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We study the second harmonic generation in quadratic nonlinear media with localized spatial modulation of
χ(2) response. We demonstrate that the emission of Čerenkov second harmonic takes place only when the
fundamental beam illuminates the region of χ(2) variation. This proves that the sharp modulation of the χ(2)

nonlinearity constitutes a sufficient condition for the emission of Čerenkov second harmonic in bulk materials.
Our calculations are in excellent agreement with simple analytical approach utilizing the concept of recip-
rocal vectors representing the Fourier spectrum of the modulation of χ(2). c© 2012 Optical Society of America
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Nonlinear optical Čerenkov emission represents the type
of noncollinear parametric process where the direction of
the generated wave is defined by the longitudinal phase
matching condition [1]. In the simplest case of Čerenkov
second harmonic generation (ČSHG), the radiation of
the doubled frequency is observed at the angle defined
as θ = cos−1(2k1 cos α/k2), where k1 and k2 denote the
wave vectors of the fundamental and the second har-
monic (SH) waves, respectively, and α is the incident
angle of the fundamental wave [see Fig. 1(a)]. Recently
the ČSHG has attracted lots of attention because of the
efficient noncollinear SHG eliminating the necessity of
filtering out the incident wave, an valuable feature in
all-optical signal processing. Moreover, the ČSHG en-
ables the spatial control of the generated wave front,
e.g. forming the radially polarized Bessel beam [2,3]. So
far the ČSHG has been realized in bulk ferroelectric crys-
tals with 180o antiparallel domains [4–7], or in waveguide
geometries utilizing the automatic fulfillment of phase-
matching condition involving guided fundamental and
radiation harmonic modes [8, 9].

Regarding ČSHG in bulk ferroelectric crystals, it has
been found by using tightly focused fundamental beams
that effective ČSHG takes place only in the vicinity of the
ferroelectric domain wall separating antiparallel ferro-
electric domains [10–12]. This property has already been
shown to be extremely useful as an efficient tool for a
non-destructive diagnostics of three-dimensional domain
patterns in ferroelectric crystals [11–13].

For a long time the physical origin of this enhancement
of ČSHG by a ferroelectric domain structure has been a
subject of controversy. On one hand, it was suggested
that the periodic change of sign of second-order nonlin-
earity χ(2) serves as a source of reciprocal lattice vectors
which can enable efficient ČSHG via non collinear quasi-
phase matching [7,14]. On the other hand, it was claimed
that the distortion of crystal lattice across the domain
wall may induce local enhancement of χ(2), which con-
sequently leads to stronger ČSHG on the wall [10, 15].

In this letter, we aim to resolve this issue by studying
the Čerenkov second harmonic generation in an opti-
cal bulk medium consisting of two semi-infinite regions
with different strengths and/or signs of the nonlinear-
ity χ(2). While the actual ferroelectric domain wall may
indeed lead to some modification of the nonlinearity ten-
sor [10], we concentrate here on much simpler situation
of a sharp variation of the value of χ(2). Consequently
we reveal that abrupt change of χ(2) in transverse direc-
tion constitutes a sufficient condition for the emission of
ČSHG. In fact, an individual spatially localized change
of χ(2) can provide a continuous set of reciprocal vectors
leading to efficient ČSHG. Therefore, a periodic modu-
lation of χ(2) is no longer necessary. We also discuss the
strong sensitivity of the Čerenkov signal to the width
and incidence angle of the fundamental beam. we may
remove this last sentence to save some space
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Fig. 1. (Color online) (a) Phase matching diagram of
Čerenkov second harmonic generation. (b) Schematic of
the simulation with SHG in optical media containing two
layers of different nonlinear responses: χ(2) and χ̃(2).

As shown in Fig. 1(b), we consider two semi-infinite
regions with different quadratic nonlinear responses χ(2)

and χ̃(2). The fundamental beam (λ=1.2 µm, beam
width w) propagates in the medium at an angle α against
the boundary. To avoid any possible influence of the dis-
continuity in the linear polarization [16], the refractive
index of the system is assumed to be homogenous.

The system of corresponding wave equations for the
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fundamental and second harmonics reads [17]:
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where ω1 and ω2=2ω1 are the fundamental and SH fre-
quencies, respectively. We assumed that the field can be
decomposed as a superposition of these two frequencies,
with stationary envelopes and fast oscillating term:

E = E1(x, z)ei(k1z−ω1t) + E2(x, z)ei(k2z−ω2t) + c.c.(2)

In this model only the contributions from the diffrac-
tion and the quadratic nonlinearity are included, and no
transient behavior or interface enhanced linear and/or
nonlinear effects are considered.

The second harmonic generation is analyzed by nu-
merically solving the Eq. (1) via standard FFT-based
beam propagation method. We use the dispersion data
of LiNbO3 crystal [18]. In Fig. 2 we depict both near-
and far-field SH distributions versus the propagation dis-
tance, calculated with the fundamental beam propagat-
ing at α = 0◦ along three types of χ(2) boundary in non-
linear media. The first row shows the SHG when the non-
linearity χ(2) switches its sign across the boundary, i.e.
χ(2) = −χ̃(2) = χ

(2)
0 . The strong emission of ČSHG is ob-

served around ±28.6◦ in the far field, agreeing well with
the calculated Čerenkov angle for LiNbO3 crystal [18].
The SH energy grows with the interaction length, a
character of the phase matched nature of this nonlinear
Čerenkov emission. The simulation actually represents
the experimental observation of ČSHG on the single do-
main wall of ferroelectric crystal, across which the χ(2)

switch its sign. In the second row of Fig. 2, we display the
SHG calculated with χ(2) changing its value from χ

(2)
0 to

zero. This corresponds to a situation when the nonlinear
response is nonzero in only one part of the medium. It is
interesting that the Čerenkov harmonic is generated in
exactly the same manner as at the domain wall ±χ

(2)
0 ,

except for lower intensity of the generated signal. For
comparison, the bottom row illustrates the SHG in a ho-
mogenous nonlinear medium, i.e. χ(2) = χ̃(2) = χ

(2)
0 . In

this case only the forward (phase mismatched) SH sig-
nal is present while the noncollinear ČSHG completely
disappears. This behavior indicates that the existence
of any spatial modulation of the second-order nonlinear-
ity χ(2) constitutes the sufficient condition for efficient
generation of Čerenkov signal.

This is further confirmed by the calculations depicted
in Fig. 3 where we show the effect of the spatial profile
of the of χ(2) variation on the emitted ČSHG. In the
simulations we modeled the quadratic nonlinearity as

χ(2)(x) =
2χ

(2)
0

π
tan−1(Dx), (3)

 

Fig. 2. (Color online) Near-field (left column) and far-
field (right column) intensity distribution of the SHG
in composite media with fundamental beam propagating
along boundary separating different strengths of the non-
linearity. The nonlinearity modulation across the bound-
ary is given as (from top to bottom): χ(2)/−χ(2), χ(2)/0
and χ(2)/χ(2) (homogeneous medium).

where D represents the steepness of χ(2) variation. For
D À 1 the function Eq.(3) approaches the step function.
In actual physical setting such spatial modulation of χ(2)

could represent simple model of ferroelectric domain wall
separating nonlinear responses of opposite signs. In simu-
lations we used D = 106, 107, 108 and 109 [Fig. 3(a)]. It is
seen from Fig. 3(b) that the profile of χ(2) variation does
not affect the Čerenkov angle. This agrees with the fact
that the direction of Čerenkov emission depends solely
on the dispersion properties of the medium. However, the
intensity of Čerenkov signal is very sensitive to the pro-
file of χ(2) modulation. The sharper the change of χ(2),
the stronger the Čerenkov signal. This effect could be
of interest to the study of the properties of ferroelectric
domains especially when combined with Čerenkov-based
domain visualization [11,12].

It is easy to interpret the results obtained above if
we consider the nonlinear Čerenkov radiation as a fully
phase matched process, i.e. the missing momentum in
the transverse direction is compensated for by the recip-
rocal vectors associated with the χ(2) variation. In this
case the intensity of ČSHG should be proportional to the
square of the Fourier coefficient M(κ) of the nonlinearity
spectrum corresponding to the transverse wave vector κ
such that κ/k2 = sin θ. In our case

M(κ) = χ
(2)
0

i

κ
exp−|κ/D| . (4)
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With regard to Fig. 3 it is now obvious that |M(κ)| in-
creases with D, approaching the maximum M(κ)max =
iχ

(2)
0 /κ for the step jump of χ(2). The Eq. (4) also ex-

plains the difference in the strengths of the signals gener-
ated by χ(2)/− χ(2) and χ(2)/0 boundaries (the top two
rows of Fig. 2). The weaker Čerenkov signal in the lat-
ter case comes about because the corresponding Fourier
coefficient is two times smaller than that of the former’s.
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Fig. 3. (Color online) (a) Illustrating different spatial
profiles of the χ(2) modulation across the boundary. (b)
The angular profile of the SH emission. Two peaks lo-
cated at θ = ±28.6◦ represent Čerenkov signals. Notice
the strength of the emission increasing with D.

Let’s now consider the SHG in a more general geom-
etry of interaction, i.e. the fundamental beam propa-
gates along an arbitrary direction (α 6= 0◦). Figure 4(a)
shows the result where the straight line in the graph rep-
resents the collinear phase mismatched emission, while
the two curves represent the Čerenkov radiations. It is
worth noting that the Čerenkov emission at a single
χ(2) boundary follows the scenario observed in experi-
ments with multiple domain walls in periodically poled
ferroelectric crystals [7]. Firstly, the emission angle θ in-
creases with the incident angle, according to the relation
k2 cos θ = 2k1 cos α. Secondly, while the Čerenkov sig-
nals are always generated symmetrically with respect to
the boundary of the χ(2), they show asymmetric intensity
distribution. The signal emitted in the direction closer to
that of the fundamental beam is always stronger. This
is a consequence of the fact that this signal involves a
smaller phase mismatch (smaller κ) in the transverse di-
rection, which corresponds to a larger Fourier coefficient.
The monotonic decrease of the signal with increasing α is
due to the shortening of the effective interaction length
determined by the overlap of the fundamental beam and
the χ(2) boundary.

In Fig. 4(b) we display the effect of the beam size of
the fundamental wave on the ČSHG. We keep the peak
intensity of the wave constant while varying the beam
width. It is seen that at first the Čerenkov signal grows
with the increase of beam size owing to the higher pump
power. However, it quickly reaches saturation since that
only the part of the fundamental beam in the immediate
vicinity of the χ(2) boundary contributes to the emission.

We have to point out that our experimental attempt
to observe visually the Čerenkov harmonic from single-

 

Fig. 4. (Color online) (a) The SHG as a function of in-
cident angle α of the fundamental wave. The Čerenkov
emission is represented by the two outmost curves. The
central line depicts the forward SH signal. (b) The ef-
fect of the beam width w on the Čerenkov SHG. The
calculations correspond to D = 109 in Eq. (3).

domain LiNbO3 samples using intensities up to the dam-
age threshold failed. We think that several publications
reporting Čerenkov SHG in homogenous crystal [19, 20]
may be associated with the structure defects of the crys-
tal, which can also introduce a localized χ(2) modulation.

In conclusion, we have studied the role of a localized
spatial modulation of χ(2) in the Čerenkov second har-
monic generation. We show that the very variation of
χ(2) constitutes a sufficient condition for the nonlinear
Čerenkov emission. This effect is caused by the pres-
ence of a continuous set of reciprocal wave vectors as-
sociated with the χ(2) modulation which enables satis-
fying the full phase matching condition of the second
harmonic generation. The results can be easily general-
ized to Čerenkov emissions from periodic χ(2) structure,
in which the spectrum of reciprocal vectors is defined by
both localized and periodic χ(2) modulations.
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