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Abstract

We extend the theory of tent spaces from Euclidean spaces to various types of
metric measure spaces. For doubling spaces we show that the usual ‘global’
theory remains valid, and for ‘non-uniformly locally doubling’ spaces (including
R™ with the Gaussian measure) we establish a satisfactory local theory. In the
doubling context we show that Hardy-Littlewood—Sobolev-type embeddings hold
in the scale of weighted tent spaces, and in the special case of unbounded AD-
regular metric measure spaces we identify the real interpolants (the ‘Z-spaces’)
of weighted tent spaces.

Weighted tent spaces and Z-spaces on R™ are used to construct Hardy—Sobolev
and Besov spaces adapted to perturbed Dirac operators. These spaces play a key
role in the classification of solutions to first-order Cauchy—Riemann systems (or
equivalently, the classification of conormal gradients of solutions to second-order
elliptic systems) within weighted tent spaces and Z-spaces. We establish this clas-
sification, and as a corollary we obtain a useful characterisation of well-posedness
of Regularity and Neumann problems for second-order complex-coefficient ellip-
tic systems with boundary data in Hardy-Sobolev and Besov spaces of order
s € (—1,0).
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Introduction

This thesis consists of two main parts. In the first part we provide various gen-
eralisations and extensions of the theory of tent spaces. In the second part we
establish results concerning the well-posedness of certain elliptic boundary value

problems; using some of our extended tent space theory in the process.

Part I: Extensions of the theory of tent spaces

Tent spaces were first introduced by Coifman, Meyer, and Stein [32, 33] as a
unification of fundamental ideas in modern harmonic analysis. Each of the three

chapters of this part provides a different extension of their theory.

Chapter 1: Tent spaces over metric measure spaces under doubling

and related assumptions.

The main focus here is on doubling metric measure spaces (X,d, u): (X,d) is a

metric space, u is a Borel measure on (X, d), and the doubling condition
u(B(x,2r)) S p(Blz,r) (v € X,r>0)

is satisfied. We define tent spaces TP%*(X) associated with such a doubling
metric measure space, and establish properties of T7%*(X) analogous to those
established by Coifman, Meyer, and Stein in the case where X is R", d is the
Euclidean distance, and p is the Lebesgue measure.

In particular, we show that these tent spaces are complete (Proposition 1.3.5),
that the tent space scale is closed under duality (Propositions 1.3.10 and 1.3.15)
and forms a complex interpolation scale (Propositions 1.3.12 and 1.3.18), and
that the space TP?%(X) is independent of the ‘aperture’ parameter a (Proposi-
tion 1.3.21). The proofs of these results are generally more technical than the
corresponding Euclidean proofs, and we also point out that our proof of the com-
plex interpolation result avoids an error in the original Coifman—Meyer—Stein

argument.



The prototypical example of a doubling metric measure space is the Euclidean
space R" with the Euclidean distance and Lebesgue measure. More generally, one
can consider a Riemannian manifold of non-negative Ricci curvature, equipped
with the geodesic distance and Riemannian volume (the curvature assumption
ensures that the doubling condition is satisfied, by the Bishop—Gromov compar-
ison theorem). Tent spaces associated with doubling Riemannian manifolds are
the foundation for the Hardy spaces of differential forms developed by Auscher,
MeclIntosh, and Russ [13] (see also the more recent work on this topic by Auscher,
McIntosh, and Morris [11]). However, full details of this tent space theory had
not appeared in the literature (with the exception of the atomic decomposition
theorem, which was proven explicitly by Russ [¢1]). Therefore the material of

this chapter fills a gap which was perhaps neglected in the past.

Chapter 2: Non-uniformly local tent spaces.

In this chapter we consider metric measure spaces (X, d, ) which are not dou-
bling, but which are—in a certain quantified and non-uniform sense—locally dou-
bling (for the precise definition see Section 2.2). Given such a space, we construct
non-uniformly local tent spaces t2:9(+)." The main difference between these spaces
and those constructed in Chapter 1 is that instead of the full ‘upper half-space’
X x Ry, we use an admissible region D C X x R, defined in terms of the
‘non-uniform local doubling’” data (see Definition 2.3.1).

Our theory of non-uniformly local tent spaces runs parallel to the theory con-
structed in Chapter 1. We also prove an atomic decomposition theorem (Theorem
2.4.5). Technicalities imposed on us by the non-uniform local doubling assump-
tion force us to require that the metric space (X, d) is complete in the proof of
this theorem.

The model non-uniformly locally doubling metric measure space is the Eu-
clidean space R" equipped with the Euclidean distance and, in place of the

Lebesgue measure, the Gaussian measure

1

—l|z|?/2
(27T)n/26 dz.

dy(r) =

Non-uniformly local tent spaces associated with this space correspond to the
Gaussian tent spaces defined by Maas, van Neerven, and Portal [63]. These are

used in the construction of Gaussian Hardy spaces by Portal [78]. In Examples

!Note that the notation has changed from the first article: such notation changes will occur

in each article.



2.2.2 and 2.2.4 we provide many other examples of non-uniformly locally doubling

spaces, given by weighted measures analogous to the Gaussian measure.

Chapter 3: Interpolation and embeddings of weighted tent spaces.

Here we return to the setting of doubling metric measure spaces (X, d, i) as in
Chapter 1. The tent space scale T77(X) introduced there (we need not make
reference to the aperture parameter «, as we have already shown the tent spaces
do not depend on it) is expanded: we define weighted tent spaces TP9(X) anal-
ogously to the spaces TP4(X) = T3 (X), the difference being the presence of a
weight pu(B(x,t))~* in the norm. This is motivated by applications to boundary
value problems (which appear in Part II), where it is often natural to measure
the function (¢,z) — t=*Vu(t, z) in TP?(R"™) when u is the solution to an elliptic
PDE.

The weighted tent space scale satisfies the following embedding property:

when the parameters pg, p1, S0, 51 satisfy the relation”

1 1
S1—=S=— — —,
b1 Do

we have a continuous embedding
TP X) — TE(X)

(Theorem 3.3.19). These embeddings are actually quite counterintuitive. For
homogeneous Sobolev spaces a similar embedding property (related to the Hardy—
Littlewood—Sobolev lemma) holds, but this is interpreted as an interchange of
regularity for integrability. In the context of weighted tent spaces, the parameter
s does not actually reflect any kind of regularity.

When X is unbounded and AD-regular, so that in particular we have
w(B(z,r)) >~ 1" (r e X,r>0)
for some n > 0, we identify the real interpolation spaces
(T3 (X)), TE(X))o.py = Z8(X) (1)

when pg, p1,q > 1 (Theorem 3.3.4; see Definition 3.3.3 for the definition of the
spaces ZP(X)). When X = R" we extend this result to pg,p; > 0 (Theorem

2Normally a factor of some ‘dimension’ n should appear on the right hand side, but this

does not appear here because of our convention of using ball volumes as weights.



3.3.9). The ‘Z-spaces’ ZP%(X) are defined in terms of weighted LP(X xR )-norms
of L? Whitney averages. They have appeared in the work of Barton and May-
boroda on elliptic boundary value problems with data in Besov spaces [21], but
this connection with weighted tent spaces is new. Furthermore, this shows that
Whitney averages arise naturally from the consideration of tent spaces, whereas

in the past their use had always been justified by applications to PDE.

Part II: Abstract Hardy—Sobolev and Besov spaces for el-
liptic boundary value problems with complex L>* coeffi-

cients.

This part of the thesis, unlike the previous part, consists of one single (long)
article. Broadly speaking, in this article we construct abstract Hardy—Sobolev
and Besov spaces associated with perturbed Dirac operators, and we apply these
spaces to the classification of solutions to Cauchy—Riemann systems. The foun-
dation for our abstract Hardy—Sobolev and Besov spaces is the theory of weighted
tent spaces (and their real interpolants, the Z-spaces) introduced in Chapter 3.

The main trajectory of this article follows the recent works of Auscher and
Stahlhut [16] and Auscher and Mourgoglou [I11]. However, we introduce many
new techniques and shed some additional light on their results. For example,
we introduce a new ‘exponent notation’, where boldface letters p are used to
denote pairs (p, s) or triples (0o, s; ). The purpose of this notation is to combine
integrability and regularity, and in turn to make the exponent calculations used in
embeddings and interpolation more intuitive. We also refer to tent spaces 7% and
Z-spaces ZP simply as XP, in order to emphasise the fact that these spaces behave
in essentially identical ways. This allows us to streamline our proofs, to handle
spaces T? and Ty, on an equal footing, and to prove results for Hardy—Sobolev
and Besov spaces simultaneously.

A much more detailed overview of the article is contained in the introduction

given there (Chapter 4).

The structure of the thesis

As we have already pointed out, this thesis consists of four distinct articles, and
each article uses different notational conventions. They may be read indepen-
dently, although the later articles do refer to the earlier ones. Their bibliogra-
phies have been consolidated into one single bibliography. With the exception of

4



cosmetic changes and the correction of a few minor errors, the first two articles
(Chapters 1 and 2) are identical to the publications [3] and [5], and the third
article (Chapter 3) is identical to the preprint [1].






Part 1

Extensions of the theory of tent

spaces






Chapter 1

Tent spaces over metric measure
spaces under doubling and

related assumptions

Abstract

In this article, we define the Coifman—Meyer—Stein tent spaces TP%*(X) asso-
ciated with an arbitrary metric measure space (X,d, ;) under minimal geomet-
ric assumptions. While gradually strengthening our geometric assumptions, we
prove duality, interpolation, and change of aperture theorems for the tent spaces.
Because of the inherent technicalities in dealing with abstract metric measure

spaces, most proofs are presented in full detail.

1.1 Introduction

The purpose of this article is to indicate how the theory of tent spaces, as devel-
oped by Coifman, Meyer, and Stein for Euclidean space in [33], can be extended
to more general metric measure spaces. Let X denote the metric measure space
under consideration. If X is doubling, then the methods of [33] seem at first to
carry over without much modification. However, there are some technicalities to
be considered, even in this context. This is already apparent in the proof of the
atomic decomposition given in [31].

Further still, there is an issue with the proof of the main interpolation result
of [33] (see Remark 1.3.20 below). Alternate proofs of the interpolation result

have since appeared in the literature — see for example [14], [23], [31], and [59)]

9



— but these proofs are given in the Euclidean context, and no indication is given
of their general applicability. In fact, the methods of [11] and [23] can be used
to obtain a partial interpolation result under weaker assumptions than doubling.
This result relies on some tent space duality; we show in Section 1.3.2 that this
holds once we assume that the uncentred Hardy—Littlewood maximal operator is
of strong type (r,r) for all r > 1.!

Finally, we consider the problem of proving the change of aperture result when
X is doubling. The proof in [33] implicitly uses a geometric property of X which
we term (NI), or ‘nice intersections’. This property is independent of doubling,
but holds for many doubling spaces which appear in applications — in particular,
all complete Riemannian manifolds have ‘nice intersections’. We provide a proof

which does not require this assumption.

Acknowledgements

We thank Pierre Portal and Pascal Auscher for their comments and suggestions,
particularly regarding the proofs of Lemmas 1.3.3 and 1.4.6. We further thank
Lashi Bandara, Li Chen, Mikko Kemppainen and Yi Huang for discussions on
this work, as well as the participants of the Workshop in Harmonic Analysis and
Geometry at the Australian National University for their interest and suggestions.

Finally, we thank the referee for their detailed comments.

1.2 Spatial assumptions

Throughout this article, we implicitly assume that (X, d, ) is a metric measure
space; that is, (X, d) is a metric space and p is a Borel measure on X. The ball
centred at x € X of radius r» > 0 is the set

B(xz,r):={y e X :d(z,y) <r},

and we write V(z,7) := pu(B(x,r)) for the volume of this set. We assume that
the volume function V(z,r) is finite’ and positive; one can show that V is auto-
matically measurable on X x R,.

There are four geometric assumptions which we isolate for future reference:

IThis fact is already implicit in [33].
2Since X is a metric space, this implies that p is o-finite.

10



(Proper) asubset S C X is compact if and only if it is both closed and bounded,

and the volume function V(x,r) is lower semicontinuous as a function of

(2,7);”

(HL) the uncentred Hardy—Littlewood maximal operator M, defined for mea-
surable functions f on X by

1
M(P)(e) = sup—e /B ) duly) (L.1)

B>z

where the supremum is taken over all balls B containing x, is of strong type

(r,7) for all r > 1;
(Doubling) there exists a constant C' > 0 such that for all z € X and r > 0,

V(z,2r) < CV(z,r);

(NI) for all a, 8 > 0 there exists a positive constant ¢, 3 > 0 such that for all
r >0 and for all z,y € X with d(z,y) < ar,

p(Ba,ar) 0 Bly. 6r)
V(zx,ar) = ol

We do not assume that X satisfies any of these assumptions unless mentioned
otherwise. However, readers are advised to take (X, d, u) to be a complete Rie-
mannian manifold with its geodesic distance and Riemannian volume if they are
not interested in such technicalities.

It is well-known that doubling implies (HL). However, the converse is not
true. See for example [37] and [32], where it is shown that (HL) is true for R?
with the Gaussian measure. We will only consider (NI) along with doubling,
so we remark that doubling does not imply (NI): one can see this by taking
R? (now with Lebesgue measure) and removing an open strip. One can show
that all complete doubling length spaces—in particular, all complete doubling

Riemannian manifolds—satisfy (NI).

3Note that this is a strengthening of the usual definition of a proper metric space, as the
usual definition does not involve a measure. We have abused notation by using the word ‘proper’

in this way, as it is convenient in this context.
4One could instead remove an open bounded region with sufficiently regular boundary, for

example an open square. This yields a connected example.

11



1.3 The basic tent space theory

1.3.1 Initial definitions and consequences

Let Xt denote the ‘upper half-space’ X xR, equipped with the product measure
du(y)dt/t and the product topology. Since X and R, are metric spaces, with
R, separable, the Borel o-algebra on X is equal to the product of the Borel
o-algebras on X and R,, and so the product measure on X is Borel (see [20,
Lemma 6.4.2(1)]).

We say that a subset C' C X is eylindrical if it is contained in a cylinder:
that is, if there exists * € X and a,b,7 > 0 such that C C B(z,7) x (a,b).
Note that cylindricity is equivalent to boundedness when X is equipped with
an appropriate metric, and that compact subsets of X are cylindrical.

Cones and tents are defined as usual: for each z € X and a > 0, the cone of

aperture o with vertex x is the set
I'*(z) :={(y,t) € X' :y € B(z,at)}.
For any subset F' C X we write

r*(F) = | J I(x).

zeF

For any subset O C X, the tent of aperture a over O is defined to be the set
T7%(0) = (I'(0°))".

Writing
Poly, 1) = D) _ i ing gy, )
one can check that T7%(0) = F,'([a, 00)). Since Fy is continuous (due to the
continuity of dist(-, 0°)), we find that tents are measurable, and so it follows that
cones are also measurable.
Let FF C X be such that O := F* has finite measure. Given v € (0, 1), we
say that a point z € X has global v-density with respect to F' if for all balls B

containing x,

uw(BNF)
p(B)
We denote the set of all such points by F}, and define O7 := (F7)°. An important
fact here is the equality

> 1.

Or ={z e X : M(1o)(x) >1—1},

12



where 1o is the indicator function of O. We emphasise that M denotes the
uncentred maximal operator. When O is open (i.e. when F'is closed), this shows
that O C O and hence that F C F. Furthermore, the function M(1o) is
lower semicontinuous whenever 1o is locally integrable (which is always true,
since we assumed O has finite measure), which implies that F is closed (hence
measurable) and that O is open (hence also measurable). Note that if X is

doubling, then since M is of weak-type (1, 1), we have that

w(O2) Sox 1(O).

Remark 1.3.1. In our definition of points of y-density, we used balls containing
x rather than balls centred at x (as is usually done). This is done in order to
avoid using the centred maximal function, which may not be measurable without

assuming continuity of the volume function V' (z, 7).

Here we find it convenient to introduce the notion of the a-shadow of a subset
of X*. For a subset C' C X, we define the a-shadow of C' to be the set

SHC) ={x e X : TYz)NC # o}

Shadows are always open, for if A C X7 is any subset, and if z € S*(A),
then there exists a point (z,t,) € I'*(z) N A, and one can easily show that
B(z,at, — d(x,z)) is contained in S*(A).

The starting point of the tent space theory is the definition of the operators
A7 and C'. For ¢q € (0, 00), the former is usually defined for measurable functions

f on R (with values in R or C, depending on context) by

A (f)(x)? = //a( | 1y, 0] CW

where z € R™ and A\ is Lebesgue measure. There are four reasonable ways to
generalise this definition to our possibly non-doubling metric measure space X:°
these take the form

A= [ o s

where a € {z,y} and b € {1, a}. In all of these definitions, if a function f on X*
is supported on a subset C' C X*, then AJ(f) is supported on S*(C); we will
use this fact repeatedly in what follows. Measurability of AZ(f)(x) in x when

5We do not claim that these are the only reasonable generalisations.

13



a = y follows from Lemma 1.4.6 in the Appendix; the choice a = x can be taken
care of with a straightforward modification of this lemma. The choice a = =,
b = 1 appears in [13, 81], and the choice a = y, b = 1 appears in [63, §3]. These
definitions all lead to equivalent tent spaces when X is doubling. We will take
a =y, b = « in our definition, as it leads to the following fundamental technique,

which works with no geometric assumptions on X.

Lemma 1.3.2 (Averaging trick). Let o > 0, and suppose ® is a nonnegative

measurable function on X*. Then

/// dg,(a)t 0 //X (v 1) di )d

Proof. This is a straightforward application of Fubini—Tonelli’s theorem, which

we present explicitly due to its importance in what follows:

/. // Zfa)w )

/ / / 1,00 (Y )vd(gfa)t) Cit ()
=[] @) o) 50
// y,at t)du(y)cff

://X+ D(y,t) du(y)cit-

[]

We will also need the following lemma in order to prove that our tent spaces

are complete. Here we need to make some geometric assumptions.

Lemma 1.3.3. Let X be proper or doubling. Let p,q,a > 0, let K C X be

cylindrical, and suppose f is a measurable function on X*. Then

A5 (

S I Ny < [[45(D)

. (1.2)

with implicit constants depending on p, q, «, and K.

Proof. Write
K C B(z,r) x (a,b) =: C

14



for some x € X and a,b,r > 0. We claim that there exist constants cg,c; > 0
such that for all (y,t) € C,

co < V(y,at) < c.

If X is proper, this is an immediate consequence of the lower semicontinuity of
the ball volume function (recall that we are assuming this whenever we assume
X is proper) and the compactness of the closed cylinder B(x,r) x [a,b]. If X is
doubling, then we argue as follows. Since V' (y, at) is increasing in ¢, we have that

min V(y,at) > min V(y,aa
(y,t)eC (y )_yGB(w,r) (y )

and

max V(y,at) < max V(y,ab).
(y,t)eC (y >_y€B(x,r) <y )

By the argument in the proof of Lemma 1.4.4 (in particular, by (1.16)), there
exists ¢y > 0 such that

min V(y,aa) > c.
yE€B(z,r) <y ) 0

Furthermore, since

V(y,ab) < V(x,ab+r)

for all y € B(x,r), we have that
max V(y,ab) < V(z,ab+r1)=: ¢,

yEB(z,r)

proving the claim.

To prove the first estimate of (1.2), write

i = ( Lo (] Rl Cff) dum)ri
Seoq (/SQ(K) (//K | (g, )| dp(y) f)z du($)>p

Sk o) -

A (1 )|

To prove the second estimate, first choose finitely many points (x,)"_; such
that

B(z,r) C |J B(zy, aa/2)



using either compactness of B(z,r) (in the proper case) or doubling.® Write
B,, := B(xp,aa/2). We then have

1 |f<y,t>|qdu<y>cf) o ([ 3 1mr00 >|qu(’;fcjt) Cf);

o3 ([ oo i 4

If 2,y € B, then d(z,y) < aa < at (since t > a), and so

J[ 1wl A // ‘i‘y“a)t)it (13)

We then have

g(// 1, ()l f(y, 1) d(u( ))cit)l/q

g (]{3 <// I, T >) f)p/q du(x))
i:: (]{3 <// " d([gj,(oz)t) it>p/q du(x)) "
<N (mEXM(B 1/p (/ (// e d(/;fa)t) Cit)p/q du(m))

SJK,p,a HA?(f)‘

1/p

| A

1/p

Lr(X)’

which completes the proof. O

As usual, with & > 0 and p, ¢ € (0, 00), we define the tent space (quasi-)norm
of a measurable function f on X* by

[l = ||AS(F)]

and the tent space TP%*(X) to be the (quasi-)normed vector space consisting of

Lr(X)’

all such f (defined almost everywhere) for which this quantity is finite.

Remark 1.3.4. One can define the tent space as either a real or complex vector
space, according to one’s own preference. We will implicitly work in the complex
setting (so our functions will always be C-valued). Apart from complex interpo-
lation, which demands that we consider complex Banach spaces, the difference is

immaterial.

In the doubling case, this is a consequence of what is usually called ‘geometric doubling’.
A proof that this follows from the doubling condition can be found in [34, §I11.1].
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Proposition 1.3.5. Let X be proper or doubling. For all p,q,a € (0,00), the
tent space TP2*(X) is complete and contains LI(X™) (the space of functions

f € LYX™T) with cylindrical support) as a dense subspace.

Proof. Let (fn)nen be a Cauchy sequence in TP%*(X). Then by Lemma 1.3.3,
for every cylindrical subset K C X the sequence (1x f,,)nen is Cauchy in LI(K).
We thus obtain a limit

fr = nh_)ngo 1 fn € LYK)

for each K. If Ky and K, are two cylindrical subsets of X, then fr, |x,nk, =
frs|kink,, so by making use of an increasing sequence {K,,}men of cylindrical
subsets of X+ whose union is X (for example, we could take K, := B(x,m) X
(1/m,m) for some z € X) we obtain a function f € L{ (X*) with f|x, = fx,,

for each m € N.” This is our candidate limit for the sequence (f,,)nen-
To see that f lies in TP (X), write for any m,n € N

||1Kmf||Tp’qu‘(X) Sp,q Hle(f - fn)||Tp,qva(X) + Hleanprqva(X)
S szq7a7X»m ||f - fn||LQ(Km) + an”TPy‘I:a(X) I
the (p, g)-dependence in the first estimate being relevant only for p < 1 or ¢ < 1,

and the second estimate coming from Lemma 1.3.3. Since the sequence (f,)nen
converges to 1y, f in LY(K,,) and is Cauchy in 77%%(X), we have that

1 fll7waox) S sUP [ fallgrancx)
neN

uniformly in m. Hence ||f||Tp,q,a(X) is finite.
We now claim that for all € > 0 there exists m € N such that for all sufficiently
large n € N, we have

Hlen(fn - f)‘ Tr.a.0(X) <e.

Indeed, since the sequence (fy)nen is Cauchy in TP%%(X), there exists N € N

such that for all n,n’ > N we have ||f, — fn/||Tp,q,a(X) < ¢/2. Furthermore, since

i (|1 (= /)| 0

TP:a:2(X)

by the Dominated Convergence Theorem, we can choose m such that

H]-Kﬁq(fN_f)‘

Toaa(x) < e/2.

"We interpret ‘locally integrable on Xt as meaning ‘integrable on all cylinders’, rather than

‘integrable on all compact sets’.

17



Then for all n > N,
Hlen(fn—f)‘

Spa Hlen(f" B fN)‘ Traa(X) + HlK’%(fN B f)‘
<l fa = Fvllgnanc + ||, (fn = £)]

<e,

TP (X) TPa:e(X)

TP a0 (X)

proving the claim.
Finally, by the previous remark, for all € > 0 we can find m such that for all

sufficiently large n € N we have

1 = Fllznaece) Sna 1k (Fo = Ollppae o + |, (fa = 1)

< ||1Km(fn - f)||prq,a(X) te
S C(pana7X7m) ||fn - f||Lq(Km) t+e.
Taking the limit of both sides as n — oo, we find that lim,,_,o f, = f in TP9*(X),
and therefore TP%%(X) is complete.
To see that LI(X™) is dense in TP%*(X), simply write f € TP?*(X) as the

pointwise limit

TP.0.0a(X)

f=lim 1k, f.

n—oo
By the Dominated Convergence Theorem, this convergence holds in TP%*(X).
]

We note that Lemma 1.3.2 implies that in the case where p = ¢, we have
TPP(X) = LP(XT) for all a > 0.

In the same way as Lemma 1.3.2, we can prove the analogue of [33, Lemma
1].

Lemma 1.3.6 (First integration lemma). For any nonnegative measurable func-
tion ® on X+, with F a measurable subset of X and o > 0,

///am) (y, 8) dply) dt dp( // V(y, at) du(y) dt.

Remark 1.3.7. There is one clear disadvantage of our choice of tent space norm:

it is no longer clear that

[l zpaacxy < Nlrvasx) (1.4)

when o < . In fact, this may not even be true for general non-doubling spaces.
This is no great loss, since for doubling spaces we can revert to the ‘original’ tent
space norm (with a = z and b = 1) at the cost of a constant depending only on

X, and for this choice of norm (1.4) is immediate.
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In order to define the tent spaces T°°%%*(X), we need to introduce the operator

Co. For measurable functions f on X*, we define

Cq (f)(w) := sup (u(lB) //Q(B) |f(y, )| dp(y) ?)é,

where the supremum is taken over all balls containing x. Since Cg(f) is lower
semicontinuous (see Lemma 1.4.7), CS'(f) is measurable. For functions f on X

we define the (quasi-)norm ||| pec.q.a(x) by

Hf”Tmﬂ@QX):::Hcg(f)HLw(X)

and the tent space T°>%*(X) as the (quasi-)normed vector space of measurable
functions f on X, defined almost everywhere, for which || f ||Too,q,&( x) is finite.
The proof that 7°%*(X) is a (quasi-)Banach space is similar to that of Propo-

sition 1.3.5 once we have established the following analogue of Lemma 1.3.3.

Lemma 1.3.8. Let q,a > 0, let K C Xt be cylindrical, and suppose [ is a

measurable function on X*. Then

A Loy S Mo x) » (1.5)

with implicit constant depending only on «, q, and K (but not otherwise on X ).

Furthermore, if X is proper or doubling, then we also have

||1Kf||T°°,q7&(X) S ||f||Lq(K) )

again with implicit constant depending only on «, q, and K.

Proof. We use Lemma 1.4.4. To prove the first estimate, for each € > 0 we can
choose a ball B such that 7%(B.) D K and u(B:) < f1(K) + €. Then

11 ey < |[1rea ||, )
= W(B2) 1 B2) 7 |[1ra(m) f]
< (Bi(K) + ) [l -

In the final line we used that u(B.) > 0 to conclude that

La(X+)

p(B.)~ M HlTa(Bs f‘

La(X+)

is less than the essential supremum of C$'(f). Since € > 0 was arbitrary, we have

the first estimate.
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For the second estimate, assuming that X is proper or doubling, observe that

dt
1k fllpos.aaixy < Sup < // 7 dp(y) )
a(B t

q t 7
: (BO(K) /K!f(y,t)y du(y)t>
= 50(.’()_% 1 oy

completing the proof. O

Remark 1.3.9. In this section we did not impose any geometric conditions on our
space X besides our standing assumptions on the measure p and the proper-
ness assumption (in the absence of doubling). Thus we have defined the tent
space TP%%(X) in considerable generality. However, what we have defined is a
global tent space, and so this concept may not be inherently useful when X is
non-doubling. Instead, our interest is to determine precisely where geometric

assumptions are needed in the tent space theory.

1.3.2 Duality, the vector-valued approach, and complex

interpolation
Midpoint results

The geometric assumption (HL) from Section 1.2 now comes into play. For r > 0,

we denote the Holder conjugate of r by r' :=r/(r — 1) with 7" = oo when r = 1.

Proposition 1.3.10. Suppose that X is either proper or doubling, and satisfies
assumption (HL). Then for p,q € (1,00) and a > 0, the pairing

dt

S (eTrn(X),g e T(X)

(f.9) : /ij, 900,0) duly) &

realises TP 9*(X) as the Banach space dual of TP9*(X), up to equivalence of
norms.

This is proved in the same way as in [33]. We provide the details in the interest
of self-containment.

Proof. We first remark that if p = ¢, the duality statement is a trivial consequence
of the equality TPP(X) = LP(X™T).
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In general, suppose f € T7%*(X) and g € T?"9*(X). Then by the averaging
trick and Holder’s inequality, we have

fg|<///ra(w (00000 1 s o)

< [ A @A) dute)

< | fllraaix) ||g||Tpaqaa(X) : (1.6)

Thus every g € TP¢>*(X) induces a bounded linear functional on T%*(X) via
the pairing (-,-), and so T?"9*(X) C (TP9*(X))*.

Conversely, suppose ¢ € (TP%*(X))*. If K C X7 is cylindrical, then by
the properness or doubling assumption, we can invoke Lemma 1.3.3 to show
that ¢ induces a bounded linear functional (x € (L(K))*, which can in turn
be identified with a function gx € L9 (K). By covering X+ with an increasing
sequence of cylindrical subsets, we thus obtain a function g € L{’;C(X *) such that

glx = gx for all cylindrical K C XT.
If f € L9(X™) is cylindrically supported, then we have

/X+ fly, gy, t) du(y) — :// ff(%t)gsuppf(yat) du(y)cf

= Esuppf(f)
= (f), (1.7)

recalling that f € T?%*(X) by Lemma 1.3.3. Since the cylindrically supported
L9(X ™) functions are dense in TP%*(X), the representation (1.7) of £(f) in terms
of g is valid for all f € TP%%(X) by dominated convergence and the inequality
(1.6), provided we show that g is in 7%9*(X).

Now suppose p < ¢q. We will show that g lies in 7P"7-*(X), thus showing
directly that (TP9*(X))* is contained in 7%+ *(X). It suffices to show this for
gr, where K C X* is an arbitrary cylindrical subset, provided we obtain an

estimate which is uniform in K. We estimate

||gK||Tp e (X) HAgl(gK)q Lr'/d' (X)

by duality. Let ¢ € L#/9)'(X) be nonnegative, with H@/}HL(,,//Q/)/(X) < 1. Then by
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Fubini-Tonelli’s theorem,

/AgK () du(z)

/// 1(y,00 () 95 (4, )| d([;,(a)t)itl/’@dﬂ(@
=[] v [ @ e o0 ) §

~ | Mot O dut) 5

where M, is the averaging operator defined for y € X and s > 0 by

M) = s [ vt dnte)

Thus we can write formally

| Ao @ @) ) = o), (18)
where we define

—q/2 Loy
fw(y t) — atw( )gK(y7 ) gK(y7 t) (¢/2)-1 when 9K (ya t) 7& Oa
7 0 when gk (y,t) = 0,

noting that g (y,1)/?=1 is not defined when gk (y,t) = 0 and ¢’ < 2. However,
the equality (1.8) is not valid until we show that f lies in 77%*(X). To this end,

estimate
« q(¢’-1) “H\IJ) lu( ) dt ‘
A fiﬁ (// Mat¢ ‘g (y> )‘ - (y,at) + )

’ g dnly) dt\?
< (J[.. Moot s )
= M) A 1) )

Taking r such that 1/p=1/r+1/(p'/q’)" and using (HL), we then have

A5 (

< (M) AZ (g5 )7/ )

< [[MY|] o e (X HAO‘ JK q/q’

Lr(x)
d/a
Sx W llporrrx HAa L7'q’/q(X)

q/aq
qu’/q(X) '

<31
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One can show that r¢'/q = p/, and so fy is in T79*(X) by Lemma 1.3.3. By
(1.8), taking the supremum over all ¢ under consideration, we can write
19570000 xy < Wl mge )
Sx AN 80y

and consequently, using that |[gr|| 7. .a(x) < 00,

l9xcllv.ataxy Sx (1€] -

Since this estimate is independent of K, we have shown that g € T%4*(X), and
therefore that (TP%*(X))* is contained in TP-¢*(X). This completes the proof
when p < q.

To prove the statement for p > ¢, it suffices to show that the tent space
774 (X) is reflexive. Thanks to the Eberlein-Smulian theorem (see [1, Corollary
1.6.4]), this is equivalent to showing that every bounded sequence in T%¢-*(X)
has a weakly convergent subsequence.

Let {f.}nen be a sequence in TP"9*(X) with | fallgsraaxy < 1 forall n €
N. Then by Lemma 1.3.3, for all cylindrical K C X7 the sequence {f,}nen is
bounded in LY (K), and so by reflexivity of L7 (K) we can find a subsequence
{fa, }jen which converges weakly in L7 (K). We will show that this subsequence
also converges weakly in TP (X).

Let £ € (T%9*(X))*. Since p' < ¢, we have already shown that there exists
a function g € TP9*(X) such that ¢(f) = (f,g). For every ¢ > 0, we can find a
cylindrical set K, C X such that

Hg - 1KegHTp,q,a(X) <e.
Thus for all 7,5 € N and for all € > 0 we have
S <fn7, - fTLj7 1K59>
(A

S <fn1 - fnja 1K59> + 28'

Tp’,q’va(X) + anj TP’vq/»a(X)> ||g - 1ng||Tp,q,a

As i,7 — o0, the first term on the right hand side above tends to 0, and so
we conclude that {f,, }nen converges weakly in 7%7*(X). This completes the
proof. O

23



Remark 1.3.11. As mentioned earlier, property (HL) is weaker than doubling, but
this is still a strong assumption. We note that for Proposition 1.3.10 to hold for
a given pair (p, q), the uncentred Hardy-Littlewood maximal operator need only
be of strong type ((p'/q'), (p'/q')’). Since (p'/q')" is increasing in p and decreasing

in ¢, the condition required on X is stronger as p — 1 and ¢ — oc.

Given Proposition 1.3.10, we can set up the vector-valued approach to tent
spaces (first considered in [14]) using the method of [23]. Fix p € (0,00), ¢ €

(1,00), and e > 0. For simplicity of notation, write

g g _duly) dt
LUX*") =1L <X+ V.08 t).

We define an operator T, : TP9*(X) — LP(X; L9 (X)) from the tent space into
the L (X T)-valued L? space on X (see [35, §2] for vector-valued Lebesgue spaces)
by setting

Tozf(x)( ) - f(yv )1Fa(az (yv )

One can easily check that

1 Taflloxna, ey = I llmaacxy

and so the tent space TP%%(X) can be identified with its image under 7, in
the space LP(X; LZ(X™)), provided that T, f is indeed a strongly measurable
function of x € X. This can be shown for ¢ € (1,00) by recourse to Pettis’
measurability theorem [35, §2.1, Theorem 2|, which reduces the question to that

of weak measurability of T, f. To prove weak measurability, suppose g € L% (X);

then duly) d
_ ply) dt
- o g s G

which is measurable in x by Lemma 1.4.6. Thus T, f is weakly measurable, and

therefore T, f is strongly measurable as claimed.
Now assume p,q € (1,00) and consider the operator I1,, sending X "-valued

functions on X to C-valued functions on X, given by

1
T /B L FE )

whenever this expression is defined. Using the duality pairing from Proposition
1.3.10 and the duality pairing ((-,-)) for vector-valued L? spaces, for f € TP%*(X)

(Mo F)(y, t) ==
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and G € L (X; L% (X)) we have

duly) dt .
(T.5.C ///Xjf DG WD) 1 o G )

/ xr V fy, / Lty (VG (0,1 () ()

(y,at)

- | s TG i
= (TG,

Thus II, maps LP' (X; LZ (X)) to TP 7*(X), by virtue of being the adjoint of
T,. Consequently, the operator P, := T,II, is bounded from LP(X;L%(X ™)) to
itself for p,q € (1,00). A quick computation shows that I1,7,, = I, so that P,
projects LP(X; L9 (X™)) onto T,(T?%*(X)). This shows that T, (T?**(X)) is a
complemented subspace of LP(X; L%(X™)). This observation leads to the basic
interpolation result for tent spaces. Here [-, ] denotes the complex interpolation
functor (see [22, Chapter 4]).

Proposition 1.3.12. Suppose that X is either proper or doubling, and satisfies
assumption (HL). Then for po, p1, qo, and qi in (1,00), 8 € [0,1], and o > 0, we

have (up to equivalence of norms)

(700 (X), T2 (X)]y = TP0°(X),
where 1/p=(1—0)/po+6/p1 and 1/q=(1—0)/q0+0/q1.
Proof. Recall the identification

TH(X) 2 T,T(X) C I'(X; L3 (X))
for all r € (0,00) and s € (1,00). Since

(L7 (X5 L (X)), LM (X L (X))o = LP (X [LE(XT), L (XT)]o)
= LP(X; LE(XT))

applying the standard result on interpolation of complemented subspaces with

common projections (see [89, Theorem 1.17.1.1]) yields

[T (X), TP (X = LG LY(X)) 0 (T02(X) + T (X))
= TPae(X),
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Remark 1.3.13. Since [29, Theorem 1.17.1.1] is true for any interpolation functor
(not just complex interpolation), analogues of Proposition 1.3.12 hold for any
interpolation functor F' for which the spaces LP(X; L2 (X ™)) form an appropriate
interpolation scale. In particular, Proposition 1.3.12 (appropriately modified)

holds for real interpolation.

Remark 1.3.14. Following the first submission of this article, the anonymous ref-
eree suggested a more direct proof of Proposition 1.3.12, which avoids inter-

polation of complemented subspaces. Since T, acts as an isometry both from
TPo0:2(X) to LPo(X; L(X 1)) and from TP+1*(X) to LP1(X; L9 (X)), if f is
in the interpolation space [TP0%:%( X)), TP140*( X )]g, then

Hf“Tp,q,a(X) = ||Taf||LP(X;Lg(X+)) < ||f||[Tvaqowa(X),Tplvqlvo‘(X)]g

due to the exactness of the complex interpolation functor (and similarly for the
real interpolation functor). Hence [T?0:9%0:*( X)) TP11:%( X )], C TP?*(X), and the
reverse containment follows by duality. We have chosen to include both proofs
for their own intrinsic interest.

Endpoint results

We now consider the tent spaces T19%(X) and T°%*(X), and their relation to
the rest of the tent space scale. In this section, we prove the following duality

result using the method of [33].

Proposition 1.3.15. Suppose X is doubling, and let « > 0 and g € (1,00). Then
the pairing (-, ) of Proposition 1.3.10 realises T°*%*(X) as the Banach space dual

of TH%*(X), up to equivalence of norms.

As in [33], we require a small series of definitions and lemmas to prove this
result. We define truncated cones for x € X, o, h > 0 by

[¢(x) :=T%z)N{(y,t) € X :t < h},

and corresponding Lusin operators for ¢ > 0 by

e )

One can show that A$(f|h) is measurable in the same way as for AZ(f).
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Lemma 1.3.16. For each measurable function g on X, each q € [1,00), and
each M > 0, define

3 ar(2) = sup{h > 02 A3(glh)(x) < MCG(9)(x)}

for x € X. If X is doubling, then for sufficiently large M (depending on X, q,
and «), whenever B C X is a ball of radius r,

plr € B hy,y(7) > 1} 2x.0 1(B).

Proof. Let B C X be a ball of radius r. Applying Lemmas 1.4.5 and 1.3.6, the

definition of Cf, and doubling, we have

/ A glr) () dplz / //  reaarnn (0 0lg(y. ) (Z,(i)t)(?du(x)
/// Lra(@a+1)B) (Y, t)|9(y, )| d(”’( )t) Cff du(x)

</ oy 9Oy )&

< p((20+ 1)B) inf €3 (9) )"

Sxa #(B) inf €2 (g)(2)"

We can estimate

/Aa (glr) @) dpta) = (M inf C2(9)(2)

zeB 9

i{a € B A gn@) > M inf G (o))}

zeB

and after rearranging and combining with the previous estimate we get
M (u(B) — e € B A3(glr)(@) < M inf C3(9)(a)} ) S p(B),
More rearranging and straightforward estimating yields
plr € B2 A(glr)(x) < MC)(g)(x)} > (1~ MCx Ju(B).

Since hy , y(z) > 7 if and only if AZ(g|r)(x) < MC7(g)(z) as Ag(g|h) is increas-

ing in h, we can rewrite this as
pfe € B :hgyp(z) 2 r 2 (1= M Cxqo)u(B).
Choosing M > C’ ¢ completes the proof. O

27



Corollary 1.3.17. With X, g, q, and « as in the statement of the previous
lemma, there exists M = M(X,q,«) such that whenever ® is a nonnegative

measurable function on X, we have

//X+ &)V (5, ot) dply) dé Sxo / // v, 1) dya(y) dt dp(a).

M(x)/a

Proof. This is a straightforward application of Fubini—Tonelli’s theorem along

with the previous lemma. Taking M sufficiently large, Lemma 1.3.16 gives

|| 2w 0vi.at) duty) a

X+

Sa [ o) [ du(a) dp(y) di
X {zeB(y,at):hg  \(z)2at}

- / /h;‘,q,Mu)/a /m)@(y,t) du(y) dt du(z)
/ // Y, t) dp(y) dt dp(z)

he @/l

as required. O
We are now ready for the proof of the main duality result.

Proof of Proposition 1.5.15. First suppose f € T5%%(X) and g € T°7*(X). By
Corollary 1.3.17, there exists M = M (X, q,«) > 0 such that

I |f<y,t>||g<y,t>|du<y>‘f
s [

where h(z) := h§ , y(z)/a. Using Hélder’s inequality and the definition of h(z),

we find that
/ ( I, oot oy Cf) )

< / Aa(f|h(x))(x)«4a/(g|h(x>)(ar) du(x)
<M / A2 (f)(2)C2 (g) () dp(x)

duly) dt ,
- )(z gy, t)] Vig.al) t du(z),

< [l lrnaeg ||g||Too,q,a<X) .
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Hence every g € T°7%(X) induces a bounded linear functional on T"%%(X) via
the pairing (f, g) above, and so T°%7*(X) C (TH%*(X))*.

Conversely, suppose ¢ € (T19%(X))*. Then as in the proof of Proposition
1.3.10, from ¢ we construct a function g € L% (X 1) such that

dt
|| sttt § = )

for all f € TH%*(X) with cylindrical support. We just need to show that g is in
T°9%(X). By the definition of the 7°¢*(X) norm, it suffices to estimate

where B C X is an arbitrary ball.
For all nonnegative ¢ € LY(T(B)) with |[{)[|4(ga(py) < 1, using that

$°(T(B)) = B
we have that
[T — / A2 () (&) dpl)

< u( )”q 1]l x)

= (B[] paxcy
< u(B)V7.

In particular, ¢ is in Th4%(X), so we can write

// g = 1)

Arguing by duality and using the above Computation, we then have

(i ] w0 s >‘ff) s ff g

= w(B)~Y7 supﬁ(
< u(B) NNl )
< e,

where the supremum is taken over all ¢ described above. Now taking the supre-
mum over all balls B C X, we find that

||g||Too,q’,a(X) < el
which completes the proof that (TH%%(X))* C T (X). O
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Once Proposition 1.3.15 is established, we can obtain the full scale of inter-
polation using the ‘convex reduction’ argument of [23, Theorem 3] and Wolff’s

reiteration theorem (see [92] and [54]).

Proposition 1.3.18. Suppose that X is doubling. Then for py,p1 € [1,00] (not
both equal to o), qo and ¢, in (1,00), 8 € [0,1], and o > 0, we have (up to

equivalence of norms)
[T (X), TP (X = TP (X),
where 1/p=(1—0)/po+6/p1 and 1/qg=(1—6)/q +0/q.
Proof. First we will show that
[Th0(X), TP (X)]y D TP (X). (1.9)

Suppose f € TP9*(X) is a cylindrically supported simple function. Then there
exists another cylindrically supported simple function g such that f = g*. Then

2
||f||Tp,q,a(X) = ||g||T2p,2q,a(X) )
and so g is in T?2*(X). By Proposition 1.3.12 we have the identification
T?P200(X) = [T*20%(X), T*12% (X)), (1.10)

up to equivalence of norms, and so by the definition of the complex interpolation

functor (see Section 1.4.3), there exists for each € > 0 a function
G. € F(T**°(X), T* (X))

such that G.(0) = g and

G ey om0ty S (1 -+ €)1l ) roen 200 0

(L +2) [lgllz2 200 x) »

12

the implicit constant coming from the norm equivalence (1.10). Define F. := G2.

Then we have
F. € F(TY0(X), TP (X)),

with

2
||F€||J—‘(T1"10’a(X),Tpl"ll’a(X)) = ||G5||}-(T2,2q0,a(x)7sz1,qu,a(X))
S(1+e) ||g||§2p72q,a(X)

= (L+&)* Ifllppaex)
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Therefore
1 o oy vy S 1 rmae o

and so the inclusion (1.9) follows from the fact that cylindrically supported simple
functions are dense in TP%(X).

By the duality theorem [22, Corollary 4.5.2] for interpolation (using reflexivity
of TP+-%( X)), the inclusion (1.9), and Propositions 1.3.10 and 1.3.15, we have

[T (X), T (X)1-p © T (X),
Therefore we have the containment
[TPo®:(X), T (X )]y € TP (X). (1.11)
The reverse containment can be obtained from
[T (X), TP (X)]g € TP (X) (1.12)

(for p1, qo, 1 € (1,00)) by duality. The containment (1.12) can be obtained as
in Remark 1.3.14, with py = 1 not changing the validity of this method.®

Finally, it remains to consider the case when py = 1 and p; = oo. This
is covered by Wolff reiteration. Set A; = ThH0%(X), Ay = TPP*(X), Az =
Trrhase(X) and Ay = T°%*(X) for an approprate choice of g3.” Then for
an appropriate index 7, we have [Ay, Aslg/, = Az and [As, Adlp—0)/1-0) = As.
Therefore by Wolff reiteration, we have [A;, Ay)g = As; that is,

[T (0X0), T (X)]y = TP2(X).
This completes the proof. n

Remark 1.3.19. Note that doubling is not explicitly used in the above proof; it
is only required to the extent that it is needed to prove Propositions 1.3.10 and
1.3.15 (as Proposition 1.3.12 follows from 1.3.10). If these propositions could be
proven under some assumptions other than doubling, then it would follow that

Proposition 1.3.18 holds under these assumptions.

Remark 1.3.20. The proof of [33, Lemma 5|, which amounts to proving the con-
tainment (1.9), contains a mistake which is seemingly irrepairable without re-

sorting to more advanced techniques. This mistake appears on page 323, line

8We thank the anonymous referee once more for this suggestion.
9More precisely, we need to take 1/qz = (1 — 1/p')/qo + (1/p")/q1.
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-3, when it is stated that “A(f;) is supported in Of — Oy41” (and in particular,

that A(fy) is supported in Ojf, ;). However (reverting to our notation), since

fi = 12005\ 1 (04 2)f > A2(fi) is supported on
SUT((Ok)3) \ T((Ok41)3)) = (Ok);,

and we cannot conclude that AL(fz) is supported away from Op,;. Simple 1-

dimensional examples can be constructed which show that this is false in general.

Hence the containment (1.9) is not fully proven in [33]; the first valid proof in
the Euclidean case that we know of is in [23] (the full range of interpolation is
not obtained in [11].)

1.3.3 Change of aperture

Under the doubling assumption, the change of aperture result can be proven
without assuming (NI) by means of the vector-valued method. The proof is a

combination of the techniques of [11] and [23].

Proposition 1.3.21. Suppose X is doubling. For «,f € (0,00) and p,q €

(0,00), the tent space (quasi-)norms ||| ppaa(xy and ||| ppas x) are equivalent.

Proof. First suppose p,q € (1,00). Since X is doubling, we can replace our
definition of AZ with the definition

A= [ e e

using the notation of Section 1.3.1, this is the definition with a = y and b = 1.

Having made this change, the vector-valued approach to tent spaces (see Section
1.3.2) transforms as follows. The tent space T7%%(X) now embeds isometrically
into LP(X; L{(X™)) via the operator T, defined, as before, by

Taf(l') (y; t) = f(y7 t)]'ro‘($) <y7 t)
for f € TP%*(X). The adjoint of T, is the operator Il,, now defined by
1
Viy,1)

for G € LP(X; L{(X™")). The composition P, := T,II, is then a bounded projec-
tion from LP(X; L{(X ™)) onto T,TP%%(X), and can be written in the form

(I.G) (. 1) := / L GEw )

PaG(2)(y.1) = W / G ()
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For f € TP9*(X), we can easily compute

V(y, min(a, B)t)

PsTo f(x)(y,t) = T f (x)(y,1) V(0.0 (1.13)
Without loss of generality, suppose 8 > a. Then we obviously have
ey Saesx |rasx)
by Remark 1.3.7. It remains to show that
||'||Tp,q,ﬁ(x) Spa,a.8.X ||'||Tp»qva(X)' (1.14)

From (1.13) and doubling, for f € TP%*(X) we have that

Tsf(x)(y, 1) Sx.a PoTaf(@)(y, 1),

and so we can write

HfHTp,qﬁ(X) = HTﬁfHLp(X;Lg(Xﬂ)
rSX,a ||PBTaf||LP(X;L‘{(X+))
< HP,BHc(Lp(X;LCII(XJr))) HTafHLP(X;Lg(XJr))

5]’74:57)( ||f| |TP,q70<(X)

since P3 is a bounded operator on LP(X; L{(X™)). This shows (1.14), and com-
pletes the proof for p,q € (1,0).

Now suppose that at least one of p and ¢ is not in (1,00), and suppose f €
TP%(X) is a cylindrically supported simple function. Choose an integer M such
that both Mp and Mq are in (1,00). Then there exists a cylindrically supported
simple function g with ¢™ = f. We then have

B = ([0 e

= llgllpam o x)

=p,q,0,8,X x |lgl ’TM%M‘?»B(X)

1/M
= 1111z x)

and so the result is true for cylindrically supported simple functions, with an
implicit constant which does not depend on the support of such a function. Since
the cylindrically supported simple functions are dense in TP%*(X), the proof is

complete. O
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Remark 1.3.22. Written more precisely, with p,q € (0,00) and g < 1, the in-
equality (1.14) is of the form

Viy,1) )M
VNppar iy S sup : Nt x) -
s Spax s (G50 s

where M is such that Mp, Mq € (1, 00).

1.3.4 Relations between A and C

Again, this proposition follows from the methods of [33].

Proposition 1.3.23. Suppose X satisfies (HL), and suppose 0 < ¢ < p < o0

and o > 0. Then
H LP(X) Spa.x HAQ f) Lr(x)

Proof. Let B C X be a ball. Then by Fubini-Tonelli’s theorem, and using that

) =5
// S0l duty) T

/(/Q X ;’:at /B(Md (a) du(y) &
/. // R
=/ //Q(B o s L dte)
///X+1B<m> 0 s S o)
/AO‘ ) dp(x).

Now fix x € X and take the supremum of both sides of this inequality over all
balls B containing . We find that

Cy (F) (@) < M(AG(f)) ().
Since p/q > 1, we can apply (HL) to get
162Dy = MEATCAD Y

Lr(X)
1/q

_ ol £\q

= [[MAT DD

q||M4

Lp/q(X)

LP(X)



as desired. 0

Remark 1.3.24. 1f X is doubling, and if p, ¢ € (0, 00), then for a > 0 we also have
that

D[, o) Spae |[C205)

This can be proven as in [33, §6], completely analogously to the proofs above.

LP(X) Lr(X) "

1.4 Appendix: Assorted lemmas and notation

1.4.1 Tents, cones, and shadows

Lemma 1.4.1. Suppose A and B are subsets of X, with A open, and suppose
T*(A) C T“(B). Then A C B.

Proof. Suppose x € A. Then dist(z, A°) > 0 since A is open, and so dist(z, A°) >
at for some t > 0. Hence (x,t) € T*(A) C T*(B), so that dist(x, B¢) > at > 0.
Therefore x € B. ]

Lemma 1.4.2. Let C' C X be cylindrical, and suppose o > 0. Then S*(C) is
bounded.

Proof. Write C' C B(z,7) X (a,b) for some x € X and r,a,b > 0. Then S*(C) C
S*(B(z,r) x (a,b)), and one can easily show that

S*(B(z,r) x (a,b)) C B(xz,r + ab),
showing the boundedness of S%(C). O

Lemma 1.4.3. Let C C X, and suppose a > 0. Then T*(S*(C)) is the minimal
a-tent containing C, in the sense that T*(S) D C for some S C X implies that
T(S(C)) C T(5).

Proof. A straightforward set-theoretic manipulation shows that C'is contained in
T(S*(C)). We need to show that S*(C') is minimal with respect to this property.
Suppose that S C X is such that C' C T%(S), and suppose (w,t,) is in
T(S*(C)). With the aim of showing that dist(w, S¢) > at,,, suppose that y € S°.
Then I'*(y) NT*(S) = @, and so I'*(y) N C' = @ since T(S) contains C. Thus
y € S*(C)°, and so
d(w,y) > dist(w, SY(C)°) > at,,
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since (w, t,,) € T*(S*(C)). Taking an infimum over y € S¢, we get that
dist(w, S¢) > aty,

which says precisely that (w,t,) is in T*(S). Therefore T%(S%(C)) C T(S) as
desired. n
Lemma 1.4.4. For a cylindrical subset K C X, define

oK) = jut {u(B): T*(B) N K # 8} and

BuK) = ot {u(B)  T°(B) > K,
with both infima taken over the set of balls B in X. Then B1(K) is positive, and
if X is proper or doubling, then By(K) is also positive.

Proof. We first prove that [y := [By(K) is positive, assuming that X is proper or
doubling. Write

K C C = B(lL‘O,To) X [(Io, bo]
for some xy € X and ag, by, 79 > 0. If B is a ball such that 7%(B) N K # &, then

we must have T%(B) N C # &, and so we can estimate
> . (o] al
Fo = inf {u(B) : T*(B) N C # o}

Note that if B = B(c¢(B),r(B)) is a ball with ¢(B) € B(z,19), then T*(B) N
C # @ if and only if r(B) > aag. Defining

I(x) == inf{V(x,r): 7 >0,TB(z,r)) NC # &}

for x € X, we thus see that I(z) = V(z, aag) when z € B(xg, 1), and so e
is lower semicontinuous as long as the volume function is lower semicontinuous.

Now suppose B = B(y, p) is any ball with T*(B) N C # @. Let (z,t,) be a
point in T%(B) N C. We claim that the ball

_ 1
B:=B (z, 3 (p—d(z,y)+ oztz))

is contained in B, centred in B(z,7,), and is such that 7%(B) N C # @. The
second fact is obvious: (z,t,) € C implies z € B(xg, o). For the first fact, observe
that

B C B(y,d(z,y) + (p — d(z,y) + at.)/2)
= By, (p+d(z,y) + at.)/2)
C B(y,(p+ (p—at.) + at.)/2)
= B(y. p),
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since (z,t,) € T%(B) implies that d(z,y) < p — at,. Finally, we have (z,t,) €
T*(B): since ¢(B) = z, we just need to show that ¢, < r(B)/a. Indeed, we have

Né):1<p—d@w)+u)

o 2 a

and t, < (p — d(z,y))/« as above.
The previous paragraph shows that

inf I(x) > inf I(x),
zeX ( )_:cEB(xo,m) ( )

and so we are reduced to showing that the right hand side of this inequality is

positive, since o > inf,ex I(x).

If X is proper: Since B(z,7) is compact and [ |m is lower semicontinu-

ous, I\m attains its infimum on B(zg, 7). That is,
inf I(z)= min I, >0, (1.15)
x€B(x0,7m0) x€B(xo,70)

by positivity of the ball volume function.
If X is doubling: Since I(x) = V(z,aag) when x € B(zg,70), we can write

inf I(z)> inf V(z,e),

x€B(z0,r0) x€B(x0,70)

where ¢ = min(aag, 3r9). If x € B(xg,70), then B(zg,79) C B(x,2ry) C
B(z,3rg), and so since 3rg/e > 1,

Hence V(z,e) Zx V(xg,70), and therefore

inf  V(x,e) 2 V(xg,ro) >0 (1.16)

z€B(z0,m0)

as desired.

We now prove that ) = f;(K) is positive. Recall from Lemma 1.4.3 that if
T%(B) D K, then T%(B) D T*(S*(K)). Since shadows are open, Lemma 1.4.1
tells us that B D S*(K). Hence u(B) > u(S*(K)), and so

Pz p(SH(K)) >0

by positivity of the ball volume function.'’ O
107f S(K) is a ball, then f;(K) = u(S%(K)).
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Lemma 1.4.5. Let B be an open ball in X of radius r. Then for all x € B, the
truncated cone I'*(x) is contained in T((2a + 1) B).

Proof. Suppose (y,t) € T'%(z) and z € ((2a + 1)B)¢, so that d(y,z) < at < ar
and d(c(B), z) > (2a+ 1)r. Then by the triangle inequality
d(yv Z) = d(C(B)v Z) - d(C(B)a .2?) - d(l’, y)
> Qa+1Dr—r—ar
= ar

> at,

so that dist(y, ((2a 4+ 1)B)¢) > at, which yields (y,t) € T*((2« + 1)B). O

1.4.2 Measurability

We assume (X, d, 1) has the implicit assumptions from Section 1.2.

Lemma 1.4.6. Let a > 0, and suppose ® is a non-negative measurable function
on X+. Then the function

g: T //a(x)fb(y,t) du(y)cff

is p-measurable.

We present two proofs of this lemma: one uses an abstract measurability
result, while the other is elementary (and in fact stronger, proving that g is not

only measurable but lower semicontinuous).

First proof. By [67, Theorem 3.1], it suffices to show that the function

F(:Ij‘, (yvt)) = ]-B(y,ozt)(x)@(y?t)

is measurable on X x X*. For € > 0, define

dist(z, B(y, at))

fe(@, (v, 1)) = dist(z, B(y, at)) + dist(z, B(y, at +€)°)’

Then f.(x,(y,t)) is continuous in z, and converges pointwise to 1p(y,a)(2) as
e — 0. Hence

Fla, (y,1)) = lim f-(x, (. ) B(y, 1) = lim F2(, (5,1))
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and therefore it suffices to show that each F.(z, (y,t)) is measurable on X x X ™.
Since F is continuous in x and measurable in (y,t), F. is measurable on X x X+ !

and the proof is complete. n

Second proof. For all x € X and € > 0, define the vertically translated cone
I(z) = {(y.t) € X" : (y,t —¢) € I*(2)} C ().

If y € B(z,ag), then is it easy to show that I'*(z) C I'*(y): indeed, if (z,t) €
I'%(x), then d(z,2) < a(t —¢), and so

d(z,y) <d(z,z) +d(z,y) < a(t — &) + ac = at.

For all x € X and € > 0, define

g-(x) = //?(z) D(y, t) du(y) ajf

For each x € X, as € \( 0, we have g.(z) / g(x) by monotone convergence. Fix
A > 0, and suppose that g(z) > A. Then there exists () such that g.,)(z) > A.
If y € B(x,ae(x)), then by the previous paragraph we have

Therefore ¢ is lower semicontinuous, and thus measurable.

]

Lemma 1.4.7. Let f be a measurable function on X*, ¢ € (0,00), and o > 0.

Then Cg(f) is lower semicontinuous.

Proof. Let A > 0, and suppose z € X is such that C3'(f)(z) > A. Then there
exists a ball B 3 x such that

1 q @ q
i L ) > x

Hence for any z € B, we have C¢(f)(z) > A, and so the set {z € X : C7'(f)(z) >
A} is open. O

HGee [11, Theorem 1], which tells us that F. is Lusin measurable; this implies Borel measur-
ability on X x XT.

39



1.4.3 Interpolation

Here we fix some notation involving complex interpolation.
An interpolation pair is a pair (By, By) of complex Banach spaces which admit
embeddings into a single complex Hausdorff topological vector space. To such a

pair we can associate the Banach space By + B;, endowed with the norm
2]| 5oy, := inf{||wol| 5, + |l21]], : 20 € Bo, 1 € By, & = w0 + 21}
We can then consider the space F(By, B;) of functions f from the closed strip
S={2€C:0<Re(z) <1}
into the Banach space By + By, such that
e f is analytic on the interior of S and continuous on S,
« f(z) € B; whenever Re(z) =7 (j € {0,1}), and

o the traces f; := flre.=; (j € {0,1}) are continuous maps into B; which

vanish at infinity.

The space F(By, By) is a Banach space when endowed with the norm

11l 55, = mix ( sup [1£(:)llg, » sup ||f(z)||31> -
0 Rez=1

Rez=

We define the complex interpolation space [By, Byl for 6 € [0, 1] to be the sub-
space of By + B; defined by

[Bo, Bilg := {f(0) : f € F(Bo, B1)}
endowed with the norm

HxH[BO,Bl]g = f(ief)lix Hf”]—'(BO,B1) :
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Chapter 2
Non-uniformly local tent spaces

This article is joint work with Mikko Kemppainen.
Abstract

We develop a theory of ‘non-uniformly local” tent spaces on metric measure spaces.
As our main result, we give a remarkably simple proof of the atomic decomposi-

tion.

2.1 Introduction

The theory of global tent spaces on Euclidean space was first considered by Coif-
man, Meyer, and Stein [33], and has since become a central framework for un-
derstanding Hardy spaces defined by square functions. Upon replacing Euclidean
space with a doubling metric measure space, the theory is largely unchanged.
Details of this generalisation can be found in [3], although this was known to
harmonic analysts for some time.

Tent spaces on Riemannian manifolds with doubling volume measure were
used by Auscher, McIntosh, and Russ in [13], where a ‘first order approach’ to
Hardy spaces associated with the Laplacian —A (or more accurately, the corre-
sponding Hodge-Dirac operator) was investigated. A corresponding local tent
space theory, now on manifolds with exponentially locally doubling volume mea-
sure, was considered by Carbonaro, McIntosh, and Morris [30], with applications
to operators such as —A + a for @ > 0. The locality arises from the ‘spectral
gap’ between 0 and o(—A +a) C [a,00) and means that the relevant information
of a function can be captured from small time diffusion, which in turn allows

one to exploit the locally doubling nature of the manifold under investigation.
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Hence the related tent spaces consist of functions of space-time variables (y, )
with 0 <t < 1 instead of 0 < t < o0.

The motivation for non-uniformly local tent spaces comes from the setting
of Gaussian harmonic analysis, in which one considers the Ornstein—Uhlenbeck
operator L = —A + x -V on R" equipped with the usual Euclidean distance and
the Gaussian measure dvy(x) = (2r)""/2e~1**/2 dz. Here o(L) = {0,1,2, ...}, but
despite the evident spectral gap, one cannot make use of a uniformly local tent
space because the rapidly decaying measure 7 is non-doubling. This was remedied
by Maas, van Neerven, and Portal [64], who defined the ‘Gaussian tent spaces’
t7(y) to consist of functions on the region D = {(y,t) € R" x (0,00) : t < m(y)}.
Here m(y) = min(1, |y|™') is the admissibility function of Mauceri and Meda [065],
who showed that v is doubling on the family of ‘admissible balls’ B(z,t) with
t < m(z). In [78], Portal then defined the ‘Gaussian Hardy space’ h'(v) using

the conical square function

2m(@) 2 a7
5u<x>:(/ [ et dv(y)> |
0 B(x,t) t

and showed that the Riesz transform VL~'/2 is bounded from h'(7) to L'(y).
This relied on the atomic decomposition on t!(y), which was established in [64],
along with a square function estimate from [(63]. The Gaussian Hardy space is
also known to interpolate with L?(), in the sense that [h'(v), L2(7)]s = LP(v)
for 1/p =1—6/2 [77]. Note that dimension-independent boundedness of VL ~/2
on LP() for 1 < p < oo is a classical result of Meyer [74].

Our long-term aim is to generalise this theory to the setting where, given an
appropriate ‘potential function’ ¢ on a Riemannian manifold X (or some more
general space) with volume measure p, one considers the Witten Laplacian L =
—A 4+ V¢ -V equipped with the geodesic distance and the measure dy = e~%dpu.
An admissibility function can then be defined by m(z) = min(1, |V¢(z)|™!), with
a suitable interpretation of V if ¢ is not differentiable, and the setting of Gaussian
harmonic analysis is recovered by taking X = R™ and ¢(z) = §log(27) + %
The Riesz transform associated with the Witten Laplacian has been studied for
instance by Bakry in [20], where LP(y) boundedness for 1 < p < oo is proven
under a ¢-related curvature assumption.

In this article we define and study the corresponding local tent spaces t79(7).
Our main result is the atomic decomposition Theorem 2.4.5. This allows us to
identify the dual of t49(+) with the local tent space t>>9 (), and to show that the

local tent spaces form a complex interpolation scale. In Appendix 2.6 we prove a
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‘cone covering lemma’ for non-negatively curved Riemannian manifolds. It gives
a stronger version of Lemma 2.4.4 that is applicable also in the vector-valued
theory of tent spaces (see [59, 60]).

A different approach to Gaussian Hardy spaces was introduced in [08], where
the atomic Hardy space H'(vy) was introduced. This theory has also been ex-
tended to certain metric measure spaces (see [28, 29]). While many interesting
singular integral operators, such as imaginary powers of the Ornstein—Uhlenbeck
operator, have been shown to act boundedly from H'(v) to L'(v) (see [63]), it
should be noted that this is not the case for the Riesz transform (see [69]). This

marks the crucial difference between the atomic Hardy space H!(v) and h!(y).
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2.2 Weighted measures and admissible balls

We begin by formulating the abstract framework in which we develop our theory.
Let (X,d, 1) be a metric measure space: that is, a metric space (X, d) equipped
with a Borel measure p. We assume that every ball B C X comes with a given
center cp and a radius rg > 0, and that the volume u(B) is finite and nonzero.
Furthermore, we assume that the metric space (X, d) is geometrically doubling:
that is, we assume that there exists a natural number N > 1 such that for every
ball B C X of radius rp, there exist at most N mutually disjoint balls of radius
rg/2 contained in B.

Given a measurable real-valued function ¢ on X, we consider the weighted
measure

dy(z) = e *@ du(z).

Furthermore, we fix a function m: X — (0,00), which we call an admissibility

function. For every o > 0, this defines the family of admissible balls
B,:={BCX:0<rg<am(c)}.
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These objects are required to satisfy the following doubling condition:

(A) Forevery a > 0, v is doubling on B, in the sense that there exists a constant
C, > 1 such that for all a-admissible balls B € B,,,

1(2B) < Coy(B).
Here and in what follows, we write AB = B(cp, Arp) for the expansion of a ball
B by A > 1.

Remark 2.2.1. Condition (A) implies that for every a > 0 and every A > 1, there
exists a constant C, » > 1 such that for all a-admissible balls B € B,,

Y(AB) < Copy(B). (2.1)

We now describe two classes of examples of ¢ and m.

Example 2.2.2 (Distance functions). Assume that the underlying measure p is
doubling, let 2 C X be a measurable set of ‘origins’, and let a,a’ > 0. Define ¢
by

¢(z) == a + d dist(x, Q).

An admissibility function can then be defined by

m(z) = min (1’ ohst(lscm> '

Taking X to be R" (equipped with the usual Euclidean distance and Lebesgue
measure), @ = {0}, and (a,d’) = (nlog(27)/2,1/2), we recover the setting of

Gaussian harmonic analysis.

Claim 2.2.3. Condition (A) is satisfied with C, = D, *5+%) where D, is the

doubling constant of the underlying measure L.

Proof. Since p is doubling, it suffices to show that for every a-admissible ball
B € B, we have

e @) < C&e‘“b(cB) when = € 2B, and

(2.2)
e~ @) > C"e=?8)  when z € B.

Indeed, this would imply that
v(2B) = / e™@ du(x) < C' pu(2B)e )
2B
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and

~v(B) = / e (@) du(z) > Cgu(3)67¢(03),
B

w0 that (2B) _ C'. u(2B) !
gl p

< Zo <C,:=D,~2

v(B) T Cyu(B) ~ e

To see that the first inequality in (2.2) holds with C’, = e*¥ @@+ observe
that if x € 2B, then

dist(cp, Q) < 2am(x) + dist(z, ).
Indeed, if dist(cp, Q) > dist(z, Q2), then m(cg) < m(z), and so
dist(cp, Q) < d(cp, x) +dist(z, Q) < 2am(cg) +dist(x, Q) < 2am(z)+dist(z, ).
Consequently we have
dist(cg, Q)? < dam(z)? +4am(z) dist(z, Q) +dist(z, Q)? < 4o +4a+dist(z, Q)?,

and so
—a’ di 2 / —al d; 2
e @ dist(z,) < €4a oz(aJrl)e a’ dist(cp,0) )

Similarly, the second inequality in (2.2) with C” = e~¥*@+2) follows after
noting that if x € B, then

dist(z, Q) < d(z,cp) + dist(cp, Q) < am(cg) + dist(cg, 2).

Thus
dist(z, Q)* < o? + 2a + dist(cp, Q2)?

and
NP A K 2 P T 2
e~ @ dist(z,Q) > @ cx(a+2)e a’ dist(cp,0N) ]

Putting these estimates together, we have

Ca — D“e4a/o¢(a+1)ea/a(a+2) — Duea'a(5a+6)

as claimed. O

Example 2.2.4 (C? potentials). In this example, let (X, g) be a connected
Riemannian manifold (C? is sufficient) with doubling volume measure, let ¢ €

C?*(X), and assume that the following condition is satisfied:
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(B) there exists a constant M > 0 such that for every unit speed geodesic
p: 10,¢] = X, we have

(@0 p)" ()] < M|(¢op) ()] (2.3)
for all ¢t € (0,¢) such that |(¢ o p)'(¢)] > 1.

Alternatively, we can assume the following inequivalent condition, which is neater
but generally harder to verify:

(H) there exists a constant M > 0 such that
[[Hess ¢(z)[| < M|V(x)| (2.4)
for all x € X such that |Vo(z)| > 1.

Note that (B) can be interpreted as a one-dimensional version of (H); indeed,
when X is one-dimensional, both conditions are equivalent.

If either of the above conditions are satisfied, we define an admissibility func-

m(z) = min (1, W)

for x € X, with m(x) := 1 when |V¢(x)| = 0.

tion by

Claim 2.2.5. If d(z,y) < a then m(x) < eMm(y).

Proof. Here we assume condition (H); the proof under assumption (B) requires
only a simple modification.

Given € > 0, we first take a continuous arclength-parametrised path
p: [0,d(z,y) +e] - X

connecting x to y (we may take ¢ = 0 when X is complete, and the argument
is slightly simpler in this case). Since ¢ is twice continuously differentiable, the
function m, := m o p is absolutely continuous on [0,d(z,y) + €|, and hence
differentiable almost everywhere on this interval. We compute the derivative
of m,(t) whenever m, is differentiable. If ¢ is such that [Vo(p(t))] < 1 in a
neighbourhood of ¢, then 9,;m,(t) = 0. If ¢t is such that |V¢(p(t))] > 1 in a
neighbourhood of ¢, then

—0|Vo(p(t))|

Oim,(t) = (V1)) = IVo(p(t)2
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Using the estimate
10V (p(t))]] < [[Hess ¢(p(1))]]
along with assumption (H), we find that

IHess ool _ M
|0ym, ()] < Vo (p(t))[2 < Vo (p(t))]

for all ¢ such that m,(t) is differentiable.

Since m,,(t) is differentiable almost everywhere, we have

[ logmy,(d(z,y)) —logm,(0)] < sup |9 logm,(t)|d(z,y)
0<t<d(z,y)+e

< sup |0y logm,(t)|a,
o<t<d(z,y)+e

where the supremum is taken over all ¢t € (0,d(z,y) + €) such that m,(t) is
differentiable. Note that
_ |8tmp(t)|

m,(£)]

and so by the estimate above we have that

9 log m, ()]

|0 log m, (1)) [Vo(p(t)] = M.

<M
~ [ Veo(p(t))]
Therefore

| logm,(d(z,y) + ) —logm,(0)| < Ma,

and so
e\log(m(y)/m(ﬂﬁ))‘ < 6M(a+8) = €M8.

— s

This holds for every € > 0, so by taking the limit of both sides as ¢ — 0 we obtain

ellog(m(y)/m(z))| < c,. (2.5)

Without loss of generality, we can suppose that m(x) > m(y). Then

[ log(m(y)/m(x))| = log(m(x)/m(y)),

and (2.5) implies that

which completes the proof. O]

Mo

Claim 2.2.6. Condition (A) is satisfied, with C, = D,,e3*
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Proof. As in the previous example, it suffices to show that for every B € B, we

have
e~?@) < ' e=?B)  when x € 2B,

(2.6)
e @) > C"e=#(B)  when x € B.

This is implied (with C! = e®% and C” = e~2%%) by the estimate
|p(z) — ¢(cp)| < Aac, Vz € AB,

for all A > 1 and x € AB, which we now show. If x € AB, then we have

[¢(z) — @(cp)| < sup [Vo(y)|d(z, cp).

yeENB

Since B is a-admissible, for all z,y € AB Claim 2.2.5 yields
d(z,c) < Arg < dam(cg) < Aac,m(y) < dac,|Vo(y)| ™,

and so |¢(z) — ¢(cp)| < Aac,,. As in the previous example, we then have

C! ,
Ca =Dy = Duc™™.

Using ¢, = eM? (from Claim 2.2.5) yields the result. O

For a concrete subexample, let (X, d, ) be the Euclidean space R™ with the
usual Euclidean distance and Lebesgue measure, and let ¢ € Rlzy,...,x,] be

a polynomial. Condition (B) is easily verified, although condition (H) may not

hold when n > 2. Taking ¢(x) = nl%(%) + %Z?Zl x?, we again recover the

setting of Gaussian harmonic analysis. However, in this case the constants ¢/

«

and C, have significantly worse a-dependence than the constants we found in
the previous example. This is because conditions (B) and (H) are less restrictive

than assuming ¢ is given in terms of a distance function.

Remark 2.2.7. The utility of an admissibility function is eventually judged by its
applicability to the local Hardy space theory. More precisely, one needs to obtain

suitable ‘error estimates’ in the spirit of [78, Section 5]. The only known example

of such at the time of writing is the setting of R" with ¢(x) = % log 7 + |z|* and

m(x) = min(1, |z|71).
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2.3 Local tent spaces: the reflexive range

We now introduce the main topic of the paper — the non-uniformly local tent
spaces. Let ¢ and m be given and satisfy (A) from Section 2.2. Denote the

resulting weighted measure by 7.

Definition 2.3.1. Let 0 < p,q < oo and a > 0. The local tent space t2%(7) is

the set of all measurable functions f defined on the admissible region
D ={(y,t) € X x (0,00) : t <m(y)}

such that the functional
Cpn . d(y) dt) i

1f sy = [1AG fllze) < oo

satisfies

Here 'y (x) = {(y,t) € D : d(x,y) < at} is the admissible cone of aperture « at
reX.

It is clear that |||z, is a norm on t"9(y) when p, ¢ € [1,00), and a quasi-
norm when p < 1 or ¢ < 1. Following the argument of [3, Proposition 3.4] with
doubling replaced by local doubling, we can show that t29() is complete in this

(quasi-)norm.

Remark 2.3.2. The choice ¢ = 0 and m = oo recovers the setting of global tent
spaces [3], whereas ¢ = 0 and m = 1 gives the setting of uniformly local tent
spaces by Carbonaro, McIntosh and Morris [30].

For 1 < p,q < oo, the properties of t29() can be studied, as in [11], by
embedding the space into an LP-space of L?-valued functions. More precisely, let

us write L(D) for the space of g-integrable functions on D with respect to the

dy(y) dt
measure o, SO that

Joi 89(7) = D3 LAD)),  Jaf(@) = Ir,w f

defines an isometry. We will show that J, embeds t2%(y) as a complemented
subspace of LP(y; L9(D)), with

NoU(eit) = Lagan(@)f Uyt da(z)

B(y,at)
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defining a bounded projection of LP(v; L9(D)) onto the image of £9(y), where
Ue LP(y; LYD)), z € X, and (y,t) € D.
To see that N, is bounded, we first observe that

NoU(ei.0)] < Lagan@)f U0l do()

B(y,at)

< sup][wzy, ) dy(2)

= MU (z;y,t),

where M, is the L9(¥)-valued a-local maximal function from Appendix 2.5, with

¥ = (D, tj;’g@? ). Consequently,

[NaUll o (;a(py) < MUl Lo(yizapy) Spa €xCoaex Ul Lr(yiz2(0))s

(see Appendix 2.5).
An immediate consequence of this vector-valued approach is the following

theorem, detailing the behaviour of the local tent spaces in the reflexive range.
Theorem 2.3.3. Let 1 < p,q < oo. We have
« (change of aperture) || o) Snaos 1l for 0 < 5 < a < oo,

e (duality) 29(7)* = €7 (), realised by the duality pairing

(f.9) = /D fly,t)g(y,1) dv(y)@

t )

e (complex interpolation) [{2% (~) 19 (y)]g = £9(y) when 1 < py < p; < 00
and 1 < qo < q1 < o0, with 1/p = (1-0)/po+0/p1, 1/q=(1-6)/q0+0/q.

Proof. For our claim on change of aperture, we follow [141] and begin by noting
that for suitable f we have

v(B(y, At))

Nasf (@:9,0) = Z 50 o)

Jof(z3y,1).

Then

v(B(y,at))
v(B(y, t))

Spia Cpa/8Caex | af | Le(yiLa(oy)
= Cs.a/8C0cx gy,

I flleaeyy = 1Jaf lLeyLamy = | NaJa f || Lr(v;La(D))
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where the constants are from Remark 2.2.1.

Now 24(~y) is embedded in LP(; L9(D)) as the range of the projection N,,
whose dual is isomorphic to the range of N* on LP(y; L¢(D))* = L¥ (v; LY (D)),
which, in turn, is isometrically isomorphic to ¢ (v) (because N* = N,). The

duality is realised as

(f,9) = (Jof, Jag)
/<1Fa oI, ()9) dy(z)

= [l 008 S
/fy, g(y, 1) dy(y )dt

For 1 < py <p; < o0 and 1 < gy < ¢1 < oo the interpolation of tent spaces

follows, by the standard result on interpolation of complemented subspaces [39,
Section 1.17], from the fact that

[LP(7y; L*(D)), L' (y; L™ (D))]g = LP(7y; LU(D)).
0

Remark 2.3.4. The dependence on « in the aperture change constant C ,Cy ¢y
(between t24(~) and /(7)) is not optimal in general. For instance, on (R", dz),
the optimal dependence is o™/ ™2 (see [0]), while C} 4Cpex ~ a™. Note how-
ever, that on (R”,7) we have C} oCyoy < € for some constant ¢. We return to
this in Section 2.4.

The change of aperture and interpolation results extend to 1 < p,q < oo by

a convex reduction due to Bernal ([23], see also [3]).
Corollary 2.3.5. Let 1 < g < oco. We have
« (change of aperture) | llgusy =ums gy for 0 < 5 < a < oo,

e (complex interpolation) [t£2% (), 219 (y)]p = 29(y) when 1 < py < p; < 00
and 1 < qo < q1 < o0, with 1/p=(1—0)/po+6/p1, 1/qg=(1-0)/q0+6/q.

2.4 Endpoints: t"¢ and t>¢

In this section, under the assumption that the space X is complete, we study

the endpoints of the local tent space scale: the spaces t54(y) and t2¢(y) (with
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1 < g < 00). In particular, employing Corollary 2.3.5 we prove, following the
argument in [59], that elements of t-9() can be decomposed into ‘atoms’. From
this we deduce duality, interpolation, and (quantified) change of aperture results
for the full local tent space scale £29(y) (1 < p < 00, 1 < g < o). We write
the = ti’q for notational simplicity. We do not consider ¢ = oco. As in [33], this

requires additional continuity and convergence assumptions.

2.4.1 Atomic decomposition

Fix (X, d, 1), ¢, and m as in the previous section. The admissible tent T'(O) over
an open set O C X is given by

T(0) = D\T(0°),
where I'(O°) = UzeoeI'(2).

Definition 2.4.1. Fix o > 0 and ¢ > 1. A function a on D is called an a-t"4-
atom (or more succinctly, a a-atom) if there exists an a-admissible ball B € B,
such that suppa C T(B) and

// DI )T < i

Observe that for such a function a,

/a
lallaa@y) = /Aa ) dvy(x) <~(B </Aa )9 dry( )) < 1.

Furthermore, if (ag)ren is a sequence of a-t9-atoms for some o > 0, then the

series f = 34 Apap converges in t19(y) when 3, [A\x| < co. The atomic tent space

ti’tq(y) consisting of such functions f becomes a Banach space when normed by

||f||t;;q(,y) = inf { Z |>\k’ . f = Z)\kak}
k k

Lemma 2.4.2. Suppose that E C X is a bounded open set. Then there exists a

countable sequence of disjoint admissible balls B? C E such that

T(E)C |JT(GBB).

j>1
Proof. Let 6; = sup{rp : B C E admissible} and begin by choosing an admissible
ball B! C E with radius 7, > §;/2. Proceeding inductively we put

Spp1 = sup{rp : B C E admissible, BN B =@,j=1,...,k}
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and choose (if possible) an admissible ball B¥*! C E with radius ryy 1 > 0gy1/2
disjoint from B!,..., B*. Given a (y,t) € T(FE) we show that B(y,t) C 5B7 for
some j. It is possible to pick the first index j for which B(y,t) N B’ is nonempty.
Indeed, if on the contrary B(y,t) was disjoint from every B, then, B(y,t) being
admissible and contained in £, we would have ¢t > 4, for all 7 which under the
assumption that (X, d) is geometrically doubling contradicts the boundedness of
E. By construction, we have t < d; < 2r; and so B(y,t) C 5B, as required. [

Remark 2.4.3. The above lemma is a stronger version of a ‘local Vitali covering
lemma’, which is otherwise identical but claims only that £ C U;>; 5B’ without

reference to tents (see also Remark 2.5.2).

The following lemma regarding pointwise estimates for A-functionals, which
appears implicitly in [33, Theorem 4’], lies at the heart of our proof of the atomic
decomposition. This is the only point at which we seem to need completeness;

we suspect that this assumption can be removed or at least weakened.

Lemma 2.4.4. Suppose X is complete, let ¢ > 1 and let f be a measurable
function in D. Let X > 0 and write E = {x € X : Alf(z) > A}. Then
A(flpvrm)(x) < A forall x € X.

Proof. If x ¢ E, then Ay(f1p\rm))(z) < Alf(z) < A

If x € E, then by completeness of X we can choose a point xg € X\ E such that
d(z, ) = d(x, X\ E). We show that T'(x)\T(F) C I'*(x): let (y,t) € T'(x)\T(FE)
so that d(z,y) < t and B(y,t) ¢ E. Now B(y,t) C B(x,2t), which means
that B(z,2t) ¢ E and so xy € B(x,2t). Moreover B(x,2t) C B(y,3t) so that
(y,t) € T%(xg). Therefore Ay(f1p\re))(z) < ASf(zo) < A O

Theorem 2.4.5. Suppose X is complete, and let ¢ > 1. For every f € t49(v),

there exist 5-t"9-atoms a;, and scalars \j, such that
f=> Mear, (2.7)
k

with
Z | Ak| = ||f||t17q(7) .

k
We call the series (2.7) an atomic decomposition of f.

Proof. We first derive atomic decompositions for the dense class of boundedly-
supported functions in “4(), and then argue by completeness of (7). Given

a function f in t%9(v) with bounded support, we consider the bounded open sets

Ek:{xGX:Agf(x)>2k}
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for each integer k. Applying Lemma 2.4.2 to these sets provides us with disjoint
balls B, C E}, such that

T(Ey) C |JT(5B]).
Jj=1
In addition, we take a collection of functions 3 (cf. [59, Theorem 11]) satisfying

0<xi<1l, Y.xj=1onT(E), and suppyj C T(5B}).

j>1

Writing Ay, := T'(Fx) \ T(Ek+1), we can decompose f as

F=3" 14, =Y X1 f =D M,

kezZ kcZ j>1 K€z j>1

where

1/q
M =~ (6B)YY ( _Aq(flAk)(ﬂf)qdv(fC)) :
5B]

Observe that aj, = .14, f/), is a 5-atom supported in T'(5BY).
What remains is to control the sum of the scalars A,. By Lemma 2.4.4, we

have
Ay (F14) (@) < Ay (fLovria, ) (2) < 20

for all x € X, and so
A < A(5B])2M

Consequently,

DY MDY (8] £ 3 2 (B S 1A e S I F e,
keZ j>1 keZ j>1 keZ
where the last step follows by Corollary 2.3.5.
We have thus shown that || f[| 14,y = || f[la(5) for boundedly supported f in
th4(v). Since the class of such functions is dense in t"¢(«y), the completeness of

t;;q(fy) guarantees that every f € t19(y) has an atomic decomposition. O]

Remark 2.4.6. Maas, van Neerven and Portal established the above result in the
setting of Gaussian R” by a different method, which relies on Gaussian Whitney
decompositions [(4, Theorem 3.4]. In addition, they showed that decompositions
into a-atoms exist for every o > 1 [0, Lemma 3.6]. Such a result may not hold

in this level of generality due to the lack of geometric information.
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2.4.2 Duality, interpolation and change of aperture

We present three corollaries of the atomic decomposition theorem, which holds
when X is complete.
The dual of t19(v) can be identified with the space t°4'(v), consisting of those

functions g on D for which

dt
boercr = g0 (55 [ twor )

is finite. Note that we take a supremum over 5-admissible balls, reflecting the
fact that we have atomic decompositions of elements of t9(v) into 5-atoms. For

the reader’s convenience, we present the standard proof, following [33, Theorem

1L (b)].

Corollary 2.4.7. Suppose X is complete, and let ¢ > 1. Then the pairing

(f.9) = //Df(y,t)g(y,t) dv(y)it, feti(y), get®?(y), (2.8)

realises 9 (v) as the dual of t“9(y).

Proof. To see that (2.8) defines a bounded linear functional on t'¢(y) for every
g € 9 (v), it suffices (by Theorem 2.4.5) to test the pairing on atoms. For any

atom a associated with a ball B € Bs we have

(a,9)| <// Iagldvf
A AN
< (// |a|qd7> (// g dv)
T(B) t T(B) t

< Nlgllee.ar ()

To show that every functional A € 49 (y)* arises in this way, we first note
that each f € LY(T(B)), with B € Bs, satisfies

£ leagyy < VB fllacray)

(we equip the space T'(B) with the product measure dv(y)dt/t). Hence A restricts

to a bounded linear functional on L4(7T'(B)), and is thus given by

ot ,
A=l s g era),
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for some gg € LY (T(B)), with the estimate

||9B||Lq’(T(B)) < 'V(B)l/q HAHtl'q’(w)*'

A single function g on D can then be obtained from the family (g5)pes, in a
well-defined manner, since for any two balls B, B’ € Bs, the functions gp and gp
agree on T'(B) NT(B'). It remains to be checked that ||g||.q () = [|Alla)-- On
the one hand, for any B € Bs we have

oA\ U
9] d’Y7 = ||gB”Lq’(T(B)) <7(B) HAHtl’q’('y)
T(B)

On the other hand, due to Theorem 2.4.5, ||A||¢1.4(,) is achieved (up to a constant)

by testing against all atoms, and so the proof is completed after checking that

|Aa|<‘[7 jgal 7
;o dt dt
< (// lg|? dvt> (// la|? dy— )
T(B) T(B)
-1/q

<yB gl (x.) 1 (B
= Hg||t°°»‘1/('y)7
O

Corollary 2.4.8. Suppose X is complete. For 1 < py < p; < 0o (excluding the
case po = p1 = 00) and 1 < gy < g1 < 00, we have [0 (7), 19 ()]p = t79(7),
when 1/p=(1—0)/po+0/p1, 1/qg=(1—0)/q0+0/q1, and 0 < 6 < 1.

Proof. This follows directly from Theorem 2.3.3 and Corollary 2.4.7, by convex

reduction and reiteration (see Remark 2.3.4). O

Corollary 2.4.9. Let ¢ > 1. For all1 <p <q and o > 1 we have
17l < CraCs™ Il lwa-

Proof. In order to argue by interpolation, consider first the case p = ¢:

e, a/ﬂauquff%“mm
)|e V(B(y, at)) dt
// 1L (0,m(y)) (1) S B0 alt)
< [ 110w T

= Ol,aHthq,qu
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For p = 1 we make use of the atomic decomposition. If a is a 5-atom associated
with B € Bs, then, since ', (z) N T(B) is non-empty exactly when = € aB, we

have

lallgsey < v(@B) Jlall g,
< CHiv(aB) ||l wa
1 /
1/q v(aB) /i
S Cl,a
V(B)

S Cl/q 1*1/4.

l,a V5,

Thus [|fllpee,, < CLZCE I flla for all f € t49(), and the result then
follows by interpolation. O

Remark 2.4.10. Note that on (R", dx) this gives the optimal dependence on «
for 1 < p < 2, which we could not obtain from the vector-valued approach,
since 0117/50517/571/2 = a"/? (see Remark 2.3.4). On Gaussian R” this merely

extends the aperture change to t'(y) with the constant e the improvement

from interpolation being immaterial.

2.5 Appendix 1: Local maximal functions

Here we present a brief justification of the boundedness of the maximal functions
used above and in Appendix 2.6. We use dyadic methods, particularly the exis-
tence of finitely many ‘adjacent’ dyadic systems, combined with some methods
from Martingale theory. At the end of this section we indicate another approach,
which is more elementary but does not adapt well to vector-valued contexts.

By a dyadic system on a measure space (X, ) we mean a countable collection
D = {Dy}rez, where each Dy is a partition of X into measurable sets of finite

nonzero measure, such that the containment relations
QeDy, ReD, 1>k = RCQ or QNR=10

hold. The elements of Dy, are called dyadic cubes (of generation k).

Associated to each dyadic system D is a dyadic mazimal function, defined by

Mpu(z) = sup 4 |u|dy



for all uw € L (7). Since Mp coincides with the martingale maximal function
for the (increasing) filtration (Fy)kez when each Fy, is the o-algebra generated by
Dy, it follows that Mp satisfies a weak type (1,1) inequality

v({z € X : Mpu(z) > \}) < /1\||uHL1(7) (2.9)

for all A > 0 (see for instance [91, Theorem 14.6] or [36, Chapter IV, Section 1]).
Now suppose that (X, d) is a geometrically doubling metric space. Hyténen
and Kairema showed in [52] (see also [72]) the existence of a finite collection of

adjacent dyadic systems.

Theorem 2.5.1. There exists a finite collection {D;}Y., of dyadic systems on X,
with N bounded by a constant depending only on the geometric doubling constant
of (X,d), such that every open ball B C X is contained in a dyadic cube Qp from
one of the dyadic systems, with diam(Qp) < cx diam(B).

Now let (X,d, i), 7, and m be as in Section 2.2, and let &« > 0. Combining
the theorem above with the weak type (1,1) estimate for the dyadic maximal
function yields a corresponding weak type (1,1) estimate for the a-local maximal
operator M,.

Indeed, for each a-admissible ball B € B, we have that B C (5 for some
dyadic cube (Qp that satisfies Qg C cx B, and so

15()f Juldn < 1Q3<x>77<8;) / ol

<10, 0 ey

< 10,(8)Cuccf il d.

B

Here C, ., is the doubling constant from Remark 2.2.1. Summing over finitely

many dyadic systems, we find that
Mou(z) < Coey Y Mpu(z),
D

and using the estimate (2.9) yields
T{z € X : Mau(z) > A}) S Caex |[ull 1y
for all A > 0.
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Similarly, given a o-finite measure space 3., we can consider the a-local max-

imal function M,, given by

MU Ge.5) = sup f UG, 9)] (2
Baxa

for U € L (v; LY(X)) with ¢ € (1,00) (see [30] for a general overview). Again,

this is controlled pointwise by a finite sum of its dyadic counterparts, that is,

MU (z,8) < Copey Y MpU(z,s) (2.10)
D

for some finite collection of dyadic systems D. The dyadic lattice maximal op-
erators Mp are again amenable to Martingale theory. Indeed, according to the
martingale version of Fefferman—Stein inequality (see [66, Subsection 3.1]) we
have for 1 < p < oo that

||MDUHLP(7;L‘1(E)) S/pﬂq ||UHLP(7;L‘1(E))7

and consequently

IMaUl|Le(v;za=)) Spig €xCoaex |U || Lo (v;00(5))-

Although the explicit statement in [06] concerns the case of sequences, i.e. the
case X = N, it immediately extends to more general measure spaces Y by means
of lattice finite representability: L9(X) is lattice finitely representable in ¢? in
the sense that for every finite dimensional sublattice E of L4(X) and every € >
0 there exists a sublattice F' of ¢ and a lattice isomorphism ®: F — F' for
which ||®|| |[|®7!] < 1+ € (see for instance [10] and the references therein). For
boundedness of Mp it suffices to consider simple functions U: X — L?(X) and

the boundedness is therefore transferable in lattice finite representability.

Remark 2.5.2. Martingale theory can be avoided by analysing M, by means of
a ‘local Vitali covering lemma’; analogous to the usual analysis of the (global)
maximal operator through the usual Vitali covering lemma. One can then prove
the duality of t27 and tg’»‘f for 1 < p,q < oo, and recover the boundedness of
the projections N, by realising them as the adjoints of the (bounded) inclusions
from t27 into the appropriate Li-valued LP-space. This is the method of Bernal
[23], used by the first author for global tent spaces in [3]. In this way we also
avoid the use of the L9(¥)-valued maximal function M,, but we do not achieve

the potential generality of the above method.
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2.6 Appendix 2: Cone covering lemma for non-

negatively curved Riemannian manifolds

In this section we prove a stronger version of Lemma 2.4.4 that will be useful for
the theory of vector-valued tent spaces. This is based on a ‘cone covering lemma’,

the Euclidean version of which appears in [59, Lemma 10).

2.6.1 Review of non-negatively curved spaces

Recall that a complete length space (X, d) has non-negative curvature if and only
if for every point = € X and for every pair of geodesics p1, p2 with p;(0) = po(0) =
x, the comparison angle

Zp1(t)zpa(t) := cos™ <d(x’ p1(1)* +d(x, pa(t))? — d(Pl(t)>P2(t))>

2d(zz, p1(t))d(z, p(t))
is nonincreasing in ¢ (this is the corresponding angle of a Euclidean triangle with
sidelengths d(z, p1(t)), d(x, pa(t)), and d(p1(t), p2(t))). Actually, this monotonic-
ity is a combination of the usual (local) definition of non-negative curvature and
the conclusion of Topogonov’s theorem: see [27, Definition 4.3.1 and Theorem
10.3.1] for details.

We have the following simple corollary of this characterisation of non-negative

curvature.

Corollary 2.6.1. Suppose (X,d) is a complete length space with non-negative
curvature. Let x,y,z € X, let pyy and p,, be two unit speed minimising geodesics

from x toy and z respectively, and denote the angle Z(p},(0), p..(0)) by 6. Then
d(y, z) < d(z,z)tan.
Proof. We have
0 = lim Z(pl,, (1), py.(1)) = 0

by Topogonov’s theorem (as stated above), where ¢ is the comparison angle

Zy:vz. By basic trigonometry,

tan 0/ — (y7 Z) ;
d(z, z)
and so we have p
tang > W:2)
d(z, z)
This yields the result. O]



In particular, if p; and py are two unit speed geodesics emanating from a point
r € X with Z(p](0), p5(0)) < tan'(1/4), then

d(pi(t), p2(t)) < t/4

for all t > 0, since d(p2(0), p2(t)) < t.

2.6.2 Cone covering

In this section, we assume that X is a complete geometrically doubling Rieman-
nian manifold, so that (X, d) is a complete length space. We also fix ¢ and m
satisfying condition (A) as in Section 2.2 and assume in addition the following

comparability condition:

(C) For every a > 0, there exists a constant ¢, such that for all pairs of points
r,y € X,
d(z,y) < am(z) = m(z) < cam(y).

Remark 2.6.2. We could work in the context of complete geometrically doubling
non-negatively curved length spaces; we have imposed smooth structure in order
to use the language of tangent spaces rather than that of spaces of directions.
The length space setting is only a small generalisation of the manifold setting,
due to the fact that complete non-negatively curved length spaces are manifolds

almost everywhere.

Given parameters a > 1 and A € (0,1), we define the extension of an open

set £ C X by

;A::U{BEBQ:W>)\}

Note that we can write
B\ ={r € X : M,1p(x) > A},

where M, is the a-local maximal operator from Appendix 2.5, and so EJ , is
open. Furthermore, since for each o > 1 the local maximal function is of weak

type (1,1) with respect to v, we have

for all A € (0,1).
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For all z € X, for all unit tangent vectors v € T, X (recalling that we have
assumed that X is a manifold), and for all ¢ > 0, define the sector

= |J Blp(s),s/4)
0<s<t
opening from z in the direction of v along the unit speed geodesic p with p'(0) = v.
Lemma 2.6.3. Let § > 1. There exists « > 1 and A € (0,1) such that the
following holds: if E C X is open and y € R(v,t) C E, with v € T,X and
0 <t < Bm(x), then B(y,2t) C E} .

Proof. Suppose that £ C X is open and y € R(v,t) C E, with v € T, X and
0 <t < PBm(x). We search for a and A so that

(B(y,2t) N E)
v(B(y,2t))

Denote by p the unit speed geodesic determined by v and begin by observing that
B(p(t),t/4) C R(v,t) C B(y,2t) N E, while B(y,2t) C B(p(t),4t), so that

V(B(p(t),1/4))
V(B(p(t),4t)) -

)
(p

B(y,2t) € B, and 7 > A\

v(Bly, 2t) N E)
7(B(y,2t))
Now d(z, p(t)) < t < pm(z), and by (C
pm(z) < Begm(p(t)). This means that B
by (A),

>

we have m(x) < cgm(p(t)), so t <
(t),t/4) is Bcg/4-admissible, so that

t
B0, 1) < Ay (B (00, ;) )
for some constant Az. We may now choose A < 1/Az to get

V(B(y,2t) N E)
V(B(y, 2t))
To choose «, note that since d(z,y) < 2t < 2m(x), we have m(z) < copm(y),

and so t < feggm(y). In order to have B(y,2t) € B,, we choose a = 2[c¢y3. By
the definition of the extension, we now have B(y,2t) C E}, ;. O

> A\

Dictated by the final paragraph in the proof of the following lemma, we now
fix 8 = ¢, and choose a and A in accordance with Lemma 2.6.3. We also write
E* = E},,. Recall that the admissible tent T'(O) over an open set O C X is given
by

T(0) = D\TI(0°),

where I'(O°) 1= UzecoeI'(2).
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Lemma 2.6.4 (Cone covering lemma). Assume that X is non-negatively curved,
and let E C X be a bounded open set. Then for every x € E there exist finitely
many points x1,...,xx € X \ E, with N depending only on the dimension of X,

such that
N

L)\ T(E) ¢ U F(am).

m=1
Proof. Let x € FE and pick unit vectors vy,...,vy € T, X so that every v € T, X
has Z(v,v,,) < tan~'(1/4) for some m = 1,..., N. For each m, denote by p,, the
unit speed geodesic determined by v,,, and let t,,, > 0 be the minimal number (£
is bounded) for which B(p,(tm), tm/4) intersects X \ E, so that we may choose
an x,, € (X \ E) N B(pm(tm), tm/4). Note that now R(vy,,t,,) C E for each m.

Letting (y,t) € I'(x) \ T(E*), we need to show that d(y,z,,) < t for some
m. By completeness of X, we may choose a unit speed minimising geodesic p
from z to y and then fix an m so that Z(p'(0),v,,) < tan='(1/4). Corollary 2.6.1
guarantees that y € R(vy,, d(z,y)).

Suppose first that = is close to E° in the direction of v,,, in the sense that
tm < Bm(z). If d(x,y) > t,, then by Corollary 2.6.1 p(t,,) is in B(py(tm), tm/4),

and so

d(y, zm) < d(y, p(tm)) + d(p(tm), Tm)
< d(y, pltn) +
< d(y, p(tm)) + d(p(tm), )
=d(y,x) < t.

On the other hand, if d(z,y) < t,, theny € R(vy,, t,,)—thatis, y € B(pn(s), s/4)

for some 0 < s < ¢,,—and so

According to Lemma 2.6.3, B(y, 2t,,,) C E*, but since (y,t) ¢ T'(E*) implies that
B(y,t) ¢ E*, we must have 2t,, < t.

Second, we show that it is not possible to have t,,, > fm(z) with 5 = ¢;. Note
first that since d(z,y) < t < m(y), we have by (C) that t < m(y) < eym(z). If
indeed we had t,, > ¢;ym(z), then y € R(v,,, cym(z)) C R(vm, tm) C E. Invoking
Lemma 2.6.3 gives B(y,cym(x)) C B(y,2cym(x)) C E*, while B(y,t) ¢ E* and

so cym(x) < t, which is a contradiction. O
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The cone covering lemma allows stronger pointwise estimation of the func-
tional A, when ¢ > 1 (cf. Lemma 2.4.4):

Corollary 2.6.5. Assume that X is non-negatively curved. Suppose 1 < g < oo,
and let f be a function on D with bounded support. Let A > 0 and write E =
{r e X: A,f(x) > A}. Then

Ay(flpvre) (@) Samx A for all x € X.
Proof. If x € X \ E, then
A (flpvre) (@) < Agf(z) < A

by the definition of E. So let z € E. Since E is a bounded open set, we may
use Lemma 2.6.4 to pick z1,...,zy € X \ F (with N depending only on the

dimension of X') such that

N
@)\ T(E") C | T(zm).
m=1
We can then estimate

1/q
Al = (ff \f(y,ww%it)

N X dy(y) dt\"’
mz(// . <B<y,t>>t> = A

proving the corollary. O]

IN

Remark 2.6.6. At the time of writing we do not know of any doubling Riemannian
manifolds (equipped with ¢ and m) for which the cone covering lemma fails.
It would be interesting to determine more precisely which spaces admit cone

coverings of the type above.
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Chapter 3

Interpolation and embeddings of

weighted tent spaces

Abstract

Given a metric measure space X, we consider a scale of function spaces TP7(X),
called the weighted tent space scale. This is an extension of the tent space scale of
Coifman, Meyer, and Stein. Under various geometric assumptions on X we iden-
tify some associated interpolation spaces, in particular certain real interpolation
spaces within the reflexive range. These are identified with a new scale of func-
tion spaces, which we call Z-spaces, that have recently appeared in the work of
Barton and Mayboroda on elliptic boundary value problems with boundary data
in Besov spaces. We also prove Hardy—Littlewood—Sobolev-type embeddings be-

tween weighted tent spaces.

3.1 Introduction

The tent spaces, denoted TP?, are a scale of function spaces first introduced
by Coifman, Meyer, and Stein [32, 33] which have had many applications in
harmonic analysis and partial differential equations. In some of these applications
‘weighted’ tent spaces have been used implicitly. These spaces, which we denote
by TP4 seem not to have been considered as forming a scale of function spaces in
their own right until the work of Hofmann, Mayboroda, and McIntosh [50, §8.3],
in which factorisation and complex interpolation theorems are obtained for them.

In this article we further explore the weighted tent space scale. In the in-

terests of generality, we consider weighted tent spaces TP4(X) associated with a
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metric measure space X, although our theorems are new even in the classical case
where X = R" equipped with the Lebesgue measure. Under sufficient geometric
assumptions on X (ranging from the doubling condition to the assumption that
X = R"), we uncover two previously unknown novelties of the weighted tent
space scale.

First, we identify some real interpolation spaces between 777 and T?*? when-

ever sg # s1. In Theorem 3.3.4 we prove that

(T8 TPy, = 700 (3.1)

S0

for appropriately defined parameters, where the scale of ‘Z-spaces’ is defined in
Definition 3.3.3. We require pg, p1,q > 1 in this identification, but in Theorem
3.3.9 we show that in the Euclidean setting the result holds for all py, p; > 0 and
q > 1. In the Euclidean setting, Z-spaces have appeared previously in the work of
Barton and Mayboroda [21]. In their notation we have ZP¢(R") = L(p,ns+1, q).
Barton and Mayboroda show that these function spaces are useful in the study
of elliptic boundary value problems with boundary data in Besov spaces. The
connection with weighted tent spaces shown here is new.

Second, we have continuous embeddings
0,4 P1,q
Tt — Ty

whenever the parameters satisfy the relation
sl—sozi—i. (3.2)
P1 Do
This is Theorem 3.3.19. Thus a kind of Hardy-Littlewood—-Sobolev embedding
theorem holds for the weighted tent space scale, and by analogy we are justified
in referring to the parameter s in 777 as a reqularity parameter.

We also identify complex interpolation spaces between weighted tent spaces
in the Banach range. This result is already well-known in the Euclidean setting,
and its proof does not involve any fundamentally new arguments, but we include
it here for completeness.

These results in this paper will play a crucial role in forthcoming work,! in
which we will use weighted tent spaces and Z-spaces to construct abstract ho-
mogeneous Hardy—Sobolev and Besov spaces associated with elliptic differential
operators with rough coefficients. This will be an extension of the abstract Hardy
space techniques initiated independently by Auscher, McIntosh, and Russ [13] and
Hofmann and Mayboroda [19].

1Gee Part 1T of this thesis.
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Notation

Given a measure space (X, u), we write L°(X) for the set of y-measurable func-
tions with values in the extended complex numbers C U {£o0, £ico}. As usual,
by a ‘measurable function’, we actually mean an equivalence class of measurable
functions which are equal except possibly on a set of measure zero. We will say
that a function f € L°(X) is essentially supported in a subset £ C X if we have
p{re X\ E: f(z) #0} =0.

A quasi-Banach space is a complete quasi-normed vector space; see for exam-
ple [56, §2] for further information. If B is a quasi-Banach space, we will write
the quasi-norm of B as either ||-||5 or ||- | B||, according to typographical needs.

For 1 < p < oo, we let p’ denote the Holder conjugate of p, which is defined
by the relation

Y
p 7
with 1/00 := 0. For 0 < p,q < oo, we define the number

again with 1/00 := 0. This shorthand will be used often throughout this article.
We will frequently use the the identities

5p,q + 5%7’ = 5p,ra
5p,q = 5q’,p’7

1/(] = 5007,] = (5(1/71.

As is now standard in harmonic analysis, we write a < b to mean that a < Cb
for some unimportant constant C' > 1 which will generally change from line to

line. We also write a <., ¢, b to mean that a < C(cy, ca, .. .)b.

goee
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3.2 Preliminaries

3.2.1 Metric measure spaces

A metric measure space is a triple (X, d, 1), where (X, d) is a nonempty metric
space and g is a Borel measure on X. For every x € X and r > 0, we write
B(z,r) == {y € X : d(z,y) < r} for the ball of radius r, and we also write
V(z,r) := p(B(x,r)) for the volume of this ball. The generalised half-space
associated with X is the set X := X x R, , equipped with the product topology
and the product measure du(y) dt/t.

We say that (X, d, u) is nondegenerate if

0<V(z,r)<oo forallze X and r > 0. (3.3)

This immediately implies that the measure space (X, 1) is o-finite, as X may be

written as an increasing sequence of balls

X = |J B(zo,n) (3.4)
neN
for any point 2o € X. Nondegeneracy also implies that the metric space (X, d) is
separable [241, Proposition 1.6]. To rule out pathological behaviour (which is not
particularly interesting from the viewpoint of tent spaces), we will always assume
nondegeneracy.
Generally we will need to make further geometric assumptions on (X, d, u).
In this article, the following two conditions will be used at various points. We
say that (X, d, u) is doubling if there exists a constant C' > 1 such that

V(z,2r) < CV(x,r) forall (z,r) € XT.

A consequence of the doubling condition is that there exists a minimal number
n > 0, called the doubling dimension of X, and a constant C' > 1 such that

V(z,R) < C(R/r)"V(x,r)
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forallze X and 0 <r < R < o0.
For n > 0, we say that (X,d, u) is AD-regular of dimension n if there exists
a constant C' > 1 such that

C " <V(x,r) < Cr" (3.5)

for all z € X and all » < diam(X). One can show that AD-regularity (of some
dimension) implies doubling. Note that if X is unbounded and AD-regular of
dimension n, then (3.5) holds for all z € X and all » > 0.

3.2.2 Unweighted tent spaces

Throughout this section we suppose that (X, d, 1) is a nondegenerate metric mea-
sure space. We will not assume any further geometric conditions on X without
explicit mention. All of the results here are known, at least in some form. We
provide statements for ease of reference and some proofs for completeness.

For x € X we define the cone with vertex x by

I(z) :=={(y,t) € X" :y € B(z, 1)},

and for each ball B C X we define the tent with base B by

T(B) = X"\ (U F(x)) :
x¢B

Equivalently, T'(B) is the set of points (y,t) € Xt such that B(y,t) C B. From
this characterisation it is clear that if (y,t) € T'(B), then t < rp, where we define

rg:=sup{r > 0: B(y,r) C B for some y € X}.

Note that it is possible to have rp(,) > t.
Fix ¢ € (0,00) and a € R. For f € L°(X™"), define functions A?f and C¢f on

X by
AT f( ( // M;’yg) Cf)l/ ' (3.6)

B3x [ ( // 8 du(y) it> (3.7)

and

Caf(x) :=sup

for all x € X, where the supremum in (3. 7) is taken over all balls B C X

containing x. We abbreviate C? := C{. Note that the integrals above are always
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defined (though possibly infinite) as the integrands are non-negative, and so we
need not assume any local g-integrability of f. We also define
A% f(x) == esssup |f(y, 1)l (3.8)
(y,t)el(x)
and

CoXf(x) :=sup esssup | f(y,t)|.
(@) B3z W(B) (yner(n) | )

Lemma 3.2.1. Suppose that ¢ € (0,00], o € R, and f € L°(XT). Then the

functions Alf and C1f are lower semicontinuous.

Proof. For q # oo see [3, Lemmas A.6 and A.7]. It remains only to show that
A% f and C°f are lower semicontinuous for f € LO(XT).

For each s > 0 write
[(x)+s:={(y,t) e Xt : (y,t —s)el(x)} ={(y,t) € X" :y € B(z,t —s)}.

Geometrically I'(x) 4 s is a ‘vertically translated’ cone, and I'(x) + s D I'(x) + r
for all » < s. The triangle inequality implies that

['(z)+sc(z) forall 2’ € B(z,s).

To show that A>f is lower semicontinuous, suppose that z € X and A > 0
are such that (A f)(xz) > A. Then the set O := {(y,t) € I'(z) : |f(y,t)| > A}

has positive measure. We have
O=Jon@(z)+n").
n=1
Since the sequence of sets O N (I'(z) +n~1) is increasing in n, and since O has

positive measure, we find that there exists n € N such that O N (I'(x) +n~!) has

positive measure. Thus for all 2’ € B(z,n™!),
{(y,t) e (@) |f(y, )] > A} DON(T(x) +n7Y)

has positive measure, and so (A>f)(z’) > A. Therefore A*f is lower semicon-
tinuous.

The argument for C2° is simpler. We have (C°f)(x) > A if and only if there
exists a ball B 5 x such that

1
— 7 esssup [f(y,t)] > A
pB)H . per(s)

This immediately yields (C°f)(z') > A for all 2/ € B, and so C°f is lower

semicontinuous. O

70



Definition 3.2.2. For p € (0,00) and ¢ € (0, 00|, the tent space T??(X) is the
set
TP9(X) :={f e L°(X"): Alf € LP(X)}

equipped with the quasi-norm

HfHTP#I(X) = HAquLP(X) :
We define T°%(X) by
TUX) = {f e L°%X"):Clf € L™(X)}

equipped with the corresponding quasi-norm. We define T°*°(X) := L>®°(X™)

with equal norms.

For the sake of notational clarity, we will write TP rather than T7%(X) unless
we wish to emphasise a particular choice of X. Although we will always refer to

tent space ‘quasi-norms’, these are norms when p,q > 1.

Remark 3.2.3. Our definition of A™ f gives a function which is less than or equal
to the corresponding function defined by Coifman, Meyer, and Stein [33], which
uses suprema instead of essential suprema. We also do not impose any continuity
conditions in our definition of 77, Therefore our space TP*°(R"™) is strictly

larger than the Coifman—Meyer—Stein version.

By a cylinder we mean a subset C' C X7 of the form C' = B(z,r) x (a,b)
for some (z,7) € Xt and 0 < a < b < co. We say that a function f € LO(X™)
is cylindrically supported if it is essentially supported in a cylinder. In general
cylinders may not be precompact, and so the notion of cylindrical support is more

general than that of compact support. For all p,q € (0, oc] we define
TP%C .= {f € TP : f is cylindrically supported}.

and
LP(X ™) :={f € LP(XT) : f is cylindrically supported}.

A straightforward application of the Fubini—Tonelli theorem shows that for
all ¢ € (0,00) and for all f € LO(X™T),

Hf“:mq - ||f||Lq(X+) )
and so 797 = LY(X*). When ¢ = oo this is true by definition.
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Proposition 3.2.4. For all p,q € (0,00), the subspace TP%¢ C TP9 is dense in
TP, Furthermore, if X is doubling, then for all p,q € (0,00], TP? is complete,
and when p,q # oo, L4(X™T) is densely contained in TP9.

Proof. The second statement has already been proven in [3, Proposition 3.5],% so

we need only prove the first statement. Suppose f € TP and fix a point zg € X.
For each k € N, define

Cy := B(wo, k) x (k™' k) and f;, :=1¢,f.

Then each f; is cylindrically supported. We have

Jim ([f = fillgwo = Jim [ A'(Lep f) ()P dp(z)

k—o0 X

= [ i A duta)
= (i ] 10 )
dp(

t
- ‘ ) y) dt p/q
- [ (U] i acannor G2 )
=0

All interchanges of limits and integrals follow from monotone convergence. Hence

we have f = limy_. fi, which completes the proof. O

Recall the following duality from [3, Proposition 3.10].
Proposition 3.2.5. Suppose that X is doubling, p € [1,00), and q¢ € (1,00).
Then the L*(X™T) inner product
— dt
()= [| tea ) dnte) § (39)
X+ t
identifies the dual of TP with TP .

Suppose that p € (0,1], ¢ € [p,o¢], and B C X is a ball. We say that
a function a € L°(XT) is a TP? atom (associated with B) if a is essentially

supported in T'(B) and if the size estimate

llallpea < p(B)*e

holds (recall that &,, := ¢~' — p~'). A short argument shows that if a is a
TP9-atom, then ||a||pp, < 1.

2The cases where ¢ = oo are not covered there. The same proof works—the only missing

ingredient is Lemma 3.4.1, which we defer to the end of the article.
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Theorem 3.2.6 (Atomic decomposition). Suppose that X is doubling. Let p €
(0,1] and q € [p,o0]. Then a function f € L°(X™T) is in TP if and only if there

exists a sequence (ag)ken of TP2-atoms and a sequence (A)ren € CP(N) such that

f= Mar (3.10)

keN

with convergence in TP9. Furthermore, we have
[ w0 > i [ Xk gy
where the infimum is taken over all decompositions of the form (3.10).

This is proven by Russ when ¢ = 2 [31], and the same proof works for general
q € [p,00). For ¢ = oo we need to combine the original argument of Coifman,
Meyer, and Stein [33, Proposition 2| with that of Russ. We defer this to Section
3.4.2.

3.2.3 Weighted tent spaces: definitions, duality, and atoms

We continue to suppose that (X, d, u) is a nondegenerate metric measure space,
and again we make no further assumptions without explicit mention.

For each s € R, we can define an operator V* on L°(X™) by

(st)(l’, t) = V(ZL’, t)sf(xv t)

for all (z,t) € XT. Note that for r,s € R the equality V"V* = V"¢ holds, and
also that VY is the identity operator. Using these operators we define modified

tent spaces, which we call weighted tent spaces, as follows.

Definition 3.2.7. For p € (0,00), ¢ € (0,00], and s € R, the weighted tent space
TP is the set
TP = {f c LX) : V5f e TP}

equipped with the quasi-norm

[1£llppa = ||V

Tra

We also define 7% in this way. For ¢ # oo, and with an additional parameter

a € R, we define T757 by the quasi-norm

1l = [eav=p)|[ . -

Lo (X)

Note that Tpp? = T°9. We write T := T g,
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Remark 3.2.8. The weighted tent space quasi-norms of Hofmann, Mayboroda,
and McIntosh [50, §8.3] (with p # oo) and Huang [71] (including p = oo with
a = 0) are given by

£l = ||, 1) =t F(y,1)]

which are equivalent to those of our spaces T(;7 (R"). In general, when X is

(3.11)

TPa(Rn)’

unbounded and AD-regular of dimension n, the quasi-norm in (3.11) (with X
replacing R") is equivalent to that of our Tf/’g. We have chosen the convention of
weighting with ball volumes, rather than with the variable ¢, because this leads to
more geometrically intrinsic function spaces and supports embedding theorems

under weaker assumptions.

For all r,s € R, the operator V" is an isometry from 777 to T24. The
operator V7 is also an isometry, now from T4 to TP, and so for fixed p and ¢
the weighted tent spaces 1?7 are isometrically isomorphic for all s € R. Thus by
Proposition 3.2.4, when X is doubling, the spaces 177 are all complete.

Recall the L?(X™T) inner product (3.9), which induces a duality pairing be-
tween TP and T?¢ for appropriate p and ¢ when X is doubling. For all s € R
and all f,g € L*(X™) we have the equality

(fr9)=(V""f, V), (3.12)
which yields the following duality result.

Proposition 3.2.9. Suppose that X is doubling, p € [1,00), ¢ € (1,00), and
s € R. Then the L*(X™) inner product (3.9) identifies the dual of TP with
T? 7 .

Proof. If f € TP% and g € TP then we have V=5f € TP and Vg € TP 7, so
by Proposition 3.2.5 and (3.12) we have

() S| VoAl 1Vl = 11£

Conversely, if ¢ € (TP9)', then the map f — ¢(V*f) determines a bounded

v |[g] oo -
TP,q 15 g Tfs’q

linear functional on 777 with norm dominated by ||¢||. Hence by Proposition
3.2.5 there exists a function § € T with ||g|| ;w0 < ||l such that

p(f) =e(V>(V) =(V7=1f9) = ([,V7°9)
for all f € TP4. Since

=

- ||§HTP/J1/ S H50||7

! ol
P4
T—s

we are done. O
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There is also a duality result for p < 1 which incorporates the spaces T
with a > 0. Before we can prove it, we need to discuss atomic decompositions.

Suppose that p € (0,1], g € [p,], s € R, and B C X is a ball. We say that
a function a € LO(X ™) is a TP?-atom (associated with B) if V~"%a is a TP%-atom.

This is equivalent to demanding that a is essentially supported in T'(B) and that

llallgs < p(B)’

The atomic decomposition theorem for unweighted tent spaces (Theorem 3.2.6)

immediately implies its weighted counterpart.

Proposition 3.2.10 (Atomic decomposition for weighted tent spaces). Suppose
that X is doubling. Let p € (0,1], ¢ € [p,o0], and s € R. Then a function
€ LY%(X™) is in TP if and only if there exists a sequence (ax)ren of TP9-atoms

and a sequence (A\g)ken € P(N) such that

keN

with convergence in TP9. Furthermore, we have

[l zpa >t [|Ak] |y 5
where the infimum is taken over all decompositions of the form (3.13).
Using this, we can prove the following duality result for p < 1.

Theorem 3.2.11. Suppose that X is doubling, p € (0,1), ¢ € [1,00), and s € R.
Then the L*(X™T) inner product (3.9) identifies the dual of TP9 with Toi’(q;l

Proof. First suppose that a is a TP%-atom associated with a ball B C X, and
that g € T2 . Then we have

o< [ W ovaw ol n) g

< el B (B 190l

—5:%,p

< H(B)6p7q+5q,1+51,p HgHTOO y

75,6171,

= |lgll oo

75 11)

For general f € TP we write f as a sum of TP9-atoms as in (3.13) and get
({9 <Hlgll g [l < Ngllgoear 1Al
_3751,;7 —.s,él’p
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using that p < 1. Taking the infimum over all atomic decompositions completes
the argument.

Conversely, suppose that ¢ € (T??)". Exactly as in the classical duality proof
(see [3, Proof of Proposition 3.10]), using the doubling assumption, there exists
(X such that

q
loc

a function g € L

o(f)={f,9)

for all f € TP%¢. To show that g is in Sf;;g;‘p, we estimate |[Vg]| s 1 gy for each
ball B C X by duality:

s s -1
14 9||Lq’(T(B)) = sup [(f,V°g)| ||f||Lq(T(B))
feL(T(B))

s -1
= sup (VLA ars)) -
JELYUT(B))

Holder’s inequality implies that

V1]

rra < p(B)er 1 zaercmy

when f is essentially supported in T'(B), so we have

||ng||Lq’(T(B)) < p(B)’er ||90||(T§"1)f ,

and therefore

lgllyey = sup p(B)» DN Vg L oy
5,01 p

< H‘PH(TM)/ sup M(B)5P71+517q+5q,p
° BCX
= ||90H(TfaQ)/ 3
which completes the proof. .

Remark 3.2.12. Note that ¢ = 1 is included here, and excluded in the other
duality results of this article. Generally the spaces T?? with p < ¢ are easier to
handle than those with p > ¢.

We end this section by detailing a technique, usually referred to as ‘convex
reduction’, which is very useful in relating tent spaces to each other. Suppose
f e LoX*)and M > 0. We define a function f* € LO%(XT) by

(fM)(x’t) = |f(x7t)|M
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for all (z,t) € X*. For all ¢ € (0,00] and s € R we then have
AS(y e ) = A,

and for o € R we also have
CLVT M) = Cofs (VMM

Therefore, for p € (0, 00) we have

1 = 00,

= HAM!}(st/Mf)Hi/[MP(X)

=l
and likewise for p = co and ¢ < oo we have

coq = s/M,o/M "

17 e = I 1T
The case p = ¢ = oo behaves in the same way:
HfM T H(V_S/Mf)MHLw(Xﬂ B ||f||7]‘{°71’\§°'

These equalities often allow us to deduce properties of T?¢ from properties of

Tsj\f ]@’Mq, and vice versa. We will use them frequently.

3.3 Interpolation and embeddings

As always, we assume that (X,d, ) is a nondegenerate metric measure space.
We will freely use notation and terminology regarding interpolation theory; the

uninitiated reader may refer to Bergh and Lofstrom [22].

3.3.1 Complex interpolation

In this section we will make the following identification of the complex inter-

polants of weighted tent spaces in the Banach range of exponents.

Theorem 3.3.1. Suppose that X is doubling, po,p1 € [1,00] (not both o0),
do, 1 € (1,00), sg,51 €R, and 6 € (0,1). Then we have the identification

[Tpo,qo Tpl,th]e — [Po:96
S0 )81 Se
where p,t = (1—0)py ' +0p1t, ¢t = (1—0)qot +0q7 ", and sp = (1 —0)so+0s;.
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Remark 3.3.2. In the case where X = R" with the Euclidean distance and
Lebesgue measure, this result (with pg,p; < 1 permitted) is due to Hofmann,
Mayboroda, and McIntosh [50, Lemma 8.23]. A more general result, still with
X = R", is proven by Huang [51, Theorem 4.3] with ¢y, q; = oo also permitted,
and with Whitney averages incorporated. Both of these results are proven by
means of factorisation theorems for weighted tent spaces (with Whitney averages
in the second case), and by invoking an extension of Calderén’s product formula
to quasi-Banach spaces due to Kalton and Mitrea [58, Theorem 3.4]. We have
chosen to stay in the Banach range with 1 < gy, ¢ < oo for now, as establishing

a general factorisation result would take us too far afield.

Note that if py = oo (say) then we are implicitly considering T4 with a = 0;
interpolation of spaces with o # 0 is not covered by this theorem. This is because
the method of proof uses duality, and to realise T7:% with o # 0 as a dual space
we would need to deal with complex interpolation of quasi-Banach spaces, which
adds difficulties that we have chosen to avoid.

Before moving on to the proof of Theorem 3.3.1, we must fix some notation.
For g € (1,00) and s € R, write

LI(X*) = LYX+, V1) = L <X+,V_qs(y,t) din(y) dt) (3.14)

(this notation is consistent with viewing the function V797! as a weight on the
product measure dyu dt/t).
An important observation, originating from Harboure, Torrea, and Viviani

[44], is that for all p € [1,00), ¢ € (1,00) and s € R, one can write
[ Fllgza = |[HF | LP(X : LIXT))|

for f € L°%(X ™), where

Hence H is an isometry from 777 to LP(X : LY(X™)). Because of the restriction
on ¢, the theory of Lebesgue spaces (more precisely, Bochner spaces) with values
in reflexive Banach spaces is then available to us.

This proof follows previous arguments of the author [3], which are based on
the ideas of Harboure, Torrea, and Viviani [11] and of Bernal [23], with only small
modifications to incorporate additional parameters. We include it to show where

these modifications occur: in the use of duality, and in the convex reduction.
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Proof of Theorem 3.3.1. First we will prove the result for py, p; € (1,00). Since
H is an isometry from T5"% to LPi(X : LE (X)) for j = 0,1, the interpolation
property implies that H is bounded (with norm < 1 due to exactness of the

complex interpolation functor)
(T3, T — 177 (X = [L5(X), L5 (X))

Here we have used the standard identification of complex interpolants of Banach-
valued Lebesgue spaces [22, Theorem 5.1.2]. The standard identification of com-

plex interpolants of weighted Lebesgue spaces [22, Theorem 5.5.3] gives
[L3%(XT), LE(X)]p = LI (XT),
and we conclude that

[ llgzoan = |[Hf | LP(X 2 L (X))
< Hf | [Tgo,qo,T£1,q1]9“

for all f € [TPo®, TPv4],. Therefore
[TPo0 TPLO], C TP, (3.15)

To obtain the reverse inclusion, we use the duality theorem for complex inter-
polation [22] Theorem 4.5.1 and Corollary 4.5.2]. Since X is doubling and by our
restrictions on p and ¢, at least one of the spaces T7*% and T?% is reflexive (by
Proposition 3.2.9) and their intersection is dense in both spaces (as it contains the
dense subspace L7*x(40:41)(X+) by Proposition 3.2.4). Therefore the assumptions
of the duality theorem for complex interpolation are satisfied, and we have

TPo:d0 — (Tp%qé)/
So —S50
C (10 TRy,

— [TSIZJO:QO’ T£17q1]9

where the first two lines follow from Proposition (3.2.9) and (3.15), and the third
line uses the duality theorem for complex interpolation combined with Proposition
3.2.9.

We can extend this result to po, p1 € [1, 0o| using the technique of [3, Proposi-
tion 3.18]. The argument is essentially identical, so we will not include the details
here. O]
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3.3.2 Real interpolation: the reflexive range

In order to discuss real interpolation of weighted tent spaces, we need to introduce

a new scale of function spaces, which we denote by ZP4 = ZP4(X).?

Definition 3.3.3. For ¢y € (0,00), ¢; € (1,00), and (z,t) € X, we define the
Whitney region

Qeoer(7,1) 1= B, cot) X (e 't,ert) € X,

and for ¢ € (0,00), f € L°%(X™), and (z,t) € X T we define the LI-Whitney

avemge
1/q
W 1) 1) ::(ﬂ !f(f,T)\qdu(f)dT> |
Qeg,eq (2,1)

For p,q € (0,00), s € R, ¢y € (0,00), ¢; € (1,00), and f € L°(X ™), we then

define the quasi-norm

= [Vee (V)

LP(XT)

and the Z-space

ZPU(X:co, ) = {f € L°(XT): < oo}

c1)

In this section we will prove the following theorem, which identifies real inter-
polants of weighted tent spaces in the reflexive range. We will extend this to the

full range of exponents in the Euclidean case in the next section.

Theorem 3.3.4. Suppose that X is AD-regular and unbounded, po, p1,q € (1, 00),
so # s1 €R, and 6 € (0,1). Then for any ¢y € (0,00) and ¢; € (1,00) we have
the identification

(TP, TP ) gy = 289 ( X5 o, 1) (3.16)

with equivalent norms, where py* = (1 — 0)py* + 0py' and sy = (1 — 0)so + 0.

As a corollary, in the case when X is AD-regular and unbounded, and when
p,q > 1, the spaces ZP(X; co, ¢1) are independent of the parameters (cg, ¢1) with
equivalent norms, and we can denote them all simply by ZP4.* We remark that
most of the proof does not require AD-regularity, but in its absence we obtain

identifications of the real interpolants which are less convenient.

3We use this notation because almost every other reasonable letter seems to be taken.
4One can prove independence of the parameters (cg,c1) directly when X is doubling, but

proving this here would take us even further off course.
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The proof relies on the following identification of real interpolants of weighted
L9 spaces, with fixed ¢ and distinct weights, due to Gilbert [39, Theorem 3.7].
The cases p < 1 and ¢ < 1 are not considered there, but the proof still works
without any modifications in these cases. Note that the original statement of this

theorem contains a sign error in the expression corresponding to (3.17).

Theorem 3.3.5 (Gilbert). Suppose (M, p) is a o-finite measure space and let w
be a weight on (M, ). Let p,q € (0,00) and 6 € (0,1). For all r € (1,00), and
for f € L°(M), the expressions

—k6
r 1m~wx TR > T
‘ ( ’ w(@)E(r=F, k“]f‘ LUM) ) kezll o (z) 47

1-0
1ot 3.18
S ‘ w(z)<1/ f La(M,w1) LP (R4 ,ds/s) ( )

and

—0
Lt 3.19
S ’ w(z)>1/ f La(M) LP(Ry ,ds/s) ( )

define equivalent norms on the real interpolation space
(Lq(M)v Lq(M> wq))e,P'

The first step in the proof of Theorem 3.3.4 is a preliminary identification of

the real interpolation norm.

Proposition 3.3.6. Let all numerical parameters be as in the statement of The-
orem 3.3./. Then for all f € L°(X™) we have the equivalence

£ 1 (@ros, 7Y,

o~ H:r > H]-F(z)f | (L4,(X7T), LE (X))o,

LPe(X)
(3.20)
Proof. We use the notation of the previous section. We have already noted that
the map H: TP9 — LP(X : LY(X™)) with Hf(x) = 1p,) f is an isometry. Fur-
thermore, as shown in [3] (see the discussion preceding Proposition 3.12 there),
H(TP1) is complemented in LP(X : LY(X ™)), and there is a common projection

onto these spaces. Therefore we have (by [89, Theorem 1.17.1.1] for example)

71 70,

o [P | (X L2, (X)), L7 (X 2 L2, (X))o

The Lions—Peetre result on real interpolation of Banach-valued Lebesgue spaces

Since H f(x) = 1) f, this proves (3.20). O

(see for example [70, Remark 7]) then implies that

£ 1 (7m0, TE),

» 481

= (|7 (0 (X (L,(X). 24, (X))
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Having proven Proposition 3.3.6, we can use Theorem 3.3.5 to provide some
useful characterisations of the real interpolation norm. For f € L°(X™) and

a,b € [0,00], we define the truncation

fa,b = 1X><(a,b)f'

Note that in this theorem we allow for pg,p;1 < 1; we will use this range of

exponents in the next section.

Theorem 3.3.7. Suppose po,p1,q € (0,00), so # s1 € R, and 0 € (0,1), and
suppose that X is AD-regular of dimension n and unbounded. Let r € (1,00).

Then for f € L°(X ™) we have norm equivalences

[ = [[Tre f | (L4 (X, L9 (X))ey,

LPo(X)
~ Tn(sl—so)(l—ﬁ) <321>
LP6 (Ry,dr/T)
o~ Tfn(slfso)al‘fOJHTpg’q (3.22)
0 |lLre(Ry,dr/T)
~. (T—nk6®1—sm f}_kw_k+1 Pgﬂ)kEZ . (3.23)
Tsq 070 (2)

Proof. First assume that s; > so. Let pd be the measure on X* given by

=t qsondlu’< )dt
V(y, t)t

Since X is AD-regular of dimension n and unbounded, we have that ||f||,, (i) =

dugo (y7 )

LX) Also define the weight w(y,t) := ¢~ (175" "o that wud = pl .

We will obtain the norm equivalence (3.23). For 1 < r < oo and k € Z, we
have 7% < w(y,t) < r~**1 if and only if ¢ € [pk=D/nls1=s0) pk/n(s1=50)) (here we
use $1 > Sg). Using the characterisation (3.17) of Theorem 3.3.5, and replacing r
with r(s17%0) for f € LO(X*) we have

o H1r<w>f | (L (XF), L2 (X))o

LPo(X)
= ([ s

1/pe
du<x>)
1/pe
ps1=s0)kpo |1, k-1 ok i du(zx
Xlé a )f g La(udy) ()

1/po
Zr—n(ﬁ—so)kgpe/ AUV fris ) ()P du(:ﬂ))
X

keZ

Lq (//'50 ) La (waufso ))0 Py

12

12

(,r,—n(s1 s0)k6 ‘

f,r.k 1 ,r.k

Tpe .q )kEZ

wo(z)
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This proves the norm equivalence (3.23) for all f € L%(X™) when s; > sq. If
s1 < sg, one simply uses that (L4 (X), LI (XF))op, = (LI (XT), LI (X))1—6p,
[22, Theorem 3.4.1(a)] to reduce the problem to the case where sy < sy.

The equivalences (3.21) and (3.22) follow from the characterisations (3.18) and
(3.19) of Theorem 3.3.5 in the same way, with integrals replacing sums through-
out. We omit the details here. O

Finally we can prove the main theorem: the identification of the real inter-

polants of weighted tent spaces as Z-spaces.

Proof of Theorem 3.5.4. Suppose f € L°(X™). Using the characterisation (3.23)
in Theorem 3.3.7 with 7 = ¢; > 1, and using aperture ¢q/c; for the tent space

(making use of the change of aperture theorem [3, Proposition 3.21]), we have

Po

Hf | ( Tpo q7T£1 Yoo

ok Po/q
~ fn (s1—s0 k@pg/ /1 / ‘tfnsof( q d,u(y) @
Y1)l dp(x)
]2 X ( c]f_l B(z,cot/c1) V(y7t> t
Z Cl—n(s1—so)k9pg.

X kez
clf le d Po/q
_ ply) dt dr
. 0 f (y, t)? — —du(x
/cv]f1 (/cv]fl /I;(x,cot/cl) ’ ( )| V(y7t) t ) r ( )

po/q dr

ok
[ [FF o) 5 i
keZ o corer (@57
P /q
/ / —n(s1—s0)0pe (]Z] |T—nsof|Q> @ dﬂ( )
QEO Cl( )
Po/q dr
// (75[ ‘”59f|") () &
X+ (z,r) r

CO c1
= ||f||Zp9q (X;co,c1)’
using that B(z,cot/cy) x (i, c¥) C Qe (7, 7) whenever 7 € (571, cF).

To prove the reverse estimate we use the same argument, this time using
that for r,t € (2571 2%) we have Q. ., (z,t) C B(z,2cot) x (c; 12571, ¢,2%). Using
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aperture 2¢y for the tent space, we can then conclude that

p
||f| |Z%g’q(X;co,cl)

ok po/q
d
oo [ ()
2k-1 Qeg,eq (z,7)

X keZ

Z 2—n(51—so)k0p9 .
X kez

o1 ok Po/q
L _ du(y) dt dr
"0 f(y, t)|? — —du(x
/Qk 1 ( “lok—1 /I;(x,Qcot)| ( )| V(yvt) t r ( )

2/ 22—n(51—50)k’9p9_
X kez

cr 1 () <)“mmmww
/12k1 /12k 1/:(:26015 Vi(y,t) t r

~ [lf 1z T,

»Po

This completes the proof of Theorem 3.3.4. m

Remark 3.3.8. Note that this argument shows that

(Tfnké(slfso)

‘fr_k,r—k‘H

ng,q)kGZ = HfHng’q(X;co,cl)
0

0 (7,)

whenever X is AD-regular of dimension n and unbounded, for all py, p1 € (0, c0),
co € (0,00), and ¢; € (1,00). Therefore, since Theorem 3.3.7 also holds for this
range of exponents, to establish the identification (3.16) for pg,p; € (0,00) it
suffices to extend Proposition 3.3.6 to pg, p1 € (0,00). We will do this in the next

section in the Fuclidean case.

3.3.3 Real interpolation: the non-reflexive range

In this section we prove the following extension of Theorem 3.3.4. In what follows,
we always consider R™ as a metric measure space with the Euclidean distance and

Lebesgue measure.

Theorem 3.3.9. Suppose that py,p1 € (0,00), ¢ € [1,00), so # s1 € R, and
0 € (0,1). Then for any ¢y € (0,00) and ¢, € (1,00) we have the identification

(T3 (R™), TSV (R™))opy = Z5) " (R™; co, 1) (3.24)
with equivalent quasi-norms, where p,* = (1—0)py ' +0p; " and sy = (1—0)so+0s;.
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The main difficulty here is that vector-valued Bochner space techniques are
not available to us, as we would need to use quasi-Banach valued LP spaces
with p < 1, and such a theory is not well-developed. Furthermore, although the
weighted tent spaces TP? embed isometrically into LP(X : LY(X ™)) in this range
of exponents, their image may not be complemented, and so we cannot easily
identify interpolants of their images.” We must argue directly.

First we recall the so-called ‘power theorem’ [22) Theorem 3.11.6], which allows
us to exploit the convexity relations between weighted tent spaces. If A is a quasi-
Banach space with quasi-norm ||-|| and if p > 0, then ||-]||” is also a quasi-norm

on A, and we denote the resulting quasi-Banach space by A”.

Theorem 3.3.10 (Power theorem). Let (Ag, A1) be a compatible couple of quasi-
Banach spaces. Let py,p1 € (0,00), n € (0,1), and r € (0,00], and define
p:=(1—=mn)po+np1, 0 :=np1/p, and o :=rp. Then we have

((Ao)™, (Al)pl)n,r = ((Ao, Al)G,U)p
with equivalent quasi-norms.

Before proving Theorem 3.3.9 we must establish some technical lemmas. Re-
call that we previously defined the spaces LI(X™) in (3.14).

Lemma 3.3.11. Suppose z € X, o € (0,00), and let all other numerical parame-
ters be as in the statement of Theorem 3.3.9. Then for all cylindrically supported
f e LYX™T) we have

K(a, 1p f; LT (XF), L1 (X))
= inf  (AY(V ) (2) + aA?(V ) () (3.25)

f=po+ep1

and

K (o, Ip) f3 L, (XT), LE (XT)™)
= inf  (AY(V700)(2)" + a AT (V) (2)) (3.26)

f=wo+p1

where the infima are taken over all decompositions f = oo + 1 in L°(X™T) with

o, 1 cylindrically supported.

SHarboure, Torrea, and Viviani [14] avoid this problem by embedding T into a vector-
valued Hardy space H'. If we were to extend this argument we would need identifications of
quasi-Banach real interpolants of certain vector-valued Hardy spaces HP for p < 1, which is

very uncertain terrain (see Blasco and Xu [25]).

85



Proof. We will only prove the equality (3.25), as the proof of (3.26) is essentially
the same.

Given a decomposition f = g + @1 in L°(X™), we have a corresponding de-

= AV g) (@)

composition 1pe)f = 1ru)@o + Lre)er, with le(x)SDO L9 (X
S0

and likewise for ;. This shows that

K(a,1p@ f; L1 (XT), L1 (XT)) < inf (AQ(V_SOQOO)(J?) +oz.Aq(V_slg01)(a:)).

T f=pote1

For the reverse inequality, suppose that 1p)f = @o + ¢1 in LO(X™T), and
suppose [ is essentially supported in a cylinder C. Multiplication by the char-
acteristic function 1p)nc does not increase the quasi-norms of ¢y and ¢; in
LI (XT) and L? (X™) respectively, so without loss of generality we can assume
that o and ¢; are cylindrically supported in I'(z). Now let f = 1y + 11 be an

arbitrary decomposition in L°(X "), and define

o = Lr@yeo + 1xn\rado,
by = Ir@)pr + 1xnre¥1-

Then f = thy + ¢1 in LO(XT), and we have

ATV =040 () = ANV 00 (2) = |[Tr w20

L3, (XT)

and likewise for 1?1 The conclusion follows from the definition of the K-functional.
m

Lemma 3.3.12. Suppose f € LY(X™). Then Alf is continuous.

Proof. Let f be essentially supported in the cylinder C' := B(e,r) X (Ko, K1).

First, for all x € X we estimate

Al (// 00 705 T )Uq

/q
< <y121f3V(y, Ho)) 1 paxs

S llzaxsy s

using the estimate (3.40) from the proof of Lemma 3.4.1.
For all x € X we thus have

1/q
llir}cLAqf( x) —Alf(2)] < lim (// |1F —1r( ||f(y, £)[e du(y) dt)

2= ( ) t

I
o
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by dominated convergence, since 1p(,) — 1p;) — 0 pointwise as z — z, and since

/a
du(y) dt\'
(//X+ Lr@) — I |1 (y, )] Vit T S WAl pagxy -

Therefore A?f is continuous. O

Having established these lemmas, we can prove the following (half-)extension

of Proposition 3.3.6.

Proposition 3.3.13. Let all numerical parameters be as in the statement of
Theorem 3.5.9. Then for all f € LYX™) the function

2 |[Lee f (L8 (X ), L4, (X))o, (3.27)

is measurable on X (using the discrete characterisation of the real interpolation

quasi-norm,), and we have

Hf | <T§)07Q’T£17q)9,pe

2 o= |t £ 1 LX), L (X))o,

LPo(X)
(3.28)

Proof. First we take care of measurability. Using Lemma 3.3.11, for x € X we

We denote the quantity on the right hand side of (3.20) by Hf | IPed

50,51,0

write

Po
[Tre £ 1 (LX), LE (X))o
_ Po
= 32K (2, 1 f; LY, (XT), LY (X))
kEZ

= Y27 it (AY(V ) (@) + 24NV ) ()

ez f=wo+e1

where the infima are taken over all decompositions f = ¢ + @1 in LO(XT)
with ¢ € LI (X™) and ¢; € L? (X™) cylindrically supported. By Lemma
3.3.12, we have that A9(V~%0¢,) and A9(V"*1¢) are continuous. Hence for
each k € Z and for every such decomposition f = g + ¢; the function z —
A1V =%0p0)(x) 4+ 28 A7(V =511 ) () is continuous. The infimum of these functions
is then upper semicontinuous, therefore measurable.

Next, before beginning the proof of the estimate (3.28), we apply the power
theorem with Ay = TP Ay = TP, py = po, p1 = p1, and o = ps. Then we
have p = pg, n = Opy/p1, r = 1, and the relation py = (1 — n)po + np; is satisfied.

We conclude that
(T30, TP ) g g )P0 22 (T3 )P0, (T )P ) apg /iy 1

) S1
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Thus it suffices for us to prove

Po

£ 1 (@ (T2 oy || 2 [ £ 2202 (3.29)
for all f e LI(X™).
We write
Hf | ((TPoayPo (TPROYPLY g
_ Z 9—kbpo /1 f (2/’<:7 i (TPoayPo, (Tpl,q)pl)
keZ ’ '
_ 9—kbpe/p1 inf ( po 4ok ; q)
S ol (lheulls + 2l
= Zg—k’Hpe/pl inf /Aq V000 ()P0 +2kAq(V 1oy ) ()P dp()
ez f=wo+e1
> S [t (A ) a4 2V ) @) ) dula)
ke x J=poter
_ Z 9 kepe/pl/ K (2k:7 1F(x)f($)§ LZO(X+)pO7Lgl(X+)p1) d,u(x) (3.30)
keZ
= [ 1o 1240 L, P | i)
Po
o [ [t 124,002, (X e[ dito) (3:31)

Po

- Hf ’ 155519

where again the infima are taken over cylindrically supported ¢y and ;. The
equality (3.30) is due to Lemma 3.3.11. The equivalence (3.31) follows from the
power theorem. This completes the proof of Proposition 3.3.13. O

As a corollary, we obtain half of the desired interpolation result.

Corollary 3.3.14. Let all numerical parameters be as in the statement of The-

orem 3.5.9, and suppose that X is AD-reqular of dimension n and unbounded.

(TP, TPH9), s Z099(X; g, ). (3.32)

) S1

Proof. This follows from Theorem 3.3.7, Remark 3.3.8, and the density of LI(X ™)
n (TP, TP9), ,, (which follows from the fact that LI(X ™) is dense in both 7709
and 77, which is due to Lemma 3.2.4). O

We now prove the reverse containment in the Euclidean case. This rests on
a dyadic characterisation of the spaces ZP4(R™; co, ¢1). A standard (open) dyadic
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cube is a set ) C R™ of the form

n

Q = [[(2"x;, 2" (z; + 1)) (3.33)

i=1

for some k € Z and z € Z". For Q of the form (3.33) we set £(Q) := 2* (the
sidelength of @), and we denote the set of all standard dyadic cubes by D. For
every () € D we define the associated Whitney cube

Q=Q x (((Q),20(Q)),

and we define G := {Q : Q € D}. We write R?"! := (R")* = R™ x (0,00). Note
that G is a partition of R up to a set of measure zero.

The following proposition is proven by a simple covering argument.

Proposition 3.3.15. Let p,q € (0,00), s € R, ¢ > 0 and ¢; > 1. Then for all
f e L°RYH),

1/p
i€0,C1) Seg,en (Z E n(1=ps) |f‘ ]p/q> s

QeG

where

1] ]5[ | f(y,t)|* dy dt.

As a consequence, we gain a convenient embedding.

Corollary 3.3.16. Suppose q € (0,00), p € (0,q], and s € R. Then

ZLI(R™) = TPUR™).
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Proof. We have

d dt p/q 1/p
1 rpa ey < - L f(y, )] tgH) da:)
du di p/q 1/p
< (QX: mrx)¢@ )//Q|tnsf(yat)|q tf+1> dx
p/q 1/p
= / (Z onr(z)2o )(Q)‘”Sq[!f|q]Q) dx
QEG
1/p
<[ X 1l e<@>"psnf|q1§;qu) (339
Qeg
1/p
= > Ul ]p/q!{l‘ERn' (x)ﬂQ#g}O
Qeg
1/p
S| 2 U f|e }p/") (3.35)
Qeg

c1)
where (3.34) follows from p/q < 1, (3.35) follows from
{z eR":T(z) NQ # o} = [B(Q.20(Q))| $1Q| ~ £(Q)",

and the last line follows from Proposition 3.3.15. This proves the claimed em-
bedding. ]

It has already been shown by Barton and Mayboroda that the Z-spaces form
a real interpolation scale [21, Theorem 4.13], in the following sense. We will
stop referring to the parameters ¢y and ¢y, as Proposition 3.3.15 implies that the

associated quasi-norms are equivalent.

Proposition 3.3.17. Suppose that all numerical parameters are as in the state-
ment of Theorem 3.3.9. Then we have the identification

(Z51(R"), ZEH(R™))opy = Zig*(R).
Now we know enough to complete the proof of Theorem 3.3.9.

Proof of Theorem 3.3.9. First suppose that py,p1 € (0,2]. By Corollary 3.3.16
we have
Zﬁ’;’q(R”) — Tspj_f’q(R”),
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for j = 0,1, and so
(Z5(R™), ZEHI(R™))o pp = (TL(R™), TEH(R™) o5 -
Therefore by Proposition 3.3.17 we have
ZeI(R™) = (T 1(R™), TEH(R™))o,py
and Corollary 3.3.14 then implies that we in fact have equality,

2309 (R") = (T3 (R™), T2 (R

) S1

This equality also holds for pg,p; € (1,00) by Theorem 3.3.4. By reiteration,
this equality holds for all pg,p; € (0,00). The proof of Theorem 3.3.9 is now
complete. O

Remark 3.3.18. This can be extended to general unbounded AD-regular spaces
by establishing a dyadic characterisation along the lines of Proposition 3.3.15
(replacing Euclidean dyadic cubes with a more general system of ‘dyadic cubes’),
and then proving analogues of Corollary 3.3.16 and Proposition 3.3.17 using the
dyadic characterisation. The Euclidean applications are enough for our planned
applications, and the FEuclidean argument already contains the key ideas, so we

leave further details to any curious readers.

3.3.4 Hardy-Littlewood—Sobolev embeddings

In this section we prove the following embedding theorem.

Theorem 3.3.19 (Weighted tent space embeddings). Suppose X is doubling.
Let 0 < py < p1 < 00, q € (0,00] and sy > s1 € R. Then we have the continuous
embedding

Tid — T

whenever s1 — So = Opy p, - Furthermore, when py € (0,00}, ¢ € (1,00), and a > 0,
we have the embedding
TPO)(] s TOO:(]

S0 S1;0

whenever (1 + ) — Sop = dpy.00-

These embeddings can be thought of as being of Hardy-Littlewood—Sobolev-
type, in analogy with the classical Hardy—Littlewood—Sobolev embeddings of ho-
mogeneous Triebel-Lizorkin spaces (see for example [55, Theorem 2.1]).

The proof of Theorem 3.3.19 relies on the following atomic estimate. Note

that no geometric assumptions are needed here.
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Lemma 3.3.20. Let 1 < p < g < 00 and sy > 51 € R with s; — 59 = 01,.

Suppose that a is a T)9-atom. Then a is in TP, with HGHTQ‘? <L

Proof. Suppose that the atom a is associated with the ball B C X. When p # oo,
using the fact that B(z,t) C B whenever (z,t) € T(B) and that —d,, > 0, we
have

allgpa = [[A2(V " a)]

< [y

LP(B)
L>(T(B)) HAq(V_SOa)H
< W(BY* u(BY" |[all g

< p(B)oritantng

=1,

LP(B)

where we used Holder’s inequality with exponent ¢/p > 1 in the third line.

When p = ¢ = 0o the argument is simpler: we have

_ —s0—01,
HaHTff’w - HV ooaHLoo(T(B))

< HV_JLOOHLOO(T(B)) Hv_soa
< p(B)>=t p(B)*e
=1

‘LOO(T(B))

using the same arguments as before (without needing Holder’s inequality). ]

Now we will prove the embedding theorem. Here is a quick outline of the
proof. First we establish the first statement for py = 1 and 1 < p; < ¢ by using
part (1) of Lemma 3.3.20. A convexity argument extends this to 0 < py < p; < ¢,
with ¢ > 1. Duality then gives the case 1 < ¢ < py < p; < o0, including when
p1 = oo and a # 0. A composition argument completes the proof with ¢ > 1.
Finally, we use another convexity argument to allow for ¢ € (0, 1] (with p; < 00).

To handle the second statement, we argue by duality again.

Proof of Theorem 5.3.19. The proof is split into six steps, corresponding to those
of the outline above.

Step 1. First suppose that f € Tslo’q and 1 < p; < ¢q. By the weighted atomic
decomposition theorem, we can write f = Y, A\rax where each a; is a Tslo’q—atom,

with the sum converging in Tsl(;q. By Lemma 3.3.20 we have

[1£]

vt < Akl -
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Taking the infimum over all atomic decompositions yields the continuous embed-
ding
Tslo’q — Tgl’q (1 <p1 < q < o0, 81— Sy = (517171). (336)
Step 2. Now suppose 0 < py < p1 < q, 81 — S0 = Opyp,, and f € TH. Using
(3.36) and noting that ¢/py > 1 and

PosS1 — PoSo = P05po,p1 - 517p1/po7

we have

1
Hf“Tfll,q — pr() | Tpl/pan/po /pO

Pos1
1/po

< pro | TLa/po

Poso

= [1llgzos
which yields the continuous embedding
TPt — TP (0<po<pi<q<oo, ¢>1, 81—380=0pp) (3.37)

Step 3. We now use a duality argument. Suppose 1 < ¢ < py < p; < o0.
Define my := p}, m = pj, p := ¢, 00 := —51, and 01 := —5¢, With 51— 5o = Opg p, -
Then

01— 0g= —8)+ 81 = 6p0,p1 = 67r0,7r17

and so (3.37) gives the continuous embedding
TroP —y TP,
o o1
Taking duals results in the continuous embedding
Tg}o’q — Tfll’q (1 <qg<po<p <00, 8 —8 = 5;007171)' (338)

Step 4. Now suppose that 0 < py < ¢ < p; < oo and ¢ > 1, again with

$1 — 8o = pyp,- Then combining (3.37) and (3.38) gives continuous embeddings

TPt ey TH9 ey TP =T, (3.39)

50+0pg,q 50+0pg,q+0q,p1 S1

Step 5. Finally, suppose ¢ < 1, and choose M > 0 such that ¢/M > 1.

Then using a similar argument to that of Step 2, with Ms; — Msy = M, », =
0,

'po/M,p1/M

HfHTSPlM = HfM | T]l\’/[l/M,q/M

HI/M
S1

< |l e

S0

= [[fllzzoa -

™
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All possible positions of g relative to 0 < py < p; < oo have thus been covered,
so the proof of the first statement is complete.
Step 6. For the second statement, we let (s1 + ) — So = .00, and first we

suppose that py € (1,00]. Let

m = (1+a)™' €(0,1),
™ = p6 € (1700]7

!
p=9q, 09g=—S, 01 = —Sp.
Then o = 61z, = 0p, 00 and so we have
01— 00 = 51?0700 — o= 51,7F1 - §1Jr0 = 57T0Jr17

which yields

050 1,
TGO — TU1 .

Taking duals yields
TPqu s TOO,q
50

S1,0)

which completes the proof when py € (1, 00]. One last convex reduction argument,

as in Step 2, completes the proof. n

We remark that this technique also yields the embedding 729 < T4 when

50,20 S1,01
(s1+a1) — (so+ ) =0, 5o > s1,and 0 < o < .

Remark 3.3.21. The embeddings of Theorems 3.3.19, at least for p,q € (1, 00),
also hold with ZP? replacing TP on either side (or both sides) of the embed-
ding. This can be proven by writing Z2? as a real interpolation space between
tent spaces TS? ! with p near p and § near s, applying the tent space embedding
theorems, and then interpolating again. These embeddings can also be proven

‘by hand’, even for p,q < 1. We leave the details to any curious readers.

3.4 Deferred proofs
3.4.1 TP>*-L*>* estimates for cylindrically supported func-

tions

The following lemma, which extends [3, Lemma 3.3] to the case ¢ = oo, is used

in the proof that TP is complete (see Proposition 3.2.4).
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Lemma 3.4.1. Suppose that X is doubling and let K C X be cylindrical. Then
for all p € [1,00],

Lk fllgwee Sre Ml Loy S A1 Fllgmes -

Proof. When p = oo this reduces to

H]-Kf||L°°(X+) = ||f||Loo(K) < ||f||Loo(X+)=

which is immediate. Thus it suffices to prove the result for p = 1, for the general
case will then follow by interpolating between the L'(K) — L'(X) and L>®°(K) —
L>°(X) boundedness of the sublinear operator A>. Write K C By X (Ko, k1) for
some ball Bx = B(cg,rx) C X and 0 < kg < K1 < 00.

To prove that |[1x fl[1.e Sk [ f]|pe sy observe that

L fllgroe < Sl poeqey p{z € X - T(x) N K # @}
S lpoeaey Vier, i + K1)

because if x ¢ B(ck,rx + K1) then I'(x) N (Bg X (ko, k1)) = @. Note also that
V(ck, K + K1) is finite and depends only on K.
Now we will prove that || f|| ) Sk |[fll71.- First note that the doubling
property implies that for all R > 0 and for all balls B C X,
inf u(B(z, R)) Zx.rry 1(B). (3.40)

zeB

Indeed, if x € B and R < 2rg then
u(B) < p(B(z, R(2rgR™"))) Sx 2rpR™1)"u(B(z, R)).

where n > 0 is the doubling dimension of X. If R > 2r(B) then since 2rgR™' < 1,
we have u(B) < u(B(x, R)).

Let (z;)jen be a countable dense subset of By. Then we have

K U + KJO K
JEN
By definition the set {(y,t) € K : |f(y,t)] > 27! |]f||LOO(K)} has positive measure,
so there exists j € N such that |f(y,t)| > 27! [ f1| oo sy for (y,t) in some subset
of (I'(x;) + ko) N K with positive measure. Since (I'(x;) + ko) NK C I'(z) N K for
all x € B(z;, ko), we have that A®(f)(z) > 27! [ f [l oo i) for all @ € B(z;, ko).
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Therefore, using (3.40),

o 1
A=l i) 2 5#(3(%‘7%0)) 1o (i)
x5 1B ) [ fl| oo ()
=K ||f||Loo(K)~

This completes the proof of the lemma. O

3.4.2 TP atomic decomposition

As stated above, the atomic decomposition theorem for 77> can be proven by
combining the arguments of Coifman—Meyer—Stein (who prove the result in the
Euclidean case) and Russ (who proves the atomic decomposition of T72(X) for
0 < p <1 when X is doubling).

First we recall a classical lemma (see for example [3], Lemma 2.2]), which
combines a Vitali-type covering lemma with a partition of unity. This is proven
by combining the Vitali-type covering of Coifmann—Weiss [34, Théoréme 1.3] with
the partition of unity of Macias—Segovia [05, Lemma 2.16].

Lemma 3.4.2. Suppose that X is doubling, and let O be a proper subset of X
of finite measure. For all x € X write r(x) := dist(x, 0°)/10. Then there exists

M >0, a countable indexing set I, and a collection of points {x;}ic; such that
e 0= UiGIB(xia r('xi))ﬁ

e ifi,j €1 are not equal, then B(xz;,r(x;)/4) and B(xj,r(x;)/4) are disjoint,
and

e for all i € I, there exist at most M indices j € I such that B(x;,5r(x;))
meets B(x;, br(z;)).

Moreover, there exist a collection of measurable functions {@;: X — [0,1]}ier
such that

e suppy; C B(z;,2r(x;)),

e Y0 = 1o (for each x € X the sum ¥, @;(x) is finite due to the third
condition above).

Now we can follow a simplified version of the argument of Russ, which is
essentially the argument of Coifman—Meyer—Stein with the partition of unity of

Lemma 3.4.2 replacing the use of the Whitney decomposition.
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Proof of Theorem 3.2.6, with ¢ = oo. Suppose f € TP, and for each k € Z
define the set

OF .= {r e X : A°f(x) > 2"}

The sets OF are open by lower semicontinuity of A*f (Lemma 3.2.1), and the
function f is essentially supported in UgezT(O) \ T(Og+1). Thus we can write

F =" 100\ f- (3.41)
kez

Case 1: u(X) = oco. In this case we must have ;(O*) < oo for each k € Z, for
otherwise we would have [[A>f[|;, x) = oo and thus f ¢ T%*. Hence for each
k € Z there exist countable collections of points {z¥};c;x C OF and measurable
functions {p¥},c/x as in Lemma 3.4.2. Combining (3.41) with 3 ,cx 0F = 1ok
and T(OF) c OF x R, we can write

Fut) =303 ef (W) lrornror) (Y, 1) £y, t)

kEZ icIk
= > > a(yt)
kEZ iecIk
Note that
gk E+1
\ || ooy S €SSSUD |fy, )] <277, (3.42)

() gT(OF+1)
the second inequality following from T(O*) = X\ (U,¢or+1T(2)) and the fact
that |f(y,t)] < A®f(z) < 28 for all z ¢ OF and (y,t) € T'(x).
Define
ak .= 2=+ (BRY~1/pgk,

)

where BF := B(zF, 14r(zF)). We claim that af is a TP*°-atom associated with

the ball BF. The estimate (3.42) immediately implies the size condition

so we need only show that a” is essentially supported in T'(BF). To show this, it is
sufficient to show that if y € B(zF,2r(2F)) and d(y, (O%)¢) > ¢, then d(y, (BF)°) >
t. Suppose z ¢ BF (such a point exists because u(BF) < u(X) = o), € > 0 and
u ¢ O such that

k
a;

< w(Bf)r=,

T'o0,00

d(z¥ u) < d(zF, (0")%) + & = 10r(aF) + &
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Then we have

d(y,z) + e > d(z,2}) — d(zf,y) + ¢
> 12r(zF) + ¢
= 2r(zF) 4+ 10r(2F) + ¢
> d(y, 2%) + d(zF,u)
> d(y, u)
>,

where the last line follows from u ¢ O* and d(y, (O* ) ) > t. Since z ¢ BF and
e > 0 were arbitrary, this shows that d(y, (B¥)¢) > t as required, which proves
that a¥ is a TP>-atom associated with BF.
Thus we have
=2 > N,
keZ ieIk
where
A =2 (B

It only remains to show that

Z Z ’)\k‘p S HfHTpoo .

keZ ieI®

We estimate

ST 3 = o S (Bl

keZ ieIk keZ =L
Sx 2220 (B z;)/4)) (3.43)
keZ ielk
< 3 ol ry(OF) (3.44)
keZ
ok
Sp> (e € X - A f(x) > t})dt
k‘EZ 2k—1
= ||'Aoof||zj;p(X)
= [[fllzroe s

using doubling in (3.43) and pairwise disjointness of the balls B(z¥,r(z¥)/4) in
(3.44). This completes the proof in the case that u(X) = oo.
Case 2: j(X) < oo. In this case we may have O = X for some k € Z, so

we cannot apply Lemma 3.4.2 as before. One can follow the argument of Russ
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[81, page 131], which shows that the partition of unity is not required for such k.
With this modification, the argument of the previous case still works. We omit
the details. O]
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Part 11

Abstract Hardy—Sobolev and
Besov spaces for elliptic
boundary value problems with

complex L°° coeflicients
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Abstract

We establish a theory of Besov—Hardy—Sobolev spaces adapted to operators which
are bisectorial on L2, with bounded H> functional calculus on their ranges, and
satisfying off-diagonal estimates. We apply these spaces to the study of well-
posedness of boundary value problems associated with elliptic systems div AVu =
0 with complex t-independent coefficients on the upper half-space, and with
boundary data in classical Besov—Hardy—Sobolev spaces.

In the range of exponents for which the Besov—Hardy—Sobolev spaces adapted
to the perturbed Dirac operator DB are equal to those adapted to the unper-
turbed operator D (where B is a bounded multiplier associated with A), we show
that well-posedness of a boundary value problem is equivalent to an associated
projection being an isomorphism. This is done by classifying all solutions to
Cauchy-Riemann systems associated with DB, or equivalently all conormal gra-
dients to solutions of div AVu = 0, within certain weighted tent spaces and their
real interpolants. Our approach uses minimal assumptions on the coefficients A,
and in particular does not require De Giorgi-Nash—Moser estimates.

As an application, for real coefficient scalar equations, we extend known well-
posedness results for the Regularity problem with data in Hardy and Lebesgue
spaces to a large range of Besov—Hardy—Sobolev spaces by interpolation and du-

ality.
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Chapter 4

Introduction

4.1 Introduction and context

This main focus of this article is the well-posedness of boundary value problems

associated to divergence-form elliptic systems

Lau :=divAVu =0, (4.1)

where the unknown is a C™-valued function u on the upper half-space Rf" =

{(t,z) € R™" : ¢ > 0}. We work in ambient dimension 1+ n > 2, with m > 1.
The special case m = 1 corresponds to a scalar equation rather than a system.
The gradient operator V sends C™-valued functions f to C™1+™_valued func-
tions (C™-valued vector fields) V f by considering f = (f/)7-, as an m-tuple of
C-valued functions, and acting as the usual gradient operator componentwise.
The divergence operator div is defined similarly, sending C™*™-valued func-
tions to C™-valued functions. These differential operators are interpreted in the
weak (distributional) sense. Vectors v € C™*™ are split into transversal and

tangential parts v = (vy,v)) according to the splitting
(Cm(l-‘rn) —C" (Cmn7 (42)

and likewise functions f with codomain C™(!*™) can be split into transversal and
tangential parts f = (f1, fj), with codomains C™ and C™" respectively. We write
V|| and div| for the corresponding tangential restrictions of V and div.
Throughout the entire article we assume (unless explicitly stated otherwise)
that the coefficient matrix A € L=®(R%™ : £(C™1*™)) is bounded, measur-
able, complex, and t-independent, meaning that A(t,z) = A(z) for almost every
(t,7) € RY™. Thus we may identify A as an element of L®°(R" : £(C™U+M)),
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Furthermore we assume that A is strictly accretive on curl-free vector fields, in
the sense that there exists k > 0 such that

Re [ (A (o), £(@)) do = w1 (43)

for all f € L2(R™ : C™+™) such that curlj(f|) = 0. The round bracket in the
integrand above is the usual Hermitean inner product on C™+™. By curl(f)) =
0 we mean that

O;frx = Onfj (1<k,j<n, k#j),
with (weak) partial derivatives acting componentwise on C™-valued functions.
The strict accretivity condition (4.3) is weaker than the usual notion of pointwise

strict accretivity
Re(A(z)v,v) > klv|? (veCcm*t g eR")

unless m = 1, in which case these two notions are equivalent (see [3, §2]).
We always consider weak solutions to (4.1). That is, we say that a function
u € Wi (R : C™) solves (4.1) if for all ¢ € Ce°(RE™ . C™) we have

//R (A(z)Vu(t,z), Vo(t, z)) dz dt = 0.

4.1.1 Formulation of boundary value problems

One can formulate various boundary value problems associated with the equation
Lau = 0. First, for 1 < p < oo, we formulate the LP-Dirichlet problem for Ly,
denoted by (Dg)p 4:

Liu=0 in R
(Du)o.a: | limesou(t,-) = f e LP(R™: C™),
Nl Sl s
This should be read:
for all f € LP(R™: C™),
there exists u € W2, .(R\*" : C™) solving Lau = 0,

with u — f in LP (the boundary condition),
such that [[N.ull, < |[f]], (the interior estimate).

Here N, is the non-tangential maximal function

Noa(z) == sup |u(t,y),
(t.y) el (z)
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where T'(z) is the cone in RY™ based at z (defined in Subsection 5.1.2). We say
that the problem (Dp)g 4 is well-posed if for all f € LP(R™ : C™) there exists a
unique u satisfying these conditions.

For all of the boundary value problems that we consider, well-posedness is
defined analogously: for all boundary data, there must exist a unique solution
(modulo constants, for Regularity and Neumann problems) which satisfies the
stated conditions.

Next, for n/(n+1) < p < oo, we formulate the H?-Regularity problem for L 4:

LAU =0 in R}ﬁrn,
(RH)g,A : liIIAlf_,o VHu(t, ) = V”f S Hp(Rn : (Cmn),
1Xvwf,, s [917]

e’

where ]A\f;u is the modified non-tangential maximal function

1/2

N.u(z) :== sup (é[ lu(r, &) |* dr d§> (4.4)
(t,y)el(z) Q(t,y)

(the Whitney region Q(t,y) is defined in Subsection 5.1.3), and where H?(R" :

C™) is the (C™"-valued) real Hardy space, which may be identified with LP(R™ :

C™) when p > 1.

Remark 4.1.1. If f is a distribution with V| f € HP(R" : C™"), then f may be
identified with an element of H?(R"™ : C™) (the C™-valued homogeneous Hardy—
Sobolev space of order 1, defined in Subsection 5.1.5), and the boundary condition
limy o Vju(t,-) = V| f € HP(R™ : C™) is equivalent to the condition
%i_r}réu(t, ) =feH)R":C™).

Therefore, by considering potentials rather than tangential gradients, we can see
the HP-Regularity problem as a kind of H?-Dirichlet problem. Conversely, by
shifting viewpoint from functions to their tangential gradients, the LP-Dirichlet
problem (Dy)g 4 can be seen as a kind of HP” -Regularity problem. It will be
technically convenient for us to consider Regularity problems rather than Dirichlet

problems.

For n/(n+ 1) < p < oo, we also formulate the H?-Neumann problem for L4,

LAU =0 in R_lﬁ_n,
(N)o.a: { limeso Oyult, ) = 0,,f € HP(R™: C™),
[NV, S 100l
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where the A-conormal derivative 0,, of u is given by
Oy u(t, ) = —eg - AVu(-, 1), (4.5)

where —ey is the normal vector to R® C R relative to R

The boundary value problems (Dy)g 4, (Rr)g 4, and (Ng)g 4 are all problems
of order zero:' in each of these problems, the interior estimates are in terms of
boundary data in either the Lebesgue space LP or the Hardy space H?. One can
also formulate Regularity and Neumann problems of order —1.

For 1 < p < oo, the H?,-Regularity problem, which is similar to the LP-
Dirichlet problem but with a different interior estimate? and a decay condition
at infinity (see Remark 4.1.1), is

Lau=0 in Ry,
/=LA limy oo Vyu(t,) =0 in Z'(R™: C™")
1Vl S {[Vif]

ar, -’

Here Z'(R"™ : C™") is the space of C™"-valued tempered distributions modulo
polynomials; this is the natural space in which all homogeneous Hardy—Sobolev
and Besov spaces are embedded. We can enlargen the range of exponents to

‘D > o0’; this is done rigorously by using BMO and the homogeneous Holder
spaces A,. For 0 < o < 1 we define

LAu =0 in R},_+n,
limyo Vju(t, ") = V| f € Agoi (R : C™),
limy oo Vyu(t,-) =0 in Z'(R" : C™)
<
IVull S ||Vid]l;

(Ru)' %

and furthermore, with a = 0,

Lau=0 in R{™,
limyo Vju(t,-) = V| f € BMO_;(R" : C™),
lim;_, o V”u(t, )=0 in Z/(R": C™)

HVUHTS%;O S HV“fHBMo,l '

'We use the term ‘order’ here, since there is no confusion with this ‘order’ and the fact
that these are boundary value problems for ‘second-order’ elliptic equations. We could use the
term ‘regularity’ instead, but this would probably cause more ambiguity with the Regularity
problem.

%It is known that H]\Nf*u ‘LP S ||Vu||Tf1 in the range of p that we shall deal with, but the
converse is in general not known.
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The spaces BMO_1 and Aa_l are best considered as the homogeneous Triebel—-
Lizorkin space F°3? and Besov spaces B> respectively, as their negative or-
ders prevent traditional (i.e. non-Littlewood—Paley) characterisations in terms of
smoothness. For these problems the limit in the boundary condition is imposed

in the weak-star topology.

With the same ranges of p and «, we also define order —1 Neumann problems
(Ne)?1 4, (N H)(_Oi’z), and (N, H)(_?ﬁ) in the same way, with tangential gradients

V| replaced by A-conormal derivatives d,, in the boundary condition (we keep

VA
V) in the decay condition at infinity).
Note that in the ‘order —1’ problems above, we impose a tent space estimate
on Vu rather than a nontangential maximal function estimate. The weighted
tent spaces T7; and T°],, are defined in Subsection 5.1.2. We also impose a
decay condition on the tangential gradient V| u at infinity. For p sufficiently
small this is implied by the other conditions; we remark that if L, satisfies a De
Giorgi-Nash-Moser condition (see (7.51)) then it is implied for all p < oo, and

also for some range of a > 0. (see Lemma 7.2.1).

Remark 4.1.2. We have not imposed any nontangential convergence of solutions
to boundary data in the problems above. This is because the classification theo-
rems of Auscher and Mourgoglou, in particular [15, Corollaries 1.2 and 1.4], auto-
matically yield almost everywhere (a.e.) non-tangential convergence of Whitney
averages (of either the solution or its conormal gradient, whichever is relevant)
to the boundary data. When the operator L, satisfies a De Giorgi-Nash—Moser
condition (see (7.51)) this can be improved to a.e. non-tangential convergence

without Whitney averages.

Let us summarise the problems we have introduced so far. There are Dirichlet
problems of order 0 and 1 (seeing the HP-Regularity problem as a H?-Dirichlet
problem), Regularity problems of order 0 and —1, and Neumann problems of
order 0 and —1.

In their recent monograph [21], Barton and Mayboroda consider problems
of intermediate order. They formulate Dirichlet problems of order § € (0,1)
and Neumann problems of order § € (—1,0) as follows.® For 0 < # < 1 and

3We have a different indexing convention, where we index our problems according to the
order of the boundary function space used in the interior estimate. Barton and Mayboroda
refer to (Np)§_; 4 as (N)} 4. Also, Barton and Mayboroda only consider scalar equations, i.e.

the case m = 1.
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n/(n+0) <p < oo,

Lau=0 in R,
(Dp)pa:{ Tru=fe ByP(R":C™)
IVull o2 S Nl gpe s

and
Lau=0 in R{™,

(NB)g—l,A : aVAu|6]R1j" =0, f € Bgf1(Rn : C™)
||VU||L(p,9,2) S ||auAf||Bgfl .

The Besov spaces BY? are defined in Subsection 5.1.5. The spaces L(p, 6, 2) are

defined by the norms

F = // <7§[ R (r, € 2d§d7’> dx —
11500 ( L e t

with the usual modification when p = oco. We will refer to these spaces as Z-
spaces starting from Subsection 5.1.3 (the letter L already being overused), with
an indexing convention such that Zj = L(p,0+1,2). The boundary condition for
(Dp)p. 4 is phrased in terms of the trace operator, which is shown to be bounded
from W (p,#,2) (the space of functions whose gradients are in L(p,6,2)) to By”
when p > n/(n+0) [21, Theorem 3.9]. A similar argument is used to define the
boundary conormal derivative 0, ,u| ARLH™ -

As we stated earlier, it will be technically convenient for us to consider Reg-
ularity problems rather than Dirichlet problems. We would also prefer to stick
with problems of order between —1 and 0. To this end we define, for —1 < 8 < 0
and p such that n/(n+60+1) < p < oo,

Lau=0 in RY™,
(Ro)? lim, o Vu(t,) = V| f € ByP(R™ : C™)
BOA Y limy oo Vju(t,-) =0 in Z'(R": C™)
1Vull 5 < ||V f]

o
and

Lau=0 in R}

limy_o O, u(t, ) = 0,,f € BEP(R" : C™)
limy oo Vyu(t,-) =0 in Z'(R": C™)
||VU||zg S ||8VAf||Bg’P7

(NB>§,A :
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replacing the trace conditions with limiting conditions for consistency with the
‘endpoint order’ problems that we have already defined,’ writing Z} instead of
L(p,0+1,2), and including a decay condition at infinity. When p = co we impose
the boundary condition in the weak-star topology. If we omit the decay condition
at infinity, the Regularity problem (RB)Q 4 Is equivalent to the Dirichlet problem
(DB)gy1.4 defined above by an argument similar to that of Remark 4.1.1, and
the Neumann problem (Np)p 4 is simply a rewriting of the previously-defined
Neumann problem.

The Besov spaces Bg’p with € (—1,0) are not the only function spaces
situated between H{ and H? ;- One can also consider the Hardy—Sobolev spaces
H? with 6 € (—1,0). These are defined in Subsection 5.1.5; they may be identified
with the homogeneous Triebel-Lizorkin spaces ng 2 whereas the Besov spaces
BY? may be identified with F}” when p < oo. We use Hardy-Sobolev spaces to
formulate the following Regularity and Neumann problems, with —1 < § < 0 and
n/(n+6+1)<p<oo,

Lau=0 in R}

(Ra)? s lim;_,g V”u(t, )= Vfe€ H)(R™: C™)
04 limy o Vyu(t,-) =0 in Z'(R™: C™)

1Vully < |[Vaf]

Hy
and
Lau=0 in RY™,

limy_,0 0, u(t,-) = 0,,f € H(R": C™)

limy oo Vyu(t,-) =0 in Z'(R* : C™)

IVullge S 1Ouafll g2 -

Furthermore, for —1 < ¢ < 0 we formulate ‘endpoint’ problems (Ry)3%, and
(Nu)ges by replacing H? with the homogeneous BMO-Sobolev space BMOy,
which may be identified with the homogeneous Triebel-Lizorkin spaces F;O 2,

(NH)g,A :

In this case the boundary condition is imposed in the weak-star topology. In
contrast with the boundary value problems with Besov space data, in these cases
there is no trace theorem for the function space defined by Vu € T (this is
also the case for 6 = —1 and # = 0 with the spaces defined by Vu € T"; and
N,(Vu) € LP respectively).

Let us briefly summarise the Regularity and Neumann problems that we have

introduced. At order zero we have problems (Rp)g 4 and (N)p 4, which have

4The trace conditions may be removed by invoking [21, Theorem 6.3], the trace theorem for

functions with gradients in ZJ.
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boundary data in H? and a modified non-tangential maximal estimate on the
interior. At order —1 we have (Rp)”, 4 and (N H) 1.4, With boundary data in
HP, and a T?, interior estimate, and also (Ry)" A Vand (N, H)(Oo V) with boundary
data in A,_; (or BMO_; when a = 0) and a 1., interior estimate. In between,
i.e. for order § € (—1,0), we have (Rp)j 4 and (Np)j 4 with boundary data in
BY?. and (Ru)y.4 and (Ng)p 4 with boundary data in HY. In these cases the
interior estimates are in Z) and T} respectively. For all problems of negative
order we also impose a decay condition on Vju(t,-) as t — oo in the space Z’ of
tempered distributions modulo polynomials. In many cases this decay condition
is redundant (see Lemma 7.2.1).

Note that for p = 2 and for all s, the problems (Ry)?, and (Rp)?, (and
likewise for Neumann problems) coincide, since H? = B>? and Z2 = T2.

4.1.2 The first-order approach: perturbed Dirac opera-

tors and Cauchy—Riemann systems

Let D denote the differential operator on C™(*™)_valued functions given by

D 0 div

with respect to the transversal /tangential splitting (4.2) of C™*™) . We refer to D
as a Dirac operator, because D? acts as the tangential Laplacian A\ on transversal
functions. Suppose that B € L*(R™ : £(C™!*™)) is a bounded coefficient
matrix satisfying the same assumptions as those we previously assumed on A:
boundedness, measurability, complexity, t-independence, and strict accretivity
on curl-free vector fields. We refer to the operator DB as a perturbed Dirac
operator.

The Cauchy—Riemann system associated with DB is the first-order partial

differential system

(4.6)

OF + DBF =0 in R
(CR) b i+ in i ,
curl Fy =0 in RY™

i.) sense: that is, we say that F' € LIOC(R}J" ; (Cm(1+n)>
solves (CR)pp if for all test functions p € C°(RY™ : Cm(1+n)),

// F(t,x),0p(t,x)) dedt = // F(t,z), B (x)Dp(t,x)) dx dt
Rl+n R1+n
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and for all i € CX(RY™ :C™)and 1 < j bk <n, j #k,

//RHn Fy(t, ), 0;0(t,x)) dedt = //Run (t, ), O (t,x)) do dt.

The condition curly Fj = 0 is equivalent to the condition F' € R(D), the range
of D (considered as acting on C™+™_valued distributions modulo polynomials),
and so the Cauchy-Riemann system (CR)pp may be considered as an evolution
equation in the space R(D).

The first-order approach to boundary value problems for elliptic systems
L u = 0 exploits a correspondence between these elliptic systems and Cauchy—
Riemann systems (CR)pp. Recall that A € L®(R"™ : £L(C™1F™)). Write A in
matrix form with respect to the transversal/tangential splitting (4.2) of C™(+m)

as
Al Ay

Aje Ay

A= (4.7)

and using this representation of A define auxiliary matrices

Al Ay
0 I

I 0
A Ay

A= and A :=

in L°(R" : £L(C™1+M)). Strict accretivity of A implies that A, is invertible in
L>®(R" : £L(C™)), and so A is invertible in L>(R™ : £(C™1+™)). Thus we may
define
A= AZ_I
The transtormed coefficient matrix A is bounded and strictly accretive on curl-
free vector fields as in (4.3), and A = A [3, Proposition 3.2].
The A-conormal gradient V qu of a function u: RY™ — C™ is defined by

VAU = s (4.8)

V”u

where the A-conormal derivative 9, is defined in (4.5). Notice that the compo-
nents of V qu are exactly the quantities appearing in the boundary conditions of
the Regularity and Neumann problems. This explains our preference for Regu-
larity problems over Dirichlet problems.

The following theorem, due to Auscher, Axelsson (Rosén), and McIntosh, pro-
vides a bridge between elliptic equations L u = 0 and Cauchy—Riemann systems
(CR)pp. See [3, §3], [7, Proposition 4.1], [79, §2], and [15, Lemma 7.1] for proofs

and discussions.
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Theorem 4.1.3 (Auscher-Axelsson-McIntosh). Let A be as above, and let B =
A. If u solves Lau = 0, then the conormal gradient V qu solves the Cauchy—
Riemann system (CR)pg. Conversely, if F' solves (CR)pg, then there exists a

function u, unique up to an additive constant, such that L u =0 and F = V zu.

Therefore in our consideration of elliptic systems we may focus on Cauchy-
Riemann systems if they are more useful. The principal advantage of Cauchy—
Riemann systems over elliptic equations is that the Cauchy equation O;F +
DBF = 0 can be solved by semigroup methods. We will sketch how this is
done, following Auscher, Axelsson, and McIntosh [3] and Auscher and Axelsson
[7]. This approach is the foundation for the rest of the article.

Consider D as an unbounded operator on L? := L2(R" : C™*™) with natural
domain, and consider B as a multiplication operator on L?. Then, still assuming
strict accretivity of B on R(D),” the composition DB is bisectorial and has
bounded H* functional calculus on its range [3, Proposition 3.3 and Theorem
3.4].5 This is a highly non-trivial fact: it is part of the framework developed by
Axelsson, Keith, and McIntosh [19], which encompasses the solution of the Kato
square root problem [9].

Using the direct sum decomposition
L? = N(DB) @ R(DB)

which follows from bisectoriality of DB, along with the bounded H* functional

calculus associated with DB on R(DB), we obtain a decomposition

L>=N(DB)&R(DB) & R(DB) .

The positive and negative spectral subspaces 72(DB)i are the images of R(DB)

under the projections y=(DB), which are defined via the functions x*: C\ iR —
{—1,1} given by
XF(2) = 1.t Re(2)>0;
X and y~ are the characteristic functions of the right and left half-plane respec-
tively. They are bounded and holomorphic on every bisector, so they fall within
the scope of the H*® functional calculus.
On the positive spectral subspace WJF we can construct a strongly con-

tinuous semigroup (e=*PB),.o via the family of functions (z + e7%);0, which

SR(D) denotes the closure of the range of D in L?(R™ : C™(1*+")) We can obviously restrict
attention to such functions when defining ‘strict accretivity on curl-free vector fields’.
6These notions are properly discussed in Section 5.2.1.
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are holomorphic and bounded on the right half-plane. For each f € R(DB)Jr we

may construct a generalised Cauchy operator C} g f, defined by

(Chpf)(t ) = (7P f)(x).

The following theorem is a combination of parts of [3, Theorem 2.3] and [7,
Corollary 8.4].

Theorem 4.1.4 (Auscher-Axelsson-McIntosh). If f € R(DB)+, then Chpf
solves (CR)pp, with

[N(ChaD||, = 11fll,  and  lm(ChpP(E) = f in L.

Conversely, if F solves (CR)pp and N,(F) € L2, then F = C}4f for a unique
feR(DB)".

By combining this with Theorem 4.1.3, we obtain a new characterisation of
well-posedness of the boundary value problems (Rpy)j 4 and (Ng)g 4. Consider
the H2-Regularity problem (Ry)2 4 and let B = A. A function u solves Lyu = 0
with N,(Vu) € L? (Vu and V 4u are interchangeable in this assumption) if and
only if V 4u = C},zg for some g € W+, and therefore Vu(t,-) = (CHpg) (1))
and lim;_,o Vju(t,-) = g. Hence (Rp)j 4 is well-posed if and only if g — g is an
isomorphism from R(DB)Jr to L*(R™ : C™) NN (curl)). By the same argument,
(Nu)§ 4 is well-posed if and only if g — g, is an isomorphism from WJF to
L*(R™: C™).

By characterising solutions to (CR)pp within various function spaces, we can

reduce well-posedness of corresponding Regularity and Neumann problems to
proving that the transversal and tangential restriction maps are isomorphisms
between certain function spaces ‘on the boundary’. However, in this section we
only described how to handle boundary value problems of order 0 with L? bound-
ary data. We shall extend this technique to boundary value problems of more

general order, and beyond L2.

Adapted function spaces

‘Adapted’ Hardy spaces HY, with respect to which some operator L has good
properties (such as bounded H* functional calculus), have been developed in
various contexts. For example, Hardy spaces of differential forms on Rieman-
nian manifolds were constructed by Auscher, McIntosh, and Russ [13] (these are

adapted to the Hodge-Dirac operator d + d* on the de Rham complex); Hardy
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spaces adapted to non-negative self-adjoint operators satisfying Davies—Gaffney
estimates on spaces of homogeneous type were studied by Hofmann, Lu, Mitrea,
Mitrea, and Yan [!8] (generalising the work of Auscher, McIntosh, and Russ);
Hardy spaces adapted to divergence-form elliptic operators on R" were devel-
oped by Hofmann and Mayboroda [19] and also McIntosh [50]. This is a very
small sample of the work that has been done.

Hardy spaces HY,z and Sobolev spaces W, 5 adapted to perturbed Dirac
operators DB were introduced by Auscher and Stahlhut [10] (see also Stahlhut’s
thesis [24]).” These spaces consist of C™1*")_valued functions (at least formally);

the simplest case is
H2DB = W cL?= LQ(R" : Cm(1+n)).

The bounded H* calculus of DB on H%p extends by boundedness to HY, 5 and

W7, pp, yielding spectral decompositions
7+ T J— ) T
H%B = HpDB D H%Bv W]iLDB = ng,DB D Wlil,DB'

Furthermore, the Cauchy operator Cf,5 on W+ extends to operators on
H7; and WP 5, both of which we denote by CJ .

The main application of these spaces, which incorporates results from both
[16] and the subsequent work of Auscher and Mourgoglou [15], is a classification of
solutions to the Cauchy—Riemann system (CR)pp with various LP-type interior
estimates, for p such that certain DB-adapted spaces may be identified with
D-adapted spaces.®

Theorem 4.1.5 (Auscher-Mourgoglou-Stahlhut). Let 1 < p < oo be such that

HY,, ~ HY,.
') € i, then solves DB, Wit
If f € YL, then Chgf solves (CR h
INACHN|| = Wl and T Chyf(t)=f in HP.

Conversely, if F solves (CR)pg and N,F € LP, then F = Chzf for some
feHhy,.

"We will not define HY, 5 here, but only mention that it is defined, along with more general

spaces, in Section 6.1.
8For simplicity we only state results for 1 < p < oo here. Corresponding results for p < 1

and p = oo (BMO and Hélder spaces) are also available.
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(ii) If f € WP g, then Chyf solves (CR)pp, with

I

o =W, and  mChpf(e) = i W,

Conversely, if F € T?, solves (CR)pp and lim_,o F(t)] = 0 in Z'(R"),
then F = C}zf for some f € W—IDB

Furthermore, Auscher and Stahlhut [16, Theorem 5.1] show that for every
B there exists an open interval Io(H, DB) > 2 such that HY,; ~ HY, for all
p € Iy(H, DB), thus yielding a nontrivial range of exponents for which Theorem
4.1.5 applies.

As we described in the p = 2 case, Theorem 4.1.5 implies a characterisation of
well-posedness of various Regularity and Neumann problems, both of order 0 and
order —1, in terms of certain transversal and tangential restriction maps being
isomorphisms. We will state our extension of this result in Theorem 4.1.7.

The main goal of this article is to extend Theorem 4.1.5 to order

€ (—1,0), incorporating both Hardy—Sobolev spaces and Besov spaces.
To this end, we introduce Hardy-Sobolev spaces HY ; and Besov spaces BY |
adapted to operators L satisfying ‘standard assumptions’, which are satisfied in
particular by the perturbed Dirac operators DB and BD. We define extension

operators

(Quef)(t) =w(tL)f  (t>0,f € R(L))

for appropriate holomorphic functions ¢, and the adapted Hardy—Sobolev and
Besov norms are then, roughly speaking, defined by

Al | = 11Qy,
s, L

£z,

These definitions are reminiscent of the ¢-transform characterisations of Triebel—~
Lizorkin and Besov spaces due to Frazier and Jawerth [38], with functional cal-
culus and tent/Z-spaces taking the place of discretised Littlewood—Paley decom-
positions and sequence spaces.

Chapters 5 and 6 are occupied with setting up a sufficiently rich general
theory of adapted Hardy-Sobolev and Besov spaces. The theory is relatively
straightforward once enough preliminaries have been collected, but this takes
some time. We point out in particular the amount of work needed to establish
independence on ¢ of the spaces HY ; and BY ; (essentially all of Sections 5.2.3
and 5.2.4) and the care which must be taken in discussing completions (Subsection

6.1.3), which is necessary to discuss interpolation.
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4.1.3 Characterisation of solutions to CR systems, and
applications to well-posedness

The main theorem of this article is the following classification of solutions to

the Cauchy—Riemann system (CR)pp. In this statement we restrict ourselves to

1 < p < 0o. Our theorem allows for p < 1 and p = oo, but the corresponding

results are better stated in terms of the ‘exponent notation’ that we introduce

in Subsection 5.1.1. See Theorems 7.3.1 and 7.3.2 for the full statements of this

result.
Theorem 4.1.6. Let —1 <s<0and1<p< oo.

(i) Suppose that HY [,z = HE . If f € HY ], then Chyf solves (CR)pp, with

|Chs1]

=Wl and TmChaf()=f in A,

and furthermore lim;_,o. CHpf(t)) = 0 in Z'(R™). Conversely, if F € TP
solves (CR)pp and limy_,o F(t)) =0 in Z'(R"), then F = CLzf for some
VS HE,%B-

(ii) Suppose that BY ,p =B . If f € BU'f 5, then Chgf solves (CR)pg, with

|Chas]

=Wl and Y Chuf()=f in B

and furthermore limy_,o. CLpf(t)) = 0 in Z'(R™). Conversely, if F € Z?
solves (CR)pp and lim_,o F(t)) =0 in Z'(R"), then F = Chgf for some
VS Bi,’BB-

Parts (i) and (ii) of this theorem are essentially identical, the only modifica-
tions being the replacement of (adapted) Hardy—Sobolev spaces with (adapted)
Besov spaces, and of tent spaces with Z-spaces. In fact, our arguments apply
equally to both parts, and we prove them simultaneously. Although the theo-
rem can be thought of as ‘intermediate to’” Theorem 4.1.5, it does not simply
follow by any interpolation procedure. It is proven similarly, but the underlying
techniques must be generalised, and this takes a considerable amount of work.
Neither direction is easy, but the ‘converse’ direction is certainly the harder one.

Starting from information on the intervals Io(H, DB), I[((H,DB*) > 2 (as
given by Auscher and Stahlhut), a procedure of ‘©-duality’ and interpolation
allows us to find non-trivial regions I(H, DB) and I(B, DB) of exponents (p, s)
for which Theorem 4.1.6 applies (this is done in Subsection 6.2.1).
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With Theorem 4.1.6 as a springboard, we are able to extend the characterisa-
tion of well-posedness of Regularity and Neumann problems, described for p = 2
after the statement of Theorem 4.1.3 and then extended to p # 2 and s € {—1,0}
by Auscher, Mourgoglou, and Stahlhut, as follows.

When —1 < s <0and 1 < p < oo (and in fact for a slightly larger range of
exponents), HY j, is equal to the set of those f € HP(R™ : C™(+7) with curly fj =
0. Let N, and Ny denote the projections from HY , onto HY | := HP(R" : C™)
and HY | = HP(R™ : C™) NN (curl)) respectively. For (p, s) as in Theorem 4.1.6
we have an identification of HZ;’E p as a subset of H? ,, and so we can use the

projections IV, and N to define
N(pvs) . HP,+ — HP and N(Pﬁ) . HP7+ — HP
H.DB,|- s DB 5| H,DB,L - s DB 5,1
Corresponding definitions of N 1(5 ’5)37" and N g 5)37 | are also made for Besov spaces.
It is these operators that carry the well-posedness of Regularity and Neumann

problems, as shown by the following theorem.” The s € {—1,0} endpoints follow
from Theorem 4.1.5.

A

Theorem 4.1.7. Let B = A, —1 < s <0, and 1 < p < oo. Suppose that
H, ) = H . Then (Rg)} 4 (resp. (Nu) 4) is well-posed if and only if NI%B)B,\\

(resp. Ng’g)B7L) s an isomorphism. The same results hold mutatis mutandi for

Besov spaces.

For all coefficients A, the Lax—Milgram theorem guarantees well-posedness of
the problems (Rp)?, /5 4 and (Nu)?, 5 4 (see [12, Theorems 3.2 and 3.3]). We
refer to solutions of these boundary value problems as energy solutions. There
are certain situations where (Rp)? 4 is well-posed for some (p, s), but where the
unique solution to (Rg)% 4 with boundary data f € H31/2 N H? (energy data)
is not the corresponding energy solution. This is shown in [1%] for the Dirichlet
problems. This behaviour shows why we insist on specifying an interior estimate
in the definitions of our boundary value problems.

We say that a boundary value problem (as above) is compatibly well-posed if it
is well-posed, and if in addition the unique solution to the boundary value problem
with energy data is the energy solution. By Theorem 4.1.7, (Ry)? 4 is compatibly
well-posed if N g ’157)37” is an isomorphism, and if the inverses (N g’g)B’”)*l and

(N 1(5 ’5;/7 ﬁ))’l are consistent, in the sense that they are equal on the intersection

9The full theorem (Theorem 7.4.4) allows for p < 1 and p = oo (and again, uses new

‘exponent notation’).
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allows us to interpolate compatible well-posedness as a straightforward corollary

‘ NH?, /2, (and likewise for Neumann problems, and with Besov spaces). This

of Theorem 4.1.7.1° Furthermore, by using real interpolation, we can deduce
compatible well-posedness of boundary value problems with Besov boundary data

from that of those with Hardy—Sobolev boundary data.

Theorem 4.1.8. Suppose —1 < sg,51 <0, 1 < pg,p1 < 00, and o € (0,1), and

let
1 1—
- = a—i-g and s=(1—a)sy+ asy.
p Po Y41

(i) ]fHS o =H p, for j=0,1, and if (Rg)% 4 and (Rp)y 4 are compatibly
well-posed, then (RH)&A is compatibly well-posed, and furthermore if sg # s1
then (Rp)} 4 is compatibly well-posed.

(i) If BY pp = B, p for j = 0,1, and if (Rp)% 4 and (Rp)%; 4 are compatibly
well- posed, then (Rp)% 4 is compatibly well-posed.

Corresponding results are also true for Neumann problems.

Since invertibility is stable in complex interpolation scales, well-posedness of

our boundary value problems is also stable, in the following sense.!!

Theorem 4.1.9. Let —1 < s <0 and 1 < p < oo, and suppose that HY, pp =
HY ,, for all (po, s0) in some neighbourhood of (p,s) (in the usual topology on
R?).  Suppose also that (Ry)t 4 is (compatibly) well-posed. Then (Ry)% , is
(compatibly) well-posed for all (p1,s1) in some neighbourhood of (p,s). Similar
results hold for Neumann problems and with Besov spaces.

Note that well-posedness extrapolates to well-posedness, and compatible well-
posedness extrapolates to compatible well-posedness.

Finally, we have the duality result for well-posedness.'?

Theorem 4.1.10. Let —1 < s < 0 and 1 < p < oco. Then (Rg); 4 is (compati-
bly) well-posed if and only if (RH) ¥ e_1.4+ 18 (compatibly) well-posed, and similar

results hold for Neumann problems and with Besov spaces.

10As with the other theorems, we have not stated this in full generality. The full result is
Theorem 7.4.5.

" The full result here is Theorem 7.4.6.

12Gee Theorem 7.4.8.

120



Note that the mapping (p, s) — (p’, —s — 1) can be seen as a reflection about
the point (1/2,—1/2) in the (1/p, s)-plane. This corresponds to what we will
later refer to as ‘O-duality’.

These theorems can be used to derive new well-posedness results for Regularity
problems (Rpy)% 4 with fractional order s € (—1,0), and also to derive known
results for (Rp)? 4 which were recently obtained by different methods by Barton
and Mayboroda [21]. For details see Subsection 7.4.2.

4.2 Summary of the article

In Section 5.1 we introduce the various function spaces that we use, their basic
properties, and their interrelations. There are two types of function spaces that
we consider. First, the ‘ambient spaces’: tent spaces, Z-spaces, and slice spaces.
Many of the results here are new, or have not been used in this context, so we
make ourselves well acquainted with these spaces. The second type of space that
we consider are the homogeneous ‘smoothness spaces’: Hardy—Sobolev spaces,
Besov spaces, and so on. Since we do not establish any new properties of these
spaces, we restrict ourselves to a quick review. We also introduce a new system of
notation for exponents. This is not strictly necessary, but it greatly cleans up the
exposition of later parts of the article and makes the flow of ideas more apparent.

In Section 5.2 we discuss the basic operator-theoretic notions that we will
need. The operators that we use in applications (i.e. the perturbed Dirac oper-
ators DB and BD) are bisectorial, with bounded H* functional calculi on their
ranges, and satisfying certain off-diagonal estimates. Most of the abstract theory
we develop works for any operator A satisfying these ‘standard assumptions’, so
we work with such operators until we are forced to use more specific properties of
perturbed Dirac operators. We establish the boundedness of certain integral op-
erators between tent spaces and Z-spaces. Particular examples of these operators
are given in terms of ‘extension’ and ‘contraction’ operators Q, 4 and Sy 4, which
we will introduce and discuss. This section culminates in Theorem 5.2.20, which
quantifies when operators of the form Qy 4n(A)S, 4 are bounded between differ-
ent tent/Z-spaces, where 7 is a holomorphic function on an appropriate bisector
which is not necessarily bounded.

In Section 6.1 we define and investigate Hardy—Sobolev and Besov spaces
adapted to an operator A satisfying the aforementioned standard assumptions.

First we introduce ‘pre’-Besov—Hardy—Sobolev spaces HY and B and establish
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their basic properties in Subsection 6.1.1. Mapping properties of the holomorphic
functional calculus between these spaces, including boundedness for H* functions
of A and ‘regularity shifting’ estimates for operators such as powers of A, are
collected in Subsection 6.1.2. These all follow from Theorem 5.2.20. In Subsection
6.1.3 we discuss completions. This is more subtle than it initially seems. We define
‘canonical completions’ Y HY and ¢BY in terms of an auxiliary functions ¢, and
show how these can be used to formulate satisfactory duality and interpolation
results (Proposition 6.1.19 and Theorem 6.1.23). Finally, in Subsection 6.1.4 we
show that the Cauchy operators C'& produce strong solutions of the Cauchy—
Riemann equation (CR)4 with initial data in any completion of any pre-Besov—

Hardy—Sobolev space, and we also show the quasi-norm equivalence

1l ~ [|C3 7] (F € HED) (4.9)

when p = (p,s) with p < 2 and s < 0, and likewise for Besov spaces and Z-
spaces (Theorem 6.1.25). This is important because it implies that the Cauchy
operators can be used to construct solutions of (CR) 4 which satisfy good tent/Z-
space estimates, at least for this range of exponents p = (p, s).

Up until this point, we work with CV-valued functions for an arbitrary N €
N, as in this abstract setting we gain nothing from the transversal/tangential
structure of C™(+7),

In Section 6.2 we consider the case when A is a perturbed Dirac operator of
the form DB or BD (and we finally specialise to C™!*™_valued functions). We
show that for a large range of exponents p the spaces HY, and BY, may be realised
as projections of classical smoothness spaces (Theorem 6.2.1). Then we define
‘identification regions’ I(H, DB) and (B, DB), consisting of exponents p for
which we can identify HY, and BY, as completions of HY,; and BY, ; respectively.
These regions turn out to be stable under interpolation and ©-duality (in a sense
which interchanges B and B*). Finally, in Theorem 6.2.12 we show that for
p = (p,s) € I(H, DB) with s < 0 we have boundedness of the Cauchy operator
Ch g from HY 5 to TP, extending the ‘abstract’ estimate (4.9) (and likewise for
Besov spaces and Z-spaces). This is a long argument which requires various ad-
hoc estimates. The result is known to fail for s = 0, so it does not follow by
interpolation.

After presenting some basic properties of gradients of solutions of L u = 0
(or equivalently solutions of (CR)pg) we prove Theorems 7.3.1 and 7.3.2, the

classification of solutions to (CR)pp in tent/Z-spaces with a decay condition at
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infinity.'® The argument is quite long, particularly for exponents p = (p, s) with
p > 2, and uses all the preceding material. We have been (perhaps excessively)
pedantic in citing dependence on previous results, so it should be possible to treat
certain technical lemmas as ‘black boxes’ in initial readings. We point out that
although these results are ‘intermediate to’ the Auscher—Mourgoglou—Stahlhut
theorem 4.1.5, and although it is proven with a similar argument, it does not
follow by any interpolation procedure. The results must be reproven manually.'*

In Section 7.4 we present straightforward (but still somewhat technical) ap-
plications to well-posedness and compatible well-posedness of Regularity and
Neumann problems. These have already been summarised in the introduction
(Subsection 4.1.3). In particular, we derive a range of well-posedness for the
Regularity problem for real coefficient scalar equations in Subsection 7.4.2. For
Hardy—Sobolev boundary data, this seems to be new. In Subsection 7.4.3 we
state (without proof) a convergence result for Whitney averages of solutions to
Lau = 0 within tent spaces and Z-spaces. Finally, we sketch the relationship
between our approach and the method of layer potentials in Subsection 7.4.4. In
the range of exponents p for which our results hold, the solutions to boundary

value problems are all given by (generalised) layer potentials.

4.3 Notation

The following notational conventions, some of them non-standard, will be used
throughout the article.
For a,b € R and t > 0 we write

mb(t) = { o<1

= (t>1).

For 0 < p,q < oo, we define the number

with the interpretation 1/c0 = 0.
We write the Euclidean distance on R™ as d(z,y) = d(y, z) := |x—y|, the open
ball with centre x € R™ and radius r > 0 by B(x,r) := {y € R" : d(z,y) < r},

13The decay condition is removed for certain exponents in Section 7.2.
140f course, we do manage to recycle some arguments from [16] and [15].
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and the (half closed, half open) annulus with centre x € R”, inner radius r¢ > 0,

and outer radius r; > ro by
A(x,ro,m1) := B(z,r1) \ B(z,r0) ={y € R" : ry < d(x,y) <1}
For subsets E, F' C R", we write
d(E,F):=dist(E, F) = inf{d(z,y) :z € E,y € F}.

We let L°(Q : E) denote the set of strongly measurable functions from a
measure space {2 to a Banach space E. For two quasi-Banach spaces X and Y,
we write X < Y to mean that X C Y (possibly after some identification has
been made) and that the identity map is bounded. Often we will refer to norms
as ‘quasinorms’ even though they are actually norms; for example, we will refer
to the LP quasinorm when p € (0, oc], even though this is a norm when p > 1.
For a quick introduction to quasi-Banach spaces the reader can consult the early
sections of [50].

When necessary, we will label dual pairings by the space on the left: for
example, by (f, g)r», we will mean the canonical duality pairing between LP and
L¥ | with f € L? and g € L.
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Chapter 5

Technical preliminaries

5.1 Function space preliminaries

Throughout this entire section we will consider CV-valued functions for some
fixed N € N, but since nothing really changes whether we choose N = 1 or
N # 1 (see Remark 5.1.13), we will not refer to CV in the notation. So we will
write L?(R") = L*(R™ : CV), T?(R™) = TP(R" : CV), and so on. For z € CV we

will write |z| in place of ||z||cx-

5.1.1 Exponents

This work makes heavy use of the relationship between different exponents for
function spaces. The most efficient way to do this, balancing economy of notation
and clarity of ideas, is to introduce a new formalism for exponents right at the
beginning, and work with it consistently.

Fix n € N corresponding to the dimension in which we will work. The
following system of notation depends implicitly on n.

The set of exponents is the disjoint union
E = E;, UE,

where Eg,, := {(p,s) : p € (0,0),s € R} and E,, := {(c0,s;0a) : s € R,a > 0}.
We say that an exponent is finite if it is in Eg,, and infinite if it is in EL.

We define two functions i: E — (0,00], r: E — R, representing integrability
and a kind of reqularity, by



We also define functions 7,0: E — R by

j(pa 5) = 1/p7 j(OO,S;Oé) = —Oé/n
O(p,s) = s, 0(o0, s;a) 1= s.

Note that p is finite if and only if j(p) is positive, and furthermore every
exponent p is determined by the pair (j(p),0(p))-
For r € R and p € E, define p + r to be the unique exponent satisfying

jp+7r)=j(p) and O(p+r)=0(p)+r

We similarly define p — 7.
For every exponent p, we define the dual exponent p’ to be the unique ex-
ponent satisfying j(p’) + j(p) = 1 and 0(p’) + 6(p) = 0. Concretely, for finite

exponents we have

(0.5 — { ¥, ) (v>1)

(00, =sin(; —1)) (p<1)

where p’ is the usual Holder conjugate of p. Clearly p” = p. We also define the

O-dual exponent
p’=p —1,

and a quick computation shows that p¥% = p.
For two exponents p,q € E, we write p — q to mean that

0(p) > 0(q) and 6(q)—0(p) =n(j(a) —j(p))

We always have p < p. Observe that p — q and q — r implies p < r, and
p — q if and only if @’ < p’. We define the Sobolev exponent p* be the unique
exponent satisfying p <— p* and 6(p*) = 0(p) — 1.

For n € R, define [p, q}, to be the unique exponent satisfying

Note that [p,qlo = p and [p,q]i = q. Note also that p — q if and only if
q = [p, p*], for some n > 0.

Lemma 5.1.1. Suppose p and q are exponents with p — q. Then [p,ql,, —
[p, q]m whenever ng < ny.
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Proof. Write

0([p, aly,) — 0([p,dly) = (1 —m)0(p) + mb(a)) — (1 —m0)0(p) + mb(a))
m — 1) (0(a) — 0(p))

(m —mo)(J(a) —i(p))

n(((1=m)i(p) +mi(a)) — (1 —no)i(p) +mi(a))

n(j([p; dly) — ([P, dly,))-

5.1)
5.2)
)))

n

(
(

Where line (5.2) follows from p < q. Furthermore, line (5.1), n; — 9 > 0, and
0(p) > 6(q) imply that 0([p, al,,) > 0([p,al,). Thus [p,dl,, < [P, dly- O

A straightforward computation shows the following lemma.

Lemma 5.1.2. Suppose p — q and 1y, m, A € R. Then

Hp7 q]WO? [p7 q]m])\ = [p7 q](l—)\)no-H\m'

In particular this implies

= Hpacﬂ—bOIh/z

p
q = [p, [P, d]z]12-

The most convenient way of visualising exponents and relations between them
is as points in the (7, ) plane. In Figure 5.1 we show two exponents p and q with
p < q, their dual exponents, their O-duals, and various other exponents which
may be constructed from them. The operations p — p’ and p — p" are given
by reflection about the marked points at (1/2,0) and (1/2, —1/2) respectively.'
Observe that we have p — q if and only if the line segment from p to q is parallel
the line from ((n + 1)/n,0) to (1,—1) with the same orientation.

5.1.2 Tent spaces

The most fundamental function spaces in this work are the tent spaces. These
were first introduced by Coifman, Meyer, and Stein [32, 33], and they have since
proven their worth in harmonic analysis and PDE. The other ‘ambient spaces’
that we will use, namely Z-spaces and slice spaces, are closely related to tent

spaces, so a solid knowledge of tent spaces will be useful.

!The exponent (1/2,—1/2) is special: in Section 7.4 we introduce it as the ‘energy exponent’.
Certain boundary value problems associated with this exponent are automatically well-posed

due to the Lax—Milgram theorem.
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Figure 5.1: Various exponents in the (j,6) plane.
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For x € R™ we define the cone with vertex x by
[(z):={(t,y) e RY™" 1y € B(x,1)}

where B(z,t) is the open ball with centre x and radius ¢, and for each open ball
B C X we define the tent with base B by

T(B) =R\ (U F(ac)) .

¢ B

Equivalently, T'(B) is the set of points (y,t) € RI™ such that B(y,t) C B.
The tent space quasinorms are defined in terms of the Lusin operator A and
Carleson operators C,. These are defined as follows. For all a > 0, f € LO(R1™)

and z € R", we define
dy dt\
- P g ) (53)

dt
Cof(z) 4525%(%// fly, t) dy )

For s € R, we define an operator x° on L°(R*™) by
(K f)(t,x) ==t f(t,x)
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for all (t,z) € RI™,
Now we will start using the exponent notation of Subsection 5.1.1, although

it will not be truly useful just yet.

Definition 5.1.3. For a finite exponent p, the tent space TP = TP(R") is the set
TP =TP:={f € LO(RI™) : A(k™°f) € LP(R"™)}
equipped with the quasinorm

171

= [[AE)]

Lp(Rn)

For an infinite exponent p = (00, s; &) we define TP by
TP =T :={f € LO(RY™) : Co(k°f) € L¥(R™)}
with its natural norm.

Remark 5.1.4. The spaces T? agree with those defined by Hofmann, Mayboroda,
and Mclntosh [50, §8.3], and with the spaces T3 2 of Huang [51]. Our spaces T3

. 2
agree with Huang’s spaces Ty, "

All tent spaces are quasi-Banach spaces (Banach when i(p) > 1). For a finite
exponent p the subspace TP C TP of compactly supported functions is dense in
TP, and L2(R}*") is densely contained in TP,

Definition 5.1.5. Let p be an exponent with i(p) < 1, and suppose B C R" is
a ball. We say that a function @ € LO(R1*") is a TP-atom (associated with B) if
a is essentially supported in T'(B) and if

lallyz < |B|*>.
where 6,5 = 5 — }D (as defined in Section 4.3).

Theorem 5.1.6 (Atomic decomposition). Let p be an exponent with i(p) < 1.
Then a function f € L°(RE™) is in T® if and only if there is a sequence (a)ren
of T®-atoms and a sequence X € (P(N) such that

f= Mar (5.4)

keN

with convergence in TP. Furthermore, we have
f 17 2 0t [[A]] )

where the infimum is taken over all such decompositions.
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This is simply derived from the usual atomic decomposition theorem [33,
Theorem 1c].

Note that the following duality theorem includes all finite exponents, without
needing to separate the cases i(p) < 1 and i(p) > 1. This is the first justification

of our exponent notation.

Theorem 5.1.7 (Duality). Suppose that p is a finite exponent. Then for all
frg € L°(RY™) we have

d
//}W |(f(t.2), g(t,2))] da;; S o 9] (5.5)

and the pairing

dt
()= [[ (.ot (56)
Rf—n t
identifies the Banach space dual of TP with TP'.

Note in particular that the integral in (5.5) converges absolutely.

Remark 5.1.8. Throughout this article we will refer to the duality pairing appear-
ing in (5.6) as the L? duality pairing.

When p is finite and i(p) > 2, TP may also be characterised in terms of the

Carleson operator Cy. This is a straightforward extension of [33, Theorem 3].

Theorem 5.1.9 (Carleson characterisation of TP). Suppose p is a finite exponent
with i(p) > 2. Then for all f € L°(RY™) we have

[ £lle = ||Cols="® 1)

LP(R")

Theorem 5.1.10 (Change of aperture). For § € (0,00) and x € R™ define

Ts(z) == {(t,y) e R :y € B(z,ft)},

and for f € LO(RY™) define Agf(x) as in (5.3), with Us(x) in place of U(x). Then

for B € (0,00) and each finite exponent p we have an equivalence of quasinorms

[ Fllze 2 |[As(s~0®)f)]

Li®)(R7)
This was proven by Coifman, Meyer, and Stein for 7§ [33, Proposition 4]
and Harboure, Torrea, and Viviani for 779 with ¢ € (1,00) [14, Proposition

2.3].? This can be simply extended to p,q € (0,00) [3, Proposition 3.21], and

2We have not defined the spaces TP with g # 2 here, because we will not use them.
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the extension to the more general tent spaces here is immediate. Note that the
method of proof in [3] requires knowledge of the result for ¢ # 2.

The following embedding theorem, which can be seen as a tent space analogue
of the Hardy-Littlewood—Sobolev embedding theorem, is proven in [/, Theorem
2.19].3

Theorem 5.1.11 (Embeddings). Let p and q be exponents with p — q. Then
we have the embedding
" — T1.

The following complex interpolation theorem was proven by Hofmann, May-
boroda, and McIntosh for finite exponents [50, Lemma 8.23], and the extension

to one infinite exponent follows by duality [/, Theorem 2.1].

Theorem 5.1.12 (Complex interpolation). Suppose p and q are exponents with
Jj(p),j(q) > 0 (with equality for at most one exponent), and 0 < 6 < 1. Then we
have the identification

[Tp’ Tq]g — Tlpdle

Remark 5.1.13. In contrast with the article [1], we define the operator x° in terms
of powers of ¢ rather than powers of ball volumes, and so our tent spaces 77(R")
correspond to the tent spaces T% /i (R™) of [1]. We also use C"-valued functions
instead of C-valued functions. This does not change the validity of previous
results, as one can always split T?(R" : CV) ~ @ T?(R" : C) and apply the
results to each summand individually. This reduction would fail if we were to
replace CV with a general Banach space, but thankfully we have no need for such

generality:.

5.1.3 Z-spaces

We now introduce a class of function spaces, called Z-spaces, which are related
to tent spaces by real interpolation. The Z-spaces play the role for Besov spaces

Bgvp that the tent spaces play for Hardy—Sobolev spaces H &

Definition 5.1.14. We refer to a pair

¢ = (o, 1) € (0,00) X (3/2,00)

3The case where p and q are both infinite is not explicitly proven there, but it follows by

the same argument.
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as a Whitney parameter. To each Whitney parameter ¢ and each (¢,7) € RY™

we associate the Whitney region
Qc(t,z) == (c7't, ert) x Bz, cot) C RY™,

and for f € LO(RL*") we define the L Whitney averages

1/2
Wef (b, 2) = (ﬂ (t )If(T,€)|2d§dT> |

For an exponent p and a Whitney parameter ¢, and for all f € LO(RYT™), we

define the quasinorm

£l = ||We(s™® )]

(5.7)

Ll‘(p)(Rﬁj’”)

(note the appearance of r(p) here) and a corresponding function space

C c

zp = ZP(R") = {f € L"RY™) : |f[] » < oo}

For simplicity we write Q(t, z) := Q12)(t, 7).
Remark 5.1.15. The spaces ZP coincide with the spaces L(i(p),r(p) + 1,2) in-

troduced by Barton and Mayboroda [21]. In our applications these spaces will
play the same role as they do in [21] - namely that of an ambient space for the
gradient of a solution to an elliptic BVP with boundary data in a Besov space.

The connection with tent spaces presented here (extending that of [1]) is new.

Remark 5.1.16. The restriction ¢; > 3/2 is for technical reasons. The first time
that it is actually needed is in our proof of the atomic decomposition theorem. It
it possible to extend everything to ¢; > 1 by a straightforward covering argument,

but this would take extra work, and ¢; > 3/2 is sufficient for our applications.

The following real interpolation theorem appears in [, Theorem 2.9]. In

Theorem 5.1.30 we will extend it to infinite exponents.

Theorem 5.1.17 (Real interpolation for tent spaces with finite exponents). Sup-
pose that p and q are finite exponents with 0(p) # 0(q), and 0 < § < 1. Then

for all Whitney parameters ¢ we have the identification
(ijTq)evpg _ ZC[IW]Q
with equivalent quasinorms, where pg = i([p, qls)-
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Consequently, when p is finite, the Z-spaces ZP are complete and independent
of ¢ (up to equivalence of quasinorms). Hence we may simply write ZP in place
of ZP. We will soon extend this to infinite exponents.

We will establish further properties of the Z-spaces ‘by hand’ rather than
arguing by interpolation, because this yields stronger results. In particular, it
yields absolute convergence of L? duality pairings, while interpolation would only
prove this on dense subspaces. This will be important in applications (Chapter
7). Our main tool is an equivalent dyadic characterisation of the ZP-quasinorm.*
To establish this characterisation we will need some notation and a preliminary
counting lemma.

For a standard (open) dyadic cube Q € Q(R"™),” and for k € Z, define the

Whitney cube
k

Q = (2M(Q),21(Q)) x @,
and the Whitney grid
gh ={Q": Q € QRM)}.
For each k € Z, G* is a partition of RI™™ up to a set of measure zero.

For each Whitney parameter ¢, each k € Z, and each Whitney cube @k € gk,
we define

G.(Q") = {R" € G" : R N Qu(t.x) # & for some (t,z) € Q"}.

Lemma 5.1.18. Let ¢ be a Whitney parameter and k € N. Then for all@k € gk

we have
—k
|gc(Q )| Sc,k,n 1

(where | - | denotes cardinality).

Proof. The condition R Q.(t,r) # @ may be rewritten as
((R) € [t/2" ey, 27Fcit] and  dist(R, ) < cot.

By rescaling and translating, the number of R € Q(R™) such that this condition
is satisfied is equal to the number of R € Q(R™) such that

((R) € (1/2" ¢, 27%¢)) and  dist(R,0) < co,

which is finite and depends only on ¢, k, and n. O

4This characterisation is stated and used by Barton and Mayboroda [21, Proof of Theorem
4.13], but without proof.
5Any system of dyadic cubes will work here.
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Proposition 5.1.19 (Dyadic characterisation). Let p be a finite exponent, ¢ a
Whitney parameter, and k € Z. Then we have

[1Fllzp e ||6Q) 1112

)

P (GFLQ)™)

where [| f*) 1 = Hf\L2Q drdg/r )]
Proof. erte p = (p, s) and estimate

£ = z // Wk ) (12 2 da

~ Z (250(Q)) ™ // NN Tzt @), drdg | itd:r (5.8)

Qegr

< 3 @HQ // S |FI AR drdg/r 1+”)H —dx (5.9)

Q eg* "e6.(@M
s 0 LR f | LR drdg /)| (5.10)
=
Q €g
ﬁkegc@k)
Z (R ((R (R, drde /) H) (5.11)
Regk

The equivalence (5.8) comes from the fact that 7 ~ 2%¢(Q) when (7, &) € Q.(t, )
and (t,z) € @Q". The upper bound (5.9) comes from covering 2.(t,z) with the
Whitney cubes R € G, (Q), of which there are boundedly many by Lemma 5.1.18.
The equivalence (5.10) comes from noting that ¢(R) ~ ¢(Q)) when R e gc(ék).
Finally, (5.11) follows from the fact that every cube R e G* appears at least once,
and at most a bounded number of times, in the multiset {&" € G.(Q") : Q" € G}.

To prove the converse statement, we need only prove the converse direction
of (5.9). To do this we note that there exists a Whitney parameter ¢ such that
whenever B* € gc(@'“) and (t,z) € @k, we have R’ C Q(t,z). Indeed, one can
take ¢y = 2(co +27%y/n(c; +1)) and ¢, = 4c,. This, along with the independence

of ZP on ¢, completes the proof. n

Remark 5.1.20. The same proof will work for infinite exponents once we show

that the corresponding Z-space norms are independent of c.

The dyadic characterisation of the Z-space quasinorm can be used to prove a
duality theorem when i(p) > 1. As with the corresponding result for tent spaces,
this is not just an abstract identification of dual spaces (which could be deduced
by real interpolation), but also includes absolute convergence of the L? duality

pairing.
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Proposition 5.1.21 (Duality: reflexive range). Suppose i(p) € (1,00). Then for
all f,g € L°(RY™) we have

d
lﬂéJU@@ﬂ@@mdf:SHNmHﬂmw (5.12)

and the L? duality pairing identifies the Banach space dual of Z® with ZP'.

Proof. Let Q, = (1,2) x (0,1)" equipped with the measure dx dt/t'™, and for
each function f € L°(R*") and each cube @ € G, let f5 be the function on @,

which is the affine reparametrisation of 15f, so that [| f | 1/ 2 ‘ _ . Then

by Proposition 5.1.19, writing p = (p, s), we have

[1£112 > [[e(@) |ﬂW
:HE

= Valleg e
Evidently the map f — (fz)geg 18 an isomorphism between ZP and (£(G, £(Q)"
L*(Qp))-

Furthermore, for all f, g € L°(RI™) we have

eGLQ)™)

Qller(.0(Q)m:L2(@0))

J gt de G S @) [ gt agtt ) i

Qeg
and so the mapping f — (fg)geg identifies the L2(RY™) duality pairing with the
(G, 0(Q)" : L*(Q,)) duality pairing (up to a constant).
Since we have
Z 0(Q vagQ)LQ Qo) | ~ HfQ
Qeg

and since the £2(G, £(Q)" : L*(Qo)) duality pairing identifies /7' (G, £(Q)" : L*(Qo))
as the dual of /7 (G, £(Q)™ : L*(Qo)), the corresponding results for ZP follow. [

9a

2(G,6(Q)™L2(Qy)) H ' (G,6Q)":L2(Qy))

The dyadic characterisation can also be used to prove an atomic decomposition

theorem for Z-spaces.

Definition 5.1.22. Let p = (p, s) be a finite exponent and ¢ a Whitney param-
eter. We say that a function a € L°(RX™) is a ZP-atom associated with the point
(t,x) € RY™ if a is essentially supported in Q.(¢,z) and if

ndp 2
L2(Qc(t,),dz dt/t) — ’

Hm’sa

(recall that &, = 5 — 1 is defined in Section 4.3).

SR
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Lemma 5.1.23. Let p be a finite exponent and suppose a is a ZP-atom associated
with (to, o) € RIT". Then

lall zo Sep 1-
Proof. A reasonably quick computation shows that
{(t, .Z') € R}:_n . Qc(t, I’) N Qc(to, iL'o) 7£ @} C Q’g(to,l’o)

where ¢y = ¢o(1 + ¢2) and ¢ = . Hence we can estimate, using the assumed
support and size conditions for a and writing p = (p, ),

llal|ze

1/p
< // < 1+n // T|ra(&, 7)? dE T) dr —
Qz{to,z‘o) t c(tOﬂCO) T t
1/p
) P
(L)
Q’C\(to,xo)

npa—B+0
~.»to

=1

as required. O

Theorem 5.1.24 (Atomic decomposition of Z-spaces). Suppose p = (p,s) is
a finite exponent with p < 1 and ¢ is a Whitney parameter. Then a function
f € LYRY™) is in ZP if and only if there exists a sequence (ay)r € N of ZP-
atoms and a scalar sequence \ € (P(N) such that

> Xeay = f

keN

with convergence in ZP. Furthermore, we have

£l ze 2= nf [|A]] oy »
where the infimum is taken over all such decompositions.

Proof. Given such a decomposition of f, we have

p

S Aoy
7P

e = 11D Aea

keN
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by Lemma 5.1.23, and so ||f]|,» < inf H)\HHJ(N) . It remains to prove the reverse

estimate. For each k € Z we can write

=Y Iy (5.13)

Q" egr
where f@k = lakf,ﬁ and by Proposition 5.1.19 this sum converges in ZP.” If
k > logy(cy'y/n/3) + 1 and if ¢; > 3/2 (this is the first place where we actually

use this assumption) then we have

—k
Q C QC(CQ>tQ)

for all @ € Q(R"), where cq is the center of Q and t¢ is the midpoint of 28/(Q)
and 2*71/(Q). Therefore, under this condition on k, each fak satisfies the support

are all
L2(Qc(ca,t6),dz dt/t)

condition required of a ZP-atom. The norms H/«;_S @k’

finite by Proposition 5.1.19, so we can define

4~ nlp2

—S
K, Q" L2(Qc(cgit)du dt/t)

and B
e { )\ékf@k (f@k # 0)
@ 0 (fg+ = 0).

Then each (gt is @ ZP-atom and

f: Z )\aka@k

Q" egk

with convergence in ZP, and furthermore

()

—nd.
— t@:* p,2

o (Gh) K fak

L2(Qe (e t—p ) da dt /1t
( (f‘@k Qk) z dt/t)

(250(Q) "= 1QI IS PIe
2

e (G*)

12

P(G*)

12

UM f P

= HfHZp

e (G*)

again using Proposition 5.1.19. [

6Note that this notation differs from that in the proof of Proposition 5.1.21.
"Convergence in ZP does not follow immediately: one must write the series (5.13) as a limit

of partial sums and argue via dominated convergence.
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Remark 5.1.25. In contrast to the setting of tent spaces, it is very easy to construct
atomic decompositions of functions f € ZP: as in the proof of the theorem, simply
decompose f via the Whitney grid G* for sufficiently large k. This works for all
finite p, even if i(p) > 1. Abstract decompositions will be used to prove zr-zv
duality when i(p) < 1.

Lemma 5.1.26. For all Whitney parameters ¢ and all f € L°(RX™), the function

W,.f is lower semicontinuous.

Proof. Fix M > 0 and suppose that W, f(t,z) > M. Then there exists a small ¢ >
0 such that Wie,—c.c,—e) f(t, ) > M also. A short computation shows that if 7 €
B(x,et/2) and if [t—t| < (c1/(c1 —e) —1)t, then Q.(f, Z) contains Q(ey—c.c,—e) (¢, T),

so for all such (£, %) we have
ch(f,j) > W(CO,57cl,g)f(t,l‘) > M.
Therefore the set {(t,z) € Ry : W, f(t,x) > M} is open. O

Corollary 5.1.27. Let p be an infinite exponent. Then

1fllze = sup We(x"®f)(t,2),

14+n
(tx)eR

i.e. the essential supremum in the definition of the ZP-norm can be replaced with

a Supremum.

Proof. Lower semicontinuity of the function W,(x~"®) f) implies that if
Wl f)(t,2) > M

for some M < oo at one point (¢, z), then it continues to hold in an open neigh-

bourhood of (¢, z), and in particular on a set of positive measure. H

We can finally prove a duality theorem for ZP with i(p) < 1. As with the
other duality results so far, note that this includes absolute convergence of the

L? duality pairing.

Theorem 5.1.28 (Duality: non-reflexive range). Suppose i(p) < 1 and let ¢ be
a Whitney parameter. Then for all f,g € L°(RY™) we have

d
[ o)t anlde S e sl (5.14)

and the L? duality pairing identifies the Banach space dual of ZP with ZP'.
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Proof. Write p = (p, s), so that p’ = (00, —s,nd, ). First suppose a is a ZP-atom

associated with a point (¢, 7¢) € R}™™. Then we have

//}W ot 2), gt :c))|dxcit

<l

L2(RYT™ dx dt/t) [|%*9] ’LQ(Qc(to,xo),dx dt/t)

S tg5p,2+”51,p+(”/2) Rs—mﬁ,pg

L2(Qc(to,x0),dz dt/t1+m)

by Corollary 5.1.27. For general f € ZP, write f as the sum of ZP-atoms as in
Theorem 5.1.24, so that

// f(t,x),g(t,x) |dx<2|)\k|// |(ax(t, x), (tx))|dm@
RL+™ el RLHT t
S ||g||Z§" ||/\||ZP(N)

since p < 1. Taking the infimum over all atomic decompositions of f proves
(5.14).

Now suppose that ¢ € (ZP). By the same technique as in the proof of
Proposition 5.1.21, we find that there exists a sequence (gg) € £,(G : L*(Qq))
corresponding to the induced action of ¢ on £2(G, (Q)"™ : L*(Qy)) (since £7(N) =
(>°(N) for p < 1). Hence there exists a function G4 € L°(R™™) corresponding to
the action of ¢ on ZP. We need to show that G is in ZP".

Suppose (t,z) € RX™. Then we can estimate

Wc(’is—msl’pG(ﬁ)(t? I) = t—mh,p ‘|G¢"Lzs(ﬂc(t,x%dfd‘r/TH")

— t*msl,p sup |(F’7 G¢)|
FeL2(Qe(t,x),d dr /THH)
||F[|<1
ST 6] sup
FeL2(Qc(t,a),d dr/T)
1| <e"oP2

< 116ll oy

using ndy , + (n/2) +nd, 2 = 0, the fact that the condition in the final supremum

implies that F' is a ZP-atom, and Lemma 5.1.23. Therefore we have

1Goll o = sup  We(s* " Gy)(t,2) S M6l 22y

(t,m)ERT’n

as desired. O
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Corollary 5.1.29. For all infinite exponents p and all Whitney parameters c,

the ZP norms are mutually equivalent.

Hence for all exponents p we write ZP in place of ZP.
Now that we have identified the duals of all ZP spaces for finite p, we can

give a full interpolation theorem.

Theorem 5.1.30 (Real interpolation of tent spaces: full range). Suppose that
p and q are exponents with 6(p) # 6(q), and 0 < 6 < 1. Then we have the

identification
(Tp’ Tq)em — zlp.dle

with equivalent quasinorms, where py = i([p,dls)-

Proof. For finite exponents this is precisely Theorem 5.1.17. If 1 < i(p),i(q) <

00, this follows by writing
(Tp>Tq)9,p0 = ((Tp’>/7 (Tq/)/>97pe = (Tpl7Tq,)/9,P2)

via the duality theorem for real interpolation [22, Theorem 3.7.1], using that
TP NTY is dense in both TP and 79, and then noting that

py = i([pals)” = i([p", dlo)-
The full result follows by Wolff reiteration [92, Theorem 1]. O

Proposition 5.1.31 (Interpolation of Z-spaces). Let p and q be exponents which
are not both infinite, and let 0 € (0,1). Then we have

(ZP, Zq)e,p9 — zlp.dle

with equivalent quasinorms, where pg = i([p,dlg). Furthermore if i(p),i(q) > 1,
then we have
[Zp’ Zq]a — zlpdle

Proof. The real interpolation result follows from Theorem 5.1.30 along with the
reiteration theorem for real interpolation [22, Theorem 5.2.4]. The complex in-
terpolation result is proven by Barton and Mayboroda via the dyadic character-
isation of the norm [21, Theorem 4.13]. O

Remark 5.1.32. The Z-spaces can be seen as Wiener amalgam spaces W (L?, LP))

associated to the semidirect product R, x R"™ coming from the dilation action of
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the multiplicative group R, on R". Topologically R, x R" = R}J", and the group
operation is given by (¢, ) - (s,y) := (t + s, + ty). Thus many of the properties
above can be deduced from properties of abstract Wiener amalgam spaces. For a
review of these spaces, see [15] and the references therein. However, if we were to
use Wiener amalgam space arguments, we would not obtain any results for quasi-
Banach Z-spaces (as the abstract theory of quasi-Banach Wiener amalgam spaces
seems not to have been sufficiently developed), and we would not obtain absolute
convergence of L? duality pairings (only abstract duality pairings). Furthermore,

these arguments would not show the connection with tent spaces.

5.1.4 Unification: tent spaces, Z-spaces, and slice spaces

Tent spaces and Z-spaces share the same fundamental properties. To make this
totally explicit, we will write X as a placeholder for either T" or Z when a state-
ment holds for tent spaces and Z-spaces. When considering two different spaces,
either of which can be a tent space or a Z-space independently, we will use sub-
scripts X, X;. For example, one can concisely write the conclusions of Theorem

5.1.30 and Proposition 5.1.31 as
(Xp,Xq)e,m _ Z[p,q]e7

and the tent space and Z-space duality results can be written extremely concisely
as
(XPY = XP,

In this section we establish further properties of tent spaces and Z-spaces, in-
cluding some interrelations between the two.

First, we simply point out that for all s € R we have
X2 = LARY™),

where

111z = | f (5.15)

The following embedding theorem extends Theorem 5.1.11 not only to Z-

L2(RIF™)

spaces, but also to combinations of tent and Z-spaces.

Theorem 5.1.33 (Mixed embeddings). Let Xy, X1 € {T,Z} and let p — q with
P # q. Then we have the embedding

(Xo)p — (X1>q.
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Proof. When Xy = X; =T, this is Theorem 5.1.11.
Let r = [p, q]2, so that p < r and [p,r];/2 = q (by Lemmas 5.1.1 and 5.1.2).
Then we have embeddings 7P < TP (trivially) and 7P < 7™ (Theorem 5.1.11).

Therefore we have
TP (Tp7Tr)1/2 — zprhyp — 7a

by Theorem 5.1.30, using that p # q and p < q imply 6(p) # 0(q). Similarly,
putting s = [p,q|_1, we have T® < T9 and T9 — T, so

ZP = (T5,T9) ), — T°.
Finally, putting t = [p, q]1/2 and using the previous results, we have
ZP — T — Z9,
which completes the proof. n

We also have a convenient mixed embedding which only holds for infinite

exponents.
Lemma 5.1.34. Suppose that p is infinite. Then TP — ZP.

Proof. Let f € L°(RY™) and write p = (00, s;a). For A > 0 sufficiently large
and for all (t,x) € RY™,

1/2
(]5[ |T_(a+s)f(7,§)|2d§d7)
Qa,2) ()
; 1/2
—n—2a —s T
:(t S/ f(T,§)|2d§)
Q1,2) () T

dr\"?
see(ff - rmpaett)
T(B(z,At)) T

Taking suprema over (¢,z) € RI™ yields
1 ze S 1o -
L]

Proposition 5.1.35 (Density of intersections). Let p and q be exponents, and let
X1, Xo € {T, Z}. If p is finite then (X1)P N (X3)? is dense in (X1)P. Otherwise,
(X1)P N (X2)? is weak-star dense in (X1)P.
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Proof. This follows immediately from the fact that L2(R1™") is (weak-star) dense
in T* for (infinite) exponents r, and likewise in Z* (this can be proven directly,

or by real interpolation, or by the embeddings of Theorem 5.1.33). O]

For all 7 € R, define a ‘downward shift’ operator S, on L°(R}*") by

(Sp )t y) = f(t+ry)

for all f € LO(RI™™). These operators are well-behaved on certain tent spaces

and Z-spaces, as shown in the following proposition.

Proposition 5.1.36 (Uniform boundedness of downward shifts). Let p be an

exponent.

(1) If i(p) < 2 and 0(p) < —1/2, then the operators (S,)rer, are uniformly
bounded on XP.

(i) If i(p) € (2,00] and r(p) < —(n + 1)/2, then the operators (S;),cr, are
uniformly bounded on XP.

Remark 5.1.37. Note that the assumptions for i(p) < 2 and i(p) > 2 are quite
different: there is a sudden jump in dimensional dependence at i(p) > 2. We
do not currently have a good explanation for this behaviour, and there is no
interpolation procedure to obtain stronger results when 2 < i(p) < oco. Note
that we can include endpoints when considering tent spaces (i.e. we can include
0(p) = —1/2 or r(p) = —(n + 1)/2 respectively). However, to realise the spaces
ZP as interpolants of tent spaces, we need to interpolate between tent spaces
TPo and TP' with 6(pg) # 0(p1), and so the endpoint Z-space results cannot be

proven by this argument.

Proof. Tt suffices to prove the tent space results; the Z-space results follow by
real interpolation.

First we will prove boundedness on tent spaces for i(p) < 1 and for i(p) = 2;
the rest of part (i) follows by complex interpolation. Suppose p = (p, s) with
p <1 and let a be a TP-atom associated with a ball B of radius rg. Then S,a is

143



supported on T'(B), and we have

rg—r 1/2
|1Sra| g = (/ / t=* a(t +r,x)|* dx dt)
S 0 n
rg—r 1/2
< (/ / t+r) > alt +r,2) dxdt)
0 n
TB 2

dr\"
- ( / 7*a(r,z)|* do T)
r R T

< [lallz

< |B?

using that —2s — 1 > 0. Therefore S,a is, up to a uniform constant, a TP-atom
associated with B. Hence if f = Yoy Akar is an atomic decomposition of f in
TP, then S, f = Y ey Me(Srag) is an atomic decomposition of S, f in TP up to
a uniform constant. Therefore the operators (S, ),cr, are uniformly bounded on
TP. A similar argument (without needing atoms) works for p = (2, s) provided
s < —1/2.

Now let p = (p, s) with p € (2,00) and 5 < —(n+1)/2, and fix f € L°(RI™).
First we estimate S, f in TP:

p/2
1Sy fll e = /n (//F( )t_QS_"_1|f(t—l—r, y)|2dydt> dm)

1/p

p/2 Lp
<(/ (// (t+r)‘25‘”‘1|f(t+T,y)|2dydt> dx)
n F(x)
p/2 1/p
= / ( // 7_25_”_1|f(ﬂy)|2dyd7> dx
n L(z)+r
<[ fllze

using that —2s —n—1> 0 and I'(z) +r C I'(z), where I'(z) + r is the ‘vertically

translated cone’
L(x)+r:={(t,y) € Rf” c(t—ry) e l(x)}.

This proves part (ii) in the case where p is finite.

Now suppose p = (00, s; ) with s+a < —(n+1)/2, and let B = B(¢, R) C R"
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be a ball. If »r < R, then we can write

1/2
R—a—n/2 <// t_28_1|f(t + T y>|2 dy dt)
T(B)
1/2
< RO (// ()2t + )2 dy dt)
T(B)

1/2
senee (e ayar)
T(B(c,R+T))

S e

using that —2s —1 > 0. If » > R then instead we write

1/2
R—o/? (// 2 f(t+ y)|2dydt>
—2s—1 1/2

=R (// (. T r) \f(ﬂy)!QdydT>

T(B)+r T

—s—1/2 1/2
< R n/2< ) (// 72 y)|2dyd7>

r T(B)+r

R4+ a+n/2 R\ 5~ 1/2
<(*2°) () Ml

”
S 1 fllge

using that s+a < —(n+1)/2 in the last line, where T'(B)+r is defined analogously
to I'(x)+r. These estimates imply that |[S, ||« < || f| 7 as desired, completing
the proof. n

Now we shall define the slice spaces. These were introduced in connection
with tent spaces and boundary value problems by Auscher and Mourgoglou [15].
The name comes from the fact that functions in slice spaces are, roughly speak-
ing, horizontal ‘slices’ of functions in tent or Z-spaces (this is made precise in
Proposition 5.1.39).

Definition 5.1.38. Suppose p is an exponent and ¢t > 0. For f € L(R") we
define

||f||Ep(t) =) H"E = ||f||L2(B(x,t),dy/tn) Li®P)(RP)

These quasinorms define the slice spaces

EiP) (t) = EP(t) = EP(t)(R™) :={f € LO(RH) : ||f||EP(t) < oo}

r(p)
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For t > 0, h > 3/2 (this technical restriction corresponds to that in the
definition of Whitney parameter) and f € L°(R"), define ¢, ,,(f) € L°(RI™™) by
setting

wn(F)(s,2) = F(@) L n(s)
for all (s,x) € RI™™ and for g € LO(RL™") define 7(g) € L°(R") by

ht
Ton(g) () = /t o(s,7) Cf.

for all z € R".

Proposition 5.1.39. For all exponents p, the operators
EP(t) 25 xP I8 B (y),

are bounded uniformly in t. Furthermore, the compositions of these operators are

identity maps.

Proof. The tent space results with 6(p) = 0 are already stated in [15, §3]; the
extension to all tent spaces is simple. Likewise, the composition statement is
clear. The proof for Z-spaces is a straightforward (one page) argument that we

omit. ]

Therefore we can view the spaces EP(t) as retracts of XP. Consequently,

properties of tent spaces and Z-spaces descend to slice spaces.

Proposition 5.1.40. If 0 < ty,t; < 0o and p, q are exponents with i(p) = i(q),

then EP(ty) = E9(t1) with equivalent quasinorms.

This follows from change of aperture for tent spaces (see [15, Lemma 3.5]). For
p € (0,00] we write EP := EP(1) for any p with i(p) = p; all EP(t) quasinorms
are equivalent to the EP quasinorm (but not uniformly in ¢ or p).

We have a duality theorem for slice spaces, and of course one should notice
once more that this includes absolute convergence of the L? duality pairing (now

on R” rather than R1™™). This is proven in [15, Lemma 3.2].

Proposition 5.1.41 (Duality). Fiz ¢t > 0 and let p be a finite exponent.. Then

we have

/n |(f (@), g() [ dz S {11 ge 191 e (5.16)

and the L*(R™) duality pairing identifies the Banach space dual of EP with EP'.
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The tent space and Z-space embedding results also descend to slice spaces,

though for slice spaces the ‘regularity’ parameters are not so important.

Proposition 5.1.42 (Embeddings). Suppose 0 < pg < p; < co. Then EP* —
EPr,

Proof. Fix po and p; with i(po) = po, i(p1) = p1, and py < pi. Then we have
bounded operators
Ero 2% xPo oy xP1L TR po

whose composition is the identity map, with the inclusion following from Theorem
5.1.33. O]

Slice spaces contain the Schwartz functions, and are contained in the space of

tempered distributions. This is contained in [15, Lemma 3.6].%
Proposition 5.1.43. For all p € (0, 00] we have S C EP C §'.

We also have a straightforward integration by parts formula for functions in

slice spaces. This is proven in [15, Lemma 3.8].

Proposition 5.1.44 (Integration by parts in slice spaces). Let p be a finite
exponent and suppose that O is a first-order differential operator with constant
coefficients, and let O* be the adjoint operator. If f,0f € EP and g,0*g € E¥,
then

[ @s@)g@yar= [ (1))

Finally, we have an equivalent dyadic quasinorm for the slice spaces. This
follows from the dyadic characterisation of Z-spaces (Proposition 5.1.19 and the

remark following it) and Proposition 5.1.39.

Proposition 5.1.45 (Dyadic characterisation). For all p € (0, 00] we have

11150 2 ||(1£1] 20 @emy
where Dy is the grid of standard dyadic cubes in R™ with sidelength 1.

¢ (Dy)

Remark 5.1.46. The slice spaces EP are equal to the Wiener amalgam spaces
W (L?, LP)(R")

when p > 1 (see [15] and the references therein). Therefore, as with Z-spaces,
many properties of slice spaces can be deduced from properties of Wiener amal-
gam spaces. In order to emphasise the connection with tent spaces and Z-spaces,

we have proven these results in this context.

80nly the case p < oo is included there, but everything (except the density statement)
extends to p = oo.
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5.1.5 Homogeneous smoothness spaces

We will only give a quick definition of these, and state a few properties that we
will need. These definitions are special cases of the Littlewood—Paley definitions
of Triebel-Lizorkin and Besov spaces; we will not need these in full generality. For
more information the reader can consult Grafakos [12, Chapter 6] or the many
works of Triebel (for example [90, §5]).

Let Z(R™) € S(R") be the set of Schwartz functions f such that D®f(0) =0
for every multi-index «, and let Z’/(R™) be the topological dual of Z(R™). The
space Z'(R™) can be identified with the quotient space S'(R"™) \ P(R"), where
P(R™) is the space of polynomials on R™.

Definition 5.1.47. Let ¥ € S(R") be a radial bump function with
>0, supp¥ C A(0,6/7,2), and U|s112/7 =1

(of course these precise parameters are not so important), and for j € Z let A;
denote the associated Littlewood—Paley operators.
For f € Z/(R™), a« € R, and 0 < p < oo define

Le(Rn)

il 1= |[l3 = 2(255)0)

2(2)

and for 0 < p < oo define

1110 = |5 = 22N poeny

()

The homogeneous Hardy-Sobolev spaces H? = FP? and Besov spaces BPP are
then the sets of those f € Z'(R™) for which the corresponding quasinorms are
finite.

These quasinorms are independent of the choice of ¥ (up to equivalence), and

H? and BPP are Banach spaces (quasi-Banach when p < 1).
For f € Z/(R™) and « € R, the Riesz potential 1, f € Z'(R™), defined by
Inf(w) = ([€°F(€))" (=),

is well-defined. These operators can be used to characterise the Hardy—Sobolev

spaces when p > 1.

Theorem 5.1.48. Suppose 1 < p < 0o and o € R. Then f € Z'(R") is Hg if
and only if I.f € LP, and ||Iof||, is an equivalent norm on HE. Purthermore,

for all s € R, 1, is an isomorphism from Hf to Hg;a.
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We will need characterisations of the Hardy—Sobolev and Besov spaces by
integrals of differences. For all p € [1,00], g € L°(R"), and s € R, define

D@@%:</JAx+w—guwd®”p @ RY)

ly|+ee

Lemma 5.1.49. Suppose o« € (0,1) and p € (2n/(n + «),00). Then for all
f € L*(R™) we have
(5.17)

£l = ||D2f]

e’
Proof. Whenever f = I,p for some ¢ € C°, the estimate (5.17) follows from a

lemma of Stein [¢5, Lemma 1] combined with the Riesz potential characterisation

of H? (Theorem 5.1.48). A density argument, using the fact that elements of H?

2

ioe functions when « € (0,1), completes the proof. [

may be represented as L

The corresponding characterisation for Besov spaces can be found in [90, The-
orem 5.2.3.2].

Theorem 5.1.50. Suppose a € (0,1) and p € [1,00). Then for all f € L*(R")

we have
[l o = [|DL S o -

For a > 0, the Besov space Bgf”o" can be identified with the more familiar
homogeneous Holder—Lipschitz space AQ(R"). We will only use this space when
a € (0,1), and in this range A*(R") has a simple characterisation: it is the space

of functions f on R™ such that

Il = sup LB =7

< 0
z,yeR" |$ - y|a 7

modulo constants. Such functions are automatically continuous.
We will also need to consider the Triebel Lizorkin spaces F22? for a € R,

which are the subspaces of Z'(R") determined by the quasinorms

/]l = inf

5 2150

£2(Z) Loo(R™) ’

with infima taken over all decompositions
f=2 A
jez
with each f; € L®(R"), where A; are Littlewood-Paley operators as in Definition
5.1.47. When a > 0 these may be identified with the homogeneous BMO-Sobolev
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spaces BMO,(R™), which are defined as the images of BMO(RR") under the Riesz
potentials [, defined above, as subspaces of Z'(R"), with a corresponding norm.
Of course BMOy(R") = BMO(R"). Information on these spaces can be found
in [87] and [90, §5.1.4]. In particular, we have the following characterisation of
BMO,(R") for o € (0,1) due to Strichartz [37, Theorem 3.3].

Theorem 5.1.51. Suppose o € (0,1). Then for all f € L*(R™) we have

ST Sy B VGO () )”2
||f||BMOa_Sg <|Q|/Q 0 |x—y|“+2a yax )

where the supremum may be taken over all cubes or all balls.

We will introduce some unconventional but useful notation for these spaces.

For a finite exponent p = (p, s), define
HP .= (P = [P? and BP:= BIP,
For p = (00, 5;0), define
HP .= F>? and BP:= B>,

When s > 0 we have HP = BMO, and BP = A,. Finally, for p = (00, 5;a) with
a > 0, define

HP := BP := B2,
As a consequence of these definitions and the various duality identifications for

classical smoothness spaces, for all finite exponents p we have
(XP) = X¥
whenever X denotes either H or B.

We also have the following interpolation theorem. This is a combination of
standard results (see for example Mendez and Mitrea [73, Theorem 11], Triebel
[88, Theorems 8.1.3 and 8.3.3a]), and Bergh and Lofstrom [22, Theorem 6.4.5]).”

Theorem 5.1.52. Let p and q be finite exponents, and suppose 0 € (0,1) and
pe :=i([p,dlg). Then we have

[HP, HY), = HPale

9The results cited in [35] and [22] are for inhomogeneous spaces. As always, essentially the
same technique proves the result for homogeneous spaces. To obtain the stated results for Besov
spaces with 6(p) = 0(q), write B)”” = F?'” and use the interpolation results for Triebel-Lizorkin

spaces.
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and (also allowing infinite exponents)
[BP, B9, = Blpale and (BP7BQ)97PG — Blpdle
Furthermore if 0(p) # 0(q), then we have

(HP, Hq)am — Blpdle

5.2 Operator-theoretic preliminaries

5.2.1 Bisectorial operators and holomorphic functional cal-

culus

The material of this section is not new, but we present it here to fix notation.
Useful standard references are [70, 71, 2, 43], and a particularly nice recent ex-
position which focuses on bisectorial operators on Banach spaces is contained in
the thesis of Egert [30, Chapter 3].

Let 0 < w < /2. The open bisector of angle w is the set

S, ={2€ C\{0}: |arg(z)| < w or |arg(—2)| <w} C C,

where the argument arg(z) takes values in (—m, 7]. The closed bisector of angle
w is the topological closure S, of S, in C.
Throughout this section we will write L? = L?(R").

Definition 5.2.1. Let 0 < w < 7/2. A closed linear operator A on L? is called
bisectorial of angle w if o(A) C S, and if for all p € (w,7/2) and all z € C\ S,

we have the resolvent bound

(V| P (5.18)

L(L?)
Note that closedness of A is included in this definition. This is not standard,
but it is convenient. Generally the precise angle w is not important, in which
case we will simply refer to A as bisectorial.
The following proposition is proven in [30, Proposition 3.2.2] (except for the

adjoint statement, which is a simple computation).

Proposition 5.2.2. Let A be a bisectorial operator on L?>. Then A is densely-

defined, and we have a topological (not necessarily orthogonal) splitting

L* = N(A) aR(A). (5.19)

Furthermore, A* is also bisectorial.
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The procedure of constructing an operator ¢(A) from a given bisectorial oper-
ator A and holomorphic function ¢ on an appropriate bisector, known as holomor-
phic functional calculus, plays a central role in this work. In order to introduce
holomorphic functional calculus properly, we must first define some classes of
holomorphic functions.

For an angle ;o € (0,7/2), the set of holomorphic functions ¢: S, — C is
denoted by H(S,). For o,7 € R and ¢ € H(S,) we define

Illuz s,y = Iz = @ (2)/m (12Dl oo s,

(the function m] is defined in Section 4.3) and

W7 (Su) = {p € H(Su) « [lellug s, < oo}

Each W7 (S,) is a Banach space when normed by HH\I,; (s,)» and consists of those
holomorphic functions on S, which decay of order o at 0 and of order 7 at oo.™
An important special case is U)(S,) = H*(S,,), the set of bounded holomorphic
functions on S,,. We will usually surpress reference to S, in this notation, as the
relevant bisector is generally clear from context.

The spaces U7 are decreasing in ¢ and 7, in the sense that if ¢ < ¢’ and
7 < 7', then \I/(T,/, — WT. For 0,7 € R we define the set

= T
T'>T

and we define the sets W7 and U7t analogously. The set W1 := Wit 1 is particu-
larly important: it is the set of holomorphic functions (on the relevant bisector)

with polynomial decay of some positive order at 0 and oco. We also define
U = ﬂ v,

the set of functions with polynomial decay of arbitrarily large order at co. Simi-
larly we can define W7, W32, WS |
There are a few holomorphic functions which we will use extensively. We

define x*,x~ € H*® by

X+(Z) = 1Z:Re(Z)>O(Z) and X_(Z) = 12:Re(z)<0(2) (Z S S,u)7 (520>

these are the indicator functions of the two halves of the bisector S,. We also
define

and so on.

Z| = = (xT(2) = x (2))z.
g {_Z Re(z) =) ~ X))

0Decay of negative order is interpreted as growth.
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This lets us define a bounded version of the exponential map,
sgp = [z — e ] € U, (5.21)

which will be used characterise solutions to Cauchy-Riemann systems in Chapter

7. For A € R\ {0} we may also define the power function
[z 2 € U

via a branch cut on the half-line i(—o0, 0] C C.

We say that a function ¢ € H(S,) is nondegenerate if it does not vanish on any
open subset of S,. All the holomorphic functions defined above are nondegenerate
except for x* and x~.

Let us introduce some useful operations on holomorphic functions. Let ¢ €
H(S,). There is a natural involution ¢ — ¢ on H(S,) defined by

p(2) = () (z€ 5.
This involution is isometric on W7 for all o, 7 € R. For ¢ > 0 we define the dilation
S H(Su) by
wi(2) = p(t2).

The following lemma is a simple consequence of the above definitions.

Lemma 5.2.3. Let 0 € R. Then for allt > 0 we have

lellwg e =17 Mlellyo

Fix an angle w € [0,7/2) and let A be an w-bisectorial operator on L?. If
p € (w,m/2) and p € UI(S,), then we can define an operator ¢(A) on L? by the
Cauchy integral

P(A = /8 eE— A (el (5.22)

- 2mi

for any choice of v € (w, ), where 05, is oriented counterclockwise. Then the

integral (5.22) is well-defined and independent of the choice of v, and we have

(A 22y Saorn lellass,) -

The proof is straightforward; we mention only that independence of v fol-
lows from Cauchy’s integral theorem. The following homomorphism property
also holds: when ¢,¢ € W1, we have (pv)(A) = @(A)(A). Straightforward
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manipulations show that for all ¢ € U, the adjoint operator ¢)(A)* is given by

(A7),
Often it is convenient to assume that the operator A is injective and has
dense range. In the context in which we work this generally does not hold, but

the splitting L? = N (A)®R(A) from Proposition 5.2.2 shows that the restriction
A’W’ acting on the Hilbert space R(A) (with inner product induced by that
of L?(R™)), is injective and has dense range. One can also show that Al s
bisectorial.

The integral in (5.22) converges whenever ¢ € WT, but if ¢ € H* is merely
bounded, convergence is not guaranteed. We would like to be able to construct

operators ¢(A) when ¢ € H*. For certain operators this is possible.

Definition 5.2.4. Let A be a bisectorial operator on L?. We say that A has

bounded H* functional calculus on R(A) if for all ¢ € U and all f € R(A), we

have the estimate
(A fllze < Nelloo 11 L2gn) -

The property of having bounded H* functional calculus on R(A) is equivalent
to certain quadratic estimates being satisfied; this is an important theorem due
to McIntosh (see [70, §7 and §8] and the other references at the start of this

section).

Theorem 5.2.5 (McIntosh). Let A be a bisectorial operator on L?. Then A has
bounded H* functional calculus on R(A) if and only if the estimate

1/2

1 ([ st ) (5.23

holds for all f € R(A) and some (equivalently, all) nondegenerate o € UT.

Note that the quadratic estimate (5.23) need not hold for ¢ € H*.
If A has bounded H* functional calculus on R(A), then for all ¢ € H>® we

can define a bounded operator ¢(A) on R(A) by

A(A)f =limpa(A)f  (f € R(A)), (5.24)
where () is a net in ¥ which converges to ¢ in H*. We then have

e ey S Hlellae -

Furthermore, for ¢, € H*, we have the homomorphism property ¢(A)y(A) =
(p1)(A). For further details of this construction see [70, 71]. Thus we may define
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bounded operators xy*(A) and e~ = sgp,(A) (for all ¢ > 0) on R(A), using the
corresponding H> functions defined in (5.20) and (5.21).
If p € U9, then we can extend p(A) from R(A) to all of L? by

p(A)f = e(A)Przyf,

where Preay is the projection onto R(A) associated with the decomposition L? =

N(A) & R(A). The operator ¢(A) then maps L? into R(A). We have

el cws) S |[Prem]] e 10 e

and furthermore the homomorphism property ) (A)p(A) = (¥Yp)(A) continues to
hold for all ¢ € H*.

We refer to the operators y*(A) and x~(A) as the positive and negative spec-
=X Xt =0,
and x* 4 x~ = 1g, for the functions T, we deduce the identities

tral projections associated with A. From the identities (x

(F(A)? = xF(A), XT(AXT(A) =x(AXT(A) =0, Ly = xT(A)+x(4)

for the spectral projections as operators on R(A). Therefore xT(A) and y~(A)
are complementary projections in R(A) onto the positive and negative spectral
subspaces

RIA) = *(AR(A),

and we have a topological direct sum decomposition

R(A) = R(A) @ R(A) .

We define the Cauchy operators C% : R(A) — L=(Ry. : 72(14)ﬂE

) by
CHf(t) == e Mx=(A)f. (5.25)

These are solution operators for the Cauchy problems associated with A on the

upper half-space and lower half-space, in the following sense (see [3]).

Proposition 5.2.6. Suppose that A has bounded H™ functional calculus on

R(A). If f € 'R(A)i, then F := C% f solves the Cauchy problem
O F(t)+ AF(t)=0, F(0)=f

in C*(Ry : R(A)).
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We end this section with a discussion of unbounded operators arising from
holomorphic functional calculus, and some situations where their compositions
are bounded.

Suppose that ¢ € U7 with min(o, 7) < 0, so that the integral (5.22) need not

be absolutely convergent. We can define an unbounded operator ¢(A) on R(A)
as follows. Fix § > max(—o, —7) > 0 and define n° € ¥$ by

Then 7°¢ € W1, so that the operator (n°¢)(A) is defined by (5.22). We also
have n° € WE, so n°(A) is also defined by (5.22), and since A is injective with

dense range on R(A), so is °(A). Therefore the unbounded operator n°(A)~"! is
defined, with D(n°(A)~!) := R(n°(A)). We then define the unbounded operator

o(A) =1’ (A) () (A) (5.26)

with domain

D(p(A) = {f € R(A) : (P°p)(A)f € D(n’(A)~")}.

The operator p(A) is closed, densely-defined, and independent of the choice of 9.
Of course, if min(o,7) > 0, then we can take § = 0 in the definition (5.26) and
recover the original definition of ¢(A) by the Cauchy integral (5.22).

Now suppose ¢ € ¥l and ¢ € V2. Then a quick computation shows that
©(A)Y(A) C (¢¥)(A). Note that if oy +09 > 0 and 7, + 72 > 0, then the operator
(p1)(A) is bounded and given by the Cauchy integral (5.22), while the operator
©(A)Yp(A) is not a priori given by such a representation. This observation will

be convenient in what follows.

5.2.2 Off-diagonal estimates and the Standard Assump-

tions
For x € R, write (z) := max{1, |z|}. We continue to write L? = L*(R").

Definition 5.2.7. Suppose 2 C C\ {0}, and let (S.).cq be a family of operators
in £L(L?). Let M > 0. We say that (S.) satisfies off-diagonal estimates of order
M if for all Borel subsets £, F C R", all z € Q, and all f € L2,

1rS. (15 P)ll, < <d<E’F>>_ pfll,. (5.27)

||
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Many families of operators constructed from first-order differential operators
(in particular, certain families of resolvents) satisfy off-diagonal estimates of some
order. The following theorem shows that certain families constructed in terms of
holomorphic functional calculus of a bisectorial operator A satisfy off-diagonal es-
timates, under the assumption that a certain resolvent family satisfies off-diagonal

estimates. This is a slight extension of [31, Proposition 2.7.1]

Theorem 5.2.8 (Off-diagonal estimates for families constructed by functional
calculus). Fiz 0 < w < v < pu < w/2, M > 0, and o,7 > 0. Let A be
an w-bisectorial operator on L* with bounded H> functional calculus on R(A),
such that (I +XA)"")ec\s, satisfies off-diagonal estimates of order M. Suppose
that (n(t))es0 is a continuous family of functions in H*(S,) which is uniformly
bounded."* If ) € WI(S,), then the family of operators (n(t)(A)y(A))i=o satisfies
off-diagonal estimates of order min{o, M}, with constants depending linearly on
U]y [Inl], where [|n]] = sup, [[n(t)]], and also depending on A, M, o, and
T.

Proof. Fix Borel sets E, F' C R". Because ¢;(A) maps into R(A) for each t, we
can apply n(t)(A) to ¥+ (A)(1gf) for each t > 0. We need to prove the estimate

— min{o,M}
d(E, F)
0 e,

[Len(®)(A) (A Ay Saser Il 1]y s, <

for all f € L% Fix v/ € (v, u) throughout the proof.
If d(E,F) <t, then (d(E, F)/t) ~ 1, and so we have

[11en() (A)r(A) (e f)]], < / ()6 E)] || 1e(z = A7 Apf)|, 12

v/

(5.28)
< o 1
Sl lag 1efl, [ w0 20)
dS,,, 2|
— min{o,M}
d(E, F)
L e B[

where we used the resolvent bound coming from bisectoriality of A in (5.29).

Now suppose that d(F, F') > t. Then, rearranging (5.28) and using the as-

1 Continuity isn’t really needed here - we only assume it to avoid measurability issues.
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sumed off-diagonal estimates for ((I + AA)™ ") ec\s,, we have

11 () (A)ee(A)(Lef)ll,

d(E F)>‘M |dz|
< i / ml(|z - —
Salillles LSl | i (A5 I
Sl Il g: (e flly To + L), . (5.30)

where (EF)-1 o
I, .= T(N) —
0 \/0\ mo‘( ) /\
and o
0 A T dA
I, := / my () (d(E, F)) —.
td(B,F)~1 t A

The integral I is estimated by

td(E,F)71 d)\ t g d(E F) 7min(o,M)
I, < A — o~ < ’ . 5.31
o<, v () = () 3

To estimate I, we use that td(E, F)~! < 1 to write

-M 1
IOO ~as <d<E7F)> (/ )\O‘—M @ + C(T, M))
t td(B,F)~1 A

where

If o < M, then we have

1 o—M
/ )\UﬁM @ SO'M ( ! ) )
td(E,F)—1 AT \d(EF)

and in this case

— min{o,M}
S <d<E’ ) > : (5.32)

Otherwise, we have

1

d\

/ oA
td(B,F)—1 A

and this also yields (5.32). Putting the estimates (5.31) and (5.32) into (5.30)
completes the proof. O
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Off-diagonal estimates can also be used to deduce uniform boundedness and
convergence results for families of operators on slice spaces. These propositions

are proven in [15, §4].

Proposition 5.2.9 (Uniform boundedness of families on slice spaces). Let p €
(0,00]. If (Ty)s>0 is a family of operators on L* satisfying off-diagonal estimates
of order greater than nmin(|0,2|,1/2), then Ty extends to a bounded operator on
E§(t) uniformly in 0 < s < t.

Proposition 5.2.10 (Strong convergence in slice spaces). Let p € (0,00). Sup-
pose (Ty)s0 s a family of operators on L? satisfying off-diagonal estimates of
order greater than nmin(1/p,1/2), and such that lim, o Ts = I strongly in L.
Then limg o Ty = I strongly in EP.

Throughout the ‘abstract’” part of this work, the following assumptions will
be sufficient. They can be a bit of a mouthful if stated in full, so we give them a

name.

Definition 5.2.11. We say that an operator A satisfies the Standard Assumptions
if

o A is a w-bisectorial operator on L? for some w € [0, 7/2),

o A has bounded H* functional calculus on R(A), and

o for all v € (w,m/2) the family ((I + AA)™')rec\s, satisfies off-diagonal

estimates of arbitrarily large order.
The main examples we have in mind are perturbed Dirac operators.

Theorem 5.2.12. Suppose D and B are as in Subsection j.1.2 of the intro-
duction. Then the perturbed Dirac operators DB and BD satisfy the standard

assumptions (see Definition 5.2.11).

See [17, Proposition 2.1] and [16, Lemma 2.3, Propositions 3.1 and 3.2]; the

off-diagonal estimates stated there are in a different but equivalent form.

5.2.3 Integral operators on tent spaces

Let (Sir)ir>0 be a continuous two-parameter family of bounded operators on
L? = [*(R"), and for all f € L2(R, : L?) define Sf € L°(R, : L?) by

dr

S) = | Suesn) % (5.3)
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Since f is compactly supported in R, , the Cauchy—Schwarz inequality shows that
the integral (5.33) is absolutely convergent. We write S ~ (S;;):->0 to say that
S is given by the kernel (S;;):r>o-

We would like know when S can be extended from L?(R, : L?) to an operator
between various tent spaces and Z-spaces. A first step is given by the following
Schur-type lemma. Recall that L? is defined in (5.15) and coincides with X?2.

Lemma 5.2.13. Let 5,0 € R, and let S ~ (Si)ir>0 on L* as above. Suppose
that there exists v € L*(R, : R) (where R, is equipped with the Haar measure

dt/t) such that for all t,7 > 0,

7S~ < ~(t/7)(t/T)*H.

L2y —

Then for all f € L*(R, : L?),

1551122, < Il 11l - (5.34)

Proof. We argue by duality. For all g € LQ_(S +5), We can estimate

(S, 9)]
dr d
// 1e-F Ol gl T &
dr dt

< / / At/7) ||, , =2
< ([ *H ol )"
([ [ e ol )

2 ¢
<M,

t8+(5 t H

which implies (5.34). O

For certain kernels (S, ;), assuming an L2 — L2 s estimate (such as that which
could be derived from the lemma above) and some off-diagonal estimates, we are
able to deduce the boundedness of S from TP to TP*° for some exponents p with

i(p) € (0,1]. This is a generalisation of an argument of Auscher, McIntosh, and

Russ [13].

Theorem 5.2.14 (Extrapolation of L? boundedness to tent spaces). Let p =
(p,s) be an exponent with p < 1, let 6 € R, and let (S;)ir0 be a continuous
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two-parameter family of bounded operators on L* such that for all ty, 79 > 0
the one-parameter families (t_ést,m)te(mm) and (T_ésto,T>T€(t0,oo) both satisfy off-
diagonal estimates of order M, with implicit constant K uniform in m9 and t
respectively. Suppose a,b € R, and let S ~ (mL(t/7)S;.+)t.r0-

If we have the norm estimate

18611, < 1l (5.35)
for all f € LAR, : L?), with
—nbpa <b+s<M and a>s+9, (5.36)

then
1S fllzwes S l7w

for all f € LAR, : L?), and the implicit constant is a linear combination of K

and S]] := [I8]],z 12

Proof. Step 1: an estimate for compactly supported atoms. Suppose that
f is a compactly-supported TP-atom associated with a ball B = B(c,r) C R™.
Then f € L2, and so Sf is defined. We will show that Sf is in TP*® with
quasinorm bounded independently of f. To do this we will exhibit an atomic
decomposition of S f, and we will estimate ||S f||,p+s using the coefficients of this
decomposition.

Let Ty := T(4B) and T} := T(2*'B) \ T(2*B) for all integers k > 2. Then
define Fj, := 17, Sf for all k£ € N, so that we have Sf = > 77| F}, pointwise almost
everywhere. For each k € N the function F} is supported in a tent, so we can
renormalise by writing F, = A fi for some )\, € C and some TP™-atom f,. We
need only estimate the coefficients .

Estimate for the local part. For k = 1, since F} is supported in T'(4B),
we must estimate ||F1||L§+5 in terms of |[4B|%2. Tt follows from (5.35) and the
fact that f is a TP-atom that

1Bz < ISIHIBI*2 = |IS|| 4B,
546

and so we can set Ay ~,, |[S]|.
Estimate for the global parts. Suppose k£ > 2. Since F} is supported in

the tent T(2¥T1B), we must estimate ]|FkHL2+5 in terms of |28+1B[%2. We use
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Minkowski’s integral inequality to estimate

[ Fell 2,

(!
“(/

v p2Etly 2 dt 2 d
< / (/ t= 26+ 0mb (¢ /7)? "1A(c,2’“r7t,2k+1r7t)St,Tf(T)‘ 2 ¢ ) o
o \Jo

ok+1,. dr
+ (S+5)1B( ok 1y / m (t/7)S f(T) — -

1/2
L2)

(/ t7(8+6)mg<t/7—> "1A(c,2kr—t,2k+1r—t)Stﬂ'f(T)‘ 2 T
0

ok+1p

Note that f(7) is supported in B(c,r — 7). We have
d(supp f(7), A(c, 28r — ¢, 2"y — 1)) > d(B(c,r), R" \ B(c, 2%r — 1))
= (2" = Dr— 1),
so we split the region of integration (0, 2*"!r) x (0, r) into three subregions,

Ry ={(t,7):t<T<r}

2k —1
RQ::{(t,T):T<t< 5 7”}

2k 1
Rs := {(t,r):t> 5 r},

and denote the corresponding integrals by I, I, and I5.'?

On R3, where t > 7 and where there is no spatial separation, we have

241 ar\"” dar
sk [ ( [ e el t)
.

NbsK/ H fo b+s<2k ) (b+s)7

w2 ()

~ps K27 [ F]] (5.37)
S Ksz(bJrs) |B‘6p’2
_ Ksz(bJrs) |2k+1B‘6p’2 < |2k’+1B| > —
|Bi
~ Ksz(bJrernép,g) |2k+1B‘6p’2

dr

12The reason for using the factor (2¥—1)/2 rather than 2% —1 will be apparent when estimating
L.
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where we used b+ s > —ndpo > 0 in (5.37).

On Ry, where t < 7 and where the off-diagonal estimates for (77°5; )¢ (t.00)

involve spatial separation,

e 26— r -\ St d
nen [ t—2<s+5><t/7>2“(((7”") r|f<f>||L2) i

T M
~ —kM T —s dr
~ass K2 /o<r> |7 £ ()|, . (5.38)
AN
< ksl (7))
s 0 T T
Sy K27 R(MAndp2) | 9k+1 B 9.2 (5.39)

using that a > s+ in (5.38), and deducing (5.39) from the same argument used
for Is.

On R,, we have t > 7 and the off-diagonal estimates for (t_‘SSt,T)tE(T,OO) again
involve spatial separation, and the restrictions on ¢ imply (28 —1)r —¢ > 22—_17“ e
2Fr. Therefore

1/2

ok _1 —
" CR _ 2k — 1) —t\ M dt dr
vew [\ [T e (TS e ) E
0 T T
ok _q oM 1/2
" T 2" dt\ d
Sk [ s [ e (20) )
0 T T
" d
St 27 / [ g @] o 7 (@O0 2 (5.40)
0
Sb,s K2_k(b+s+n5972)’2k+1B’6972 (541)

using that M > sy + b in (5.40) and arguing as before to conclude (5.41).

Summing up, we have

HFkHLers <L +L+I;

SapMpss K (27H002) 4 g kbrsindna)) okt Biova,

and so for £ > 2 we can set

)\k ~ K (Q—k(M—‘rndp,g) + 2—k(b+s+n5p72)>
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which implies that

[ee)

- n - s+n p
2oy = [ISIF + KP>" (2 K(MAndp2) 4 o—k(b+s+ 61,,2))
k=2
<||S||F + K* i 9—kp(M+ndp2) 2—kp(b+s+n6p,2)7
k=2

which is finite because of the assumption (5.36). The implicit constants do not
depend on the atom f. Therefore Sf is in 7% , with quasinorm bounded indepen-
dently of f and controlled by a linear combination of ||S|| and K.

Step 2: from compactly supported atoms to 7P N L?(R, : L?). This
final part of the argument exactly follows [13, Proof of Theorem 4.9, Step 3]. One
must show that every function in 7P N L2(R, : L?) may be decomposed into a
sum of compactly supported atoms, and that such decompositions converge in
both TP (which is automatic) and in L%. We omit further details. O

5.2.4 Extension and contraction operators

Throughout this section we assume that A is an operator which satisfies the

standard assumptions (see Definition 5.2.11).

Definition 5.2.15. For all ¢y € H* define the extension operator

Qua: R(A) — L®(R, : L?)
(Quaf)(t) =v(A)f  (f €R(A), t €Ry).

If in addition ¢ € WL, then Qy 4 is defined on all of L?, and by Theorem 5.2.5
we have boundedness Qg 4: L? — L2(R™).

Definition 5.2.16. For all p € U1 define the contraction operator

Spa: LA(RY™) = R(A)

Spa = (Qg,a%)".

Note that Qy 4 = (Sg 4.)* when ¢ € WT.
A quick computation yields the following representation of S, 4. The integral
in (5.42) converges absolutely since f € L'(R, : L*(R")).
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Proposition 5.2.17. Suppose p € WE. Then for all f € L?(R, : L*?) we have

dt

t (5.42)

Seaf = [ el
0
Fix § € R, and suppose n € ¥, ¢ € H*, and ¢ € U;° N V. Then for all
f € LR, : L?) we have S, 4f € D(n(A)) and the integral representation

dr

QuanA8,aD0) = [ @m0 T (G

Therefore we can write

Qy,an(A)Sy.a ~ ((Yeiner)(A))t.r>o0-

Our goal now is to check when the results of Section 5.2.3 apply to this operator.
In fact, we will be able to draw some conclusions even when 7 is not bounded, as
long as Ve, € WT. This will ultimately lead to Theorem 6.1.11.

Lemma 5.2.18. Suppose 0 +7 > 0 and 6 € R. Let ¢y € V], ¢ € \1/”;2, and

T

n € W, and define the operator

St =m0 (t/r) " (W) (A). (5.44)

Then for all ty,ro > 0 the operator families (t“sgt’m)te(m?oo) and (T_égto,r)re(to,oo)
satisfy off-diagonal estimates of order o + T, uniformly in rq and ty respectively.

The implicit constants in these off-diagonal estimates depend linearly on ||n||ys E
This is a variation of [13, Lemma 3.7].

Proof. 1If ty < r we can write
r Sy = 17 (to/r) " [thiy (2)n(2)r (2)](A)
= [(t02) "1, (2)0°(2)(r2)" " 0-(2)](A)

where 1° € H*® is defined by 7°(z) := 2°n(z). Note that Hn‘;H = ||77||\1/5_5- Since
Y € U7 and o + 7 > 0, the function

Y(to) : 2+ (toz) " (2)n°(2)

is in H* with bound uniform in ¢y, linear in ||n||ys o and clearly independent of

7. Furthermore, the function 6 : z = 277%p(2) is in ¥, | and so we can write

o+T1)

=St = (o) (A)0-(A)
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where () is uniformly in H* and 6 € WY

o+T"*

the family (Sto,r)re(to,oo) satisfies off-diagonal estimates of order ¢ + 7 uniformly

Theorem 5.2.8 then implies that

in ¢y > 0, with implicit constants linear in ||n||_

Likewise, if ro <t we can write
t0Sry = 170(t/10) [ (2)1(2)pr (2)](A)
= [(ro2) ™" iy (2)0° (2) (£2)41(2))(A)
(

and proceed in the same way, the consequence being that (¢~ 65, 70 )t€(ro,00) Satisfies

off-diagonal estimates of order o 4+ 7 uniformly in 7y > 0, with implicit constants

linear in ”77”\1/‘15' O
Lemma 5.2.19. Fiz s,6 € R. Suppose ) € ¥ S(j;)?JF, o €U, andne V.
Then the operator S ~ ((Vimp,)(A))ir>0 extends to a bounded operator L? —
L? 5.

s+0

Proof. Fix ¢ > 0 such that ¢ € \If€+;:;5 and ¢ € Vers. First note that ¢¥yne, €
Ut so the operators S;, = (¥ume,)(A) are all bounded and defined by the
integral (5.22) on L?. We will make use of Lemma 5.2.13, so we write r = st and

begin by estimating

s,

() (5)~ [l | / T e mE (ki) d;\

et dA
ol [ mEOmE N T G

using Lemma 5.2.3 to eliminate the powers of ¢ in (5.45). If k < 1, we have
> X
W[ mEsmE ) T
0

Lo d\ AN o d\
— /{—6 <K5—s/ )\26 o ,{s—s/ kT s/ )\—2& )

0 A 1 A 1/k A
< /15*5*5(2 +log(1/k)).

If kK > 1, then by the same argument we have
I e+s A —e—s—0
K ma—&-s()‘)ms—s(/{/\) 7 < (2 + log( ))
0
Since the function
vy o | FFIoB/R) (<)
T ke log(r) (k2 1)

is in L'(R, ), Lemma 5.2.13 completes the proof. O
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The following theorem is the basis of Chapter 6. From the viewpoint of
applications, the important part of this theorem is the decay condition on ¢ at
0. We would particularly like to take 1) = sgp € ¥5° and § = 0, which is possible
provided that i(p) < 2 and 6(p) < 0.

Theorem 5.2.20 (Boundedness of contraction/extension compositions). Sup-

pose p is an exponent, 6 € R and n € VO 5. Suppose that either
e i(p) <2 and

(~(O)+0)+n1 =i P+ ~ 7700 0(p)+ N
P e \I’(e(p)+5)+ 2 NH and ¢ € \P(—e(p)+n|%—j(p)|)+ Nv,
(5.46)

or

e i(p) >2 and

(—0(p))+ + (0(p)—6+n|5—i(P))+ +

Y E ¥ prmi—ien+s Y+ 9 €V )10 nvy.

then Qyp an(A)S, 4 extends to a bounded operator XP — XP+° (by duality when
¥, AT ®, Y Y

i(p) = o), with bounds linear in ||77||\I,§6.

Proof. We will only prove the result for tent spaces. The Z-space result can
be deduced by real interpolation, or alternatively it can be proven directly via
the dyadic characterisation of Proposition 5.1.19. Furthermore, the result for
i(p) > 2 follows from the result for i(p) < 2 by duality, so we need only prove
the result for i(p) < 2. Note that (5.43) and the assumptions on 1 and ¢ imply
that Qg an(A)S, 4 contains the integral operator with kernel ((v4n¢-)(A))t >0,
so it suffices to work with this operator. Furthermore, the assumptions (5.46) and
(5.2.19) imply that this operator is bounded from Tj to Ty, 5, which yields
the result for i(p) = 2.

Step 1: i(p) < 1. The assumptions (5.46) imply that there exists ¢ > 0 such
that

T o+e)—0
Y eVl and p€ \IJET+§)+6,

where o := 0(p) + ¢ and 7 := —0(p + 0) + n|(1/2) — j(p)|. Therefore by Lemma
5.2.18, the operator families (t“sgt,ro)te(m’oo) and (r_égto,r)re(to,oo)a where Sm is
defined as in (5.44), satisfy off-diagonal estimates of order n|(1/2) — j(p)| + 2e.
Theorem 5.2.14 then applies with a = o+¢, b = 7+e+0, and M = 2¢+n|(1/2)—
j(p)|, and we can conclude that Qg 4n(A)S, 4 is bounded from TP to TP+,
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Step 2: i(p) € (1,2). The following argument originates from the thesis of
Stahlhut [$4, Step 4, proof of Lemma 3.2.6]. For A € C, define functions ¢* and

v by . .
0= () v o= () ve:

If ReA > n(1 — j(p)), then Step 1 applies with exponent (1,60(p)), and we find
that Qyx 41(A)Syx 4 is bounded from Ty, to Tj, 5 Furthermore, if ReA >
—nl|(1/2) — j(p)|, then the discussion of the first paragraph of the proof applies,

and we find that Qu 41(A)Syxr 4 is bounded from T3\ to Ty, .5 By Stein
interpolation in tent spaces (see [10, Proof of Lemma 3.4]), when Re A = 0, we

have that Qyux 41(A)S,x 4 is bounded from Tep(p) to Tg(p)w when p € (1,2) and
0 € (0,1) satisfy
1

L==0) g 0= =00 e +6 (5~ ).

This occurs when p = i(p). Applying this with A = 0 yields boundedness of
Qy,an(A)S, 4 from TP to TP, 0

Finally, we shall discuss an abstract form of the Calderén reproducing formula,
which is ubiquitous in the study of abstract Hardy spaces, and which will play
an important role in what follows.

Whenever ¢ € ¥ and ¢ € H*®, we can define a bounded holomorphic

function

> d
Dy p(2) 22/0 ¢t<z)80t(2)tt, 2€8,.

This integral converges absolutely because ¢¢ € UT. It is not hard to show that

Sp,aQp,a = Py (A)

as operators on R(A).
In [16, Proposition 4.2] it is shown that if ¢ € H* is nondegenerate, then
there exists ¢ € ¥ such that ®,, = 1. This implies the following abstract

Calderén reproducing formula.

Theorem 5.2.21. Suppose p € H* is nondegenerate. Then there exists ) € W
such that

Sy,aQp.4 = Iy (5.47)

as operators on R(A). Furthermore, if ¢ € Vi, then the operator Qu AS, 4 is a
projection from L*(RL™™) onto Qu aR(A).
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We refer to a pair (p,), with ¢ € H® ¢ € U1 and satisfying (5.47), as
Calderon siblings.
Here is a simple example of the use of the abstract Calderén reproducing

formula.

Corollary 5.2.22. Suppose ¢ € H* is nondegenerate. Then the extension op-

erator Qu a: R(A) = L*(Ry : R(A)) is injective.

Proof. Let ¢ € W1 be a Calderén sibling of ¢, and suppose f € R(A) with
Qg af = 0. Then by (5.47) we have

J =844Q,af =0,

and so Q, 4 is injective. O
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Chapter 6

Adapted function spaces

6.1 Adapted Hardy—Sobolev and Besov spaces

Throughout this section we will fix an operator A satisfying the standard assump-
tions (see Definition 5.2.11). As in the previous chapter, we will implicitly work

with CV-valued functions without referencing this in the notation.

6.1.1 Initial definitions, equivalent norms, and duality

The adapted Hardy—Sobolev and Besov spaces are, defined, roughly speaking,
by measuring extensions by Q, 4 in tent spaces and Z-spaces respectively. We
will soon show that the resulting function space is independent of v for ¢ with

sufficient decay at 0 and oo depending on p.

Definition 6.1.1. Let ¢y € H* and let p be an exponent. We define the sets

HY 4 = 1{f € R(A) : Quaf € TP},

By 4= {f € R(A) : Quaf € Z7},

equipped with quasinorms’

17 12| = 1QuaFle
£ 188 4|| == 11Qy,afll -

We call these spaces pre-Hardy—Sobolev and pre-Besov spaces associated with A

(respectively), and we call ¥ an auziliary function.

!These are shown to be quasinorms in Proposition 6.1.2. Of course, they are actual norms
when i(p) > 1.
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Generally we will want to refer to the pre-Hardy—Sobolev and pre-Besov spaces

simultaneously. In this case we will write

XiA ={feR(A) : Quaf € XP},
where the pair (X, X) is either (T,H) or (Z,B). This follows the convention

initiated in Subsection 5.1.4.

Proposition 6.1.2. Let ¢p € H* and let p be an exponent. Then H | Xf;?AH s a

: P
quasinorm on X, 4.

Proof. The only quasinorm property which does not follow directly from linearity
of Qy 4 and the corresponding quasinorm properties of XP is positive definiteness.
To show this, suppose f € X , and Hf \ Xi’AH = 0. Then we have Qy af = 0 in

XP_and hence also in L*(R; : R(A)). By injectivity of Qp 4: R(A) = L*(R; :
R(A)) (Corollary 5.2.22), we conclude that f = 0. O

The following proposition quantifies the amount of decay needed on the aux-
iliary function v in order to ensure that the X57 4 quasinorm is equivalent to the

Xg’ 4 quasinorm whenever ¢ has decay of arbitrarily high order at 0 and oo.

Proposition 6.1.3 (Independence on auxiliary function). Let ¢ € W and ¢ €

H®> be nondegenerate, let p be an exponent, and suppose that either

— nll_;
e i(p)<2andy € q/é(s)(JI:H =it

. i —6(p)+ +
ip) 22 and & € Wiy i jios M V-
Then we have X}, , = X? 4 with equivalent quasinorms.

Proof. First, let v € UZ be a Calderén sibling of ¢. Then for f € Xf/’,’ 4 we have

£ 12 4| = 11Qeafll e
= HQ%AS%A@w,AfHXp

S Quafll xe (6.1)
= Hf ’ XP,A )
where (6.1) follows from Theorem 5.2.20, by the standard assumptions along with

o, v e VL.
Now let v € U be a Calderdn sibling of ¢. Then we can repeat the previous
argument with the roles of ¢ and 1 reversed, using the additional assumptions

on ¥ to apply Theorem 5.2.20. This leads to the reverse estimate
17134l < (1 1%2.]
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which completes the proof. 0
Definition 6.1.4. For an exponent p, we define the spaces
Xp = X57A,

where any auxiliary function ¢y € ¥ may be used to define the space and its
corresponding quasinorm. We also define W(X%) to be the set of all nondegenerate

¢ € H* such that XP , = X} with equivalent quasinorms.

With this notation at hand, Proposition 6.1.3 tells us that

(—=0(P)+n13 =i P+ ~ 700 .
Voot TPUTAH® cU(XR)  (i(p) < 2),

79(p)+ + P 3
Y opyenit—ipp+ N YF C WXL ((p) > 2).

Recall that the positive and negative spectral subspaces

RO = x*(AR(A)

were defined and discussed in Section 5.2.1. These can be used to define corre-

sponding positive and negative spectral subspaces of X%.

Definition 6.1.5. Let p be an exponent. Then we define the positive and neg-
ative pre-Hardy—Sobolev and Besov spaces by

XBF .= XB N R(A),

equipped with any of the equivalent X% quasinorms. Often we will just refer to
these as the spectral subspaces.

In Corollary 6.1.13 we will characterise the positive and negative spaces Xﬂ’i
as images of the spectral projections y*(A).

The spaces X5 may also be characterised in terms of the contraction maps
Sy for any 1 € WI. Recall that X2 =T% = Z2 = L2(R}™).

Proposition 6.1.6 (Characterisation by contraction maps). Let p be an exponent
and let ¢ € WL be nondegenerate. Then we have

X5 =Sy (X2NXP), (6.2)
and the mapping
frmf{||F|lyp: F € X*NXP SyaF = f}
is an equivalent quasinorm on X%.
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Proof. Fix a Calderén sibling ¢ € ¥ of ¢. First we will show the equality
(6.2). Suppose f € XB. Then Q, 4f € X*N XP, and by Theorem 5.47 we have
f =Syp.a(Quaf). Conversely, suppose that f = Sy 4F for some F € X? N XP.
Then f € W, and Theorem 5.47 implies that Qg 4f = F' € XP, which shows
that f € X§. This proves (6.2).

Now prove the quasinorm equivalence. Suppose f € X}. Then f = Sy 4Q, af

with Q, 4f € X? N XP, and so
inf{||Fl|xe : F € X*NXP,SyuF = f} < [|Qpafllxo = ||fllxn -
Conversely, suppose F' € X? N XP and Sy 4F = f. Then

Fllxe 2 [1Qp,aSy,aF] o
= [1Qpafllxe

= HfHXg )
completing the proof. n

Corollary 6.1.7 (Density of intersections). Let p and q be exponents, and sup-
pose X1,Xy € {H,B}. If p is finite then (X1)5 N (Xo)$ is dense in (X;)%. Oth-

erwise, (X1)5 N (Xy)q is weak-star dense in (X1)h.

Proof. We will suppose that p is finite; the same argument works for infinite
p, replacing limits with weak-star limits and norms with appropriate duality
pairings.

Suppose f € (X;), and fix ¢y € UI. By Proposition 6.1.6 we can write
f = SyaF for some F € T? N (X;)P, and by Proposition 5.1.35 we can write
F =1limy_,o F}, (limit in (X7)P) for some sequence (Fy)ren in TN (X7)P N (X3)4.
For all k € N define

Jr =Sy aFr € (X))H N (X)4.

Then we have, again using Proposition 6.1.6,
Jim (1f = Felloeye S i ||F = Fill 0 = 0.
This proves the claimed density. O]

The pre-Hardy—Sobolev and pre-Besov spaces inherit a duality pairing from
R(A) C L*(R™). However, we cannot say that XF. is the dual of X, because
in general these spaces are incomplete, while the dual of a quasinormed space is

always complete. We will deal with completions in Subsection 6.1.3.

174



Proposition 6.1.8 (Duality estimate). Let p be an exponent. Then for all f €
XB and g € X¥. we have

[, 9 S W fllen gl (6.3)

where {-,-) is the inner product on L*(R™).

Proof. Let ¢, € U be nondegenerate and suppose € > 0. By Proposition 6.1.6
there exist F € X?NXP and G € X?NXP such that Sp Al = fand Sy -G = g,
with

1Elxe S A +e) Ifllxn  and  [1Gllxer S (1+€) [lgllge -
Since S, 4 = Qg a+, and using that the L2(RY™) inner product yields a duality

pairing for tent and Z-spaces, we thus have

(f, 9)] = [{F, Qp,4Sy, 4+ G) 2grom |
S EF xe [1Qp,4Sy, 4+ G|
S E | xe 1G]] xor (6.4)
< 2 ,
S(1+¢) ||f||xg|’9”xz*7

where (6.4) follows from Theorem 5.2.20. Since £ > 0 was arbitrary we obtain

(6.3). 0

The tent space and Z-space embeddings of Section 5.1 immediately yield

corresponding embeddings of the pre-Hardy—-Sobolev and pre-Besov spaces.

Proposition 6.1.9 (Mixed embeddings). Let p and q be ezponents with p # q

and p — q. Then we have the continuous embedding
(Xo)h = (X1)Z,

where Xo,X; € {H,B}, and the corresponding embedding holds for positive and

negative vETSions.

Proof. This follows directly from the definition of the spaces X¥ and from Theo-

rem 5.1.33. The spectral subspace versions follow by intersecting with (A)i. O

Remark 6.1.10. For p = (p,s) we will sometimes write X% = X!, and for
p = (00,5a) we may write X} = X?_ ,. This notation is a bit heavy, so
we avoid it whenever possible, except in the case of Xa 4, which we can simply

abbreviate as X% (as is standard).
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6.1.2 Mapping properties of holomorphic functional cal-

culus

In the same way that we proved independence on auxiliary functions in the previ-
ous section, we can prove various mapping properties (including boundedness) of
the holomorphic functional calculus between pre-Hardy—Sobolev and pre-Besov
spaces.

The first result says heuristically that an operator of homogeneity ¢ decreases
regularity by ¢.

Theorem 6.1.11. Let p be an exponent and § € R. Suppose n € W 5. Then the
operator n(A) maps D(n(A)) N XY into X5, and the quasinorm estimate

[n(A) fllxess S Hnllws 11 1]xe
holds for all f € D(n(A)) NXY. The same results hold for spectral subspaces.

Proof. Let ¢,9 € U and let v € ¥ be a Calderdn sibling of ¢. Then for all
f€Dn(A)NXY we have

(A s = 10 an(A)S0aQn fll o
< Mlls, 11Qu 1] o (6.5)
= (lnlls 111

where (6.5) follows from Theorem 5.2.20. To incorporate spectral subspaces in
this argument, write f € D(n(A)) N X% as f = y=(A)f and

n(A)f =n(A)x"(A)f = x (An(A)f,

and note that this shows that 7(A) maps D(n(A4)) N (A)i into (A)i. O

Because the spaces X§ may be incomplete, we cannot extend the operators
n(A) by boundedness without introducing completions. This is done in Subsection
6.1.3. Of course, when n € H* we have D(n(A)) = R(A), and so we obtain

bounded holomorphic functional calculus in the following sense.

Corollary 6.1.12. Let p be an exponent and n € H*®. Then the operator n(A)
is bounded on X%, with

n(A) fllxe S Tnllo 1]

for all f € XY, and likewise for spectral subspaces.
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This allows us to characterise the positive and negative subspaces Xﬂ’i as

images of spectral projections.
Corollary 6.1.13. Let p be an exponent. Then we have
XE = XF(A)XE.

Proof. If f € X5 then by definition we have f = x*(A)f € x=(4)X%. Con-
versely, if f € x*(A)XY, then f is in R(A)i, and by Corollary 6.1.12 we have
f € X%, Therefore f € R(A)jE NXH = XB*, O

The power functions A* := [z — 2*|(A) for A € R\ {0} (see Section 5.2.1)
are generally unbounded on R(A), but they do map between our adapted spaces

with a shift in regularity (when we intersect with the domain). This is a direct
consequence of Theorem 6.1.11 since [z + 2*] € U;*; the norm equivalence is
obtained by applying Theorem 6.1.11 with both A and —A.

Corollary 6.1.14. Let p be an exponent and A € R\ {0}. Then A* maps
D(AN) N XY into X5 with the quasinorm estimate

147]

g = 1Sl

for all f € D(A*) NXY.

Since the operators A* are all densely defined in R(A), and since AMAM =
AY+M whenever this is meaningful, we have almost proven that A* is an iso-
morphism from X% to X% *. We need to extend everything by boundedness to
make this rigorous. As previously mentioned, this requires the introduction of

completions.

6.1.3 Completions and interpolation

The spaces X% defined in the previous section are called pre-Hardy-Sobolev and
pre-Besov spaces because, with the exception of Xa Q= W, they need not be
complete. One could try to solve this problem by taking arbitrary completions
(XR)¢ of X§ and declaring these to be the Hardy—Sobolev and Besov spaces as-
sociated with A. However, if we take this approach, then for different exponents
P:, there may not exist a natural topological vector space in which the comple-

tions (X%')¢ both embed.? This prevents us from discussing interpolants of these

2Stahlhut takes this approach in his thesis [%4, §4.1], but his ambient space - a product space
of abstract completions indexed over all exponents - is not as natural as the one we are about

to propose.
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completions. The impact of this problem on abstract Hardy space theory seems
to have first been discussed by Auscher, MclIntosh, and Morris [11]. We avoid
this issue by introducing certain canonical completions within tent and Z-spaces
(and hence within L°(RY™)). If another completion is possible - for example,
within the space Z'(R") of distributions modulo polynomials, in which the classi-
cal Hardy—Sobolev and Besov spaces are embedded - then we are free to identify
this with our canonical completion.

By a completion of a quasinormed space () we mean a continuous injective
map ¢: Q — Q, where Q is a complete quasinormed space and 1(Q) is dense in
Q. By a weak-star completion of Q, we mean t: Q — Q as above, where Q is a
dual space and where +(Q) is weak-star dense in Q. Eventually we will refer to
Q itself as the completion, with the associated inclusion being implicit.

In this section, whenever p is infinite, we will interpret ‘completion’ to mean

‘weak-star completion’.

Definition 6.1.15. For an exponent p and an auxiliary function ¢ € U(X%),

define the canonical completion
PXH = QpaXh C XP

and likewise
PXBE = QuaXBRT C XB

where the closures are taken in the XP quasinorm when p is finite, and in the
weak-star topology on XP when p is infinite. We equip ¢X% and X% with

the XP quasinorm, so that X% and »X%* become quasi-Banach spaces.

Proposition 6.1.16. Fiz p and ¢ as in Definition 6.1.15. Then Qy 4: X5 —
WXB and Qya: XF — »X5F are completions of X5 and X5F

Proof. By construction the spaces in 4 and Q/JXi’j are complete and contain
QuaX® and Qu 4X5™ respectively as dense subspaces (in the weak-star topology
when p is infinite). The map Qy 4: X5 — ¢XP% is continuous since ¢ € U(X5),
and injective by Corollary 5.2.22. These properties automatically continue to

hold for the restrictions of Qy 4 to the spectral subspaces Xﬂ’i. O

Of course, completions are always unique, and so any completion may be iden-
tified with any canonical completion. It will be useful to make this identification

precise.
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Proposition 6.1.17 (Identification of completions). Fiz p and ¢ as in Definition
6.1.15 and suppose that 1: X5 — X is a completion of X&§. Then the unique map
Qy.a: X — XP such that the triangle

X

p__ P
X5 oo X
commutes, is an isomorphism between X and X%. Its inverse is given by the
map Sy, 4 XP — X, which is the unique continuous extension of the map o
Sua: X2 N XP — X (using the weak-star topology on XP when p is infinite) for
any v € YV which is a Calderon sibling of 1. The same results hold if we replace

all spaces with corresponding positive and negative subspaces.

Proof. Since Qy 4: X5 — X% is a completion of X%, by the universal property
of completions there exists a unique map /Qﬁp 10 X — X8 such that the triangle

X

e
L

XP . XP
B VX5
commutes. Hence we have a commutative diagram

X

AN
L

P p P
X5 g ¢XE - X

Since
(idoQy 4) 0t =Qua=Qyp a0,

by uniqueness we must have Q;, 4 = id o Q/ﬁp 4= Q/;) 4. Therefore it suffices to
show that ’Qip 4 satisfies the desired properties.

To show that Sy, AQ/TL# 4 = idx, observe that we have a commutative diagram

L

NL S ~L
X 2% hXRe xp 4 X L yXR (6.6)

L) ]

S,
X5 (3R ) X2 1 XP I KR (R).

id id
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Thus we have
Sip’A/Q/ZJ’AL:LOid: L
and
Q)48 alven) = id,
so by uniqueness of extensions we must have that QJ;, 4 and Sy, 4 are mutual
inverses.

The corresponding proofs for positive and negative spectral subspaces are
identical. n

As a corollary of this argument we can show that X% is a retract of XP.

This will be crucial in identifying interpolants.

Corollary 6.1.18. Fiz p, ¢, and v as in Proposition 6.1.17, and let 1: X5 — X
be a completion of X§. Then the map Qy 4S, 4: XP — X1 is the extension of
the projection Qp S, 4: X* N XP — Qyu aXY in the appropriate topology (hence
independent of v), and it is a projection onto YX%. The same statements hold

for spectral subspaces.

Therefore we can write Qy 4S, 4 := Qip, AS;% 4 to denote this extension.
Now that we have thought hard enough about completions, we can extend

the duality and boundedness results of the previous sections.

Proposition 6.1.19 (Duality). Let p be a finite exponent, and let ¥, v € VU
be Calderén siblings. Then the X? inner product identifies UXP. as the Banach
space dual of X%, and also identifies vX%: as the Banach space dual of X5,

Proof. Tt f € X% and g € IJXZ;, then we immediately have
[(f, 9)x2| < HfHXp HQHXP/ = Hf”wxg HQH;XZ’* )

SO every g € 7XP induces a bounded linear functional on XA.
Conversely, suppose ¢ € (¥X%)". Then we can define a bounded linear func-
tional ® € (XP)’ by
O(F) := o(Qy,aSyal)

for all F' € XP. By X-space duality, there exists a function G¢ € XP' such that
(F,Gg)x2 = P(F)
for all F' € XP, which satisfies
r > < Py -
|Gl o = ||(D||(XP)/ ~ ||<P||(quA)
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Hence for all f € X% we have

(f,(Qy,a8,,4)"Ga) x> = (f, Ga) x> = (f) = ¢(f)

since f = Qu.aS,af. Since Qg 4S, 4 is the continuous extension of Qy S, 4
from X2 N XP to XP, and since (Qy S, 4)* = Q5,4-S; 4+ on X2, we find that
(Qu.aS,.4)" = Qs a S;.a-- Therefore we have

p(f) = {f, Go)x>

for all f € X5, where G, = Qj 4-S; 4-Go € UXPF.. Furthermore we have

1Gellxe. = [|Qo.4-8,4- G|

ped
<
~ ||90||(¢xf1)/~

As with every other result in this section, the same proof works for spectral

subspaces. O

Proposition 6.1.20 (Boundedness of functional calculus). Let p be an exponent,
6 €R, andn € V. Suppose 11: X5 — X and 1p: X5 — Y are completions.
Then n(A) extends to a bounded operator n(A): X — Y, in the sense that the

diagram
n(A)

D(n(A)) N X4 X5

X — Y
n(A)
commutes, and that
S| S lilles, 11 (6.7)

for all f € X. Similar results hold for spectral subspaces.

Proof. Since D(n(A)) is dense in X} = R(A) and since X% N XY is dense in
XA (Corollary 6.1.7 for finite exponents, duality for infinite exponents using the
weak-star topology), we have that D(n(A)) N X% is dense in X¥. The result then

follows from Theorem 6.1.11 and the universal property of completions. O

Remark 6.1.21. Evidently ‘completed’ versions of Corollaries 6.1.12, 6.1.13, and
6.1.14 can be formulated.

Remark 6.1.22. In the situation of Proposition 6.1.20 we will use the symbol n(A)
to denote both the original operator D(n(A)) N X% — X5 and its extension to
completions X — Y. This will not cause any ambiguity, but one should be

careful.
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Finally we can state the interpolation theorem for canonical completions of
pre-Hardy—Sobolev and pre-Besov spaces. Having established so much abstract
theory, this is now a simple consequence of the interpolation results for tent spaces

and Z-spaces.

Theorem 6.1.23 (Interpolation of completions). Fiz 0 < 0 < 1 and ¢ € UZ.
Let p and q be exponents.

(i) Suppose j(p),j(q) > 0, with equality for at most one exponent. Then we

have the identification
[ HY, ¢HYJy = oHTD.

(7i) Suppose i(p),i(q) > 1, with p and q not both infinite. Then we have the

identification

[WBR, vBY], = B,

(1ii) Suppose 6(p) # 6(q). Then we have the identification
(X5, ¥X3)oy, = vBLY

where pg = i([p, qls).

Proof. Fix a Calderén sibling v € WS of 9. By Corollary 6.1.18 the map Qy, 4S, 4
extends to a map Qy S, 4: XP + X9 — XY + ¢XG which restricts to projec-
tions XP — ¢XH and X9 — ¢X%. Therefore by the retraction/coretraction

interpolation theorem (see [39, §1.2.4]),%, for all interpolation functors F we have
F(XB,X%) = QuaS, aF(XP, X9).

The results then follow from Corollary 6.1.18 and the interpolation theorems
5.1.12, 5.1.30, and 5.1.31. [

6.1.4 The Cauchy operator on general adapted spaces

Recall the function sgp = [z ++ e~Fl]. This function is in ¥§° € H*, and therefore

for all ¢+ > 0 the operator e~ is defined and bounded on R(A). By Corollary

6.1.12, for all exponents p we have that e ! is bounded on X%. Furthermore,

3This is only stated for Banach spaces in the given reference. The only property specific to
Banach spaces which is needed is the validity of the closed graph theorem, which also holds for

quasi-Banach spaces [50, §2], so the proof goes through even for quasi-Banach spaces.
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when restricted to the positive or negative spectral subspace, the operator Qggp 4
coincides with the Cauchy operator C, which produces solutions to the Cauchy
problem associated with A on R, or R_ respectively.

Given a completion X of X%, each of the operators e !4: X% — X% and the
spectral projections y*(A) extend to maps X — X (in the sense of Proposition
6.1.20), and by means of these maps we can extend the Cauchy operators C’j{ to
maps

Ci: X = L®(Ry : X¥).

Note that we construct these operators by extending each operator e H4ly*(A) by
boundedness, rather than by extending the Cauchy operators directly. Similarly
we can define

Qsep.a: X — L(Ry : X).

Proposition 6.1.24 (Properties of Cauchy extensions). Let p be an exponent,
and fix a completion X of X§.* Then for all f € X the extension Qsgpaf is in
C®Ry : X), and if f € x*(A)X, then the Cauchy extension C%f solves the
Cauchy equation

O,CLf+ ACEf =0

strongly in C*°(Ry : X). Furthermore for all f € X we also the limits

Pi% Quep,af(t) = [ and tlggo Qugp,af(t) = 0. (6.8)

Proof. First we will prove the limit results. These reduce to the case of finite
exponents p, as for infinite p we can deduce the limits (6.8) by testing against
Xg;. Furthermore, by density, it suffices to prove the limits

lime M f = f andlime M f=0

t—0 t—o0
for f e X4.

For f € HY, these follow from arguments almost identical to those of [10,
Propositions 4.5 and 4.6], the only difference being the presence of the weight
xk~%P) which does not change the argument. Now fix an exponent q # p such
that @ < p, so that H} < B (Proposition 6.1.9). For f € H}, we then have
lim ||e 4 f — f|

t—0

< lim [[e 7 f — |

BY ™ t—0

=0
HY

4Recall that we mean a weak-star completion when p is infinite, and in this case we use the
weak-star topology on X.
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and

Jim [ ]

< Jim ||e~"4f]

BY ™ t—oo

=0.
H3

Since HY is dense in BY (Corollary 6.1.7), these limits hold for all f € BY.

Now we will prove the smoothness result. It suffices to work with f € x*(A4)X
here, as the result for y~(A)X uses the same argument, and the general result
follows from the decomposition X = xT(A)X @& x~(A)X. First observe that the
function ®: R, — H* defined by ®(t) = [z + e ] is smooth with Fréchet
derivative D,®: R — H> given by D,®(7) = [z — —7[z]e "#]. Next, note that
the map Qa: H® — L(xT(A)X) with Qa(f) = f(A) is linear and bounded in
the strong topology (Proposition 6.1.20). By the chain rule, the composition of

these maps is smooth, with Fréchet derivative
Dy(Q4 0 ®) (1) = Q40 D,®(7) = —TAe™ .
We can then write
0CLf(t) = Di(Qao ®)(1)f = —Ae™™ f = ~ACLf(1),
which completes the proof. O

Now we must address the question of whether or not C'y maps X% into XP.
This would imply that one can construct C*°(Ry. : X&) solutions® to (CR) 4 which
are in XP with given initial data in Xg’i. It turns out that this is only reasonable
when 0(p) < 0. For i(p) < 2 we already know everything we need to prove this;

for i(p) > 2 we need more information (see Subsection 6.2.2).

Theorem 6.1.25 (Cauchy characterisation of adapted spaces, i(p) < 2). Let p

be an exponent with i(p) < 2 and 0(p) < 0. Then for all f € R(A),

111z = 1Qugpafll o

Proof. By Proposition 6.1.3, we have

_ il
sgp € U° C \I/.(g(ﬁ)(f:)Jr 23R+ NH>® C U (XH),

which yields the result. O]

2

This solution concept does not always agree with the L

solution concept that we are

really interested in. This is discussed further in Subsection 7.3.1.
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Remark 6.1.26. The estimate
Hﬂlxg 5 ||@sgp,Af||Xp

holds for all p, as can be shown by a Calderén reproducing argument as in the

proof of Proposition 6.1.3. The reverse estimate need not hold in general.

We will need the following technical lemmas in Section 7.3.

Lemma 6.1.27. For every M > 0, there exist functions o*, o~ € H™ such
that (pF(A))eso satisfies off-diagonal estimates of order M, ¢F(A) = e~ on
the corresponding spectral subspace Xi’i, and lim,_,q 0= (A) = I in the L?-strong

operator topology.

For a proof, see [15, Lemma 15.1], noting that Hii = Bii. Although this
result is stated for A € {DB, BD} there, the proof only uses the standard as-

sumptions.

Corollary 6.1.28. Let p € (0,00]. Suppose f € X5 N EP. Then C5f(t) € EP
for each t € Ry, and if p < oo then lim;_o CE f(t) = f in EP.

Proof. Choose functions ¢* as in Lemma 6.1.27, such that (pF(A))sso satisfies
off-diagonal estimates of large order. By Proposition 5.2.9, the operators i (A)
are bounded on E”. Since ¢ (4) = e~ on X4*, we have CT f(t) = e 1A f € EP
forallt € Ri. The limit statement follows from Lemma 6.1.27 (which gives strong

convergence in L?) and Proposition 5.2.10 (which improves this to EP). O

6.2 Spaces adapted to perturbed Dirac opera-

tors

We now begin to work with C™(*™_valued functions for some fixed m € N.
When applying results of the previous sections, we implicitly take N = m(1+n).

In this section, we fix the Dirac operator D and consider multipliers B as in
Subsection 4.1.2 of the introduction. Recall that the perturbed Dirac operators
DB and BD then satisfy the Standard Assumptions (Theorem 5.2.12). Further-
more, R(DB) = R(D), and the restrictions DB|z 55 and BDgzgp; are similar
under conjugation by B’WB) [17, Proposition 2.1]. Consequently, whenever
f€D(D)NR(BD) and p € H* we have

Dy(BD)f =¢(DB)Df.

We will refer to this principle as similarity of functional calculi and use it repeat-
edly.
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6.2.1 Identification of spaces adapted to D, DB, and BD

The operators DB and BD satisfy the Standard Assumptions, so we can define
pre-Besov—Hardy—Sobolev spaces XP, ;. The case B = I yields X},

For a certain range of exponents p that we denote by .y, the spaces Xp
may be identified as projections of classical smoothness spaces (to be shown
in Proposition 6.2.1). Recall that we use the notation XP to denote classical
smoothness spaces, as in Subsection 5.1.5. These spaces are all contained in
Z'(R™), the space of tempered distributions modulo polynomials.

In [16, Theorem 4.16] it is shown that for p € (n/(n + 1),00) we have an
identification

H® ~ Pp(HPO) N L) C Z'(R")

where Pp is the bounded projection from L?(R™) onto R(D). Since Pp extends
boundedly to the spaces H®? by virtue of being a Fourier multiplier within
the scope of the Mikhlin multiplier theorem (see [90, Theorem 5.2.2] and [53,

Proposition 4.4]), we may write
HYY = Pr(HPY) = HPY N DZ' ¢ Z/(RY)
D — 4D - )

thus providing a completion of H%”O) within the space of distributions modulo

polynomials. Hence if we have an identification H%}g) ~ H%’O), we can find a

completion of H%’]g) in Z'.
Furthermore, combining [16, Lemma 11.6] with Corollary 6.1.14 shows that
for all p € (1,00) we have

HE ™Y ~Pp(HP YN L) N D2 C Z'(R"),
and for all o € [0, 1) we have
HE" ~ Pp(H%) 0 L2) ¢ Z/(R"),
so by the same argument we may write
HY ™) ~ Pp(HP™Y) = HP VN DZ' ¢ Z'(R")

and
H(Doo,O;Oé) ~ ]P)D(H(oo,();a)) _ H(oo,O;a) NDZ c Z/(Rn)

(where Pp is extended by duality).
We can interpolate between these observations to yield an identification of the

spaces HY, in a restricted (but for our applications, sufficiently large) range of p.
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Figure 6.1: The region I, on which HY, ~ HP N DZ’.

0(p)

0 : o

R f
S0 i T /(P
n 2 n

Theorem 6.2.1 (Identification of D-adapted spaces). Suppose p is in the region
Lnaz pictured in Figure 6.1. Then

HP, ~ Pp(HP N L?).
Furthermore, if p is in the interior of L.z, then
BY, ~ Pp(BP N L?).

We abuse notation by writing XP, = Pp(XP).

To prove this we will need the following lemma.

Lemma 6.2.2. Suppose that f € R(D) (note that we do not take the closure of

the range here). Then there exists g € D(D) NR(D) such that f = Dg and

1 11xe > Mgl xpe -
for all exponents p.

Proof. Since f € R(D) there exists g € D such that f = Dg. Let g = Ppg. Since
the projection Pp is along N'(D), we have f = Dg also. The estimate

1 llxe < lgllxpsr
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then follows since D is a first-order homogeneous differential operator. To obtain

the reverse estimate, we need to invert D on R(D). Let
T = DA7'Pp + (=A)"Y2(I —Pp).

One can show that 7' is a homogeneous Fourier multiplier of order —1, and hence
maps XP to XP™!. Furthermore, TPp inverts D on R(D), and so we have the

estimate
gllxerr S 11 f|1xp

which completes the proof. O

Proof of Theorem 6.2.1. When p is finite, this follows directly from the identifi-
cation of complex and real interpolants of the spaces HP (Theorem 5.1.52).

Now suppose p is infinite. Observe that the subregion of I, consisting
of infinite exponents (the lightest shaded region, including the dashed line) is
precisely the O-dual region of the darkest shaded region, including the solid line.
Therefore for all infinite p € Iy, p¥ is finite and in In.e. If f = Dg for some
g € D(D)NR(D) as in Lemma 6.2.2, then we have

1 1lxe == [gllxe+ (6.9)

~ sup [(g,h)|
hex‘f

~ sup  [(g,Pph)]|

hexp¥nL2
— he;:}g)nm |(Ppg, h)| (6.10)
~ |[g][xp1 (6.11)
~ [ fllxe - (6.12)

with all suprema taken over appropriately normalised elements. Line (6.9) follows
from Corollary 6.1.14. In (6.10) we use orthogonality of the decomposition L? =
N(D) @ R(D). In line (6.11) we remove the projection by using that g € R(D).
In (6.12) we use the conclusion of Lemma 6.2.2, which follows from our choice
of g. Therefore by weak-star density, we get X, ~ Pp(XP N L?) (the projection

comes from the fact that f € R(D) in this estimate). O

Now we shall discuss spaces adapted to DB, and the range of exponents for
which they may be identified with spaces adapted to D. As shown in the intro-
duction, the following ‘identification region’ plays a central role in the theorems
of Chapter 7.
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Definition 6.2.3. We define

I(X, DB) :={p € Lnax VB < ||fllze = [|f||5e for all f € R(DB) =R(D)}.
(6.13)
and for s € R,

I(X,DB) :={i(p) : p € I(X,DB) : §(p) = s} C (0,00).

Note that I(X,DB) is defined to be a set of finite exponents. We could
include infinite exponents in this definition, but it is technically more convenient
to restrict ourselves to finite exponents.® It is also defined to be contained in
@nax, 80 not only do we have X¥,, = XD but we also have the identification of
X® as the projection of a classical space.

We recall a key result of Auscher and Stahlhut, which follows from [16, The-
orem 5.1 and Remark 5.2].

Theorem 6.2.4 (Auscher—Stahlhut). There exists ¢ = £(B) > 0 such that
(2n/(n+2) —e,2+4¢) C Iy(H, DB). Furthermore, if n = 1, then Iy(H, DB) =
(1/2,00).

We will extend this result to allow for more general exponents of order 0(p) €
[—1,0], and also to incorporate Besov spaces.

The O-duality operation on exponents provides a link between I(X, DB) and
I(X, DB*) (Proposition 6.2.7). We need some preliminary results to establish
this link. First we state a local coercivity property of B, which is proven in [10,
Lemma 5.14].

Lemma 6.2.5. For any u € L} with Du € L}, and any ball B(z,t) € R", we

loc loc

/ | Dul? SB,H,N/ ]BDu]Q—i—tQ/ |ul?.
B(xz,t) B(xz,2t) B(x,2t)

Proposition 6.2.6 (Intertwining and regularity shift). Let p be an exponent,
and suppose f € X%, ND(D). Then Df € X%, and

have

1D Lt = 11l -

6More precisely: in applications, whenever we deal with infinite exponents, we always con-

sider the space in question as the dual space, and the predual exponent will be in I(X, DB*)

(see for example Theorem 7.3.2).
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Proof. We will only prove the result for TP with p = (p, s) finite; all other cases
are proven by the same argument.

Let 1) € U2 be nondegenerate and define ¢ € U by ¢)(2) = z¢p. Then ¢)(DB)
maps R(DB) into D((DB)~'). Since f € D(D) we have Df € R(D) = R(DB).

Using similarity of functional calculi, write
1D fllgps = [t = $(EDB)DS ||,
— [t = D(EBD) flly
= ||t = D(BD) M (tBD)f]| ,

E]

For all ¢ > 0 we have
(BD)“W(tBD)f € L?, D(BD) " “4(tBD)f = ¢(tDB)Df € L?,

so we can apply Lemma 6.2.5 for each t > 0 with u = (BD)~"4(t BD) f as follows:
for all x € R™,

A(t — t*D(BD) " (tBD)f)(z)

) 2\ V2
([e [ oy iennpm i)

< ( [ [ / L \GeBD) dy

) &\ 72
o[ weninwra) i)
A(™°Qg ppf)(x) + A(k™°Qyp f) (7).

Therefore

A+ 1Qun e = 1 1lep

To prove the reverse estimate, using that f € D(D) = D(BD), write

[ £l = ||(BD)"

5 ||BDf||H§’351

~ ||t = Y(ABD)BDf||p-
= ||t = BY(tDB)Df|[pp
S Qy.peD || p-

= HDfHHg;
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using (6.1.14), boundedness of the multiplier B, and similarity of functional cal-
culi. =

Proposition 6.2.7 (O-duality of identification regions). If p € (X, DB), then

fllpe = [[fllgoe for all f € R(D). In particular, if p" is also finite, then
DB* D

pY € (X, DB*).

Proof. Suppose g € D(D)OX%; p- Then arguing similarly to the proof of Theorem
6.2.1,

I1Dgll oo =~ sup  [(Dg,h)|
DB pep(D)nx®)
B*D

= sup [(g, Dh)|

p+1
heD(D)NXBLL

~ sup |(g,h)| (6.14)

p
heXpps

~ sup [{g,h)| (6.15)

hex®
= |91l e

~ HDgHXpDo (6.16)

with all suprema taken over appropriately normalised elements. The equivalence
(6.14) uses Proposition 6.2.6, and then (6.15) uses the assumption on p. The
final equivalence (6.16) uses Corollary 6.1.14. Since D(D(D) N XP. ) is dense’
in XP .. (by density of R(D) in X2, and Corollary 6.1.7), we are done. O

The following result then follows immediately from Theorem 6.2.4.
Corollary 6.2.8. There exists € > 0 such that

(1,00) (n=1)
I (H,DB) D> { (2—¢,00) (n=2)
2—¢e,2n/(n—2)+¢) (n>3)

The main application of our discussion of interpolations and completions of
adapted spaces, particularly Theorem 6.1.23, is in showing that [(X,DB) is
closed under interpolation, and also that information on I(H, DB) implies infor-
mation on (B, DB).

Proposition 6.2.9 (Convexity of identification regions). Let 6 € [0, 1].

"Weak-star dense when p’ is infinite.
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(i) If p,q € I(H,DB), then [p,qls is in I[(H,DB). Furthermore, if 0(p) #
0(q), then [p,qle is in (B, DB).

(i) If p,a € I(B, DB), then [p, s € I(B, DB).

Proof. We will only prove the first part, as the proof of the other parts are
identical but with real interpolation replacing complex interpolation.
Suppose p,q € I(H,DB). Let ¢, p € U2 be Calderén siblings. First note

that we have a map
So, id
Qu.08Xb5 + QuosXpp == Xbp + X3z = Xb + X3

(here we use Theorem 6.2.1), which restricts appropriately and which extends by

boundedness to
So.pp: YXhp + X% s — XD + X3,

By Proposition 6.1.17, the restrictions of Sy, pg to ¥X} 5 and X3 5 are isomor-
phisms, and their inverses both extend Qy pp: ng) — Qy, DBXgﬁ). Therefore,

by complex interpolation (Theorem 6.1.23) we have an isomorphism
Sepp: PX el — Xpdo

which extends S, pp: Qw,DBXg}g) — X(DQ};)) = Xg’o). Hence for all f € R(DB) =

ng) we have
[l gecto 2 [|Qup, 05[] x 1009
DB
= ||S¢7DBQ¢,DBf||X[p,QJ9
D
= ||S¢,DBQ1/),DBf’ |X[p,0ﬂ9
D
= HfHX[;)”CﬂG )
and therefore [p,qly € I(H, DB). O

Therefore for every B we have a region I, such that I,,;, C I(H, DB) and
Io,, € I(B, DB), pictured in Figure 6.2, where lower bounds on Iy(H, DB) and
I_1(H, DB) can be found in Theorem 6.2.4 and Corollary 6.2.8.

Remark 6.2.10. If p € (X, DB), then we identify the projected classical Besov—
Hardy-Sobolev space Pp(XP) = XPNDZ’ as a completion of X, via the exten-
sion of the identity map X2, — XP. If p is infinite and p® € I(X, DB*), then
by Proposition 6.2.7 we may identify Pp(XP) as a weak-star completion of XP, ..

We abuse notation by writing Xb,; for these completions.
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Figure 6.2: The region I, C I(H, DB).

0(p)
Iy(H, DB)
0 - :
—1
I 1(H,DB)
RO i T /(P
n 2 n

Having made these identifications, note that we do not have equality of X%
and X', The first of these spaces is defined via the spectral projection y*(DB),
while the second is defined via x* (D). However, we do of course have X% ¢ X,

This will be important in applications to boundary value problems.

Remark 6.2.11. For a coefficient matrix A as in the introduction, if B = A, then

A* = B := NB*N, where
I
N = 0.
0 —I

Since DN = —ND and N acts on R(D), the operators DB* and —DB are
similar on R(D) = R(DB*) = R(DB). Thus all functional calculus properties
of DB* can be transferred to DB, and vice versa. This gives natural isomorphisms
between X7 5. and X? -, and in particular we have I(X, DB*) = I(X, DB). For
further details see [10, §12.2].

6.2.2 The Cauchy operator on D B-adapted spaces

This section is devoted to the proof of the following theorem. Recall that the

region [,y is introduced in Theorem 6.2.1.
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Theorem 6.2.12 (Cauchy characterisation of adapted spaces, i(p) > 2). Let
p be such that i(p) > 2, O(p) € (—=1,0) and p¥ € I(X,DB*). Then for all

f € R(DB),

57|

Remark 6.2.13. The condition p¥ € I(X, DB*) is equivalent to p € I(X, DB)
when p is finite (Proposition 6.2.7).

o S llxe

Remark 6.2.14. The reverse estimate

1fllxe < ||Ci /]

Xp

holds for general operators A (satisfying the standard assumptions) and for all
p (see Remark 6.1.26). However, we do not know whether Theorem 6.2.12 holds
with DB replaced by A and without the assumption on p¥.

In contrast with Theorem 6.1.25, the proof of this theorem is quite long. We
thank Pascal Auscher for suggesting this argument.

Before proving the theorem, we establish a technical lemma.

Lemma 6.2.15. Suppose 0 € (—1,0), g € D(D), and f = Dg. Then for all
EeR”, 7>0, and M € N, we have

// 1=0(1 + itDB)~2f ()2 224
T(B(£,)) t

<, / / 3 9 M=) / G, y) du dy
B(&,41) B(g41) j=2 A(€,29-17,20+27)

where

lg(z) — g(y)|?
|z — y[rr20t0)”

G(z,y) =

Proof. Fix x1,x € C(R") such that

supp x1 C B(§,47), X1|B(5,2T) = const,
supp x C A(§,7/2,47) X|a(e,7,2r) = const

For all j > 2 define x,(z) := x(277x), so that supp x; C A(£, 27717, 27727) and
Xjlage2ir2i+17) = 1. We can choose the functions x; and x such that Yaax; =1L

Let
- ][ g
B(¢,7/2)
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Then we have

f=D(g—c)=) D(g—c)x;

M

<
Il
-

First we will prove that

dz dt

// t9(I +itDB)*D(g — )xa ()P
T(B(&,T))

[3%s
S / / G(z,y) dz dy. (6.17)
B(¢,47) J B(g47)

Since V2 € U,/ N H® C U(XZ0) and since (2,0) € I(H, DB), we have

dx dt

// #0(1 + itDB)D(g — o)y ()2
T(B(¢,T))

dz dt
S// t=°(I +itDB)*D(g — ¢)xa(z)|? &
RI"

~[|D(g — c)xallZeo
DB
2
~ [|(g = allgz,,

i D5, 1(9 — o)x1(z)]* da

using Lemma 5.1.49 (which is valid since 2 > 2n/(n + 1 + 6)) in the last line.

We claim that

9—xa(z) — (g9 — ) < 9(y)I”
/n /n 7 — g dzdy < //3(547)2 = y|n+2 911) dz dy,
(6.18)

from which estimate (6.17) will follow. First observe that if y € B(£,7) and
z € B(&,7/2), then x1(2) = x1(y) = 1 and the estimate (6.18) (restricted to such
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y and z) follows immediately. Next, we can estimate

/ / =) ~lg @l 4, 4,
B(&,r)e J B(g,7/2) |z — g[n2(0+1)
</ L/ WA= xa @) oy
A(¢,m41) J B(€,7/2) |Z - $|n+2(9+1)
2

SX / / |Z — I|_”—2(9+1) <][ |g(z) — g(y)| dy> dzdr + A

A(¢,r4T1) J B(£,7/2) B(&,7/2)

2

<r / | y|—n—2(9+1) (7[ |g(z) — g(y)| dy> dz+ A

f’ g/ o) =9 40

B(g, 7-/2 g 7/2) |Z — |"+2(9+1)

o) — o),
BlEAr)? |z — y|n+2(9+1) Ys

where
A< lg(2) —g(y)* dod
Bl ar)? |Z_y|n+2 1o _ o nt2(0+1) Ys

and where we used |z — x| 2 |z — y| on the region of integration.

Finally, we estimate

g—c 1( )_( —c) 1(I)|2
/” / B(&,m/2)° >|<z — x‘n+§(e+1) A dzdx
(9= )@)0a = V(@) = (9= ()00~ D)
: dzdr+ A
~ /;(547)/ £7/2,47 +

|2 — | +20+1)

2
SVS / / ‘Z — m‘*n*QQ (7[ ‘g(x) — g(y)' dy) dzdr + A
B(¢4r) J A(g,7/2,47) B(&,7/2)
2
</ r (7[ 9(z) — 9(y)] dy) de + A
B(&A7) B(& 7/2)
g
dz d
//B(E 472 |;1; _ |n+2 (041 4T Y

with A as before, using r > |z —y| and |z —y|["*% > |z —y

["+200+1) on the region

of integration.
Now we will handle the remaining x; terms. For j > 2, by local coercivity

(Lemma 6.2.5), the equality
BD(I +itBD)™ ' = (I — (I +itBD)™")/it,
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and off-diagonal estimates of the families (I +itBD)~! and (I +itBD)~? of order

M, we can estimate

// (I +itDB)™2D(g — ¢)x;(z)]’

T)

s [ / DI +itBD) (g — o)) do &
0 B(&,r) 3
/ t 20 ‘(

dz dt

< BD(I +itBD)™*(g — ¢)x;(z)* dz

0 [ B(€727_)

+ 772 /3(52 )|(I+itBD)_2(g — c)Xj(:v)|2d:v] —

.\ —2M
T 27T dt
< —20 (& T ) -2 . 2 at
s/ (t) (2 +772) g = el -
2 25 M 9
S 2(1+9) ||( C)X]HQ :

Furthermore, for each 7 > 2 we have

2
(g — Ol < / (][ 9(a) — g<y>rdy) &
A(€,29-17,2i127) B(&,7/2)

/ / 9te) ~ o) o dy
B(&,m/2) J A(€,29-17,20+27)

2
(1 0) 2_7 (n+2(140)) / / ( ) — 92(1)‘9 dr dy
B(&,47) 20 =17 25+27) |z — y|nt+20+6)

Putting these estimates together completes the proof of the lemma. O]

Proof of Theorem 6.2.12. Step 1: Reduction to a resolvent estimate.
As stated in [15, Proof of Lemma 15.1], there exists p € H* of the form

N
p(z) = > (1 +imz)~?
m=1
for some scalars ¢y, ...,cy € C, and ¥ € U3, nondegenerate, such that

e =p(z) +(z) forall ze S/
We thus have

[Contlo v 1> 1+ DBy > 0B,

(6.19)
For N sufficiently large we have

P € Uy C\If L NUT CU(XDp),

+\2 i)+
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and so
|Quox™ (DB, SIIfllee = [1Fllxe
by Proposition 6.2.7 and p¥ € I(X,DB*). Therefore it suffices to prove the

estimate

|t = 1 +itDB) 1| L S 11l (6.20)
for all f € R(DB). Applying this inequality to x*(DB)f and invoking the
boundedness of x*(DB) on X¥ 5 will yield

et o S 1 Fllxp, 211 £l -

To prove (6.20), by density (Corollary 6.1.7 and density of R(D) in X%)®
suffices to consider f = Dg for g € D(D) NR(D) such that

||f||x‘[’) = ||f||xp = ||g||xp+1

as in Lemma 6.2.2.
Step 2a: Completing the proof for Hardy—Sobolev spaces.
Suppose i(p) < oo and (X, X) = (7, H). Lemma 6.2.15 and a crude estimate

give
dz dt
// P)(I +itDB)2f(z)[? ””t

<ar (1+ZQ—2j(M—Z—(1+9(p))))/ |Dl+9(p g(2)|? dz,
B(£,47)

Jj=2

and so by taking M > % — (1 + 6(p)) we get

dx dt
// P+ tDB) 2@ TS [ Dhggala) de
B(£,r)) 13 B(€.47)

Hence for all £ € R™ we have

Ct— t_e(p)([ + itDB)_Qf)(f)Q S SUI)]{;’(6 : ‘D1+o 9| = M2( 146 p)g)(f)Q
AT

>0

and so by Theorem 5.1.9, boundedness of My on L'P) (since i(p) > 2), Lemma
5.1.49 (using 1 4+ 0(p) € (0,1)), Dg = f, and p € I(H, DB), we get

Ht — (I + itDB)‘ZfHTP < HMQ(D$+9(p)g)]

Li(p)

2
S HDH@(p)g‘ Li(p)
>~ ||g]] o1

ST

8When p is infinite, we use weak-star density.
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which completes the proof in the Hardy—Sobolev case.

Step 2b: Completing the proof for BMO-Sobolev spaces. Suppose
p = (00,0;0) and (X,X) = (T,H). For all (t,2) € R{™ Lemma 6.2.15 and the
Strichartz characterisation of BMOy9 (Theorem 5.1.51) yield

<t_ // (I +irDB) 2f(¢ )|2d§d;>1/2

> 1/2
Sw ¢ (t" 191 Ext0,,, + D 2 H M E O (742 ||9||21§Mol+9)
0o ” 1/2
= ||9||BM01+0 (1 + Z 2—2J(M—n—(1+9)))
=2
= HQHBMOHQ

provided that M is sufficiently large. Therefore we have as in the previous step

HT*—)(

TP S 9l = ||f||H§3:

which completes the proof in the BMO-Sobolev case.
Step 2c: Completing the proof for Holder spaces. Let p = (00, 0; ).
First we prove the result for X = T. By the definition of the Holder norm we

have

2 a—n
G(z,y) <lglli,,,.. [z =y,

and so by Lemma 6.2.15,

g\ 12
(t— // o [T HITDB) PO de :)
- de dn
NMt HgHAlJrnga (/L(I4t |€ n’n 2a

1/2
L3 92 M=-(140) / / dfd”)
) . _ m|n—2a
j=2 B(x,4t) J A(x,20-11,29+2¢) 1€ —nl

- 1/2
S lalliy e, (t””a + 22]‘“”’5<1+9)>2j<"2a>t”+2a)
j=2

= ll9ll4,.p..

for M sufficiently large. Therefore, by the same concluding argument as in the

previous steps,
|7 (1 +itDB)2f|| S Il o -
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In the case that X = Z, since p is infinite, Lemma 5.1.34 yields TP — ZP,

and so by previous estimate we have

|r = @ +itDB)2f|| < ||re (1 +itDB)2f|| Sl

~Y

This completes the proof in the Holder space case.

Step 2d: Completing the proof for Besov spaces.

Let p = (p,0). We use a slightly different argument here. Fix cutoff functions
X1, X € CF(R™) with

supp x1 C B(0,4), X1|B(0,2) = const,
supp x C A(0,1/2,4) X|A(0,1,2) = const,

for all integers j > 2 define x;(z) := x(277z), and for all j > 1 define

r—8
t

nj<t’$7§) =Xj < ) ((t,:L‘) € Rf_n’f € Rn);

as before, these functions can be chosen such that 3722, n; = 1. Also define

i(t,2,€) :=g<£>—][ 9o(Q)dC ((t.x) RLF™ € €RY)).

B(z,t)

By the triangle inequality we have

[t = (1+itDB)2f|

p

Zy
= ( fl p/2 dt

5 Z// |T_9(I+iTDB)_2D(§nj(t,l',£))|2 dde) dlL'f, (621)
=1 MR NI Q(t) t
J +

where the operators involving D and B act in the & variable. By using local
coercivity (Lemma 6.2.5) as in the proof of Lemma 6.2.15, the j-th term in (6.21)

can be estimated by

PRt

// (# |T_9([+iTDB)_2D(§77j(t,$,5))’2 dde) dr &

Rf—n Q(t,x) ’
PRt
N // (75[ |7——9—1(I + iTBD)_l(flnj(t, T, gmz de d7-> Pl
R VW Qe(ta) .

PRt
+ // (# |7'_9—1(] + iTBD)_2(g7]j<t, z, §>>|2 d¢ dT> N
R Q. (t,2) ;

with Whitney parameter ¢ = (2,2). The two terms in this sum differ only in the
power of the resolvent. The resolvent families (I +i7DB)~! and (I + it DB)™?
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both satisfy off-diagonal estimates of arbitrarily large order M (as off-diagonal
estimates may be composed); we will use this to estimate the terms above, making
reference only to (I +i7DB)™*

For j = 1 we estimate

PR
// (}5[ |77 +i7BD) Y (gn.(t, z, €))|* d¢ d7'> da: dt
R\ Qe(te)

PR g
L (e [ e opa) e
R}Jn B(z,4t)

2 p/2
d¢ d€) dz @

dC d¢ dx d—

t9+1

1 dt
- /Rn /R"/O B(¢ANNB(C 1) T ontpo+1) 7|9(§) —g(Q)[P d¢ d§
* d
S/n //|< g/stn+pe+1f|g(§)—g(é)|pd(d§

/n /n ¢ — §|n+p(9+|1) de dg

~ 1lgll 3,

~ 1 £llgpe

using that 7, (¢, z, ) is supported in B(x,4t), that p/2 > 1, that B(§,4t) N B((,t)
is nonempty only if ¢ > | — £|/5, and the Besov norm characterisation from
Theorem 5.1.50.
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For 7 > 2 we have, using off-diagonal estimates,

PR g
// (]f[ YI+itBD)” (5777]‘(15, z, )| dé d7_> dw dt
R1+n tz)

PR
iatp=(om)/ // (t-% ][ / 19(6) —g<<>|2d<ds) ar %
RI" A(z,29-1¢,20+28)J B(x,t)
RIS A(2,29-1¢,29+2t)J B(x,t)

O g an
— 9= J(Mp—(np)/2+n),

dt
dx — |g(&) — g(C)|P d¢ dC
S ] e /B@m(w v 1006 = 5(0)

dt
<21MP(”P/2+2”/// —19(&) — g(Q)[P d€ d¢
" n )y ]‘C é‘ tn+p(9+1) t | ( ) ( )’

~ 9= (pPM—(np)/2+n—p(6+1)) 1 f1] goo

arguing similarly to before. For M sufficiently large, we can thus estimate (6.21)

by summing a geometric series, yielding

Htr—> (I +itDB)~ f‘

b S 1Sl

as required. This completes the proof. O
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Chapter 7

Elliptic equations,
Cauchy—Riemann systems, and

boundary value problems

In this section we implicitly work with a fixed m € N, meaning that we consider
Lu = 0 with u a C™-valued function. All of our arguments are independent of
m. As in the previous section, we fix the Dirac operator D and multipliers B

from Subsection 4.1.2.

7.1 Basic properties of solutions

We will use the following properties of conormal gradients of solutions to L su = 0

(or equivalently, of solutions to (CR), 4; see Theorem 4.1.3 in the introduction).
Proposition 7.1.1. Suppose that u solves Lau = 0. Then the following are true.
(1) The transversal derivative Oyu solves La(Opu) = 0.

(2) The function t — Vau(t,-) is in C*(R, : L?

loc

(R™)), and for all Whitney

parameters ¢ = (co,c1) and t € Ry we have

][ |vAu<t,x>|2dx5]§[ Vs, y)|? ds dy.
B(z,cot) Qc(t,z)
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(3) For all exponents p, all k € N, and all C > 1 we have

sup H@fVAu(t, )‘
tt'eRy
cit/t'<C

So [0V
ok (1) O H@t Vau ook

_ k
= HVA@ U‘ Pk

S IVaullxe -

In particular, if V au is in XP, then the function t — V qu(t,-) is in C*°(R, :
EP)

Proof. (1) follows from t-independence of the coefficients. The remaining state-
ments are consequences of the classical Caccioppoli inequality, and are proven in
[15, §5] for tent spaces. The corresponding Z-space statements are proven in the

same way. O

Remark 7.1.2. By Theorem 4.1.3, if F' is a solution to the Cauchy—Riemann
system (4.6), then parts (2) and (3) of Proposition 7.1.1 hold with V 4u replaced
by F'.

Furthermore, suppose that G solves the anti-Cauchy—Riemann system

0,G — DBG =0 in R},

7.1
curly Gy =0 in RY™" 71)

(CL CR)DB . {
defined analogously to (CR)pp but with a sign change. Then the reflection
F(t) := G(—t) solves (CR)pp on the lower half-space R'*". By using X-spaces
associated with the lower half-space rather than the upper half-space, parts (2)
and (3) of Proposition 7.1.1 hold with V 4u replaced by F' and with R, replaced

by R_. A simple reflection argument then shows parts (2) and (3) of Proposition
7.1.1 hold for G.

The following technical lemma is analogous to [15, Lemma 10.2].

Lemma 7.1.3. Fiz p with i(p) < 2 and 6(p) < 0, suppose M € N, and let
f €XP . Then for all t > 0 we have that (tDB)Me !1PEIN*(DB)f € EP, with

sup||(tDB)M e PPNEDB)f|| S I flle

t>0

EP(t)

Proof. We estimate

sup |(tDB)Me PP\ *(DB) fHEp(t) S|t (tpB)M e PENE(DB)f|

t>0

XP

Sy
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The first line comes from Proposition 7.1.1, using that (DB)Me !1PEIN+*(DB)f
solves either (CR)pp or (a CR)pg. The second line is due to the fact that [z —
Me=lF] € U(XP ;) when i(p) < 2 and 0(p) < 0. O

7.2 Decay of solutions at infinity

In the boundary value problems introduced in Subsection 4.1.1, we have imposed
the decay condition
lim Vyju(t,-) =0 in Z'(R":C™)

for a solution v to L4u with Vu in XP. In this section we will show that this
condition is redundant for certain p (quantified in terms of A). In fact, our results
give not just decay in Z’, but in the slice space E* (in the setting of Lemma
7.2.1) or in L? (in Lemma 7.2.4).!

Classical elliptic theory implies that there exists a number A(A) € (0,7 + 1)
such that for all A € [0, A\(A)), for all (¢5,79) € R} and 0 < r < R < oo, and

for all weak solutions u to Lau = 0, we have

A
// |Vu(t, z)|* do dt <, (;) // \Vu(t,z)|* dr dt, (7.2)
B((to,x0),r) B((to,z0),R)

where B((tg, zo),r) and B((to, 7o), R) denote open balls in R, with B((ty, x¢), R)
contained in ]R}f”. These balls can be taken with respect to any norm on R'*™,
keeping in mind that the implicit constant in (7.2) will depend on the chosen

norm. By ellipticity we may replace the gradient V with the conormal gradient
\Y A in (72)

Lemma 7.2.1. Suppose that the exponent p lies in the shaded region pictured in
Figure 7.1, which depends on M\(A). Let u be a solution to Lyu = 0 on RY™ such
that V au € XP. Then limy o, Vau(t,-) =0 in E* (and therefore also in Z').

Remark 7.2.2. The shaded region in Figure 7.1 is the open half-plane determined
by the equation j(p) > 2B} _ nHAAD - Note that “HAA > : when A\(A) <

n 2n 2n

1. In Lemma 7.2.4 we will handle exponents p with i(p) < 2 and 6(p) < 0
independently of A(A).

!Demanding decay in Z’ is really just an artefact of having identified the classical smoothness
spaces XP as subspaces of Z’.
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Figure 7.1: The exponent region in Lemma 7.2.1.
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Proof. The region pictured in Figure 7.1 is precisely the set of exponents p such
that there exists an infinite exponent q with p < q and r(q) < w. Fix
such a q. For all A < A\(A) we can estimate

1/2
||V aul(t, ')||Eg°(1) ~ sup (/B( )|VAu(t,y)|2 dy)
z,l

reR”™

t+3 1/2
sup ([ [ [Vauls. ) dys (7.3)
zeR™ \ Jt—1 JB(z,1)

t 1/2
t+4
< sup tA/ 2/ |V au(s, )| dy ds (7.4)
z€Rn t—% JB(zt)
t+5

1/2
(n+1)—X r 2
AN (][ RLZTCR ] ds)
t—1t

AN

STV
where (7.3) follows from Proposition 7.1.1, (7.4) follows from (7.2),> and the
last line follows from the embeddings EP(s) < E9(s) and another application of
Proposition 7.1.1. For A sufficiently close to A(A) we have (n+1—X)/2+r(q) < 0,
and so we find that lim; ,., Vau(t,-) =0 in E*. O

Remark 7.2.3. Tt is known that A(A) > n — 1 if and only if A satisfies the De
Giorgi-Nash—Moser condition (7.51) of all exponents less than o = (A(A) — (n —
1))/2. In this case we have w =a—1and %ﬂ’\m) = =2 and Lemma
7.2.1 then holds for the shaded region pictured in Figure 7.2. Evidently this

region increases as the De Giorgi-Nash—Moser exponent « increases.

2Here we use the balls B((¢,z),r) := (t —r/2,t +1/2) x B(x,r).
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Figure 7.2: The region in Lemma 7.2.1 in the case that A satisfies the De Giorgi—

Nash—Moser condition with exponent a.

A different argument can be used to deduce decay in L? for exponents p with
i(p) <2 and #(p) < 0.

Lemma 7.2.4. Let p = (p,s) with i(p) < (0,2] and 6(p) < 0, and suppose
F € XP solves (CR)pp or (aCR)pp. Then lim;_,o F(t) = 0 in L.

Proof. By Proposition 7.1.1, for all t € R, we have
EOlgeey S T xe
and so

E®)] 2 S [F(W)] = t"EOllgoy S N1Fll o

Ey® (1)
using the embedding Eo® (t) < E2(t) = L*.3 Since 6(p) < 0, we have
fi F(8) =0

in L2 O

7.3 Classification of solutions to

Cauchy—Riemann systems

In this section we will prove the following classification theorems for solutions to
(CR)pp (as formulated in Subsection 4.1.2 of the introduction).

3The equality E3(t) = L? is a consequence of Fubini’s theorem.
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Theorem 7.3.1 (Classification of solutions to (CR)pg, i(p) < 2). Let p = (p, s)
with p <2 and s <0, and fiz a completion X} 5 of XD 5.

(i) For all Fy € X%, ChpFy solves (CR)pp, and HCBBFO‘

o SliFollxn

(ii) Conversely, if F € XP solves (CR)pg, then there exists a unique Fy € X5
such that F' = ChpFy. Furthermore, ||Follxe < [1F|]xe-

When p > 2 the argument is much more complicated, we must restrict atten-
tion to exponents p such that the adapted space X%(; may be identified with the

classical space XPDO, and we need an additional decay condition on F.

Theorem 7.3.2 (Classification of solutions to (CR)pg, i(p) > 2). Let p be an
exponent with i(p) > 2 and 0(p) € (—1,0), and such that p¥ € I(X,DB*). In

particular, for such p we have identified X% as a subspace of XP.

(i) If Fy € X%, then ChgFy solves (CR) pp, limy 00 ChpFo(t)) = 0 in 2/ (R™
Cm). and [|Chp R, < 1Rl

(ii) Conversely, if F € XP solves (CR)pp and limy_o F(t); = 0 in Z'(R" :
C™™), then there exists a unique Fy € X% = X® such that ' = C},5Fp.
Furthermore, || Follxe S F|| o

DB

Note that if p is finite, then p* € I(X, DB*) if and only if p € I(X, DB)
(Proposition 6.2.7). Note also that if p is in the region given by Lemma 7.2.1,
then the decay condition on F' is redundant. In particular, this holds for all p as

in Theorem 7.3.1, so the decay condition need not be included there.

7.3.1 Construction of solutions via Cauchy extension

Here we will prove part (i) of Theorems 7.3.1 and 7.3.2. We will deal with both
theorems simultaneously

Let Fy € X%5. Then the estimate HC”LBFOH |F0||Xp follows from
either Theorem 6.1.25 or Theorem 6.2.12.

In Proposition 6.1.24 we showed that C},5Fy solves (CR)pp strongly in X2

Generally X% need not be contained in L

ioe(R™), and so these two solution

concepts need not coincide. We must argue differently here. If Fy € R(DB), then
Proposition 5.2.6 implies that C'} ; Fjy solves (CR) pp strongly in C*° (R, : L?), and
this implies that C} 5 Fy solves (CR)pp. It remains to deal with Fy € X%, 5\ XP 5.

For such an Fy, let (F})ren be a sequence in X, 5 which converges to Fy as k — oo
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(in the weak-star topology when p is infinite). Then, again using either Theorem
6.1.25 or Theorem 6.2.12, we have

: + ok _ o :
—00

and hence also in L2 (RX™). It follows that C},zFy solves (CR)pp.

loc

It remains to show that lim,_,., C}zFo(t)) = 0in Z'(R" : C"™) when i(p) > 2.
This follows from Proposition 6.1.24, since we have lim; o, C},5zFp(t) = 0 in
XPp— Z.

7.3.2 Initial limiting arguments

We now begin preparation for the proof of part (ii) of Theorems 7.3.1 and 7.3.2.
This section is a rephrasing of the start of [15, §8]. There are no fundamentally
new ideas, but the notation and the flow of ideas are simplified.

For ty € Ry we write Ry, := R\ {to} and R 4, := R\ {to}.

Definition 7.3.3. For t; € R, and ¢ € L*(R"), we define the test function
Gip € C*(R,, : D(BD)) by

Gy (1) == sgn(ty — t)e’[(toft)B*D}ngn(to’t)(B*D)PiR(B*D)QO
forall t € Ry 4.

Note that 0,Gy,, = B*DGy, . Also observe that since D annihilates the

nullspace No(B*D) and since L*(R™) = N3(B*D) & R(B*D), whenever ¢ €
D(D),
DGy, 4 (t) = sgn(ty — t)e” omOPPlyano=0(DB*) D, (7.5)

The following lemma is a rewording of [15, Lemma 7.4].

Lemma 7.3.4. Let F solve (CR)pp. Fir ¢ € L*(R"), to € Ry, and let n €
Lip(R; : R) and x € Lip(R™ : R) be compactly supported in Ry ;; and R™ respec-

tively. Then we have, with absolutely convergent integrals,

//R1+n (' (t)x(2)B* DGy, ,(t, ), F(t,2)) dx dt

- //an (n(t)B*[D,m,] 0;Gy, (L, x), F(t,x)) dedt (7.6)

where m, denotes the multiplication operator on L*(R™) with symbol x.
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As a corollary, under an integrability condition involving F' and ¢, we can

obtain the following.

Corollary 7.3.5. Let F', ¢, and ty be as in the statement of Lemma 7.5.4. Sup-
pose also that for all compact K C Ry 4, we have

Lic(1)| B DGy o (t,2) | F(t,2)] € LHRE™). (7.7)

Then for alln € Lip(Ry : R) compactly supported in R, 4,, we have the absolutely

convergent integral
// (7 (1) B* DGy o(t,2), F(t, 2)) dt da = 0. (7.8)
R

Proof. Fix x € Lip(R™ : R) with x(z) = 1 for all x € B(0,1), and for R > 0
define yg(z) := x(x/R). Then yg — 1 and [D,m,,] — 0 pointwise as R — 00,
since ||[D, my,]|l, S R ||Vx||- Condition (7.7) applied with K = suppn, the
fact that 0;Gy, , = B*DGy, ., and boundedness of 1 and 7" imply

1 (t)B" DGy o (t, ) || F(t, 2)| € L'(RY™)  and
()0 Gy (L, 2)||F (8, )| € LN (RY™).

This allows us to deduce (7.8) from the equality of Lebesgue integrals (7.6) and

dominated convergence. O
Now, assuming that (7.7) holds, we can conclude the following.

Corollary 7.3.6. Let I, ¢, and ty be as in the statement of Lemma 7.3.4. As-
sume also that condition (7.7) is satisfied. Then for sufficiently small € > 0 we

have
to+2e
/ (B* DGy, o(t,2), F(t,2)) du dt
to+¢e n
to+e L
_ / (B* DG, ,(t,2), F(t,z)) du dt (7.9)
to+(2e)~1 n
and

2e
- ][ / (B*DGuyo(to — t,2), Flto — t,2)) dadt

:][26 / (B*DGy, (1, 2), F(t, 2)) da dt. (7.10)

These are all absolutely convergent integrals.

4More precisely, [D, My 5] is given by multiplication with a function that tends to 0 pointwise.
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Figure 7.3: The functions 7, and 7s.

n(t) n2(t)

1V 1{ —

0 t (K

tot+etot+2e 54 (2)7! to+e ! € 2 to—2¢ to—¢

Proof. Asin [15, §8, Step 1b] this follows from applying Corollary 7.3.5 with the
piecewise linear functions 7;,7m € Lip(R; : R) drawn in Figure 7.3, where we

impose ¢ < min(t/4,1/4,1/ty) (we have carried out a change of variables in the
left hand side of (7.10)). O

7.3.3 Proof of Theorem 7.3.1

Recall that part (i) has already been proven in Subsection 7.3.1; here we prove
part (ii).

All of the results in this section are valid for p = (p, s) such that p < 2 and
s < 0. We do not ‘fix” such a p, however, because in the final step we will invoke

prior results with a different choice of p.

Step 1: Verification and application of initial limiting arguments.

Lemma 7.3.7. Let p € L*(R"). Then we have 1xygn B*DGy,, € XP for all
compact K C Ry, with

it B DGyl or S Ilplly dist(6, t) 7 12 (7.11)
where K_ = inf(K).
Proof. First we note that the estimate

% . — s+ndp,
i B DGy lle S [l dist(K, to) K552
—s—nbp 2

can be shown by writing

1/2
2 dt
tSJr”‘SMB*D(?;to,(pH2 - )

Ky
B DG e, = ([

n6p’2

K, di 1/2
< llells (/K t25m00.2) dist (K, ty) > t) (7.12)

< [leplly dist (5 o) K02, (7.13)
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The estimate (7.12) follows by writing

t - t *
B*DGto,go _ SgI;()O_t)(to _ Zf)B*Dei[(toft)B D}ngn(toft) (B*D)]PR(B*D)SD

and noting that the operator

(tO . t)B*Def[(toft)B*D} ngn(t()*t) (B*D)PR(B*D)

is bounded on L?*(R™) uniformly in ¢ € Ry, and that |(to —¢) 7| < dist(K, to) ™
for ¢ € K. Then (7.13) follows because s + nd, o is negative whenever s < 0 and
p < 2.
Now use the X-space embeddings to write
X2

—5—ndp 2

— XP,
from which follows (7.11). O

Corollary 7.3.8. Let ¢ € L*(R"), and suppose that F € XP solves (CR)pp.

Then
to+2¢

lim / (B*DGyy o(t, ), F(t,2)) da dt = 0, (7.14)
e—0 tote n

Proof. For € > 0 small the previous lemma yields

Lt 201t -0 B DG |, S Il (26) (0 + (26)7) 42,

which decays as ¢ — 0 since s+nd, 2 is negative when s < 0 and p < 2. Therefore
in particular, by X-space duality, condition (7.7) is satisfied, and by boundedness
of the above quasinorms as ¢ — 0 we can take the ¢ — 0 limit in (7.9) to obtain
(7.14). O

Step 2: Semigroup property of F.

Lemma 7.3.9. Suppose F' € XP solves (CRpg). Then F € C®(R, : H3%y),
F(t) € D(DB) for allt > 0, and O,F + DBF = 0 holds strongly in C*>(R, :

Hpp)-

Proof. We already have that F € C*(R, : L _(R")) from Proposition 7.1.1,
and furthermore that 9,F € XP~'. Hence we have F(ty), (0;F)(to) € EP for all
to € R, and therefore by the slice space containments of Proposition 5.1.42 we
obtain F(ty), (0,F)(to) € L? for all t, € R,. Therefore F(ty) € D(DB) for all

to € Ry, and 0;F + DBF = 0 holds in L?. We can iterate this argument by
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reapplying 0;, as this preserves the property of solving (CR)pp as well as the
previously stated L? containments, so we obtain F' € C*(R, : L?).

Now since limy, o F(tg) = 0 in L? (Lemma 7.2.4), we can write

Flto) = — /t S / DB(F(r))dr ¢ R(DB)

by the fundamental theorem of calculus. Therefore F(ty) € H32,5 for all to, and
since the H%,z-norm is equivalent to the L2-norm when restricted to R(DB), this

completes the proof. O

Lemma 7.3.10. Suppose that F € XP solves (CR)pg. Then for all ty > 0 and
7> 0 we have F(t,) € Hyh = R(DB)Jr and

Fty+7) = e ™PB(F(ty)). (7.15)

Proof. For all ¢ € L*(R"), the function ¢t — B*DGy, ,(t) is smooth in ¢ € R, 4
with values in H%. , and with

lim B* DGy, ,(t) = =B*Dx™ (B*D)Prigpy¢

tlto

in H%.,. Furthermore, by Lemma 7.3.9, t — F(t) is smooth in ¢t € R, with
values in H% . Therefore we may write for all ¢ € L?*(R"), using (7.14) from
Corollary 7.3.8,

to+2e

0 lim / (B* DGy, o(t, ), F(t,2)) du dt
e—0 tote n ’

to+2¢

- lli% to+e (B DG p(0), F(t)>HZB*D dt

—(B*Dx™ (B*D)Prigepye: Fto)wz,. - (7.16)

Hence for all ¢ € R(B*D) and all § > 0, since e B"Pl maps Hy.}, into itself,
applying (7.16) to ¢ = e 9B Pl yields

(B*De"P"Px™(B* D), Fto))gz, = 0. (7.17)
The subspace
{B*De’® P~ (B*D)¢ : ¢ € R(B*D)} C L*(R")

is dense in Hy.p, (see [15, p. 28]), so (7.17) and the decomposition H2, =
H75 @ H 5 imply that F(ty) € Hyh
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Now we will derive the semigroup equation (7.15). Forall § > 0 and ¢ € H%. ),
define

— 9B D]

®s - 2

and

2e
zﬁwzf (B*DGyy o, (1), F(8))gs L.

B*D

Then by (7.10), using the same argument as before to write everything in terms

of H%. ,-duality, we have

2e
. 6,5 . * — * — * *
ll_r}% I, =—lim{ (B*De "B Pe B Py\H(B*D)p, F(t, — )z, dt

e—0
I3

— —(B* D" P\ H(B*D)p, Flto))s

Therefore for all 7 >0, 6 > 0, and ¢ € H. p, using I;°F" = 77

to.0 fot8.00 WE have

<B*D€_5B*DX+(B*D>§D, e—TDB<F(t0>>>H2B

*D

= (B*De”C*VE Dy H(B* D), F(t))e
. £,0+71
= ~lmle

. £,0
= Ll
= <B*D€—63*DX+<B*D)90, F(to + T)>H2B*D'
As before, the subspace {B*De 8 Py (B*D)p : ¢ € H%.p} is dense in Hylp,

so by duality we have F(ty + 7) = e "™PBF(t;) in Hy5 for all t, > 0 and all
T > 0. ]

Step 3: Completing the proof.

Proposition 7.3.11 (Existence of boundary trace). Suppose that F' € XP solves
(CR)pg, and let XV, 5 be a completion of X¥,5. Then there exists a unique Fy €
X2 such that F = ChgF,. Furthermore, ||F0||X%B SE | o

Proof. Fix an exponent p with i(p) € (1,2] and #(p) < 0 such that p < p (when
p > 1 we may take p = p). By Lemma 7.3.10 we have F(ty) € Hy5ND(DB) for
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all tg > 0. We can then estimate

[[F'(to)llxp | =~ [IDBF(to)]|xcp-1 (7.18)
= ||r = e PP(DBF)®)|| ., (7.19)
= |7 = DBF(ty + 7)|| xp1 (7.20)
=[St DBF||xp-1
S |IDBF||xp1 (7.21)
= ||atF||Xf>71
SF ke (7.22)
SF e - (7.23)

The first line (7.18) is from Corollary 6.1.14. Line (7.19) comes from Theorem
6.1.25. Line (7.20) comes from Lemma 7.3.10, (7.21) comes from Proposition
5.1.36 because i(p — 1) < 2 and s(p—1) < —1/2, (7.22) comes from Proposition
7.1.1, and finally (7.23) follows from X-space embeddings by p < p. Therefore
F(to) € X%+ uniformly in ¢y > 0.

Since X%t is the dual of XﬁB,;J,S for any completion XﬁB,;E of Xgig, there exists
a sequence t; | 0 and an Fy € X%E such that F(t;) converges weakly to Fj in
XPrt as k — 0o. We thus have for all ¢ € X5 and for all 7 > 0,

<907677DBF >X‘Z%'*D = < T DQO7F0>
= hm <e_TB p (tk)>
B*D
= lim <S07€ TDBF(tk:»
k—o0 B*D
= Hm (o, F(ti +7))xer (7.24)

= (9 F()) g

(our notation for duality pairings is explained in Section 4.3), using Lemma 7.3.10

n (7.24). Therefore by density we have CB sFo=F.

It only remains to show that Fj is in X%, with the right quasinorm estimate,
and uniquely determined. Recall that C} be = Qsep,pp When restricted to the
positive spectral subspace. Let ¢ € U be a Calderén sibling of sgp. Then
Fo = Sy.08Qsep.p8F0 = S, ppF, and so by Proposition 6.1.17 we have Fy € X} 5
with ||F0||X%B < ||F||xe- In fact, since F(ty) € Hyk for all ty > 0, we find that
F is in the positive subspace X%7. Uniqueness follows by injectivity of Qsep, 0B
(Proposition 6.1.17). O

This completes the proof of Theorem 7.3.1.
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7.3.4 Proof of Theorem 7.3.2

Recall that part (i) has already been proven in Subsection 7.3.1; here we prove
part (ii).

Our proof roughly follows that of [15, Theorem 1.3], arguing via a series of
rather technical lemmas. In this section we will continually assume that p satisfies
the assumptions of Theorem 7.3.2. Most of the lemmas work without assuming
p” € I(X, DB*), but we gain nothing from dropping this assumption.

Step 1: Establishing a good class of test functions.

We define the following class of test functions for X z:
DP(X) == {p € D(D) : Dy € X x*(DB*)Dy € E*"}.

This is large enough to contain the Schwartz functions and to be stable under
the action of various operators, yet it is restrictive enough to let us exploit slice

space containments.
Lemma 7.3.12. The Schwartz class S(R™ : C™U+™) s contained in DP(X).

Proof. Suppose ¢ € S. Then ¢ € D(D) and Dy € X%O = X%(;* by the assump-
tion on p. It remains to show that y*(DB*)Dy € EPY . and this takes some
work. This is a modification of the argument of [15, Lemma 8.10].

Since Dy € S € EP” (Proposition 5.1.43) and since

Dy = x"(DB*)Dy + x~ (DB*)Dy

it suffices to show that x™(DB*) Dy is in EP’ .
Define 9 € U}, with N large to be chosen later, by

Then for all t € R\ {0} we have

& ds 1 & ds
t) — = — Nems 2 =1
/Ow(s>8 N!/O”s ,

so by holomorphy we have
o d
/ (sz) P
0 s
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for all z € S,. By the same argument, along with integration by parts and

induction on N, for all z € S, we have

[ et = P

where P is a real polynomial of degree N — 1. Therefore by functional calculus

on R(DB*) we may write
+ * ! + * ds x\ —DB*_ + *
XT(DB)Dy = | (x7)(sDB")Dyp — + P(DB")e™ " x™(DB") Dy.
0
By Lemma 7.1.3 (using i(p¥) < 2 and 8(p%) < 0) we have
P(DB*)ePE'x*(DB*)Dy € EP’
so it suffices to show that
1
d
/ (¥x+)(sDB")Dp = € B’
0 s
For f € L*(R") write

G(7) = [ oxDB)

since ¥x* € U this is defined for all f € L2(R") (not just f € R(DB*)).
Note that the family ((¢)x™)(sDB*))ss¢ satisfies off-diagonal estimates of order
N (Theorem 5.2.8). For @, R € D; (recall that D; is the set of standard dyadic
cubes in R"™ with sidelength 1) with d(Q, R) > 1 we can estimate

9 1/2
@ da:)
S

ds

1
< [ onyeDB)aD] g

LrdQ, R\ N d
<[ ("40) " Ling,

S

NG(ArD@)|| ) = (/Q’/O (¥X ") (sDB*)1rDep(x)

~ d(Q, R) ™™ ||1rDel,.
For all other @), R € D; we have instead

||G(1RD90)||L2(Q) S [1rDell, -

217



Therefore by the discrete characterisation of slice spaces (Proposition 5.1.45),
writing R ~ @ to mean that dist(R,Q) = 0 and noting that dist(R, Q) > 1 if

RAQ,

1/i(p®)
IG(Dp)|| oo = | D [IG(D ||L2(Q>

QeDr

1/i(p)
<(x (Z+Z)HG1RDWP )
QeD1 \R~Q RAQ
1/i(p®)
i <
<| X IpelliE -
QeD;
R~Q

1/i(p®)
> d(Q, RV || Dol %)

QeDy
RAQ

= Il + Ig.
Since the number of cubes R € D; such that R ~ @ is uniform in (), we have

1/i(p™)
i V]
I~ (Z ||Dso||£é’<f3)) ~ || De|| oo

ReD,

To handle I, write

1/4(
I = ( S DS Y kY IQ € Dy d(Q. ) k}]) (7.25)
k 1

ReD;y

=Np.n ||D(,0| |Epv

using that the innermost sum in (7.25) is independent of R and convergent for

N sufficiently large. Therefore

1G(DP)[geo S 1| D¢ll oo < 00

| o
which shows that xT(DB*)Dy € EPY and completes the proof. O
Lemma 7.3.13. We have the following stability properties of DP(X):

(i) for all 6 > 0 we have e 1B"PIDP(X) C DP(X),

(i) X*(B*D)DP(X) C DP(X),
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Proof. (i) The function [z + e~°#l] is in H*° and has a polynomial limit at 0,
so e °lF"Ply may be defined for all ¢ € D(D) (not just those in R(B*D)).”
For all such ¢ we can write using the similarity of functional calculi

D(e 0B DIy = DB I Dy, (7.26)

Since Dy is in X%Q;*, sois D(e7B"Plip). To see the slice space containments

of spectral projections, write

Xi(DB*)D(e_(S[B*D]QO) — 6_6[DB*]X:t<DB*)D()O.
By assumption x*(DB*)Dy is in EP° N XPE ¢ EPY N X%E., and by
Corollary 6.1.28, e 9[PB'l\*(DB*) Dy is in EP°.

(ii) Similarly, we have x*(B*D)Dy(D) C Dy(B*D), and by similarity of func-
tional calculi
DX*(B* D)o = x*(DB") Dy € Xb.
and
\*(DB*)DY*(B* D)y = x*(DB")Dgy € B,
F(DB*)Dy*(B*D)p =0 € EP” .
[l

Lemma 7.3.14. Suppose that o € X¥. ,ND(B*D). Then x*(DB*)e 1PB 12Dy
is defined and in E® for allt > 0. Furthermore, e”B"P12p € DP(X).

Proof. Note that D(B*D) = D(D). Since Dy € X%Z* (Proposition 6.2.6), by
Lemma 7.1.3 we find that
YE(DB*)e 'PB12 Dy = ~IPB12y #(DB*) Dy € EP” = EP'. (7.27)
To see that e~ [F"Pl/2p is in DP(X), note that
e~ B'D12, ¢ D(B*D) = D(D),
that
De B P12, — o~ IPBI2 D, ¢ XPDZ*,

and that
Xi<DB*)D€f[B*D]/2g0 — eft[DB*}/ZXi(DB*)DSO c EPO

by (7.27). 0

5Although we did not discuss this in Subsection 5.2.1, this is a standard procedure. The

representation (7.26) is all we need.
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Step 2: Verification and application of the initial limiting arguments.

Lemma 7.3.15. Define the operator
Gy, - @ — sgn(ty — t)e [(=)DB ]y senlto=t)(p gy

Let K C Ry 4, be compact. Then for all k € N, 1KanC~4t0 s bounded from XpDQ;*
to Xp%“k, and this boundedness is uniform in K provided K_ >ty + 1.

Proof. We will prove the result for tent spaces; the Z-space result then follows
by real interpolation because the assumption on p is open in (j(p),0(p)).

Suppose ¢ € XPDQ;* and write K = Ky U K, where Ky C (0,%p) and K C
(tog,00). For all z € R™,

A( 0(p)+1— k]-KXR"Gto )2
dy dt
ot ), M)' ot
= IO + Ioo

There exists > 0 (depending on Kj) such that if (to — 7,y) € (Ko x R")NI'(z),
then (7,y) € I'“(z) (see Figure 7.4). Thus, using (7.5) and that ¢, — 7 ~ 7 when
to — 7 € Ko,

s 2 dydr
I, < // 1x,(to — 7) ‘(to — 1)/ PGy (@) (to — T, y)‘ (to—yr)Hn

- 2 dydr
NKk// e (DB )ply )’ Py

Similarly, there exists § > 0 such that if (o + o,y) € (K; x R") N I'(z), then
(0,y) € T%(x), and using 2(0(p) + 1) —n — 1 < 0 we have

‘2 dy do
(to + U)1+n

I < // 1. <t0+a)\<to+o) P)F1-ke7DB " (DB*)p(y)

2k// (to + 0)? (p)+1)—n—1
(e

< K )Zk/] O' 0(p)+1)—n—1 eo’DB*X7<DB*)90(y>’2 dydo_
I'8(z)

. dy do
_ —2k p)+1,0DB DB* 2 ay _
//F o X (DBY)e(y)) P

220

S, 2
PPN (DBY)oly)| dydo




Figure 7.4: Cones of large aperture, used in Lemma 7.3.15.
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R’I’L
X
Therefore we can estimate
|| Licsn Gy (9)|| s
S C(K, k‘) "e_tDB*X+(DB*)SO‘ ‘Tpﬁ? + (Koo):2k HetDB*X_(DB*)SO’ o
<
< 00,

using the semigroup characterisation of the HPDQ;@E quasinorm (Theorem 6.1.25),
which is valid since i(p%) < 2 and #(p”) < 0. Note that if K_ > ¢y + 1 then
Iy = 0, and that the aperture S can remain fixed in this argument, which implies
the claimed uniformity in K since K~2* is bounded in K_ > to + 1. O

Corollary 7.3.16. Let ¢ € DP(X) and k € N. Then 1xxrn DGy, € XP7+E for
all compact K C Ry, with uniform boundedness in K provided K_ >ty + 1.

Proof. For ¢ € DP(X) we have Dy € XI[’;;* and DGy, = Gy, (Dyp), so this
follows from Lemma 7.3.15. O

For k € N, whenever F' € XP~* solves (CR)pp we can invoke Corollary 7.3.6
when ¢ € DP(X), yielding the equalities (7.9) and (7.10) for sufficiently small
e>0.

Corollary 7.3.17. Let o € DP(X) and k € N, and suppose that F € XP~* solves
(CR)pp. Then

to+2¢e

lim / (B DGy, o(t, ), F(t,2)) da dt = 0, (7.28)
e—0 tote n

221



Proof. For € < 1/2 we have ty + (2¢)™! > to + 1, and so by Corollary 7.3.16 we
have

Ctk+1
1[t0+(2€)*1,t0+€71]><RnDGt0,<P c Xp TRt

with uniformly bounded quasinorms. Since F € XP~% and since (p — k)’ =
pY + k + 1, absolute convergence of the X-space duality integrals implies that
condition (7.7) is satisfied, and also that

to+e~
/ | (B*DGy, o(t,z), F(t,z))|dvdt S 1
to

for all ¢ < 1/2. Therefore we can take the limit as ¢ — 0 of both sides of (7.9)
using dominated convergence to conclude that the right hand side vanishes. [

Step 3: Weak semigroup properties of solutions.

Lemma 7.3.18. Suppose that F € XP~* solves (CR)pp for some k € N. When
to>0,7>0, and p € DP(X), we have

(B*Dp, F(tg+ 7)) goo = (B*e™ PP xT(DB*)Dip, F(t)) oo - (7.29)

Proof. We need to rewrite the integrals in (7.28) and (7.10) in terms of duality
of slice spaces. By Proposition 7.1.1, F(t) is in EP for each ¢t € R,. By Lemma
7.1.3, since Dy € XP ., we have that B*DGy, ,(t) is in EP”. Hence

/ (B*DGyy o(t,x), F(t, 7)) dv = (B*" DGy, (1), F(t)) oo

by the slice space duality identification of Proposition 5.1.41. Therefore (7.28)

and (7.10) can be rewritten as

to+2¢e
lim (B* DGy (1), F(1)) oo dt = 0 (7.30)
e—0 tote
and
2e 2¢e
~lim (B DG ol = 1), Flta = 1) ot = lind (B DG o0). F(1) o .

(7.31)
We need to evaluate these limits by using continuity of the integrands. By
Proposition 7.1.1, we have F' € C*(R, : EP). By the definition of DP(X), we
have that B*DGy, ,(t) € EP for all t € R, ,, with
lim B DG, o(t) = ~ B Dx™(B°D)Priype
—B*X"(DB")D¢
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in EP° by Corollary 6.1.28. Therefore (7.30) becomes
(B*X™(DB") Dy, F(ty)) gpo = 0. (7.32)
Next, we will prove
(B ™7 X (DB*) Dy, F(to)) oo = (B'X"(DB")Dip, F(to + 7)) oo (7.33)

by taking the limit of the left hand side of (7.31) and exploiting an algebraic
property of the right hand side. Summing (7.32) (at ¢, + 7) and (7.33) will yield
(7.29) and complete the proof.

For ¢ € DP(X) and § > 0, define

2e
[0 = ][ (B* DGy o (t), F(1)) o dt

where @5 := e °B" Pl By Lemma 7.3.13, s is in DP(X), and so we can apply
(7.31) to get

2e
. €,0 : *
il_{% [to,so = - ll_r)%]é <B DGtoﬁﬂa (tO - t)? F(to - Z€)>EP© dt

2¢e

= —lim{ (B*e PP e PP\ (DB*)Dyp(t), F(t)) oo dt

e—0
€

— (B P\ (DB Dplto), F(t0)) o

using the same argument as in the previous paragraph to establish the final

equality. A simple computation shows that we have

g0 _ 71¢,0
]t(ma - ]to-i-é,ap’

and so we can conclude

(B'e ™\ (DB*) Dy, F(t0) o = ~lim I,
. £,0
== il_{% ligsr
= (B*X"(DB*)Dy, F(to + 7)) oo ,
completing the proof. O

We can use this lemma, using that EP C &', to see what happens when we

test against Schwartz functions.
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Corollary 7.3.19. Let F', ty, and T be as in Lemma 7.5.18, and suppose p € S.
Then

— (. (B F)(to +7))s = (B¢ ™" X (DB") D, F (o)) o - (7.34)

Proof. By Lemma 7.3.12, § C DP(X), so we can apply Lemma 7.3.18 to ¢. Since
F(to+7) and (8,F)(to+7) are in EP, and ¢ and B*Dy are in EP” | we can apply
integration by parts in slice spaces (Proposition 5.1.44) to derive (7.34). O

Step 4: A reproducing formula for (0,F)(ty) in terms of higher deriva-
tives.

Lemma 7.3.20. Let to > 0, k € N, and suppose that F € XP solves (CR)pg.
Then (OFF)(ty) € XB, with

|(@FF)(to)|

St 1F | xen - (7.35)

Xp ~
Proof. Suppose ¢ € S. First note that since 97 'F solves (CR)pp, and is in
XP=(k=1) by Proposition 7.1.1, Corollary 7.3.19 yields

— (. (0FF)(to/2 + 7))s = (B*e ™" X" (DB") Dy, (f ' F)(t/2)) goo - (7.36)

Applying this with 7 = t,/2 and using the slice space estimates of Lemma 7.1.3
and Proposition 7.1.1, slice space duality, and p¥ € I(X, DB*), we have

| (ot 0t (b)) da

B*e_tODB*/2X+(DB*)DS0‘

<|

OF 1 F) (to/2)

EPY (t0/2) H(
S D¢l o 10" ||(@FF)(to/2)]
DB

S 1Dl 1" [0 F]

EP+1(ty/2)

Ep7<k71)(t0)

Xp—(k-1)

S llllxn 665 11F o -
Since ¢ was arbitrary, this implies that (0FF)(to) € (XP') = XP with the norm
estimate (7.35). Furthermore, since FF solves (CR)pp, each (OFF)(ty) is in
R(DB) = R(D), which implies membership in Xb,. O

We recall the following elementary lemma (see [15, Lemma 9.2]).

Lemma 7.3.21. Suppose k € N and g € CF(R* : C), with /¢ (t) — 0 as
t — oo for all integers 0 < j < k — 1. Then for allt > 0 we have

IRV
g(t) = (li _1>1)!/t gP () (r — )L dr.
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Corollary 7.3.22. Suppose that F € XP solves (CR)pg. Then for all ty > 0
and p € § we have

(=D*

<g0, (3,5F)(to)>$ = (k — 1)!

/t o (OFF) (1)) o (£ — 1) .

Proof. By Lemma 7.3.20 we have that the function ty — (0,F)(to) is in C* (R, :
XD). Therefore for all ¢ € S the function g, defined by

9o(to) = (¢, (O:F)(t0))s

is in C*°(R, : C), and for k € N, we have

d®(to) = (g, (A F)(to))s = (0, (OFF1F) (t0)) o -

Furthermore, by the same lemma, we have

|t](§gtﬂ(t0)| = tlg <907 (atF)(tO»Xp’

D

—1
SLP7F tO Y

so the hypotheses of Lemma 7.3.21 are satisfied, and the result follows. O]

Step 5: Construction of associated ‘nice’ solutions.

In this step of the proof, given a solution F' € XP of (CR)pp, we will construct
distributions modulo polynomials F (to) € XTI which satisfy the properties we
want to show for F(ty). In the remaining steps we will show that F/(to) = F(to),
which will complete the proof.

Lemma 7.3.23. Suppose F' € XP solves (CR)pg. Then for all ty € [0,00) and
for sufficiently large N € N we have

[t.y) = @ F)(to+ . w)|| S IIF o

Xxp ™~
Proof. This is an immediate corollary of Propositions 5.1.36 and 7.1.1. O]

Let FF € XP solve (CR)pg. For N € N large enough that Lemma 7.3.23
applies, define ( € U° by

((z) := cnze A2

where cy = (—1)V*1/N!. For k € N define 1, := L1 mxB(0.k), and for all ¢y > 0
[k—1,k]xB(0,k)

define ;
Filto) == Scop |t = ikt (O F) (to + 2)] . (7.37)
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By Lemma 7.3.23 we have [t — y tNONF (to + %)] € XPN X2 and so F(ty) is a
well-defined element of XP,;. Furthermore, since ¢ € 9, Proposition 6.1.6 and
Lemma 7.3.23 tell us that

| Fe(to \ NHtt—)xktN((‘?NF) (t0+;>‘

SF e

XP

Since the functions [t — yt"N (ON F) (to + t)] converge to [t — tV(ONF) (to + %)
in XP as k — oo, given a completion® X® , of X» . we get an element F(t;) €
XP 5 defined by

ﬁto = SC,DB |:t — tN(ain) <t0 + ;>:|

and satisfying

HF(to)’

<1F]vn 7.38

Since p¥ € I(X, DB*), we can identify X¥, as a completion of X» , and so in

this case each F(t,) € X® is a distribution modulo polynomials.

Lemma 7.3.24. Let ty > 0. Suppose F € XP solves (CR)pp, let X¥ 5 be
a completion of X® .. and define F(ty) € XDy as in the previous paragraphs.
Suppose also that ¢ € Xp/*D ND(B*D). Then we have

dt

(6, F(to))gw = —Cn / <tB*eé[DB*1D¢,tN(a§VF) (t0+t)> — (7.39)
B*D 0 2) /e t

Proof. First we show the the EP' duality pairing (7.39) makes sense. Since ¢ €
XP., N D(B*D), Lemma 7.3.14 yields e~ PB*1/2D¢ € EP'. Since each tB* is a
bounded operator on EP" (not uniformly in ¢ of course) we have t B*e~'1PE1/2D¢ ¢
EP'. On the other hand, since ¢ +— (O} F)(to+1t/2) solves (CR)pg, by Proposition
7.1.1 and Lemma 7.3.23 we have

@ F)to +/2)[|, ) St @OF )t +/2)

XpP-N
5 HFHXP

for all ¢ > 0. Therefore the slice space dual pairing in (7.39) is meaningful.

SRecall that when p is infinite we always use weak-star completions instead of ordinary
completions.
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Now write

(¢, F(to))xe = lim (9, Fk(to)&g*

B*D D

= lim (Q¢ p-p¢, [t = xt" (0, F)(to +1/2)]) xv
= (Qz g p®, [t = Y (OF F)(to +1/2)]) xv
. dt
= —cy // (t(B*De 17" PV2g) (), tN (O F) (to + t/2, ) dx —
R}jn

o0 . dt
— o [ (B PPIDG, N O F)(to + t/2)) o
0

using 5 = ( and the slice space containments from the previous paragraph. [

Now we will show that the distributions (modulo polynomials) (F(y))s,>0 are

in fact given by the Cauchy operator applied to F/(0).

Proposition 7.3.25. Let F € XP solve (CR)pg, fir a completion X¥, 5 of XB, 5,
and define I as above. Then for all ty > 0 we have

F(ty) = e ®PBN*+(DB)F(0),
In particular, F(0) € X%, and so F = C}5(F(0)).

Proof. Since F(ty) € X® , and since X%, , N'D(B*D) is dense in X%, , (Corollary
6.1.7 and density of D(B*D) in X%.,,), it suffices to test against ¢ € XB., N
D(B*D). For all such ¢ write

(¢, e ™IPEIN T (DB)F(0))

X5,
= (e Pt (B D)o, F(0)) xo!
0 t * * dt
= —cy / (tBre 2 PPID (e7 P (B*D)o) N (9} F)(1/2)) ., — (740)
0
& * t * dt
=—c tB*e WPB L\ (DB*\D (e 2B Plp) tNONF)(t/2)) , —
K (DEID () MO0/
= —cN/ <tB*D (7217 Plg) 1N (9 F) <t0+t>> dt (7.41)
0 2 o R
> * ,—L[DB*] NN t dt
— _en <tB e~ 3PB'IDg N (9N F) <t0+ )> a
0 2 et
= (6, F(to)) o, (7.42)

In (7.40) we used that e3P\ (B*D) maps X%.,, N D(B*D) into itself, and
the representation (7.39). In (7.41) we used Lemma 7.3.18, which is valid since
e UB"DI2¢ ¢ DP(X) (Lemma 7.3.14) and since [t — (0,F)(t/2)] € XP~! solves

(CR)pp. We use the representation (7.39) once more in the last line. O
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This immediately implies the following corollary.

Corollary 7.3.26. Let F € XP? solve (CR)pp. Then F(0) € X%, F is equal to
the Cauchy extension Chg(F(0)), and F € XP,

Proof. All we need to show is that F is in XP. This follows from Theorem
6.2.12. ]

Step 6: Equality of 9,F and §,F

By Corollary 7.3.26 and Proposition 6.1.24, for F' € XP which solves (CR)p

DB;
function to — F(to) is in C®(Ry : X®). Therefore we can consider (9,F)(t )

XP as a distribution modulo polynomials.

Lemma 7.3.27. Let FF € XP solve (CR)pg. Then for all ty > 0 we have
(0,F)(to) = (0, F)(to) in Z'(R™).

Proof. Fix ¢ € Z.7 For all k € N we have already computed (using that every-
thing is in L?)

(¢, Fi(to))z
. dt
. // (1B P12 D) (), ¥ (O F) 0 + 1/2,2)) do . (7.4)
R1+n
Since ¢ € Z we have Dy € X%/, so for each t > 0 we may apply the (extended
operator) e '1PB'1/2 to Dy. We then have

Htwt

= Ht — B*e”
< 106l (7.44)

~ |lgl|xer < 00,

where (7.44) follows from Proposition 6.1.3 since [z +— ze /2] € \I!(XPDO) (here
we use i(p¥) < 2 and 8(p®) < 0). Since [t = tYONF(ty +t/2)] € XP (Lemma
7.3.23), the integral (7.43) is uniformly bounded in k£ and so we can take the limit

(p, F(to))z = lim (p, Fi(to)) 2

* dt
— o [[ (B PTED) @) 4O Pt + 1/2.0) do T
R1+'n

"Recall that Z(R") is the space of Schwartz functions f with D®f(0) = 0 for every multi-

index «.
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by dominated convergence. Using dominated convergence again, we can take the

derivative:
(0, (0 F)(to)) 2
= 0y, F(t)) =
= —cy // (t(B*e PPN Do) (2), tV (9 F) (to + /2, 7)) da:cit
R}r+n

dt

_ —CN/ <tB*€_t[DB*]/2DQO,tN(at]VJrlF)(tO+t/2)>EP/ 7
0

using that ¢ € DP(X) (Lemma 7.3.12) to conclude that the slice space duality
pairing is meaningful as in the proof of Lemma 7.3.24.

Now we rearrange:

<tB*67t[DB*V2D(,O, tN(aiV+1F) (tO + t/2>> /

= (tB*D (e P120) V(0N ) (1o +E;/2)>Ep, (7.45)
= <tB*X+(DB*)De—t[B*D1/2<p, tN(ONTF) (to + t/2)>Ep, (7.46)
= V(BT PPN (DB Do, (9N T F)(to +/2)) (7.47)
=tV (B Dy, (O T F) (o + 1)), (7.48)
= =" (0, (NP F) (b + 1)), - (7.49)

The first line (7.45) uses that ¢ € D(D) = D(B*D), (7.46) uses (7.32) and
the fact that e *lB"Pl/2 is in DP(X) (Lemma 7.3.13), (7.47) is just similarity of
functional calculi and rearrangement, (7.48) uses the weak semigroup property
(7.29), and (7.49) finishes with integration by parts in slice spaces (Proposition
5.1.44) and (CR)pp.

Therefore we have

(0, (O F)(to))z = e /OOO <g0, (ONT2F) (Lo + t)>Ep/ N+ dt

t
_ W /: (o (F2F)D) (¢ to)" dt.

Finally, applying Corollary 7.3.22 with k = N + 1, we get

(0, (0F)(t0))z = (¢, (OiF)(to)) 2

for all p € Z and all t, > 0. Therefore we have (9,F)(to) = (8,F)(to) in Z' for
all t5 > 0 as claimed. O
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Step 7: Completing the proof.

Lemma 7.3.28. Let F' € XP solve (CR)pp with limy_,o F'(t)) = 0 in Z'(R™ :
C™™). Then F = F.

Proof. By Lemma 7.3.27 we have 6,F = 0,F in Z', so there exists G € Z’
such that F(tg) = G + F(ty) for all t, € R,. Since limy, o F(ty) = 0 in X?
(Proposition 6.1.24, using the weak-star topology when p is infinite) and hence
also in Z’, we find that G| = 0. Following the argument of [15, Step 5, page
50], we find that G = fa modulo polynomials, where a is invertible in L* and
B € C™. To complete the proof it suffices to show that 5 = 0.

Note that the constant function [t — G = F(t) — F(t)] is in XP. If p is finite,
then G € EP (since [t — G| solves (CR)pp), and this forces § = 0. If p is infinite,
then the argument completing the proof of [15, Case ¢ < 1, Theorem 1.3] shows

that if 5 # 0 then [t — G| ¢ T} for all @ € [0,1). Since 6(p) > —1 we have
G € XP = T ta(p)+0p);

and since a(p)+60(p) € [—1,0) (this follows from p € I;,ax), we must have § = 0.
This completes the proof. n

Therefore, by Corollary 7.3.26, under the assumptions of Theorem 7.3.2, we
have that F' = F = Chy(F(0), with F(0) € X" such that |[F(0)||_,., <
D

|F||xp (by (7.38)). Furthermore, if f € X% and F = Chpf, then by Proposi-

tion 6.1.24 we have

f =lim ChuF (1) = F(0)

with limit in X%, 5. This completes the proof of Theorem 7.3.2.

7.4 Applications to boundary value problems

7.4.1 Characterisation of well-posedness and corollaries

First let us put the boundary value problems given in the introduction (Subsection
4.1.1) in a more convenient form.

Fix m € N and let p be an exponent. Consider the spaces (XP N DZ’)(R" :
C™0+m) using the notation of Subsection 6.2.1. Making use of the natural
splitting

XP(R™: Cm(1+”)) = XP(R":C™) @ XP(R": C™)
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and the corresponding splitting for Z/(R" : C™1+")  we can write

(XP N DZ)R": CmH) = XP(R™ : C™) @ (XP(R" : C™) NV 2'(R™ : C™))
—. p p
—. XJ_ @ XH .
In particular, if p € I ., we can make the identification

XP(R": CH) ~ XB @ XP

(see Theorem 6.2.1).
For p € L.y with 6(p) < 0, define

Xp = {F € XP: lim F(t); =0 in Z’(R”)}
and when p € I, and 6(p) =0 (so p = (p,0) with p € (n/(n +1),00)) define

X = {F: N.(F) € L'®}

Li(p)

where N, (F) is defined in (4.4).° We set ||[F||g to be ||F||yp or [N, F|

respectively.
Definition 7.4.1. For p € I,,x we define the Reqularity problem

Lau=0 in R,
(Rx)% : { limeso Vyu(t,-) = f € XJ,
IVull & S 11 lxe

and the Neumann problem

LAU =0 in R},_+n,
(Nx)% = { limy00,,ult,") = f e Xh,
Vull & S|l lxs -

By lim;,0 Vju(t,-) = f € X"‘) we mean that f € Xﬁ’ and that the limit is in the
Xh’ topology, and likewise for the limit in the Neumann problem. We say that
such a problem is well-posed if for all boundary data f there exists a unique u

(up to additive constant) satisfying the conditions of the problem.

We will denote these problems simultaneously by (Px )%, with P standing for
either R or N.

8n the notation of Huang [51], X0 = Tp:2,

231



Remark 7.4.2. The boundary condition in (Rx)% is equivalent to the Dirichlet
condition

. D — p+1
llfg%uga ) g e XJ_

where Vg = f, since V| is an isomorphism from XP*H onto Xﬁ’. Therefore
(Rx)® could be thought of as a Dirichlet problem (Dx)5™.

Remark 7.4.3. The problems (Rx)% and (Nx)% include all Regularity and Neu-
mann problems introduced in Subsection 4.1.1. The definition above is much

more concise (but, initially, much less clear).

Now we will use Theorems 7.3.1 and 7.3.2 to characterise the well-posedness of
(Rx)% and (Nx)B. Let N; and Nj denote the projections from X5 (R™ : C™(1+n)
onto X% and XF respectively. If p € I(X,DB) or p” € I(X, DB*), then we
can realise XP5(R™ : C™1+7) as a subset of X5 (R™ : C™*™) and via this

identification we define
p . Pt p p . Pt p

Note again that the condition p¥ € I(X, DB*) is equivalent to p € I(X, DB)
when i(p) € (1, 00).

Theorem 7.4.4 (Characterisation of well-posedness). Let B = A. Suppose p

satisfies

pel(X,DB) ifi(p) <2,
p” € I(X,DB*) ifi(p) > 2.

Then (Rx)% (resp. (Nx)3) is well-posed if and only if N pp | (resp. Nx pp,1)
is an isomorphism.

Proof. The results for §(p) = 0 and 6(p) = —1 correspond to [15, Theorems 1.5
and 1.6, so we need only consider #(p) € (—1,0). Since V4 = {@A,V”], The

boundary conditions for (Rx)% and (Nx)) can be rewritten as
N” <%1—I>% VAu(t, )) =fe Xﬁ’ and
N. (%i_r)ré V ault, -)) —fex®

respectively. By Theorem 4.1.3, solutions u to Lau = 0 are in bijective corre-
spondence (modulo additive constant) to solutions F' to (CR)ppg, with F' = V 4u.
Furthermore, by Theorems 7.3.1 and 7.3.2 and by the assumptions of this theo-

rem, every such F € XP is given by F = C}zFy for a unique Fy € X%} (and so
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F(t) € X%} for all t), every such Fy determines a solution F, and by continuity
of the semigroup on X%} (Proposition 6.1.24)

F() = %1_{% VAU(t, )
The result follows. O

Define the energy exponent e = (2, —1/2). For all A, the Lax-Milgram theo-
rem guarantees well-posedness of the problems (Rx) and (Nx)$ (see [12, The-
orems 3.2 and 3.3]). We say that a problem (Px)% is compatibly well-posed if
it is well-posed and if for all boundary data f € XP N X¢ (where e is either
| or L depending on the choice of boundary condition), the solution to (Px)%
with boundary data f (the energy solution) coincides with the solution to (Px)5
with boundary data f. If p satisfies the assumptions of Theorem 7.4.4, then this
theorem says that (Px)% is compatibly well-posed if and only if N¥ 5, is an
isomorphism and (N§ pp,)~" = (Ng pp.) " on XENXE.

For finite exponents we can interpolate compatible well-posedness; compati-

bility is required in order to interpolate invertibility.

Theorem 7.4.5 (Interpolation of compatible well-posedness). Fiz 6 € (0,1), and
suppose p and q are finite exponents satisfying the assumptions of Theorem 7.4.4.
If (Px)R and (Px)% are compatibly well-posed, then (PX)[p Ao s compatibly well-
posed. Furthermore, if 0(p) # 0(q) and X = H, then (PB)B; Ao s also compatibly

well-posed.

Proof. We use interpolation result for smoothness spaces, Theorem 5.1.52. By

the previous discussion, we have

(N)g,DB,o)il = (N)%,DB,Q)il = (N)e(,DB,o)il

on the intersection XP N X3 N X¢. Since this intersection is dense in XP and X3

(here is where we use finiteness of p and q), we have a well-defined operator
N: XP + X¢ — XPf + X5

which restricts to (Ng pg,)”" and (N pg,) " on X and X¢ respectively. By
complex interpolation, N restricts to a bounded operator Ny: X[P-ale — X%)E]Q’Jr.
Since Ny is equal to (N§ pp,)~" on XP9e 0 Xe and since N)[Sg]g . is equal to
N% ppe ON X% N X%E, we find that Ny is the inverse of N}[ESB. Therefore

N)[g g]g . is an isomorphism, and since [p, qy satisfies the assumptions of Theorem
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7.4.4 (by Proposition 6.2.9), (Px)f’q]" is well-posed. Furthermore, since Ny =
(N% ppe) "t on X[Pde 0 Xe, (Px)f’q]e is compatibly well-posed. When X = H
and O(p) # 0(q), applying real interpolation with the same argument yields

compatible well-posedness of (PB)EE’Q]Q. O

Although well-posedness without compatibility cannot be interpolated, it can
be extrapolated by making use of a theorem of Sneiberg [83]. This extrapola-
tion procedure also extrapolates compatible well-posedness, and works for infinite

exponents (excluding the BMO-Sobolev range of spaces).

Theorem 7.4.6 (Extrapolation of well-posedness). Let B = fl, and let p satisfy

peI(X,DB)Y i(p)<2
p¥ € I(X,DB*)° i(p) > 2

(note the appearance of the interior of the identification regions), and if X = H
then further assume that j(p) # 0. Suppose also that (Px)Y is (compatibly) well-
posed. Then there exists a (j,0)-neighbourhood Oy of p such that for all q € Oy,
(Px)$ is (compatibly) well-posed.

The restriction j(p) # 0 for X = H rules out BMO-Sobolev spaces, which are
not in the interior of any of our complex interpolation scales. Note that when
p € (1,00), p¥ € I(X, DB*)° is equivalent to p € I(X, DB)°.

Proof. We will prove the result for i(p) € (1,00) as the proof for general expo-
nents follows the same argument.

Let o denote either L or || as before. By Theorem 7.4.4, N} pp5,: XB5 — XP
is an isomorphism. Let By be a ball in the (j,#)-plane centred at p such that
B, C I(X,DB). Fix r € B,. Then we have

X2 = [XEET X551

since p = [[p,r]_1,r]1 /2. Since the spaces XP form a complex interpolation scale, "

by the extrapolation theorem of Sneiberg,'' there exists € > 0 such that

Nggﬂg,,: X%)g]”’+ — X[l s an isomorphism for all v € (—¢,¢).

9This was extended to quasi-Banach spaces by Kalton and Mitrea [5%, Theorem 2.7], and

elaborated upon by Kalton, Mayboroda, and Mitrea [57, Theorem 8.1].

19This is immediate for XY, and for X[ this is because X} is the image of XP(R™ : cm+n))
under the retraction N|Pp.

HSee [58, Theorem 2.7] for a reference incorporating both quasi-Banach spaces and the

English language.
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Furthermore, inspection of the Kalton—Mitrea proof of this result shows that ¢ is

independent of r. Therefore there exists a ball O, C By, centred at p such that
N3t ppet X5 — X3 is an isomorphism for all g € O,.

In addition, the inverses of these maps are consistent ([57, Theorem 8.1]), and so
if the inverse of N pp, is consistent with that of N pp, (i.e. when (Px)} is
compatibly well-posed) then this also holds for all q € Op. By Theorem 7.4.4,
this completes the proof. O]

Remark 7.4.7. Note that this proof also shows that if (Px)% is well-posed but not
compatibly well-posed, then the same is true for (Px)% for nearby q (the inverses
of N pp.e are consistent, so they are either all consistent with N§ 55, or all not
consistent with Ny pp,). Therefore, staying within the range of exponents for
which Theorem 7.4.4 holds, the set of p such that (Px)% is compatibly well-posed

is a connected component of the set of p such that (Px)% is well-posed.

Now we present a O-duality principle for well-posedness.

Theorem 7.4.8 (O-duality of well-posedness). Let B = fl, and suppose that p €
I(X,DB). If (Px)Y is (compatibly) well-posed, then (PX)ZT is also (compatibly)

well-posed.

Of course, if i(p) € (1,00), then this statement is an equivalence. We point
out the case where p = (1,s) with s € (—1,0]: in this case the result says that
well-posedness of a problem with coefficients A and boundary data in the Hardy—
Sobolev space H 1 (resp. the Besov space B;l) implies well-posedness of the
corresponding problem for A* with boundary data in the image of BMO-Sobolev
space BMO_, (resp. the Holder space A,S) under D.

Proof. We will be sketchy because all the important details of this argument are
already done by Auscher, Mourgoglou, and Stahlhut (see [16, §12.2] and [15,
§13]). Recall from Remark 6.2.11 that A* = NB*N =: B. When p is finite, the
pairing

<f7 g)g%B = <f7 Ng)X%B
a duality pairing between X¥ 5 and X%’D. We have that |[Dgl| o =~ || g||X%rD

DB

whenever g € D(D) N X%/D (Proposition 6.2.6), and so the pairing

(f9)xm = (/. NDg)xe (7.50)

DB
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is a duality pairing between XP; and R(D) N X%;. Since p € I(X,DB), we

can identify X? = XP 5 and X%O = XpDQ;, as completions of X} 5 and X%;

respectively (using a simple modification of Proposition 6.2.7 to make the second

identification), and by density the pairing (7.50) extends to a duality pairing
Q@

between X7, and X -, As in the proof of [15, Lemma 13.3], this pairing realises

XpDQ;qE as the dual of X3, Xi’@ as the dual of X, and Xﬁ’o as the dual of
X% . The remainder of the argument precisely follows the proof of [15, Theorem

1.6]. 0

7.4.2 The regularity problem for real coefficient scalar

equations

The results above show that from compatible well-posedness of a boundary value
problem for an exponent p € I(X, DB) with B = A, we may deduce compatible
well-posedness for a larger range of exponents by O-duality and interpolation. As
an application of this principle we consider the regularity problems (Rx)% in the
real scalar case.

Suppose that m = 1 (so that Lyu = 0 is a single equation rather than a
system) and that the entries of A are real. In this setting, there exists a number
a € (0,1] such that for every Euclidean ball B = B(Xp,2r) in R}Y™ and every

solution u to Lyu = 0 in B, we have

) w0 () (f ) (7.51)

for all X, X’ in the smaller ball B(Xy, ). In this case say that the coefficients A
satisfy the De Giorgi—-Nash—Moser condition of exponent a. The adjoint matrix
A* will also satisfy a De Giorgi-Nash—Moser condition of (possibly different)
exponent a.

Auscher and Stahlhut [16, Corollary 13.3] show that in this case'” we have

(" pi(DB)) € I(H.DB),

(= p+(DB)) © (H, DB),

n—+a«

where B = A* (note that B # B*) and where p, (DB),p.(DB) > 2. Therefore

2In fact, a somewhat weaker assumption is needed there.
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Figure 7.5: Exponents p € I(H, DB), when m = 1 and A is real, with B = A.
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by ©-duality (see Proposition 6.2.7 and Remark 6.2.11), we have

(pT(DB),00) C I_(H,DB),
(p* (DB, 00) C I_y(H, DB).

By interpolation (Proposition 6.2.9) we then have that I(H, DB) contains the
region pictured in Figure 7.5, and (B, DB) contains the interior of that region.
The point x4 here is defined as the pictured intersection, which is a function of
n, a, and pT(DB) that we need not compute explicitly.

There is also a corresponding diagram for B that we have not pictured, in-
cluding a corresponding exponent x4+. By applying O-duality to the exponents
p € I(H,DB) with i(p) € (1,2), and another application of interpolation, we
can increase these ranges to that pictured in Figure 7.6.

It has been shown that there exist pr(A) > 1 (possibly small) and 0 < of <
min(a, o) such that the Regularity problem (RH)Ef’O) is compatibly well-posed
for all p € (n/(n + o), pr(A)], and likewise for A* (with the same of)."* By
the results of the previous paragraph, we have (p,0) € Io(H, DB) N Io(H, DB)

4

for all such p,'* and so we may apply ©-duality and interpolation as in the

13The po endpoint of this result is due to Kenig and Rule in dimension n+1 = 2 [62, Theorem
1.4] and Hofmann, Kenig, Mayboroda, and Pipher in dimension n 4+ 1 > 3 [46, Corollary 1.2].
The other endpoint is an extrapolation result of Auscher and Mourgoglou [14, §10.1].

141t is possible that p > p,(DB) or p > p4(DB), in which case we have to restrict to small
p. In general p is small, so this is not a serious loss of generality.
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Figure 7.6: More exponents p € I(H,DB), when m = 1 and A is real, with
B = A. The dark shaded region corresponds to Figure 7.5.
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previous argument to deduce compatible well-posedness of (Ryg)% for p in the
region pictured in Figure 7.7, and of (Rg)Y in the interior of this region.'”

We can expand this region slightly for Besov spaces: applying O-duality to
compatible well-posedness of (Rg)%. for p in the open triangle with vertices y 4-,
(n+af/n,0), and (1,0), we find that (RB)SO’O”O) is compatibly well-posed for all
a € (—1,—1 — of). Therefore (after another iteration of interpolation) we have
well-posedness of (Rg)% for all p in the shaded region of Figure 7.8. This is the
same region obtained by Barton and Mayboroda for compatible well-posedness
of (Rg)Y in this setting [21, Figure 3.5].'° To recover the result of [21, Corollary
3.24], one need only apply Lemma 7.2.1 (which is valid for this region of p, see
Figure 7.2) to remove the decay assumption at infinity from (Rg)%, and the
trace theorem [21, Theorem 6.3] to replace our boundary condition with a trace
condition.

In the case that A is symmetric in addition to the above assumptions, then

results of Kenig and Pipher [61] imply that we have the additional information

15We can also deduce results for BMO-Sobolev spaces, which correspond to the unpictured
j(p) = 0 range.

16The only difference is in the light shaded ‘region of applicability’: ours depends on the
Auscher—Stahlhut exponent p*(DB), while that in Barton-Mayboroda is in terms of the expo-
nent appearing in Meyers’ theorem [75, Theorem 2] (see also [21, Lemma 2.12]). It is not clear

whether there is any relationship between these exponents.
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Figure 7.7: Exponents p for which (Rg)} is compatibly well-posed (the dark
shaded region). The light shaded region is from Figure 7.6.
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pr(A) = pr(A*) > 2, and regions of compatible well-posedness of (Rx)5 can
be expanded accordingly. Furthermore, in this case the corresponding Neumann
problems (Nx)% are well-posed for the same range of p by repeating the argu-

ments above (starting from the information given by [01]).

7.4.3 Additional boundary behaviour of solutions

It is possible to establish the following boundary behaviour of solutions to L 4u =
0.

Theorem 7.4.9. Let B = A and let p be an exponent with 0(p) € (—1,0). Let
u solve Lu =0, with V qu € Xp.

(i) Suppose p is finite and p € I(X,DB). Then there exists v € XPT such
that
lim u(r, &) d§ dr = v(x) a.e. v € R",
with VHU = V”U in Z'.
(ii) Suppose p is infinite and p¥ € 1(X, DB*). Then u € XPHHRL™).

The proof, which we do not provide here, requires a series of ad hoc arguments

(much like the proof of Theorem 6.2.12) that exploit the semigroup representation
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Figure 7.8: Exponents p for which (Rg)% is compatibly well-posed (the dark
shaded region); this includes no exponents with 6(p) = 0 or (p) = —1. The
light shaded region is from Figure 7.6.
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b
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of the conormal gradient V 4u provided by Theorems 7.3.1 and 7.3.2. Full details,
which have been communicated to us by Pascal Auscher, will be provided in a

future version of this article.

7.4.4 Layer potentials

We conclude the article by briefly indicating the relation between the first-order
approach and the method of layer potentials. Further information on this link is
available in [79] and [10, §12.3].

Suppose, for the moment, that A and A* both satisfy the De Giorgi-Nash—
Moser condition (7.51) of some exponent. Then for all (¢, z) € R™™ there exists a
fundamental solution I'(; ;) for L 4+ in R**™ with pole at (¢, z)."" The fundamental

solution I'(; ;) is a C™-valued function on R satisfying
div A*VT (12) = 6101 in R1*"

in the usual weak sense, where (; ;) is the Dirac mass at (t,z) and 1 = (1,...,1) €
c™.

1"Fundamental solutions were constructed in dimension n+1 > 3 by Hofmann and Kim [17],

and in dimension n 4+ 1 = 2 by Rosén [79].
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For a (reasonable) function h: R — C™ and for (¢,z) € R, define the

double layer potential

Dih(a)' i= [ (O Ta0)' b)) dy (= Lo om)

and the single layer potential

One can solve Dirichlet problems for L, in RI™™ with boundary data ¢ by solving

the double layer equation

1{% Dih = ¢,

and likewise one can solve Neumann problems for L, in RY™ with boundary data

© by solving the single layer equation
1{% 81,A8th = Q.

The corresponding solutions u are then given by u(t,x) = D;h(x) and u(t,z) =
Sih(z) respectively.

It was shown by Rosén [79] that these layer potential operators fall within the
scope of the first-order framework. Keeping the De Giorgi-Nash—Moser assump-
tion on A and A*, and writing B = A as usual, for all f € L2(R" : C™) and ¢t € R

we have

D.f = sgn(t) (e—'tBstganD) g )
1
and
VS f = —sgn(t) (etIDBngn(t)(DB) g ) ’
1

where the vectors f] are in L2(R" : C™(4™)  written with respect to the

transversal /tangential splitting. In terms of Cauchy operators, on RL™ we can

é])l, VASf:q:<O§§B ﬂ)l. (7.52)

The right hand sides of these expressions are defined for all coefficients A, whether

write

sz:l:(CjBFD

or not the De Giorgi-Nash—Moser assumptions are satisfied.
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For all exponents p € I(X, DB) (and for all infinite exponents p with p¥ €
I(X, DB*)) we have the estimate

[CHafl ., Sflle  (f €R(DB))

(see Theorems 6.1.25 and 6.2.12), which immediately yields

IVaSfllxe S 1fllxe - (7.53)

This can be seen as boundedness of § from the classical smoothness space XP into

a Sobolev-type space built on XP. On the other hand, because of the equality
V9. = —(Dg) (for any g: R" — C™*+")) and similarity of functional calculus,

), el

which implies (for all f with V| f € L?)

o

<|[vus]

we can write

V|Df =— (CBBD

0

v Vit

<
Xp

Xp

Xp

= [[fllxpe1 s

and similarly

10D S|l xe S

~Y

BDC}),

f
0
< |ChoD H

S 1 fllxper s

XP

XpP

so that
INDfllxe S 1fllxps1 - (7.54)

Bounds for layer potentials on the lower half-space corresponding to (7.53) and
(7.54) can also be derived. Compare these results with those of Barton and May-
boroda [21, Theorem 3.1]. Various other mapping properties of layer potentials
follow from the identifications (7.52) and the mapping properties of functional

calculus on the spaces X, 5, for example the uniform bounds

sup IVaSifllxe + [1SeflIxper S [1f]lxe (7.55)
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(S; can be defined via Cauchy operators as in [10, §12.3]) and
Sup[[VaDifllxe + [1Defllxess S 1/ 1xmrs (7.56)

We also obtain limits for these operators as t — 0% (in XP or XP*! accordingly,
and in the strong or the weak-star topology depending on whether p is finite). In
particular we can also recover the jump relations with this formalism. We refer
the reader to Auscher and Stahlhut [16, §12.3] for further details.

For p as above, Rosén’s identification of the layer potentials in terms of Cauchy
operators and the boundedness results above imply that the solutions to boundary
value problems that we construct via Cauchy operators coincide with solutions
constructed by the method of layer potentials. It is possible that this fails outside
this range of p.
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This paper is already too long, so details will be left as a challenge to

the reader.

-Alan McIntosh, Operators which have an Hy, functional calculus [70]
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