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Abstract 

This dissertation studies Markov chain Monte Carlo (MCMC) methods, and applies 

them to actuarial data, with a focus on claim run-off triangles. After reviewing a 

classical model for run-off triangles proposed by Hertig (1985) and improved by 

de Jong (2004), who incorporated a correlation structure, a Bayesian analogue is 

developed to model an actuarial dataset, with a view to estimating the total outstanding 

claim liabilities (also known as the required reserve). MCMC methods are used to solve 

the Bayesian model, estimate its parameters, make predictions, and assess the model 

itself. The resulting estimate of reserve is compared to estimates obtained using other 

methods, such as the chain-ladder method, a Bayesian over-dispersed Poisson model, 

and the classical development correlation model of de Jong. 

The thesis demonstrates that the proposed Bayesian correlation model performs well for 

claim reserving purposes. This model yields similar results to its classical counterparts, 

with relatively conservative point estimates. It also gives a better idea of the 

uncertainties involved in the estimation procedure. 

 

 

  



iii 

Table of Contents 

CHAPTER 1 Introduction ........................................................................................... 1 

CHAPTER 2 Bayesian Inference and MCMC Methods ........................................... 4 

2.1  Bayesian modelling ................................................................................................ 4 

2.2  Markov chain Monte Carlo methods ...................................................................... 5 

2.3  MCMC inference .................................................................................................... 9 

2.4  WinBUGS ............................................................................................................. 11 

2.5  Application of MCMC methods to time series..................................................... 11 

2.5.1  Underlying model and data ............................................................................ 11 

2.5.2  Priors and the joint posterior distribution ...................................................... 12 

2.5.3  A Metropolis-Hastings algorithm ................................................................. 14 

2.5.4  Inference on marginal posterior densities ...................................................... 16 

2.5.5  Predictive inference ....................................................................................... 19 

2.5.6  Hypothesis testing .......................................................................................... 23 

2.5.7  Assessment of the MCMC estimates ............................................................. 24 

2.5.8  WinBUGS implementation of the MCMC methods ...................................... 28 

CHAPTER 3 Claim Run-off Triangles and Data .................................................... 31 

3.1  Claim run-off triangles ......................................................................................... 31 

3.2  The AFG data ....................................................................................................... 31 

CHAPTER 4 Bayesian Modelling of the AFG Data ................................................ 34 

4.1  Reserving methods ............................................................................................... 34 

4.2  Bayesian models ................................................................................................... 35 

CHAPTER 5 Analysis and Results ............................................................................ 39 

5.1  Hertig‟s model ...................................................................................................... 39 

5.2  A modified Hertig‟s model ................................................................................... 45 

5.3  Development correlation model ........................................................................... 50 

  



iv 

CHAPTER 6 Model Diagnostics and MCMC Assessment ..................................... 56 

6.1  Hypothesis testing ................................................................................................ 56 

6.1.1  Hertig‟s model ............................................................................................... 61 

6.1.2  Modified Hertig‟s model ............................................................................... 62 

6.1.3  Development correlation model .................................................................... 63 

6.2  Reserve assessment .............................................................................................. 64 

CHAPTER 7 Comparison to Previous Studies ........................................................ 71 

CHAPTER 8 Summary and Discussion .................................................................... 73 

8.1  Limitations of the Bayesian development correlation model ............................... 73 

8.2  Suggestions for future research ............................................................................ 74 

8.3  Conclusion ............................................................................................................ 74 

Bibliography  ............................................................................................................... 76 

Appendix  ............................................................................................................... 79 

Appendix A:  Derivations and proofs .......................................................................... 79 

Appendix B:  R code ................................................................................................... 83 

Appendix C:  WinBUGS Code .................................................................................... 92 

Appendix D:  Additional tables and figures .............................................................. 100 

 

 

  



v 

List of Figures 

Figure 2.1: Simulated time series values of   ................................................................ 12 

Figure 2.2: Trace of   .................................................................................................... 15 

Figure 2.3: Trace of   .................................................................................................... 15 

Figure 2.4: Trace of    .................................................................................................. 16 

Figure 2.5: Frequency histogram of simulated    .......................................................... 18 

Figure 2.6: Frequency histogram of simulated    .......................................................... 18 

Figure 2.7: Frequency histogram of simulated   
  ......................................................... 19 

Figure 2.8: Estimated posterior mean of future   values ............................................... 20 

Figure 2.9: Rao-Blackwell posterior mean of future   values ....................................... 22 

Figure 2.10: Frequency histogram of      
   

 .................................................................. 23 

Figure 2.11: Approximated exact marginal posterior density of   ................................ 26 

Figure 2.12: Approximated exact marginal posterior density of   ................................ 26 

Figure 2.13: Approximated exact marginal posterior density of    .............................. 27 

Figure 5.1: Trace of simulated    .................................................................................. 42 

Figure 5.2: Trace of simulated    .................................................................................. 42 

Figure 5.3: Trace of simulated    .................................................................................. 42 

Figure 5.4: Trace for simulated values of reserve (modified Hertig‟s model) .............. 49 

Figure 5.5: Trace of    ................................................................................................... 53 

Figure 5.6: Trace of    ................................................................................................... 53 

Figure 5.7: Trace of    ................................................................................................... 53 

Figure 5.8: Trace of simulated reserve  ........................................................................ 55 

Figure 6.1: Frequency histogram of simulated reserve .................................................. 68 

Figure 8.1: Frequency histogram of simulated   ......................................................... 100 

Figure 8.2: Frequency histogram of simulated    ....................................................... 100 

Figure 8.3: Traces of simulated   ,    and    (Hertig‟s model) ................................. 101 

Figure 8.4: Traces of simulated   ,   ,   ,   and   (modified Hertig‟s model) ....... 103 

Figure 8.5: Traces of simulated   ,   ,   ,  ,   and    (dev. corr. model) ............... 103 

Figure 8.6: Simulated values of    vs simulated values of    ..................................... 104 

  



vi 

List of Tables 

Table 2.1: Estimated posterior quantities (R output) ..................................................... 17 

Table 2.2: Predictive inference on future   values (R output) ....................................... 20 

Table 2.3: Rao-Blackwell estimates of posterior mean of future   values .................... 21 

Table 2.4: Estimated posterior quantities (WinBUGS output) ....................................... 29 

Table 2.5: Predictive inference of future   values (WinBUGS output) .......................... 29 

Table 3.1: AFG data - cumulative incurred claim amounts     ...................................... 32 

Table 3.2: AFG data - exact incurred claim amounts .................................................... 33 

Table 4.1: AFG data - development factors     ............................................................. 36 

Table 5.1: Posterior estimates of   ,    and    (Hertig‟s model) .................................. 40 

Table 5.2: Predictive inference on the future     (Hertig‟s model) ................................ 44 

Table 5.3: Predictive inference on reserve (Hertig‟s model) ......................................... 45 

Table 5.4: Posterior estimates of   ,   ,   ,   and   (modified Hertig‟s model) ........ 47 

Table 5.5: Predictive inference on future     and   (modified Hertig‟s model) ............. 48 

Table 5.6: Posterior estimates (development correlation model) ................................... 52 

Table 5.7: Predictive inference on     and   (development correlation model) ............. 54 

Table 6.1: AFG data –       ............................................................................................ 59 

Table 6.2: Posterior predictive p-values (Hertig‟s model) ............................................. 61 

Table 6.3: Posterior predictive p-values (modified Hertig‟s model) ............................. 62 

Table 6.4: Posterior predictive p-values (development correlation model) ................... 63 

Table 6.5: Simulated data - cumulative incurred claim amounts     ............................. 67 

Table 7.1: Forecasted liabilities for the AFG data        .............................................. 71 

Table 8.1: Predictive inference on cumulative claim liabilities and reserve ................ 102 



1 

CHAPTER 1   

IInnttrroodduuccttiioonn  

Markov chain Monte Carlo (MCMC) methods play an important role in Bayesian 

statistics, especially when inference cannot be made directly due to the complexity of 

the Bayesian model, for example, when there is no closed form solution to the posterior 

distribution of a target parameter. MCMC methods allow one to sample random values 

from the posterior distribution; these values are subsequently used to estimate quantities 

of interest, such as the posterior means of model parameters. MCMC methods are often 

easy and quick to implement, and provide an alternative approach to the analysis of 

Bayesian models even when an analytic solution is possible. 

This thesis demonstrates the usefulness of MCMC methods when applied to the 

Bayesian analysis of actuarial data, with a focus on claim run-off triangles. A  

run-off triangle shows the claim liabilities for accidents occurring in certain years  

and the delays in claim reporting. Traditionally, deterministic algorithms such as the  

chain-ladder (CL) method (Harnek, 1966) and the Bornhuetter-Ferguson method 

(Bornhuetter & Ferguson, 1972) were used to forecast the future claim liabilities to 

determine the outstanding claims reserve. With improvement in technology and the 

need to identify the variability underlying the future claim liabilities, stochastic models 

were developed and analysed to justify these deterministic algorithms; the most notable 

of these stochastic models is the stochastic CL method developed by Mack (1993). A 

summary of the stochastic CL method can be found in Mack (2006). An extensive 

literature on claims reserving is available in the book by Taylor (2000). 
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Several Bayesian models for claim run-off triangles were considered by Verrall (1990), 

de Alba (2002, 2006), England & Verrall (2002), Lamps (2002a, 2002b, 2002c), 

Scollnik (2004), de Alba & Nieto-Barajas (2008), England, Verrall, & Wuthrich (2010) 

and other researchers. Verrall (1990) analysed the traditional CL method using the 

theory of Bayesian linear models, by transforming the multiplicative CL model into 

linear model by taking logarithms. Verrall utilises a Kalman filter (state space) approach 

in the Bayesian analysis. de Alba (2002, 2006) presented Bayesian approach for several 

models using direct Monte Carlo (MC) method. England and Verrall (2002) proposed  

a Bayesian analysis using an over-dispersed Poisson CL model, they compared  

and contrasted this approach with other reserving methods. Details on the Bayesian  

over-dispersed Poisson model are available in England et al. (2010). Lamps (2002a, 

2002b, 2002c) discussed various MCMC models to deal with claim run-off triangles, 

and Scollnik (2004) performed MCMC methods on the CL model using statistical 

package WinBUGS (to be discussed further in Chapter 2). As mentioned in Scollnik 

(2004), the Bayesian approach is useful because Bayesian models allow prior 

information to be included in the analysis, if available. Bayesian models allow 

parameter uncertainty and model uncertainty to be incorporated in the analysis and 

predictive inference. They also yield complete posterior distributions for quantities of 

interest rather than just point estimates and confidence intervals. 

This thesis considers the Bayesian analogue of a frequentist (classical) model proposed 

by de Jong (2004), which in turn is an extension of a model proposed by Hertig (1985). 

Hertig‟s model is different from all the models mentioned in the previous paragraph 

because it models the log-link ratios of the cumulative liabilities instead of the claim 

liabilities directly. de Jong extended Hertig‟s model by introducing a correlation 
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structure. These models of Hertig and de Jong will be discussed further in Chapter 4. 

This thesis contributes to the existing literature by developing a Bayesian model for 

de Jong‟s classical model and comparing the two. MCMC methods will be used to 

perform the Bayesian analysis. 

The next chapter provides an overview of the Bayesian approach and MCMC methods 

generally. Chapter 3 describes claim run-off triangles, in particular the data to be 

analysed. In Chapter 4, the classical models proposed by Hertig (1985) and  

de Jong (2004) are studied and Bayesian analogues thereof are developed. Chapter 5 

discusses how MCMC methods can be used to perform the Bayesian analysis; the 

results of the analysis are then presented. Chapter 6 assesses the Bayesian models in 

terms of goodness-of-fit and the appropriateness of the estimated reserve. Comparison 

of the Bayesian results with those of previous studies is made in Chapter 7. Finally, 

Chapter 8 provides a summary of the thesis, discusses limitations of the approach taken 

and suggests several avenues for further research. 
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CHAPTER 2   

BBaayyeessiiaann  IInnffeerreennccee  aanndd  MMCCMMCC  MMeetthhooddss  

2.1  Bayesian modelling 

A classical model treats its unknown parameters as constants that need to be estimated, 

whereas a Bayesian model regards the same parameters as random variables, each of 

them having a prior distribution. It is assumed that the readers of the thesis understand 

the basics of Bayesian methods and hence discussion will focus on Bayesian inference 

and results. Readers may find the introductory text “Bayesian Data Analysis” by 

Gelman, Carlin, Stern, and Rubin (2003) useful. Important formulae, results and 

examples will now be presented as a brief overview of Bayesian methods. 

Consider the following Bayesian model: 

                   

               

         

where      denotes the probability density function (pdf). 

In this Bayesian model, the joint posterior density of   and   can be written as  

                              where                             and 

                 . 

It is often convenient to write the joint posterior density up to a proportionality constant, 

namely                          since      can be hard to determine and does not 
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depend on   and   (the arguments in         ). The marginal posterior densities can 

be derived by integrating out the relevant nuisance parameter, in this case: 

                                        

These integrals are usually difficult to express in closed form when the model is 

complicated or there are many parameters (note that   and   are possibly vectors). 

Hence inference on   and   may be impractical, if not impossible; one may then 

consider approximating the solutions of the equations involved using special techniques 

such as numerical integration. However, these can be tedious and time consuming. 

2.2  Markov chain Monte Carlo methods 

MCMC methods are useful because they can provide simple but typically very good 

approximations to integrals and other equations that are very difficult or impossible to 

obtain directly. With these methods, knowing only the joint posterior density,          

(up to a proportionality constant) is sufficient for inference to be made on the marginal 

posterior densities,        and       . Briefly, this is achieved by alternately 

simulating random observations from the conditional marginal posterior densities, 

         and          (each of which is proportional to the joint posterior density, 

        ), so as to ultimately produce random samples (as detailed below) from  

the (unconditional) marginal posterior densities,        and       .  Estimates of    

and   can then be obtained from these latter samples. Moreover, these samples  

can also be used to estimate any, possibly very complicated, functions of   and     

e.g.           . 
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MCMC methods were first proposed by Metropolis et al. (1953), and subsequently 

generalised by Hastings (1970), leading to the Metropolis-Hastings (MH) algorithm. 

The MH algorithm can be summarised as follows: 

i. Specify an initial value for      , call it        , which will be the starting point 

for the algorithm‟s simulation process. 

ii. Define driver distributions for the parameters   and    from which the next 

simulated values will be sampled. Let the pdfs of the driver distributions for   and 

  be            and            , respectively. 

iii. Sample a candidate value of   from               call it     and accept it with 

probability 

  
          

          
 

             

             
 

Then the value of      is updated to be    if    is accepted. Otherwise,      

retains the previous value, i.e.        . 

To decide whether    is accepted, generate                 . Then accept    if 

   . (Note that    is automatically accepted if    .) 

iv. Sample a candidate value of   from                  call it   , and accept it with 

probability 

  
            

            
 

               

               
 

Then the value of      is updated to be    if    is accepted. Otherwise,      retains 

the previous value, i.e.        . To decide whether    is accepted, generate 

                . Then accept    if    . This concludes the first iteration. 
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v. Repeat steps iii and iv again and again until a desired total large sample of size   

is created, i.e.                     . This concludes the MH algorithm. 

vi. Decide on a suitable burn-in length   (see below). Next, relabel           as 

        and           as        .  Then take                   as an 

approximately iid sample from         . 

A drawback of the MH algorithm is that the simulated values are not truly independent 

(hence the word „approximate‟ in step vi above); their correlation comes from the 

Markov chain method where the next simulated value is obtained from its predecessor. 

Also, a bad choice of initial values distorts the sampling distribution. This means that a 

truly random sample of the posterior density is not available. Fortunately, the simulated 

values converge to their marginal posterior density as the number of iterations,   gets 

larger. Hence, these problems with MCMC methods can be addressed by setting   to be 

very large, say      , and discarding the initial portion of the simulated data, for 

example, a burn-in of       , for a final sample of size        . 

The theory of convergence and how to choose   and   will not be discussed in the 

thesis; refer to Raftery & Lewis (1995) for details regarding these issues. To ensure a 

good mixing of the simulated values, where    and    as a whole represent the true 

marginal posterior distributions and each    and    is a random realisation from the 

distributions, a conservative approach will be used in choosing the number of 

simulations   and burn-in  . Convergence can then be assessed from the traces of the 

algorithm, which show the time series values of simulated   and  ; a cut-off point can 

then be chosen conservatively for a suitable burn-in. 
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The driver distributions are usually chosen so that the candidate values will be easy to 

sample from; examples include the uniform and normal distributions. A suitable choice 

of driver distribution allows the candidate values to be accepted more frequently with 

higher probability of acceptance, which is desirable as the algorithm produces a better 

mixing of simulated values with lower wastage (rejections of    and   ). 

Note that when a driver distribution is chosen to be a symmetric distribution, in the 

sense that                        and                        the acceptance 

probabilities simplify to 

  
          

          
   and     

            

            
 

The MH algorithm reduces to the Gibbs sampler when the driver distributions are 

chosen to be the conditional posterior distributions, i.e. when            is set to be 

           and            is set equal to           . In this case, the acceptance 

probability for   reduces to 

  
                 

                 
 

          

           
   

and likewise   reduces to  . 

The Gibbs sampler is preferred to the general MH algorithm because it produces no 

wastage. However, sometimes a considerable amount of effort is needed to derive the 

distribution of the conditional density and/or to sample from it. Thus there may be a 

trade-off between efficiency and simplicity. 
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2.3  MCMC inference 

From a large sample with appropriate burn-in, the simulated values of   and   can be 

used to make inferences on   and  , as well as on any function of   and  . For example, 

one may wish to estimate   by its posterior mean,          , but this involves solving 

a difficult or impossible integral to determine the posterior mean. Therefore, in turn,    is 

estimated by the Monte Carlo sample mean,            
 
   . 

This estimate is unbiased because 

        
 

 
        

 

   

 
 

 
       

 

   

 
 

 
                     since              

With the aid of a statistical package such as S-Plus or R, the entire marginal posterior 

distributions can also be estimated from the simulated values. The estimated  

marginal posterior distributions can then be displayed on a graph as a representation  

of the true marginal posterior distributions. The approximation improves with the  

number of simulations. This provides a simple alternative to deriving the exact  

distributions analytically, typically by integration. Inference on functions of   and    

such as            mentioned above, can be performed in a similar manner; this is 

achieved simply by calculating values                 and applying the method of 

Monte Carlo, as before. (i.e. to estimate           by            
 
   ). 

MCMC methods also allow predictive inference to be made in a convenient manner, 

when one is interested in some quantity   for which            is known. For instance, 

  could be a future independent replicate of    in which case            is the same as 

         with   changed to  .  
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Then the predictive density is 

                                                   

Usually it is difficult to derive the predictive density analytically. However, 

observations of the predictive quantity   can often be sampled easily from the predictive 

distribution using the method of composition. This is done by sampling    from 

              where    and    are taken from the MCMC sample described above. The 

triplet            is then a sample value from           ;  also,    is a random 

observation from       . Thus, inference on  , or any function of  ,   and  , can be 

performed much more conveniently without deriving the predictive density directly. 

There are two general approaches to obtaining a Bayesian estimate of a general quantity 

of interest   using a MCMC sample. First  there is the „normal method‟ (as mentioned 

above) whereby the posterior mean of the quantity,           is estimated by  

the respective MCMC sample mean,   ; e.g. if             then    is estimated  

by            
 
                     .

 
    Alternatively, one may apply the  

„Rao-Blackwell method‟ (see McKeague & Wefelmeyer, 2000) and estimate    by the 

sample mean of a conditional posterior expected value of  . An example of the  

Rao-Blackwell method is shown below in Subsection 2.5.5. This method is often more 

precise than the normal method; however, it is typically more complicated and requires 

further derivations. 

In addition to using the mean for predictive inference, one could also consider the 

median and mode. Comparing these statistics may give an idea of the underlying 

distribution of the quantity of interest,  . In Bayesian decision theory, the mean 
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minimises the quadratic error loss function, the median minimises the absolute error 

loss function and the mode minimises the zero-one error loss function. An actuary may 

need to consider, in his or her application, the costs associated with making errors of 

various magnitudes. In practice, the quadratic error loss function is usually chosen. 

2.4  WinBUGS 

WinBUGS (Bayesian inference Using Gibbs Sampling for Windows) is a software 

package which is useful for analysing Bayesian models via MCMC methods  

(Lunn, Thomas, Best, & Spiegelhalter, 2000). This software utilises the Gibbs sampler 

to produce the simulated values. Using WinBUGS to estimate the quantities of interest  

is much quicker and simpler than writing the algorithm codes manually (e.g. in S-plus  

or R). This is because Gibbs sampling is done internally by WinBUGS without the need 

to derive the posterior distribution of the parameters. Refer to Sheu & O‟Curry (1998) 

and Merkle & Zandt (2005) for an introduction to WinBUGS. 

2.5  Application of MCMC methods to time series 

In the following example, MCMC methods are used to analyse a randomly generated 

time series data with statistical package R. This is done by coding the MH algorithm  

in R. MCMC simulations are also performed using WinBUGS at the end of the section 

for comparison purpose. 

2.5.1  Underlying model and data 

Consider the following stationary AR(1) model (autoregressive model of order 1): 
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A time series                was generated according to this model with        

             and     .    was simulated directly from the normal density with 

mean             and variance             ; see Appendix A-1 for details 

on the derivation of the mean and the variance. The other   values were generated 

according to                             
  . The R code for generating these   

values is presented in Appendix B-1. 

Note that for the model to be a stationary AR(1) model, the condition        has to be 

satisfied. The values of the time series   are shown in Figure 2.1. 

Figure 2.1: Simulated time series values of   

 

2.5.2  Priors and the joint posterior distribution 

This example assumes a priori ignorance and independence regarding      and     with 

prior densities defined as: 
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Note that the prior distributions of   and    are improper, for which their densities do 

not integrate to  . These priors (including  ) are uninformative (or non-informative) in 

the sense that they do not provide any real information of their underlying values. Care 

should be taken when using improper priors, as they might produce improper posterior 

distributions, which are nonsensical for making inferences, see Hobert & Casella (1996) 

for a detailed analysis on the dangers of using improper priors. According to  

Hobert & Casella, “the fact that it is possible to implement the Gibbs sampler without 

checking that the posterior is proper is dangerous”. 

Denoting           , the posterior density of   (also the joint density of      and   ) 

is: 

                   

                              

   
 

 
 

 

  
                                     

  
 

  
                     

 

   

 

 
 

  
      

 

   
 

  

   
                

  

 

   

 

where           denotes the pdf of the normal distribution, with mean   and variance 

  , evaluated at  , namely 
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Deriving the marginal posterior densities from the joint posterior density is impractical 

given the complex nature of the joint posterior density. Nevertheless, the marginal 

posterior density can be estimated via MCMC methods, as detailed in the following 

subsections. 

2.5.3  A Metropolis-Hastings algorithm 

A MH algorithm was designed and implemented (see the R code in Appendix B-2) so as 

to generate a sample of      values of   with symmetric uniform drivers. The mean of 

the driver distributions were chosen to be the last simulated values of  , with starting 

points     ,      and   
     . Specifically, the driver distributions are: 

                 
                          

                   
                          

      
                

               
        

       

where       ,        and         are called the tuning parameters. 

The acceptance rates were found to be       for  ,       for   and       for   . 

(For example,       of the      proposed values of   were accepted.) In the 

algorithm, the values of   were restricted between    and  , while the values of    

were restricted to be positive. Figure 2.2, 2.3 and 2.4 show the traces of the sampling 

process. These are plots of the simulated values; the dotted lines show the cut-off point 

for burn-in,      . These figures show that the simulated values of  ,   and    

converge very quickly and exhibit a good mixing. 
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Figure 2.2: Trace of   

 

 

 

Figure 2.3: Trace of   
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Figure 2.4: Trace of    

 

2.5.4  Inference on marginal posterior densities 

After burn-in, the simulated values of      and    can be thought of being  

sampled directly from the marginal posterior densities. This allows inference on  

the marginal posterior densities to be made from these simulated values. Table 2.1  

shows the estimates of the posterior mean of   (alpha),   (beta),    (sigma^2),  

                (eta) and                     (tau^2),
 
together with 

their 95% confidence intervals (CI) and 95% central posterior density regions (CPDR). 

The first CI is obtained via the „ordinary‟ method which assumes no autocorrelations, 

while the second CI is the batch means confidence interval (see Pawlikowski, 1990). 

The batch means CI is better since the simulated values generated via MH algorithm are 

correlated with varying degree, depending on the driver distributions used. The true  
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value of  ,   and    are included in the table for comparison. The R code used to 

produce the posterior inference is in Appendix B-3. 

Note that   and    are functions of  ,   and   . The posterior inference of   and    are 

made from              and   
    

        , this is as discussed in Section 2.3. 

Table 2.1: Estimated posterior quantities (R output) 

                        95% CI1         95% CI2         95% CPDR 

        true    mean  lower   upper   lower   upper    2.5%  97.5% 

alpha    0.2 0.07094 0.0637 0.07818 0.04619 0.09569 -0.1593 0.3020 

beta     0.6 0.56014 0.5547 0.56554 0.54870 0.57157  0.3934 0.7397 

sigma^2  1.0 1.06224 1.0530 1.07146 1.04029 1.08419  0.8020 1.3926 

eta      0.5 0.15717 0.1400 0.17434 0.09968 0.21466 -0.4694 0.6996 

tau^2    2.5 2.52140 2.4798 2.56302 2.43336 2.60943  1.6181 4.2473 

 

 

Note that, with the exception of   , both the ordinary and the batch means confidence 

intervals fail to contain the true values; this is because the true posterior mean of these 

parameters is not the same as the true value. The posterior mean is clearly dependent on 

the values of   generated. In this case the generated   values cause the posterior mean 

to deviate from their unconditional mean. By increasing  , the number of   values, the 

posterior means will be closer to the true values. 

Figure 2.5, 2.6 and 2.7 show the frequency histograms of the simulated values of  ,   

and   , overlayed with the non-parametric estimate of the marginal posterior densities. 

The frequency histograms of the simulated values of   and    are similar, they are 

shown in Appendix D-1. Note that in these graphs, the „dots‟ point toward the true 

values and the dotted lines represent the estimated means  95% CI‟s and 95% CPDR‟s 

of the posterior distributions (from Table 2.1). 
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Figure 2.5: Frequency histogram of simulated    

 

 

Figure 2.6: Frequency histogram of simulated    
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Figure 2.7: Frequency histogram of simulated   
  

 

2.5.5  Predictive inference 

From the simulated values of           , future   values can be forecasted from 

each set of            . In this example, the predicted values of              are 

generated, according to the following distribution: 

     
   

       
   

                      
   

    
                               

  
   

             

These generated values of              are analysed in the same way as  ,   and   , 

giving the predictive inference shown in Table 2.2. The associated sample 

variances      and batch means variances (labelled s2b) are also included to illustrate 

the increasing uncertainties in the prediction as   increases. Note that the 95% CPDR 
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here corresponds to the 95% prediction interval. See the R codes in Appendix B-4 on 

how these estimates are obtained. 

Table 2.2: Predictive inference on future   values (R output) 

                    95% CI1          95% CI2       95% CPDR 

           mean   lower   upper    lower   upper  2.5% 97.5%   s2   s2b 

x(n+1)  -0.4314 -0.4978 -0.3650 -0.48673 -0.3761 -2.46  1.77 1.15 0.796 

x(n+2)  -0.1810 -0.2556 -0.1064 -0.26380 -0.0983 -2.51  2.20 1.45 1.783 

x(n+3)  -0.0188 -0.0942  0.0566 -0.08894  0.0514 -2.53  2.29 1.48 1.281 

x(n+4)   0.0121 -0.0668  0.0910 -0.08257  0.1067 -2.66  2.47 1.62 2.331 

x(n+5)   0.0675 -0.0110  0.1460 -0.02037  0.1553 -2.46  2.62 1.60 2.009 

x(n+6)   0.0958  0.0154  0.1763 -0.01799  0.2097 -2.60  2.57 1.68 3.373 

x(n+7)   0.1009  0.0229  0.1790 -0.00558  0.2075 -2.40  2.46 1.59 2.954 

x(n+8)   0.1457  0.0649  0.2265  0.02825  0.2632 -2.45  2.68 1.70 3.592 

x(n+9)   0.1030  0.0252  0.1807 -0.01233  0.2182 -2.39  2.47 1.57 3.460 

x(n+10)  0.1512  0.0765  0.2258  0.01836  0.2839 -2.06  2.52 1.45 4.590 

 

 

The mean of the forecasted future   values converges to the estimated posterior mean  

of  ,            , as illustrated in Figure 2.8. Note that the 95% CPDR‟s are too wide 

to be included, and hence they are omitted. 

Figure 2.8: Estimated posterior mean of future   values 
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An alternative method for predicting the future   values is through the Rao-Blackwell 

approach, as mentioned in Section 2.3. Using this method, the unnecessary variability 

which arose from generating   values randomly through its distribution is eliminated. 

The Rao-Blackwell estimates of the mean of the forecasted   values can be calculated 

from the following formulae (refer to Appendix A-2 for proof): 

                             
 

 
             

 

   

          

where                          
       

                                      

and                      

The Rao-Blackwell estimates  together with associated 95% CI‟s are shown in Table 2.3. 

Note that the 95% CPDR is irrelevant here since the Rao-Blackwell approach aims to 

estimate the mean of the future   values directly, i.e. the 95% CPDR is not the 95% 

prediction interval when Rao-Blackwell method is used. 

Table 2.3: Rao-Blackwell estimates of posterior mean of future   values 

                    95% CI1         95% CI2    

           mean   lower   upper   lower    upper 

x(n+1)  -0.4351 -0.4445 -0.4257 -0.4634 -0.40685 

x(n+2)  -0.1814 -0.1946 -0.1681 -0.2232 -0.13953 

x(n+3)  -0.0406 -0.0556 -0.0256 -0.0894  0.00814 

x(n+4)   0.0392  0.0234  0.0551 -0.0132  0.09166 

x(n+5)   0.0855  0.0691  0.1018  0.0310  0.13995 

x(n+6)   0.1128  0.0962  0.1295  0.0572  0.16844 

x(n+7)   0.1293  0.1124  0.1461  0.0730  0.18558 

x(n+8)   0.1393  0.1224  0.1563  0.0826  0.19607 

x(n+9)   0.1456  0.1286  0.1626  0.0886  0.20260 

x(n+10)  0.1496  0.1325  0.1667  0.0925  0.20673 
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Again, the estimated mean converges to the estimated posterior mean of     

           , but in a steadier manner, as opposed to the predictive inference produced 

through the „normal approach‟ (see point     in Figure 2.8). Rao-Blackwell 

estimation is more precise due to the narrower CI‟s produced, as can be seen  

in Figure 2.9. 

Figure 2.9: Rao-Blackwell posterior mean of future   values 

 

Note that the predictive distribution of      can be estimated in a similar way as in 

Subsection 2.5.4, by plotting frequency histograms of the generated values     
   

. As an 

example, the frequency histogram for      
   

 is shown in Figure 2.10. 
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Figure 2.10: Frequency histogram of      
   

 

 

2.5.6  Hypothesis testing 

From Figure 2.1, one may suggest that   values appear to be random rather than follow 

a time series model, implying    . With the Bayesian approach, hypothesis testing 

can be performed by inspecting the posterior predictive p-value (ppp-value), which is 

analogous to the classical p-value. This subsection carries out hypothesis testing to test 

the null hypothesis that    , against the alternative hypothesis    . 

Under the null hypothesis, the time series model can be written as           or 

                     . The ppp-value for the null hypothesis is 

                           

where    is an independent replicate of   and        is a suitable test statistic.  
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The ppp-value can then be estimated by 

   
 

 
                           

 

   

  

where      is the standard indicator function. 

Two different test statistics        are here considered; the first one is the number of  

runs above or below  ; the other is the number of runs above or below  , the mean of  

           . The ppp-value is estimated to be           using the first test statistic, 

and           using the second; hence the null hypothesis is rejected at 5% significant 

level. The number of runs for the original dataset   is never higher than the replicated 

dataset    generated under the null hypothesis, suggesting the autocorrelation between 

the   values is highly significant. 

Note that to facilitate the estimation of the ppp-values, a simpler MH algorithm is 

written and run (which assumes    ). The R code for the hypothesis testing and also 

the simpler MH algorithm is presented in Appendix B-5. 

2.5.7  Assessment of the MCMC estimates 

In order to assess the MCMC estimates of the posterior means, the exact posterior 

means need to be calculated. Since it is almost impossible to derive the marginal 

posterior densities, approximation techniques will be employed to determine the exact 

quantities. First, the joint posterior density, up to a proportional constant, is written in 

term of its kernel,          : 
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Then, the kernel of the marginal posterior densities can be obtained by integrating out 

the nuisance parameters. For instance, the kernel of the posterior density of   is 

                    

 

  

  

 

 

    

However, since this integral is intractable, numerical integration is needed to 

approximate the posterior density at each value of  . The value of        is estimated 

numerically using R for   between    and    with an increment of      (i.e. for 

                   ). Note that this method is computational intensive; about 46 

minutes were spent just to approximate the exact marginal posterior density of   

(numerical integration is performed with processor “Intel® Core™ 2 Duo CPU T5450 

@1.66GHz 1.67GHz”). R code for the implementation of the numerical integration is 

presented in Appendix B-6. 

Figure 2.11, 2.12 and 2.13 show the approximated exact posterior densities, compared 

to the non-parametric densities estimated from the simulated values. In these diagrams, 

the vertical dotted lines represent the posterior means, which were found to be 

            ,             and             , while the MCMC estimates are 

          ,            and            . Hence it is apparent that the MCMC 

methods provide reasonably good estimates. Note that the ordinary CI‟s of the 

parameter   and    (see Table 2.1) do not contain the approximated true posterior 

means, giving credit to the batch means CI since all the posterior means are contained in 

the batch means CI‟s. 
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Figure 2.11: Approximated exact marginal posterior density of   

 

Figure 2.12: Approximated exact marginal posterior density of   
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Figure 2.13: Approximated exact marginal posterior density of    

 

Next, to assess the coverage of the 95% CPDR of  , the MH algorithm was performed 

again and again to obtain thousand 95% CPDR‟s of  , and the number of the 95% 

CPDR which contains the true value of   was determined. Such assessment is 

computationally intensive (the process took 1 hour and 48 minutes, using the same 

processor as mentioned above). The R code of the assessment is shown in Appendix B-7. 

The proportion of the CPDR‟s containing the true value is found to be      , with 95% 

CI of              . It appears that the 95% CPDR of   is reasonable. Similar can be 

performed for   and   , the respective proportions for   and    were found to be       

and      , with 95% CI of               and              . 

The 95% prediction interval (PI) is also assessed in the similar way, for example, to 

evaluate the coverage of the 95% PI of the mean of the next ten future values of    
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     a thousand of these PI‟s were obtained to estimate the 

proportion containing the true value of   . Note that the true value of    is known in 

advance through the same generating process as in Subsection 2.5.1, but never used in 

the MH algorithm. It is found that the proportion of the 95% PI‟s containing    is      , 

with 95% CI                . This interval does not contain     , suggesting that the 

prediction interval is not appropriate. However, it is important to understand that the 

proportion is just an estimate based on a thousand runs of the MH algorithm, and that 

the PI itself is an estimate from the MCMC methods; due to the random nature of the 

simulation process, such estimates are rarely exactly the same as the true values. 

2.5.8  WinBUGS implementation of the MCMC methods 

This subsection repeats the above analysis with WinBUGS, for which Gibbs sampler 

will be used. Note that the minimum burn-in allowed in WinBUGS is    , hence, to 

obtain an effective sample size of       ,        simulations were performed. 

The priors are also modified slightly as WinBUGS does not allow the priors to be 

improper; they are now 

                       

                     

                           

WinBUGS code of the time series model is presented in Appendix C-1. The estimated 

posterior means of   (alpha),   (beta),    (sigma2),                 (eta) and 

                    (tau2) are shown in Table 2.4  the 95% CPDR‟s are 
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shown under the labels „2.5%‟ and „97.5%‟. The „MC error‟ in Table 2.4 corresponds to 

the batch means approach: 

MC error  
batch means standard deviation

  
  

Table 2.4: Estimated posterior quantities (WinBUGS output) 

node mean sd MC error 2.5% median 97.5% 

alpha 0.07605 0.1035 0.003158 -0.1255 0.07713 0.2849 
beta 0.5626 0.08371 0.003017 0.3966 0.5616 0.7299 
eta 0.1724 0.2491 0.007584 -0.3379 0.1784 0.646 
sigma2 1.055 0.1581 0.005542 0.8016 1.037 1.408 
tau2 2.517 0.7089 0.0239 1.595 2.382 4.286 
 
 

Note that with the exception of parameter  , the estimated posterior means are very 

close to the estimates obtained via MH algorithm. With reference to the true posterior 

mean of   from Subsection 2.5.7, WinBUGS performs better in estimating the posterior 

mean of  , owing to the fact that Gibbs sampler is more efficient. 

Performing predictive inference with WinBUGS is much simpler than writing the code 

in R, in which one only need to specify the formulae and/or the distributions of the 

desired quantities. The following shows the next ten forecasted values of  , together 

with their 95% PI‟s  shown under the labels „2.5%‟ and „97.5%‟. 

Table 2.5: Predictive inference of future   values (WinBUGS output) 

node mean sd MC error 2.5% median 97.5%  

xnext[1] -0.3766 1.038 0.03256 -2.35 -0.379 1.766  
xnext[2] -0.1549 1.254 0.03523 -2.691 -0.1786 2.245  
xnext[3] -0.05483 1.255 0.04311 -2.569 -0.03766 2.399  
xnext[4] -0.04479 1.285 0.0486 -2.701 -0.07862 2.49  
xnext[5] 0.07476 1.271 0.03215 -2.346 0.04934 2.539  
xnext[6] 0.1162 1.296 0.03326 -2.324 0.1212 2.567  
xnext[7] 0.1167 1.291 0.03609 -2.569 0.1745 2.726 
xnext[8] 0.1504 1.237 0.03873 -2.245 0.1324 2.626  
xnext[9] 0.1583 1.238 0.03996 -2.286 0.1846 2.535  
xnext[10] 0.159 1.265 0.03908 -2.293 0.1755 2.685  

 
 

This result is similar to the Rao-Blackwell forecast of the future   values. 
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Hypothesis testing can be slightly harder to implement in WinBUGS, as the posterior 

predictive p-value is determined using the „step‟ function; refer to the WinBUGS user 

manual by Spiegelhalter et al. (2003) for more details. Carrying out the same hypothesis 

test as Subsection 2.5.6, where the null hypothesis is    , the ppp-value is again 

found to be zero. The WinBUGS code for the alternative time series model for 

hypothesis testing is shown in Appendix C-2. 

Finally, the assessment of the 95% CPDR and the 95% PI are performed. This is done 

in R, as there is no function in WinBUGS that facilitates such assessment (see 

Appendix B-8 for the implementation details). From the thousand 95% CPDR‟s and  

95% PI‟s obtained via WinBUGS  it is found that 93.7% of the CPDR‟s for   contain 

the true value of  , with 95% CI               . This estimated proportion is very close 

to the one from the MH algorithm. As for the PI, the proportion containing    is      , 

with 95% CI                ; again, the 95% CI does not contain     . 
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CHAPTER 3   

CCllaaiimm  RRuunn--ooffff   TTrriiaanngglleess  aanndd  DDaattaa  

3.1  Claim run-off triangles 

A claim run-off triangle is a presentation used by actuaries, showing the claim liabilities 

which are long-tailed in nature, meaning that the claims usually take months or years to 

be fully realised. In a claim run-off triangle, the rows correspond to the years in which 

accidents or claim events occurred (accident years), while the columns show the years 

elapsed in which the claims are paid out (development years). An example of a claim 

run-off triangle is presented in Table 3.1 in the next section. 

Note that a claim run-off triangle contains empty cells, which are associated to claim 

liabilities that are not yet realised. The area in which the cells are empty is generally 

referred as the lower triangle. The total (sum) of the values in the lower triangle equals 

the required reserve. 

3.2  The AFG data 

The Automatic Facultative General Liability data from the Historical Loss Development 

study, known as the AFG data, will be studied. The data were considered by  

Mack (1994), England & Verrall (2002), and de Jong (2004); hence choosing these data 

allows comparison to be made across different reserving methods. The AFG data are 

displayed in Table 3.1 as a run-off triangle. The entries in the run-off triangle represent 

the cumulative claim amounts     for accident years   and development years  . 

  



3. Claim Run-off Triangles and Data 

32 

Since it is unclear on the exact timing of these claims, the calendar year for which the 

first claim (corresponding to entry            , which has a value of     ) occurred 

is defined to be year  . Consequently, the calendar year associated with each entry       

is    , for example, the calendar year associates with entry             is year  . 

Also note that the value of the     in the run-off triangle is in unit of      , for instance, 

the cumulative incurred claim amounts for entry             is          . 

Table 3.1: AFG data - cumulative incurred claim amounts       

Accident 
year i 

Development Year j 

0 1 2 3 4 5 6 7 8 9 

1 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834 

2 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704   

3 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466 
 

  

4 5,655 11,555 15,766 21,266 23,425 26,083 27,067 
  

  

5 1,092 9,565 15,836 22,169 25,955 26,180 
   

  

6 1,513 6,445 11,702 12,935 15,852 
    

  

7 557 4,020 10,946 12,314 
     

  

8 1,351 6,947 13,112 
      

  

9 3,133 5,395 
       

  

10 2,063                   

 

The exact claim amounts can be obtained from the difference between successive 

cumulative claim amounts    . These are presented in Table 3.2. To illustrate, the exact 

claim amount for             is                 , that means, the claim 

amount incurred at year   due to events originated from year   is         . Note that 

the exact claim amounts generally decrease with development year   for    , which 

makes sense intuitively as most claims are usually settled within a couple of years after 

accidents or claim events occurred. Also note that the claim amount corresponding to  
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entry             is negative; such a negative claim amount could be the result of 

salvage recoveries, rejection of claims or cancellation due to initial overestimation of 

the claim liabilities. 

Table 3.2: AFG data - exact incurred claim amounts 

Accident 
year i 

Development Year j 

0 1 2 3 4 5 6 7 8 9 

1 5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172 

2 106 4,179 1,111 5,270 3,116 1,817 -103 673 535 
 3 3,410 5,582 4,881 2,268 2,594 3,479 649 603 

  4 5,655 5,900 4,211 5,500 2,159 2,658 984 
   5 1,092 8,473 6,271 6,333 3,786 225 

    6 1,513 4,932 5,257 1,233 2,917 
     7 557 3,463 6,926 1,368 

      8 1,351 5,596 6,165 
       9 3,133 2,262 

        10 2,063 
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CHAPTER 4   

BBaayyeessiiaann  MMooddeellll iinngg  ooff   tthhee  AAFFGG  DDaattaa  

4.1  Reserving methods 

As discussed in Chapter 1, deterministic approaches to reserving include the traditional 

chain-ladder (CL) method and the Bornhuetter-Ferguson method. However, these 

approaches only provide point estimates of the required reserve. Stochastic reserving 

methods were considered by Scollnik (2004), England & Verrall (2002) and several 

others. 

The required reserve is equal to the value of outstanding claims liabilities, in which the 

liabilities may or may not discounted to present value. In the thesis, the outstanding 

claims liabilities are not discounted to present value, this is to facilitate comparison 

between different reserving methods. Note that the actual reserve held in practice might 

not be the same as the required reserve; it is conservative to ensure that the actual 

reserve is at least as great as the required reserve. For convenience  the term „reserve‟ 

will be used to mean the required reserve instead of actual reserve in this thesis. 

More precisely, in a claim run-off triangle showing exact claim amounts (such as the 

one in Table 3.2), the reserve is equal to the sum of the claim liabilities associated with 

the lower triangle, which need to be estimated. Equivalently, for a cumulative claim 

run-off triangle (such as in Table 3.1), the reserve     has the following formula: 

                   

 

   

 

where   is the number of rows or columns (assuming a square run-off triangle).  
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It is important to note that the accident year   starts from   while the development year   

starts from  . 

This thesis develops Bayesian models based on classical reserving models first 

proposed by Hertig (1985) and later extended by de Jong (2004). These Bayesian 

models, together with their classical counterparts, are discussed in the following section. 

4.2  Bayesian models 

Consider a run-off triangle with entries     which represents the cumulative claim 

liabilities for accident years   and development years  . Define the development factors 

    for     as the continuous growth rates in cumulative claim liabilities of accident 

years   in development year  , and formulate this quantity as the log-link ratio. Also 

define     as the natural logarithm of the initial claim liabilities of accident year  . Thus: 

       
   

      
                    

                                    

The variable   denotes number of years for which data are available; note that the claim 

run-off triangle considered in the thesis (AFG data) has equal numbers of rows and 

columns. 

The development factors     are calculated and displayed in Table 4.1. Note that one of 

the development factors       is negative, which corresponds to the negative 

incremental claim. Besides, the     for which     appears to be exceptionally large  

compared to the rest; this is due to the difference in the definition of the development 
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factors, for which     are not the growth rates of the cumulative claims. Also note that 

the development factors tend to decrease across development years. 

Table 4.1: AFG data - development factors       

Accident 
year i 

Development Year j 

0 1 2 3 4 5 6 7 8 9 

1 8.520 0.501 0.277 0.079 0.137 0.178 0.107 0.033 0.003 0.009 

2 4.663 3.699 0.231 0.681 0.256 0.124 -0.007 0.043 0.033   

3 8.134 0.970 0.434 0.151 0.149 0.170 0.029 0.026 
 

  

4 8.640 0.715 0.311 0.299 0.097 0.107 0.037 
  

  

5 6.996 2.170 0.504 0.336 0.158 0.009 
   

  

6 7.322 1.449 0.596 0.100 0.203 
    

  

7 6.323 1.976 1.002 0.118 
     

  

8 7.209 1.637 0.635 
      

  

9 8.050 0.543 
       

  

10 7.632                   

 

Hertig (1985) made an assumption that the development factors     are uncorrelated and 

can be written in the following form: 

             (1) 

                                                     

Hence, each     has a normal distribution with mean    and variance   
   ; that is, 

                   
                                 

In this model (which will hereafter be called Hertig‟s model),    is set to   to avoid 

over-parameterisation. Note that this model allows the incremental claim liabilities to 

take negative values, since it is possible for the development factors to be negative. 

Under the classical approach, the parameters        and    are assumed to be unknown 

constants that need to be estimated, either by maximum likelihood estimation or the 
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method of moments, as, for example, in de Jong (2004). In contrast, the Bayesian 

approach treats the parameters        and    as random variables, with a joint prior 

distribution. Often these parameters are taken as a priori independent, uninformative 

and improper, as follows: 

                                     

      
 

  
                                     

      
 

  
      

As mentioned before, care must be taken when using improper priors since this might 

lead to posterior distributions being improper, giving nonsensical inference. Note that 

actuaries typically have some prior knowledge regarding the parameters, which may be 

available through past experience, or simply based on their actuarial judgement; the 

prior distributions can then be modified accordingly. 

Hertig‟s model assumes that the growth rates across accident years   have the same 

distribution on each development year  . However, de Jong found that the development 

factors are correlated and suggested adding correlation terms to Hertig‟s model. The 

following are three different modifications to Hertig‟s model (1) suggested by de Jong. 

i.                         (2) 

This defines the development correlation model. Here, correlation of the 

development factors     across development years   is captured by the 

parameter   . This model asserts that the magnitude of each     directly 

influences the development factors for the next year,       . 
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ii.                                 
  

Under this accident correlation model, correlation of the development factors 

    across accident years   is modelled by the parameters    and    . 

iii.                                     
   

 

This calendar correlation model introduces the parameters        and      to 

model the correlation of     across calendar years. 

Bayesian implementation of Hertig‟s model and the development correlation model (2) 

will be discussed in detail in Chapter 5. Note that, for simplicity, the term “Hertig‟s 

model” will refer to the Bayesian implementation of Hertig‟s model rather than its 

classical counterpart. 
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CHAPTER 5   

AAnnaallyyssiiss  aanndd  RReessuull ttss   

5.1  Hertig‟s model 

Hertig‟s model, introduced in Section 4.2, will be used in this chapter to model the AFG 

data. Ideally, the prior distributions of this model‟s parameters are uninformative and 

improper, as follows: 

                            

                           

                

However, as the modelling will be done in WinBUGS, which does not allow priors to be 

improper, the following vague prior distributions are chosen in an attempt to give the 

best representation of the uninformative and improper priors: 

                                

                                             

                    

Note that choosing a prior distribution which is more diffuse for    and   , such as 

                    , leads to an error message in WinBUGS. This is because the 

software cannot accept priors that are too diffuse. Since there are    parameters to be 

estimated from only    data points, the resulting posterior distributions end up being 

improper. (If there were many more data points to estimate the same number of 

parameters, the posterior might be proper.) 
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The WinBUGS code for this model is presented in Appendix C-3. With the starting 

points chosen to be     ,      and     ,         simulated values of each 

parameter were created (in 6 seconds, with the same processor described above) via the 

Gibbs sampler. By burning-in the first      simulated values, estimates of the posterior 

means were obtained from the remaining       simulations; the WinBUGS output is 

displayed in Table 5.1. Classical estimates by de Jong are included for comparison. 

Note that in Table 5.1, each h[j ]  corresponds to parameter     , while each mu[j]  

corresponds to parameter      and sigma2 corresponds to parameter   . 

Table 5.1: Posterior estimates of   ,    and    (Hertig‟s model) 

node mean sd MC error 2.5% median 97.5% de Jong’s 

h[2] 0.9654 0.3503 0.008836 0.4693 0.9088 1.793 0.8571 
h[3] 0.2448 0.09868 0.002577 0.1122 0.2254 0.4892 0.2143 
h[4] 0.2142 0.09374 0.002222 0.09399 0.195 0.4497 0.1786 
h[5] 0.05783 0.02786 6.26E-4 0.02417 0.05152 0.1309 0.0446 
h[6] 0.07323 0.04005 9.275E-4 0.02874 0.06386 0.1738 0.0536 
h[7] 0.05735 0.04021 8.36E-4 0.01953 0.04666 0.1623 0.0357 
h[8] 0.01322 0.01739 5.151E-4 0.003171 0.008864 0.04989 0.0089 
h[9] 0.09772 0.3435 0.01146 0.006977 0.02854 0.6174 0.0089 
h[10] 0.8656 3.246 0.1542 3.468E-10 0.001739 9.444 0.00 
mu[1] 7.346 0.4009 0.003863 6.549 7.345 8.147 7.35 

mu[2] 1.518 0.3938 0.004067 0.7263 1.518 2.311 1.52 
mu[3] 0.4981 0.1079 0.001066 0.2839 0.4984 0.7141 0.50 
mu[4] 0.2515 0.1006 0.00104 0.04582 0.2527 0.4482 0.25 
mu[5] 0.1666 0.0297 3.031E-4 0.1069 0.1667 0.226 0.17 
mu[6] 0.1182 0.04235 4.402E-4 0.03564 0.1178 0.2026 0.12 
mu[7] 0.0409 0.04056 4.143E-4 -0.03797 0.04104 0.118 0.04 
mu[8] 0.03362 0.01372 1.166E-4 0.01118 0.03389 0.05449 0.03 
mu[9] 0.01951 0.2885 0.001898 -0.1811 0.01824 0.24 0.02 
mu[10] -0.01621 3.873 0.03726 -3.992 0.009174 4.147 0.01 

sigma2 1.612 0.8962 0.03325 0.626 1.387 3.965 1.2544 
 
 

There are a few points that should be noted. First, the posterior estimate of    is 

exceptionally large (         , bolded above) compared to other   . This is purely 

due to the fact that the development factors       for     are fundamentally different 

in definition to the other development factors. Secondly,    is estimated to be smaller as 

development year   gets larger; this makes sense intuitively, because total claims tend to 
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become smaller with time after the accident year. The estimates of    follow the same 

pattern, with the exception of   ,    and   . 

Thirdly, note that the estimates of    and    are very large, with extremely large 

standard deviations and wide 95% CPDR‟s compared to the other    (see the bolded 

figures in Table 5.1). The reason behind this is that there are only a few data points 

available to estimate these parameters, as can be seen on the right hand side of the claim 

run-off triangle. Since uninformative priors are used, lack of data points leads to the 

posterior distributions being highly disperse. Note that this problem is also present in 

the estimates of    and   . 

Finally, the estimates of    are found to be very close to the classical estimates obtained 

by de Jong. On the other hand, the variability of the development factors, captured by 

the parameters    and   , are found to be higher than the classical estimates. However, 

the classical approach tends to underestimate uncertainty regarding the parameters. This 

is most apparent for   , de Jong took    as   since there is only one data point 

corresponding to     (in which case the variability cannot be estimated). 

Traces of the simulated values of   ,    and    produced via WinBUGS are shown in 

Figure 5.1, 5.2 and 5.3 respectively. These traces show that the simulated values of    

exhibit good mixing; the simulated values of    exhibit a relatively worse mixing, with 

some of the simulated values being either too large or too small; the simulated values of 

   clearly do not exhibit good mixing, since a significantly large number of the 

simulated values are exceptionally far from their mean. This shows that the parameters 

   get progressively imprecise as   increases, mainly due to the decreasing amount of 

data points available to estimate the parameters. Note that the existence of spikes 
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(extremely large values) in Figure 5.3 is the primary reason for the high standard 

deviation of the estimate    (see Table 5.1). The traces of the simulated    are similar 

and give the same inference for   . The traces of simulated   ,    and    are shown in 

Appendix D-2 for completeness. 

Figure 5.1: Trace of simulated    

 

Figure 5.2: Trace of simulated    

 

Figure 5.3: Trace of simulated    
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Predictive inference on the future development factors can be obtained by generating 

random observations of the future development factors directly. In WinBUGS, this is 

easily done by specifying the distribution of the future development factors, which is no 

different from the distribution of the current development factors, as defined in 

Section 4.2. In addition, the future cumulative claim liabilities and the reserve are 

readily obtained since they can be expressed as explicit functions of the future 

development factors. The predictive inference is presented in Table 5.2 in the same 

format as Table 5.1; again, note that each delta[ i, j ]  corresponds to the development 

factor       . 

Most of the predicted development factors are reasonable predictions of the future, 

except for development years   and  , where the high variability in predictions is 

caused by the imprecise posterior estimates of the underlying parameters. For instance, 

the prediction of       (delta[10,10] in Table 5.2) is accompanied by an extremely large 

standard deviation         and a very wide 95% prediction interval             . 

These large standard deviations and prediction intervals are bolded in Table 5.2; they 

correspond to the estimates where    . These predictions do not provide any real 

information regarding the future claim amounts, because a single data point is 

insufficient to project future claim payments. For example, the 95% prediction interval 

for       suggests that the cumulative claim liabilities for next year will be between 

            and              of the current cumulative claim. 
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Table 5.2: Predictive inference on the future     (Hertig‟s model) 

node mean sd MC error 2.5% median 97.5% 
delta[2,10] -0.06639 5.792 0.05582 -6.386 0.009174 4.653 

delta[3,9] 0.02169 0.4779 0.005613 -0.3242 0.01859 0.4005 
delta[3,10] -0.0766 5.8 0.05948 -5.966 0.009174 5.193 

delta[4,8] 0.03373 0.02775 2.721E-4 -0.01056 0.03376 0.07774 
delta[4,9] 0.0194 0.5035 0.003882 -0.3461 0.01726 0.3832 
delta[4,10] -0.04602 5.278 0.05102 -5.723 0.009174 5.258 

delta[5,7] 0.04168 0.08435 7.927E-4 -0.1306 0.04108 0.2113 
delta[5,8] 0.03362 0.02701 2.492E-4 -0.01203 0.03359 0.07488 
delta[5,9] 0.02299 0.4981 0.004636 -0.3235 0.01821 0.4023 
delta[5,10] 0.01581 5.405 0.03206 -5.733 0.009174 5.721 

delta[6,6] 0.1181 0.1037 0.00111 -0.08619 0.1187 0.3224 
delta[6,7] 0.0414 0.0922 9.204E-4 -0.1322 0.04117 0.225 
delta[6,8] 0.03348 0.02793 2.81E-4 -0.01262 0.03348 0.07792 
delta[6,9] 0.0274 0.6109 0.004985 -0.3262 0.01809 0.4015 
delta[6,10] -0.02916 6.729 0.05375 -5.362 0.009174 5.28 

delta[7,5] 0.1662 0.07821 7.713E-4 0.006882 0.1655 0.3289 
delta[7,6] 0.1186 0.1057 0.001188 -0.09621 0.1186 0.3297 
delta[7,7] 0.04133 0.0885 8.649E-4 -0.1293 0.04182 0.2084 
delta[7,8] 0.03307 0.03147 3.291E-4 -0.01337 0.03376 0.07435 
delta[7,9] 0.02044 0.5108 0.005545 -0.3044 0.01844 0.3958 
delta[7,10] -0.01812 5.94 0.05174 -6.015 0.009174 6.19 

delta[8,4] 0.2552 0.2903 0.003011 -0.3112 0.2522 0.8456 
delta[8,5] 0.1674 0.07901 7.884E-4 0.01359 0.1667 0.3249 
delta[8,6] 0.1174 0.105 9.475E-4 -0.08331 0.1173 0.3176 
delta[8,7] 0.04268 0.09128 9.016E-4 -0.1322 0.04109 0.224 
delta[8,8] 0.03385 0.02704 2.47E-4 -0.009508 0.03392 0.07699 
delta[8,9] 0.01833 0.5527 0.004303 -0.3269 0.01807 0.4282 
delta[8,10] -0.01818 5.352 0.04204 -6.319 0.009174 5.553 

delta[9,3] 0.5033 0.3174 0.002829 -0.1371 0.5049 1.135 
delta[9,4] 0.2473 0.2803 0.003139 -0.3194 0.2479 0.7994 
delta[9,5] 0.166 0.08086 8.958E-4 -0.002365 0.1663 0.3278 
delta[9,6] 0.1175 0.1075 0.001102 -0.09249 0.1169 0.3274 
delta[9,7] 0.0402 0.09023 9.666E-4 -0.1353 0.03959 0.2169 
delta[9,8] 0.03385 0.03023 2.84E-4 -0.01223 0.03376 0.0774 
delta[9,9] 0.01652 0.4597 0.005298 -0.3345 0.01874 0.3518 
delta[9,10] -0.002851 5.936 0.07171 -5.806 0.009174 5.566 

delta[10,2] 1.506 1.225 0.01138 -0.977 1.508 3.946 
delta[10,3] 0.4966 0.3173 0.003139 -0.1283 0.4977 1.132 
delta[10,4] 0.2549 0.289 0.002871 -0.3159 0.256 0.8419 
delta[10,5] 0.1672 0.07973 8.097E-4 0.009221 0.1675 0.3259 
delta[10,6] 0.1174 0.1036 0.001107 -0.09371 0.1187 0.3224 
delta[10,7] 0.0425 0.08824 8.206E-4 -0.1273 0.04155 0.2132 
delta[10,8] 0.0334 0.02738 3.026E-4 -0.01053 0.03362 0.07786 
delta[10,9] 0.01795 0.4781 0.00527 -0.3285 0.0181 0.3751 
delta[10,10] 0.02923 5.535 0.07309 -5.71 0.009174 5.75 

 
 

Note that attempting to predict the future cumulative claim liabilities     and reserve   

in WinBUGS results in an error, due to the very imprecise predictions of     , since by 

chance the generated development factors can be very large, leading to even larger 

claim liabilities. In fact, the error is caused by some of the cumulative claim liabilities 

reaching a very large number that is not supported by WinBUGS. However, there are 
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ways to achieve the predictive inference on the cumulative claim liabilities and the 

reserve. One method is to reduce the number of effective simulations  . The other is to 

explicitly set an upper bound for the predicted development factors. The predictive 

inference obtained via the first method  with         is shown in Appendix D-3 for 

completeness. A snapshot of the predictive inference is shown in Table 5.3. This 

inference is not entirely useful, since the predicted reserve is unreasonably large. 

Table 5.3: Predictive inference on reserve (Hertig‟s model) 

node  mean  sd  MC error 2.5% median 97.5%  
reserve 1.086E+33 4.406E+34 1.067E+33 -75100.0 86260.0 5.208E+11 

 
 

5.2  A modified Hertig‟s model 

As can be seen in the previous section, using a single data point for estimation leads to 

extremely large standard deviations and hence imprecise estimates. This calls for a 

modification to Hertig‟s model that rectifies this problem. Since the parameters    and 

   decrease with development years  , one possible approach is to model the structure of 

   and    directly. Assuming    and    decrease exponentially for    , the following 

parameterisation was used as a „fix‟ to Hertig‟s model: 
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The vague prior distributions associated with this modification are as follows: 

                                      

                                   

                          

                  

                  

where       forces the simulated values of    to be positive (this notation is consistent 

with WinBUGS syntax). 

These priors are not really uninformative; for instance, the parameters   ,   and   are 

deliberately restricted to be positive since it is assumed that the mean of the 

development factors are positive (a development factor can still be negative under this 

model). This assumption is supported by the MCMC estimates in Table 5.1. 

This modification reduces the number of parameters that need to be estimated from    

to   and assumes that    and    decrease exponentially with a constant rate. (This 

assumption could be relaxed by allowing    and    to decrease with varying rates, but 

this would increase the required number of parameters.) 

As in Section 5.1, Gibbs sampling was used to simulate         values of each 

parameter. The starting points were chosen to be       ,     ,     ,       

and      . The WinBUGS code for this model is presented in Appendix C-4. Again, a 

burn-in of        was chosen so that a final sample of         simulated values  

were used in producing the posterior mean estimates, as shown by the WinBUGS  
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output in Table 5.4. Note that h[j ]  represents       mu[j]  represents      and sigma2 

represents   . 

Table 5.4: Posterior estimates of   ,   ,   ,   and   (modified Hertig‟s model) 

node mean sd MC error 2.5% median 97.5%  

M 0.5715 0.03239 5.412E-4 0.5051 0.5723 0.6342  
N 0.5989 0.03991 8.131E-4 0.5254 0.5972 0.6818  
h[2] 0.9303 0.3557 0.009583 0.4297 0.8665 1.83  
h[3] 0.2341 0.07353 0.00266 0.1165 0.2249 0.4024  
h[4] 0.1388 0.03954 0.001446 0.07263 0.1347 0.2253  
h[5] 0.08266 0.02243 7.974E-4 0.0441 0.08074 0.1313  
h[6] 0.04945 0.01365 4.485E-4 0.0261 0.0484 0.07896  
h[7] 0.02972 0.008864 2.588E-4 0.01517 0.02881 0.05011  
h[8] 0.01794 0.006021 1.539E-4 0.008543 0.01715 0.03239  
h[9] 0.01088 0.004188 9.444E-5 0.004783 0.01017 0.02096  
h[10] 0.006628 0.002942 5.969E-5 0.002635 0.00606 0.01388  
mu[1] 7.356 0.4189 0.004546 6.536 7.356 8.191  
mu[2] 1.521 0.3949 0.003977 0.7353 1.518 2.319  
mu[3] 0.4954 0.07502 0.001277 0.355 0.4927 0.6517  
mu[4] 0.2814 0.03336 4.899E-4 0.2161 0.2813 0.3493  
mu[5] 0.1604 0.01719 1.755E-4 0.1259 0.1605 0.1946  
mu[6] 0.09167 0.01119 9.605E-5 0.06856 0.09184 0.1135  
mu[7] 0.05256 0.008153 8.652E-5 0.03586 0.05257 0.06861  
mu[8] 0.03023 0.005968 7.427E-5 0.01827 0.03014 0.04223  
mu[9] 0.01744 0.004263 5.811E-5 0.009349 0.01729 0.02636  
mu[10] 0.01009 0.002971 4.277E-5 0.00475 0.009922 0.01647  
sigma2 1.802 1.082 0.04033 0.664 1.511 4.661  
 
 

Although the output shows 22 parameter estimates, there are only 8 free parameters 

since    and    for         are essentially functions of the other parameters, namely 

          and  . Note that the problem with extremely large standard deviations was 

eliminated with the reduction in the number of free parameters; hence overall the 

estimates are more precise, with smaller standard deviations and narrower 95% CPDR‟s. 

The traces of the simulated values suggest quick convergence and good mixing. Since 

these traces are similar to the trace in Figure 5.1, they are not displayed here. These 

traces are available in Appendix D-4 for completeness. 

The predictive inference on the development factors     is omitted in this section as they 

are not of particular interest; rather, attention is given to the predicted cumulative claim 
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liabilities     and the reserve  . Unlike in the preceding section, obtaining the predictive 

inference with WinBUGS did not produce any error messages under modified Hertig‟s 

model. The predictive inference is shown in Table 5.5, where c.pred[i, j ]  represents 

      . 

Table 5.5: Predictive inference on future     and   (modified Hertig‟s model) 

node  mean  sd  MC error 2.5% median 97.5%  

c.pred[2,10] 16880.0 156.3 1.714 16560.0 16870.0 17190.0  
c.pred[3,9] 23880.0 353.2 3.316 23180.0 23880.0 24590.0  
c.pred[3,10] 24130.0 439.0 4.899 23260.0 24120.0 25030.0  
c.pred[4,8] 27910.0 655.7 6.95 26640.0 27900.0 29270.0  
c.pred[4,9] 28410.0 813.4 8.835 26860.0 28380.0 30080.0  
c.pred[4,10] 28700.0 894.5 9.416 26990.0 28670.0 30520.0  
c.pred[5,7] 27620.0 1043.0 11.59 25630.0 27600.0 29750.0  
c.pred[5,8] 28470.0 1292.0 13.94 2.6E+4 28430.0 31170.0  
c.pred[5,9] 28970.0 1414.0 15.03 26280.0 28930.0 31950.0  
c.pred[5,10] 29270.0 1488.0 15.95 26450.0 29240.0 32410.0  
c.pred[6,6] 17400.0 1082.0 12.43 15350.0 17390.0 19600.0  
c.pred[6,7] 18360.0 1363.0 14.68 15820.0 18340.0 21140.0  
c.pred[6,8] 18940.0 1497.0 16.04 16130.0 18890.0 2.2E+4  
c.pred[6,9] 19280.0 1576.0 17.08 16310.0 19230.0 22480.0  
c.pred[6,10] 19480.0 1620.0 17.67 16460.0 19430.0 22800.0  
c.pred[7,5] 14510.0 1495.0 14.65 11750.0 14440.0 17650.0  
c.pred[7,6] 15930.0 1933.0 16.63 12430.0 15800.0 20100.0  
c.pred[7,7] 16800.0 2148.0 19.32 12930.0 16680.0 21380.0  
c.pred[7,8] 17330.0 2278.0 20.47 13220.0 17200.0 22210.0  
c.pred[7,9] 17640.0 2349.0 21.58 13430.0 17500.0 22610.0  
c.pred[7,10] 17820.0 2394.0 22.12 13520.0 17670.0 22850.0  
c.pred[8,4] 17660.0 3083.0 29.1 12320.0 17440.0 24550.0  
c.pred[8,5] 20870.0 4328.0 44.65 13630.0 20410.0 30770.0  
c.pred[8,6] 22940.0 5010.0 51.31 14710.0 22360.0 34300.0  
c.pred[8,7] 24190.0 5397.0 55.24 15300.0 23560.0 36520.0  
c.pred[8,8] 24930.0 5605.0 57.34 15750.0 24330.0 37490.0  
c.pred[8,9] 25380.0 5731.0 57.99 15980.0 24760.0 38320.0  
c.pred[8,10] 25640.0 5809.0 58.94 16100.0 25010.0 38800.0  
c.pred[9,3] 9257.0 2985.0 29.61 4822.0 8820.0 16360.0  
c.pred[9,4] 12460.0 4767.0 51.21 5722.0 11650.0 23820.0  
c.pred[9,5] 14740.0 5955.0 62.2 6419.0 13640.0 29150.0  
c.pred[9,6] 16170.0 6634.0 69.65 6983.0 14940.0 32230.0  
c.pred[9,7] 17070.0 7058.0 72.4 7357.0 15750.0 34270.0  
c.pred[9,8] 17610.0 7296.0 74.11 7542.0 16230.0 35350.0  
c.pred[9,9] 17920.0 7428.0 74.93 7676.0 16500.0 36020.0  
c.pred[9,10] 18110.0 7505.0 75.27 7761.0 16680.0 36380.0  
c.pred[10,2] 22130.0 88610.0 1015.0 782.1 9544.0 109500.0  
c.pred[10,3] 38080.0 160200.0 1827.0 1212.0 15580.0 190200.0  
c.pred[10,4] 51080.0 205700.0 2417.0 1554.0 20680.0 2.6E+5  
c.pred[10,5] 60160.0 234100.0 2763.0 1813.0 24260.0 313600.0  
c.pred[10,6] 66330.0 2.59E+5 3071.0 2014.0 26690.0 347300.0  
c.pred[10,7] 70180.0 280900.0 3318.0 2104.0 28120.0 368700.0  
c.pred[10,8] 72380.0 289400.0 3424.0 2167.0 29050.0 377700.0  
c.pred[10,9] 73690.0 295300.0 3485.0 2215.0 29620.0 383600.0  
c.pred[10,10] 74390.0 296400.0 3498.0 2219.0 29850.0 386700.0  
reserve 112300.0 296700.0 3498.0 30740.0 69700.0 424500.0  
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At first glance, the predictions seem reasonable and the standard deviations associated 

with each predicted value do not appear to be very large; however, this is only true for 

    where    . For the cumulative claim liabilities at the bottom row of the claim  

run-off triangle (i.e.     ), the standard deviations are larger than the associated 

forecasted liabilities, giving imprecise estimates (see the bolded figures in Table 5.5). 

Consequently, the estimated reserve is also imprecise. 

Note that the forecasted means in the predictive inference are larger than the medians, 

suggesting that the predictive distributions are positively skewed. However, the means 

corresponding to the last row of the cumulative claim liabilities and reserve appear to be 

too large compared to their median, suggesting highly dispersed and extremely skewed 

distributions. This can be seen in Figure 5.4, which depicts the trace of the simulated 

values of reserve; the extremely large simulated values, which correspond to large 

spikes in the trace, cause the mean to be much larger than the median. In this case, 

perhaps the median is a more appropriate choice for predictive purposes. 

 

Figure 5.4: Trace for simulated values of reserve (modified Hertig‟s model) 
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The large standard deviations corresponding to the bottom row of the cumulative claim 

liabilities is most likely to be caused by the imprecise forecast of       (c.pred[10,2] in  

Table 5.5) initially, and this causes the following cumulative claim liabilities to be 

highly variable, ultimately the estimated reserve as well. It is possible that the model is 

lacking something in explaining the development factors when    , such as the 

correlation between the development factors. In fact, ignoring the correlation between 

    and     can lead to sizable forecast errors (de Jong, 2004). Correlation between the 

development factors will be implemented in the following section. 

5.3  Development correlation model 

In this section, the development correlation model (see Equation 2 in Section 4.2) is 

further discussed. Note that this model assumes first order correlation between each 

consecutive pair of the development factors, in the sense that each     is correlated with 

       for        ; this is captured by the correlation parameters   . 

The same modification from Section 5.2 will be applied to this model (i.e. applying 

structural constraints to    and    for    ), to avoid large standard deviations that 

accompany the MCMC estimates (for    and    when      ). The introduction of the 

correlation terms will increase the number of free parameters by  , which is undesirable 

given the number of data points. For purposes of parsimony, only the correlation 

between     and     will be considered, meaning that only one extra parameter      will 

be added to the model. This is consistent with de Jong‟s assumption that only the 

correlation between development years   and   is significant. 
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The resulting development correlation model may be summarised as follows: 

                   
                                     

                                
   

           

                     

                               

The prior distributions in this model are exactly the same as those in Section 5.2, with 

the addition of the prior distribution for   , as follows: 

                       

Note that there are only 9 free parameters in this model. The WinBUGS code of this 

model is in Appendix C-5. Again, Gibbs sampling was used to simulate         

values of each parameter, the starting points were chosen to be               

                   and       and        values were burnt-in.  

The posterior estimates are shown below in Table 5.6. Note that the estimate  

of          
                 is also presented in Table 5.6. As above, h[j ]  

represents       mu[j]  represents       and sigma2 represents   . Also, theta and rho 

represent    and  , respectively. 

The results in Table 5.6 are similar to those in Table 5.4, but with two extra rows. The 

estimated    and   show that the development factors between development years   and 

  are negatively and significantly correlated, also note that none of the standard 

deviations in Table 5.6 seem to be unduly large. 
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Table 5.6: Posterior estimates (development correlation model) 

node  mean  sd  MC error 2.5% median 97.5%  

M 0.5711 0.03266 5.617E-4 0.5053 0.5718 0.6351  
N 0.5986 0.04001 9.132E-4 0.5266 0.5965 0.6829  
h[2] 0.2221 0.08752 0.004816 0.09138 0.21 0.4286  
h[3] 0.2238 0.075 0.003573 0.1025 0.2147 0.3959  
h[4] 0.1325 0.04036 0.002011 0.06373 0.1292 0.2226  
h[5] 0.07883 0.02281 0.001146 0.03887 0.07742 0.128  
h[6] 0.04711 0.01375 6.633E-4 0.02317 0.04623 0.07715  
h[7] 0.02828 0.008831 3.906E-4 0.01361 0.02742 0.04804  
h[8] 0.01706 0.005944 2.344E-4 0.007901 0.01626 0.03096  
h[9] 0.01034 0.00411 1.435E-4 0.00446 0.009662 0.02039  
h[10] 0.006295 0.002878 8.963E-5 0.002477 0.005728 0.01349  
mu[1] 7.38 0.4209 0.01947 6.547 7.382 8.21  
mu[2] 1.467 0.3476 0.01601 0.7851 1.463 2.147  
mu[3] 0.4967 0.07618 0.001229 0.3518 0.4949 0.6543  
mu[4] 0.2819 0.03399 4.692E-4 0.2153 0.2815 0.35  
mu[5] 0.1606 0.01754 1.775E-4 0.1259 0.1607 0.1951  
mu[6] 0.09172 0.01138 1.087E-4 0.06868 0.09181 0.1135  
mu[7] 0.05256 0.008263 9.531E-5 0.03594 0.05265 0.06871  
mu[8] 0.03021 0.006035 7.938E-5 0.01847 0.03017 0.0425  
mu[9] 0.01742 0.004305 6.115E-5 0.009435 0.01728 0.02645  
mu[10] 0.01008 0.002996 4.467E-5 0.004837 0.009887 0.01657  
rho -0.9576 0.03492 0.001646 -0.9936 -0.9666 -0.8645  

sigma2 2.082 1.597 0.09705 0.7158 1.653 6.188  
theta -4.141 1.836 0.1221 -8.785 -3.769 -1.72  

 
 

The traces of the simulated values illustrate that the simulations converge very quickly 

and produce reasonably good mixing. Figures 5.5, 5.6 and 5.7 shows the traces of 

simulated        and   , while the rest of the traces are placed in Appendix D-5. 

However, most of the simulated values appear to have higher autocorrelation, causing 

the standard deviations to underestimate the true variability of the parameters; hence, 

the MC errors are more suitable in measuring the variability. Note that the introduction 

of    to the model causes the simulated values of    and    to be negatively correlated, 

which can be seen from the traces in Figure 5.5 and 5.6. In fact, by plotting the 

simulated values of    against those of   , the negative relationship is obvious (the plot 

is shown in Figure 8.6 in Appendix D-6). 
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Figure 5.5: Trace of    

 

 

Figure 5.6: Trace of    

 

 

Figure 5.7: Trace of    
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Predictive inference on the individual future cumulative claim liabilities and the total 

reserve are presented in Table 5.7. 

Table 5.7: Predictive inference on     and   (development correlation model) 

node mean sd MC error 2.5% median 97.5%  

c.pred[2,10] 16880.0 159.1 1.748 16560.0 16870.0 17200.0  
c.pred[3,9] 23880.0 355.1 3.685 23180.0 23880.0 24590.0  
c.pred[3,10] 24130.0 439.8 4.638 23250.0 24120.0 25020.0  
c.pred[4,8] 27920.0 655.2 7.266 26650.0 27900.0 29220.0  
c.pred[4,9] 28410.0 815.3 8.964 26840.0 28390.0 30060.0  
c.pred[4,10] 28700.0 896.5 10.07 26920.0 28680.0 30530.0  
c.pred[5,7] 27610.0 1044.0 9.948 25590.0 27590.0 29740.0  
c.pred[5,8] 28470.0 1307.0 11.45 25960.0 28450.0 31190.0  
c.pred[5,9] 28980.0 1424.0 12.59 26240.0 28950.0 31900.0  
c.pred[5,10] 29270.0 1495.0 13.34 26380.0 29240.0 32360.0  
c.pred[6,6] 17390.0 1080.0 10.48 15340.0 17350.0 19590.0  
c.pred[6,7] 18330.0 1348.0 12.66 15840.0 18280.0 21100.0  
c.pred[6,8] 18910.0 1494.0 13.91 16170.0 18850.0 22060.0  
c.pred[6,9] 19240.0 1571.0 14.24 16340.0 19180.0 22590.0  
c.pred[6,10] 19440.0 1616.0 14.91 16470.0 19360.0 22870.0  
c.pred[7,5] 14530.0 1508.0 13.32 11810.0 14440.0 17700.0  
c.pred[7,6] 15940.0 1953.0 18.26 12490.0 15830.0 20140.0  
c.pred[7,7] 16820.0 2192.0 19.77 12970.0 16660.0 21490.0  
c.pred[7,8] 17350.0 2326.0 20.86 13200.0 17180.0 22350.0  
c.pred[7,9] 17660.0 2402.0 21.42 13420.0 17500.0 22840.0  
c.pred[7,10] 17840.0 2450.0 21.77 13490.0 17680.0 23080.0  
c.pred[8,4] 17600.0 3120.0 32.63 12200.0 17330.0 24560.0  
c.pred[8,5] 20790.0 4332.0 44.85 13490.0 20320.0 30540.0  
c.pred[8,6] 22820.0 4999.0 49.97 14510.0 22300.0 34030.0  
c.pred[8,7] 24050.0 5385.0 53.24 15130.0 23480.0 36200.0  
c.pred[8,8] 24810.0 5618.0 55.25 15530.0 24210.0 37260.0  
c.pred[8,9] 25260.0 5754.0 55.92 15770.0 24640.0 37970.0  
c.pred[8,10] 25520.0 5829.0 56.5 15940.0 24890.0 38490.0  
c.pred[9,3] 9248.0 2873.0 27.15 4924.0 8836.0 15990.0  
c.pred[9,4] 12460.0 4627.0 46.75 5759.0 11720.0 23380.0  
c.pred[9,5] 14740.0 5793.0 62.45 6544.0 13800.0 28850.0  
c.pred[9,6] 16190.0 6488.0 71.32 7012.0 15140.0 31890.0  
c.pred[9,7] 17080.0 6873.0 74.87 7348.0 15970.0 33770.0  
c.pred[9,8] 17610.0 7097.0 76.51 7549.0 16440.0 34820.0  
c.pred[9,9] 17910.0 7224.0 77.09 7693.0 16710.0 35510.0  
c.pred[9,10] 18100.0 7297.0 77.59 7774.0 16870.0 35860.0  
c.pred[10,2] 7670.0 2460.0 28.83 3913.0 7324.0 13520.0  
c.pred[10,3] 13160.0 5982.0 66.39 5094.0 12050.0 27790.0  
c.pred[10,4] 17750.0 8853.0 98.44 6293.0 15960.0 39680.0  
c.pred[10,5] 20980.0 10800.0 121.4 7109.0 18760.0 48430.0  
c.pred[10,6] 23070.0 12060.0 135.9 7753.0 20570.0 53220.0  
c.pred[10,7] 24330.0 12770.0 143.6 8114.0 21670.0 55910.0  
c.pred[10,8] 25080.0 13180.0 147.7 8334.0 22350.0 57720.0  
c.pred[10,9] 25530.0 13420.0 150.1 8488.0 22760.0 58910.0  
c.pred[10,10] 25790.0 13560.0 151.5 8575.0 22960.0 59540.0  
reserve 63500.0 18640.0 205.0 35050.0 61090.0 107200.0  

 
 

The predicted     for     are almost identical to those in the modified Hertig‟s model 

(see Table 5.5); this is because the parameter estimates of    in both models are very 
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close to one another. More importantly, the future cumulative claim liabilities and the 

reserve have reasonable standard deviations which are not unduly large (see bolded 

figures). Although the distributions of the predicted claim liabilities and reserve are still 

positively skewed in this case, the magnitudes of the estimated means are not very large 

compared to the estimated median. 

As can be seen in Figure 5.8, which portrays the trace of the simulated reserve, there 

appears to be no highly extreme values. 

Figure 5.8: Trace of simulated reserve   

 

Comparing Hertig‟s model  modified Hertig‟s model, and the development correlation 

model, it seems that the development correlation model performs best in modelling the 

claim run-off triangle (AFG data). In the next chapter, these three models will be 

assessed formally through hypothesis testing. 
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CHAPTER 6   

MMooddeell   DDiiaaggnnoossttiiccss  aanndd  MMCCMMCC  AAsssseessssmmeenntt   

6.1  Hypothesis testing 

In Chapter 5, some imprecise estimates obtained via MCMC methods were identified, 

simply by looking at the posterior estimates and associated standard deviations. On that 

basis, it was concluded that Hertig‟s model (Section 5.1) and its modification 

(Section 5.2) are not suitable for reserving purposes. More formally, one could perform 

hypothesis testing to assess the models. In this section, the theory of posterior predictive 

p-values (ppp-values) will be used to perform hypothesis tests for assessing goodness-

of-fit. The strategy will be to generate independent replicated development factors    
  

from their posterior predictive densities and compare them with the observed 

development factors     from the data. The behaviour of the replicates relative to the 

original data will be used to decide whether the model is adequate. 

Generally,                        where     and     are the underlying parameters that 

generate the development factors. In Hertig‟s model and its modification, these 

parameters are 

       

      
    

Whereas under the development correlation model, they are: 
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The replicated development factors    
  have the same joint distribution as that of the 

   . This joint distribution may be represented by writing    
              

     
    where, 

for Hertig‟s model and its modification: 

   
         

   
        

    

Whereas for the development correlation model: 

   
               

   
             

                          

   
        

    

Note that    the set of all      and     the set of all    
   are independent, conditional  

on the set of all parameters,   (e.g.                              under the 

development correlation model). That is,           . 

For general goodness-of-fit testing, the null hypothesis                      is 

tested against the alternative hypothesis                       ; by considering 

two different test statistics as follows: 

          
                

 

          

    

   

  

   

                  

          
                

 

          

    

   

  

   

       
   

      
 

  



6. Model Diagnostics and MCMC Assessment 

58 

These test statistics measure the overall deviations of the quantities                   

from their respective expected values, scaled by an associated variance. Note that       is 

the successive difference between the development factors, while       is the 

corresponding successive ratio. 

To test whether correlation is present in the model, first define 

        
       

             
    

Thus,       takes a value of   when           and                 are of different sign, 

and otherwise        . 

Under Hertig‟s model and its modification  the development factors are assumed to be 

independently distributed, and hence there is no correlation between the development 

factors. Thus it makes sense to test 

                                          

versus                                       

Under   , it is equally likely for       to be either   or  ; however, a simple calculation 

of       from the AFG data suggests otherwise for development year    . The       are 

calculated from     of the AFG data, using the classical estimates of    , i.e.        , 

the mean of the development factors correspond to each column. Table 6.1 shows the 

values of the      .  
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Table 6.1: AFG data -       

Accident 
year i 

Development Year j 

0 1 2 3 4 5 6 7 8 9 

1 - 1 0 0 0 1 0 1 0 0 

2 - 1 1 1 0 0 1 1 0 
 3 - 1 0 0 0 1 1 0 

  4 - 1 0 1 1 0 0 
   5 - 1 0 0 1 0 

    6 - 0 1 1 1 
     7 - 1 0 1 

      8 - 1 0 
       9 - 1 

        10 - 
          

As can be seen from the first column of Table 6.1, eight of the nine       values are  , 

implying that the development factors are actually correlated, i.e. when     is larger than 

  ,     will be lower than   , and vice versa. These observations suggest another (third) 

test statistic, which can be used to formally test the significance of the correlation: 

              

  

   

 

This test statistic counts the number of sign changes corresponding to           and 

                for development year  . 

For the general assessment of goodness-of-fit, the ppp-value in favour of    against    

is defined to be: 

        
              

where            and   
          ,   

  denotes the test statistic corresponding to 

the replicates and   is the set of original data. 
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The ppp-values can be estimated via MCMC methods, by the proportion of simulations 

for which   
  is smaller than   : 

    
 

 
   

   

 

   

 

where   
   

     
    

   
   

     
   

               
    

         
               

     is the set of all parameters at iteration    and      
 is the set of all    

   obtained via 

the method of composition at iteration  . 

For the correlation test, the ppp-value in favour of    against    is defined as 

        
        

where            and   
      

     

In this case,    is estimated by 

    
 

 
   

   

 

   

 

where   
   

     
    

   
   

 ,   
   

             and   
    

         
      . 

All hypothesis tests are conducted with 5% significance level; i.e. the null hypothesis 

   is rejected if the ppp-value is less than     . 

The implementation of the hypothesis tests for each model is discussed in the following 

subsections. 
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6.1.1  Hertig‟s model 

The expected value and the variance of     need to be derived in order to evaluate the 

test statistic        . Under the null hypothesis, it can be shown that for      

(where                 ): 

                 

              
      

     

For    , it is not so simple to determine the expected value and the variance of  

                .  However, with the assumption of independence between the 

development factors, the expected value and the variance can be well approximated 

using the delta method, as follows: 

         
  

    
 

           
  

    
   

    
 

    
     

    
       

   

Proof of these formulae can be found in Appendix A-3. Note that the WinBUGS code 

used to implement the hypothesis testing is presented with the model specification in 

Appendix C-3. 

For consistency, the same number of simulations           and burn-in  

         are chosen. The ppp-values are estimated and presented in Table 6.2. 

Table 6.2: Posterior predictive p-values (Hertig‟s model) 

  node  mean  sd  MC error  

Goodness-of-fit test: p1 0.6263 0.4838 0.005816 
 p2 0.3833 0.4862 0.007932  
Correlation test: p3 0.0941 0.292 0.003198 
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These ppp-values imply that the overall goodness-of-fit is acceptable, where the null 

hypothesis is accepted with            and           . For the correlation test, the 

null hypothesis that the development factors are independent (not correlated) is rejected 

at the 10% level but not at the 5% level. Therefore, it is concluded that Hertig‟s model 

is adequate in modelling the claim run-off triangle. However, note that with scarce 

amount of data, these hypothesis tests are not very strong, especially for the third 

hypothesis testing, where only nine data points are used (for    ). 

6.1.2  Modified Hertig‟s model 

Note that the modified Hertig‟s model was introduced to overcome the issue of scarce 

data in estimating the parameters. This model is very similar to Hertig‟s model  since 

the only changes to the model is the limiting feature of the parameter estimates for 

development years    . As the fundamental underlying parameters are the same, the 

expected value and the variance of     are the same as in the previous subsection. 

The WinBUGS code for the hypothesis testing is integrated with the model specification 

in Appendix C-4. Again, with the same number of simulations and burn-in, the 

estimated ppp-values are shown in Table 6.3. 

Table 6.3: Posterior predictive p-values (modified Hertig‟s model) 

 node  mean  sd  MC error  

Goodness-of-fit test: p1 0.7045 0.4563 0.005104 
 p2 0.2943 0.4557 0.003942 
Correlation test: p3 0.0946 0.2927 0.00268  
 
 

The ppp-values give the same conclusion as Subsection 6.1.1 for goodness-of-fit test 

and correlation test. Note that the estimate of    is very close to estimate in the 

preceding subsection; this is because the test statistic associated with this ppp-value 
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only involves development year    , for which the parameter estimates are not 

affected by the modification. 

6.1.3  Development correlation model 

Note that the development correlation model is fundamentally different from Hertig‟s 

model with an additional correlation term     ; this additional term changes the 

parameter estimates and ultimately causes the replicated development factors    
  to be 

different as well. Also, the development factors     are no longer independent. 

To facilitate the assessment of the goodness-of-fit of this model, the expected value and 

the variance of       are derived as followed: 

                    

              
      

           

              
      

         
          

Proof of these formulae can be found in Appendix A-3. Note that due to the difficulty in 

deriving the expected values and variances of      , the associated hypothesis test is not 

pursued in this subsection. 

As in the two previous subsections, the ppp-values are estimated via MCMC methods 

with WinBUGS. Again, the hypothesis testing code is presented with its model 

specification in Appendix C-5. Table 6.4 displays the estimated ppp-values. 

Table 6.4: Posterior predictive p-values (development correlation model) 

 node  mean  sd  MC error  

Goodness-of-fit test: p1 0.601 0.4897 0.006086  
Correlation test: p3 0.1989 0.3992 0.005344 
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For the goodness-of-fit test, the ppp-value suggests that there is no problem with the 

model and accepts the null hypothesis that the model is adequate. 

Since the model incorporates correlation between the development factors, the 

correlation test in this case is not testing whether correlation is significant. Nevertheless, 

this is still a useful test. In previous subsections, the hypothesis testing rejected Hertig‟s 

model and its modification at the 10% significance level  by looking at the models‟ 

inability to capture the correlation between the development factors. While in the 

development correlation model the relationship between           and           is 

used to assess the adequacy of the model. 

At the 5% significance level,    is consistent with the null hypothesis that the model is 

adequate. In contrast to the previous models, the adequacy of the development 

correlation model is not rejected at the 10% significance level. Note that the null 

hypothesis is rejected at the 20% level. Therefore, in relation to the hypothesis testing of 

the other models, it is concluded that the development correlation model is the best 

model in explaining the AFG Data. 

6.2  Reserve assessment 

In Section 6.1, emphasis was given to the testing of different models to determine their 

adequacy and ultimately select the best model for reserving purposes. In this section, the 

focus is shifted to the assessment of the MCMC methods, aiming to answer the question: 

“How well do MCMC methods predict  provided the model is correct?”  

For the purpose of this section, the development correlation model is assumed to be 

correct and will be used in assessing the MCMC predictions. Note that MCMC methods 
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were used to predict the future development factors, the future cumulative claims and 

the reserve in Section 5.3. Since the reserve is the sum of all the outstanding claims for 

each accident year, it is a function of the current and future cumulative claims; therefore, 

it is most appropriate to use the predicted reserve for the assessment. 

To facilitate the assessment of MCMC predictions, the following procedures will be 

carried out: 

i. Generate a claim run-off triangle similar to the AFG data, by first generating the 

development factors randomly using the parameter estimates acquired by MCMC 

methods from Table 5.6, rounded to the nearest 2 significant figures. 

ii. Perform MCMC methods to the generated claim run-off triangle to predict the 

outstanding claims to determine the reserve. (See Section 5.3 for implementation 

details.) 

iii. Fill out the entries for the lower triangle by randomly generating the future 

development factors from the same parameters as step i and determining the 

future cumulative claims. 

iv. Calculate the „true‟ required reserve (called true reserve hereafter), which is the 

overall outstanding claims  from the full „run-off triangle‟ (i.e. the complete 

generated data; see example in Table 6.5). 

v. Define    as   if the true reserve is contained within the 95% prediction interval of 

reserve from the MCMC methods, and   otherwise.    is the indicator that the true 

reserve is in the 95% prediction interval. 
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vi. Define and calculate   ,    and    as the proportional errors of the predicted mean, 

median and mode of the reserve respectively: 

   
                 

            
 

   
                   

            
 

   
                 

            
 

 Note that the mode is estimated from the MCMC simulated values of reserve, by 

fitting a non-parametric density to the simulated reserve. 

vii. Repeat steps i - vi for a total of        times, recording the values of   ,   ,    

and    for each iteration. 

Table 6.5 shows a randomly generated cumulative claim run-off triangle using the 

parameter estimates described in step i above, with entries for the lower triangle filled 

out. Note that this is just an example from one of the iteration. The total outstanding 

claim in this particular example is                   
  
           and hence the true 

reserve is        as well. Note that the entries in the lower triangle are assumed to be 

the true realisation of the future cumulative claims. 
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Table 6.5: Simulated data - cumulative incurred claim amounts       

Accident 
year i 

Development Year j 

0 1 2 3 4 5 6 7 8 9 

1 4478 8257 17044 27571 40198 50715 55646 56742 56834 57009 

2 866 5695 11918 14076 17312 21186 21755 21756 22221 22288 

3 3918 13256 20514 25653 33174 36122 41925 42128 42157 43197 

4 361 4126 13886 21786 24056 26616 28576 28765 29374 29174 

5 1693 8042 28397 46664 52898 58733 65313 65846 66995 66927 

6 18974 8361 7214 14748 15347 17340 18926 19661 20072 20388 

7 2008 4188 7951 8000 9344 10735 11953 11931 12086 12279 

8 478 9149 16792 40459 42203 50845 50089 50721 51628 52355 

9 347 12722 25421 25324 29935 32255 36269 39035 39764 40131 

10 3726 6580 18089 22381 23450 29470 30500 31387 31911 32689 

 

Performing MCMC methods for the above simulated data, the 95% prediction interval 

for reserve is found to be               , which contains the true reserve; thus    is 

given a value of  . The mean and median of the reserve estimate are readily available 

from the WinBUGS output as        and        respectively; also the mode is 

approximated to be       . From these values, the proportional errors are calculated to 

be          ,            and            . Note that the mean and median 

overestimate the true reserve, while the mode underestimates it. 

These results are summarised in Figure 6.1 which shows the histogram of the MCMC 

simulated values of the required reserve. Note that the histogram does not show some of 

the simulated values which are unusually large. (Inclusion of these values would make 

the main part of the histogram looks very thin and hence not presentable.) 

In Figure 6.1, the black dot shows the value of the true reserve; the mean, median and 

mode are displayed as vertical lines. Note that the 95% prediction interval (the vertical 

dotted lines on the furthest left and right) contains the true reserve. Also note that the 
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mode corresponds to the highest point of the non-parametric density for the predicted 

reserve. 

Figure 6.1: Frequency histogram of simulated reserve 

 

On average, a 95% prediction interval should be able to capture the true quantity with a 

probability of     . However, in this complicated model the 95% prediction interval 

cannot be determined exactly, and has to be estimated via MCMC methods; this raises a 

question on how well does the 95% prediction interval estimated with MCMC methods 

represent the exact 95% prediction interval. The MCMC estimate of the 95% prediction 

interval can be assessed by determining the true coverage of the prediction interval; this 

is achieved by performing the MCMC methods again and again each time to a different 

set of simulated run-off triangle. 

Denote   as the coverage of the MCMC 95% prediction interval.   is defined to be the 

proportion of the 95% prediction intervals containing the true reserve: 
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Note that the superscript     represents the iteration number. 

It is important to determine if the point estimates of the required reserve are reasonably 

close to the true reserve. Due to the random nature of the claims, it is certain that the 

estimates will be higher or lower than the true reserve. However, hopefully on average, 

the positive deviations and the negative deviations will even out. The accuracy of the 

estimates will be assessed by calculating the biases, denoted by        and    for mean, 

median and mode respectively. 

Define the bias as the average of the proportional errors: 

   
 

 
   

   

 

   

          

Proportional error is chosen instead of absolute error because the true reserve for each 

iteration can be very large or very small, for which the absolute errors will be distorted 

by the size of the true reserve. For example, if the true reserve is very large, the absolute 

error will be very large hence this particular absolute error is not comparable to that of 

other iterations. 

After performing        MCMC predictions with WinBUGS in R (see the 

implementation code in Appendix B-9), the coverage   is found to be       with 

confidence interval               which contains     . This suggests that the MCMC‟s 

95% prediction interval is a good approximation to the exact 95% prediction interval. 

Note that the coverage   is itself an approximation, meaning that the true coverage 

might not be     % (but there is 95% confidence that the true coverage is between  

    % and     %). 
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Bias of the estimates are found to be          ,           and             

for mean, median and mode respectively. It appears that the usual MCMC prediction 

(the mean) tends to overestimate the true reserve by   % on average, while the median 

only overestimates the true reserve by   % on average and the mode underestimates the 

true reserve only by a relatively small percentage (   %). Note that the mean is likely to 

be affected by a couple of unusually large simulated values of reserve in MCMC 

sampling whereas the median and mode are not; Figure 6.1 shows that the reserve is 

positively skewed, hence it is very likely that there are some extremely large simulated 

values for some of the iterations. 

From the above results, one should ask whether the median is a more suitable choice for 

reserving purposes than the mean, since the median is better in predicting the true 

reserve compared to the mean. The mode tends to underestimate the required reserve; 

hence it is not so suitable for reserving purposes. In practice, the reserve should never 

be less than expected claims. As discussed in Chapter 2, the mean minimises the 

quadratic error loss function, the median minimises the absolute error loss function and 

the mode minimises the zero-one error loss function. Hence, if one wishes to be 

conservative, the mean is the most appropriate for reserving purposes; however, the 

median is also of value. 

In conclusion, the reserve assessment in this section suggests that the MCMC approach 

taken in this thesis works fairly well. 
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CHAPTER 7   

CCoommppaarr iissoonn  ttoo  PPrreevviioouuss  SSttuuddiieess  

As mentioned above, the AFG Data were considered by Mack (1994), England and 

Verrall (2002), and de Jong (2004); these data were analysed using the chain-ladder 

method, a Bayesian over-dispersed Poisson model, and a classical development 

correlation model, respectively. The forecasted liabilities for reserving purpose derived 

from these models will be compared with the predicted reserve discussed in the thesis. 

Table 7.1 shows the central estimates of the forecasted liabilities and their standard 

errors associated with the above-mentioned models, together with the result from the 

Bayesian implementation of the development correlation model discussed in Chapter 5. 

Table 7.1: Forecasted liabilities for the AFG data          

Accident 
Year 

Chain Ladder 
Method 

Bayesian Poisson 
Model 

Classical 
Development 

Correlation Model 

Bayesian 
Development 

Correlation Model 

2 154 (206) 243 (486) 154 (146) 171 (155) 

3 617 (623) 885 (984) 642 (375) 657 (431) 

4 1,636 (753) 2,033 (1,589) 1,701 (753) 1,624 (895) 

5 2,747 (1,456) 3,582 (2,216) 2,843 (1,271) 3,109 (1,504) 

6 3,649 (2,007) 3,849 (2,301) 3,948 (1,462) 3,633 (1,627) 

7 5,435 (2,228) 5,393 (2,873) 5,941 (2,290) 5,569 (2,421) 

8 10,907 (5,344) 11,091 (4,686) 12,243 (5,463) 12,530 (5,784) 

9 10,650 (6,284) 10,568 (5,563) 12,475 (6,747) 12,700 (7,288) 

10 16,339 (24,509) 17,654 (12,801) 22,957 (11,551) 23,940 (14,060) 

Total 52,135 (26,909) 55,297 (17,357) 62,982 (16,260) 63,930 (18,900) 

  

The forecasted liabilities derived from the Bayesian development correlation model are 

of similar scale compared to the others, especially the classical development correlation 

model, while the standard errors associated with each accident year are greater than 

their classical counterparts. 
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Note that generally the classical approach tends to underestimate the variability of the 

parameters, especially when the data are scarce. For instance, when only a single data 

point is present, the classical approach of de Jong (2004) effectively estimates the 

variance as zero (see Table 5.1), whereas the Bayesian approach estimates the variance 

as infinite; similar treatment was applied to the development factor associated with the 

last column of the claim run-off triangle (the highest development year). Besides, in the 

classical development correlation model, de Jong did not take account of the 

uncertainties in parameter estimation, the standard errors derived (see Table 7.1) only 

account for the uncertainties in prediction. 

Also note that the total liability is the sum of the forecasted liabilities associated with 

each accident year. Subject to rounding errors, the total liabilities shown in Table 7.1 

are consistent with the sum of the individual liabilities for all models except for the 

classical development correlation model, for which they differ by       ; this might 

be due to a possible fault associated with the prediction method used in the classical 

development correlation model. For the Bayesian development correlation model, the 

total liability differs from the sum by      ; this is because the estimates are rounded 

to the nearest 4 significant figures in WinBUGS. 
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CHAPTER 8   

SSuummmmaarryy  aanndd  DDiissccuussssiioonn  

8.1  Limitations of the Bayesian development correlation model 

Note that to facilitate comparison, the required reserve in the model is determined 

before discounting. In practice, the actual reserve held is the discounted outstanding 

claims liabilities plus any adjustment. Albeit tedious, it is easy and straightforward to 

incorporate discounting into the model; this can be achieved by calculating each claim 

liability (not the cumulative claim liability) associated with the lower claim run-off 

triangle and discounting it accordingly. The discount factors have to be explicitly 

assumed; they can be either fixed for each year or vary across the calendar years. 

Treatment of discounting the liabilities can be seen in Scollnik (2004). 

Another limitation is that inflation rates are not explicitly considered in the model. If 

inflation is assumed to be known, it can be incorporated into the model by first adjusting 

the AFG Data. Then the same modelling technique discussed in previous chapters can 

be applied to the adjusted AFG Data, and the claims liabilities can be inflated in the 

same way as how the discount factors apply. 

If the inflation rates are not known and need to be estimated from the data, the whole 

modelling procedure becomes much more difficult; this is because the inflation rates are 

partly captured by the development correlation factors and the structure of the inflation 

rates need to be understood so that the inflation rates can be determined. Inflation is not 

incorporated in the model due to lack of data; estimation of inflation would reduce the 

accuracy and precision of other parameter estimates. 
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8.2  Suggestions for future research 

The Bayesian development correlation model from Section 5.3 could be improved by 

incorporating discount rates and inflation rates as discussed in the previous section. This 

would give a more realistic model to be used for reserving purposes. If inflation rates 

are estimated from the model, care must be taken to ensure that the inflation rates are 

sensible, especially when the data are scarce. 

Extensions to the model suggested by de Jong were discussed in Section 4.2. As only 

one of the extensions is implemented in the thesis, the other two are left for future 

research. These extensions are the accident correlation model and the calendar 

correlation model which incorporate correlation across accident years and calendar 

years, respectively. 

8.3  Conclusion 

This thesis has explored a Bayesian analysis of three models: Hertig‟s (1985) model, a 

modification of that model, and de Jong‟s (2004) development correlation model. 

Outstanding claims liabilities associated with a claim run-off triangle, known as the 

AFG Data, were forecasted for reserving purposes, using MCMC simulations generated 

with WinBUGS.  

Of these three models, the development correlation model is selected as the best for 

reserving purposes. This judgement is based on model diagnostics and the reserve 

assessments discussed in Chapter 6.  

  



8. Summary and Discussion 

75 

The estimated reserve from this „best‟ model is then compared to the estimated reserve 

obtained using the chain-ladder method (Mack, 1993), a Bayesian over-dispersed 

Poisson model (England & Verrall, 2002), and the classical development correlation 

model (de Jong, 2004) in Chapter 7. It is concluded that the Bayesian development 

correlation model provides a better estimation of outstanding claim reserve than the 

classical development correlation model. 
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AAppppeennddiixx  

Appendix A:  Derivations and proofs 

A-1:  Mean and variance of AR(1) model 

   can be written as: 

                                     

                      

                                  

                                             

                                               

 
 

   
            

 

   

                                                    (as k tends to infinity) 

Since                      ,    has a normal distribution with mean 

        
 

   
 

because        , and variance 
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A-2:  Derivation of expected values for Rao-Blackwell estimate 

Since                                     , the expected value of      given 

       is          . Conditioning on             and   : 

                     

                                       

                   

                   

              

More generally, for    : 
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A-3:  Derivation of          and            

If random variables   and   are independent, with simple algebra, the variance of XY 

can be written as followed: 

                                             

Delta method: 

Utilising the first order Taylor expansion, write                     . Letting 

    and         , the expected value         and variance           can be 

derived as: 

                                                   

                                                          

If          , then             &               , using the above result gives 

  
 

      
  

 

         
 

    
 

   
  

 

      
          

 

For Hertig‟s basic model and its modification  using the above results and independence 

between     and       , the expected value and the variance of       are: 
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In the development correlation model,     and        are not independent, and the 

covariance between     and     can be derived as: 

                                          

                                    

                

       
    

Note that the covariance for     and        is zero for    . Hence: 

                                     

                                                  

    
      

                      

i.e. for    ,                
      

            
    

for    ,               
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Appendix B:  R code 

B-1:  Generation of time series values of             

n <- 100 

alpha.real <- 0.2 

beta.real <- 0.6 

sigma2.real <- 1 

eta.real <- alpha.real/(1-beta.real) 

tau2.real <- sigma2.real/(1-beta.real) 

x1 <- rnorm(1,eta.real,sqrt(tau2.real)) 

xvec <- 1:n; xvec[1] <- x1 

for(i in 2:n) { 

  xvec[i] <- rnorm(1,alpha.real+beta.real*xvec[i-1],sqrt(sigma2.real)) 

} 

 

# Time Series of x (Figure 2.1) 

X11(width=10,height=4); par(mfrow=c(1,1)); par(mai=c(1,1,0.2,0.2)) 

plot(xvec,type="l",xlab="t",ylab=~x[t], cex.lab=1.7) 

B-2:  The MH algorithm 

# log posterior density of theta 

LOGPOSFUN <- function(alpha,beta,sigma2,x.vector) { 

  n <- length(x.vector) 

  logf.xi <- x.vector[2:n] 

  for(i in 2:n) { 

    logf.xi[i] <- -log(sigma2)/2 -((x.vector[i]-alpha-beta*x.vector[i-1])^2)/(2*sigma2) 

  } 

  eta <- alpha/(1-beta) 

  tau2 <- sigma2/(1-beta) 

  logf.x1 <- -log(tau2)/2 -((x.vector[1]-eta)^2)/(2*tau2) 

  logposfun <- -log(sigma2) + logf.x1 + sum(logf.xi) 

  logposfun 

} 

 

MH.TS <- function(alpha,beta,sigma2,a.tuning,b.tuning,s.tuning,xvec,burn=100,J=1000) { 

  alpha.vec <- alpha 

  beta.vec <- beta 

  sigma2.vec <- sigma2 

  alpha.count <- 0; beta.count <- 0; sigma2.count <- 0 

  n <- length(xvec) 

  for(i in 1:(burn+J)) { 

    alpha1 <- runif(1,alpha-a.tuning,alpha+a.tuning) 

    p <- exp(LOGPOSFUN(alpha1,beta,sigma2,xvec) - LOGPOSFUN(alpha,beta,sigma2,xvec)) 

    if(runif(1) < p) { 

      alpha <- alpha1 

      alpha.count <- alpha.count + 1 

    } 

    beta1 <- runif(1,beta-b.tuning,beta+b.tuning) 

    if((beta1 < 1)&&(beta1 > -1)) { 

      p <- exp(LOGPOSFUN(alpha,beta1,sigma2,xvec) - LOGPOSFUN(alpha,beta,sigma2,xvec)) 

      if(runif(1) < p) { 

        beta <- beta1 

        beta.count <- beta.count + 1 

        } 

    } 

    sigma21 <- runif(1,sigma2-s.tuning,sigma2+s.tuning) 

    if(sigma21 > 0) {     

      p <- exp(LOGPOSFUN(alpha,beta,sigma21,xvec) - LOGPOSFUN(alpha,beta,sigma2,xvec)) 

      if(runif(1) < p) { 

        sigma2 <- sigma21 

        sigma2.count <- sigma2.count + 1 

      }       

    } 
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  alpha.vec <- c(alpha.vec,alpha) 

  beta.vec <- c(beta.vec,beta) 

  sigma2.vec <- c(sigma2.vec,sigma2) 

  } 

alpha.ar <- alpha.count/(burn+J) 

beta.ar <- beta.count/(burn+J) 

sigma2.ar <- sigma2.count/(burn+J) 

list(alpha.vec=alpha.vec, beta.vec=beta.vec, sigma2.vec=sigma2.vec, 

     alpha.ar=alpha.ar, beta.ar=beta.ar, sigma2.ar=sigma2.ar) 

} 

 

burn <- 100 

J <- 1000 

ts1 <- MH.TS(0,0,0.5,0.2,0.2,0.5,xvec,burn,J) 

c(ts1$alpha.ar, ts1$beta.ar, ts1$sigma2.ar) 

 

avec <- ts1$alpha.vec; bvec <- ts1$beta.vec; s2vec <- ts1$sigma2.vec 

 

# Simulation Traces (Figure 2.2, 2.3, 2.4) 

X11(width=10,height=5); par(mai=c(1,1.2,0.2,0.2)) 

plot(0:(burn+J),avec,type="l", ann=F) 

title(xlab="i",ylab=~alpha[i], cex.lab=1.7, font.lab=6) 

abline(v=burn,lty=4) 

 

X11(width=10,height=5); par(mai=c(1,1.2,0.2,0.2)) 

plot(0:(burn+J),bvec,type="l", ann=F) 

title(xlab="i",ylab=~beta[i], cex.lab=1.7, font.lab=6) 

abline(v=burn,lty=4) 

 

X11(width=10,height=5); par(mai=c(1,1.2,0.2,0.2)) 

plot(0:(burn+J),s2vec,type="l", ann=F) 

title(xlab="i",ylab=expression(paste(sigma[i]^2)), cex.lab=1.7, font.lab=6) 

abline(v=burn,lty=4) 

B-3:  Inference on posterior quantities 

BURN <- function(vector,n) { 

  # return a vector after a burn-in of n 

  vector[-(1:(n+1))] 

} 

 

INF <- function(vector) { 

  # return the mean, 95% CI, 95% CPDR of vector 

  m <- mean(vector) 

  s2 <- var(vector) 

  n <- length(vector) 

  ci <- m + c(-1,1)*qnorm(0.975)*sqrt(s2/n) 

  cpdr <- quantile(vector,c(0.025,0.975)) 

  names(m) <- "mean" 

  names(ci) <- c("lower","upper") 

  c(m,ci,cpdr) 

} 

 

INF2 <- function(vector,sub,showS2=F) { 

  # return the mean, 95% CI, 95% CPDR and sample variances 

  # CI is calculator in 2 ways: CI1: 'ordinary', CI2: 'batch means' 

  inf <- INF(vector) 

  m <- length(vector)/sub    ## how many in a group 

  yv <- rep(NA,sub) 

  for(i in 1:sub) { 

    yv[i] <- mean(vector[(m*(i-1)+1):(m*i)]) 

  } 

  s2.batch <- m*var(yv) 

  ci.batch <- inf[1] + c(-1,1)*qnorm(0.975)*sqrt(s2.batch/length(vector)) 

  names(ci.batch) <- c("lower","upper")  

  result = c(inf[1:3],ci.batch,inf[4:5]) 

  if(showS2) { result=c(result,"s2"=var(vector),"s2b"=s2.batch) } 

  result 

} 
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avec <- BURN(avec,burn); bvec <- BURN(bvec,burn); s2vec <- BURN(s2vec,burn) 

evec <- avec/(1-bvec) 

tvec <- s2vec/(1-bvec) 

 

options(digits=4) 

rbind(alpha=c(true=alpha.real,INF2(avec,20)),beta=c(true=beta.real,INF2(bvec,20)), 

      "sigma^2"=c(true=sigma2.real,INF2(s2vec,20)), 

      "eta"=c(true=eta.real,INF2(evec,20)),"tau^2"=c(true=tau2.real,INF2(tvec,20))) 

 

# Frequency Histograms (Figure 2.5, 2.6, 2.7, 8.1, 8.2) 

X11(width=8,height=4.5); par(mai=c(1,1.2,0.4,0.2)) 

hist(avec,prob=T,ylim=c(0,4),breaks=20,xlab=~alpha,ylab="relative frequency",main=NA) 

lines(density(avec),lty=1); abline(v=INF2(avec,20),lty=3); points(alpha.real,0,pch=19) 

 

X11(width=8,height=4.5); par(mai=c(1,1.2,0.2,0.2)) 

hist(bvec,prob=T,breaks=20,xlab=~beta,ylab="relative frequency",main=NA) 

lines(density(bvec),lty=1); abline(v=INF2(bvec,20),lty=3); points(beta.real,0,pch=19) 

 

X11(width=8,height=4.5); par(mai=c(1,1.2,0.2,0.2)) 

hist(s2vec,prob=T,breaks=20,xlab=expression(paste(sigma^2)), 

                            ylab="relative frequency",main=NA) 

lines(density(s2vec),lty=1); abline(v=INF2(s2vec,20),lty=3); points(sigma2.real,0,pch=19) 

 

X11(width=8,height=4.5); par(mai=c(1,1.2,0.2,0.2)) 

hist(evec,prob=T,breaks=20,xlab=~eta,ylab="relative frequency",main=NA) 

lines(density(evec),lty=1); abline(v=INF2(evec,20),lty=3); points(eta.real,0,pch=19) 

 

X11(width=8,height=4.5); par(mai=c(1,1.2,0.4,0.2)) 

hist(tvec,prob=T,breaks=20,xlab=expression(paste(tau^2)), 

                           ylab="relative frequency",main=NA) 

lines(density(tvec),lty=1); abline(v=INF2(tvec,20),lty=3); points(tau2.real,0,pch=19) 

B-4:  Predictive inference 

M <- 10 

lastx <- xvec[length(xvec)]; lastx 

xs.matrix <- matrix(NA,nrow=M,ncol=J) 

for(i in 1:J) { 

  xs.matrix[1,i] <- rnorm(1,avec[i]+bvec[i]*lastx,sqrt(s2vec[i])) 

  for(m in 2:M) { 

    xs.matrix[m,i] <- rnorm(1,avec[i]+bvec[i]*xs.matrix[m-1,i],sqrt(s2vec[i])) 

  } 

} 

 

xs.inf <- matrix(NA,nrow=M,ncol=9) 

xs.name <- rep(NA,M) 

for(m in 1:M) { 

  xs.inf[m,] <- INF2(xs.matrix[m,],20,showS2=T) 

  xs.name[m] <- paste("x(n+",m,")",sep="") 

} 

label <- names(INF2(1,1,showS2=T)) 

dimnames(xs.inf) <- list(xs.name,label) 

options(digits=3) 

xs.inf 

 

X11(width=8,height=5); par(mai=c(1,1,0.2,0.2))  # (Figure 2.8) 

plot(xs.inf[,1],ylim=range(xs.inf[,4:5]),type="l", 

     xlab="t",ylab="Forecasted mean of " ~x[n+t]) 

abline(h=mean(evec),lty=2) 

lines(xs.inf[,2],lty=3); lines(xs.inf[,3],lty=3) 

lines(xs.inf[,4],lty=4); lines(xs.inf[,5],lty=4) 

lines(xs.inf[,6],lty=8); lines(xs.inf[,7],lty=8) 

legend(5,-0.2,c("mean","ordinary CI","batch means CI",  

                "estimated post. mean"),lty=c(1,3,4,2)) 

 

xs.range <- range(xs.matrix) 

xs.min <- floor(xs.range[1]) 

xs.max <- ceiling(xs.range[2]) 
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X11(width=8,height=4.5); par(mai=c(1,1.2,0.4,0.2))  # (Figure 2.10) 

hist(xs.matrix[m,],prob=T,breaks=20,xlab=~x[n+10],ylab="relative frequency",main=NA) 

lines(density(xs.matrix[k,]),lty=1); abline(v=xs.inf[k,][-(8:9)],lty=3); 

points(mean(evec),0,pch=19) 

 

# Rao Blackwell approach 

xs.matrix2 <- matrix(NA,nrow=M,ncol=J) 

for(i in 1:J) { 

  xs.matrix2[1,i] <- avec[i]+bvec[i]*lastx 

  for(m in 2:M) { 

    xs.matrix2[m,i] <- avec[i]+bvec[i]*xs.matrix2[m-1,i] 

  } 

} 

 

xs.inf <- matrix(NA,nrow=M,ncol=5) 

xs.name <- rep(NA,M) 

for(m in 1:M) { 

  xs.inf[m,] <- INF2(xs.matrix2[m,],20)[1:5] 

  xs.name[m] <- paste("x(n+",m,")",sep="") 

} 

label <- names(INF2(1,1)[1:5]) 

dimnames(xs.inf) <- list(xs.name,label) 

xs.inf 

 

X11(width=8,height=5); par(mai=c(1,1,0.2,0.2))  # (Figure 2.9) 

plot(xs.inf[,1],ylim=range(xs.inf[,4:5]),type="l", 

     xlab="t",ylab="Estimated mean of " ~x[n+t]) 

abline(h=mean(evec),lty=2) 

lines(xs.inf[,2],lty=3); lines(xs.inf[,3],lty=3) 

lines(xs.inf[,4],lty=4); lines(xs.inf[,5],lty=4) 

legend(4.5,-0.1,c("mean","ordinary CI","batch means CI", 

                  "estimated post. mean"),lty=c(1,3,4,2)) 

B-5:  Hypothesis testing 

RUN.COUNT <- function(xvec,mid=mean(xvec)) { 

  # this function counts the number of runs above or below 'mid' 

  xvec <- xvec - mid 

  sign <- sign(xvec[1]) 

  count <- 1 

  for(i in 2:length(xvec)) { 

    if(sign(xvec[i]) != sign) { 

      sign <- sign(xvec[i]) 

      count <- count + 1 

    } 

  } 

  count 

} 

 

LOGPOSFUN2 <- function(alpha,sigma2,x.vector) { 

  n <- length(x.vector) 

  logf.xi <- rep(NA,n) 

  for(i in 1:n) { 

    logf.xi[i] <- -log(sigma2)/2 -((x.vector[i]-alpha)^2)/(2*sigma2) 

  } 

  logposfun <- -log(sigma2) + sum(logf.xi) 

  logposfun 

} 

 

MH.TS2 <- function(alpha,sigma2,a.tuning,s.tuning,xvec,burn=100,J=1000) { 

  alpha.vec <- alpha 

  sigma2.vec <- sigma2 

  alpha.count <- 0; sigma2.count <- 0 

  n <- length(xvec) 

  for(i in 1:(burn+J)) { 

    alpha1 <- runif(1,alpha-a.tuning,alpha+a.tuning) 

    p <- exp(LOGPOSFUN2(alpha1,sigma2,xvec) - LOGPOSFUN2(alpha,sigma2,xvec)) 

    if(runif(1) < p) { 
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      alpha <- alpha1 

      alpha.count <- alpha.count + 1 

    } 

 

    sigma21 <- runif(1,sigma2-s.tuning,sigma2+s.tuning) 

    if(sigma21 > 0) {     

      p <- exp(LOGPOSFUN2(alpha,sigma21,xvec) - LOGPOSFUN2(alpha,sigma2,xvec)) 

      if(runif(1) < p) { 

        sigma2 <- sigma21 

        sigma2.count <- sigma2.count + 1 

      }       

    } 

    alpha.vec <- c(alpha.vec,alpha) 

    sigma2.vec <- c(sigma2.vec,sigma2) 

  } 

  alpha.ar <- alpha.count/(burn+J) 

  sigma2.ar <- sigma2.count/(burn+J) 

  list(alpha.vec=alpha.vec,sigma2.vec=sigma2.vec, alpha.ar=alpha.ar,sigma2.ar=sigma2.ar) 

} 

 

burn <- 200 

J <- 10000 

xlist <- c(100)  

ppp1 <- rep(NA,length(xlist)); ppp2 <- ppp1 

for(j in 1:length(xlist)) { 

  new.xvec <- xvec[1:xlist[j]] 

  n <- length(new.xvec) 

  ts <- MH.TS2(0,1,0.3,0.5,xvec,burn,J) 

  avec2 <- BURN(ts$alpha.vec,burn); s2vec2 <- BURN(ts$sigma2.vec,burn) 

   

  indicator1 <- rep(0,J) 

  for(i in 1:J) { 

    xrep <- rnorm(n,avec2[i],sqrt(s2vec2[i])) 

    T1 <- RUN.COUNT(xrep,avec2[i]) 

    T0 <- RUN.COUNT(new.xvec,avec2[i]) 

    if(T1 <= T0) { indicator1[i] <- 1 } 

  } 

  ppp1[j] <- sum(indicator1)/J 

 

  indicator2 <- rep(0,J) 

  T0 <- RUN.COUNT(new.xvec) 

  for(i in 1:J) { 

    xrep <- rnorm(n,avec2[i],sqrt(s2vec2[i])) 

    T1 <- RUN.COUNT(xrep) 

    if(T1 <= T0) { indicator2[i] <- 1 } 

  } 

  ppp2[j] <- sum(indicator2)/J 

} 

cbind('m'=xlist,ppp1,ppp2) 

B-6:  Approximation of exact posterior densities 

INTEG <- function(xvec,yvec,a=min(xvec),b=max(xvec)) { 

  # Integrates numerically under a spline through the points given by 

  # the vectors xvec and yvec, from a to b. 

  fit <- smooth.spline(xvec, yvec) 

  spline.f <- function(x){ predict(fit, x)$y } 

  integrate(spline.f, a, b)$value 

} 

 

D.integrate <- function(fxy,xlower,xupper,ylower,yupper,...,precision=0.02) { 

  # Perform double integration on the function fxy 

  yvec <- seq(ylower,yupper,precision) 

  gy <- rep(NA,length(yvec)) # integrand of fxy with respect to x 

  for(i in 1:length(yvec)) { 

    xvec <- seq(xlower,xupper,precision) 

    gx <- rep(NA,length(xvec)) 

    for(j in 1:length(xvec)) { 

      gx[j] <- fxy(xvec[j],yvec[i],...) 
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    } 

    gy[i] <- INTEG(xvec,gx,xlower,xupper) 

  } 

  INTEG(yvec,gy,ylower,yupper) 

} 

 

alpha.values <- seq(-5,1,0.02) 

poskern.alpha <- rep(NA,length(alpha.values)) 

for(i in 1:length(alpha.values)) { 

  fxy <- function(sigma2,beta) { exp(LOGPOSFUN(alpha.values[i],beta,sigma2,xvec)) } 

  poskern.alpha[i] <- D.integrate(fxy,0.09,20,-0.99,0.99,precision=0.09) 

  plot(alpha.values[i],0,xlim=range(alpha.values)) # for checking the progress 

} 

pos.alpha <- poskern.alpha/(INTEG(alpha.values,poskern.alpha)) 

pos.mean.alpha <- INTEG(alpha.values,alpha.values*pos.alpha) 

pos.mean.alpha  #  0.0812 

pos.var.alpha <- INTEG(alpha.values,((alpha.values-pos.mean.alpha)^2)*pos.alpha) 

pos.var.alpha   #  0.0110 

 

X11(width=8,height=5); par(mai=c(1,1,0.2,0.2))  # (Figure 2.11) 

plot(alpha.values,pos.alpha,type="l",xlim=c(-1,1),xlab=~alpha,ylab="density",main=NA) 

lines(density(avec),lty=3); abline(v=pos.mean.alpha,lty=2); legend(-1,3,c("approximated 

exact density","non-parametric density","posterior mean"),lty=c(1,3,2)) 

 

beta.values <- seq(-0.98,0.98,0.02) 

poskern.beta <- rep(NA,length(beta.values)) 

for(i in 1:length(beta.values)) { 

  fxy <- function(sigma2,alpha) { exp(LOGPOSFUN(alpha,beta.values[i],sigma2,xvec)) } 

  poskern.beta[i] <- D.integrate(fxy,0.1,20,-1,1,precision=0.1) 

  plot(beta.values[i],0,xlim=range(beta.values)) # for checking the progress 

} 

pos.beta <- poskern.beta/(INTEG(beta.values,poskern.beta)) 

pos.mean.beta <- INTEG(beta.values,beta.values*pos.beta) 

pos.mean.beta  #  0.56 

pos.var.beta <- INTEG(beta.values,((beta.values-pos.mean.beta)^2)*pos.beta) 

pos.var.beta   #  0.00721 

 

X11(width=8,height=5); par(mai=c(1,1,0.2,0.2))  # (Figure 2.12) 

plot(beta.values,pos.beta,type="l",xlab=~beta,ylab="density",main=NA) 

lines(density(bvec),lty=3); abline(v=pos.mean.beta,lty=2); legend(-0.75,3, 

c("approximated exact density","non-parametric density","posterior mean"),lty=c(1,3,2)) 

 

sigma2.values <- seq(0.02,4,0.02) 

poskern.sigma2 <- rep(NA,length(sigma2.values)) 

for(i in 1:length(sigma2.values)) { 

  fxy <- function(alpha,beta) { exp(LOGPOSFUN(alpha,beta,sigma2.values[i],xvec)) } 

  poskern.sigma2[i] <- D.integrate(fxy,-1,1,-0.99,0.99,precision=0.09) 

  plot(sigma2.values[i],0,xlim=range(sigma2.values)) # for checking the progress 

} 

pos.sigma2 <- poskern.sigma2/(INTEG(sigma2.values,poskern.sigma2)) 

pos.mean.sigma2 <- INTEG(sigma2.values,sigma2.values*pos.sigma2) 

pos.mean.sigma2  #  1.05 

pos.var.sigma2 <- INTEG(sigma2.values,((sigma2.values-pos.mean.sigma2)^2)*pos.sigma2) 

pos.var.sigma2   #  0.0235 

 

X11(width=8,height=5); par(mai=c(1,1,0.2,0.2))  # (Figure 2.13) 

plot(sigma2.values,pos.sigma2,type="l",ylim=c(0,2.85),xlab=expression(paste(sigma^2)), 

ylab="density",main=NA) 

lines(density(s2vec),lty=3); abline(v=pos.mean.sigma2,lty=2); legend(2,2,c("approximated 

exact density","non-parametric density","posterior mean"),lty=c(1,3,2)) 

B-7:  Coverage assessment 

m <- 10 

trial <- 1000 

I <- rep(0,trial); Ib <- Is <- rep(0,trial) 

data <- matrix(NA,nrow=trial,ncol=3); xrep <- matrix(NA,nrow=m,ncol=J) 

 

for(i in 1:trial) { 
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  x1 <- rnorm(1,eta.real,sqrt(tau2.real)) 

  xvec <- rep(NA,n); xvec[1] <- x1 

  for(j in 2:(n+m)) { 

    xvec[j] <- rnorm(1,alpha.real+beta.real*xvec[j-1],sqrt(sigma2.real)) 

  } 

 

  ts1 <- MH.TS(0,0,0.5,0.25,0.25,0.5,xvec[1:n],burn,J) 

  avec <- ts1$alpha.vec; avec <- BURN(avec,burn) 

  aCI <- INF(avec)[4:5] 

  if((alpha.real>aCI[1])&&(alpha.real<aCI[2])) { I[i] <- 1 } 

 

  bvec <- BURN(ts1$beta.vec,burn); bCI <- INF(bvec)[4:5] 

  if((beta.real>bCI[1])&&(beta.real<bCI[2])) { Ib[i] <- 1 } 

 

  s2vec <- BURN(ts1$sigma2.vec,burn); sCI <- INF(s2vec)[4:5] 

  if((sigma2.real>sCI[1])&&(sigma2.real<sCI[2])) { Is[i] <- 1 } 

   

  xmean <- rep(NA,m) 

  for(j in 1:J) { 

    xrep[1,j] <- rnorm(1,avec[j]+bvec[j]*xvec[n],sqrt(s2vec[j])) 

    for(k in 2:m) { 

      xrep[k,j] <- rnorm(1,avec[j]+bvec[j]*xrep[k-1,j],sqrt(s2vec[j])) 

    } 

    xmean[j] <- mean(xrep[,j]) 

  } 

 

  PI <- INF(xmean)[4:5] 

  data[i,] <- c(mean(xvec[(n+1):(n+m)]),PI) 

} 

p = sum(I/trial); p  # 0.947 

p + c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/trial)    # 0.9331145 0.9608855 

pb = sum(Ib/trial); pb  # 0.942 

pb + c(-1,1)*qnorm(0.975)*sqrt(pb*(1-pb)/trial)    # 0.9275127 0.9564873 

ps = sum(Is/trial); ps  # 0.938 

ps + c(-1,1)*qnorm(0.975)*sqrt(ps*(1-ps)/trial)    # 0.923 0.953 

 

I1 <- I2 <- rep(NA,trial) 

for(i in 1:trial) { 

  I1[i] <- ( data[i,1] > data[i,2] ) && ( data[i,1] < data[i,3] ) 

  xvec <- rep(NA,n) 

  xvec[1] <- x1 

  for(j in 2:(n+m)) { 

    xvec[j] <- rnorm(1,alpha.real+beta.real*xvec[j-1],sqrt(sigma2.real)) 

  } 

  xmean <- mean(xvec[(n+1):(n+m)]) 

  I2[i] <- ( xmean > data[i,2] ) && ( xmean < data[i,3] ) 

} 

p1 <- mean(I1); p2 <- mean(I2); c(p1,p2)  # 0.933 0.918 

p1 + c(-1,1)*qnorm(0.975)*sqrt(p1*(1-p1)/trial)  # 0.9175 0.9485 

p2 + c(-1,1)*qnorm(0.975)*sqrt(p2*(1-p2)/trial)  # 0.901 0.935 

B-8:  Coverage assessment with WinBUGS 

library("R2WinBUGS") 

 

I <- rep(0,trial) 

data <- matrix(NA,nrow=trial,ncol=3) 

for(i in 1:trial) { 

  x1 <- rnorm(1,eta.real,sqrt(tau2.real)) 

  x <- rep(NA,n); x[1] <- x1 

  for(j in 2:n) { 

    x[j] <- rnorm(1,alpha.real+beta.real*x[j-1],sqrt(sigma2.real)) 

  } 

  xrep <- rep(NA,m) 

  xrep[1] <- rnorm(1,alpha.real+beta.real*x[n],sqrt(sigma2.real)) 

  for(j in 2:m) { 

    xrep[j] <- rnorm(1,alpha.real+beta.real*xrep[j-1],sqrt(sigma2.real)) 

  } 
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  # MCMC via winbugs 

  bugdata <- list("n","x","m") 

  buginits <- function() { list( beta=0, sigma2=1) } 

  bugparameters <- c("alpha","xmean") 

  bugsim <- bugs(bugdata, buginits, bugparameters, model.file= 

            "C:/Users/Carlo/Documents/R/Q1Predict.txt", 

            n.chains = 1, n.iter = J+burn, n.burnin = burn, DIC = FALSE, 

            bugs.directory = "C:/Program Files/WinBUGS14/", 

            working.directory = "C:/Users/Carlo/Documents/R/Q1/") 

 

  aCI <- c(bugsim$summary[1,3], bugsim$summary[1,7]) 

  if((alpha.real>aCI[1])&&(alpha.real<aCI[2])) { I[i] <- 1 } 

 

  PI <- c(bugsim$summary[2,3], bugsim$summary[2,7]) 

  data[i,] <- c(mean(xrep),PI) 

} 

 

p = sum(I/trial); p  # 0.937 

p + c(-1,1)*qnorm(0.975)*sqrt(p*(1-p)/trial)  # 0.9219413 0.9520587 

 

I1 <- I2 <- rep(NA,trial) 

for(i in 1:trial) { 

  I1[i] <- ( data[i,1] > data[i,2] ) && ( data[i,1] < data[i,3] ) 

  xvec <- rep(NA,n) 

  xvec[1] <- x1 

  for(j in 2:(n+m)) { 

    xvec[j] <- rnorm(1,alpha.real+beta.real*xvec[j-1],sqrt(sigma2.real)) 

  } 

  xmean <- mean(xvec[(n+1):(n+m)]) 

  I2[i] <- ( xmean > data[i,2] ) && ( xmean < data[i,3] ) 

} 

p1 <- mean(I1); p2 <- mean(I2); c(p1,p2)  # 0.926 0.903 

p1 + c(-1,1)*qnorm(0.975)*sqrt(p1*(1-p1)/trial)  # 0.9097756 0.9422244 

p2 + c(-1,1)*qnorm(0.975)*sqrt(p2*(1-p2)/trial)  # 0.8846567 0.9213433 

B-9:  Reserve assessment with WinBUGS 

library("R2WinBUGS") 

 

MODE <- function(vector) { 

 # estimate the mode from a density of vector by smoothing 

 den <- density(vector) 

 den$x[den$y==max(den$y)] 

} 

 

# parameters 

year <- 10; n <- year; M <- 0.57; N <- 0.60 

mu <- rep(0,n); mu[1:3] <- c(7.3, 1.5, 0.49) 

h <- rep(0,n); h[1:3] <- c(1,0.21,0.22) 

 

for(i in 4:n) { 

  mu[i] <- M^(i-3) * mu[3] 

  h[i] <- N^(i-3) * h[3] 

} 

theta <- -4.3; sigma2 <- 2.1 

 

L <- 1000  # running the Gibbs sampler again and again for L times 

I <- ppp.list <- error.mean <- error.median <- error.mode <- rep(0,L) 

reserve.position <- 78; ppp.location <- 79; options(digits=4) 

  

for(k in 1:L) { 

  # generating claim run off data 

  c <- matrix(NA, nrow=n, ncol=n) 

  delta <- matrix(NA, nrow=n, ncol=n) 

 

  for(i in 1:n) { 

      delta[i,1] <- rnorm(1, mu[1], h[1]*sqrt(sigma2)) 

      delta[i,2] <- rnorm(1, mu[2]+h[2]*theta*(delta[i,1]-mu[1]), h[2]*sqrt(sigma2)) 

    for(j in 3:n) { 
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      delta[i,j] <- rnorm(1, mu[j], h[j]*sqrt(sigma2)) 

    } 

  } 

  for(i in 1:n) { 

      c[i,1] <- exp(delta[i,1]) 

    for(j in 2:n) { 

      c[i,j] <- exp(delta[i,j]) * c[i,j-1] 

    } 

  } 

  true.reserve = 0 

  for(i in 2:n) { 

      true.reserve = true.reserve + (c[i,n] - c[i,11-i])  

  } 

 

  # MCMC 

  bugdata <- list("year","c") 

  buginits <- function() {   

    list( mu = c(0.1,0.1,0.1,NA,NA,NA,NA,NA,NA,NA), h = c(NA,1,1,NA,NA,NA,NA,NA,NA,NA), 

          M = 0.5 , N = 0.5 , sigma2 = 1, theta = 1, delta.rep = structure(.Data = c( 

            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

            0, 0, 0, 0, 0, 0, 0, 0, 0,NA, 

            0, 0, 0, 0, 0, 0, 0, 0,NA,NA, 

            0, 0, 0, 0, 0, 0, 0,NA,NA,NA, 

            0, 0, 0, 0, 0, 0,NA,NA,NA,NA, 

            0, 0, 0, 0, 0,NA,NA,NA,NA,NA,  

            0, 0, 0, 0,NA,NA,NA,NA,NA,NA, 

            0, 0, 0,NA,NA,NA,NA,NA,NA,NA,  

            0, 0,NA,NA,NA,NA,NA,NA,NA,NA,  

            0,NA,NA,NA,NA,NA,NA,NA,NA,NA), .Dim = c(10,10) )) 

  } 

Bugparameters <- c("mu","h","sigma2","M","N","theta", 

                     "c.pred","reserve.part","reserve","p1","p3") 

  bugsim <- bugs(bugdata, buginits, bugparameters, model.file= 

            "C:/Users/xxxxx/Documents/R/Claim.txt", 

            n.chains = 1, n.iter = 11000, n.burnin = 1000, DIC = FALSE, 

            bugs.directory = "C:/Program Files/WinBUGS14/", 

            working.directory = "C:/Users/xxxxx/Documents/R/Claim/") 

   

  mean.reserve <- bugsim$mean$reserve; median.reserve <- bugsim$median$reserve 

  mode.reserve <- MODE(bugsim$sims.list$reserve) 

  PI.reserve <- c(bugsim$summary[reserve.position,3],bugsim$summary[reserve.position,7]) 

  if((true.reserve > PI.reserve[1]) && (true.reserve < PI.reserve[2])) { I[l]=1 } 

  error.mean[l] <- (mean.reserve - true.reserve)/true.reserve 

  error.median[l] <- (median.reserve - true.reserve)/true.reserve 

  error.mode[l] <- (mode.reserve - true.reserve)/true.reserve 

  ppp.list <- bugsim$summary[ppp.location,1]   

 

  # progress tracking 

  if(l %% 10 == 0) { print(cat(l/L*100,"percent completed! ")) } 

} 

# Results 

bugsim$summary[reserve.position,]; bugsim$mean$p1; bugsim$mean$p3  

mode.reserve; true.reserve; p=mean(I); p; p + c(-1,1)*1.96*sqrt(p*(1-p)/L) 

 

# Hypothesis testing 

ppp.mean = mean(ppp.list); ppp.mean; 

sum(ppp.mean[ppp.mean<0.05]); sum(ppp.mean[ppp.mean>0.95]) 

INF(error.mean)[1:3]; INF(error.median)[1:3]; INF(error.mode)[1:3]  

reserve.vector <- bugsim$sims.list$reserve 

 

X11(width=8,height=5); par(mai=c(1,1.2,0.2,0.2))  # (Figure 6.1) 

hist(reserve.vector,breaks=40,prob=T,xlab="reserve",main=NA,xlim=c(min(reserve.vector), 

     quantile(reserve.vector,0.9975))) 

abline(v=bugsim$summary[reserve.position,1],lty=1, lwd=2) 

abline(v=bugsim$summary[reserve.position,5],lty=2, lwd=2) 

abline(v=MODE(reserve.vector),lty=3, lwd=2); abline(v=PI.reserve,lty=4) 

points(true.reserve,0,pch=19); lines(density(reserve.vector),lty=3); 

legend(1.1*PI.reserve[2],0.5*max(density(reserve.vector)$y),c("mean","median","mode"), 

       lty=c(1,2,3),lwd=c(2,2,2)) 
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Appendix C:  WinBUGS Code 

C-1:  Time series model 

MODEL 

{ 

 x[1] ~ dnorm(eta,t) 

 for( i in 2 : n ) { 

  x[i] ~ dnorm(mu[i],s) 

  mu[i] <- alpha+beta*x[i-1] 

 } 

 t <- 1/tau2 

 s <- 1/sigma2 

 tau2 <- sigma2/(1-beta) 

 eta <- alpha/(1-beta) 

 alpha ~ dnorm(0,0.001) 

 beta ~ dunif(-1,1) 

 sigma2 ~ dgamma(0.001,0.001) 

  

 # Prediction 

 for( j in 1 : m) { 

  xnext[j] ~ dnorm(munext[j],s) 

 } 

 munext[1] <- alpha+beta*x[n] 

 for( j in 2 : m) { 

  munext[j] <- alpha+beta*xnext[j-1] 

 } 

} 

 

DATA 

 

list(x =  

c( -0.651134500293269,  -1.13297671629464,    0.0902583995422782,  -0.740492555568816, 

    0.713285477012912,   2.07994350899636,    1.45421438904982,     2.3381697281389,      

    1.37655363797294,    1.70107119781436,    0.721806461126196,   -0.0219793729577730,       

    0.675082788161775,   1.23874412208321,   -0.163227938659239,   -1.03468020484809,    

   -1.2249661451836,    -0.853068555277069,  -1.73295486859530,    -2.02798270492891,    

   -0.44366365835555,   -0.305014271649753,   1.54102341989711,     1.96516193269735,    

    2.71260199074518,    1.49709675778887,    0.273603377570765,   -0.577364695257764,   

   -0.421633068043591,   2.43096891928915,    0.691620566378797,    1.42058905389156,   

   -0.65768699060883,    0.460487372435315,   1.41358849385181,    -0.892847049043457,  

   -1.29419561926962,   -2.78297653575327,   -2.21560748836394,     2.19632117391132,    

    1.02677193374616,    1.61495879538274,    3.19549635315063,     1.22857740530504,     

    1.60048437669280,    1.18059004472060,    1.26998139649821,     1.21220822584111,   

    0.12784681367819,   -0.390724777992149,   0.841417275022684,   -1.50778568978362,    

   -0.84289599914087,   -1.4333697880734,    -2.26213309168342,    -1.02578547250705,   

   -0.0652596684436959,  0.227139857634588,  -0.450604540675496,    0.39469840547178,  

    0.0226121794600207, -0.162096211508090,   0.00573523672703122,  0.78843378855997,  

    0.044661381446038,   0.94228199051853,    0.627176242272651,   -0.0676376442225574,  

   -0.552602300807993,   1.71968604606597,    1.06298339935968,     0.376287370396052,    

    2.28118839342955,    2.32838018294078,    1.51419221969344,     0.359300452079709,  

    0.450986128926995,   0.285715539965825,   0.0634575029461997,  -0.314828299900130,  

    0.143103691731009,  -0.0699157299604746, -0.116372930898608,    0.561361459142413, 

   -1.18346979620212,   -1.46430885733973,   -0.0366906364238819,  -0.928593920178746, 

   -1.17409023323741,    0.521128086916033,  -1.34089457936068,    -0.0515133312649343,         

    0.779648231613477,   1.35909656451904,   -0.0656115327245324,   0.0084512260436784,  

   -1.44338475168051,   -1.67820910177067,   -0.979369032809375,   -0.90346362304396),  

xnext = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA), n = 100, m = 15) 

 

INITS 

 

list( beta = 0, sigma2 = 1) 
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C-2:  Hypothesis testing on time series model 

MODEL 

{ 

 for( i in 1 : n ) { 

  x[i] ~  dnorm(alpha,s) 

 } 

 s <- 1/sigma2 

 alpha ~ dnorm(0,0.001) 

 sigma2 ~ dgamma(0.001,0.001) 

  

 # Prediction 

 for( j in 1 : n) { 

  xrep[j] ~ dnorm(alpha,s) 

 } 

  

 # Hypothesis Test 

 mx <- mean(x[]) 

 for( i in 1:m) { 

  y[i] <- (x[i] - mx) / abs(x[i] - mx) 

 } 

 for( i in 1:(m-1)) { 

  z[i] <- abs(y[i+1] - y[i]) / 2 

 } 

 xcount <- sum(z[]) + 1 

 mxrep <- mean(xrep[]) 

 for( j in 1:m) { 

  yrep[j] <- (xrep[j] - mxrep) / abs(xrep[j] - mxrep) 

 } 

 for( j in 1:(m-1)) { 

  zrep[j] <- abs(yrep[j+1] - yrep[j]) / 2 

 } 

 xrepcount <- sum(zrep[]) + 1 

 ppp <- step(xcount – xrepcount) 

} 

 

DATA 

 

# Same data as in Appendix C-1 

 

INITS 

 

list( sigma2 = 1)  

C-3:  Hertig‟s model (Section 5.1) 

MODEL 

{ 

 for( i in 1 : year) { 

  delta[i,1] <- log( c[i,1] ) 

  for( j in 2 : (year+1-i) ) { 

   delta[i,j] <- log( c[i,j] ) - log( c[i,j-1] ) 

  } 

  for( j in 1 : (year+1-i) ) { 

   delta[i,j] ~ dnorm( mu.d[i,j], tau.d[i,j] ) 

   mu.d[i,j] <- mu[j] 

   tau.d[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

   c.pred[i,j] <- 0 

  } 

 } 

  

 # Prior Distributions 

 for( j in 1 : year) { 

  mu[j] ~ dnorm(0,0.00001) 

 } 

 sigma2 ~ dgamma(0.1,0.1) 

 h[1] <- 1 
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 for( j in 2 : year) {  

  h[j] ~ dgamma(0.1,0.1)  

 } 

  

 # Prediction 

  

 for( i in 2 : year) { 

  delta[i,year+2-i] ~ dnorm( mu.d[i,year+2-i], tau.d[i,year+2-i]) 

  mu.d[i,year+2-i] <- mu[year+2-i] 

  tau.d[i,year+2-i] <- 1 / ( pow(h[year+2-i],2) * sigma2 ) 

  c.pred[i,year+2-i] <- c[i,year+1-i] * exp(delta[i,year+2-i]) 

 } 

 for( i in 3 : year) { 

  for( j in (year+3-i) : year) { 

   delta[i,j] ~ dnorm( mu.d[i,j], tau.d[i,j] ) 

   mu.d[i,j] <- mu[j] 

   tau.d[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

   c.pred[i,j] <- c.pred[i,j-1] * exp(delta[i,j]) 

  } 

 } 

 reserve.part[1] <- 0 

 for( i in 2 : year) { 

    reserve.part[i] <- c.pred[i,year] - c[i,year+1-i] 

 } 

 reserve <- sum(reserve.part[]) 

  

 # Hypothesis Test 

 for( i in 1 : year) { 

  for( j in 1 : (year+1-i) ) { 

   delta.rep[i,j] ~ dnorm( mu.d.rep[i,j], tau.d.rep[i,j] ) 

   mu.d.rep[i,j] <- mu[j] 

   tau.d.rep[i,j] <- 1 / ( pow(h[j],2) * sigma2 )  

  } 

 } 

 for( i in 1 : (year-1) ) { 

  for( j in 2 : (year+1-i) ) { 

   Q1[i,j] <- delta[i,j] - delta[i,j-1] 

   Q2[i,j] <- delta[i,j] / delta[i,j-1] 

   Q1.rep[i,j] <- delta.rep[i,j] - delta.rep[i,j-1] 

   Q2.rep[i,j] <- delta.rep[i,j] / delta.rep[i,j-1] 

   mean.Q1[i,j] <- mu[j] - mu[j-1] 

   mean.Q2[i,j] <- mu[j] / mu[j-1] 

   var.Q1[i,j] <- ( pow(h[j],2) + pow(h[j-1],2) ) * sigma2 

   var.Q2[i,j] <- sigma2/pow(mu[j-1],2)*((pow(h[j-1],2)/pow(mu[j-1],2)) 

        *(pow(mu[j],2) + pow(h[j],2)*sigma2) + pow(h[j],2) ) 

   t1[i,j] <- pow(( Q1[i,j] - mean.Q1[i,j] ),2) / var.Q1[i,j] 

   t1.rep[i,j] <- pow(( Q1.rep[i,j] - mean.Q1[i,j] ),2) / var.Q1[i,j] 

   t2[i,j] <- pow(( Q2[i,j] - mean.Q2[i,j] ),2) / var.Q2[i,j] 

   t2.rep[i,j] <- pow(( Q2.rep[i,j] - mean.Q2[i,j] ),2) / var.Q2[i,j] 

  } 

 } 

 for( i in 1 : year ) { 

  t1[i,1] <- 0 

  t1.rep[i,1] <- 0 

  t2[i,1] <- 0 

  t2.rep[i,1] <- 0 

 } 

 for( i in 2 : year ) { 

  for( j in (year+2-i) : year ) { 

   t1[i,j] <- 0 

   t1.rep[i,j] <- 0 

   t2[i,j] <- 0 

   t2.rep[i,j] <- 0 

  } 

 } 

 Ts1 <- sum(t1[,]) 

 Ts1.rep <- sum(t1.rep[,]) 

 Ts2 <- sum(t2[,]) 

 Ts2.rep <- sum(t2.rep[,]) 

 p1 <- step( Ts1 - Ts1.rep )  # 1 if Ts1 >= Ts1.rep 

 p2 <- step( Ts2 - Ts2.rep )  # 1 if Ts2 >= Ts2.rep 

 for( i in 1 : (year-1) ) { 
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  Q3[i] <- ( delta[i,2] - mu[2] ) / ( delta[i,1] - mu[1] ) 

  Q3.rep[i] <- ( delta.rep[i,2] - mu[2] ) / ( delta.rep[i,1] - mu[1] ) 

  t3[i] <- step( - Q3[i] ) 

  t3.rep[i] <- step( - Q3.rep[i] ) 

 } 

 Ts3 <- sum(t3[]) 

 Ts3.rep <- sum(t3.rep[]) 

 p3 <- step( Ts3.rep - Ts3 )  # 1 if Ts3.rep >= Ts3 

} 

 

DATA 

 

list(year = 10, c = structure(.Data = c( 

5012, 8269, 10907, 11805, 13539, 16181, 18009, 18608, 18662, 18834, 

 106, 4285,  5396, 10666, 13782, 15599, 15496, 16169, 16704,    NA, 

3410, 8992, 13873, 16141, 18735, 22214, 22863, 23466,    NA,    NA, 

5655, 1555, 15766, 21266, 23425, 26083, 27067,    NA,    NA,    NA, 

1092, 9565, 15836, 22169, 25955, 26180,    NA,    NA,    NA,    NA, 

1513, 6445, 11702, 12935, 15852,    NA,    NA,    NA,    NA,    NA,  

 557, 4020, 10946, 12314,    NA,    NA,    NA,    NA,    NA,    NA, 

1351, 6947, 13112,    NA,    NA,    NA,    NA,    NA,    NA,    NA,  

3133, 5395,    NA,    NA,    NA,    NA,    NA,    NA,    NA,    NA,  

2063,   NA,    NA,    NA,    NA,    NA,    NA,    NA,    NA,    NA), .Dim = c(10,10) )) 

 

INITS 

 

list( mu = c(0,0,0,0,0,0,0,0,0,0) , h = c(NA,1,1,1,1,1,1,1,1,1) , sigma2 = 1, 

  delta.rep = structure(.Data = c( 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0,NA, 

0, 0, 0, 0, 0, 0, 0, 0,NA,NA, 

0, 0, 0, 0, 0, 0, 0,NA,NA,NA, 

0, 0, 0, 0, 0, 0,NA,NA,NA,NA, 

0, 0, 0, 0, 0,NA,NA,NA,NA,NA,  

0, 0, 0, 0,NA,NA,NA,NA,NA,NA, 

0, 0, 0,NA,NA,NA,NA,NA,NA,NA,  

0, 0,NA,NA,NA,NA,NA,NA,NA,NA,  

0,NA,NA,NA,NA,NA,NA,NA,NA,NA), .Dim = c(10,10) )) 

C-4:  Modified Hertig‟s model (Section 5.2) 

MODEL 

{ 

 for( i in 1 : year) { 

  delta[i,1] <- log( c[i,1] ) 

  for( j in 2 : (year+1-i) ) { 

   delta[i,j] <- log( c[i,j] ) - log( c[i,j-1] ) 

  } 

  for( j in 1 : (year+1-i) ) { 

   delta[i,j] ~ dnorm( mu.d[i,j], tau.d[i,j] ) 

   mu.d[i,j] <- mu[j] 

   tau.d[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

   c.pred[i,j] <- 0 

  } 

 } 

  

 # Prior Distributions 

 for( j in 1 : 3) { 

  mu[j] ~ dnorm(0,0.00001) I(0,) 

 } 

 for( j in 4 : year) { 

  mu[j] <- pow(M,j-3) * mu[3] 

 } 

 h[1] <- 1 

 for( j in 2 : 3) {  

  h[j] ~ dgamma(0.0001,0.0001) 

 } 

 for( j in 4 : year) {  

  h[j] <- pow(N,j-3) * h[3]  
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 } 

 M ~ dunif(0,1) 

 N ~ dunif(0,1) 

 sigma2 ~ dgamma(0.0001,0.0001) 

 

 # Prediction 

 for( i in 2 : year) { 

   delta[i,year+2-i] ~ dnorm( mu.d[i,year+2-i], tau.d[i,year+2-i] ) 

  mu.d[i,year+2-i] <- mu[year+2-i] 

  tau.d[i,year+2-i] <- 1 / ( pow(h[year+2-i],2) * sigma2 ) 

   c.pred[i,year+2-i] <- c[i,year+1-i] * exp(delta[i,year+2-i]) 

 } 

 for( i in 3 : year) { 

  for( j in (year+3-i) : year) { 

    delta[i,j] ~ dnorm( mu.d[i,j], tau.d[i,j] ) 

   mu.d[i,j] <- mu[j] 

   tau.d[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

    c.pred[i,j] <- c.pred[i,j-1] * exp(delta[i,j]) 

  } 

 } 

 reserve.part[1] <- 0 

 for( i in 2 : year) { 

  reserve.part[i] <- c.pred[i,year] - c[i,year+1-i] 

 } 

 reserve <- sum(reserve.part[]) 

  

 # Hypothesis Test 

 for( i in 1 : year) { 

  for( j in 1 : (year+1-i) ) { 

   delta.rep[i,j] ~ dnorm( mu.d.rep[i,j], tau.d.rep[i,j] ) 

   mu.d.rep[i,j] <- mu[j] 

   tau.d.rep[i,j] <- 1 / ( pow(h[j],2) * sigma2 )  

  } 

 } 

 for( i in 1 : (year-1) ) { 

  for( j in 2 : (year+1-i) ) { 

   Q1[i,j] <- delta[i,j] - delta[i,j-1] 

   Q2[i,j] <- delta[i,j] / delta[i,j-1] 

   Q1.rep[i,j] <- delta.rep[i,j] - delta.rep[i,j-1] 

   Q2.rep[i,j] <- delta.rep[i,j] / delta.rep[i,j-1] 

   mean.Q1[i,j] <- mu[j] - mu[j-1] 

   mean.Q2[i,j] <- mu[j] / mu[j-1] 

   var.Q1[i,j] <- ( pow(h[j],2) + pow(h[j-1],2) ) * sigma2 

   var.Q2[i,j] <- sigma2 / pow(mu[j-1],2) * ( ( pow(h[j-1],2) / pow(mu[j-1],2) ) 

           *( pow(mu[j],2) + pow(h[j],2)*sigma2 ) + pow(h[j],2) ) 

   t1[i,j] <- pow(( Q1[i,j] - mean.Q1[i,j] ),2) / var.Q1[i,j] 

   t1.rep[i,j] <- pow(( Q1.rep[i,j] - mean.Q1[i,j] ),2) / var.Q1[i,j] 

   t2[i,j] <- pow(( Q2[i,j] - mean.Q2[i,j] ),2) / var.Q2[i,j] 

   t2.rep[i,j] <- pow(( Q2.rep[i,j] - mean.Q2[i,j] ),2) / var.Q2[i,j] 

  } 

 } 

 for( i in 1 : year ) { 

  t1[i,1] <- 0 

  t1.rep[i,1] <- 0 

  t2[i,1] <- 0 

  t2.rep[i,1] <- 0 

 } 

 for( i in 2 : year ) { 

  for( j in (year+2-i) : year ) { 

   t1[i,j] <- 0 

   t1.rep[i,j] <- 0 

   t2[i,j] <- 0 

   t2.rep[i,j] <- 0 

  } 

 } 

 Ts1 <- sum(t1[,]) 

 Ts1.rep <- sum(t1.rep[,]) 

 Ts2 <- sum(t2[,]) 

 Ts2.rep <- sum(t2.rep[,]) 

 p1 <- step( Ts1 - Ts1.rep )  # 1 if Ts1 >= Ts1.rep 

 p2 <- step( Ts2 - Ts2.rep )  # 1 if Ts2 >= Ts2.rep 

 for( i in 1 : (year-1) ) { 
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  Q3[i] <- ( delta[i,2] - mu[2] ) / ( delta[i,1] - mu[1] ) 

  Q3.rep[i] <- ( delta.rep[i,2] - mu[2] ) / ( delta.rep[i,1] - mu[1] ) 

  t3[i] <- step( - Q3[i] ) 

  t3.rep[i] <- step( - Q3.rep[i] ) 

 } 

 Ts3 <- sum(t3[]) 

 Ts3.rep <- sum(t3.rep[]) 

 p3 <- step( Ts3.rep - Ts3 )  # 1 if Ts3.rep >= Ts3 

} 

 

DATA 

 

# Same data as in Appendix C-3 

 

INITS 

 

list( mu = c(0.1,0.1,0.1,NA,NA,NA,NA,NA,NA,NA), h = c(NA,1,1,NA,NA,NA,NA,NA,NA,NA), 

  M = 0.5 , N = 0.5 , sigma2 = 1, delta.rep = structure(.Data = c( 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0,NA, 

0, 0, 0, 0, 0, 0, 0, 0,NA,NA, 

0, 0, 0, 0, 0, 0, 0,NA,NA,NA, 

0, 0, 0, 0, 0, 0,NA,NA,NA,NA, 

0, 0, 0, 0, 0,NA,NA,NA,NA,NA,  

0, 0, 0, 0,NA,NA,NA,NA,NA,NA, 

0, 0, 0,NA,NA,NA,NA,NA,NA,NA,  

0, 0,NA,NA,NA,NA,NA,NA,NA,NA,  

0,NA,NA,NA,NA,NA,NA,NA,NA,NA), .Dim = c(10,10) )) 

C-5:  Development correlation model (Section 5.3) 

MODEL 

{ 

 for( i in 1 : year) { 

  delta[i,1] <- log( c[i,1] ) 

  for( j in 2 : (year+1-i) ) { 

   delta[i,j] <- log( c[i,j] ) - log( c[i,j-1] ) 

  } 

  for( j in 1 : (year+1-i) ) { 

   delta[i,j] ~ dnorm( mu.d[i,j], tau.d[i,j] ) 

   tau.d[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

   c.pred[i,j] <- 0 

  } 

 } 

 for( i in 1 : year) { 

  mu.d[i,1] <- mu[1] 

 } 

 for( i in 1 : year-1) {  

  mu.d[i,2] <- mu[2] + h[2] * theta * (delta[i,1] - mu[1]) 

 } 

 for( i in 1 : year-2) {  

  for( j in 3 : (year+1-i) ) { 

   mu.d[i,j] <- mu[j] 

  } 

 } 

 

 # Prior Distributions 

 for( j in 1 : 3) { 

  mu[j] ~ dnorm(0,0.00001) I(0,) 

 } 

 for( j in 4 : year) { 

  mu[j] <- pow(M,j-3) * mu[3] 

 } 

 h[1] <- 1 

 for( j in 2 : 3) {  

  h[j] ~ dgamma(0.0001,0.0001) 

 } 

 for( j in 4 : year) {  

  h[j] <- pow(N,j-3) * h[3]  
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 } 

 M ~ dunif(0,1) 

 N ~ dunif(0,1) 

 sigma2 ~ dgamma(0.0001,0.0001) 

 theta ~ dnorm(0,0.00001) 

 rho <- theta/sqrt(1+pow(theta,2)) 

 

 # Prediction 

 for( i in 2 : year) { 

   delta[i,year+2-i] ~ dnorm( mu.d[i,year+2-i], tau.d[i,year+2-i] ) 

  tau.d[i,year+2-i] <- 1 / ( pow(h[year+2-i],2) * sigma2 ) 

   c.pred[i,year+2-i] <- c[i,year+1-i] * exp(delta[i,year+2-i]) 

 } 

 for( i in 2 : year-1) { 

  mu.d[i,year+2-i] <- mu[year+2-i] 

 } 

 mu.d[year,2] <- mu[2] + h[2] * theta * (delta[year,1] - mu[1]) 

 for( i in 3 : year) { 

  for( j in (year+3-i) : year) { 

    delta[i,j] ~ dnorm( mu.d[i,j], tau.d[i,j] ) 

   mu.d[i,j] <- mu[j] 

   tau.d[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

    c.pred[i,j] <- c.pred[i,j-1] * exp(delta[i,j]) 

  } 

 } 

 reserve.part[1] <- 0 

 for( i in 2 : year) { 

  reserve.part[i] <- c.pred[i,year] - c[i,year+1-i] 

 } 

 reserve <- sum(reserve.part[]) 

  

 # Hypothesis Test 

 for( i in 1 : year) { 

  for( j in 1 : (year+1-i) ) { 

   delta.rep[i,j] ~ dnorm( mu.d.rep[i,j], tau.d.rep[i,j] ) 

   tau.d.rep[i,j] <- 1 / ( pow(h[j],2) * sigma2 ) 

  } 

 } 

 for( i in 1 : year) { 

  mu.d.rep[i,1] <- mu[1] 

 } 

 for( i in 1 : (year-1)) { 

  mu.d.rep[i,2] <- mu[2] + h[2] * theta * (delta.rep[i,1] - mu[1]) 

 } 

 for( i in 1 : (year-2)) { 

  for( j in 3 : (year+1-i)) { 

   mu.d.rep[i,j] <- mu[j] 

  } 

 } 

 for( i in 1 : (year-1) ) { 

  for( j in 2 : (year+1-i) ) { 

   Q1[i,j] <- delta[i,j] - delta[i,j-1] 

   Q1.rep[i,j] <- delta.rep[i,j] - delta.rep[i,j-1] 

   mean.Q1[i,j] <- mu.d[i,j] - mu.d[i,j-1] 

   mean.Q1.rep[i,j] <- mu.d.rep[i,j] - mu.d.rep[i,j-1] 

   t1[i,j] <- pow(( Q1[i,j] - mean.Q1[i,j] ),2) / var.Q1[i,j] 

   t1.rep[i,j] <- pow(( Q1.rep[i,j] - mean.Q1.rep[i,j] ),2) / var.Q1[i,j] 

  } 

 } 

 for( i in 1 : (year-1) ) { 

  var.Q1[i,2] <- (pow(h[2],2) + pow(h[1],2) - 2*h[2] * theta * pow(h[1],2)) * sigma2 

 } 

 for( i in 1 : (year-1) ) { 

  for( j in 3 : (year+1-i) ) { 

   var.Q1[i,j] <- ( pow(h[j],2) + pow(h[j-1],2) ) * sigma2 

  } 

 } 

 for( i in 1 : year ) { 

  t1[i,1] <- 0 

  t1.rep[i,1] <- 0 

 } 

 for( i in 2 : year ) { 



Appendix 

99 

  for( j in (year+2-i) : year ) { 

   t1[i,j] <- 0 

   t1.rep[i,j] <- 0 

  } 

 } 

 Ts1 <- sum(t1[,]) 

 Ts1.rep <- sum(t1.rep[,]) 

 p1 <- step( Ts1 - Ts1.rep )  # 1 if Ts1 >= Ts1.rep 

 for( i in 1 : (year-1) ) { 

  Q3[i] <- ( delta[i,2] - mu.d.rep[i,2] ) / ( delta[i,1] - mu.d.rep[i,1] ) 

  Q3.rep[i] <- (delta.rep[i,2] - mu.d.rep[i,2]) / ( delta.rep[i,1] - mu.d.rep[i,1] ) 

  t3[i] <- step( - Q3[i] ) 

  t3.rep[i] <- step( - Q3.rep[i] ) 

 } 

 Ts3 <- sum(t3[]) 

 Ts3.rep <- sum(t3.rep[]) 

 p3 <- step( Ts3.rep - Ts3 )  # 1 if Ts3.rep >= Ts3 

} 

 

DATA 

 

# Same data as in Appendix C-3 

 

INITS 

 

list( mu = c(0.1,0.1,0.1,NA,NA,NA,NA,NA,NA,NA), h = c(NA,1,1,NA,NA,NA,NA,NA,NA,NA), 

  M = 0.5 , N = 0.5 , sigma2 = 1, theta = 1, delta.rep = structure(.Data = c( 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0,NA, 

0, 0, 0, 0, 0, 0, 0, 0,NA,NA, 

0, 0, 0, 0, 0, 0, 0,NA,NA,NA, 

0, 0, 0, 0, 0, 0,NA,NA,NA,NA, 

0, 0, 0, 0, 0,NA,NA,NA,NA,NA,  

0, 0, 0, 0,NA,NA,NA,NA,NA,NA, 

0, 0, 0,NA,NA,NA,NA,NA,NA,NA,  

0, 0,NA,NA,NA,NA,NA,NA,NA,NA,  

0,NA,NA,NA,NA,NA,NA,NA,NA,NA), .Dim = c(10,10) )) 
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Appendix D:  Additional tables and figures 

D-1:  Frequency histograms for simulated values of   and    

Figure 8.1: Frequency histogram of simulated   

 

Figure 8.2: Frequency histogram of simulated    
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D-2:  Traces of simulated values for Hertig‟s model 

Figure 8.3: Traces of simulated   ,    and    (Hertig‟s model) 
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D-3:  Predictive inference on future claims (Hertig‟s model) 

Table 8.1: Predictive inference on cumulative claim liabilities and reserve  

node  mean  sd  MC error 2.5% median 97.5%  
c.pred[2,10] 1.02E+20 4.381E+21 9.839E+19 14.61 16860.0 4.009E+6  

c.pred[3,9] 39780.0 641700.0 15180.0 18110.0 23880.0 34470.0  
c.pred[3,10] 1.255E+23 5.611E+24 1.233E+23 50.6 24060.0 6.399E+6  

c.pred[4,8] 2.8E+4 1089.0 18.94 26720.0 27990.0 29290.0  
c.pred[4,9] 31110.0 64080.0 1969.0 21250.0 28500.0 39640.0  
c.pred[4,10] 1.602E+19 7.151E+20 1.572E+19 38.64 28690.0 6.264E+6  

c.pred[5,7] 27470.0 2587.0 67.25 22890.0 27330.0 33080.0  
c.pred[5,8] 28410.0 2740.0 65.48 23370.0 28230.0 34290.0  
c.pred[5,9] 41920.0 503200.0 11450.0 19920.0 28740.0 42920.0  
c.pred[5,10] 1.056E+32 4.72E+33 1.037E+32 36.9 28970.0 1.31E+7  

c.pred[6,6] 17950.0 1880.0 42.52 14550.0 17880.0 22060.0  
c.pred[6,7] 18770.0 2661.0 62.45 13880.0 18570.0 24720.0  
c.pred[6,8] 19400.0 2841.0 64.16 14310.0 19250.0 25590.0  
c.pred[6,9] 63400.0 1.638E+6 42080.0 12770.0 19590.0 29510.0  
c.pred[6,10] 1.577E+18 5.265E+19 1.159E+18 51.34 19730.0 1.457E+7  

c.pred[7,5] 14590.0 1148.0 24.53 12500.0 14550.0 17130.0  
c.pred[7,6] 16590.0 2291.0 46.37 12700.0 16380.0 21710.0  
c.pred[7,7] 17400.0 3013.0 70.21 12560.0 17130.0 24060.0  
c.pred[7,8] 1.8E+4 3275.0 78.47 12900.0 17700.0 24890.0  
c.pred[7,9] 32160.0 528600.0 12300.0 11720.0 18090.0 29850.0  
c.pred[7,10] 1.473E+20 6.583E+21 1.447E+20 9.776 18240.0 4.02E+7  

c.pred[8,4] 17760.0 5743.0 117.9 9966.0 16990.0 30960.0  
c.pred[8,5] 21050.0 7079.0 152.1 11630.0 19960.0 37440.0  
c.pred[8,6] 23820.0 8457.0 178.7 12440.0 22590.0 43560.0  
c.pred[8,7] 25020.0 9236.0 171.5 12760.0 23650.0 46690.0  
c.pred[8,8] 25900.0 9661.0 183.3 13210.0 24360.0 48400.0  
c.pred[8,9] 6.79E+6 3.023E+8 6.646E+6 12460.0 24750.0 52310.0  
c.pred[8,10] 3.22E+21 1.121E+23 2.673E+21 28.04 25110.0 5.39E+7  

c.pred[9,3] 9395.0 3258.0 64.35 4759.0 8958.0 17010.0  
c.pred[9,4] 12580.0 5968.0 127.9 4861.0 11400.0 27700.0  
c.pred[9,5] 14880.0 7184.0 162.5 5675.0 13410.0 32880.0  
c.pred[9,6] 16840.0 8520.0 194.2 6227.0 15150.0 37840.0  
c.pred[9,7] 17640.0 9022.0 198.6 6400.0 15890.0 40440.0  
c.pred[9,8] 18270.0 9344.0 203.5 6612.0 16420.0 41760.0  
c.pred[9,9] 56420.0 1.644E+6 36420.0 6121.0 16710.0 46830.0  
c.pred[9,10] 6.024E+27 1.936E+29 4.277E+27 30.71 16630.0 8.127E+6  

c.pred[10,2] 35310.0 524800.0 11440.0 651.6 9154.0 115800.0  
c.pred[10,3] 62900.0 1.115E+6 24540.0 1157.0 14970.0 205700.0  
c.pred[10,4] 88200.0 1.732E+6 38260.0 1277.0 19320.0 2.73E+5  
c.pred[10,5] 106200.0 2.088E+6 46180.0 1470.0 23290.0 309500.0  
c.pred[10,6] 125100.0 2.579E+6 57120.0 1692.0 25800.0 347800.0  
c.pred[10,7] 134900.0 2.885E+6 63830.0 1833.0 26700.0 383500.0  
c.pred[10,8] 139800.0 2.996E+6 66280.0 1889.0 27560.0 399100.0  
c.pred[10,9] 204700.0 4.093E+6 91680.0 1770.0 28330.0 422200.0  
c.pred[10,10] 9.802E+32 4.381E+34 9.628E+32 86.33 28440.0 1.944E+7  
reserve 1.086E+33 4.406E+34 1.067E+33 -75100.0 86260.0 5.208E+11
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D-4:  Traces of simulated values for modified Hertig‟s model 

Figure 8.4: Traces of simulated   ,   ,   ,   and   (modified Hertig‟s model) 

 

 

 

 
 

D-5:  Traces of simulated values for development corr. model 

Figure 8.5: Traces of simulated   ,   ,   ,  ,   and    (dev. corr. model) 
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D-6:  Simulated values of    vs simulated values of    

Figure 8.6: Simulated values of    vs simulated values of    

 

 


