 

environment 

 

Level of 

attention 

Perceived difficulty in task 1(%) 

χ2 p 
Very 

easy 
Easy Moderate Hard Very 

hard 

Low attention 8.33 66.67 25.0 0.0 0.0 15.78 0.003 

High attention 0.0 0.0 14.29 71.43 14.29 

Table 3.9: Proportion of self-perceived difficulty in task 2 by level of attention, Sm 

environment 

 

Level of 

attention 

Perceived difficulty in task 2 (%) 

χ2 p 
Very 

easy 
Easy Moderate Hard Very 

hard 

Low attention 0.0 50.0 40.0 10.0 0.0 7.10 0.07 

High attention 0.0 11.11 22.22 44.44 22.22 

 

Table 3.8 shows that there is an association between both variables in both tasks. It also 

shows that those who paid a low level of attention to the interface perceived that the task was 

easier compared to those who paid a high level of attention (p = 0.003). However, for the 

second task (see Table 3.9), a significant association between both levels of attention was found 

only at the 90% confidence level. The similarity of this result with that was found for the SL 

environment is expected as both environments rely on just one source, for example video to 

track the rock position (there is little difference whether a user pays low or high attention to one 

source of information). 

According to the participant‘s questionnaire responses, in relation to the task where both 

the 3D model and video provided information (Task 1), nearly 80% of the participants paid a 

moderate to high level of attention to the 3D model (a similar result to the SL environment). 
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Where the information on the rock‘s position was only available via video (Task 2), there were 

only 27% of participants who paid a low level of attention to the 3D model. 

 

Figure 3.6: Attention level of participants to 3D model for the first and second task 

using Sm environment 

3.4.3 Comparison of Mean Difference Test of User Performance between SL and 

Sm Environment 

In addition to the analysis above, I performed further analysis to investigate whether there was 

any relationship between the difference of means in user performance between the SL and Sm 

environments. In order to do a comparison, a t-test with equal variances was applied to compare 

the average time taken to complete tasks in both environments. A null hypothesis was defined 

as the time taken to complete the task in the SL interface is not significantly different from that 

in the Sm interface for each task. In other words, the difference between the Means for the two 

groups is zero. 

Table 3.10: Average task completion time measurement for each target position in task 1 

and task 2 

Task completion time 

in 
Task 1 Task 2 

Second Life (SL) Mean = 18.00 s 

SD = 10.87 s 

Mean = 72.34 s 

SD = 25.73 s 

Simmersion-Mycosm 

(Sm) 
Mean = 14.61 s 

SD = 6.45 s 

Mean = 51.16 s 

SD = 26.71 s 

 t = 1.17 

p = 0.25 

t = 2.49 

p = 0.02 
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Table 3.10 showed that at the 95% confidence level, there was no significant difference in 

completion time for task 1 between participants who used the SL and Sm environments (with p-

value more than 0.05). However, it could mean that any difference that may exist is small and 

would require a more powerful test (e.g. more participants) to detect. In contrast, for task 2, the 

completion times of participants who used the Sm environment were significantly shorter than 

those who used the SL environment (Sm: SL = 51.16: 72.34 seconds, p < 0.05). 

Furthermore, based on the responses to the questionnaire, Table 3.11 shows the impact of 

a number of factors on user performance. The Sm environment was considered as somewhat 

easier to learn compared with the SL environment. In terms of user-friendliness, neither gaming 

environment was obviously preferred over the other. The interface performance for the Sm 

environment was assessed as better than that for SL. This also led to a few more participants 

preferring the Sm environment over the SL environment as shown in Figure 3.7.  

  



Chapter 3    Evaluation of Gaming Environments with MR Concept 83 

 

 

 

 

Table 3.11: Participants‟ assessment of time needed to become familiar with the 

environment, user friendliness and general performance on a 5 point scale 

 Second Life (SL) Simmersion (Sm) 

1. Subjective time needed to become familiar with the interface  

Average (std. d.) 2.895 (0.42) 2.831 (0.44) 

 

  

Info: 1 very short, 5 very long 

2. How user friendly is the interfaces? 

Average (std. dev.) 3.211 (0.64) 3.368 (0.49) 

 

  

Info: 1 very easy, 5 very hard 

3. Subject perception of the interface performance 

Average (std. dev.) 3.368 (0.49) 3.684 (0.94) 

 

  

Info: 1 very bad, 5 very well 
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Figure 3.7: Preferred environment based on questionnaire 

Based on spoken and written comments, a number of participants mentioned that they 

experienced difficulty in performing the task when the virtual camera viewpoint was very 

different from that of the actual camera. Several participants commented that when specifying a 

location using the video overlay they found it difficult to place the robot tip where they intended 

in relation to the rock. However, when the operator manipulated the 3D model in the virtual 

world while at the same time observing the video through the tip pointer overlay, they were able 

to place the robot where they intended. In addition, given the higher productivity observed in 

task 2, it was surprising that only 11% more participants preferred the Sm interface over the SL 

interface.  

3.4.4 Dragging versus Clicking 

As mentioned in the prototype implementation section in this chapter, MR telerobotic interfaces 

allowed the participant to give a command using two methods, clicking and dragging. Based on 

my observations of user behaviour during the experiment, most participants tried both clicking 

and dragging when giving commands to push the rock from one position to another. However, 

participants tended to use the clicking method around three times more than they used the 

dragging method, in terms of the average of proportion of total use (clicking: dragging = 

72.03%: 27.97%, with SD = 12.49%).  

I did not conduct further analysis to test the effects of both methods on user performance, 

as the experiment was not designed to test these relationships. However, based on the number of 

commands sent for each method, I was able to determine that clicking was the favourite method. 
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I had already assumed the clicking method was preferable to the dragging method since it 

required less effort in defining the robot‘s target position. 

3.5 Discussion 

The experiment was conducted to evaluate the effectiveness of the MR concept on two gaming 

environments as part of the aims of thesis to develop an application prototype for telerobotics in 

remote mining equipment scenarios by utilising the features of gaming environments. Here, I 

determined task completion time, total commands sent and perceived level of difficulty as the 

outcome variables to indicate the user performance, with level of attention defined as a predictor 

variable. Analysis was conducted to compare outcome variables between the two groups 

categorized based on the predictor variable as well as between the interface, Sm and SL. 

The results analysis on user performance in subsections 3.4.1 and 3.4.2 shows that paying 

a low level of attention to the interface and still being able to perform the task well suggests the 

participant was immersed in the interface and received a sufficient flow of information. This is 

supported by an argument by Chikszentmihalyi et al. [97], which defined immersion as a state 

of concentration so focused as to cause an absolute absorption in an activity. The user-

friendliness of the interface and the enjoyment gained by the operator when interacting with the 

interface created a sufficiently immersive experience for the operator to perform the task well.  

In task 1 where all required information is provided from both sources of information (3D 

model and video views), the experiment showed a statistically significant shorter task 

completion time and a lower perceived difficulty level for participants who paid a low level of 

attention to the interface. Since in task 1 ensuring that all the information needed to complete 

the task was sufficiently well modelled in the virtual world and available without referring to 

the video, the task could be undertaken by only paying attention to the video or to the model. 

My observations suggest that only occasional reference was made to the video which is in 

contrast to the real Rockbreaker interface [5] where the operator‘s attention was predominantly 

directed at the video and the model was mostly unused. This is in line with Adams [98] that 

mentioned the gaming environment is able to simulate reality inside the user‘s mind.  

In contrast, in the task 2 where information about the rock position was only provided 

from the video views and not in the 3D model, which is usually the case in most telerobotics 

scenarios, the experiment did not demonstrate any association between the above variables. This 

might be due to an inadequate number of participants or other aspects of the gaming [98]. Based 

on this result, I suggest that other than being an immersive environment, a good interface should 
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provide all required information to the operator. Building models that contain all the necessary 

information requires an excellent understanding of the task to identify the information that 

needs to be collected from a large number of measureable indicators and the methods for 

collecting the required information. This level of knowledge is required to fully automate the 

task which, if feasible to obtain, obviates the need for telerobotics.  

This experiment showed that when users are immersed in the interface, they did not need 

to pay a high level of attention to the interface, including the display and how to operate the 

interface. Hence, the operators could be more focused on task accomplishment and thus increase 

their productivity. This experiment showed that the participants who paid a low level of 

attention to the interface perceived the task to be easier and were able to complete the task faster 

than those who paid a high level of attention to the interface. 

In comparing user performance in both gaming environments, participants in using Sm 

environment perform better at the 95% confidence level than the SL environment. The main 

difference between the two model environments was manipulation of the model during 

movement was immediately reflected in the video overlay in the Sm environment, but in the SL 

environment the video overlay was updated only after the new location was specified. This was 

particularly useful when the viewpoint of the virtual camera was in a different direction to the 

actual camera, as participants found it difficult to understand how object movements would 

appear from a different viewing direction.  

Another difference is that the participant is represented by an avatar (remote-person 

viewpoint) in the SL environment but not in the Sm environment. This experiment was not able 

to identify a significant difference in the task performance times suggesting that a ‗remote-

person viewpoint‘ or ‗first-person viewpoint‘ did not have a large impact on the ease of usage. 

An avatar is not a hindrance to performance in this situation but is likely to be an advantage to 

interactions between two operators who must work together on a task. Other experiments have 

shown that using a three dimensional input device to manipulate a three dimensional model 

improved task performance, but the improvements will apply equally to either interface tested or 

even an interface using purely video feedback [65]. 

Based on the data analysis, I could say that a good interface will make the user feel 

immersed concentrating on the task flow without having to focus on the interface. This is in line 

with Fong et al [37] who stated that  when an interface is well-designed, it becomes easy to use 

with minimal effort. On the contrary, when an interface is poorly crafted and difficult to 

understand, it becomes burdensome, limiting performance and making work tiresome. Hence 
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the value of an interface is largely determined by how easily and effectively it allows the user to 

perform tasks.  

This experiment also demonstrated that information from the 3D model was utilised by 

all participants to complete both tasks. This disproves my initial speculation that, since the 

operators were more familiar with the real view, they would tend to ignore the information 

provided by the 3D model. Supplying the required information from both sources of 

information (the video and 3D model) in gaming environments also showed that they can be 

used as telerobotic interfaces with minimal effort, and are enjoyable. This is in line with Jeger‘s 

conclusion [99] that understanding the factors that influence a user‘s enjoyment in an immersive 

environment allows improved technology such as gaming environments that are immersive.  

In addition, the use of a combination of a virtual environment and the overlaying a virtual 

object (tip pointer) on the video did not show any negative effect on user performance. A prior 

experience in a gaming environment was not an essential factor for users to perform tasks in 

these telerobotics scenarios. The briefing and training prior to the tasks were sufficient in 

providing all the information required to perform the task well. This experiment demonstrated 

that the MR interface in gaming environments could be used as telerobotics user interfaces. It 

supported my proposition that using the MR concept in gaming environments was suitable as 

telerobotics user interface. 

3.6 Summary of Chapter  

Evaluation of user performance in using gaming environments with a MR concept applied had 

been conducted. Features available on gaming environments were tested and it was found 

suitable to provide information for telerobotic interfaces. Avatars and third party servers‘ 

features on these two gaming environments tested were not important factors that influence user 

performance. Manipulating the model using video overlays was a good method of combining 

video with virtual environments to present information on a telerobotic interface.  

The difference features from the two gaming environments, for example: manipulating a 

model in a virtual environment and seeing the effect on a video overlay was easier to understand 

and more effective than specifying a location in a video overlay directly. The Sm environment 

allowed mouse movements to trigger logic that updated the video overlay as objects were 

dragged, whereas the SL interface only generated events when the dragging of an object was 

completed and this was a key limitation. Therefore, gaming environments that are to be used for 

telerobotics should allow logic to be applied during object manipulation.  
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The results indicate that both gaming environments with a MR concept were suitable for 

telerobotic interfaces where sufficient information to perform the task could be modelled in the 

virtual world, and that they only required a low level of attention to perform the task. However, 

one of the environments turned out to be preferable when completing the task only required 

information from the video but not modelled in the virtual environment. The preferred 

environment provided overlays on the video that were updated live as the model was 

manipulated, whereas the other environment updated video overlays only upon completion of 

the manipulation. 

MR environment by combining two sources of information, virtual model and video, 

were utilised and were able to work in synergy. The results showed that the virtual environment 

was useful in providing extra information from the 3D model via tip pointer overlays on video 

to the participants and assist them to perform their tasks. 

Based on this experimental result, I argue that other than providing a sense of 

immersion, a good interface should also supply complete information. However, as raised by 

the operator in the Duff et al study [5], multiple sources of information could lead to distraction 

for the operator which could negatively impact on task performance. Therefore, the challenge is 

how to identify the required information that is crucial for the operator to perform the task, and 

at the same time provide a sense of the on-site location so that the operator can be immersed in 

the task flow. This experiment showed that MR from the gaming environment has potential for 

facilitating task performance in a restricted type of telemanipulation scenario. 
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Chapter 4  

Telerobotic Gaming Environment with Virtual 

Camera Control Devices 

In chapter 3 showed that a MR environment that uses a virtual model and videos providing 

identical information resulted in better performance than when using different information. In 

more complex telerobotic scenarios, it is a challenge to provide virtual models for all 

physically-remote settings, especially for moving objects with a variety of shapes and sizes (e.g., 

rocks or blocks that serve as target objects). The virtual model environment also provides a 

virtual camera that can be used to explore and collect information from the 3D model freely. 

Hence, this chapter discusses the ability of gaming engines to provide an effective virtual model, 

where the object adapts to the physical setting and investigates advanced use of the virtual 

camera. This chapter shows the possibility of integrating various input devices into gaming 

environments for telerobotic applications. Possible input devices include gamepads and eye-

tracking devices, which control virtual-camera movements. This chapter evaluates the 

effectiveness of these interfaces by closely adhering to the experimental settings of Zhu et al. 

[39] with telerobotic video-streaming interfaces to enable comparison of results.  

4.1 Introduction  

To further evaluate the effectiveness of gaming features as telerobotic interfaces, another 

experiment was conducted. This experiment aims to investigate user performance in gaming 

environments to deliver updated information from its remote settings. The experiment involves 

creating a virtual model which accurately represents numerous physical settings. A physical 

setting contains equipment and a workspace, both of which could be manipulated by an operator. 

The physical setting that I have used for this experiment is still based on the Rockbreaker 

scenario [5]. The replica robot arm will nudge a target (block/rock) towards a hole. 

To maintain the functionality of the virtual model, it is crucial that this experiment takes 

into account the location of the rock as well as the robot arm. The virtual model will only 

require simple implementation of physics as the scanner provides information on the positions 

of the rock/block and arm. Finding the location of the target blocks/rocks and robot arm is quick 

and precise due to the fact that the other settings remain unchanged.  

One of my research goals is to investigate features of gaming environments that can 

accept input devices from current telerobotic interface. In telerobotic systems, input devices 
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play an important role in delivering information from the operator to the remote machine. 

Besides delivering operator commands to the telerobot, input devices can also be used to control 

remote sensors, for example a remote camera sensor. A number of researchers have explored 

several input devices for machine control such as haptic devices [25, 26, 56] and the Wii 

control-pad [65]; while others have examined the use of viewpoint control devices such as head 

tracking, eye tracking or gamepad [39, 70] for streaming video interfaces.  

Hence, this chapter describes an experiment to investigate user performance of gaming 

environments with an improved virtual model using additional input devices for camera control 

functions. In designing the experimental setting, a design model from the research conducted by 

Zhu et al [39] was applied. In their experiment, they compared two input devices, namely the 

gamepad and eye-tracking devices, to control a remote camera for a telerobotic interface with 

full camera view. 

Corresponding to the experimental design of Zhu et al. [39], this used a gamepad and eye-

tracking devices for virtual-camera control. In addition to exploring the use of the virtual 

camera, the experiment made an indirect comparison of user performance between a video 

interface and using different input devices to control the virtual camera in a gaming 

environment. To assess user performance, this experiment examined performance differences 

the two settings. Further details about this experiment are described in later sections. 

4.2 Prototype Implementation 

4.2.1 The 3D Robot Arm Virtual Model  

In previous experiments, the two gaming environments (Second Life - SL and Simmersion - 

Sm) had been used and tested as telerobotic interfaces. Based on the description from Table 2.3 

in Section 2.1.2 regarding features of a gaming environment required to build successful 

telerobotic interfaces, I investigated available gaming engines and concluded Unity3D [49] 

fulfils most of the criteria. Hence, I decided to utilise the Unity3D gaming engine for this 

experiment.   
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Figure 4.1: Remote settings and 3D model of remote settings based on Unity3D game 

engine: (1) Robot arm with engraver attached, (2) Rocks – targets objects, (3) Worksite - 

board with a hole in the middle 

As shown in Figure 4.1, the robot arm model was built by using the Unity3D gaming 

engine. Both the robot arm and the environment models were built to be consistent with the test 

rig. They were calibrated so that the spatial coordinates of the test rig matched that of the model. 

The operator controlled the model in the virtual environment, which sent commands to the 

actual arm to move it to the corresponding position. The position of the arm was represented in 

the gaming environment by a ―ghost‖ object that typically overlaid the model. The two would 

separate whenever the arm could not achieve the requested positions, which could be caused by 

a collision (see Figure 4.2).  

 

Figure 4.2: The “ghost” tip in transparent green 

„Ghost‘ tip 
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4.2.2 Rock Models 

In order to improve virtual modelling information, an additional model of block/rock models 

was added to the virtual workspace. As the block/rocks come in a variety of shapes and sizes, 

and taking into consideration that their positions change constantly, I attempt to overcome this 

problem by creating a default rock model that could be scaled in two dimensions. I created a 

scanner application with the OpenCV [100] library and connected it to an IP camera at a remote 

site to determine the position and size of the rocks (see Figure 4.3). These variables were then 

automatically relayed to the interface to resize the default rock model and place the rocks in 

their respective positions in the virtual workspace. The block/rock models were updated at 

frame rate so the operator could observe movement as it occurred. Figures 4.4 to 4.6 illustrate 

the process of capturing the video, the rock location with OpenCV and the display of the 

resulting rock models in Unity3D.  

 

Figure 4.3: Remote IP camera 



Chapter 4   Telerobotic Gaming Environment with Virtual Camera Control Devices 93 

 

 

 

 

 

Figure 4.4: Rock tracking steps in OpenCV 
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Figure 4.5: Calibration and registering process 
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Figure 4.6: Application and image processing 

4.2.3 Virtual Camera 

The drawback of using streaming video in the remote camera is its limited range of viewpoints. 

However, this limitation does not exist in 3D virtual environments. With the virtual camera (see 

Figure 4.7), I could explore all aspects of the virtual environment freely as it has the basic 

functions of a normal camera but works in a virtual environment.  
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Figure 4.7: The virtual camera in virtual environment can show scenes from any angle 

In a virtual gaming environment, a virtual camera can be controlled by moving, rotating, 

panning and tilting. A virtual camera can be used in a remote-person viewpoint (to the avatar 

body) or a first-person viewpoint. It can be controlled by using the keyboard and mouse to move 

around. Furthermore, any input device such as a gamepad (joystick) can also be applied to 

manipulate the position of the virtual camera. In this chapter, I utilised a gamepad (joystick) and 

eye-tracking device to control the movement of the virtual camera.  

Furthermore while in everyday life it is very natural to use our eyes as a sensor to 

perceive the depth of three dimensional objects, it is sometimes difficult to perceive the exact 

height tip position with our eyes from a two-dimensional computer screen. There are two 

solutions available for use within the virtual environment. The first is using light and shadow to 

provide information of the tip position in relation to the board. Another solution is to use an 

additional object as a helping line to allow me to create a vertical line from the tip to the board 

to measure the height of the target position (see Figure 4.8). 
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Figure 4.8: The helping line model (vertical line) to show the height tip position 

4.3 User Study 

As mentioned in Section 4.1, this experiment used the experimental design from previous work 

[39]. However, the main objectives of both experiments are slightly different. This experiment 

aims to analyse user performance of all features available from gaming environments including 

the control device for the virtual camera. On the other hand, Zhu et al‘s experimental goal is to 

compare the performance of input devices while controlling a remote camera in the telerobotic 

scenario. Even though the two experiments have different objectives, the procedure and scenario 

designed for Zhu et al‘s experiment is still relevant for this experiment design. It also allowed 

me to explore whether user satisfaction for telerebotic interfaces that use gaming environments 

was similar to that for Zhu et al‘s telerobotic interface which used only full video. The 

following sub-sections describe in more detail the experimental design. 

4.3.1 Apparatus and Implementation 

In this telerobotics scenario, two experiment settings were used - the remote setting and the 

local user setting. In the remote setting environment (see Figure 4.9), as already mentioned in 

Section 4.2.1, I used a Phantom Premium (V1.5) haptic device [101] as a telerobot. I designed a 

wooden board with a hole in the middle and some rocks which served as tools for defining the 

task. Then I used one camera, which always pointed to the board, as a worksite plane. This 

camera was used to ascertain the rocks‘ size and position with an OpenCV application as 

described in Section 4.2.2. All the devices were connected through a server to transmit data to 

and from the user interface. 
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Figure 4.9: Remote setting test rig: (1) Robot arm from Phantom Premium V.1.5 haptic 

device, (2) Board with a hole in the middle, (3) Rocks – targets objects, (4) Camera. 

For the user setting environment (see Figure 4.10) I used a Dell Precision Work Station 

with a Windows XP operating system and a standard 19‖ monitor to execute the gaming 

environment. I utilised a FaceLAB 4.5 eye tracking application as an input device for the 

viewpoint method. As I did not develop this application myself, only the FaceLAB data was 

available for use in the gaming environment. In addition, some anomalies were found in the 

application of the data in each frame of the gaming environment. The stereoscopic cameras, as 

input sensors, were only able to work with a minimum 60Hz frequency. However, it was 

difficult to apply the large volume of data to each frame. To mitigate this issue I added a 

function to select a number of frames (i.e. 12 frames) to be treated, and then checked the 

placement of the eye gaze data on those frames. Subsequently I compared each data point and 

removed the anomalies, resulting in one data point for every 12 frames. This function assisted in 

minimising the jumpiness of the viewpoint control. I also used a Logitech Dual Action gamepad 

as an input device to control the movement of the robot arm model for all participants. The 

gamepad was utilised as a tip and viewpoint method, as shown in Figure 4.11. It is also robot or 

camera centric in terms of its direction of movement as shown in Figure 4.12. 
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Figure 4.10: User setting: (1) Unit PC with situated virtual application running on it, (2) 

FaceLAB V.4.5 eye tracker software and sensors, (3) Logitech Dual Action gamepad 

 

 

Figure 4.11: Mapping gamepad control: (1) Left – Viewpoint movement, (2) Right - TIP 

movement 
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Figure 4.12: Robot or camera centric 

Figure 4.13 illustrates the architecture of the whole system. For communication purposes, 

I set up a LAN to link the remote and user sites. During the initial system development, I 

applied TCP/IP as a connection protocol but it caused delayed data transmission thus affecting 

the movement of the remote device. Consequently, I switched to a UDP protocol that functioned 

well in the system and removed the need to verify receipt of data. Communication was tested 

between the client and the server as command data and feedback data. 

 

Figure 4.13: Telerobotics system with virtual application interface 
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4.3.2 Participants 

In this experiment, I tested the interface with a total of 12 participants, consisting of eight males 

and four females. The characteristics of all participants are shown in the table below: 

Table 4.1: Characteristics of the participants 

Characteristics Percentage (%) 

Gender 

 Male 

 Female 

 

66.7% 

33.3% 

Range of ages Range: 

21 – 49 years old 

(Mean = 27.5, SD = 7.09) 

Background University educated 

Regular computer users 100% 

Experience with gamepad 100% 

Experience with eye tracking  25% 

Prototype background knowledge None (0%) 

4.3.3 Experimental Design, Task and Procedure 

In this experiment, the gamepad (joystick) was used as the primary input device to control the 

robot‘s movement, and participants were asked to control the viewpoint using the two input 

devices (gamepad and head/eye tracking). The primary reasons for testing the interface were: 

(1) to demonstrate the ability of gaming features in providing an effective virtual model which 

accurately represents the physical setting, (2) to assess user performance of this gaming 

environment which is based on the experimental design and scenario of Zhu et al‘s 

experiment[39], and (3) to test the feasibility of integrating a gaming environment with two 

models of input devices for virtual camera control. 

In general, the aim of Zhu et al‘s experiment [39] was to test different methods of camera 

control for telerobotic interfaces by utilising a streaming video interface. I used a similar set of 

user performance variables as Zhu et al‘s experiment. I categorised the gamepad as manual 

interaction and the eye-tracking device as natural interaction. In order to offset the impact of the 

order effect, the order at which the two input devices were used by each participant was random. 

Prior to the experiment, the participants received a six to ten minute introduction 

including a brief description of the system, the research objective, and how to perform the task. 

The main task for the participants was to remotely control the input device through the virtual 
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interface to control both the robot‘s movement and the camera viewpoint with the aim of 

sinking the rocks into the hole. In this experiment I also applied a ―nudge function‖ [39] to push 

the rock into the hole. Each participant had a total of three minutes to perform the task with each 

input device. Then each three-minute time slot was further divided into three separate (60-

second) operation periods in which participants were asked to conduct the same experiment 

procedure. In addition, a further three to five minutes were required for each participant to 

recalibrate the eye-tracking input device prior to use.  

The initial viewpoint was set to the zoom position to nudge the rock. The participants 

were asked to use the zoom in/out function on the gamepad or to move their head 

forward/backward to search for each rock‘s position. All participants were asked to push the 

rock with the nudge function, with each nudge and rock sunk recorded as objective data for user 

performance indicators. If there was no nudge in pushing the rocks, then the rock was not 

recorded as being sunk. After the participants completed the formal experiment, I sought 

feedback regarding the performance of the user interface through a questionnaire that used a 

seven-point Likert-scale from one (strongly disagree) to seven (strongly agree), and a short 

interview. Both five-point and seven-point scales are common scale range in Likert-scale.  A 

seven-point Likert-scale was used instead of the five-point scale for the rest of experiments to 

obtain a greater variance in user response. 

4.4 Results 

To evaluate user performance using a gaming environment with improved virtual modelling and 

two input devices for virtual camera control, two user performance indicators, the total number 

of rocks sunk and the total number of nudges, were recorded. The results are presented in two 

sub-sections based on objective and subjective data analysis. Additional discussion is also 

presented to determine similarities and differences between  this experiment and Zhu et al‘s 

experiment [39].     

4.4.1 Objective Measurement 

The user performance indicators recorded are the total number of rocks sunk and the total 

number of nudges. Table 4.2 shows the mean user performance in using the gamepad and eye-

tracking input devices, for virtual camera control. 

 

 



102 4.4 Results Chapter 4 

 

 

 

Table 4.2: Difference between the 2 input devices for the mean number of rocks sunk and 

the mean number of nudges  

Objective measurement Input devices for virtual camera 

control 

t P 

Gamepad 

Mean (SD) 

Eye-tracking 

Mean (SD) 

Total number sunk 10.67 (4.94) 11.75 (4.99) -0.534 0.598 

Total number of nudges 52.17 (23.73) 58.00 (23.18) -0.636 0.531 

 

Based on Table 4.2, gaming environments that use eye tracking devices have a larger 

total average number of rocks sunk and nudges compared to those that used gamepads. 

However, based on the t-test, there is no significant difference in user performance between the 

two input devices (rocks sunk: t = -0.534, p = 0.598; nudges: t = -0.636; p = 0.531).  

A one-way analysis of variance or ANOVA was also used to test whether the average 

number of rocks sunk and average number of nudges differ between the two input devices and 

the participants‘ characteristics. The results are shown in Tables 4.3 and Table 4.4. 

Table 4.3: ANOVA test of the average number of rocks sunk (model) differs between input 

devices and subject characteristics 

Source Sum of 

Square 

Degree of 

freedom 

Mean 

square 

F p 

Model 496.5 10 49.65 12.07 0.0000 

      

Devices  

(gamepad & eye-tracking) 

7.04 1 7.04 1.71 0.213 

Subject Characteristic      

Gender 4.5 1 4.5 1.09 0.314 

Age 287.09 6 47.84 11.64 0.0001 

Exp. with computer 0 0    

Exp. with gamepad 4.5 1 4.5 1.09 0.1346 

Exp. with Eye-tracking 0 0    

Exp. with experimental settings 133.33 1 133.33 32.42 0.0001 

      

Residual 53.458 13 4.11   

Total 549.958 23 23.911   

r-squared = 0.902 Adj r-square = 0.82   
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Table 4.4: ANOVA test of average number of nudges (model) differs between input 

devices and subject characteristics 

Source Sum of 

Square 

Degree of 

freedom 

Mean 

square 

F p 

Model 11280 10 1128 14.61 0.0000 

      

Devices  

(gamepad & eye-tracking) 

222.04 1 222.04 2.88 0.1138 

Subject Characteristic      

Gender 480.5 1 480.5 6.22 0.026 

Age 7414.02 6 1235.67 16.00 0.0000 

Exp. with computer 0 0    

Exp. with gamepad 72 1 72 41.45 0.35.19 

Exp. with Eye-tracking 0 0    

Exp. with experimental settings 3201.33 1 3201.33 41.45 0.0000 

      

Residual 1003.958 13 77.227   

Total 12283.95 23 534.08   

r-squared = 0.918 Adj r-square = 0.855   

 

As shown in Table 4.3 and Table 4.4, there is no significant difference in the mean of the 

dependent/outcome variables (total number of rocks sunk and total number of nudges) between 

the two input devices, with F(1,13) = 1.71, p = 0.213(r = 0.95) for the total number of rocks 

sunk and F(1,13) = 2.88 , p = 0.11 (r = 0.95) for the total number of nudges. However, the 

dependent variables were found to differ significantly among the subject characteristics such as 

gender, age and experience with the experimental settings (p < 0.05).  

Further analysis was also conducted to determine the trend between these two 

performance indicators. I analysed the variables in three sequential operation periods. Figure 

4.14 below shows the average number of rocks sunk and average number of nudges for each 

operation period. An upward trend was observed in both user performance indicators for both 

input devices over the three operation periods which reflect that user performance increases 

over time following the start of a new task 
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(a)                                                             (b) 

Figure 4.14: Mean number of rocks sunk (a) and number of nudges (b) for each 

operation period. 

4.4.2 Subjective Measurement 

The results from a feedback questionnaire regarding user experience of the gaming 

environments are shown in Figure 4.15. 
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Figure 4.15: Subjective measurement variables 

Based on the self-administered questionnaire, most participants gave positive feedback on 

the interface performance. However, there were some suggestions to improve the virtual 

interface design in relation to the instability (shaking) of the rock position feedback and the 

uncomfortable sitting position when using the eye tracking device. 
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4.4.3 Additional analysis to determine similarities and differences in user 

performance between this experiment and Zhu et al‟s experiment [39]. 

 

While this experiment has a different research objective compared with Zhu et al‘s experiment 

[39], the design and procedure were the same. This section highlights the similarities and 

differences between the results of these two experiments.  

Firstly, the experiments have similar subject characteristics in almost all criteria. 

Secondly, similarities are also found in the total number of rocks sunk and the total number of 

nudge variables. Both experiments show that the eye-tracking device resulted in a larger number 

of rocks sunk and larger number of nudges compared to the gamepad. However, unlike in Zhu 

et al‘s experiment result [39],  this difference was not statistically significant. Figure 4.16 shows 

the total number of rocks sunk in both experiments and Figure 4.17 shows the total number of 

nudges in both experiments. 

 

 

Figure 4.16: Total number of rocks sunk on a full video interface* and a gaming 

environment interface using two different input devices (*data from [39]) 
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Figure 4.17: Total number of nudges on a full video interface* and a gaming 

environment interface using two different input devices (*data from [39]) 

Using a gamepad in gaming environments show a larger average number of rocks sunk 

compared to that  in a full video interface, but the opposite is true for using eye-tracking. 

However, statistical analysis could not be applied as I do not have access to raw data from 

Zhu‘s experiment [39]. However, by simply eyeballing the results shown in Figures 4.16 and 

4.17, the gaming environment was able to sink a rock into the hole with an average of five 

nudges for both input devices, compared with six to seven nudges for the streaming video 

interface. This suggests that gaming environments probably require less action to achieve the 

same result compared to the full video interface. 

Based on the user performance analysed in three sequential operation periods, both 

experiments show a similar trend that reflected an increase in user performance over time 

following the start of a new task.    

4.5 Discussion  

Based on the results recorded in Table 4.2, two user performance indicators (i.e. the number of 

rocks sunk and number of nudges) recorded similar means for both the gamepad and eye-

tracking input devices. This result is supported by the fact that there was no statistically 
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significant difference between the two devices. Hence I argue that both input devices are 

suitable in gaming environments in telerobotic scenarios.  

Analysis was also conducted to determine the difference in user performance by the 

subjects‘ characteristics. Statistically significant differences were observed in gender, age and 

experience in the experimental settings. Hence it could be concluded that the user performance 

indicators is affected by the split in gender, variance in participants‘ age and their knowledge of 

the experimental settings. However further analysis is needed to understand why these variables 

influence performance.   

Based on user performance data recorded in three sequential operation periods, the 

participants were seen to show gradual improvement in subsequent operation periods. Hence I 

suggest that gaming environments and virtual camera control devices are easy learning 

environments, and through task repetition operators are expected to perform better over time. 

Moreover, the use of different viewpoint methods did not have a large impact on the 

performance of the task because the ideal condition was when a fixed camera view was used. I 

expected that rotation about the tip would be better than panning but this experiment showed 

that there was no significant difference.  

Based on the questionnaire feedback, most participants viewed the interface performance 

positively, and believed the virtual environment could improve their work efficiency. After the 

experiment, most participants commented that when using the gaming environment for this 

telerobotic scenario, the interface proved user friendly, easy-to-learn and fun. Based on Fong 

[37, 38], interfaces which users find gratifying correlate to improved telerobotic task 

performance.    

4.6 Summary of Chapter  

In this experiment, I observed that the gaming environment can be improved by virtual 

modelling to represent physical settings. I also noted that the gaming environments have 

features that can be integrated with a number of virtual camera control devices without affecting 

operator performance.  

After evaluating the user performances, I argue that the gaming environment is suitable 

for applying two input devices for virtual camera control in a telerobotic scenario. These results 

strengthened my argument that the gaming environment and telerobotic interfaces share many 

similarities and therefore can be regarded as being in the same domain. 
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 This experiment showed that in contrast to streaming video interfaces only, the gaming 

environment with MR can model a remote setting effectively, provide real-time feedback of 

moving objects (robot and rock), have the freedom of viewpoints from the virtual camera, and 

provide other useful information (i.e., line-helper model, helper text or prediction position). The 

merits of video views in MR gaming environment plays important role in completing the 

missing information from the 3D model. However, based on user feedback in the questionnaire, 

the rock model should be improved to achieve better performance, especially for more complex 

remote settings. 

This experiment has conducted further evaluation of gaming environment features that 

enhance its suitability as a telerobotic interface. As mentioned in Chapter 1, one of the issues of 

the telerobotic system is its communication latency. According to Domingues et al research 

[75], latency in telerobots can be minimised by utilising predictive display modelling in MR or 

VR environments. Another argument by Fong et al [37] mentioned that supervisory control 

interfaces are well suited for applications which must work with low bandwidth communication 

or in the presence of high latency. The next chapter describes an investigation on features of the 

gaming environment, which can be applied to the human supervisory control (HSC) concept. 
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Chapter 5 

Human Supervisory Control in Gaming 

Environments 

Previous chapters have demonstrated one of the research goals in evaluating user performance 

using gaming environments with MR interface for a telerobotic scenario. This chapter discusses 

another goal of this research in improving human machine interaction for telerobotic scenario 

by utilising the human supervisory control (HSC) concept in gaming environments. In this 

chapter, HSC is used as an alternative to direct/manual control that aims to reduce human 

operator involvement and to, implicitly, assist in minimising the latency effect. This chapter 

investigates components and features of gaming environments, which are suitable to apply HSC 

for telerobotic interfaces, especially for the HSC planning concept. This chapter also describes 

an experiment to assess user performance using gaming environments with the HSC concept 

applied. To provide further evaluation of user performance with the HSC control model, a sub-

experiment was also conducted to compare user performance between HSC and direct/manual 

control. 

5.1 Introduction 

Human supervisory control (HSC) is designed to reduce operator involvement and may 

substitute and address the deficiency of direct/manual control [2, 89, 90]. According to the 

description of HSC in Section 2.3, HSC has five generic functions, namely: planning, 

monitoring, intervening, teaching, and learning. In undertaking planning, monitoring and 

intervening processes, an operator is required to have a good understanding of the information 

provided by interfaces. Hence, the role of MR interface in providing complete information is 

important to support the functionality of the HSC concept, especially in delivering a 

combination of feedback, present and predicted future information. 

Through a more detailed evaluation of the planning process, I considered that HSC allows 

the operator to plan the movement by defining a series of commands to the telrobot. As 

mentioned on Section 2.3.3, there are two possible response movement models based on this 

series of command processes, entitled Adaptation and Queue response models. Hence, an 

investigation on gaming features was required to apply these response models.  
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This chapter describes an investigation on gaming features followed by an experiment to 

evaluate user performance when using HSC response movements from a series of input 

commands in a gaming environment. The key questions of the experiment were: 

 Based on the completion time and success rate, how do the performances of the 

Adaptation and Queue response movement models compare? 

 Could visual planning information improve the operator performance in task 

completion?  

 Would the HSC model be able to replace direct/manual control for this 

experiment design task? 

 How does the use of the virtual camera, stop function, and virtual plan/feedback 

information affect the user outcomes? 

Before I explain the experiment in more detail, the next section describes a number of 

improvements to prototype implementation based on the previous experiment, including 

implementation of a number of gaming features to apply the HSC concept. 

5.2 Prototype Implementation 

In accordance with the previous experiment an interface was developed with a gaming engine 

called Unity3D. A 3D model of a robot arm was built into this gaming environment to show its 

position. In applying MR, I embedded streaming video from the IP camera, which was installed 

at the remote location, inside the 3D model interface. A virtual object, a dot tip pointer, overlaid 

the surface of the videos to show the predicted position of the tip model on videos. The MR 

telerobotic interface built on Unity3D can be seen in Figure 5.1. Further information regarding 

the experimental setup is given in sub-subsection 5.3.1. 
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Figure 5.1: MR concept built in Unity3D 

Based on telerobotics architecture, described in Section 2.1.3, I improved the closed loop 

client server communication between the operator–interface (as client) and the server/remote 

machine (as manipulator), which is illustrated in Figure 5.2. 

 

Dot Tip Pointer 

 



114 5.2 Prototype Implementation Chapter 5 

 

 

 

F
ig

u
re

 5
.2

: T
elero

b
o
tics sy

stem
 

 

 



Chapter 5    Human Supervisory Control in Gaming Environments 115 

 

 

 

 

As shown in Figure 5.2, by applying HSC concept, this telerobotic interface provides: 

previous information (feedback), current information (monitoring), and future information 

(planning). In the situation where the tip of robot arm becomes stuck before reaching the target 

positions, or where the human operator needs to change/cancel the robot‘s movement, they can 

override the process instantly. There are a number of features available through this system to 

enhance the performance of HSC. 

5.2.1 Stop Functions 

In emergency situations, the system provides a number of functions that can be used to override 

the current process and take control of the movement. These functions are temporary stop (TS) 

and full stop (FS). Firstly, the temporary stop (TS) is a function which works by suspending the 

predicted model and robot‘s movement temporarily by holding a button, and allowing them to 

continue moving to the target only when the operator releases the button. This function allows 

the operator to suspend movement while they evaluate the situation. Secondly, the full stop (FS) 

function works by stopping the robot‘s movement and at the same time cancelling all 

subsequent targets. 

5.2.2 A-star Path Tracking 

This designed telerobotic interface represents detected blocks as 3D models each of which can 

be defined as a target block. However, it was designed such that only one block can be selected 

as a target object at any given time. When a model block was selected as a target, the remaining 

blocks would serve as obstacles to the manipulator. Accordingly, a path finding algorithm, as 

already described in Section 2.3.2, in the form of an A-star path finding algorithm function was 

added into the system to create paths that allow the robot to avoid the obstacles automatically. 
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Figure 5.3: Path generated from the A-star algorithm in: (a) selected block, and (b) 

unselected block model 

5.2.3 Virtual Objects for Planning/Feedback Information 

The telerobotic interface allows the computer to provide virtual objects for prediction, planning 

and feedback information (which also known as a predictive display [75]). According to LiSA 

model assistance, described in Section 2.3.1, these virtual objects can be utilised for planning, 

monitoring and intervening in processes. Below are four examples of the virtual objects which 

have been used to improve this MR gaming environment for a telerobotic interface (see Figure 

5.4). In this interface I reduce a number of video views into one to reduce communication load 

between the interface and the telerobot. This is also applied to evaluate the usage of these 

additional virtual object features.    

a 

b 
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Figure 5.4: Visual information: (1) green circles, (2) shadow of tip, (3) line path, and (4) 

overlay pointer  

A ―green circle‖ object serves as planning information to help the operator by showing a 

series of target positions. It appears when a target position for the robot is defined. Each green 

circle had a diameter of 4 mm indicating that the error tolerance for the model/robot to reach the 

destination target was 0 – 2 mm. Another virtual object that was used was the ―shadow of tip‖. 

This gave a prediction of the position of the manipulator model and replicated the shape of the 

robot arm tip model by using a transparent texture. The ―line path‖ was another virtual object 

that pointed towards the shadow of the tip object to predict the path of the manipulator model. 

The last virtual object was the ―overlay pointer‖. It was presented as a cross symbol and showed 

the predicted position of the tip on the video display. The overlay pointer applied the concept of 

AR by enhancing virtual object overlays on the live video. In order to analyse the performance 

of this visual planning information, each response movement model (Adaptation and Queue) 

was tested with and without this feature.  

5.3 User Study  

The objectives of this experiment were: (1) to analyse the performance of two movement 

response models by using additional virtual information in the planning and monitoring process; 

and (2) to analyse features that might influence user performance while using the two movement 

response models of HSC. In order to test the reliability of HSC in substituting the direct/manual 

control, I also attached a sub-experiment to evaluate user performance as a comparison to the 

HSC. 

1 2 

3 

4 
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5.3.1 Experimental Setup 

Based on the results from the previous experiment, I determined that the Unity3D gaming 

engine offers a sophisticated environment compare to the other two. It allowed me to use more 

gaming features to build the telerobotic interface with MR and HSC concepts applied. Similar to 

the setup of the previous experiment, I set this system into local and remote areas. 

Remote  Machine

2 x PTZ  Cameras

Remote  Workspace

And 

Block Targets

Mixed Reality

Interface

Input Devices:

Keyboard & Mouse

Human Operator

 
Figure 5.5: Experimental setup for third experiment 

 

As shown in Figure 5.5, the local area consists of a personal computer connected to a 32‖ 

monitor Dell with a resolution of 2560 x 1600 pixels as a display. A standard keyboard and 

mouse were used as the input devices to deliver the user‘s commands through the interface. A 

telerobotic interface with MR environment and HSC was applied in this local machine. 

A computer server was located at the remote area; which delivered information between 

the user machine and the remote manipulator. A 3-DOF (degree of freedom) modified robot arm 

served as the remote manipulator. The robot arm was located on a stage with a hole representing 

a dump-bin in the middle of the workspace. Three blocks were provided on the workspace stage 

as objects targeted for sinking into the hole. Similar to the previous experiment, the IP cameras 

(external camera) were installed in static positions at the front and side of the telerobot and 

facing the workspace stage. However, in this experimental scenario, to apply MR and reduce 

distraction from multiple camera views, only the front camera was utilised and embedded inside 

the telerobotic interface. In addition to providing streaming video to the interface, the camera 

also connected to the server to serve as a tracking sensor and provide updates on the position of 

the target objects through image analysis. 

The interface used for the experiment provides information from both the camera view 

and the 3D model. The embedded camera provides information regarding what is really 

happening at the remote location before and after giving commands to the telerobot; it provides 

any additional information if any is missing from the 3D model view (e.g. different number or 
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position of the rocks due to errors of the tracking system). In this experiment, I set the initial 

view of the virtual camera to that of the external camera and make this the default view for each 

participant. The participant is expected to be able to perform spatial transformation using this 

information. The participant can change the view of the virtual camera to see more detail about 

the remote environment.  

Prior to the start of the experiment, all participants were given a brief description of the 

goals and purpose of the experiment, how to conduct the experiment, and the experimental 

setting, including information concerning the telerobotic interface and the location of the 

external camera.  

5.3.2 Participants 

The experiment was conducted with a total of 24 participants. They were selected by using 

experiment driven sampling with a snow-ball sampling method. The characteristics of all 

participants can be seen in the table below: 

Table 5.1: Participants characteristics 

Characteristics Percentage (%) 

Gender 

 Male 

 Female 

 

79% 

21% 

Range of ages Range:  

16 – 37 years old 

(Mean = 22.75, SD = 5.75 years old) 

Background University educated 

Computer use 

 Less than 7 hours/week 

 Between 7 and 21 hours/week 

 More than 21 hours/week 

 

13% 

26% 

61% 

Computer gaming play 

 Less than 7 hours/week 

 Between 7 and 21 hours/week 

 More than 21 hours/week 

 

50% 

25% 

25% 

Prototype background knowledge None (0%) 
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5.3.3 Experimental Design and Procedure 

To explore the capabilities of gaming features in implementing HSC and providing continuity 

with previous experiments, I applied HSC input commands using a ‗click‘ function. This 

function was combined with a virtual object, described in subsection 5.2.3, to help the operator 

in planning. I refer to these virtual objects as ―planning information.‖ 

Based on the model of response movement for multi-command input, described in 

subsection 2.3.3, I grouped the experiment into: (1) Adaptation model with planning 

information (Adaptation-info); (2) adaptation model without planning information (Adaptation-

non-info); (3) queue model with planning information (Queue-info); and (4) queue model 

without planning information (Queue-non-info).  

For all four, the task was to choose a block and push it into a hole following a path 

specified by an arrow. The initial robot-arm and block positions were the same for each 

participant. All participants were asked to select one block by clicking on its model. They were 

allowed to change their selected block by clicking on another block model which would 

automatically assign the remaining blocks as obstacles. 

The participants were randomly assigned to model-test sequences. Participants were 

given a 10-15 minutes briefing on the aims of the experiment and the differences between the 

models. The task scenario was also provided to the participants prior to the experiment. No 

practice or trial was allowed prior to the experiment.  

A maximum time of 180 seconds was allocated to perform the task for each model. 

During the experiment, the extent to which the user followed the virtual arrow path and whether 

they sank the block were recorded as the variable outcomes. A successful result was achieved 

when the participants followed the path assigned and sank a block into the hole during the time 

allocated. Actual completion times were also recorded when the participant sank the block in 

the hole before 180 seconds. In addition, the total number of commands given in manipulating 

the robot arm and virtual camera, and the total usage of stop functions for each model 

performance were recorded automatically by the system. These variables were noted as user 

performance indicator in analysing the performance of each model.  

After completing the requested task, the participants were also asked to fill in a 

questionnaire using a seven point Likert-scale and answer open-ended questions. These were 

used as subjective measurements. 
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5.4 Results  

5.4.1 Objective Measurement (Distribution Proportion, Logistic Regression, F1-

Score Analysis) 

Task completion time was the first user performance indicator recorded in the experiment. The 

average successful completion time across the four models was 77.35 seconds (SD = 38.41 

seconds) with further detail for each model shown in Table 5.2. 

Table 5.2: Task completion time for a successful result using each model tested  

Model tested Mean SD Min Max 

Adaptation-info 91.49 s 39.61 s 32.6 s 150.7 s 

Adaptation-non-info 73.75 s 36.58 s 30.2 s 163.0 s 

Queue-info 75.15 s 37.66 s 19.4 s 165.1 s 

Queue-non-info 71.41 s 27.55 s 27.8 s 125.4 s 

 

This experiment showed that there was a relationship between the probability of success 

and the completion time with the coefficient correlation of -0.62. To further study this 

relationship, I grouped the completion time into three groups, 0-60 seconds, >60-120 seconds, 

and >120-180 seconds. As shown in Table 5.3, there was a significant relationship (p = 0.000) 

between completion time and the result of the experiment (fail or succeed). 

Table 5.3: The distribution proportion of the results of the experiment by completion time 

Task Completion time Result of experiment χ2 p 

Fail N (%) Succeed N (%) 

0 – 60 s 2 (5.88) 32 (94.12) 35.29 0.000 

>60 s – 120 s  0 (0.00) 34 (100.00) 

>120 s – 180 s  15 (53.57) 13 (46.43) 

 

Logistic regression was performed to analyse this relationship in more detail, and the 

results showed that participants who took longer than 120 seconds to complete the task have a 

much lower probability of success compared to those who completed the task more quickly (OR 

= 0.05, p = 0.000). Detailed logistic regressions for each model are shown in Figure 5.6. Based 
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on the shape of the curve for each model tested, the probability of success after 120 seconds has 

a tendency to decrease, and it can be projected that when the user completes the task with a 

longer time they will likely fail.  

 

Figure 5.6: Logistic Regression showing the relationship between the probability of 

success and completion time 

In this experiment, I recorded two variables, ―path‖ and whether the block was ―sinking‖, 

as indicators of result performance. Based on these variables, the result performances were 

grouped into ―both true‖ which indicated the path and sinking were successful, ―true sunk‖ 

which indicated the path failed but sinking was successful, ―true path‖ which indicated that the 

path was successful but the sinking failed, and ―both false‖ which indicated path and sinking 

both failed. Please see scatter plots in Figure 5.7 for detailed performance results. 
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Figure 5.7: Scatter plot – performance and completion time for four supervisory models 

tested 

In order to measure the effectiveness of user performance of each model tested, the F1-

score was used to test the harmonic Mean between Position Predictive Value (PPV) and 

sensitivity variables. The F1-score can be interpreted as a weighted average of these two 

variables, with the best value at one and worst score at zero. The F1-score is derived from the 

traditional Fβ-score equation based on Rijsbergen’s effectiveness measure     [102], which can 

be seen as follows: 

     (
 

   
 

   

           
)
  

     Equation (5.1) 

Their relationship is              –    , where   
 

     , then 

               
                

                  
    Equation (5.2) 

Where      , the equation becomes: 

        
                

                
     Equation (5.3) 

The F1-score is often used in the field information retrieval and classification task 

(context) to measure test accuracy. In using the F1-score method, I fitted this model experiment 
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into a classification task (context) model approach. In this model, I tried to measure how the 

participants could follow the instruction using the interfaces with different model response and 

information feedback (user performance for each model interface tested). Based on the results of 

user performance, I categorised the task result to fit into the group classification for the 

classification task (context) model, see Figure 5.8. 

Condition

Following 

The Path

Positive

Negative

True Positive

False Negative

False Positive

True Negative

Positive Predictive Value (PPV) =

Σ True Positive

Σ Test Outcome Positive

Negative Predictive Value (NPV) =

Σ True Negative

Σ Test Outcome Negative

Sensitivity =

Σ True Positive

Σ Condition Positive

Specificity =

Σ True Negative

Σ Condition Negative

Positive Negative

Condition Sinking The Block

 

Figure 5.8: The relationship between task results 

I categorised the results in the following way: the correct path and a sunk block was 

regarded as a correct result (true positive); the incorrect path with a sunk block was regarded as 

an unexpected result (false positive); only the correct path regarded as a missing result (true 

negative); and if both the path and sinking were incorrect it was regarded as an absence of result 

(false negative). Using Equation (5.3) and the relationship between task results in Figure 5.8, 

the F1-score becomes: 

 

        
               

                                              
 Equation (5.4) 

 

Then by using this Equation (5.3) I calculated the value of PPV and the sensitivity for 

each model and measured the F1-score or Equation (5.4) to measure the F1-score directly (see 

Table 5.4). 
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Table 5.4: F1-score for each model tested 

Model tested N True(+) False(+) False(-) True(-) PPV Sensitivity F1-score 

Adaptation-info 24 20 1 3 0 0.95 0.87 0.91 

Adaptation-non-info 24 19 2 3 0 0.90 0.86 0.88 

Queue-info 24 21 1 2 0 0.95 0.91 0.93 

Queue-non-info 24 19 1 3 1 0.95 0.86 0.90 

5.4.2 Evaluation of the impact of features usage in relation to variable outcomes  

As the next step in this analysis, the impacts of the features available in this system were 

evaluated based on each variable outcome (success rate, following path, and sinking the target). 

I focused on three features in this analysis: the use of a virtual camera, stop function, and 

additional planning information. 

By using    distribution analysis, the use of the virtual camera in this experiment 

affected one or two variable outcomes with statistical significance on several group models 

tested. 

Referring to Table 5.4, the Mean use of the virtual camera feature is 4.39 usage (SD = 

5.46 usage). Then I categorised the use of the virtual camera into three different groups (never 

 0 usage, normal  1 – 10 usage, and over use  more than 10 usage). The range of normal 

usage was grouped based on the range of the Mean and standard deviation, that is, ten times is 

the closest integer value to the Mean plus one standard deviation. 

The independent variables i.e. the success rate, whether the path was followed, and 

whether a target was sunk, were used to identify the impact of the use of the virtual camera 

feature. Two values of ―fail‖ and ―succeed‖ were applied to the analysis. The evaluation was 

analysed through four different tested combination group models (see Table 5.5).   
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Table 5.5: Distribution X
2
 analysis of the total number of times the virtual camera was 

used versus the success rate, whether the path was followed and whether the target was 

sunk for four different combinations of the group models tested 

Virtual camera 

usage groups 

Proportion 

(%) of 

success rate 
X

2
 

Proportion 

(%) of 

following 

path 
X

2
 

Proportion 

(%) of 

sinking 

target 
X

2
 

Fail Succeed Fail Succeed Fail Succeed 

Adaptation-info 

Never 100 0 

5.35** 

40 100 

0.09 

100 0 

7.38* Normal 13.64 86.36 4.55 95.45 9.09 90.91 

Over use 0 100 0 100 0 100 

Adaptationnon-info 

Never 66.67 33.33 

4.80** 

33.33 66.67 

2.91 

33.33 66.67 

1.65 Normal 16.67 83.33 5.56 94.44 11.11 88.89 

Over use 0 100 0 100 0 100 

Queue-info 

Never 33.33 66.67 

1.91 

33.33 66.67 

6.97* 

0 100 

1.17 Normal 13.33 86.67 0 100 13.33 86.67 

Over use 0 100 0 100 0 100 

Queue-non-info 

Never 0 100 

2.58 

0 100 

0.56 

0 100 

2.58 Normal 26.67 73.33 6.67 93.33 26.67 93.33 

Over use 0 100 0 100 0 100 

*P < 0.05, **P < 0.1 

Based on Table 5.5, the use of the virtual camera feature in the Adaptation-info model 

affected the success of sinking the target at the 5% confidence level and the success rate at the 

10% confidence level, whereas, in the Queue-info model, the virtual camera feature only had an 

effect on the success of following the path. Otherwise, there were no significant effects (   

     ) on the use of the virtual camera for both the Adaptation-non-info model and the Queue-

non-info model. 

To show the effect of the use of the virtual camera for the supervisory control model, I 

combined all existing models to be tested as one group. In addition, I also re-categorised the 
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experiment data into new combination models to show the effect of this feature. First, I 

combined the Adaptation-info model and the Adaptation-non-info model as the new Adaptation 

model group, and repeated it for the corresponding Queue models to get the new Queue model 

group. Then, I combined the Adaptation-info model and the Queue-info model to be used as the 

new information model group, and repeated it for the respective non-info models to obtain the 

new non-information model group. Please refer to Table 5.6 for more details. 

Table 5.6: Distribution X
2
 analysis of the total number of times the virtual camera was 

used versus the success rate, whether the path was followed and whether the target was 

sunk for the new combination group models 

Virtual camera 

usage groups 

Proportion 

(%) of 

success rate 

X
2
 

Proportion 

(%) of 

following path 

X
2
 

Proportion 

(%) of 

sinking 

target 

X
2
 

 Fail Succeed  Fail Succeed  Fail Succeed  

All SC model 

Never 40 60 

6.61* 

20 80 

5.22** 

20 80 

2.66 Normal 17.14 82.86 4.29 95.71 14.29 85.71 

Over use 0 100 0 100 0 100 

Adaptation model 

Never 75 25 

9.60* 

25 75 

2.77 

50 50 

5.94* Normal 15 85 5 95 10 90 

Over use 0 100 0 100 0 100 

Queue model 

Never 16.67 83.33 

2.25 

16.67 83.33 

2.79 

0 100 

3.55 Normal 19.35 80.65 3.23 96.77 19.35 80.65 

Over use 9.09 90.91 0 100 0 100 

Model with information (prediction / feedback)   

Never 50 50 

4.99** 

25 75 

4.71** 

25 75 

1.58 Normal 13.51 86.49 2.7 97.3 10.81 89.19 

Over use 0 100 0 100 0 100 

Model without information (No prediction /feedback) 

Never 33.33 66.67 

2.76 

16.67 83.33 

1.61 

16.67 83.33 

1.69 Normal 21.21 78.79 6.06 93.94 18.18 81.82 

Over use 0 100 0 100 0 100 

*P < 0.05, **P < 0.1 
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Table 5.6 shows that the overall use of the virtual camera affected the success rate with a 

        which was less than required for a significance level of 5% (see first three lines of 

the table content), and it only had an effect on the success of the following paths with a 

significance level of 10%, hence it is only a minor effect. The ―never‖ category of virtual 

camera usage showed lower proportions of success in the three variable outcomes compared to 

―normal‖ and ―over‖ usage. Moreover, the ―normal‖ category recorded the highest probability 

of success in less than 60 seconds (never = 9.38%, normal = 78.13%, and over use 12.5%).  

Applying a similar method of analysis, the X
2
 distribution model for the stop function 

feature showed that 83% of the participants used the stop function in at least one of the models 

tested, and the logistic regression model showed those who used the stop functions in the model 

were 8.4 times more likely to succeed compared with those who did not use these functions 

(      ). On the contrary, there was no significant relationship between the utilisation of the 

stop function and the result of the experiments (fail or succeed) in the Queue model (   

          ). This means that the stop function feature works better for Adaptation models as 

compared to Queue models, even though in this experiment design scenario, the stop function 

feature did not significantly affect (      ) the success rate, the success of following the path 

and the success of sinking the target. 

For comparison purposes, all 24 participants performed an additional sub-experiment to 

test the direct/manual control model using the same design task and experiment. I measured the 

PPV value for this model as 0.70 and its sensitivity value as 0.94. Its F1-score was 0.80, which 

was smaller than all the supervisory models tested.  

5.4.3 Questionnaire 

Most participants agreed that all the supervisory models tested were user friendly (the modus 

score for the four models ranging from five to seven) and had good performance (modus score 

for the four models ranging from four to six). The Queue model with an extra information 

model was the most preferred out of the models tested (Mean score = 4.67, modus ranging from 

five to seven). In addition, participants also agreed that the extra information in the model 

interface helped them in performing the task. 

5.5 Discussion  

The experiment was designed to evaluate gaming features in applying HSC to improve human 

machine interfaces for a telerobotic scenario. This experiment is focused on two models, the 

Adaptation and the Queue models, as a response to series of commands which is part of the 
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planning process in HSC. In order to evaluate user performance based on key components as 

mentioned earlier, these two response model were tested with and without additional virtual 

information.  

Here, a successful task result was defined as a participant followed the path assigned and 

sinking a block into the hole during the time allocated. Based on the result I found there is a 

moderately strong correlation between these two user performance variables. By splitting the 

range of completion time into three groups (0-60 seconds, >60-120 seconds, and >120-180 

seconds) and applying logistic regression, I found that in both the Adaptation and Queue 

models, most participants could successfully complete the task (by following the correct arrow 

and sinking the block) in less than 120 seconds, with the greatest success recorded for the 

Queue model with visual planning information. I noticed participants who took longer than 120 

seconds to complete the task have a much lower probability of success compared to those who 

completed the task more quickly. So, this means the HSC response model tested with this task 

scenario allows the participants to successfully complete the task in a short time periods.  

In order to evaluate user performance on Adaptation and Queue response model by using 

two recorded variables, success following the path and success to sink the block, an analysis 

approach using F1-score was applied. The results showed that user performance for the Queue 

model is slightly better than the Adaptation model (higher F1-score). In the Queue model, it 

seemed that the participants had more control in their movement planning. They could intervene 

by easily altering the path using the stop function. Compared with the Queue 

model, participants felt that the stop function was more helpful in the Adaptation model 

since each time this model defined a new target position, the robot moved directly to the new 

target. In this scenario, the stop function was useful in providing a mechanism for checking or 

cancelling the planning process.  

My first assumption, that the Adaptation model would have faster performance compared 

to the Queue model, was not correct based on the test results (path and sunk true). The average 

completion time of the Queue model is lower than the Adaptation model, especially for this 

experimental design scenario where the participant was focused on pushing a block along a 

path. 

In evaluating the effect of available features on the variable outcomes, the use of the 

virtual camera for all models showed a significant effect overall for the success rate and success 

in following the path. The use of the virtual camera feature significantly affects success in 

sinking the blocks in the Adaptation model and success in following the path in the Queue 
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model, especially for model with planning information. The strong effect of the use of the 

virtual camera in successfully sinking the target in the Adaptation model was because the 

process was similar to direct/manual control. The participant did not need to change viewpoints 

when following the path since the model was always responding to each command given. This 

feature does not seem to be required in this situation, but worked better to identify where the 

block position was located form the target hole. Meanwhile, use of the virtual camera in 

following the path in the Queue model seems to work better as after the participants finished 

defining the target positions they had more time to observe the model movement when 

following the path. 

The experimental results showed that there is no strong statistical correlation between the 

use of the stop function feature and the success in following the path, or between the use of the 

stop function and the success in sinking the block. The results also showed those who used the 

stop function were eight times more likely to record success in following the path and in sinking 

of the target compared to those who did not use it. Thus, the models tested with visual planning 

information performed better than those without it. The planning information is useful in 

helping the participants to perform the task, especially for the Queue model. In addition, I 

assume the stop function was not widely used since I only tested the system with a low level 

HSC design. In a real task scenario, especially in mining telemanipulation, there are a number of 

situations which require this function, one of the example is when the robot arm nearly hit the 

wall because incorrect command which can possibly damage the robot. 

Comparing the performance between the best HSC response model (Queue with info 

model) and direct/manual control, participants who used the supervisory model did better in 

following the path and sinking the block than those who used direct/manual model. The 

movement planning function appeared to be an important feature which should be provided in 

telerobotics especially for the supervisory control model. 

In addition to the objective measurements collected, I also asked the participants with 

several open-ended questions about interface performance. Participants were asked which 

features they were most attracted to and their suggestions for improving the interface 

performance. Some participants said that the interface was enjoyable and gratify, I therefore 

argue that the gaming environment has played a significant role in creating a sense of 

immersion contributing to the participants‘ satisfaction. When asked about the features of the 

interface, most mentioned that they liked the functionality of the interface in providing 

information. As mentioned by one participant, ―The mixture of 3D and video interfaces was 



Chapter 5    Human Supervisory Control in Gaming Environments 131 

 

 

 

 

useful for me because I can cross-check between the interfaces.‖ This showed that the 

combination of 3D virtual and video views had assisted in performing the task well.  

Moreover, three participants mentioned that they liked all features of the interface. Based 

on participant comments, the viewpoint control, graphic display and additional information 

provided (e.g. green circle and lines), made this interface likeable. Furthermore, 17.6% of the 

participants emphasised that the most interesting feature for them was being able to use or 

control the interface easily, as expressed by the following response, ―…the use of the gaming 

keypad setting helped me to better control the robot arm and manage the 3D interface …‖  

5.6 Summary of Chapter  

In this chapter I evaluated user performance using a gaming environment with the HSC 

response model, the Queue and Adaptation model. In order to assess the effectiveness of these 

two response models with planning information and without it, I grouped the interface into four 

categories. I evaluated user performance by using logistic regression to establish the relationship 

between the probability of success and completion time. 

All four classifications of HSC response models showed better performance than 

direct/manual control. User performance using the Queue response model with visual planning 

information performed best. However, visual planning information did not have a large impact 

on the performance of the Adaptation model probably because the participants did not plan very 

far ahead. 

In contrast to the visual planning/feedback information and stop functions features, the 

use of the virtual camera had a significant effect on the outcomes of the experiment, especially 

on the success rate. This feature seems to work better in the process of sinking the target into the 

hole for the Adaptation model, and in following the path as part of the supervisory planning 

process for the Queue model. 

Even though the models tested showed good performance and received positive responses 

from the participants, a number of suggestions for improvements in several aspects of the 

interface were provided. Most of the participants focused their comments on the 3D virtual 

views performance. When they tried to operate the interface, they found several weaknesses in 

the 3D model, such as the precision and the stability of the 3D graphic. Due to these problems, 

in some circumstances, a number of participants had to rely more on the video camera than they 

otherwise would have: ―…there were situations when I could see the robot arm touch the object 

on the video … but this could not be seen in the 3D model‖. This emphasises the need for MR 
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in interfaces to provide a mechanism that allows human interpretation to be applied where 

inaccurate sensing has introduced model errors.  

In this chapter, I have tested the latest prototype of telerobotic interfaces with MR and 

HSC concepts applied. As mentioned above, I have only applied low level task HSC for 

performing a task in real telerobotic scenarios, thus the latency issue is not perfectly addressed. 

Based on the experiment results, the built system successfully performs when used by 

participants with a specific background, such as university students. Therefore, there is no 

evidence to suggest that the system will be user friendly for everyone. In order to test the user 

satisfaction on this telerobotic interfaces, the next chapter will describe an experiment whereby 

participants (from diverse background) tested the latest prototype telerobotic interfaces. In the 

next chapter, a Weibull distribution is also used to analyse the distribution data of user 

performance.   
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Chapter 6 

The Utilisation of Weibull Distribution for User 

Performance Analysis  

This chapter presents the analysis using the Weibull distribution to evaluate the user 

performance of the latest prototype telerobotics user interface. I deployed this telerobotic 

interfaces for public testing at an exhibition in the CSIRO Discovery Centre, Canberra, 

Australia, and conducted the experiment over three months (May to July 2012). I recorded 6139 

total user sessions. The Weibull distribution was applied to analyse the reliability of the user 

performance data based on two response models, Adaptation and Queue response models. In 

addition, I also recorded the user performance for direct/manual control and conducted the same 

analysis as a comparison.  

6.1 Introduction 

Mathematical models are mostly used to explain actual problems for many different 

applications. Murthy [103] suggested two approaches to building suitable mathematical models: 

a theory-based model (physics-based model) and an empirical model (data-dependent model). 

He also mentioned that the theory-based model is an approach built based on theories that are 

relevant to the problems, while the empirical model is an approach that used the available data 

as the basis for model building without requiring prior understanding of the underlying 

mechanism involved. 

The empirical approach is commonly used in experimental studies as most experimental 

results exhibit a high degree of variability [103]. This experimental data needs to be modelled 

with a suitable distribution model, so it can be viewed as observed outcomes of random 

variables from the distribution. In this case, a mathematical model is used to evaluate and 

compare the user performance data to assess the suitability of the response models as 

telerobotics user interfaces. A distribution model is a common way to interpret information in 

the evaluation process. When the data is found to follow a similar pattern as represented in a 

known distribution model, the data can be summarised easily. 

The Weibull distribution is one of many popular distribution models that have been 

applied in many fields such as: engineering, material science and finance. The literature on 

Weibull distribution is substantial and scattered across many different journals [103]. It is 

commonly used distribution in reliability engineering to model time to fail, time to repair and 
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material strength [104]. This model has been utilised not only to model the reliability of a 

product, but also to study other issues in different stages of the product life cycle, including 

quality control. Johnson [105] also stated that the Weibull distribution is a distribution that has 

been used in many scenarios.  

The advantage of the Weibull distribution is it can easily be transformed into different 

kinds of distribution behaviours, which makes it very convenient as a lifetime model [105]. 

Research conducted by Taylor [106] in 1999 utilised the Weibull distribution to model the 

requests scenario in his web telerobotic interfaces. In his scenario, the operators may stop for 

any one of many reasons and each of these reasons has a probability of occurring at any 

particular time. He found that besides describing the model of user‘s request to interfaces, this 

Weibull distribution can be used to compare data captured from telerobotic interfaces during 

normal use without conducting controlled experiments and is likely to be applicable to other 

classes of interfaces.  

An experiment with the ―in the wild‖ method, that uses a visitor of the exhibition as the 

participant, was applied to gather observation data. This method reduces the bias from 

conducting controlled experiments. The variance of the participants can more accurately 

represent a cross section of population. Studying user behaviour from this sample of the 

population means I can analyse how my telerobotic interface will be used in a more general way 

and use this as a basis for developing interfaces for evaluation with skilled operators. 

By adopting the approach model applied by Taylor [106], in this chapter, I analyse the 

experiment outcomes based on two response models: Adaptation and Queue. Even though these 

telerobotic interfaces have different properties from Taylor‘s web telerobotic interfaces, I 

successfully tested whether the Weibull distribution is also suitable for modelling and describing 

the distribution of user behaviour/performance in my telerobotic interface. Hence, before I 

describe the experiment, the results and the analysis, the next section describes the Weibull 

parameters which are used for the main analysis. 

6.2 Prototype Implementation 

It is not uncommon to find varying user behaviour when utilising telerobotic interfaces. In order 

to evaluate the effectiveness of the designed telerobotic interface, an experiment was conducted. 

The evaluation was focused on the user behaviour using this telerobotic interface with two 

different response models for human supervisory control (HSC), the Adaptation and Queue 

response models. The data was gathered over a period of three months using this two response 

models, which had been applied in previous experiments.  
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In applying the Weibull model to the experiment result, it is necessary to understand the 

two different properties known as the probability density function (pdf) and the cumulative 

distribution function (cdf). According to Johnson [105], in the set of all possible values of  , 

which is an interval or union of two or more non-overlapping intervals known as continuous 

random variables (crv), the pdf can be defined as any real valued function      that satisfies 

       for all  , and ∫        . While the cdf of a random variable X is defined 

by             ∫       for all  . Both Weibull pdf and cdf have three parameters, as 

shown in the formula below: 

pdf                  {   
 

 
(
   

 
)
   

       ⁄       

                                               
  Equation (6.1) 

 

cdf                           ⁄         Equation (6.2) 

 

where   (beta) is the shape parameter, θ (theta) is the scale parameter and δ (delta) is the 

location parameter, which describe more detail below: 

a. Shape Parameter or   (beta) 

The shape parameter provides the flexibility of a Weibull distribution. Different values of 

this parameter produce variant forms of distribution [103, 104, 107], for example:      is 

identical to the exponential distribution;      is identical in the Rayleigh distribution; and 

    is identical to the normal distribution. Figure 6.1 below shows the     and     of a 

Weibull distribution for selected values of the shape parameter. 

 

Figure 6.1: Probability Density Function (pdf) and Cumulative Distribution Function (cdf) 

with selected values of the shape parameter 

As an example in reliability engineering, where x is equated to time (t) which means a 

―hazard rate‖ or ―failure rate‖, and the Weibull distribution provides a distribution where the 



136 6.2 Prototype Implementation Chapter 6 

 

 

 

failure rate is proportional to the power of time, the shape parameter is the power plus one 

which can be interpreted as follows: (1) if     then the failure rate decreases over time; (2) if 

   , it means the failure rate is constant over time; and (3) if    , it means the failure rate 

increases with time. 

b. Scale Parameter or   (theta) 

This parameter determines the range of the distribution. Engineered Software [108] states 

that the scale parameter is also known as characteristic life when the location parameter is equal 

to zero. The examples of variant     and     with selected values of the scale parameter are 

shown in Figure 6.2. 

 

Figure 6.2: Probability Density Function (pdf) and Cumulative Distribution Function 

(cdf) with variant of scale parameter 

c. Location Parameter or   (delta) 

In most cases, the location parameter is assumed to be zero. This parameter is normally 

used in defining a failure-free zone. The probability of failure when the variable x is less than 

the location parameter is zero. The location parameter has been assumed to be greater than zero, 

so that no failure can occur before the test starts. An example of the effect of the location 

parameter is shown in Figure 6.3. 

 

Figure 6.3: The effect of location parameter in Probability Density Function (pdf) and 

Cumulative Distribution Function (cdf)   
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Where   = -0.3 this means the curve is shifted 0.3 points to the left. A negative value in 

the location parameter means the curve is shifted to the left while a positive value means the 

curve is shifted to the right. 

In order to modelling user behaviour/performance in my telerobotic system, the variable  

  in Weibull distribution is equated to two different random variables, which are the number of 

requests made by the operator to the telerobot in a session ( ) and the length of time the device 

was operated in a session (t). Hence, by using Equations (6.1) and (6.2), the pdf and cdf in the 

Weibull distribution gives the relationship:  

                
 

 
(
   

 
)
   

       ⁄     Equation (6.3) 

 

                          ⁄   
  Equation (6.4) 

 

             
 

 
(
   

 
)
   

       ⁄      Equation (6.5) 

 

                      ⁄   
   Equation (6.6) 

When deploying the telerobotic interfaces for the exhibition, there were several factors 

that needed to be considered. Firstly, safety issues for both the visitors and the system should be 

prioritised, as the system was publicly accessible to all exhibition visitors including some who 

are malicious. Most of the components of the telerobotics system, except the input device 

(joystick and mouse), were placed inside a display protected with glass. 

Secondly, this telerobotic system ran unsupervised for eight to twelve hours per day 

(based on the opening hours of the exhibition). Hence, in order to maintain the reliability of the 

system, a regular restart process was applied to the machine and the system (telerobot and 3D 

model) was reset to its default position if no one was using it. 

Thirdly, since no guide would be present to assist in explaining how the system works, 

sufficient information should be displayed for visitors. This information should be simple, 

interesting and informative. So I used six screens in total which showed information including: 

(1) information of the name of the exhibition; (2) slide presentation about how to use available 

functions in the system and the control device; (3) video about the background of this system; 

(4) information about the technology which was applied in the system; (5) the task required; and 
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(6) that the telerobotic user interface applied the mixed reality (MR) environment and human 

supervisory control (HSC) concepts. A number of information screens for the telerobotic 

interfaces can be seen in Figure 6.4. 

 

Figure 6.4: Preview of information screens for the telerobotic interfaces 
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In relation to the type of control model used by the participants, functions were built into 

the system such that each participant could choose their preferred control model for the task or 

be automatically assigned one of the control models. These functions also explained how a 

session, in which request and time variables are recorded, is created.  

a. Assign the model control manually 

In order to choose the control model manually, the participants were required to use the 

mouse and click one of three menu buttons (see Figure 6.5) on the screen based on their control 

model preference. The user could view information representing each control model on menu 

buttons: the mouse-Adaptation button and the mouse-Queue button for HSC and joystick button 

for direct/manual control. There was a message box beside the menu buttons that displayed 

information about the active model control, including which input device needed to be used. 

This information was also provided on another screen as part of the instructions. 

 

Figure 6.5: Menu buttons representing each model control tested 

The system starts a new session every time the participants click a button. They are 

allowed to change their preference model control during their playing time, and at this time it 

will automatically terminate the previous active session and start a new one. A session is 

automatically terminated when no command is given to the system for more than ten seconds. It 

also puts the telerobot in an idle condition which resets the robot to its default position.  

b. Assign the model control automatically 

The system automatically assigns one of the control models when participants do not 

make a selection. The HSC model is assigned automatically when the participants use the 
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mouse and click on the 3D model workspace area (virtual object inside the circle, please see 

Figure 6.4(a) for reference). Both Adaptation and Queue response models will be assigned 

randomly. On the other hand, when participants use with the right joystick/button of the 

gamepad, the system will automatically assign the direct/manual control model. A session then 

activates automatically in the system. 

In addition, a virtual camera can also be controlled by the left joystick (see Figure 6.4(c)) 

in all control models, Queue, Adaptation or manual models. However, when the participants 

press this left joystick before they complete the two methods, assigning the models control 

manually or automatically, it will not create the session. The session is only created based on 

these two methods explained above. The complete joystick mapping can be found in Figure 

4.11 in Section 4.3.1. 

6.3 User Study 

In conducting the experiment, I deployed the latest prototype of the telerobotic interfaces on one 

of the exhibition stages at the CSIRO Discovery Centre. In order to conduct a user study to 

measure operator satisfaction based on the response model of this telerobotic user interface, the 

visitors who were the experiment participants, were allowed to control and manipulate the 

telerobot through the system interface directly. For the purposes of the exhibition, two types of 

control model were applied, the direct/manual and HSC. In addition, for continuity of the 

research experiment, two response models of HSC, the Queue and Adaptation response models 

from previous experiments ware also applied to the system.  

6.3.1 Apparatus and Implementation of the Telerobotics System 

On the exhibition stage, the local-remote environment was built to apply the concept of 

telerobotics. A wall was placed between the local and remote areas to block the operator‘s direct 

view of the telerobot (See Figure 6.6 for more detail).   
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Figure 6.6: Overview of the exhibition 

The local area consisted of six flat-screen Dell monitors (type 3008WFP), each with a 

resolution of 2560 x 1600 pixels. These were connected to a PC running the client application 

for the telerobotic interface. A standard gamepad and mouse were also located in front of the 

screen as the main control devices. The mouse was used as an input device to give input HSC 

commands; while for direct/manual control, the operator used the gamepad (the right 

button/joystick of the gamepad, see Figure 6.4(b)). In order to change the viewpoint of the 

virtual camera, the operator used the left button/joystick of the gamepad; this virtual control 

camera was used in both direct/manual and HSC models (see Figure 6.4(c)).  

In the remote area, a robot arm was placed on the stage (workspace). This robot was 

connected to the robot controller system linked to a PC which acted as a server. There were two 

IP cameras installed in front of and beside the robot workplace. These cameras were connected 

directly to the Internet. The telerobotic scenario was to push the blocks into the hole, following 

which a mechanism installed under the workspace was activated to detect and push the block 

back automatically to the top of the workspace. 

6.3.2 Participants (Sessions) 

As mentioned above, the aim of the experiment was to evaluate users‘ satisfaction of this 

telerobotic system interface based on two proposed response models – the Queue and 

Adaptation models. All visitors to the exhibition who played/tried the telerobotic interfaces 
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were assigned as random participants. For the variable performance, I recorded the total number 

of commands sent to the telerobot and the total playing time of each participant in a session. A 

session means the time taken for a series of movement commands to be sent to the robot. 

 The data collection was conducted over three months (May to July 2012). Based on the 

recorded data, I collected a total of 6139 sessions, which is divided into three groups as follows: 

Table 6.1: The number of sessions per model interface tested 

Model interface tested Sessions 

HSC with an Adaptation response model 2218 

HSC with a Queue response model 1593 

Direct/manual model 2328 

6.3.3 Experimental Design and Procedure 

This experiment was designed to be similar to my previous experiment. The main differences 

are in the process of recruiting participants and the length of time they were playing. The 

participants were all the visitors who played with the interface to manipulate the telerobot. 

However, unlike previous experiments, I did not direct participants to play with the telerobotic 

interfaces in particular way.  

As mentioned above in Section 6.3.1 on apparatus and implementation of the telerobotic 

interfaces, all the required information to play with the system was provided on the information 

screens, and the system automatically recorded the number of requests sent to the telerobot and 

the length of the session for each model as measures of user interest.  

The provided scenario was controlling the robot arm to push the blocks into a hole. The 

participants were required to use one of the provided interface models to operate a robot arm 

and they were free to play as long as they liked. I did not analyse the user performance based on 

how many blocks they could push into the hole, but I analysed the probability of participants in 

making one more request/command to the robot.   

In this experiment I did not collect any personal information from the participants, their 

preferred control model, or any feedback using a questionnaire or informal interview. The 

collected data was aimed at collating information about the performance of the general public 

when using this telerobotic interface. It was by far the study with the largest number of 

participants as the effort required to acquire data from each participant was low. 
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6.4 Results 

I used the Weibull model to fit the experimental result for the total number of requests sent to 

the telerobot     and the length of time played in a session      with the observed data. I 

analysed how well the Weibull model could reflect the data or how well the expected 

distribution under the model fitted could explain the observed data. In addressing these 

questions, I applied two methods by calculating the value of Chi-square goodness fit test 

     and the Coefficient of Determination      from the fitted Weibull curve on the observed 

sampling data. 

A Chi-square goodness of fit test is normally utilised to test the association between two 

variables, the observed and expected variables. Based on Walpole and Myers [109], the Chi-

square goodness fit test can be expressed as: 

   ∑
       

 

  

 
           –       Equation (6.7) 

where    is the value of random data where the sampling distribution has approximated closely 

to the Chi-squared distribution with the degree of freedom, v = k – 1. The symbol    and    

represent the observed and expected variables respectively for each i-th cell with a maximum of 

k cells.  

Walpole and Myers [109] also mentioned that when the observed data is close to the 

corresponding expected data, the value of    will be small, indicating that the observed data 

model is a good fit for the expected distribution model. On the contrary, when the value of    is 

large, the fit between the observed and expected data is poor. A good fit leads to the acceptance 

of the hypothesis which is indicated by the significant value ( ) not being greater than 0.05 

(       ). The opposite is indicated by the value of the Chi-squared goodness fit test (    

being less than the value of critical value    
   for the significant level of 0.05 (          

 ). 

In this case, four variables, which are the random sampling variables (the request ( ) or 

the length of playing time ( )) and the three Weibull parameters (    and   , are derived from 

the Weibull model. The value of the degrees of freedom (v) was obtained by reducing the total 

number of cells (k) by 4, v = k – 4. This v value was used to calculate the critical value    
   

mentioned previously.  

In terms of decision-making criteria using the Chi-square goodness fit test, Walpole and 

Mayer [109] suggested that the value of each expected data should be at least 5. To satisfy this 

rule, the adjacent cell where the expected data was less than 5 were combined, and were 
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assigned as        for the request variable and        for the time variable. By applying the 

Equations (6.3) as            and (6.5) as        , the satisfaction of all the requirements 

above and the Equation (6.7) gives: 

        
  ∑

(       )
 

    

 
                  –              Equation (6.8) 

 

     
  ∑

(       )
 

    

 
                  –              Equation (6.9) 

 

The Coefficient of Determination      is normally used to describe how well the curve of 

a statistical model fits with the observed data set. The value of    is perceived as a number 

between 0 and 1, where a value close to 1 indicates that the curve fits the sampling data set very 

well, on the other hand, when the value is close to 0, the curve does not fit the sampling data set. 

The use of the    value in fitting with various distribution models had been reported by Ricci 

[110].  

The Coefficient of Determination      is the quotient between the total sum of squares 

(       ) and the regression of squares (            ), where: 

         ∑      ̅       Equation (6.10) 

 

              ∑      ̅       Equation (6.11) 

the    and    are the expected and observed data, and  ̅  is the mean of the observed data, 

 ̅  
 

 
∑   

 
   . Thus, the Coefficient of Determination      can be formed as: 

   
∑      ̅   

∑      ̅   
     Equation (6.12) 

 

The analysis of the two variables, the number of requests and time taken on each model control 

tested, are as follows: 

6.4.1 HSC with Adaptation Response Model 

a. Request variable     in Adaptation response model 

Based on the observed data set in 2218 sessions for the Adaptation response model, 

which was fitted by the Weibull curve, 50.8% of these sessions were unsuccessful in sending 
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any requests to the telerobot. This could be due to a number of reasons such as the participants 

lost interest or the robot stuck. However, the remaining observed data still showed sufficient 

information that could be analysed, where the most number of requests in a single session was 

188, and there were 35 sessions with at least 50 requests per session. By excluding the first four 

requests from data analysis      , I found the Weibull curve fitted the observed data with the 

estimated variables: 

       

       

       

     

                   
         , where     

                           

     
        , where      

A plot of the observed and estimated data for the number of requests sent to the telerobot 

(1 to 80) using HSC with the Adaptation response model is shown in Figure 6.7.  
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Figure 6.7: The comparison between the Weibull curve and observed data in HSC with 

the Adaptation response model, from a sample of 2218 sessions, which is showing the 

range between 1 – 80 requests to the telerobotic interface 

The significance value,                           and the                    
  

      
  indicated that the hypothesis of the observed data for the number of user requests per 

session using the Adaptation response model fitted with the Weibull curve is acceptable, even 

though there was little variance in the observed sampling data for sessions with at least 80 

requests. The Weibull curve was found to be a statistically significant good fit with the 

experimental data using the first 1090 sessions.  

The specific range of the plot curve in Figure 6.7 shows the large random sampling error 

observed which suggests that data with a large number of observations may not be accurately 

represented by random sampling. Thus, the simple Weibull curve may not completely explain 

the whole sampling population. However, the high Coefficient of Determination      of 0.9115 

suggests that the Weibull curve is acceptable and fits well with the observed data.   

Taylor [106] mentioned that it is possible in telerobotic scenarios to have a mixture of 

distributions for the ―number of requests‖ population. In his telerobotics experimental scenario, 

it was possible for the telerobot to be out of action or not respond to the request made by the 

operator. This was also possible in this experiment when the telerobot was faulty or when all the 

blocks were stuck in the hole. Hence, a mixed event population was produced between the 

sessions with a faulty telerobot and with a functioning telerobot. The contribution of the Chi-

square goodness fit test from this Adaptation response for each        is shown in Figure 6.8. 
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Figure 6.8: The contribution of the    value from each of the bins for a simple Weibull 

model fit as per Equation 6.6 for the full range of observed data of the number of 

request recorded for HSC with an Adaptation response model 

The block diagram shows that the largest contribution occurred mainly in the bins which 

represented a low number of requests, with total contributions over 80 sessions. As mentioned 

above, by excluding the first four requests, the Weibull distribution showed a good fit with 

acceptable    and    values. 

In accordance to the example in reliability engineering [104], when the shape parameter   

is sufficiently less than 1, the instantaneous drop off rate decreases quickly as the number of 

requests to the telerobotic interfaces increases. Hence, the probability of the user making at least 

one more request to the telerobot increases rapidly as more requests are made. By comparing the 

number of sessions between each consecutive bin, for example:                  , Figure 6.9 

illustrates the probability of the user making at least one more request for this HSC using the 

Adaptation response model. This number can be used to quantify user preference for one 

response model to another. 
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Figure 6.9: The probability of the user making an additional request in HSC with an 

Adaptation response model 

Based on Figure 6.9, 74% of users who successfully made their first request made at least 

one more request, and 90-99% of users who made at least seven requests made at least one more 

request. 

b. Time variable     in the Adaptation response model 

The length of playing time in a session     is the variable that provides information on 

how long the user will stay to play with the telerobotic system. I noted that the longest playing 

time in a session was 600 seconds (10 minutes), and there were 60 sessions when the interface 

was played for at least 60 seconds. Based on the data analysis with the Weibull distribution, I 

noticed that the curve was better fitted with the observed data if the length of the playing time 

was greater than two seconds     , and these give: 
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A model distribution of the length of playing time data using HSC in Adaptation response 

model is shown in Figure 6.10. 

 

Figure 6.10: The comparison between the fitted Weibull Curve and the length of time 

for HSC with an Adaptation response model from a sample of 2218 sessions  

Compared with the curve fitted for the ―number of requests‖ variable above, the plot 

curve in Figure 6.10 also shows a large random sampling error. However the    value for the 

fitted trend line equals to 0.8324, which is also close to 1, indicating that the curve from the 

sampling data can be used to represent the entire population.  

6.4.2 HSC with Queue Response Model 

a. Request variable     in Queue response model 

In this Queue response model, 56.3% of sessions failed to send any requests to the 

telerobot. However, a trend line could still be fitted for the number of user requests in this 

response model. The most number of requests recorded in a single session was 150 and there 

were only five sessions which had at least 50 requests per session. Based on the range from 1 to 

80 for the number of requests in the observed data set for 1593 sessions, I found the Weibull 

curve with the observed data, where: 
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Figure 6.11 showed the plot for the observed and estimated number of requests sent to the 

telerobot using HSC in the Queue response model.  

 

Figure 6.11: The comparison between the fitted Weibull curve and observed data using 

HSC with a Queue response model, from a sample of 1593 sessions which recorded 1 – 

80 requests sent to the telerobotic interface  

In this Queue response model, the Weibull model was also fitted for the observed data, as 

shown by the value of    being less than the critical value (     
 ) for all observed data in the 

selected range. Moreover, this value of     for the number of user requests using this Queue 

response model interface was shown to be statistically significant with   < 0.05.  

The small number of observed data in this specific range accurately represents the 

population with     = 0.9519. This suggests that the fitted curve for the number of user requests 

using the Queue response model is slightly better compared to that using the Adaptation 

response model. This is also demonstrated by the curve which was fitted with the full observed 

data set (without restricting the range of the number of requests sent.)  

Figure 6.12 showed the contribution of    for each bin in the Queue response model. 

There is no significant difference among the bins, although the contributions are still 

represented by a low number of requests sent to the telerobot.  
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Figure 6.12: The contribution of the    value from each bin for a simple Weibull model 

fit as per Equation 6.6 for the full range of the observed data of the number of request 

recorded for HSC with a Queue response model 

Almost half (49.78%) of the users who successfully made their first request made at least 

one more request, and 86.27% of those who made at least three requests made at least one more.  

 

Figure 6.13: The probability of the user making an additional request in HSC with a 

Queue response model 

b. Time variable     in Adaptation response model 

In contrast to the ―number of requests‖ variable analysis which included all sampling data 

in the range, for the length of playing time in a session     in HSC with the Queue response 

model, the Weibull curve was fitted with the observed sampling data where the length of 
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playing time was greater than two seconds. The results, as shown in Figure 6.14, give the 

following: 

       

      

        

     

           
         , where     

With                   

     
        , where        

 

Figure 6.14: The comparison between the fitted Weibull curve and the length of playing 

time using HSC with a Queue response model from a sample of 1593 sessions  

The comparison value of    is still less than the critical value (     
 ) for all observed data 

in the range with a significance value of   < 0.05. A number of sampling errors were still 

evident, but the    value from the fitted Weibull curve was 0.8776 which indicated that the 

trend line of the curve has a good fit with the observed data.  

I noted that the longest user playing time in this Queue response model was 510 seconds 

(8 minutes 30 seconds), and 18 sessions recorded a playing time of at least 60 seconds. Note 

that just 695 sessions recorded playing times of 0-80 seconds, which was much lower than the 

2218 sessions included in the Adaptation model.  
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6.4.3 Direct/Manual Model 

Unfortunately for the manual model it is difficult to determine the total number of requests sent 

to move the robot, since the robot movement process depends on how long the operator pushes 

the joystick button.  

The time variable in this manual model showed a better fitted Weibull curve model 

compared to the HSC interface. I noted that the fitted curve was obtained without excluding any 

length of playing time in a session. I also noted that the longest time a user spent using the 

manual model was 2469 seconds (41 minutes 9 seconds), and there were 374 sessions that 

recorded a playing time of at least 60 seconds. When fitting the Weibull curve to the observed 

data I found:  

       

       

        

     

            
         

                    

     
         , where      

Figure 6.15 shows the distribution of the observed data and the fitted Weibull curve with 

         , indicating a good fit for the data.   
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Figure 6.15: The comparison between the fitted Weibull curve and the length of playing 

time by using direct/manual model from a sample of 2328 sessions 

In addition, the fitted trend line for this manual model can be easily seen as a well fitted 

curve. This curve model recorded a large Chi-square goodness of fit value since it was 

supported by sufficient sampling data which closely represents the number in the population. 

The Coefficient of Determination also supports the suitability of the fitted curve on the full 

range of the time variable for the sampling data.  

All the results above are presented in a single table as seen in Table 6.2.  

Table 6.2: Estimated parameters for the three models tested  

Models 

tested 
                

         

Estimated parameters for request in a session 

Adaptation 0.32 2.45 0.72 39.841 0.019 43.772 0.9115 4 

Queue 0.35 4.197 0.78 12.849 0.049 30.143 0.9519 0 

Estimated parameters for length of time playing in a session 

Adaptation 0.3 2.5 0.701 47.279 0.022 53.383 0.8324 2 

Queue 0.32 4.2 0.701 33.276 0.020 36.415 0.8776 2 

Manual 0.34 34.2 0.699 96.034 0.026 115.389 0.8762 0 

 

Figures 6.16 and 6.17 show the comparison of the number of requests     and the length 

of playing time     per session for each model tested. These two figures show a similarity of a 

shape curve among the three models. In both response models HSC shows a very similar 
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dispersion of sampling data, especially for the comparison of the ―number of requests‖ 

variables, even though the data for each model was based on a different total number of 

sessions.  

 

Figure 6.16: Comparison of the number of requests between the two HSC models tested 

 

Figure 6.17: Comparison of time variables between the three models tested 

6.5 Discussion 

The number of requests     and the length of playing time     per session for all models tested 

fit the Weibull distribution. However, based on the request variable in both response models, a 

number of sessions failed to request any robot movements. I noted that the failure‘s event in this 

telerobotic scenario is the termination of the session due to one or many possible reasons, for 
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example failed communication, user lost interest, and robot arm or target blocks stuck inside the 

hole.  

In assessing user behaviour/performance, the sampling data from these two response 

models also showed a difference between the observed and expected distributions which were 

accounted for by a random sampling error to a satisfactory significance level. The distribution 

model enables the sampling data to be characterised by three parameters ( ,   and   . In this 

analysis, I found that by manipulating the value of the location ( ) parameter, the fitted curve 

can be improved. 

According to Table 6.2 for both   or   variables, even each model showed   value < 0.05, 

the models with a bigger   value resulted a smaller    and an    value close to 1 compared to 

models with a smaller   value. Based on this result I could say that by using the Weibull 

distribution and Chi-square goodness of fit test in analysing the number of requests and the 

length of playing time in a session for the telerobotic interface, a higher   value is better than a 

lower   value. 

Similar to the result from Taylor‘s telerobotic interface [106], I found that the value of the 

Shape ( ) and Location ( ) parameters were similar among the three model data sets from 

Table 6.2. Once this is known, I could estimate the Scale   ) parameters from a set of model 

interfaces without estimating their Shape ( ) and Location ( ) parameters. This can be done by 

rescaling and overlying the data from one model interface on the others and adjusting the 

scaling factor until the best fit is observed. This method is useful to compare user 

behaviour/performance for this telerobotic user interfaces.  

The different value of the Scale   ) parameter shows a different user performance in 

these two response models tested. The higher of scale parameter indicates that the higher chance 

of the request made by the operator to be succeeds. For length of playing time variable, the 

higher scale parameter also indicates longer of playing time on the interface. In order to 

compare the Scale    ) parameter between the model interfaces tested, Based on a similar 

approach proposed by Taylor [106], I used the Queue model as a benchmark since it has a better 

fitted Weibull curve compared to the other model tested, and in matching the request variable in 

the Adaptation data set to the Queue data set, I get: 

 (                    )
   (                          )

   Equation (6.13) 

where                                                         
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the   means scaling factor used in rescaling the data set. Figures 6.18 shows the comparison 

result between the Adaptation and Queue response models tested based on Equation 6.13.   

 

Figure 6.18: Rescaling the Adaptation sampling data according to Equation 6.13 with a 

value of w = 1.89 and overlaying it on the Queue sampling data shows similarity 

between the sampling data with correlation = 0.9749 

This method can also be applied when analysing the length of the playing time variable 

for each model tested. By using Equation 6.5 for the time variable gives:  

a) To match the time variable in the Adaptation data set to the Queue data set. 

 (                    )
   (                          )

   Equation (6.14) 

where                                                         

b) To match the time variable in the Manual data set to the Queue data set. 

 (                    )
                               Equation (6.15) 

where                                                     

by applying the same steps to rescale the sampling data for the time variable, I derived the 

scaling factor ( ) of 1.13 for the Adaptation model with a correlation of 0.98891, and for the 

Manual model, I received a value of   = 1.64 with correlation = 0.988402.  

This approach enables me to minimise the comparisons process between the sampling 

data by using only scale parameters. As the comparison result on the number of request variable 
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from the two HSC response model, the Queue response model is preferable compared to the 

Adaptation response model. It also showed the same result in the comparison between lengths 

of playing time variable from this two HSC response models. In the end, these comparisons 

showed operators preferred the Queue response model over the Adaptation response model and 

the HSC model over the direct/manual model. 

 In addition, Table 6.2 showed the Queue response model has a 40% higher Scale 

parameter value on both variables tested compared to the Adaptation response model. Since 

both   or   variables in both response models tested have a similar scale ratio, I considered that 

the distribution data on the number of requests made by the operator can be used to estimate the 

trend curve on how long the operator used the interface and vice versa. The scale ratio also does 

not change when I stretched or shrunk the x-axis of r or t variables. 

I successfully followed the technique developed by Taylor [106], and found this 

technique was applicable to my telerobotic interface, which is very different teleroboics 

scenario than was tested by Taylor. The technique used for choosing the scaling factor was 

arbitrary as requires choosing a shape parameter for each data set and then estimating a scale 

parameter from that. In this technique approach, if the two data sets are compared directly, there 

is no need to estimate Shape ( ) and Location ( ) parameters, but there is an assumption it is 

the same. The comparison can be done by rescaling and overlaying one data set on the other and 

adjusting the scaling factor until the best fit is observed. This telerobotic interface and situation 

were quite different to those tested by Taylor and I provided evidence that human response to a 

wide variety of interfaces can be characterised by a Weibull distribution. 

Walpole [109] stated that the correlation coefficient is a number which attempts to 

measure the strength of the relationship between two variables. In this case, the correlation 

coefficient is used to determine the relationship between the sampling data and the estimated 

scaling factor ( ). Here, the random error from the sampling data was measured in comparison 

with the Weibull curve benchmark, and to satisfy the assumption that the test model has the 

same Shape ( ) and Location ( ) parameters. A correlation that is close to 1 indicates a strong 

relationship between the scaling factor and the sampling data, while a value that is less than 0.5 

implies no relationship between the variables.  

In this experiment, the total number of sessions in the sample data did not have a large 

impact on the distribution of the curve shape. The variance of the random error variables from 

the sampling data is negligible as proven by the value of the Chi-square goodness fit test and the 

Coefficient of Determination from the Weibull model. However, to achieve a good fit for the 

Weibull curve on the ‗number of requests‘ variable for the Adaptation response model (HSC) 
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and the manual model, I need to exclude the first four to five requests that were sent to the 

telerobot per session. This is due to a number of operators starting their sessions under specific 

circumstances such as when the telerobot was unresponsive or when the block is stuck inside 

the hole or out of reach of the telerobot. Indow [111] stated that it is possible to have a mixed 

distribution in the event population, which gives more complex results and depends on the 

nature of the discrete distribution. This describes this telerobotic system, which also 

experienced cases when the telerobot was out of action or not responding to requests.  

6.6 Summary of Chapter  

In the last phase of this research, I tested the prototype of a telorobot system interface in a 

telemanipulation scenario for general usage with participants of diverse backgrounds. This 

experiment demonstrated that the system is reliable and user friendly for any level of 

background operator. The recorded data of user performance over a three-month period were 

classified into three categories: Adaptation, Queue, and direct/manual model. An empirical 

model which adopts the Weibull distribution has been successfully used to describe user 

performance on these model interfaces. 

There are two variables recorded from this event: (1) the request variable which 

represented the total number of requests sent by the user to the telerobot in a session for each 

model interface; and (2) the time variable, which represented the length of playing time taken by 

the user in a session. Based on the two variables above, I used the Weibull parameters to explain 

the observed data. The hypotheses test, with a Chi-square goodness of fit test, was also used to 

measure if the data model was suitable to represent the observed data. These tests had been used 

in other works [106] to compare telerobotic interfaces. In addition, I also calculated the 

Coefficient of Determination from the developed curve to support the suitability of the curve 

model in representing this population data. 

The results for user behaviour and user performance based on the two variables recorded, 

show congruence between observed and expected data. The Queue- and the Adaptation-

response models have demonstrated potential for use in telerobotic interface applications. In this 

experiment, the Queue-response model exhibited better user performance, in terms of having a 

higher probability that a request made by the user would be successful and in terms of length of 

playing time. For comparison to manual control, user performance can only be analysed using 

time variables. Both the Queue- and Adaptation-response models reduced the playing time, 
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compared to the manual model. However, this comparison does not prove the manual model 

yields superior user performance as it relies on different input devices (joystick and gamepad). 

In this analysis, the value of the shape and location parameters proved similar among the 

sampling data for each interface tested. Following the approach applied by Taylor [106], I used 

only a scale parameter for comparing the sample data of different models, although my 

telerobotic interfaces, have very different scenarios compared with Taylor‘s. This technique is 

likely to be applicable to other models for interfaces with different properties. 

In general, this chapter has supported the idea that applying MR and HSC concepts in 

gaming environments for use as telerobotic interface is effective. The next chapter will 

summarize my work, including the results and limitations I have identified 
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Chapter 7 

Conclusions and Recommendations for Future 

Work 

7.1 Conclusions 

This thesis demonstrated that gaming environments are potentially useful platforms in 

evaluating the effectiveness of the concepts of mixed reality (MR) and human supervisory 

control (HSC) for telerobotic interfaces.  

In this thesis, I categorised the research framework into three main areas: the gaming 

environments, the MR interfaces, and HSC. I completed four experiments, which covered the 

three categories of the research framework above, to evaluate user performance and 

effectiveness of various telerobotic interfaces, which has been published in a number of 

international conferences and a Journal as mentioned in the Declaration section, (e.g. APCHI-

2010, ICRA2011, WMC2011, ICIRA2012 and an Australian Journal of Intelligent Information 

Processing Systems).  

This research addresses a number of gaps in existing research in telerobotics [5, 6], using 

a simulated mining scenario. These gaps include: (1) Whether multiple sources of information 

increase an operator‘s cognitive fatigue and their level of attention to the interface, leading to 

performance reduction; (2) how to improve the effectiveness and user friendliness of telerobotic 

interfaces; and (3) how to reduce safety concerns associated with unintended actions and 

implicitly remove, or at least decrease, the decline in operator performance caused by latency in 

telerobotic scenarios.  

Starting from the idea that telerobotic interfaces and gaming environments are similar 

domains, would allow us to use sophisticated gaming environments for building telerobotic 

interfaces. Although they have been seen as unrelated, I successfully evaluated a number of 

features in gaming environments that are required for a telerobotic interface. These include: (1) 

the ability to build client-server communications to transfer information between the operator 

and the telerobot; (2) the sophistication of the gaming environment in manipulating a 3D model 

and a virtual environment for applying MR and HSC to the interface; and (3) other features that 

are necessary and useful for telerobotic interfaces, such as suitable input devices and sensors, 

additional virtual information and camera views, and path-finding algorithms to improve 

telerobot automation. I have shown these gaming features prove useful for telerobotic interface 
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design. This enables telerobotic interfaces to be developed from powerful existing tools rather 

than being developed as bespoke designs. 

 Virtual-reality software or traditional 3D simulation tools (e.g., WorldToolKit and 

VRML) have been used to develop telerobotic interfaces. . Gaming environments offer a 

superset of the functionality of these tools but being more specific are less flexible. They have 

also become widespread and are now powerful enough to serve as telerobotic interfaces. For 

example, from the developer perspective: (1) gaming environments offer an integrated 

development environment with a range of predefined and customized software libraries and 

functions which are easy to implement; (2) gaming environments provide integrated and 

powerful tools in building 3D virtual modelling; (3) gaming environments provide the 

technologies for communications and data transfer inside and outside of the gaming 

environments; and (4) gaming environments simplify the integration of a variety of input 

devices and external sensors.  

From the user‘s perspective: (1) gaming environments provide an interface that is easy to 

learn and understand, and is user friendly; (2) gaming environments are designed to make 

people feel comfortable while used over long periods; and (3) gaming environments have a 

primary aim of achieving user immersion,  which is an also an important factor for effective 

telerobotics interfaces.  Gaming environments are thus seen as a suitable platform for applying 

and evaluating MR and HSC in telerobotic scenarios. 

In order to demonstrate the predominance of gaming environments for telerobotics 

scenario, I conducted the first experiment to test the effectiveness of user performance in using 

MR interfaces in gaming environments. The combination of overlaying video with a virtual 

model in the gaming environments showed that MR interface was able to provide sufficient 

information to the operator to perform the experimental tasks. When incomplete information 

from the remote environment was provided to the operator in this experiment, they were still 

able to access the missing virtual information from overlaid video. This showed that the concept 

of combining information by overlaying virtual information on the streaming video, works well 

in substituting the missing information. This result explains that when the minimum information 

required by the operator is fulfilled; the operation task is possible to be completed. This 

technology might be useful to improve operator performance in telerobotic for mining scenarios 

or other telerobot scenarios, where there are variance conditions found in remote workspace.   

In addition, in this first experiment, I also assessed the effect of the level of user attention 

on the interface while performing the task. As the assessment result, the usage of a combination 

of information on a single screen did not show any indications of distraction for user 
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performance. Thus, based on the experiment, I can conclude that MR concept for telerobotic 

interfaces cause no, or minimal, distraction to the operator.  

I designated the ‗mouse‘ as the main input device for delivering commands from the 

operator to the interface since it is very commonly used by computer users and computer-based 

games. Besides, I chose this input device in order to be used as a main input device for applying 

HSC concept for the following experiments. In this first experiment, I tested the use of clicking 

and dragging functions of the mouse as input commands, and concluded that the clicking 

command was preferred over the dragging command. This is perhaps due to the clicking 

command being simpler and is effortless compared to the dragging command.  

If it was possible to accurately model a physical environment, videos would not convey 

extra information to the operator. In this case it was possible to improve the model in the 

gaming environment by applying additional sensors to detect the block/rock position. In order to 

investigate whether virtual information is sufficient in providing minimum information required 

by the operator to perform the task, I tested a virtual reality interface with enhanced virtual 

information for the second experiment. In this experiment, I also tested a potential of gaming 

features in term of ease of integration between gaming interfaces and a variety of input devices. 

In actualising the investigation of this gaming features, I used an experimental design and 

scenario from a previous experiment by Zhu et al [39], that only utilises streaming video for 

operator feedback. Corresponding to their experimental design, my experiment utilises a 

gamepad and eye-tracking devices to control the virtual camera view to assess user performance 

in gaming environment.  

The experimental result for the second experiment showed that the gaming environment 

is suitable for applying two input devices for virtual camera control in a telerobotic scenario. 

Comparable results of user performance indicators derived from two input devices showed 

similar performance of participants in completing the task. The trend of user performance on 

three sequential operation periods also shows gradual improvement, which indicates that this 

gaming environment is an easy learning environment and capable of being understood within a 

short period of time. These results strengthened my argument about how gaming environment 

and telerobotic interfaces share many similarities and therefore make it possible for them to be 

regarded as being in the same domain. 

Further experiment in this research, third experiment, I reported the use of the HSC 

concept as an alternative to direct/manual control. I applied the principle of HSC into the MR 

telerobotic interfaces. The planning process in HSC allowed the operator to define a series of 
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target positions as input commands to the telerobotic interface. The process gives two models in 

response to the operator‘s commands, which I modelled as the Adaptation and Queue response 

models. I applied these two HSC response models for the third experiment and compared user 

performance operating a robot arm with these two response models. I also applied virtual 

objects as additional predictive information to compare the user performance in these two HSC 

response models. I tested four different models (Adaptation with predictive information, 

Adaptation no-predictive information, Queue with predictive information, and Queue no-

predictive information). In addition, I also tested the direct/manual control as a sub experiment. 

I found that user performance in the Queue response model with predictive information 

performed best in terms of task completion compared to the other three models. When 

compared with the direct/manual control model, the user performance for HSC (both the Queue 

and Adaptation response models) was improved. 

In this third experiment, I was also concerned about the effect of the use of virtual camera 

control and stop functions on user performance. Hence, I conducted analysis on performance of 

both functions in relation to the success rate. By categorising the usage of virtual viewpoint 

camera control function into three groups (never, normal, and over use), I found that this 

function affected user performance in completing the task. This was statistically significant, 

especially for the Adaptation response model with predictive information. In general, this 

function also affected all response models with predictive information. In contrast with virtual 

viewpoint control, I did not find a statistically significant relationship between the use of the 

stop function and the success rate for all HSC models tested. This might be due to the 

experiment only testing low level HSC commands rather than more sophisticated commands 

like ―remove that block to here‖. Although I realised that the stop function was important in 

emergency situations or when operator involvement was required, this experiment was not able 

to prove conclusively the need for it in the scenario tested. 

In the Human Supervisory Control (HSC) model, the operator is not required to 

continually control each movement. This means instability, the major problem caused by 

latency does not occur.  With HSC latency slows the rate an operator can issue commands as it 

increases the time they must wait for feedback from previous commands but it does not affect 

their ability to carry out the task. For this reason latency is less of an issue in telerobotic 

interfaces that make use of the Human Supervisory Control (HSC) model and is why 

experiments were not conducted with variable latency. In the open ended questionnaire 

responses a few participants commented on latency issues in completing the experimental task. 

The combination of MR and HSC in creating predictive information seemed sufficient to divert 
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most participants‘ attention from the effects of latency. This result conforms to the arguments 

from a number of other researchers [37 , 74, 75].  

As mentioned earlier, it is not possible for me to test my telerobotic interfaces in actual 

mining situations, due to access restrictions, time limitations and the inevitability of disrupting 

production. Hence, in the first three experiments, I conducted the experiments with volunteers 

who had known demographics, as operators. In my last experiment, fourth experiment, I had a 

large number of novice users who were visiting the exhibition, of unknown demographics. I 

deployed a simulation of a mining telemanipulation scenario in this exhibition for a period of 

three months, and recorded the endeavours of exhibition visitors playing with a robot arm. The 

goal is to push blocks into a hole by using one of the two HSC response models or 

direct/manual model. As the public users were generally novice operators, if the prototype 

telerobotic interface is easy to use it will also be easy for trained operators in mining and other 

industries. 

To analyse the results of the fourth experiment, I followed a technique developed by 

Taylor [106]. The three model interfaces tested (Adaptation-, Queue- and Manual-model 

interface) were different to those tested by Taylor. The recorded variables in the Adaptation- 

and Queue-response models, the number of requests per operator and length of time the device 

was operated, demonstrated congruence between observed and expected data. These two model 

interfaces also showed potential for being used as telerobotic interfaces. However, the Queue-

response model afforded better user performance, in terms of providing a higher chance of 

success in completing the requested task and longer playing time on the interface  

Further analyses revealed almost identical estimations of shape and location parameters in 

the variables recorded by the model interfaces tested. This result is similar to the model analysis 

done by Taylor [106]. Thus, this method proved to be applicable to my substantially different 

interface designs. This allows estimation of the scale parameters from a data set without 

estimating shape or location parameters and reducing the required sample size. This can be 

achieved by rescaling and overlying the data set from one interface onto the other and adjusting 

the scaling factor until the best fit is observed. With this method I also found the scale 

parameter for the Queue model was higher than for the Adaptation model. Based on the 

assumption people will play longer with an interface they like it suggests the Queue model 

showed higher user acceptance as well as superior task performance. 

In a comparison of the HSC response model and the direct/manual model, for the variable 

of length of time the device was operated, the operator preferred direct/manual model over the 
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HSC response model. The sessions created using the direct/manual model were twice as long as 

sessions created on HSC response models. However, this comparison does not prove manual 

model having superior user performance compare the other two since only one variable was 

compared. I assume this might be due to a gamepad device being more interesting compared to 

a mouse device. Moreover, in my experiences, having full control of a robot arm in short 

periods of playing time, it feels more attractive. It is probably similar experiences felt by other 

participants.    

As well as objective measurements, in my experiments, I collected participant feedback 

on my interfaces. Using subjective rating scales (i.e., the Likert scale and open question 

questionnaires), I showed that users considered my interface to be relatively easy to use. 

Interfaces which users find gratifying correlate to improved telerobotic task performance 

according to Fong [37, 38].  

Based on the goal of this research, which is to improve human machine interfaces for 

telerobotics scenarios with current immersive technologies, the gaming environments. In this 

research I have successfully demonstrated that: 

 gaming environments have potential environment to build telerobotics interfaces 

 gaming environments are also suitable platform to apply and to explore MR and HSC 

concept to improve telerobotics interfaces. 

 many features of gaming environments can be utilised to build good interfaces, 

especially in providing minimum information required for telemanipulation scenario. 

 gaming environment are possibly regarded as a same domain with telerobotics 

interfaces. 

Moreover in this study I also successfully addressed a number of issues, including:  

 the potential of operator distraction due to multiple sources of information in s single 

display;  

 the user friendliness of the interface which is enhanced by the utilisation of the gaming 

environment; and  

 the effect of latency which has been indirectly addressed by the use of predictive 

display and feedback as a combination of technologies from the MR and HSC concepts.  

This research shows great potential of gaming environments as a tool for building 

telerobotic interfaces with MR and HSC concepts in specific telemanipulation scenario. It also 
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shows that gaming environment is available as an interaction medium between human and the 

machines.  

7.2 Future Work 

The research was designed in an academic setting to build a prototype of telerobotic interfaces 

which could serve as a potential model to build a real application in mining scenarios. I argued 

that gaming environments with MR interface and HSC is a great innovation and can be applied 

for other real telerobotic applications, especially in a telemanipulation scenario. In order to 

apply these gaming interfaces to other telerobotics scenarios, further research and tests are 

required. A number of suggestions for future works are described below: 

Firstly, since it is not possible in a high productivity mining environment to carry out 

extensive experimentation, I propose conducting further testing by using higher fidelity models 

with better recreations of the actual operation (e.g., using a machine which has similar control 

with the actual mining robot). Further testing with higher fidelity model, including having a real 

operator, should determine the possibility of combining gaming features with HSC and MR 

concepts for mining, or other related telerobotic applications. Testing can be expanded to 

compare the performance of this proposed interface with  current and commercial interfaces, 

such as contrasting performance between the Rockbreaker system interface [5] and my proposed 

gaming environment. 

Secondly, from a technological perspective, this research can be improved in relation to 

multiuser functions. Multiuser functionality is one of a number of advantages of gaming 

environments. Real mining scenarios have many processes running concurrently or in parallel. 

The Rockbreaker [5] scenario involves multiple tasks, including operating the robot and moving 

big rocks from the mining site to the rock bin, which is run by another operator (e.g., truck 

driver). Hence, there is potential to mimic a complete mining scenario in a gaming environment, 

including multiuser interfaces, with real-time synchronisation of information and control 

between environments. Further testing can address latency issues, especially latency 

communications (command and response delays) among operators or between operators and 

telerobots, to avoid problems in real-world applications.[5]  

Next, HSC provides an incremental upgrade path from direct/manual control to full 

automation. In this research, gaming environments had been used to evaluate user performance 

for direct/manual control and HSC in a low level telemanipulation scenario.  Future research is 



168 7.2 Future Work Chapter 7 

 

 

 

still required to evaluate this gaming technology and to test it with more advanced telerobotics 

scenarios to be a proper automation system  

Future work should address the use of improved sensors and input devices. For example: 

(1) Microsoft Kinect or 3D laser scanner devices could be applied as remote sensors to improve 

the accuracy of position, size and 3D virtual shapes of the different types of rocks (or other 

objects serving as targets in the telerobotic scenario). A number of researchers [112, 113] have 

worked with these sensors to build advanced 3D modelling, which could be used to improve the 

virtual modelling within a gaming environment for telerobotic scenarios. (2) Haptic devices can 

enhance the operator's immersive feeling. Haptics are widely used to improve the sense of 

immersion by providing force feedback to the operator. This input device works well for 

manipulating 3D models. Many researches have successfully improved control commands to 

the interface with haptic devices. However, in a HSC scenario, where the human operator is not 

required to continuously operate the telerobot, the environmental response must be modelled to 

provide haptic feedback. In many situations this is not possible and the advantages of haptic 

feedback are ameliorated. 
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Appendix A 

A.1 Coordinate Transformation  

During the system development, it is essential to convert the complete workspace into a virtual 

model. The remote sensor, in this case the remote camera, has an important role in capturing the 

missing information needed. It is important for the camera sensors to record the position and 

characteristics of the camera. These are used to determine the camera‘s intrinsic and extrinsic 

parameters that are used to calculate the image‘s projection between coordinates in three 

dimensions (world coordinate) and two dimensions (camera/screen coordinate). The Coordinate 

Transform concept (see Figure A.1) is commonly applied to transform three-dimensional 

coordinates (3D) to two-dimensional coordinates (2D) and vice versa. It is useful to obtain 

initial variables based on which one is used to process further interaction,      and     . I used 

this concept to synchronise between the object in world coordinates from the camera 

perspective and 3D objects in the virtual environment.  

 

 

Figure A.1: Coordinate transforms 

From Figure A.1 using the concept of coordinate transformation, gives: 

 

                 (
        

  
)   Equation (A.1) 

 



 

170 

 

 

                 (
        

  
)   Equation (A.2) 

 

A.2 Inverse Kinematics  

I used the inverse kinematic to generate the position and rotation of each link arm of the 3D 

virtual model, which is useful to predict the position of the 3D model for simulation. The 

inverse kinematics is also used on the telerobotic controller to provide feedback information 

from the robot. It works by calculating the required motions (position and rotation of joint 

angles) to achieve the desired position. Based on the example in Figure A.2, the inverse 

kinematic is used to calculate the required joint angles ( ,   ,  ,   and   ) to model the position 

and rotation of each 3D arm model when a target position is defined.  

Based on Figure A.2 the required joint angles ( ,   ,  ,   and   ) are given by the 

Equations below: 

 

        (
  

  
′
     )     Equation (A.3) 
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Figure A.2: Example of different angles and length used for the inverse kinematical 

problem 
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Appendix B 

B.1 User Study Questionnaire for Experiment 1  

User Study Questionnaire 
Thank you for taking the time to fill in this questionnaire. Please respond as truthfully 

as possible, as criticism is appreciated as much as positive feedback. 

Personal Details 
1. Name:____________________________________ 

 

2. Age: ________________ 

 

3. Sex: male female 

 

4. Occupation (if you are a student, please specify your major): 

 

 

5. How often do you use a computer? 

 

 Never   Occasionally   Often (at least one hour a 

day) 

 

6. How often do you play virtual world video games? 

 

 Never   Occasionally   Often (at least one hour a 

day) 

 

7. Do you know or ever heard about Games Second Life? 

 

Yes    No 

 

8. Do you know or ever heard about Sims Urban application? 

 

 Yes    No 

 

9. Do you any have problems with colorblindness? 

 

 Yes    No 
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Presence Questions 

 

Used “Second Life” as User Interface 
1. How long did it take you to get familiar to this user interface? 

 

Very Short Short Moderate Long Very Long 

 

2. How much difficult did you feel to use this user interface when you were doing the 

task 1 (Move arm to some spot)? 

 

Very Easy Easy Moderate Difficult Very Difficult 

 

3. How much consciousness/attention did you have to pay on those user interfaces when 

you were doing the task 1 (Move arm to some spot)? 

 

Very Less Less Moderate Much Very Much 

 

4. How much difficult did you feel to use this user interface when you were doing the 

task 2 (push the object to move from one spot to another)? 

 

Very Easy Easy Moderate Difficult Very Difficult 

 

5. How much consciousness/attention did you have to pay on those user interfaces when 

you were doing the task 2 (push the object move from one spot to another)? 

 

Very Less Less Moderate Much Very Much 

 

6. Which part of the display you paid lots of attention when you were doing the tasks? 

 

 No 

Attention 

Less Moderate More Most 

Attention 

3D Model:      

(task 1) 1 2 3 4 5 

(task 2) 1 2 3 4 5 

      

Video 

Streaming: 

     

(task 1) 1 2 3 4 5 

(task 2) 1 2 3 4 5 
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7. Please give rank (1 – 5, where 1 is the lowest mark and 5 the highest mark) for this 

user interface in: 

 Lowest    Highest 

      

a. Easy to use 1 2 3 4 5 

b. Interface performance 1 2 3 4 5 

 

Presence Questions 

Used “Simmersion” as User Interface 
1. How long did it take you to get familiar to this user interface? 

 

Very Short Short Moderate Long Very Long 

 

2. How much difficult did you feel to use this user interface when you were doing the 

task 1 (Move arm to some spot)? 

 

Very Easy Easy Moderate Difficult Very Difficult 

 

3. How much consciousness/attention did you have to pay on those user interfaces when 

you were doing the task 1 (Move arm to some spot)? 

 

Very Less Less Moderate Much Very Much 

 

4. How much difficult did you feel to use this user interface when you were doing the 

task 2 (push the object to move from one spot to another)? 

 

Very Less Less Moderate Much Very Much 

  

5. How much consciousness/attention did you have to pay on those user interfaces when 

you were doing the task 2 (push the object move from one spot to another)? 

 

Very Less Less Moderate Much Very Much 

 

6. Which part of the display you paid lots of attention when you were doing the tasks? 

 No 

Attention 

Less Moderate More Most 

Attention 

3D Model:      

(task 1) 1 2 3 4 5 

(task 2) 1 2 3 4 5 
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Video 

Streaming: 

     

(task 1) 1 2 3 4 5 

(task 2) 1 2 3 4 5 

7. Please give rank (1 – 5, where 1 is the lowest mark and 5 the highest mark) for this 

user interface in: 

 Lowest    Highest 

      

a. Easy to use 1 2 3 4 5 

b. Interface performance 1 2 3 4 5 

 

Open Ended Questions 
1. Please rank from the user interface between ―Second Life‖ and ―Simmersion‖ based 

on your own opinion (the best one goes first).      

 

 

 

 

2. Based on your experience in this experiment, what do you like from 

a. Second Life? 

 

 

 

b. Simmersion? 

 

 

 

 

3. Based on your experience in this experiment, what do you dislike from 

a. Second Life? 

 

 

 

b. Simmersion? 

 

 

 

 

4. Did you feel any differences using those user interfaces, if so, in what way? 

 

 

 

 

5. Do you have any other comments about the user interfaces or anything related to 

them?  
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B.2 User Study Questionnaire for Experiment 2  

 

User Study Questionnaire 
Thank you for taking the time to fill in this questionnaire. Please respond as truthfully 

as possible, as criticism is appreciated as much as positive feedback. 

Personal Details 
1. Name:  

 

2. Age:  

 

3. Sex: male female 

 

4. Occupation (if you are a student, please specify your major): 

 

 

5. How often do you use a computer? 

 

Never Occasionally Often (at least 1 hours a day) 

 

6. How often do you play video games? 

 

Never Occasionally Often (at least 1 hours a day) 

  

7. How much have you used a joystick or gamepad? 

 

Never Occasionally Often (at least 1 hours a day) 

 

8. How much have you participated in teleoperation (remote control) tasks? 

 

Never Occasionally Often 

 

 

9. How much have you used an head-tracking based interface? 

  

Never Occasionally Often 

 

 

Presence Questions 

1. It was natural to use this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 
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2. I felt intuitive to use this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

3. It was easy to learn to use this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

4. It didn‘t take long to get used to this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

5. It was simple to find the stuff I wanted to see in the remote place using this camera 

control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

6. I was able to gain enough visual information from the 3D stream using this camera 

control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 
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7. I was able to obtain enough situational awareness for the teleoperation task using 

this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

8. I didn‘t have to pay much attention or consciousness on the camera control using 

this method when conducting the other control task by hands. 

 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

9. It was not distracting to use this camera control when conducting the other control 

task by hands. 

 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

10. I felt the zooming function of this camera control was useful. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

11. I could effectively complete the rock pushing task using this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 
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12. I was able to quickly complete the rock pushing task using this camera control 

method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

13. I was able to efficiently complete the rock pushing task using this camera control 

method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

14. I believe I could become productive using this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 

 

 

15. Overall, I am satisfied with this camera control method. 

 Strongly 

Disagree 

     Strongly 

Agree 
Joystick 

 

1 2 3 4 5 6 7 

Head 

Tracking 

1 2 3 4 5 6 7 
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16. I felt the 360 camera rotation was useful. 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 

 

 

17. I felt the camera vertical rotation was useful. 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 

 

 

18. I felt the camera horizontal rotation was useful. 

 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 

 

19. It was easy to place the robot arm tip next to the rocks. 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 

 

 

20. I felt the tip tracking was useful. 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 

 

21. It was easy to decide when to nudge. 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 

 

22. The rocks blinking / shaking was annoying. 

 Strongly 

Disagree 

     Strongly 

Agree 
 1 2 3 4 5 6 7 
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Open Ended Questions 
1. Please rank the camera control methods you used in the experiment based on your 

experience (the best one goes first). 

 

 

 

 

 

2. Please rank the tip tracking methods you used in the experiment based on your 

experience (the best one goes first). Please comment. 

 

 

 

 

 

3. In what way do you feel those control methods either enhanced, or detracted the 

performance of the tasks? 

 

 

 

 

 

4. Do you think those control methods could be improved, if so, how? 

 

 

 

 

 

5. Do you have any other comments about the control methods or anything related to 

them? 

 

 

 

 

 

6. What do you think about the 3D rocks behavior ? 

 

 

 

 

 

7. Please rank the tip control methods you used in the experiment based on your 

experience (the best one goes first). 
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B.3 User Study Questionnaire for Experiment 3 

User Study Questionnaire 
Thank you for taking the time to fill in this questionnaire. Please respond as truthfully 

as possible, as criticism is appreciated as much as positive feedback. 

 

Personal Details 
1. Exp_ID:      (Please make sure this number with the reseacher) 

 

2. Name:      

 

3. Age:     years in 2011 

 

4. Sex:  

 

5. Occupation (if you are a student, please specify your major): 

      

 

6.  In average, how many hours do you use computer in a week? 

 

7. In average, how many hours do you play the virtual game in a week? 

 

8. Teleoperation/Telerobotic is a common term that normal heard in daily life? 

 

9. Using a gaming environment for a teleoperation/telerobotic application is a new 

thing? 

 

  

        Male     Female 

< 7 hours >7 hours but < 21 hours  >21 hours 

1   2   3 

 

< 7 hours >7 hours but < 21 hours  >21 hours 

1   2   3 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 
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Questions 

 

Interface 
10. The interface provide enough information to perform the task 

 

11. Information from video camera helps the user to perform better 

 

12. Information from 3D virtual model helps the user to perform better 

 

13. Information from 3D virtual model more useful rather than Information from video 

camera 

 

14. Changeable viewpoint on 3D model is useful 

 

15. Different viewpoint between video camera and 3D virtual model gives better 

information rather than same viewpoint 

 

16. I was using more than 50% of my attention to get information from the 3D virtual 

model on each task performance 

 

17. I was using more than 50% of my attention to get information from the video 

camera on each task performance 

 

  

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 
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Human Supervisory Control Function 

Model‟s movement 
18. Queue model is easier to be operated than Adaptable model 

 

19. Queue model works better rather than Adaptable model 

 

Virtual-information 

20. Target information (green circles) helps me to perform the task 

 

21. Video overlay information helps me to perform the task 

 

22. Shadow information helps me to perform the task 

 

23. Line information helps me to perform the task 

 

24. Interface with virtual information works better than using none virtual information 

 

Interrupt/Stop function 

25. Stop function is a useful function to help me in performing the task 

 

26. Full stop function is useful 

 

 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 
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27. Temporary stop function is useful 

 

28. Click target to stop ‗s function is useful 

 

29. Combination all function tested and information given on the experiment have 

enabled the interface to perform better 

 

Human Supervisory Control (HSC) versus Manual Control (MC) 
30. HSC performs better than MC 

 

31. HSC provides easier control than MC 

 

32. If you work more than 5 hour/day, HSC requires less effort than MC  

 

General Performance 
33. For each model below, this interface has good performance 

a. Model 1 

b. Model 2 

c. Model 3 

d. Model 4 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 
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e. Model 5 

 

34. For each model below, this interface is easy to use 

a. Model 1 

b. Model 2 

c. Model 3 

d. Model 4 

e. Model 5 

 

35. For each model below, this interface gives enough immersive environment 

a. Model 1 

b. Model 2 

c. Model 3 

d. Model 4 

e. Model 5 

 

 

 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 
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36. For each model below, I felt time delay between command and response from the 

robot when I perform the task 

a. Model 1 

b. Model 2 

c. Model 3 

d. Model 4 

e. Model 5 

 

Open Questions 
 

1. What do you think about the interface in general? 

      

 

 

 

 

 

 

 

 

 

 

2. What do you like from the interface in general? 

      

 

 

 

 

 

 

 

 

 

 

 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 

Strongly Disagree Strongly Agree 

 1 2 3 4 5 6 7 
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3. In general which part in the interface need to be improved? 

      

 

 

 

 

 

 

 

 

 

 

4. Do you have any additional comment regarding to the experiment? 

      

 

 

 

 

 

 

 

 

 

 

Thank you for your participation in this Experiment 

Please do ―Save As‖ and name this document with your Exp_ID 
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