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Rags make paper

Paper makes money

Money makes banks

Banks make loans

Loans make beggars

Beggars make rags

Author unknown, circa Eighteenth century
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Abstract

The origin of this thesis lay in the production of defects associated with manufacturing LPM

impregnated panels. The causes of these defects were unknown as wastheir exact nature. In

identifying the actual nature and cause of these defects, it is necessaryto research the fun-

damental mechanisms of fluid flow into paper as well as identifying how certain structural

characteristics of paper, as well as characteristics of the penetrating liquids, affected fluid flow

within paper.

To understand the affect of different liquids on impregnation into porousmedia, simple

isotropic micromodels are used to quantify the effects of surface tension and contact angle on

the rate of fluid flow. The use of the Lucas-Washburn equation is questioned.

Using cryo-SEM and a newly developed technique of cryo 2-photon confocal laser scan-

ning microscopy, the actual mechanisms of fluid flow in unsized paper are identified. These are

due primarily to the advance of the wetting fluid in the form of bulk liquid films along channels

formed by fibre overlaps. This is in contrast to the common description of fluidpenetration,

where the primary flow mechanism is based on the bulk filling of pores. Thesechannels,

formed by fibre overlaps are shown to form a highly interconnected dense network of flow

paths which efficiently transport the wetting fluid. The flow rates associatedwith penetration

along a number of potential flow paths within the fibre web are calculated. Theexperimentally

observed penetration rate is consistent with a film flow process through inter-fibre channels

which is significantly slower than a penetration process dominated by meniscusflow through

pores. In addition the mechanism of fluid flow in internally sized papers is presented.

The effects of different fillers on paper structure, flow path morphologies and imbibition

rate are also quantified. Laboratory papers with different types and amounts of filler are studied

using SEM and cryo-SEM and a newly developed technique of high speedvideo microscopy

to quantify such effects.
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