THE EFFECTS OF SALINITY AND SODICITY ON SOIL ORGANIC CARBON STOCKS AND FLUXES

Vanessa Ngar Lai Wong

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the Australian National University

13th July 2007

DECLARATION OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of the author's knowledge, it contains no material previously published or written by another person, except where due reference is made in the text.

13th July 2007

Vanessa Wong

ACKNOWLEDGEMENTS

A PhD is rarely the product of a single person alone, and this project is no different, being the production of a cast of thousands.

First and foremost I would like to thank my principal supervisor, Dr Richard Greene, for his endless enthusiasm for all things soil, including my project in its entirety. There was never a dull moment in our meetings, and there always seemed to be a full pot of coffee and a Tim Tam on the table in preparation. Dr Brian Murphy was always ready to leap out into the field whenever there was any mention of fieldwork, and the many trips down from Cowra for our meetings is greatly appreciated. Dr Ram Dalal toiled tirelessly throughout this project and, despite being based in another state, always had time to answer my questions and return comments on my written work in the blink of an eye. Professor Graham Farquhar and Dr Surender Mann also contributed many good ideas and comments throughout the project.

The laboratory-based analysis of this project had to be undertaken across a number of schools in addition to the School of Resources, Environment and Society (SRES; now the Fenner School of Environment and Society). I would like to thank Dr S. Chin Wong (Research School of Biological Sciences) for his assistance in the laboratory, particularly in the establishment of the incubation experiments, and for always being able to find a free fumehood I could take over, as 12-week experiments make heavy demands on time and space. His assistance is gratefully acknowledged. Linda McMorrow (Department of Earth and Marine Sciences) displayed eternal patience with me during the ICP-AES analysis of my samples, particularly in the final rush to finish the analyses in this project, and this is also gratefully acknowledged. I would also like to thank Dr Uli Troitzsch (Department of Earth and Marine Sciences) for allowing me to take over the rotary shaker in her lab for the greater part of two years.

Thank you to Dr Des Lang and his technical staff from the Gunnedah-based NSW Department of Natural Resources, who ran all the LECO analyses. They saved me from many more titrations.

Thank you also to Dr Emlyn Williams from the Statistical Consulting Unit at ANU, to whom I frequently directed simple statistical-related questions.

I would like to acknowledge the help of David Hilhorst, from the Lachlan Catchment Management Authority in establishing the "Gunyah" field site. I am grateful to Dr Sue Holzknecht for reading the thesis in its entirety and her comments on the writing and to Dr Karen Fisher for the final round of proof-reading.

Assistance in the field was garnered on a number of occasions from those who had a free day or two, or simply wanted to spend time in the metropolis that was my field site; to Karen Fisher, David Little, Louisa Roberts, Madeleine Rankin, Jenna Leonard, Celina Smith and Jan Cheetham, your help is gratefully acknowledged. You guys dig well!

I would like to express my appreciation to the landholders of the properties I sampled from. Thank you to Eric Dowling of "Tarcoola," Tony Magee of "Gunyah" and Richard Parker of "Avoca" for granting access to their properties, and allowing me to repeatedly dig up their fields. Without their permission and generosity, this project would have been far more difficult to conduct.

I would like to acknowledge the two Co-operative Research Centres (CRC), of which I was a member, for funding; the CRC for Greenhouse Accounting and the CRC for Landscape Environments and Mineral Exploration. I would also like to thank the members of each CRC for their invaluable comments and ideas throughout the project.

To the housemates I've had over the course of this project (Steve, Lou, C, Steph and Janice); thank you for putting up with the clomping on wooden floorboards at strange hours, the chopping early in the morning, my persistence in empire building in the fridge and pantry, my love affair with the amber ale midway through the process, and finally, for paying the rent and bills on time.

To the community that is SRES, I would like to acknowledge the support and collegiality that was evident throughout my time there.

I would also like to acknowledge the support of my colleagues in the salinity mapping team at Geoscience Australia for allowing me the flexibility to make the final changes in this thesis.

Finally, I would like to thank my family for their unconditional love and support.

ABSTRACT

Soil is the world's largest terrestrial carbon (C) sink, and is estimated to contain approximately 1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely follows gradients similar to biomass accumulation, increasing with increasing precipitation and decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and hence, can be used to determine soil C dynamics under changing environmental conditions.

Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, usually coinciding with land available for agriculture, with salinity affecting 23% of arable land while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soilwater relations largely related to decreased permeability, low infiltration capacity and the formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels of organic matter accumulation. Moreover, potential SOC losses can also be affected from dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few studies are available that unambiguously demonstrate the effect of increasing salinity and sodicity on SOC dynamics.

In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus,

v

as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.

Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic soils affected by adverse soil environmental conditions. When soils were sampled from two sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration rates measured in the laboratory were found to be low in the sodic soil compared to normal non-degraded soils. When the sodic soils were treated with gypsum, there was no change in the SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC levels as a result of little or no C input into the soils of these highly degraded landscapes, as the high salinity and high sodicity levels have resulted in vegetation death. However, following the addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, SMB levels and respiration rates increased to levels greater than those found in the non-degraded soil. The addition of gypsum (with organic material) gave no additional increases in the SMB.

The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. Results showed up to three times less SOC in salt-scalded profiles compared to vegetated profiles under native pasture, while revegetation of formerly scalded areas with introduced pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched watertables. These results indicate that successful revegetation of scalded areas has the potential to accumulate SOC stocks similar to those found prior to degradation.

The experimental results from this project indicate that in salt-affected landscapes, initial increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease due to declining vegetation health, followed by further losses as a result of leaching and erosion. The remaining native SOM is then mineralised, until very low SOC stocks remain. However, the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if organic material is available as C stock and for decomposition in the form of either added organic material or inputs from vegetation when these salt-affected landscapes are revegetated.

TABLE OF CONTENTS

Declaration of Originality	ii
Acknowledgements	iii
Abstract	v
Table of Contents	vii
List of Figures	xi
List of Tables	xiv
List of Plates	xvi
List of Equations	xvii
List of Acronyms and Abbreviations	xviii
Chapter 1: Introduction 1.1 Background	
1.2 Aims and Objectives	
1.3 Thesis Outline	
Chapter 2: Literature Review	
2.2 Salt-affected soils	7
 2.2.1 Saline Landscapes and Salinisation 2.2.2 Sodic Soils: Processes and Properties 2.2.3 Effects on Vegetation 2.2.4 Increasing Carbon Stocks During Rehabilitation of 2.3 Soil Carbon Dynamics 	
 2.3.1 The Active Carbon Pool 2.3.1.1 Measures of Biological Activity 2.3.2 Effects of Land Use and Land Management Practic 2.4 Salinity, Sodicity and Carbon 	
 2.4.1 Effects on Microbial Decomposition	
Chapter 3: Soil Respiration and Soil Microbial Biomass in Soi Saline and Sodic Solutions	
3.2 Materials and Methods	
 3.2.1 Site Description 3.2.2 Field Sampling 3.2.3 Sample Preparation and Soil Chemical Analyses 3.2.4 Soil Biological Analyses 3.2.4.1 Soil Respiration	50 50 50
3.2.4.2 Soil Microbial Biomass	

3.2.4.3	Microbial Indices	
3.2.5	Statistical Analysis	
3.3 Results	3	56
3.3.1	Soil Characterisation	
3.3.2	Soil Respiration	59
3.3.3	Soil Microbial Biomass	62
3.3.4	Microbial Indices	
3.4 Discus	sion	65
3.4.1	Effects of Leaching	65
3.4.2	Measures of Biological Activity	
3.4.3	Salinity and Sodicity Effects on Soil Carbon Dynamics	
3.5 Summa	ary and Conclusion	
		• .•
	aboratory Determinations of Soil Microbial Biomass and Soil Re-	
	ded Soils	
4.1 IIII000		12
4.2 Materia	als and Methods	73
4.2.1	Site Descriptions	73
4.2.2	Field Sampling	
4.2.3	Sample Preparation and Soil Chemical Analyses	
4.3.4	Soil Biological Analysis	
4.2.5	Statistical Analysis	
4.2.6	Microbial Indices	77
4.3 Results	5	77
4.3.1	Soil Properties	77
4.3.2	Soil Respiration	
4.3.3.	Soil Microbial Biomass	
4.3.4	Microbial Indices	
4.4 Discus	sion	86
4.4.1	Effects of gypsum addition	86
4.4.2	Soil respiration and microbial biomass in salt-scalded soils	
4.4.3	Gypsum and soil biological activity	
4.4.4	Microbial Indices	
	ary and Conclusion	
	composition of Added Organic Material in Salt-Affected Soils	
5.1 Introdu	iction	
5.2 Materia	als and Methods	
5.2.1	Site Descriptions	93
5.2.2	Field Sampling	
5.2.3	Sample Preparation and Soil Chemical Analyses	
5.2.4	Soil Biological Analysis	
5.2.5	Microbial Indices	
5.2.6	Statistical Analysis	
5.3 Results	5	
5.3.1	Soil Properties	06
5.3.2	Soil Respiration	
5.3.3	Soil Microbial Biomass	
5.3.4	Microbial Indices	
	sion	
5.4.1		
3.4.1	The effects of organic material and gypsum on soil properties	111

5.4.2 5.4.3	Microbial activity and the soil microbial biomass The effects of gypsum		
5.5 Summa	ary and Conclusion	118	
Chapter 6: Ca	rbon Stocks in Salt-Scalded and Non-Scalded Landscapes	119	
-	iction		
6.2 Materia	als and Methods	120	
6.2.1	Site Descriptions and Field Sampling		
6.2.1.1	Tarcoola Site		
6.2.1.2 6.2.2	Gunyah Site Laboratory Analysis		
6.2.3	Statistical Analysis		
6.3 Results	s		
6.3.1	Soil Bulk Density and Particle Size Analysis	127	
6.3.2	Soil pH and EC		
6.3.3	SAR and ESP		
6.3.4 6.3.5	Soluble and Exchangeable Ca Soil Organic Carbon and Total Nitrogen		
6.3.6	Correlations Between Soil Properties		
	sion		
6.4.1	Soil Properties: Bulk Density, pH, EC, ESP and SAR	147	
6.4.2	Soil Organic Carbon and Total Nitrogen		
6.4.3	Historical Salinity Issues in the Region		
6.4.4	Area Affected by Salinity		
6.5 Summa	ary and Conclusion	156	
-	neral Discussion		
	Processes in Landscapes Affected by Salinity and Sodicity		
7.1.2	Losses of Soil Organic Matter in Saline and Sodic Environments		
7.1.3 7.2 Buildir	Soil Properties and Geomorphic Factors g Up Soil Organic Carbon Stocks		
7.2.1 7.2.2	Land Management and Rehabilitation of Salt-Affected Areas Gypsum and Organic Amendments		
	ary		
	nclusions ch objectives revisited		
	-		
8.1.1	Quantification of the effects of different levels of salinity and/or so ocks and fluxes		
8.1.2	Determination of the behaviour of the labile carbon pool in a saline-s		
	without gypsum amendment.	-	
8.1.3	Determination of how decomposition is affected in saline-sodic soils		
	of organic material, with and without gypsum amendment		
8.1.4	Quantification of soil organic carbon stocks in vegetated, salt-sca		
	tions of the Research		
	Research		
References	References		
	c Density		
	paration of 1:5 extracts		
-1			

A1.3	pH, Electrical Conductivity, Soluble and Exchangeable Cations Measurements 19	94
Appendix	B	95
Appendix	C19	97
Appendix	D19	9 9

LIST OF FIGURES

Figure 2.1	Formation of a sodic soil (b) from an initial saline soil (a) 1	3
Figure 2.2	The relationship between ESP/EC and flocculated/dispersed soils 1	5
Figure 2.3	Nutrient constraints in sodic and saline-sodic soils 1	7
Figure 2.4	Processes involved in Na removal from sodic soils by vegetation	24
Figure 2.5	Conceptual model of soil C pools and turnover	26
Figure 2.6	The role of organic matter in improving soil structure at different scales 2	27
Figure 3.1	Star indicates the location of the property "Tarcoola" in Bevendale, NSW 4	19
Figure 3.2	Sample preparation prior to laboratory analysis	52
Figure 3.3	$pH_{1:5(H2O)}$ of the leached soils after equilibration	57
Figure 3.4	EC _{1:5} of the leached soils after equilibration	57
Figure 3.5	SAR of the leached soils after equilibration	58
Figure 3.6	ESP of the leached soils after equilibration	59
Figure 3.7 the 12 week inc	Effects of the different EC/SAR treatments on cumulative respiration rates over subation period at a) 0-5 cm and b) 5-10 cm	
Figure 3.8	Treatment effects on the SMB with depth	53
Figure 3.9 b) 5-10 cm, c) 1	Treatment effects on the SMB over the 12-week incubation period at a) 0-5 cr 0-20 cm, d) 20-30 cm and e) 30-50 cm.	
Figure 3.10 EC/SAR treatm	The likely effect of dispersion and aggregation following leaching with the nents	
Figure 4.1 Crookwell, and	Location of the two field sites, "Tarcoola" approximately 40 km south west of "Avoca," 20 km north-west of Young	
Figure 4.2 and Avoca	pH _{1:5H2O} of the soils amended with gypsum and unamended soils from Tarcoo	la 19
Figure 4.3 and Avoca	EC _{1:5} of the soils amended with gypsum and unamended soils from Tarcoo	
Figure 4.4 Tarcoola	SAR of the soils amended with gypsum and unamended soils from Avoca ar	
Figure 4.5	ESP of the unamended soils and soils amended with gypsum	32
Figure 4.6 period from Av	Gypsum effects on cumulative respiration rates over the 12 week incubation oca and Tarcoola at a) 0-5 cm and b) 5-10 cm	
Figure 4.7	Pooled SMB data from Avoca and Tarcoola	34
Figure 4.8 Tarcoola at a) 0	Gypsum effects on SMB over the 12 week incubation period from Avoca ar 1-5 cm, b) 5-10 cm, c) 10-20 cm, d) 20-30 cm and e) 30-50 cm	

Figure 5.1 $pH_{1:5(H2O)}$ profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM).

Figure 5.2 EC_{1:5} profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM).

Figure 5.3 SAR profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM).

Figure 5.4 ESP profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM). 101

Figure 5.5 SOC profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM).

Figure 5.6 Total N profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM).

Figure 5.7 Total S profiles of the untreated Tarcoola and Avoca soils without organic material addition, and the treated Tarcoola and Avoca soils with organic material addition (OM).

Figure 5.10 SMB-C over the 12 week period with and without gypsum amendment from Avoca and Tarcoola following organic material incorporation at a) 0-5 cm, b) 5-10 cm, c) 10-20 cm, d) 20-30 cm and e) 30-50 cm. 109

Figure 6.6Soil EC1:5 profiles from a) Tarcoola and b) Gunyah134Figure 6.7SAR Profiles from a) Tarcoola and b) Gunyah; note that data have been square-
root transformed136

Figure 6.8ESP profiles from a) Tarcoola and b) Gunyah138Figure 6.9Soluble Ca profiles from a) Tarcoola and b) Gunyah140Figure 6.9Exchangeable Ca profiles from a) Tarcoola and b) Gunyah141

Figure 6.11	SOC profiles from a) Tarcoola and b) Gunyah	143
Figure 6.12	Cumulative SOC stocks with depth at a) Tarcoola and b) Gunyah	144
Figure 6.13	SOC stocks to a depth of 30 cm from each site and microsite	145
Figure 6.14	Total N profiles from a) Tarcoola and b) Gunyah	146

LIST OF TABLES

Table 1.1	Thesis structure	;
Table 2.1 saline and so	United Nations (UN) Food and Agriculture Organisation (FAO) classification o dic soils	
Table 2.2	The role of organic matter in the formation of aggregates	3
Table 3.1	Volume of 1 M NaCl and 1 M CaCl ₂ used for leaching	L
Table 3.2 solutions	Soil chemical properties of the original soil before treatment with the EC and SAF	
Table 3.3	Particle size distribution and bulk density of the bulk soil	5
Table 3.4 _{soil} /week) for	Interaction of the treatment effects on soil respiration rates (CO ₂ -C mg/kg _{OI} 0-10 cm depth soil	
Table 3.5	Effects of the different EC/SAR treatments on SMB with depth, EC and SAR 62	<u>)</u>
Table 3.6	Interaction of the treatment effects on the SMB (mg/kg)	<u>)</u>
Table 3.7	Effects of the different EC/SAR treatments on <i>q</i> CO ₂ and C _{mic} :C _{org}	;
Table 4.1	Soil bulk density with depth	1
Table 4.2	Particle size distribution	3
Table 4.3	Soil properties of the bulk soil from Avoca and Tarcoola	3
Table 4.4	Effects of depth, gypsum addition and site on the SMB	ł
Table 4.5	Effects on <i>q</i> CO ₂ and C _{mic} :C _{org} due to gypsum incorporation and site	5
Table 5.1	Soil bulk density at five depths of the soil profile	5
Table 5.2	Particle size distribution of the Avoca and Tarcoola soil profiles	1
Table 5.3	Soil properties of the untreated soil from Avoca and Tarcoola	1
	Effects on respiration following organic material addition with gypsum addition 105	
Table 5.5 gypsum addi	Effects in respiration due to organic material addition and interactions with tion	
Table 5.6 of organic matrix	Effects in the SMB with depth, gypsum addition and site following incorporation aterial.	
Table 5.7 the SMB-C	Effects due to organic material addition and interactions with gypsum addition in	
	Effects due to organic material addition and interactions with depth in the SMB-C	
Table 5.9 of organic matrix	Effects of gypsum addition and site on qCO_2 and C_{mic} : C_{org} following incorporation aterial.	

Table 6.1	Site set-up	1
Table 7.1	Integration of results chapters	8
Table B1	An example of CO ₂ calculations	6
Table C1.	Soluble cation concentrations following addition of organic material 19	7
Table C2.	Exchangeable cation concentrations following addition of organic material 19	8
Table D1	Particle size distribution from each depth at each microsite and site	4
Table D2 below the de	Soluble cation concentrations for each sample. Nd indicates concentration wa tection limit	
	Exchangeable cation concentrations for each sample. Nd indicates that the was below the detection limit	
Table D4 is not applica	Raw means of SAR of each depth at each microsite and site (* indicates that dat able)	_
Table D5 no data is ava	Raw means of SOC (%) of each depth at each microsite and site (* indicates tha ailable)	

LIST OF PLATES

Plate 3.1 is an example	The paddock where the sampled profile was located at "Tarcoola." The red circle le of a "vegetated patch."
Plate 3.2 soil sample,	Experimental set-up used for analysis of soil respiration; incubation chamber with vial of water and soda lime trap
Plate 4.1	Extensive scalding at the "Tarcoola" site
Plate 4.2	Scalding at the "Avoca" site
Plate 6.1	The bulk density corer used to obtain bulk density cores123
Plate 6.2	Location of the <i>Tarcoola Scalded</i> soil pit123
Plate 6.3	Location of the <i>Tarcoola Depression</i> soil pit (foreground)124
Plate 6.4	The <i>Tarcoola Vegetated</i> site
Plate 6.5	Location of the <i>Gunyah Eroded</i> soil pit. The red circle highlights the loss of topsoil
Plate 6.6	Location of the Gunyah Scalded, Gunyah Pasture and Gunyah Vegetated soil pits 125

Equation 2.1	$ESP = (Na_{exch}/CEC) * 1007$
Equation 2.2	SAR = $[Na^+]/0.5 [Ca^{2+} + Mg^{2+}]^{1/2}$
Equation 2.3	d(soil C)/dt = Inputs (decomposition products + microbial/faunal)
residues) – Losses (het	erotrophic respiration + leaching + erosion + burning)
Equation 2.4	$Ca^{2+} + 2HCO_3^- \Leftrightarrow CaCO_{3(s)} + CO_2 + H_2O_{3(s)} + $
Equation 3.1a	$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O53$
Equation 3.1b	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O53$
Equation 3.2	$CO_2 (g) = [(SL_a - SL_b) - (B_2 - B_1)] * 1.6953$
Equation 3.3	$mg-CO_2-C/kg = [CO_2 (mg) evolved / weight of oven dried soil$
(g)]*12/44	
Equation 3.4	SMB-C (mg-C/kg) = $2.64 E_C$
Equation 3.5	qCO ₂ (mg CO ₂ -C/ day/mg SMB-C)= r/SMB55
Equation 4.1a	$Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3$
Equation 4.1b	$Ca^{2+} + 2HCO_3^{-} \leftrightarrow Ca(HCO_3)_2$
Equation 4.2a	$Na_2CO_3 \leftrightarrow 2Na^+ + CO_3^{2-}$
Equation 4.2b	$\text{CO}_3^{2^2} + \text{H}_2\text{O} \leftrightarrow \text{OH}^2 + \text{HCO}_3^{-1}$
Equation 5.1	S = 10 000 * 10 000 * d * BD94
Equation 5.2	OM = i/S * 1094
Equation 5.3	$2CO_{2(gas)} + H_2O \leftrightarrow H_2CO_3 + CO_{2(aq)} \leftrightarrow 2HCO_3^- + 2H^+ \dots \dots$
Equation 5.4	$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^- \dots 112$
Equation 6.1	SOC (t/ha) = D * BD * C126
-	

LIST OF ACRONYMS AND ABBREVIATIONS

AGO	Australian Greenhouse Office
ANOVA	Analysis of variance
CEC	Cation exchange capacity
CFC	Critical flocculation concentration
C_{mic} : C_{org}	Microbial quotient
DOC	Dissolved organic carbon
EC	Electrical conductivity
ESP	Exchangeable sodium percentage
FAO	Food and Agriculture Organisation
IRGA	Infra-red gas analyser
LSD	Least significant difference
NPP	Net primary productivity
NSW	New South Wales
$P_{\rm CO2}$	Partial pressure of CO ₂
POC	Particulate organic carbon
POM	Particulate organic matter
qCO ₂	Specific respiration rate
REML	Residual maximum likelihood
SAR	Sodium adsorption ratio
SED	Standard error of difference
SIC	Soil inorganic carbon
SMB	Soil microbial biomass
SOC	Soil organic carbon
SOM	Soil organic matter
UN	United Nations
WA	Western Australia