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ABSTRACT 

 

Soil is the world’s largest terrestrial carbon (C) sink, and is estimated to contain approximately 

1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely 

follows gradients similar to biomass accumulation, increasing with increasing precipitation and 

decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant 

litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic 

respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most 

likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 

1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can 

provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and 

hence, can be used to determine soil C dynamics under changing environmental conditions.  

 

Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, 

usually coinciding with land available for agriculture, with salinity affecting 23% of arable land 

while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high 

in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in 

the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon 

wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soil-

water relations largely related to decreased permeability, low infiltration capacity and the 

formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by 

declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels 

of organic matter accumulation. Moreover, potential SOC losses can also be affected from 

dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few 

studies are available that unambiguously demonstrate the effect of increasing salinity and 

sodicity on C dynamics. This thesis describes a range of laboratory and field investigations on 

the effects of salinity and sodicity on SOC dynamics.  

 

In this research, the effects of a range of salinity and sodicity levels on C dynamics were 

determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of 

six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a 

low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-

degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 

12-week experimental period. The greatest increases in SMB occurred in treatments of high-

salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of 

SOM which provided additional substrate for decomposition for the microbial population. Thus,
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as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of 

increased mineralisation. 

  

Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic 

soils affected by adverse soil environmental conditions. When soils were sampled from two 

sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration 

rates measured in the laboratory were found to be low in the sodic soil compared to normal non-

degraded soils. When the sodic soils were treated with gypsum, there was no change in the 

SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC 

levels as a result of little or no C input into the soils of these highly degraded landscapes, as the 

high salinity and high sodicity levels have resulted in vegetation death. However, following the 

addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, 

SMB levels and respiration rates increased to levels greater than those found in the non-

degraded soil. The addition of gypsum (with organic material) gave no additional increases in 

the SMB.  

 

The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, 

so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC 

following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. 

Results showed up to three times less SOC in salt-scalded profiles compared to vegetated 

profiles under native pasture, while revegetation of formerly scalded areas with introduced 

pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. 

However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower 

boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth 

greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched 

watertables. These results indicate that successful revegetation of scalded areas has the potential 

to accumulate SOC stocks similar to those found prior to degradation.   

 

The experimental results from this project indicate that in salt-affected landscapes, initial 

increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease 

due to declining vegetation health, followed by further losses as a result of leaching and erosion. 

The remaining native SOM is then mineralised, until very low SOC stocks remain. However, 

the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts 

are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if 

organic material is available as C stock and for decomposition in the form of either added 

organic material or inputs from vegetation when these salt-affected landscapes are revegetated.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and 

fluxes is critical in environmental management. Many soils in the Australian 

environment are naturally saline and sodic, largely due to extensive weathering of the 

regolith and deposition processes in conjunction with the arid climates that have 

occurred in the past. Saline soils, caused by high levels of soluble salts, have been 

estimated to cover over 17 million ha within Australia (Szabolcs 1989), while soils 

containing a sodic layer high in exchangeable sodium (Na), affect approximately 190-

300 million ha of Australian soils (Northcote and Skene 1972). Because of their age and 

the extent of weathering that has taken place in the past, Australian soils are also 

relatively infertile. Levels of soil fertility are often strongly influenced by soil organic 

carbon (SOC), with low organic matter contents due to low biomass inputs and rapid 

turnover. It is estimated that 70 % of Australian soils display SOC levels of less than 1 

% (Spain et al. 1983). Levels of SOC are largely a function of net primary productivity 

(NPP), or biomass accumulation, and therefore follow similar gradients to that of plant 

growth which is constrained by temperature and precipitation. A large part of Australia 

has an arid climate, and as a result of low biomass inputs, soils generally display low 

levels of soil organic matter (SOM). Land management practices which alter plant 

growth, including many agricultural practices, also have the potential to further alter soil 

C stocks and fluxes. Of particular importance are past and current land management 

practices that have resulted in an increase in saline and sodic soils.  

 

The broadscale clearing of native vegetation since European settlement, its replacement 

with crops and pasture, and subsequent land use practices have resulted in increased 

rates and quantities of groundwater recharge. Prior to European settlement, the presence 

of deep-rooted perennial vegetation maintained hydrological equilibria in the landscape 

(Hatton et al. 2003). However, since settlement, large areas of native vegetation have 

been cleared primarily for agricultural purposes, and have been replaced with shallow-

rooted annual crops and pastures. This change in vegetation has resulted in decreased 

transpiration, which allows more water to infiltrate through the soil profile to the 

groundwater, thus causing the water table to rise. As the water table rises, soluble salts
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 are mobilised and discharged into lower lying areas in the landscape (Burch 1986). 

Where the water table is within one or two metres of the soil surface, plant vigour is 

decreased as transpiration processes, evaporation and capillary action can draw saline 

water into the root zone of plants. This overall process of altered hydrology in the 

landscape has resulted in a redistribution of the salt stores in the soil profile, causing 

salinisation of land and water.  

 

While soil salinity is the result of high levels of soluble salts, soil sodicity is caused by 

high levels of exchangeable Na adsorbed on the surfaces of clay particles. Increasing 

sodicity in soils causes aggregates to disperse. As a result, those soils that are sodic are 

increasingly susceptible to water erosion. The dispersed clay particles also fill in the soil 

pores to form a massive structure, causing decreased infiltration and permeability to 

water, and the formation of surface crusts and seals. Within Australia, a soil is 

considered sodic when the exchangeable sodium percentage (ESP) exceeds 6 % (Isbell 

1996). This value is lower in Australia than those recorded in other parts of the world 

due to the low electrolyte levels of Australian irrigation waters and soil solution systems, 

and the dominance of rainfed agriculture. The lower electrolyte levels in Australian 

systems result in a higher tendency for soils to disperse for a given ESP. Amelioration 

of saline areas in other parts of the world can be effected with the use of high quality 

irrigation water or rainfall, which leaches soluble salts in the profile. However, saline 

areas in Australia are dominated by Na salts, namely NaCl, NaHCO3 and NaCO3, which 

may result in a soil that is high in exchangeable Na+ and hence sodic.  

 

Since the amount of C present in the soil is dependent on C inputs and losses, increasing 

salinity and sodicity levels have the potential to decrease C inputs into the soil through 

their effects on vegetation and impact on C dynamics. Not only can increasing salinity 

and sodicity directly impact upon plant vigour through changes in osmotic potential, ion 

toxicities and ion deficiencies, indirect effects on vegetation can result from altered soil 

conditions such as increased dispersion and decreased permeability. Changes in salinity 

and sodicity affect soil physical and chemical properties, which subsequently alter 

nutrient cycles, aggregation and biotic activity. Erosion also has the potential to be 

increased, which affects C stocks in a catchment. Thus, there is a clear linkage between 

land management practices, through their effects on salinity in particular from the 

clearing of native vegetation as described above, and their potential to alter soil carbon 

stocks and fluxes in the landscape. Despite the large area affected by salinity and 
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sodicity, both in Australia and globally, data on the mechanism and magnitude of 

changes in soil C stocks in these degraded environments is sparse. 

 

Few data exist on C cycling in degraded landscapes, particularly those affected by 

salinity and sodicity. The Australian Greenhouse Office (AGO) currently classifies 

these areas as abandoned agricultural land, but also recognises that it is an issue of 

national significance (AGO 1999). C cycling in saline and sodic landscapes is 

complicated by waterlogged conditions and the common occurrence of highly alkaline 

subsoils caused by the presence of carbonates and bicarbonates. While alkalinity and its 

effects on C dynamics are important issues, it is beyond the scope of this project.  

 

SOC displays a continuum of decomposition and turnover times. As a result, it is 

frequently partitioned into discrete pools according to the length of time required for 

turnover, and usually varies between two and five pools (Jenkinson and Raynor 1977). 

These pools usually consist of an active pool, with a turnover time of weeks to months, 

a slow pool which exhibits a turnover time of decades, and a passive pool which 

requires millennia to turn over. The active C pool is comprised of the soil microbial 

biomass (SMB), its metabolic products and the dead biomass, and has the potential to 

act as an early indicator of soil C dynamics due to its faster turnover time compared to 

the SOC pool as a whole. While it only comprises a small portion of the total SOM (1-5 

%; Killham 1994), it can be used to determine changes in soil C dynamics under 

changing environmental conditions prior to detection in the total SOC pool. Its 

importance lies in the function of the SMB, as all organic material passes through this 

pool for decomposition or transformation. 

 

While the amount of C in the soil is a function of factors such as soil temperature, 

moisture and texture, long term field trials have established that land use and land use 

change have a direct effect on soil C contents and mineralisation (eg. Dalal and Mayer 

1986). The distribution of organic C into these discrete pools, particularly the faster 

cycling pools, is influenced by soil management factors such as land use, irrigation, 

crop rotation, tillage and fertiliser application. Therefore, any changes in management 

regime, including both degradation and rehabilitation processes, have the potential to 

affect the carbon flux and the amount and proportion stored in a particular pool. As the 

areal extent of soils affected by salinity and sodicity increases, SOC stocks and 

decomposition processes will also be altered. However, the extent to which C stocks 
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and processes will be altered by salinity and sodicity is not known. This thesis will 

address these knowledge gaps in relation to landscapes which have become degraded by 

salinity and sodicity impacting on C stocks and dynamics.  

 

1.2 Aims and Objectives 

The overall aim of this project is to determine how soil C stocks and turnover are 

affected by land degradation through increasing salinity and sodicity, and the extent of 

hysteresis these systems exhibit upon rehabilitation. This project has the following 

objectives: 

• Quantification of the effects of different levels of salinity and/or sodicity on 

carbon stocks and fluxes along a salinity and sodicity gradient under controlled 

conditions in the laboratory,  

• Determination of the behaviour of the labile carbon pool in a saline-sodic soil, 

and with gypsum amendment over a 12-week period in controlled conditions, 

• Determination of how decomposition is affected in saline-sodic soils with and 

without gypsum amendment following the addition of organic material in 

controlled conditions, and 

• Quantification of soil C stocks in salt-affected scalds, eroded scalds, revegetated 

and unaffected vegetated profiles. 

 

1.3 Thesis Outline 

This thesis will be presented according to the structure shown in Table 1.1. 
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Table 1.1 Thesis structure 
Chapter Description 

Chapter 1: Introduction Introduction to thesis; aims and objectives 
Chapter 2: Literature Review Review of background literature on salinity, 

sodicity and soil carbon dynamics 
Chapter 3: The effects on the soil microbial 
biomass and soil respiration following 
leaching with salt solutions 

Quantification of the effects of increasing 
salinity and/or sodicity levels on carbon stocks 
and fluxes along a salinity and sodicity 
gradient under controlled conditions in the 
laboratory 

Chapter 4: Soil microbial biomass and soil 
respiration rates in salt-scalded profiles 

Determination of the behaviour of the labile 
carbon pool in a saline-sodic soil, and with 
gypsum amendment over a 12-week period in 
controlled conditions 

Chapter 5: Decomposition of added organic 
material in salt-affected soils 

Determination of how decomposition is 
affected in saline-sodic soils with and without 
gypsum amendment following the addition of 
organic material in controlled conditions 

Chapter 6: Carbon stocks in saline, saline-
sodic and sodic landscapes 

Quantification of SOC stocks in salt-affected 
scalds and vegetated soil profiles 

Chapter 7: General discussion Linking of results related to processes found 
under controlled conditions in the laboratory 
to C stocks found in the field 

Chapter 8: Summary and conclusions Summary and conclusions 
References  
Appendices  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

Worldwide, approximately 932 million ha are estimated to be salt affected, with salinity 

affecting 23 % of arable land, and saline-sodic soils affecting a further 10 % (Szabolcs 

1989). In Australia, it is estimated that salinity affects an estimated 17 million ha while 

sodicity affects approximately 340 million ha of land (Szabolcs 1989). Salinisation and 

sodication of soils are serious land degradation issues in Australia. Sodicity affects soil 

physical properties, causing a decline in soil structure due to increased swelling, 

dispersion and slaking upon wetting, and increased crusting and hardsetting on drying, 

with a concomitant decline in permeability, infiltration and hydraulic conductivity 

(Table 2.1). Many areas also exhibit severe erosion, particularly gully erosion, as well 

as an increase in waterlogging and altered hydrologic processes. Salinity affects soil 

chemical properties through the presence of high soluble salt concentrations. This 

adversely affects soil biota and vegetation by altering the osmotic and matric potential 

of the soil solution. Saline and sodic soils also affect plant growth by inducing ion 

deficiencies in certain micronutrients and nutrient toxicities in others.  

 

Table 2.1 United Nations (UN) Food and Agriculture Organisation (FAO) 
classification of saline and sodic soils.  
 ECe (dS/m) ESP (%) Typical pH Structure 
Saline > 4 < 15 < 8.5 Good 
Sodic < 4 > 15 > 9.0 Poor 
Saline-Sodic > 4 > 15 < 8.5 Fair to good 
Notes:  ECe is the EC of a saturated paste extract; ESP is the exchangeable sodium percentage.  
In 1:5 soil:water extracts, the EC of a saline soil is > 1.5 dS/m (Murphy and Eldridge 1998) 
Source:  van Lynden et al. (2004) 
 

C dynamics as influenced by salt-related degradation will only increase in significance 

in the future, as the extent of salinisation and sodification is projected to increase by up 

to 40 % in some dryland areas (NLWRA 2001). However, the issue of C turnover as 

affected by salinity and sodicity is complicated by processes associated with salt-

affected soils, such as waterlogging and the presence of inorganic C, usually in the form 

of calcium carbonate and sodium bicarbonate. Peck and Hatton (2003) predict that, in 

general, most of southern Australia which lies in the annual rainfall range of 250-800 

mm with deeply weathered regolith has the potential for salinisation following clearing.  
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Whilst the deleterious effects of soil salinity and sodicity, termed collectively as salt-

affected soils, have been extensively studied in the past, particularly in regards to soil 

structure and vegetation health, the effects on C dynamics with respect to emissions, or 

losses from soils, and stocks, is not as well documented. This is particularly pertinent, 

given the large area affected by salinity and sodicity, usually coinciding with 

agricultural areas, where C stocks are likely to be directly related to decreased plant 

inputs due to low biomass production and hence, low SOM accumulation. This review 

will present an overview of studies in salinity and sodicity, their relationship with SOC, 

and identify where knowledge gaps exist.  

 

2.2 Salt-affected soils 

Many Australian soils are naturally saline, as discussed in Section 2.1, and are found 

predominantly in arid to subhumid regions, where they are characterised by high levels 

of soluble salts and/or exchangeable Na. The distribution of these soils generally 

follows climatic gradients, dominant in parts of Australia where the average annual 

rainfall lies within the 250-600 mm range (Northcote and Skene 1972). The issue of 

salinity and its subsequent impacts on plant health have received much attention in 

recent years as a result of anthropogenic-related changes in landscape hydrology and 

subsequent redistribution of salts. These activities are largely related to the widespread 

removal of deep rooted perennial native vegetation and its replacement with shallow 

rooted annual crops and pastures. This process causes an increase in the amount of 

water infiltrating through the soil profile, which mobilises and transports soluble salts 

(Burch 1986). Where the water rises to within two metres of the soil surface, 

evapotranspiration processes and capillarity cause salts to rise, and hence affect the root 

zones of plants.  

 

High levels of exchangeable Na are commonly present in Australian soils, where it can 

impact on soil physical and chemical properties. A soil is defined as sodic where the 

exchangeable sodium percentage (ESP) ≥ 6% (Isbell 1996). The ESP is defined 

according to the following equation: 

 

ESP = (Naexch/CEC) * 100    Equation 2.1 
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where Naexch is the amount of exchangeable Na+ and CEC is the cation exchange 

capacity, both expressed in cmol/kg soil.   

 

The ESP of a soil describes the level of exchangeable Na in the soil relative to the other 

exchangeable cations present. The sodium adsorption ratio (SAR) is also frequently 

used to describe the sodicity level of the irrigation water or soil solution, reflecting the 

balance between Na+ and Ca2+ and Mg2+, where: 

 

SAR = [Na+]/0.5 [Ca2+ + Mg2+]1/2   Equation 2.2 

 

and Na+, Ca2+ and Mg2+ are in meq/L 

 

In general, sodicity has received comparatively less attention than issues associated with 

salinity, as it is not as closely linked to anthropogenic activities.  

 

The deleterious effects of increasing salinity and sodicity on soil physical and chemical 

properties and the processes involved have been extensively studied and reviewed (eg. 

Levy 2000; Levy et al. 1998; Qadir and Schubert 2002; Rengasamy and Olsson 1991; 

Rengasamy and Sumner 1998), as have the remediation measures available for the 

amelioration of saline and sodic soils (eg. Keren 1996).  

 

2.2.1 Saline Landscapes and Salinisation 

While Australian soils are naturally saline (Hubble et al. 1983), anthropogenically-

induced salinity occurs in dryland and irrigated agricultural areas of Australia. Prior to 

salinisation, salt stores generally occurred below the major rooting zones of native 

vegetation, and were largely immobile before land clearing (Hatton et al. 2003). It is 

currently accepted that salinisation of land and water has occurred due to the extensive 

clearing of native perennial vegetation for annual crops and pastures. Following clearing, 

the recharge rate of groundwaters can increase by up to 20 times the rates prior to 

clearing, causing new aquifers to develop in the unsaturated zone, which allows salt 

stores to be mobilised (Salama et al. 1993a; b). Evapotranspiration is reduced following 
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removal of native vegetation, with an excess amount of water available for runoff and 

recharge. 

 

Landscapes where saline soils occur are characterised by their heterogeneity, with the 

expression of salinity dependent on a number factors including geological structures, 

groundwater hydrology and geomorphic controls. Ephemeral perched aquifers can form 

on top of a clay B horizon in areas where duplex soils occur, allowing water and salts to 

be transferred laterally, possibly to non-saline areas (Peck 1978). Where permeability is 

decreased as a result of the texture change in the profile, water can flow laterally, 

usually in the form of subsurface flow. Discharge occurs in lower lying areas or where a 

break of slope occurs, causing waterlogging (Hatton et al. 2002; McFarlane and George 

1992). Extensive waterlogging can occur particularly where an existing perched aquifer 

responds rapidly to rainfall events (Cox and McFarlane 1995; Eastham et al. 2000). 

Perched aquifers, which may be of lower salinity, can also act as a major recharge 

mechanism for deeper aquifers, which are often highly saline (George and Conacher 

1993). In general, salinity increases along groundwater flow paths from catchment 

divides and areas of recharge, to valley floors and discharge areas (Salama et al. 1999).  

In some areas, such as the Dundas Tableland in Victoria, the clearing of native 

vegetation has not appreciably affected groundwater recharge rates but resulted in an 

increase in duration of seasonal waterlogging of low lying areas due to increased 

subsurface water flows (Dalhous et al. 2000). 

 

Transient salinity occurs extensively in areas dominated by sodic subsoils, and is used 

to describe the temporal and spatial variation of salt accumulation in the root zone not 

influenced by groundwater processes and rising saline water-tables. However, it has 

received little attention compared to dryland salinity (Rengasamy 2002). This process, 

affecting vegetation health, is related to the increase in the concentration of salts in the 

root zone of plants, as water is removed from the soil profile due to evapotranspiration, 

causing an increase in the soluble salts. As a result, salinity fluctuates with depth and 

changes in concentration, and affects plant growth according to seasonality and rainfall 

(Rengasamy et al. 2003). In general, duplex soils and those soils with a sodic subsoil 

have a high potential for transient salinity.  
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Where the regolith and groundwater hydrology have been significantly altered as a 

result of clearing of vegetation, large salt stores have the potential to be mobilised, 

accentuating the salinisation of soil and water. The distribution of paleodrainage 

systems, or relict channels can play a role in subsurface water flow and mobilisation of 

salts as these channels contain higher levels of salts than the surrounding landscape. 

Relict channels usually occur along or within the existing drainage network, and are 

usually reactivated following the clearing of native vegetation, which subsequently 

causes drainage to develop in topographic lows where these channels exist (Salama et al. 

1993a).  Salinity levels in relict channels can be higher than in aquifers, with salinity 

increasing in the direction of flow (McFarlane and Williamson 2002). Where flow along 

relict channels is impeded by geological structures such as dykes, veins and basement 

highs, these barriers cause groundwater upstream from the barrier to increase in height, 

resulting in salt mobilisation. Precipitation of minerals can occur in areas of 

groundwater discharge or where the water table is rising, as the mineralised porewater at 

or near the ground surface continually evaporates. Salt fluxes are generally greatest in 

these areas which are, thus, the most active sites of soil salinisation (Salama et al. 1999). 

 

Salinisation of landscapes is also characterised by the time lag between time of clearing, 

increased recharge, and the expression of salinity caused by increased water table levels. 

The time lag between clearing and the development of salinity is dependent on certain 

characteristics within a catchment, such as the thickness of the unsaturated zone, the 

location of the recharge area in relation to discharge areas and the distance between 

them, local geomorphology and the presence of fractured bedrock. The response times 

following clearing of vegetation are largely related to the groundwater flow systems that 

exist at a catchment scale. For example, a study by Allison et al. (1990) concluded that 

salinity will continue to increase over the next 200 years in the Western Murrray Basin 

despite the region having largely been cleared for more than 40 years, due to the slow 

response of a large regional groundwater flow system. In contrast, faster response times 

have been identified in intermediate and local groundwater flow systems. For example, 

in the Cuballing catchment in Western Australia (WA), new unconfined and semi-

confined aquifer systems were formed following clearing with the first signs of salinity 

noticed 20 years after clearing (Salama et al. 1993b). 
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Much conjecture surrounds the origins of salts in Australia, which are dominated by 

sodium chloride (NaCl). Sources have been attributed to cyclic salts deposited from 

rainwater over time periods of millenia (Bettenay et al. 1964; Herczeg et al. 2001), 

connate salts from marine sediments (Salama et al. 1999), atmospheric accessions of a 

terrestrial origin (Acworth et al. 1997; Acworth and Jankowski 2001), and mineral 

weathering (Gunn and Richardson 1979). Atmospheric accessions can be of oceanic or 

terrestrial origin, with the influence of oceanic salts on salt composition in rainwater 

decreasing with increasing distance from the coast, until terrestrial sources dominate 

(Hingston and Gailitis 1976). Within New South Wales (NSW), the occurrence of 

dryland salinity usually coincides with a number of broadscale land features, including 

the presence of Ordovician age metasediments with yellow and red texture contrast soils, 

native vegetation clearance from high parts in the catchment in grazing lands, and 

rolling hill and tableland country (Bradd et al. 1997). However, there also appears to be 

a direct positive correlation between winter dominant rainfall and the large number of 

dryland salinity sites, as high evaporation in the summer reduces potential for 

groundwater recharge in summer-dominant rainfall areas (Bradd et al. 1997). 

 

Whilst dryland salinity has received more attention in salinity related research (eg. 

NLWRA 2001), effects related to irrigation salinity are more concentrated but less 

widespread in terms of areal extent. Increased recharge occurs following clearing in 

conjunction with recharge from the applied water. The use of saline and saline-sodic 

water of marginal quality for irrigation has greatly increased in recent years due to an 

increasing shortage of high quality water resources. Water used for irrigation can 

include groundwater, drainage water or treated wastewater. The chemical composition 

of irrigation water has the potential to affect the concentration of soluble salts in the soil 

solution due to precipitation or dissolution. Under irrigation, soil solution chemistry 

changes according to irrigation cycles, altering pH, redox potential and availability of 

ions for plant growth (Boivin et al. 2002). Salts can subsequently accumulate where the 

irrigation water used is saline (Gardner 2004), with the movement of salts occurring 

vertically and laterally. Salt movement is further complicated by water application 

patterns and crop rotation (Herrero and Perez-Coveta 2005). In the shorter term, it has 

been found that no discernible difference in pasture production can be observed when 

using saline irrigation water but in the longer term, soils can become moderately to 

highly saline and sodic, resulting in a significant reduction in pasture production and 
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quality (Rogers 2002). The reuse of saline-sodic groundwater for irrigation leads to 

accumulation of Na in the soil profile, and can result in the formation of sodic soils, 

particularly where water-tables are shallow and leaching restricted (Bethune and Batey 

2002); this is described in more detail in section 2.2.2.  

 

2.2.2 Sodic Soils: Processes and Properties 

A considerable proportion of soils under agriculture within Australia suffer from 

constraints related to sodic subsoils, as described in Section 2.1. Sodic soils generally 

have poor physical properties, affecting water infiltration and permeability. These soils 

can develop naturally from saline soils, with their development related to the underlying 

parent material, climatic change, or as a result of human activities, such as the leaching 

of salts from a saline soil, as shown in Figure 2.1 and described in more detail in 

Chartres (1993). Briefly, salts in Australian soils are dominated by Na salts. The 

formation of a sodic soil from an initial saline soil has the potential to occur under 

irrigation or changing climatic conditions. Soluble salts are leached out of the upper 

layers of the soil profile, with clays translocated into the B horizon. Upon further 

leaching, high levels of exchangeable Na results, with low concentrations of soluble 

salts remaining in the soil profile. While effects due to salinity are largely related to 

altered soil chemical properties and osmotic potential affecting plant growth, effects 

related to sodicity are mainly due to influences on soil physical properties.  

 

The sodicity of a soil is characterised by its ESP or SAR, previously described by 

Equations 2.1 and 2.2, respectively. However, the behaviour of a sodic soil is largely 

linked to both the level of sodicity and the electrolyte content of the soil solution or the 

applied water. Where the applied water has a low electrolyte concentration, physical 

effects include increased swelling and dispersion, and reductions in hydraulic 

conductivity and infiltration rates (Rengasamy et al. 1984). Slaking occurs upon wetting, 

causing larger aggregates to break into smaller aggregates as a result of swelling and air 

entrapment. On further wetting, dispersion occurs, causing clay particles to diffuse out 

of the aggregates. Spontaneous dispersion can occur when the EC of the applied water 

is low and the soil is highly sodic, as bridging between clay particles is dominated by 

Na. The uptake of water by Na+ causes the interparticle distance to continuously 

increase and the individual clay particles to disperse (Rengasamy and Sumner 1998). 
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Where the applied water has a high electrolyte concentration, swelling and dispersion 

are limited, while hydraulic conductivity and infiltration rates are maintained. This is 

due the maintenance of soil structure, as the high electrolyte concentration of the soil 

solution results in flocculation, described in more detail below  

 

 
Figure 2.1  Formation of a sodic soil (b) from an initial saline soil (a) 
 

The effects of sodicity can influence soil physical properties at a range of scales. 

Increased swelling and dispersion with increasing ESP also causes reductions in 

hydraulic conductivity, as disruption of aggregates causes larger pores to be blocked, 

decreasing water movement through the soil (So and Aylmore 1993). The reduction in 

hydraulic conductivity with increasing ESP is primarily due to the increased dispersion 

as a result of Na+ ions, which reduces the proportion of transmission pores and increases 

the proportion of narrow pores, which are more susceptible to clay swelling.  

 

The infiltration rate of a soil during rainfall is more sensitive to low ESP than to its 

hydraulic conductivity. This is due to its susceptibility to the mechanical energy of 

falling raindrops, in addition to the chemical effects of low electrolyte concentration of 

the applied water. Raindrop impact causes mechanical breakdown of aggregates at the 

a) 

b) 
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soil surface and, in conjunction with the relative freedom of particle movement at the 

surface, enhances the rate of chemical dispersion by stirring and compaction of a thin 

layer at the surface (Shainberg 1985; Shainberg and Letey 1984). The sealing of the 

surface is determined by aggregate breakdown, clay content and dispersion, with 

dispersion dependent on the ESP of the soil, while aggregate breakdown due to slaking 

is related to the rate of wetting of aggregates (Mamedov et al. 2001). In extreme cases, 

soils will form a massive structure when Na is involved in the association between clay 

particles, without any hierarchical arrangement between micro- and macroaggregates, 

becoming hardsetting when dry (Qadir and Schubert 2002). Removal of vegetation 

initially has the potential to enhance these processes due to the increased susceptibility 

to erosion by promoting the formation of stable colloid suspensions (Sumner et al. 

1998). 

 

Strong texture contrast duplex soils with highly impervious B horizons, the upper 

portion of which may be formed by the dispersed clay, can constrain water movement in 

the soil. Restricted water movement at the top of the impervious B horizon leads to 

waterlogging, erosion, by tunnelling, and lateral movement of subsurface water 

(Sumner et al. 1998). However, if soils shrink and swell, restructuring of the soil 

surface will constantly occur. In addition, pedoturbation brings subsurface clay to the 

surface such that the strong texture contrast common to non-swelling sodic soils is 

diminished (Shaw et al. 1998). Problems can arise during amelioration of these soils, 

since the ESP is readily reduced in the topsoil, but is more difficult to remove in the 

subsoil and may even increase (Surapaneni and Olsson 2002). Dispersion, erosion and 

eluviation of clay may lead to coarser textured A horizons which are less capable of 

retaining organic matter over time (Nelson and Oades 1998). These soils exhibit lower 

levels of C due to strong correlations between SOM and clay content of the soils, as 

SOM usually increases with increasing clay content. 

 

Sodic behaviour can still be exhibited in soils at very low ESP levels, occurring where 

the electrolyte concentration is below the critical flocculation concentration (CFC), as 

shown in Figure 2.2. The concept of the CFC was introduced by Quirk and Schofield 

(1955), and is defined as the concentration of electrolyte required to develop a clear 

supernatant for a dispersed soil or clay suspension. As the ESP increases, the electrolyte 

concentration required for soil to remain flocculated, thereby maintaining soil structure 
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and permeability, also increases (Figure 2.2). As a result, permeability can be 

maintained through the application of water at the appropriate electrolyte level, 

depending on the degree of Na+ saturation. While the extent of dispersion is due to high 

levels of Na+ in a soil, complementary divalent cations, particularly Ca2+, have the 

potential to promote flocculation (Keren 1996). The effects of dispersion and slaking in 

a saline soil on soil structure are minimal, due to the over-riding high electrolyte 

concentration of the soil solution, which causes the soil to flocculate rather than 

disperse. The high osmotic potential present in saline soils causes dehydration of the 

clay-water system, thus reducing the distance of separation between particles (Qadir and 

Schubert 2002), and results in the formation of stable clay-soil aggregates.  

 

 
Figure 2.2  The relationship between ESP/EC and flocculated/dispersed soils  
Source:   Rengasamy et al. (1984) 
Note:  CFC is the critical flocculation concentration 
 

Large influxes of water result in waterlogging in sodic soils due to poor internal 

drainage. Waterlogging of sodic areas results in anoxic conditions in the root zone 

which affect plant growth, while rapid drying of the surface and formation of surface 

crusts impacts upon root growth and seedling emergence. The dispersive nature of these 

soils also increases their susceptibility to mechanical stresses which further impact on 
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land management practices such as cultivation or tillage, as the development of 

compacted layers may occur with increased vehicular traffic (Rengasamy et al. 1984). 

This is particularly evident where soils lack structure. In these soils, the compaction of 

surface particles is the dominant process in seal formation, complemented by clay 

dispersion and clay accumulation in the conducting pores, rather than aggregate slaking 

and disintegration (Mamedov et al. 2001).  

 

2.2.3 Effects on Vegetation 

Soil C stocks in any particular area are a function of the C inputs, which are dominated 

by litterfall, root exudates and fine root decomposition, and are, therefore, dependent on 

biomass production, and outputs, which are dominated by microbial decomposition 

processes, leaching and erosion. As a result, declines in biomass production due to soil 

degradation will directly influence SOC levels. The effects of salinity and sodicity on 

plant physiology and physiological processes have been studied and reviewed 

extensively (eg. Akilan et al. 1997; Allen et al. 1994; Clemens et al. 1983; Craig et al. 

1990), and will, therefore, not be covered in this review. Osmotic effects dominate in 

saline and saline-sodic soils, while declining soil structure dominates in sodic soils, 

adversely affecting nutrient and water supply. The adverse soil physical and chemical 

environment can affect plant growth directly, as shown in Figure 2.3, such as through 

specific ion and elemental toxicities (eg. Na+, BO3
- and Cl-). The composition and 

concentration of salts in the soil solution adversely influence plant growth through 

osmotic effects by limiting water availability and the plant’s ability to absorb water 

from the soil solution (Keren 2000). Increasing salt concentration increases the osmotic 

potential of soil water, resulting in plant cell dehydration and ultimately death. Indirect 

effects include decreased infiltration, especially in highly sodic soils, which affects the 

amount of water available for plants. Salinity and sodicity also induces Fe, Mn, Ca, Zn 

and Cu deficiencies, and B, Na and Cl toxicities (Naidu et al. 1992). 

 

Salt and sodium stressed plants are further susceptible to high osmotic pressures, 

specific ion toxicities and nutritional disorders compounded by the poor physical 

properties of sodic soils. Root growth is also limited by suboptimal environmental 

conditions related to soil structure and toxic levels of Na+. These factors directly limit 

plant growth through poor seedling emergence and root growth, and indirectly limit 
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plant nutrition by restricting water and nutrient uptake and gaseous exchange (Qadir and 

Schubert 2002). These limitations frequently occur where the B horizon has a high bulk 

density causing roots to concentrate in the surface horizons of the soil profile, thus 

increasing susceptibility of vegetation to stress during extended periods of drought 

(Curtin and Naidu 1998). High salinity levels in the seedbed also delay seed 

germination and increase stress during seedling establishment (Bell 1999; Oster et al. 

1996). 

 

 
Figure 2.3  Nutrient constraints in sodic and saline-sodic soils  
Source:  Naidu and Rengasamy (1993) 
 

Most Australian plant species are intolerant of both soil salinity and waterlogging, with 

the River Red Gum (Eucalyptus camaldulensis) being a notable exception (Akilan et al. 

1997). Saline and sodic soils are subjected to prolonged waterlogging during rainfall 

events and rapid drying soon after. Waterlogging can reduce the ability of roots to 

exclude salt through increased passive diffusion of ions (Cramer and Hobbs 2002). 

Adequate soil water content is often difficult to maintain in areas affected by sodicity 

due to waterlogging at the surface, while the formation of surface crusts decreases 

infiltration, causing dry subsoils, and thus affects plant establishment (Oster et al. 1996). 

Seed germination is directly affected by waterlogging, due to the lack of oxygen 
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required for seed respiration, with extended periods of inundation resulting in failed 

germination (So and Aylmore 1993).  

 

Decomposition processes in waterlogged soils alter the delivery and nature of nutrients. 

Waterlogging generally causes the pH to change due to changes in the partial pressure 

of CO2, and creates anaerobic conditions whereby oxidation of organic matter decreases 

and results in its accumulation. Under theses conditions, atmospheric gases such as O2 

can only enter the soil by diffusion in the interstitial water (Ponnamperuma 1972). Low 

oxygen content is common where soils frequently waterlog, and can lead to chemical 

transformations of major nutrient ions (Fe, N, and S), rendering them unavailable to 

plants (Naidu and Rengasamy 1993). Redox potentials are, therefore, altered in 

waterlogged conditions while nutritional constraints are common due to altered ionic 

transformations. In waterlogged soils, organic matter breakdown is usually slower 

resulting in accumulation of SOM, and generates different end products compared to 

well-drained soils. In waterlogged soils, the breakdown processes produce partially 

humified residues, amines, NH3, CH4, H2 and H2S, in contrast to CO2, NO3, SO4 and 

humus produced in non-waterlogged soils (Ponnamperuma 1972). N uptake is also 

restricted in waterlogged areas due to denitrification (Qadir and Schubert 2002), while 

NH3 volatilization and inhibition of NO3
- uptake by Cl- also play a role in decreased N 

uptake (Gupta and Abrol 1990). 

 

As a result of extensive weathering and lack of glaciation, many Australian soils are 

inherently infertile and deficient in many elements required for plant growth (Hubble et 

al. 1983), with salinity and sodicity interactions acting to further enhance deficiencies. 

The primary limiting nutrient in sodic soils is Ca2+ due to the high concentration of Na+ 

in the soil solution. Ca2+ is also a limiting factor in terms of soil structural stability and 

plant uptake. Excess Na+ in the soil solution causes enhanced uptake of Na+ by plants, 

while uptake of Ca2+ is restricted, resulting in Na toxicity and concurrent deficiency in 

Ca2+. This situation is compounded by the enhanced toxicities of other macro- and 

micronutrients, such as Zn, Mg and B (Curtin and Naidu 1998; Naidu and Rengasamy 

1993). The majority of sodic soils in Australia have dense subsoils and an alkaline pH 

(Rengasamy and Olsson 1991), with micronutrient deficiencies exacerbated as a result. 

When the soil pH increases above 9, B toxicity becomes apparent due to the increasing 

concentration of B(OH)4
-. This leads to a marked increase in B adsorption, which 
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accumulates where there is a low degree of leaching (Qadir and Schubert 2002). The 

toxicity of carbonate and bicarbonate, combined with a high pH can also lead to 

defiencies in Fe, Mn, Cu, Zn and P (Rengasamy 2002).  

 

2.2.4 Increasing Carbon Stocks During Rehabilitation of Saline and Sodic Areas 

The symptoms of sodicity are commonly ameliorated using one of two methods, both of 

which result in decreased dispersion and enhanced soil structure and improved 

infiltration and permeability: i) addition of Ca2+ salts as gypsum (CaSO4.2H2O), which 

facilitates the replacement of exchangeable Na+ by Ca2+ by balancing the surface charge 

of the clay and restricting the development of the diffuse double layer; or ii) increasing 

the electrolyte level of the soil-water which causes compression to the diffuse double 

layer, thus preventing dispersion (Quirk 2001). Chemical dispersion is decreased when 

the electrolyte concentration of the soil solution is greater than the CFC. Gypsum is the 

most commonly used amendment to improve low water infiltration caused by low 

electrolyte content and/or high sodicity, while providing a source of Ca2+. Other 

common amendments include lime (CaCO3) and CaCl2, as well as materials that 

enhance conversion of CaCO3 to the more soluble CaSO4. Elemental sulfur, and iron- 

and aluminium sulfates are also used and have potential for soil amendment. 

Dissolution is maximised with smaller gypsum particle sizes (Gupta and Abrol 1990). 

The addition of gypsum to soils with pH values greater than 9 causes precipitation of 

HCO3
- and CO3

2- complexes in association with Ca and Mg, lowering the pH to around 

8.5. Similarly, application of gypsum to neutral sodic soils generally causes the soil pH 

to decrease by 0.5 to 1 unit  (Rengasamy and Olsson 1991) by compressing the double 

layer and releasing protons.  

 

The addition of organic matter in conjunction with gypsum has been successful in 

reducing adverse soil properties associated with sodic soils. Vance et al. (1998) found 

that addition of organic matter and gypsum to the surface soil decreased spontaneous 

dispersion and EC down to the subsoil, compared to the addition of gypsum alone. 

However, while soil strength decreased at the surface with additions of organic matter 

and gypsum, subsoil strength was not decreased, indicating that root growth was still 

restricted. Similarly, Chorom and Rengasamy (1997) found the application of green 

manure reduced soil pH in an alkaline sodic soil as a result of the decomposition of the 
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manure. Decomposition of the added manure caused an increase in the partial pressure 

of CO2 which increased the solubility of CaCO3. Where green manure was added in 

conjunction with gypsum, decomposition was enhanced, accelerating changes in soil 

solution composition. 

 

Sodic soils are characterised by poor soil-water relations, which need to be considered 

during remediation processes. Whilst the addition of gypsum ameliorates soil chemical 

properties, tillage or deep ripping of clay layers is required to improve soil physical and 

hydraulic properties, and soil aeration. However, aggregate instability and recompaction 

due to increased trafficking can cause the ameliorative effects to be lost. The advantages 

of deep ripping are maximised when used in conjunction with gypsum incorporation, 

which maintains soil electrolyte levels at depth in the soil profile to prevent dispersion 

(Jayawardane and Chan 1994). As a result, rapid water redistribution to greater depths 

can occur compared to a soil that has not been ripped.   

 

Where calcareous soils exist, or where sodic soils contain minerals that readily release 

soluble electrolytes, reclamation can be undertaken by leaching without additional 

amendments due to high electrolyte concentrations already present in the soil solution 

(Levy et al. 1998; Oster and Jayawardane 1998), provided drainage through the soil 

profile is sufficient. The presence of fine CaCO3 particles in soils can improve the 

physical condition of sodic soils, stabilise soil aggregates and prevent clay dispersion by 

maintaining the soil solution at concentrations above the CFC values of soil clays (Levy 

et al. 1998), in addition to providing a source of Ca2+.  

 

Large increases in hydraulic conductivity of sodic soils can occur with the use of 

hypersaline irrigation water (EC > 20 dS/m) without the need for tillage or cropping in 

the remediation of a sodic soil. This technique involves successive dilution of saline 

irrigation water containing divalent cations, and can be applied when the soil’s physical 

conditions has deteriorated and its hydraulic conductivity is low enough such that 

excessive time and/or amendment is required for reclamation (Keren 1996; 2000). The 

high salinity of the applied water prevents clay from dispersing by promoting 

flocculation, while providing a source of Ca2+ for the replacement of exchangeable Na+, 

thereby decreasing sodicity (Keren 2000).  
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The use of gypsum in combination with other treatments has been found to improve 

overall soil properties to a greater extent than the use of gypsum on its own. For 

example, where lime and gypsum were combined in the amelioration of a sodic red-

brown earth (pH <6.5), Valzano et al. (2001b) found higher levels of plant growth 

coupled with significant increases in total C in the soil over a period of three years. It 

was found that whilst gypsum was more effective than lime in displacing exchangeable 

and soluble Na, a combination of the two was more efficient at maintaining soil 

electrolyte levels and improving soil physical and hydraulic properties. This was due to 

the different solubilities of the two amendments, as gypsum could provide Ca2+ during 

the early stages of remediation due to its higher solubility, enhancing soil physical 

properties to allow greater throughflow of water into the soil, which would, in turn, 

allow for greater dissolution of lime in the later stages. Similarly, when gypsum was 

used as an ameliorant in conjunction with stubble retention and appropriate crop 

rotations, Valzano et al. (2001a) found interactions between all treatments which aided 

the improvement of soil properties. Gypsum addition decreased soluble and 

exchangeable Na+ concentrations, improving structural stability and hence, improved 

soil water relations. This results in higher crop yields, which build up SOC levels, 

thereby further improving soil structure. When stubble is burnt, macroporosity is 

reduced due to lower levels of biological activity and a reduction of throughflow of 

chemical amendment. The retention of stubble provides surface protection and prevents 

crust formation due to protection from raindrop impact. This improves infiltration while 

the use of leguminous crops may facilitate the leaching of gypsum through the soil 

profile, remediating soil properties at depth.  

 

Rehabilitation of saline areas has largely been focused on three approaches: i) 

controlling recharge areas by revegetation; ii) controlling discharge areas by 

revegetation and stock exclusion, or iii) managing saline land and water by either 

fencing the area and removing it from production or the construction of drains, or a 

combination of both. In general, rehabilitation of saline areas focuses on controlling or 

minimising rising water tables in either recharge areas or discharge areas. 

Recommendations for salinity management usually rely on revegetation to control 

surface and subsurface flows. This includes placing deep rooted perennial vegetation to 

intercept surface and shallow groundwater before it interacts with deeper saline aquifers, 

thus intercepting recharge prior to where saline discharge areas occur (Hatton et al. 
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2003). Alternatively, placing vegetation in discharge areas may reduce the incidence of 

seepage, provided the planted vegetation is able to tolerate waterlogging. Planting of 

trees can induce substantial horizontal movement, in addition to vertical movement of 

water within the root zone, taking into account factors such as spatial distribution and 

tree density (Stirzaker et al. 1999).  

 

Engineering options usually intercept saline groundwater flows, either diverting water 

flow or disposing of it at high river flows or to evaporation basins, with groundwater 

pumping and deep open groundwater drains often used as a last resort (Hatton et al. 

2003). Reclamation of saline areas can occur through leaching of soluble salts out of the 

soil profile. Where good drainage conditions exist, saline soils can be reclaimed with 

continuous ponding, intermittent ponding or sprinkler irrigation (Harker and Mikalson 

1990). However, if saline soils are also sodic, the use of high quality water may result in 

structural breakdown (David and Dimitrios 2002). Where sodicity is not at a critical 

level, leaching may reduce salinity in addition to causing reductions in sodicity. 

Leaching is preferable prior to revegetation in some instances to translocate the salt to 

below the root zone of plants to allow for the establishment of new vegetation, as the 

amount of salt removed by crop and pasture species is usually insignificant (Oster et al. 

1996).  

 

A large number of Australian tree species are able to control salinity by transpiring 

water from throughout the soil profile, with relationships found between increasing tree 

coverage in catchments and decreasing watertable levels (Bell 1999). One study has 

shown that while decreased growth of trees occurred in areas affected by salinity, access 

to fresh shallow groundwater led to increased growth rates compared to areas with no 

access to fresh groundwater (Feikama and Morris 2004). However, if the shallow 

groundwater was saline, growth was decreased. The ability to access fresh shallow 

groundwater is particularly advantageous as crop and pasture species are generally 

intolerant of waterlogging and salinity, which commonly occur in the lower positions in 

the landscape. Some perennial plants that are salt-tolerant and use saline groundwater 

have the potential to accumulate salts in their root zone due to salt exclusion processes. 

The accumulation of salt may result in the decline or death of nearby vegetation 

intolerant to salt (Barrett-Lennard 2002).  
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It is not economically viable to revegetate large areas with trees where average annual 

rainfall is less than 600 mm (Turner and Ward 2002), however, it is possible to lower 

groundwater tables through revegetation with perennial pastures. However, perennial 

pasture is unlikely to stop drainage below the root zone where average annual rainfall 

exceeds this amount (Ridley et al. 1997). In regions where rainfall is less than 600 

mm/yr, perennial pasture species can decrease drainage compared to annual pasture or 

cropping, while rotations of perennial pasture with annual crops or pastures can provide 

a similar effect (Clarke et al. 2002). For example, lucerne (Medicago sativa) can extract 

water from deeper layers in the soil profile and has been shown to reduce potential 

groundwater recharge by up to 60 % annually compared to annual pasture (Ward et al. 

2002).  

 

Revegetation of sodic areas with trees or crops has also facilitated soil reclamation in 

the past where the vegetation could tolerate adverse soil conditions. The use of 

leguminous trees in India has been shown to reduce exchangeable Na+ at depth as well 

as in the surface layers, decrease pH, and increase the soil microbial biomass (SMB) 

(Bhojvaid and Timmer 1998; Mishra and Sharma 2003). Ameliorative effects have been 

attributed to improved aggregation of soil particles which results in improved soil 

structure, and the production of CO2 from plant roots.  The increased CO2 dissolves in 

the soil solution and lowers pH. In calcareous soils, the lower pH facilitates the 

dissolution of CaCO3, releasing Ca2+ which displaces exchangeable Na+  and results in a 

decrease in the ESP (Mishra and Sharma 2003; Figure 2.4), which aids in 

transformation of carbonates to forms available for exchange on clay particles (Lal and 

Kimble 2000a; Qadir et al. 2003). In northern Egypt, Ghaly (2002) found both ponding 

and gypsum were less effective in reducing salt content in comparison to the use of 

native grass species after the second year. This was attributed to increased salt uptake, 

as evidenced by increased sodium in the grass shoots, with the fine textured clay soil 

reclaimed within two years. 

 

The presence of roots promotes aggregate stability through the in situ production of 

polysaccharides and fungal hyphae (Tisdall and Oades 1982). Decreased bulk density 

associated with tree root penetration can occur up to a metre in depth (Garg 1999), 

effectively improving hydraulic conductivity and soil structure. The physical effects of 

root actions which include the generation of alternate wetting and drying cycles, the 



Chapter 2: Literature review 

 

Salinity, sodicity and soil carbon 24

creation of macropores, and removal of entrapped air from the larger conducting pores 

enable reclamation of soils while providing financial and other benefits from crops 

grown during the rehabilitation process (Oster and Jayawardane 1998; Oster et al. 1996). 

Similarly, the presence of root channels in conjunction with gypsum aids in increased 

leaching of Na+ and soluble salts (Ilyas et al. 1997), while Qadir et al. (1996) found that 

the presence of roots as a result of cropping decreased the SAR and removed Na+ 

almost to the same extent as gypsum addition. Conversely, where soils are high in Ca2+ 

and Mg2+, increased vegetation growth may cause the SAR to rise. Increasing root and 

microbial respiration in the soil may cause subsoils to become increasingly sodic as 

Ca2+ and Mg2+ are precipitated as CaCO3 and MgCO3 with increasing respiration, 

resulting in an increase in SAR (Gardner 2004). 

 

 
Figure 2.4  Processes involved in Na removal from sodic soils by vegetation  
Source:  Qadir et al. (2003) 
 

Therefore, the restoration process by trees is primarily driven by two parallel 

mechanisms: the fertility building processes associated with organic matter addition, N 
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accretion and nutrient cycling; and alleviation processes driven by improved leaching 

which reduces soil dispersion and decreases Na toxicity (Bhojvaid and Timmer 1998). 

Higher microbial populations found in soils near the base of trees have been ascribed to 

accumulation of organic matter, stimulating microbial activity (Garg 1998) thus 

improving nutrient cycling and decomposition.  

 

2.3 Soil Carbon Dynamics 

Soil is the largest terrestrial C sink, and contains two thirds of the world’s terrestrial C 

(Schimel et al. 1994), with approximately 1500 Gt of organic C in the top metre 

(Eswaran et al. 1993). The SOC pool contains twice as much C as the atmospheric pool, 

and three times as much as the terrestrial biotic pool (Lal 2003) and is, therefore, an 

important C store, with the potential to be a large C source under altered environmental 

conditions. The factors that influence soil C inventories closely follow that of soil 

formation, exhibiting gradients with climate, topography, vegetation, depth, which are 

then influenced by the management regime. The rate of net organic C accumulation or 

loss is a function of inputs and outputs according to the following mass balance 

equation: 

 

d(soil C)/dt = Inputs (decomposition products + microbial/faunal residues) – Losses 

(heterotrophic respiration + leaching + erosion + burning)   Equation 2.3 

 

The decomposition of photosynthetic products is dependent on the productivity of the 

standing biomass and the quality of the substrate being decomposed, while losses are 

due to heterotrophic respiration by the microbial biomass, leaching and erosion. The 

amount of C in the soil at any particular time is dominated by inputs from vegetation in 

the form of leaf litter, fine root turnover and root exudates. As a result, C gradients 

largely follow that of plant biomass production, with soil C increasing with increasing 

precipitation (Burke et al. 1989) and decreasing temperature (Post et al. 1982) due to 

increasing biomass production and decreasing decomposition rates. 

 

SOC can be partitioned into discrete pools according to its age or the amount of time it 

takes to turnover, as shown in Figure 2.5 (Jenkinson and Raynor 1977). Mean residence 

times are dependent on resistance to decay and the extent of protection against 
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decomposition. The three main SOC pools are: i) the active pool, with a turnover time 

in the order of weeks (ie. the SMB and particulate organic carbon; POC); ii) the slow 

pool with a turnover time in the order of decades (ie. humus); and iii) the passive pool 

with a turnover time in the order of millennia (ie. charcoal). The active pool is made up 

of readily oxidisable materials including the microbial biomass and its metabolites, and 

is largely controlled by climate and residue inputs (Schnurer et al. 1985). The slow 

and/or very slow pools contain macro- and microaggregates with chemically recalcitrant 

but moderately decomposable material, while the passive or recalcitrant pool includes 

recalcitrant and stable C formed from the turnover of microbial and slow SOC; this pool 

has organic compounds that are chemically resistant to, or protected from further 

microbial degradation (Schimel et al. 1994). Most C found in detritus and microbes is 

oxidised and cycled rapidly. Some is transformed into a slow reservoir with a turnover 

time on the order of decades to centuries, most of which will eventually oxidise. The 

remainder is converted to the passive pool with turnover rates on a millennial timescale 

(Stallard 1998).  

 

 
Figure 2.5 Conceptual model of soil C pools and turnover  
Source:   Jenkinson and Raynor (1977) 
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It is generally accepted that increasing levels of organic matter content in soils will improve 

soil structure, with organic matter having different roles at different scales and components 

(Figure 2.6). Whilst only present when plants are growing, plant roots, mycorrhizal hyphae 

and fungal hyphae at larger scales enmesh macroaggregates, inhibiting slaking and 

dispersion. At smaller scales, mucilages and colloidal organominerals are the primary 

binding agents in microaggregates (Table 2.2; Nelson and Oades 1998). The incorporation 

of organic matter into soil aggregates provides protection from rapid decomposition and is 

one of the key determinants of soil stability. Clay minerals can adsorb large organic 

molecules (Gregorich and Janzen 2000), which can provide physical protection, and hence, 

directly reduce their availability for decomposition. This was evident in aggregates with 

cores of organic material found by Waters and Oades (1991). 

 
Figure 2.6 The role of organic matter in improving soil structure at different 
scales  
Source:   Tisdall and Oades (1982)  
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Table 2.2 The role of organic matter in the formation of aggregates  
Type of 
SOM 

Agents Involved Description 

Transient Polysaccharides Associated with large (>250 µm) transiently 
stable aggregates 
 
Polysaccharides decrease in importance 
with increasing organic matter contents. 
Decomposed rapidly by microorganisms.  

Temporary Roots  
 
 
Hyphae 
 

Associated with the growth of root systems 
and fungal hyphae 
 
Most likely associated with young 
macroaggregates. 
 

Persistent Polyvalent metal cations 
 
Organomineral associations 
 
 
 
Strongly sorbed polymers 
 
 
Degraded humic material 

Dominate in microaggregates 
 
Particles of clay sorbed on to organic matter 
core, rather than organic matter sorbed on to 
clay surfaces 
 
Most likely includes complexes of clay-
polyvalent metal-organic matter 
 
Degraded aromatic humic material 
associated with amorphous iron, aluminium 
and aluminosilicates to form the large 
organomineral fraction of soil. 
  

Source:  Tisdall and Oades (1982); Gabriels and Michiels (1991) 
 

SOC can become more stable by becoming biochemically recalcitrant or physically 

protected. C can also be precipitated out by Ca2+, Mg2+ and Fe3+ as carbonate and 

rendered unavailable for microbial decomposition. Recalcitrant C or chemically 

protected C is often composed of residue decomposition products, which are 

considerably modified to form humic and fulvic acids, and humin. Material which 

exhibits large C:N ratios such as lignin and other resistant residues of plant origin 

(Rovira and Vallejo 2003) are often recalcitrant and difficult to decompose. Physically 

protected organic C can be located in pores too small for the microbial population to 

access or form into microaggregates, while the activity of those bacteria that are 

physically protected can also be limited with restricted flow of water and substrates 

(Hassink 1994). As clay content increases, mineralisation generally decreases, with 

textural effects either compounded or reduced by a range of factors including clay 

mineralogy, SOM chemistry and microbial composition (Wang et al. 2003). These 

effects, however, can also be influenced by management regimes. 
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Soil texture appears to exert the main control on soil C inventories, rather than climate 

or vegetation, with the retention of SOC proportional to clay mineral content (Bird et al. 

2002). Ladd et al. (1985) found more extensive decomposition in coarse-textured soil 

compared to fine-textured soils with higher levels of SOM in similar climatic zones. 

Those fine-textured soils showed stabilisation of microbial products from 

decomposition. The role of clays is largely a result of the reactive surface area on clay 

particles which stabilise SOC in organomineral complexes. In addition, clay particles 

tend to form aggregates that physically protect SOC from decomposition (Schimel et al. 

1994). The higher SOC content in fine-textured soils compared to coarse textured soils 

is due to differences in C input and long term decomposition dynamics, as fine textured 

soils tend to be more fertile than coarser textured soils (Franzluebbers et al. 1996a). 

 

Clay content influences biological activity and C mineralisation to a greater extent than 

the level of sodicity by directly influencing interactions of substrate and organisms with 

clay mineral surfaces, with clay mineralogy exerting primary influence on microbial 

processes (Nelson et al. 1997). Killham (1994) has suggested that this may be due 

primarily to the bacterial portion of the microbial biomass adsorbed to clay particles, 

usually by ion bridges involving polyvalent cations. Conversely, SOC in the sand 

fraction is a very labile component of SOM resulting in faster turnover of C and N in 

coarser textured soils compared to finer textured soils, concurrently with faster turnover 

of the microbial biomass C and N (Juma 1993). Due to a larger porosity in sandy soils, 

water content fluctuates more rapidly than in more clayey soils, with periods of 

optimum conditions for microbial activity of shorter duration and occurring less 

frequently (Thomsen et al. 2003). However, when soils of different textures in the same 

study were adjusted to the same water content, mineralisable C was similar, with 

Thomsen et al. (2003) hypothesizing that the actual volume of water determines the 

proportion of total C that is in the potentially mineralisable pool. In coarse-textured 

soils, substrates are more readily available for mineralisation. Franzluebbers et al. 

(1996a) found that soil respiration per unit of microbial biomass was higher in coarse 

textured soils than in fine textured soils. This was attributed to the microbial biomass 

being more active either as a result of increased substrate availability or increased 

microbial predation, or being placed under greater stress due to larger water content 

fluctuations. 
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The dominant clay mineralogy also plays a role in the turnover of SOM, with organic 

matter associated with kaolinite exhibiting an average mean resident time of 357 years, 

while that associated with smectite was 1089 years (Wattel-Koekkoek et al. 2003). It 

was suggested that the faster turnover of kaolinite associated organic matter was due to 

the weak binding of organic matter to the mineral surfaces, such as iron oxides and the 

edges of octahedral sheets. Conversely, the fraction associated with smectitic clays was 

bounded by cation bridges and contained many aromatic compounds which are more 

difficult to decompose. In addition, mostly amorphous organic matter was found 

associated with smectites, indicating an advanced stage of humification and, therefore, 

turnover, while kaolinites were associated with more recognisable plant remains, 

indicating incomplete humification, and hence, faster turnover.  

 

2.3.1 The Active Carbon Pool 

The active pool is comprised of a living component, the SMB, and a non-living 

component, the dead biomass and its metabolic products, which comprise 

approximately 1-5 % of the total SOC (Sparling 1992). The ratio of SMB to total SOC 

can provide an indication as to whether SOM is being accumulated or lost (Anderson 

and Domsch 1989) and reflects the potential to transform organic C input into SOC and 

CO2 (Santruckova et al. 2003). The active soil C pool is frequently used as an early 

indicator of SOM dynamics, due to its faster turnover rate (eg. Alvarez et al. 1998), as 

changes caused by management or environmental stresses can be detected earlier in this 

pool than in the SOM pool as a whole. Despite being a small proportion of the total 

SOC, the SMB is the driving force in any functioning terrestrial ecosystem, controlling 

microbially mediated processes such as the turnover and mineralisation rates of organic 

substrates, humification and nutrient mobilisation (Killham 1994).  

 

Patterns of substrate utilisation and metabolic diversity in the active pool are more 

sensitive to management induced effects than the SOC pool as a whole and hence, 

reflect changes in soil quality earlier than chemical analysis of the SOM. This can be 

particularly important in cases where pasture or crop yields are affected (Franzluebbers 

and Stuedemann 2003). Its use as an early indicator is particularly evident where total 

SOC is low, such as that found in arid or semiarid areas (Garcia et al. 1994). The SMB 

exhibits fluctuations with temperature, moisture, and availability of substrate, which is 

largely dependent on vegetation. The SMB is dependent on both above- and 
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belowground C inputs, with substrate provided in leaf litter and animal dung 

aboveground, and root turnover and exudates belowground (Franzluebbers and 

Stuedemann 2003). As a result, changes to inputs are reflected in the SMB. 

 

Soil respiration, SMB and SOM levels appear to be intricately linked. Levels of 

microbial biomass have been linearly correlated with the level of  SOC (Anderson and 

Gray 1991), while Franzleubbers et al. (2001) found strong correlations with respiration 

rates and SMB across climate regions. Similarly, the SMB and microbial diversity, an 

indicator of functional diversity, is also correlated with total C and N content of soils 

which has been attributed to productivity and fertility of sites, providing favourable 

conditions for microbial growth and activity (Banu et al. 2004).  

 

Soil respiration is frequently used as a measure for microbial activity, and to determine 

whether a microbial population is under stress. As with the SMB, respiration rates are 

dependent on biota, substrate availability and quality, and environmental conditions 

such as O2 availability, temperature and water content. The total respiration rate is the 

sum of heterotrophic respiration (the mineralisation of litter and humus by microbes and 

soil fauna) and autotrophic respiration (live root respiration). The dependence on the 

amount of substrate available for decomposition is reflected in the determination of 

respiration rates at a steady state by the amount of C addition to the soil, which is 

usually proportional to the net primary productivity (NPP;  Kirschbaum 1995).  

 

Root and microbial respiration processes are difficult to separate in situ. Root 

respiration is estimated to contribute to approximately 40-50 % of total soil CO2 efflux 

rates, dependent upon aboveground processes and conditions such as seasonal light and 

water variations (Hanson et al. 2000). Vegetation plays a large role in influencing soil 

respiration by altering the soil microclimate and structure, the quantity and quality of 

detritus supplied, and the overall rate of root respiration (Raich and Tufekcioglu 2000). 

Roots are a source of CO2, in addition to providing substrate for mineralisation, 

including exudates, sloughed-off material and dead roots for decomposition 

(Buyanovsky and Wagner 1995). 
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2.3.1.1 Measures of Biological Activity 

The metabolic quotient (qCO2), the ratio of the rate of respiration per unit of microbial 

biomass, or the specific microbial respiration rate, has frequently been used to 

determine stress in the microbial population (Anderson and Domsch 1993). It is 

assumed that the microbial biomass produces more CO2-C per unit microbial biomass 

per unit time as stress increases, and hence, results in an increase in qCO2 (Anderson 

and Domsch 1993). As the microbial population is increasingly stressed, more C is lost 

through respiration rather than being converted to humus. It has also been suggested 

that soils with a smaller biomass, which may or may not be related to soil 

environmental conditions, will have higher maintenance energy requirements, reflected 

in  higher respiration rates (Dahlin and Witter 1998). Therefore, may be possible to 

ascertain whether the microbial population is under stress as salinisation and sodication 

occur with the use of the qCO2.   

 

A number of studies have previously used the qCO2 as an indicator for microbial stress 

in studies relating to the addition of heavy metals to soils. Chander and Brookes (1991b) 

found the qCO2 to be higher in metal contaminated soils, than in non-contaminated soil 

due to increased diversion of C from biosynthesis to respiration as a result of stress. 

Similarly, Barajas Aceves et al. (1999) found a higher qCO2 in soil with higher Zn 

concentrations, and attributed this to a lower C assimilation efficiency. Conversely, 

Chander and Brookes (1991a) found no differences in the qCO2 of soils following 

incorporation of high-metal sludges and low-metal sludges. It was suggested that the 

large availability of fresh organic material overcame any inhibitory effects of high metal 

concentrations. 

 

In forest soils, Wolters and Joergensen (1991) related increasing qCO2 values with 

increasingly acidic soils, due to the inefficient use of C resources by the microbial 

population. However, in separate study by Anderson (1998), it was hypothesised that 

liming of an acidic forest soil should have decreased the qCO2 due to the mediation of 

soil pH, but it was found that it did not significantly affect the metabolic quotient. In the 

same study, acid application to a limed plot resulted in an increase in the qCO2 due to 

the reduced substrate use efficiency and stress under acidic conditions. Similarly, 

increasing pH in an alkaline soil can also cause an increase in the qCO2 as a result of 

reduced efficiency (Li et al. 2007). It was also postulated that the higher metabolic 

quotient due to increasing alkalinity caused a shift to a more bacteria dominated 



Chapter 2: Literature Review 

Salinity, sodicity and soil carbon 33

community which is less efficient at utilising C substrates. A study by Mendham et al. 

(2002) found no significant differences in the metabolic quotient between different 

land-uses, yet found the metabolic quotient to be negatively correlated with increasing 

clay and silt. It was suggested that this relationship may have been due to a number of 

mechanisms, which included physical protection of SOM, or the correlation between 

soil texture and climate, whereby drier regions tend to have sandier profiles compared to 

soils in wetter regions. 

 

While the qCO2 is the rate of respiration per unit of SMB, the microbial quotient is the 

ratio of the SMB-C to SOC (Cmic:Corg), and indicates the ratio of the living fraction of 

SOC relative to the non-living fraction. It has been suggested that this ratio is 

responsive to land management practices and can provide an indication to the substrate 

availability by increasing where organic input increases and decreasing where input 

decreases (Anderson and Domsch 1989). For example, Haynes (1999) suggested that 

the decreasing Cmic:Corg with depth was the due to the decreasing proportion of readily 

available substrate. As with the qCO2, Cmic:Corg can also indicate stresses on the 

microbial population. Barajas Aceves et al. (1999) found that the Cmic:Corg decreased 

with increasing Zn concentrations in contaminated soils. However, Marinari et al. (2007) 

found that Cmic:Corg decreased following the addition of inorganic fertilisers which may 

have been due to the decrease in the number of bacteria, as bacterial communities are 

less efficient at converting substrate C into cellular C compared to fungi (Kuzunori and 

Oba 1994). 

 

2.3.2 Effects of Land Use and Land Management Practices 

Maintenance of SOM levels is particularly important in agricultural settings as a result 

of repeated removal of biomass due to cropping or grazing, in addition to its role in the 

stabilisation of soil structure and as a buffer in the soil environment. The effects of 

management practices, particularly those related to agriculture, have the potential to 

alter C stores and turnover, although the results are not always clear-cut. Losses of SOC 

due to land use change are largely related to practices which reduce inputs of organic 

matter, increase the decomposability of organic material, and increase accessibility of 

substrates for decomposition. However, techniques that improve soil, crop and water 

management can aid in increasing SOC stocks, including management of crop residue, 
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conservation tillage, nutrient management, site-specific farming and restoration of 

degraded soils (Lal et al. 1999). 

 

A review of the effects of land use change on soil C stocks by Guo and Gifford (2002) 

indicated that soil C stocks increased following conversions from native forest to 

pasture, cropping to plantation, cropping to secondary forest and cropping to pasture, 

while the reverse of these conversions saw a decrease in soil C stocks. In general, 

pasture grasses maintain a continuous cover of vegetation which adds organic matter 

and decreases mineralisation rates by reducing soil temperatures compared to cropping. 

Concomitant with increases in SOC stocks are increases in the SMB and microbial 

activity, particularly where agricultural activities have been abandoned (Hedlund 2002). 

This is particularly important where degraded landscapes are to be restored, such as 

those common to salinity and sodicity, as those processes determined by the SMB also 

need to be restored if rehabilitation efforts are to be successful. Ros et al. (2003) found 

the SMB and basal respiration increased following remediation of a degraded soil in 

south-east Spain. Following the addition of organic amendments, the SOC content, 

SMB and soil respiration increased due primarily to the development of plant cover and 

the mineralisation of root exudates and plant material. This was attributed to the 

incorporation of easily decomposable materials which stimulated the native microbial 

population into activity, and incorporated exogenous microorganisms. 

 

In grassland environments, management activities and land use conversions which 

increase aboveground production usually increase SOC levels despite environmental 

conditions (Conant et al. 2004). One notable exception exists where pastures have been 

afforested with Pinus radiata, as SOC stocks and SOM quality have been observed to 

decrease (Ross et al. 2002). A number of hypotheses for the decline in SOC stocks and 

SOM quality have been suggested. It has been noted that soil processes occurring under 

P. radiata forests are vastly different to those occurring in grasslands as lower levels of 

SMB were found in New Zealand under these forests compared to pasture (Saggar et al. 

2001; Scott et al. 1999). Mineralisation rates were also found to be higher under pasture 

as a result of the higher rates of inputs related to the higher proportions of easily 

decomposable plant material. It is possible that stabilisation of SOC occurs in pasture 

soils due to root exudates and rhizosphere processes from the activity of live roots 

which may not occur in P. radiata plantation soils (Guo et al. 2005). A review by 

Cowie et al. (2006) have suggested that declines on SOC are related to lower soil C 
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input by trees compared to pasture, possibly due to differences in belowground C 

allocations, root turnover times, soil environmental conditions and nutrient supply. 

Afforestation with P. radiata also exhibits an inverse trend in terms of SOC compared 

to afforestation with native species in Australia (Guo and Gifford 2002), which may be 

related to induced soil changes such as decreased pH caused by organic acids and resins 

released by decomposing needles from P. radiata trees (Saggar et al. 2001).  

 

Cropping has the potential to result in continuous losses of SOC compared to perennial 

pasture or native vegetation. In China, the largest losses of SOC following cultivation 

occurred in those areas used in dryland cultivation in semi-arid and semi-humid areas, 

characteristic of a zone between the north-east and the south-west of China (Wu et al. 

2003). In Australia, losses of SOC have been observed where long term continuous 

cropping and cultivation have taken place, largely related to decreasing amounts of 

organic material being returned to the soil (Dalal and Mayer 1986). The retention of 

stubble however, may reduce the rate of net organic matter loss by increasing inputs of 

organic materials in the form of crop residues. As cropping intensity increases, SOC 

stocks can also increase where double cropping can be applied (Sherrod et al. 2003). 

Continuous cropping reduces the opportunity for the oxidation of SOM. As the number 

or length of summer fallow periods increase, losses of SOC stocks also increase through 

mineralisation processes due to increased accessibility and temperature. Similarly, 

Sparling (1992) found that by using permanent pasture as a baseline, continuous 

cultivation for maize caused a decline in SOC, again attributed to decreased organic 

material input into soils under cropping systems compared to permanent pasture. Parfitt 

et al. (1997) found SOC to decrease from native forest to perennial pasture, and 

decrease again to cropping with maize. The declines in SOC with cultivation are also 

the result of a greater proportion of readily decomposed crop residues, which is rapidly 

lost (Post and Kwon 2000). Conversely, when cultivated lands are converted into 

permanent pasture, SOC stocks are likely to increase due to continuous inputs of 

organic material.  

 

The effects of tillage on soil C stocks and processes have been studied extensively in the 

past (eg. Balesdent et al. 2000; Cambardella and Elliot 1993; Franzluebbers et al. 2000; 

Izuaurralde et al. 2001b; Jackson et al. 2003; Lal et al. 1999; Sherrod et al. 2003). 

Tillage in sodic soils has been suggested as a method for improving physical and 

hydraulic properties, with deep tillage (1-2 m) able to break up hard pans and cemented 
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layers while concurrently mixing soil layers, thus altering the distribution of SOM in the 

soil profile. However, conventional and deep tillage have also been known to increase C 

mineralisation, with Franzluebbers et al. (1996b) observing that mineralisation 

increased under conventional tillage compared to no-till, with seasonal variations of 

mineralisation also greater. These effects can also be altered by changing the placement 

of residues, and the quantity, quality and timing of crop residues with tillage.  

 

The formation of soil aggregates can physically protect soil C, such that any process 

which disrupts these aggregates will most likely increase C mineralisation. Under 

conventional tillage treatments, aggregates are frequently disrupted, resulting in fewer 

stable macroaggregates and the mineralisation of previously protected organic matter 

(Paustian et al. 2000). This is due to the more labile nature of the organic matter 

associated with macroaggregates, which is, therefore, more readily mineralisable 

compared to that associated with microaggregates (Waters and Oades 1991). Similarly, 

Cambardella and Elliot (1994) found organic C in macroaggregates to be highest in a 

soil that had not been tilled, compared to one that was bare fallow and one that retained 

stubble and had been tilled.  

 

Where tillage is reduced, residues concentrate on the soil surface and decomposition 

rates decrease due to reduced contact with soil microorganisms, allowing for SOM to 

accumulate over time (Salinas-Garcia et al. 2002). The SMB is also affected closer to 

the surface by tillage than at depth, which is attributed to the accumulation of residues at 

the soil surface. Tillage often causes compaction due to agricultural traffic, which 

causes bulk density to increase and the volume of pore spaces to decrease in areas of 

high traffic, subsequently restricting biotic activity. Santuckova et al. (1993) found the 

SMB to be lowest in areas of high tillage compared to no tillage, and ascribed this to 

alternating cycles of disruption and gradual recompaction, causing SOM and SMB to 

decrease. 

 

Grazing has the potential to alter the levels of SOM, with different grazing pressures 

found to alter biological activity and C stores in soils. In a study by Franzluebbers and 

Stuedemann (2003), POC, SMB and C mineralisation were higher under higher cattle 

grazing pressures, with a cattle stocking density of 8.7 ± 1.9 x 10-4 head/m2, compared 

to a lower rate of 5.8 ± 0.9 x 10-4 head /m2, due to the stimulation of the SMB and 

microbial activity with grazing and the return of dung to the soil. However, these pools 
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were decreased when the forage was harvested because organic C contents are a 

function of organic material returned to the soil. It is possible to increase SOC levels 

with grazing at light to moderate stocking densities, as it promotes an increase in 

belowground biomass, particularly in the fibrous rooting networks characteristic of 

grass and pasture species which promotes SOM formation and accumulation. Long term 

grazing in shortgrass communities in North America along an environmental gradient 

has resulted in larger plant basal areas in a mesic environment which may have been 

partially responsible for the increase in SOC (Derner et al. 1997). However, in ungrazed 

communities in a more arid environment with a greater proportion of large plants, 

greater amounts of organic matter are most likely incorporated into the soil and are 

more effective in capturing and redistributing organic matter. These apparent 

differences found by Derner et al. (1997) were attributed to changes in the population 

structure of the vegetation communities.  

 

Increasing erosion, common in saline and sodic landscapes, has the potential to cause 

substantial SOC losses. Erosional processes can deplete the SOC content of the surface 

layer due to its lower density and higher erodibility. Because the labile particulate 

fraction is relatively unconsolidated it is therefore most prone to removal (Lal 2001). In 

addition, as soil aggregates break down during the process of erosion, there is an 

increase in exposure to microbial processes, and thus mineralisation. Eroded materials, 

which usually consist of humus and clay fractions, can contain 3.5 times more C than 

the original soil. Translocation into lakes, reservoirs and other aquatic systems, deep 

burial or downslope deposition into waterlogged areas of these eroded materials may 

result in sequestration as decomposition processes are slowed in such environments 

(Izaurralde et al. 2001a; Izaurralde et al. 2001b; Izuaurralde et al. 2001a; McCarty and 

Ritchie 2002; van Noordwijk et al. 1997). However, in general most displaced SOC is 

mineralised, with this effect compounded by the decreased biomass capacity of eroded 

soils (Jacinthe and Lal 2001). 

 

2.4 Salinity, Sodicity and Carbon 

Those areas susceptible to salinity and sodicity are also the most susceptible to 

significant SOC losses as a proportion of total SOC. Salt-affected landscapes are usually 

found in areas of marginal agriculture, in association with soils of lower fertility and 
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hence, lower biomass production (Isbell et al. 1983), with a high susceptibility to 

erosion, which further accentuates the losses of C from the soil. 

 

2.4.1 Effects on Microbial Decomposition 

The SMB controls the decomposition of organic substrates, with rates of decomposition 

dependent upon the microbial population, soil environment and quality of substrate. 

C:N ratios are commonly used to describe substrate quality, with wide C:N ratios 

indicative of less decomposable material and vice versa, largely related to N limitations 

(Gregorich and Janzen 2000). Because the SMB fraction can act as an early indicator of 

longer term changes in the total SOC, the effects on microbial activity caused by 

increasing salinity and sodicity should precede effects on the total C stock, and should 

be detected prior to the more obvious effects of declining vegetation health, changes in 

biomass C inputs and the SOM. 

 

Chander et al. (1994) found the rate of mineralisation of organic matter increased as 

sodicity increased, while the SMB decreased. The smaller microbial population was 

most likely the result of decreased plant inputs due to stresses placed on plants with 

increasing sodicity, which can be measured as the qCO2 or Cmic:Corg, as described in 

Section 2.3.1.1., while direct toxic effects and environmental stress play a smaller role, 

as described in Section 2.3.1. However, the same study found that the reduced biomass 

was just as effective in decomposing the smaller amount of organic residues as the 

biomass found in a non-sodic soil. Native and additional organic material can become 

more readily available or easier to decompose as a result of the presence of alkali salts, 

which have the potential to dissolve, disperse, or cause chemical hydrolysis of the 

organic material. Laura (1973) has shown that losses in total C increased with 

increasing concentrations of Na2CO3 during decomposition of organic material. As the 

concentration of the added Na2CO3 increased, exchangeable Na+ also increased resulting 

in higher ESP, while pH increased as carbonates of Ca and Mg precipitated. As a result, 

losses of SOC occurred due to the processes described above. Similarly, Laura (1976) 

found losses of C to increase with increasing ESP. While the effects of increasing 

sodicity can be evident in the SMB in the order of weeks, as described in Section 2.3, 

the adverse soil environmental conditions with increasing sodicity will deleteriously 

impact on plant growth which will ultimately result in lower inputs of C over much 

longer time frames in the order of decades, and hence, lower levels of SOC.  
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The dissolving or dispersing action of Na on organic molecules and organomineral 

complexes can increase the concentration of organically complexed metals in solution. 

The complexed metals, dependent on their stability, can be released by low pH or 

mineralisation (Nelson and Oades 1998). Mineralisation of ground plant C has been 

found to increase with sodicity and decrease with salinity (Nelson et al. 1996). This 

may be due to the high solubility of organic matter in the presence of Na. Because Na is 

more soluble than Ca, mineralisation may be stimulated, causing increased losses of C 

as dissolved organic matter, with the effect greatest on small or colloidal anionic 

substrates and least for particulate uncharged substrates (Nelson and Oades 1998). In 

contrast, Nelson et al. (1997) found a slightly negative effect of sodicity on 

mineralisation, which may have been due to differences in the amount and quality of 

substrate added. It is likely that C substrates that are amenable to dissolution will also 

increase in solubility with increasing sodicity, while those that are less readily soluble 

and decomposable are inhibited by increasing sodicity.  

 

Similarly, in a study conducted by Pathak and Rao (1998), C mineralisation decreased 

with increasing salinity due to a decrease in microbial activity, indicated in the smaller 

amount of decomposed plant material. However, the evolution of CO2 at high salinity 

levels indicated that biochemical mineralisation by soil enzymes can still occur in saline 

and alkaline conditions. El-Shakweer et al. (1977) found addition of Na2CO3 and 

CaCO3 favoured decomposition of clover straws, while sulfate and chloride salts 

decreased the rate of decomposition, with the slowest rates found with CaCl2 and 

CaSO4. A diminishing rate of decomposition of clover straw with time was also found 

with increasing salinity. However, remediation of sodic soils through the addition of 

gypsum can reduce mineralisable C, with increases in microbial biomass, as noted by 

Carter (1986). Where a combination of lime and gypsum was added, pH was restored in 

conjunction with increases in both biomass C and nitrogen, and microbial activity. Both 

the long and short term studies indicated that addition of gypsum caused a significant 

increase in the C:N ratio of the microbial biomass, and reduced its activity with regards 

to C release and mineralisation (Carter 1986).  

 

While sodicity has been shown to increase the rate of mineralisation, salinity has the 

opposite effect due to its osmotic influence on microbial activity. The more efficiently 

soil microbes function, the less C is lost via respiration (Insam 1990). An increasingly 
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stressed microbial community, caused by increasing salinity and sodicity, results in less 

efficient use of C resources where a greater proportion of substrate C is lost as CO2 per 

unit of microbial biomass through increased respiratory activity (Rietz and Haynes 

2003). The study by Rietz and Haynes (2003) found that in an irrigation-induced saline 

and sodic sugar cane estate, high soluble salts were more important in inhibiting the 

growth and activity of soil microbes than in inhibiting plant growth. It was suggested 

that increasing salinity and sodicity resulted in a smaller, more stressed microbial 

community as indicated by a reduction in the rate of organic matter decomposition and 

the mineralisation of C. These results follow a general pattern found in naturally saline 

soils, with the SMB negatively correlated with the concentration of soluble salts, and 

positively correlated with SOC contents. Increasing levels of salinity have also been 

shown to decrease soil enzyme activities (Batra and Manna 1997), with inhibition of 

enzymatic and microbial activity greatest with NaCl, compared to CaCl2 and Na2SO4 

(Frankenberger and Bingham 1982). However, McCormick and Wolf  (1980) found that 

when a C source is readily available in the form of organic material, the adverse effects 

of NaCl on microbial activity are reduced. The effects of salinity on microbial activity 

have been attributed to the similar deleterious effects on plant health, dominated by 

osmotic effects with increasing salt concentration, and specific ion toxicities causing 

nutritional imbalances for microbial growth and enzyme synthesis (Batra and Manna 

1997).  

 

Garcia et al. (1994) found that decreasing CO2 emissions can also reflect a stressed 

microbial population, such as that found in a saline soil of an arid region in south-east 

Spain. Soils showed low microbiological activity, with the lowest values found at the 

most degraded site, determined by its low organic matter content and lack of vegetative 

cover. At this site, soil respiration was inhibited at high EC levels. In the same study, 

Garcia et al. (1994) observed that qCO2 did not vary in the arid zone soils studied, and 

concluded that the index was stable and could not be used to assess soil degradation or 

fertility, in contrast to Rietz and Haynes (2003) and some of the studies discussed in 

Section 3.2.4.3. However, while salinity can depress plant growth, Sadinha et al. (2003) 

found significant microbial activity was still associated with saline and acidic sites. The 

combined effects of salinity and low pH lead to the conclusion that salinisation has a 

depressive effect on the microbial biomass, which is most likely due to a shift in 

community structure from one dominated by fungi to one dominated by prokaryotic 

microorganisms (mainly bacteria). The survival of specialised and adapted species in 
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saline conditions may result in a less competitive microbial community (Zahran 1997) 

dominated by bacteria, which is less active and less diverse (Pankhurst et al. 2001). 

 

2.4.2 Effects of Organic Matter on Sodic Behaviour 

Sodic soils usually exhibit low organic matter content due primarily to poor plant 

growth, which leads to low inputs of organic materials into the soil and increased losses 

due to erosion and leaching (Nelson et al. 1996). This is compounded by the generally 

lower C content in Australian soils compared to other soils globally (Spain et al. 1983). 

Sodic soils also often coincide with alkaline conditions, due primarily to the presence of 

inorganic C, with pH high enough to dissolve organic matter (Sumner 1993).  

 

Despite the commonly held belief that an increase in organic matter levels improves soil 

physical and chemical properties, results from studies on the effects of organic matter 

on dispersion in sodic soils have been mixed. The accumulation of organic matter in 

sodic soils is difficult as Na-organic linkages are highly soluble, with organic matter 

dissolving in runoff and percolating water in the form of soluble Na-humates, which 

further enhance clay dispersion, mobilisation and losses of SOM from leaching (Sumner 

et al. 1998). Highly alkaline soils are unlikely to retain products of decomposition 

because organomineral interactions depend primarily on cation bridges involving 

mainly Ca2+ rather than Na+ (Naidu and Rengasamy 1993). Organic matter can enhance 

aggregate stability by forming linkages between particles which are stable in water 

(Mamedov et al. 2001). However, Na+ must first be replaced by polyvalent cations, 

which would subsequently enable the formation of stable linkages between particles by 

organic matter because the linkages formed between organic matter and Na+ are largely 

ionic and solvated in water. Ca2+ ions tend to form covalent bonds, which are more 

stable in water, suggesting that sodicity needs to be ameliorated prior to the addition of 

organic matter (Rengasamy and Olsson 1991). 

 

Additions of organic matter to calcareous and non-calcareous soils have been shown to 

cause increases in clay dispersion at constant pH and high SAR values (Gupta et al. 

1984). This was attributed to the effects of increasing soil pH following addition of 

manure, which increased the CEC and altered the surface properties of the clays, thus 

promoting dispersion. Rengasamy and Olsson (1991) have suggested that Na+-organic 

linkages are generally weak, with accumulation of organic material in aggregates an 
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ineffective method in soil structure stabilisation. Conversely, Barzegar et al. (1997) 

found spontaneously dispersible clay to decrease with the addition of pea straw, with 

stabilisation occurring irrespective of SAR, indicating that the dominant binding 

mechanisms were not ionic. In contrast to Rengasamy and Olsson (1991) and Gupta et 

al. (1984), Barzegar et al. (1997) suggested that the addition of organic materials to 

sodic soils could be expected to improve structural stability without initial remediation 

of sodicity, as native organic matter and additional plant residues had a positive 

influence on stability. This effect of improved structural stability occurred irrespective 

of clay type or sodicity, with the effect greatest at high organic matter contents and low 

ESP where soils are not highly sodic. While the addition of humic materials can 

increase the CEC substantially, clay dispersion was found to increase where the ESP of 

the soil was between 10-30 due to the greater preference for Ca2+ to Na+ by organic 

matter compared to clay minerals (Sumner 1993). This subsequently caused an 

enrichment in Na+ in the inorganic clay fraction, while the contribution of low 

molecular ligands from the added organic matter also promoted dispersion.  

 

A high soil pH can compound the dispersion potential as a result of an increasing 

negative charge on organic molecules (Rengasamy and Olsson 1991). However, the 

presence of polyvalent cations limits the swelling of clays, as these cations bridge clay 

particles and organic macromolecules together with the main cations involved being 

Ca2+ and Mg2+ in neutral and alkaline soils, and hydroxypolycations (Al3+ and Fe3+) in 

acidic and ferallitic soils (Oades 1988). In addition, those soils with a high base status 

typically have higher clay content, and are generally more fertile with greater vegetation 

input (Baldock and Nelson 2000), subsequently producing more organic matter. 

 

The effects of organic matter on soil physical properties are usually only related to a 

certain fraction of the organic matter. Soils high in organic matter are generally resistant 

to Na adsorption, and rarely display sodic behaviour; this is largely related to increased 

hydrophobicity caused by the presence of hydrophobic organic compounds (Rengasamy 

and Olsson 1991). Rengasamy and Olsson (1991) and Golchin et al. (1994) found that 

the stability of soil structure was more closely related to young and active SOM than to 

total SOM. The older humic acid fraction, which is most likely protected from microbial 

decay, is not associated with the soil matrix, and is, therefore, not directly involved in 

the stabilisation of soil aggregates. The encrustation of debris, found in aggregates 1-

5µm in size associated with the humic acid fraction, is an important process in the 
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stabilisation of microaggregates (Waters and Oades 1991). Microaggregates are 

stabilised against disruption by rapid wetting and mechanical disturbance by 

organomineral complexes and polysaccharides, while the stability of macroaggregates 

depends upon roots and hyphae (Tisdall and Oades 1982). Microaggregates are 

relatively permanent and not influenced by changes in the organic matter content of the 

soil or management regimes, while the number of macroaggregates declines with 

decreasing organic matter content as roots and hyphae are decomposed and not replaced.  

 

2.4.3 The Role of Inorganic Carbon 

Whilst beyond the scope of this project, it should be noted that large amounts of soil 

inorganic C (SIC) exist in the subsoil of soils affected by sodicity but remain insoluble 

due to high soil pH, and have the potential to play a large role in C cycling. The SIC 

pool has been estimated to contain approximately 940 Pg of C to one metre depth 

(Eswaran et al. 2000). While the SOC pool dominates in soils of humid regions, SIC is 

the most common feature of C in arid and semiarid regions, usually where precipitation 

is less than 500 mm per year (Lal and Kimble 2000b). Pedogenic carbonate often occurs 

in soils across the southern and inland regions of Australia, and is estimated to cover 

about 50 % of the landscape, usually in conjunction with sodic soils (Fitzpatrick and 

Merry 2000).   

 

Studies have linked the formation of pedogenic CaCO3 to the development of sodicity 

(Pal et al. 2000). The formation of CaCO3 removes Ca2+ from the soil solution causing 

sodicity to develop or increase in the subsoil. As sodicity increases, hydraulic 

conductivity of the soil decreases, resulting in an increase in ESP with depth, as the 

formation of CaCO3 continues and leaching of Na+ decreases. It is often difficult to 

separate the effects of sodicity from those of pH, as sodic soils commonly occur in 

conjunction with alkalinity, usually due to the presence of carbonates.  

 

Relatively little is known about the influence of SIC on C dynamics in degraded areas. 

The addition of amendments such as gypsum, green manure and glucose to an alkaline 

sodic soil has been shown to aid in reducing soil pH and improving soil physical 

properties by increasing CaCO3 solubility through various mechanisms (Chorom and 

Rengasamy 1997). The presence of free CaCO3 can inhibit SOM decomposition 

through bridging of Ca2+ to SOM aggregates, and thus, protect it from microbial 
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degradation (Clough and Skjemstad 2000). It has been suggested that CaCO3 can 

control the decomposition of POC through stabilisation of relatively undecomposed 

plant debris (Golchin et al. 1994). Higher contents of active CaCO3 and amorphous Al 

and Fe act to stabilise fresh and humified organic materials by forming complexes with 

organic molecules, leading to high organic C, lower C:N ratios and longer retention 

times (Baldock and Nelson 2000). The removal of Ca from a soil stimulates the 

decomposition of organic matter and mineralisation of N, while its addition inhibits the 

release of CO2 and promotes the stabilisation of soil structure (Oades 1988) due to the 

formation of Ca-organic linkages (Baldock and Nelson 2000). Where soils are high in 

Ca, precipitation of carbonates can occur with a decrease soil moisture and increased 

evapotranspiration, an increase in ion concentration, a decrease in the partial pressure of 

CO2 or a rise in pH, as shown in Equation 2.4 (Lal and Kimble 2000b). Conversely, the 

addition of organic matter can dissolve carbonate due to the production of CO2, 

favouring the left side of Equation 2.4.  

 

Ca2+ + 2HCO3
-  CaCO3(s) + CO2 + H2O    Equation 2.4 

 

 

2.5 Summary 

A large proportion of the Australian landscape is currently affected by saline and sodic 

soils. These areas often coincide with agricultural areas, with the extent of saline and 

sodic soils likely to increase in the future. Currently, in terms of C accounting, data on 

how these salt-affected areas are related to C dynamics are virtually non-existent. 

Understanding of the roles salinity and sodicity play in the decomposition of organic 

matter needs to be improved if these knowledge gaps are to be addressed. The 

conflicting results reported in this chapter are most likely the result of the overall 

balance between the opposing effects of salinity, sodicity and the behaviour of organic 

matter. These processes are dependent on factors such as the chemical properties of the 

soil, the amount and nature of added organic materials and their interactions with 

inorganic colloids, the degree of mechanical disturbance, the amount and nature of 

SOM, and other soil characteristics such as clay content. While the addition of organic 

materials has usually resulted in an improvement in soil structure, the results are not 

always clear-cut in sodic and saline soils. These issues will need to be addressed if C 

cycling in these degraded areas is to be fully understood. This thesis aims to address 
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these knowledge gaps in relation to SOC stocks and fluxes in south-eastern Australia, 

by studies in the field and under controlled conditions, as described in Table 1.1. 

Chapter 3 investigates the behaviour of the labile C pool in a vegetated soil following 

leaching with saline and sodic solutions. This will determine the effects of increasing 

salinity and sodicity on the SMB and soil respiration rates. 
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CHAPTER 3: SOIL RESPIRATION AND SOIL MICROBIAL BIOMASS IN SOILS 

TREATED WITH A RANGE OF SALINE AND SODIC SOLUTIONS 

 

3.1 Introduction 

Increasing soil salinity and sodicity are serious land degradation issues in Australia, 

which are predicted to increase in importance in the future. Recently, focus has centred 

on issues related to dryland salinity, with the main cause being largely attributed to the 

broadscale clearing of native deep-rooted perennial vegetation, as described in Section 

2.2.1, and its replacement with shallow-rooted annual crops and pastures. This alters the 

hydrologic balance and mobilises salts in the landscape. Irrigation salinity also has the 

potential to become more apparent in the future as water use for agriculture continues 

and the area of irrigation increases. The use of lower quality groundwater and 

wastewater with higher levels of soluble salts, particularly those which are dominated 

by Na, will increase as high quality water of low EC and SAR is allocated to urban 

water supply (Surapaneni and Olsson 2002). Under current land use, the area affected 

by secondary salinisation and sodication is likely to increase, especially where salts 

dominated by Na+ accumulate in the soil profile. This will cause reductions in crop and 

pasture production (Rogers 2002). For example, in the Murray-Darling Basin, where 

highly saline-sodic groundwater is used for irrigation during summer periods, soil EC 

and ESP have increased, while winter leaching by low salinity rainfall reduces soil EC 

and increases ESP as soluble salts are leached from the soil profile (Figure 2.1). This 

results in dispersion and reductions in permeability (Bethune and Batey 2002). The 

majority of irrigated soils in the region suffer from sodic subsoils with low hydraulic 

conductivity, which can cause salts to build up over time; this is known as transient 

salinity (Rengasamy 2006). 

 

Few studies have examined the effects of salinity and/or sodicity on soil biological 

processes, and those available show contradictory results (eg. Chander et al. 1994; 

Laura 1973; 1976; Nelson et al. 1996; Rietz and Haynes 2003; Sarig et al. 1993), as 

described in Section 2.4. In particular, little is known about how the processes of 

salinisation and sodification impact on the SMB and microbial activity. This chapter 

examines the effects of a range of salinity (EC) and sodicity (SAR) levels in soil
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 solution systems on labile C in different layers of a soil profile from the Southern 

Tablelands region of NSW. Effects due to different levels of EC and SAR on the SMB 

and soil respiration rates were assessed under controlled temperature and moisture 

conditions to assess the effects of salinity and sodicity on the dynamics of soil carbon.  

 

A number of methods exist to determine soil respiration, both in the field and under 

controlled conditions in the laboratory. However, currently a standard method does not 

exist. There are two commonly used soil respiration methods, i) dynamic chamber 

method which provides an instantaneous measurement of CO2 evolution at a particular 

time, and ii) static chamber method, which absorbs CO2, and gives a measurement that 

has been integrated over a longer time period usually ranging from one to several days.  

 

The dynamic method involves the use of an infra-red gas analyser (IRGA) to which air 

in the chamber is actively analysed for CO2. The IRGA measures the rate of change in 

CO2 concentration in the headspace of the incubation chamber. Whilst useful for taking 

measurements to determine diurnal variations in CO2 evolution, it is difficult to 

integrate measurements over longer time periods unless very large numbers of 

measurements are taken over a 24 hr period (Jensen et al. 1996). One notable drawback 

with the use of an IRGA is the cost associated with its purchase, if it is required. 

 

Static methods use an alkali trap such as KOH, NaOH or soda lime to trap evolved CO2. 

In the case of KOH or NaOH solution, the amount of CO2 evolved is determined by 

titration against standard HCl (Anderson 1982), while with the use of soda lime traps, 

CO2 evolution is determined by weight gain (Edwards 1982; Grogan 1998). In a 

comparison of a static, with NaOH, with a dynamic method, Jensen et al. (1996) found 

large spatial variability with the use of both methods which required large numbers of 

replicates. The observed variability was related to variability in water content, soil 

temperature and water evaporation in the field. Minderman and Vulto (1973) compared 

the use of soda lime with KOH and determined that both techniques were suitable for 

laboratory use over long observation periods of more than 15 hours. 

 

In this study, soil respiration was determined under controlled conditions in the 

laboratory with the use of soda lime traps. The soda lime absorption technique is a 

relatively inexpensive and simple method which allows for a large number of replicates 

to be rapidly analysed. Whilst the method has been criticised for its high variability in 
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the past, Keith and Wong (2006) have shown that the soda lime technique can be 

reliable if used under the correct conditions described in their paper, with a 1:1 

relationship found when compared with measurements made using an IRGA. The 

method is able to integrate the mean CO2 flux over a longer time period, rather than 

taking a number of transient measurements. The soda lime absorption technique, and all 

the methods described above, was established for the determination of soil respiration in 

the field. However, the soda lime method, as with the other static methods described, is 

easily adaptable to a laboratory-based study, such as that used in Bauhus et al. (2002).  

 

3.2 Materials and Methods 

3.2.1 Site Description 

The profile was located on a property, “Tarcoola” in Bevendale, approximately 40 km 

south west of Crookwell (34 30’ 45” S, 149 05’ 00” E, 510 m a.s.l), in the Southern 

Tablelands region of NSW (Figure 3.1). The locality is underlain by undifferentiated 

Ordovician and Silurian metasediments (Hird 1991). The soil profile sampled was a 

Yellow Sodosol (Isbell 1996). The area was dominated by red grass (Bothriochloa spp) 

and fenced off from stock (Plate 3.1). The profile consisted of an A horizon of a sandy 

loam overlying a B horizon which was a sandy clay loam.  



Chapter 3: Soil respiration and microbial biomass in treated soils 

Salinity, sodicity and soil carbon 49

 

 
Figure 3.1 Star indicates the location of the property “Tarcoola” in Bevendale, 
NSW.  

Plate 3.1 The paddock where the sampled profile was located at “Tarcoola.” 
The red circle is an example of a “vegetated patch.” 
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3.2.2 Field Sampling 

Samples were taken from the 0-5, 5-10, 10-20, 20-30, and 30-50 cm depths of a 

vegetated soil profile, transported back to the laboratory in polyethylene bags and stored 

at 4oC prior to analysis. Soils were sampled with a shovel from a soil pit at each depth 

interval. Bulk density cores were also taken from each depth as described in Section 

A1.1 in Appendix A. 

 

3.2.3 Sample Preparation and Soil Chemical Analyses 

Bulk density cores were oven dried at 105oC for 24-hours, and from the known soil core 

volume and oven dry weight contained in the soil core, bulk density was calculated. 

This is described in detail in Appendix A. EC, pH and soluble cations were determined 

in 1:5 soil:water extracts. Soluble cations in the 1:5 soil:water extracts were analysed by 

inductively coupled plasma atomic emission spectroscopy (ICP-AES). Exchangeable 

cations were extracted by using 1 M ammonium acetate (CH3COONH4) extracts 

buffered to a pH of 7 and also determined by ICP-AES. A more detailed description of 

the analysis is found in Appendix A. The sodicity of the samples was determined by 

calculating the SAR from the soluble cations according to Equation 2.2, and ESP, from 

the exchangeable cations according to Equation 2.1. 

 

Organic C, total N and total S were determined by high temperature combustion on a 

CNS LECO-2000 analyser. The samples were not pre-treated with acid prior to organic 

carbon analysis as the soil pH values (pH < 7) indicated that carbonates were not 

expected to be present. Particle size analysis was undertaken using the hydrometer 

method (Bouyoucos 1936).  

 

3.2.4 Soil Biological Analyses 

Soils that were analysed for microbial biomass and respiration were initially sieved 

without drying (field moist) through a 5 mm sieve. Six salt solutions of known EC and 

SAR values were prepared using a combination of 1 M NaCl and 1 M CaCl2 stock 

solutions. The salinities of the solutions were 0.5, 10 and 30 dS/m, and were combined 

with two SAR values of 1 and 30 in a factorial design. These salt solutions were termed 

low-, mid- and high-salinity and low- and high-sodicity, respectively. The relative 
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volumes of the respective NaCl and CaCl2 salt solutions added to achieve the range of 

final salinities and SARs are shown in Table 3.1; a total of 1 L of each solution was 

prepared.  Distilled water was used in place of the low salinity-low sodicity solution as 

a control, giving a total of six solutions used for leaching (Figure 3.2). The salt solutions 

used for leaching were standard solutions, and were not intended to give similar EC and 

SAR values in the soil. More specifically, the following solutions were used: 

 

• Distilled water (control) 

• Low-salinity high-sodicity of EC 0.5 and SAR 30 (EC0.5 SAR30) 

• Mid-salinity low-sodicity of EC 10 and SAR 1 (EC10 SAR1) 

• Mid-salinity high-sodicity of EC 10 and SAR 30 (EC10 SAR30) 

• High-salinity low-sodicity of EC 30 of SAR 1 (EC30 SAR1) 

• High-salinity high-sodicity of EC 30 and SAR 30 (EC30 SAR30) 

 

Table 3.1 Volume of 1 M NaCl and 1 M CaCl2 used for leaching 
Treatment 1 M NaCl (mL) 1 M CaCl2 (mL) 
Control 0.0 0.0 
EC 0.5 SAR 30 45.4 4.6 
EC 10 SAR 1 6.8 93.1 
EC 10 SAR 30 84.2 15.8 
EC 30 SAR 1 12.0 288.0 
EC 30 SAR 30 298.0 2.0 
 

The soils were treated with the above solutions as follows. Approximately 5 kg of the 

<5 mm fraction of soil were placed into a 9.6 L bucket with holes in the base, with filter 

paper placed over the holes. The soils were leached once a day for three days, initially 

with 1 L of solution on the first day, and 0.5 L solution on the two subsequent days 

before being allowed to equilibrate for 72 hours. Each depth layer was treated separately. 

The soils were then maintained in closed containers at a constant temperature 

environment at 25oC and analysed for respiration and SMB, as described below. 
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Figure 3.2  Sample preparation prior to laboratory analysis 
 

3.2.4.1 Soil Respiration 

Soil respiration was measured according to a modification of the method originally 

developed by Edwards (1982). Approximately 100 g of soil was weighed into 150 mL 

screw top jars without lids and placed into air-tight 1.75 L polycarbonate containers. The 

polycarbonate containers were sealed with duct tape to ensure that no leakage occurred. 

In addition to the soil, the polycarbonate container also had a petrie dish with 25 g of soda 

lime granules to trap the CO2 evolved, and a small vial of approximately 15 mL of water 

to maintain the humidity (Plate 3.2). Three blanks were also prepared for every run (ie. 

every two weeks) according to the method described above without a soil sample in the 

polycarbonate container to account for the amount of CO2 absorbed by the soda lime in 

the headspace of the chamber and chamber leakage. Soda lime reacts with CO2 according 

to Equations 3.1a and 3.1b. The soda lime traps were oven dried at 105oC for 16 hours 

prior to incubation. 4 mL of water was then added, as the reaction between hydroxide and 

CO2 is facilitated by the presence of water. The soda lime traps were oven-dried prior to 

wetting up as soda lime also absorbs water when stored. Therefore, a constant amount of 

water could be added following oven-drying. The soils were left to incubate for a period 

of 12 weeks and were analysed for CO2 evolution at biweekly intervals, with a new soda 

lime trap placed in the incubation chamber and analysed every two weeks. 

 

Respiration is facilitated by the soils being maintained at constant moisture content; 

however, the soils tended to dry out during the respiration measurements. Therefore, 

moisture loss was determined gravimetrically at four-weekly intervals, with water added 
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to bring the soils up to their original weight. Moisture loss was most likely caused by the 

absorption of water by the polycarbonate container, as plastics tend to be porous to water 

vapour but not CO2, resulting in a higher permeability to water than to CO2. Because the 

humidity was maintained in the incubation chamber with a vial of water, a gradient was 

established such that there was high humidity inside the chamber, and ambient and lower 

humidity outside of the chamber, thereby promoting water loss through the chamber 

walls (S.C. Wong, pers. comm.).  

 

The traps were oven dried at 105oC for 24 hours after removal from the incubation 

chambers, and reweighed. The amount of CO2 evolved was determined according to 

Equation 3.2. A correction factor of 1.69 was used to correct for chemical water loss 

during the drying process following its reaction with CO2. Evolution of CO2 was then 

expressed per kilogram of soil, according to Equation 3.3. All treatments were undertaken 

in triplicate. 

 

 
Plate 3.2  Experimental set-up used for analysis of soil respiration; incubation 
chamber with soil sample, vial of water and soda lime trap 
 

2NaOH + CO2 → Na2CO3 + H2O     Equation 3.1a 

Ca(OH)2 + CO2 → CaCO3 + H2O     Equation 3.1b 

 

CO2 (g) = [(SLa-SLb) – (B2-B1)] * 1.69    Equation 3.2 

 

Where  SLa = weight of soda lime after incubation,  



Chapter 3: Soil respiration and microbial biomass in treated soils 

Salinity, sodicity and soil carbon 54

 SLb = weight of soda lime before incubation 

 B2 = weight of blank soda lime after incubation 

 B1 = weight of blank soda lime before incubation 

 

mg-CO2-C /kg soil = [CO2 (mg) evolved / weight of oven dried soil (kg)]*(12/44)    Equation 3.3 

 

3.2.4.2 Soil Microbial Biomass 

Soil microbial biomass was measured weekly by the chloroform fumigation procedure 

described in Vance et al. (1987). The technique involves measuring the difference in the 

DOC contents of fumigated and unfumigated samples of soil. The fumigated samples 

were prepared by weighing 50 g of soil into a 100 mL beaker at weekly intervals. The soil 

was placed in a dessicator with 25 mL of amylene-stabilised chloroform (CHCl3) and wet 

filter paper to maintain the humidity within the chamber. The dessicator was evacuated 

until the chloroform started to boil; evacuation continued for a further two minutes. The 

dessicator was then placed in the dark for 24 hours. Concurrently, the non-fumigated soil 

was prepared by weighing 50 g of soil into a 500 mL bottle at weekly intervals, followed 

by the addition of 200 mL of 0.3 M K2SO4 solutions. After shaking for 30 min on a rotary 

shaker, the suspension was filtered through Whatmans No. 42 filter paper. On the same 

day, 8 mL of the filtered extract was placed into a conical flask with 10 mL of 

concentrated H2SO4, 5 mL of 85 % H2PO3 and 2 mL of 0.0667 M K2Cr2O7. The mixture 

was heated on a hot plate for approximately 20 minutes and allowed to cool prior to being 

titrated against 0.033 M ferrous ammonium sulfate solution ((NH4)2SO4FeSO4.6H2O) 

with ferroin indicator (1, 10-phenanthroline-ferrous sulfate solution). After 24 hours, the 

beaker of chloroform and filter paper were removed from the dessicator before being 

repeatedly evacuated to remove the excess chloroform. The fumigated samples were 

subjected to the same treatment as the non-fumigated samples. The amount of SMB-C 

present in the samples was determined by the difference between the extracted carbon in 

the fumigated samples and the unfumigated samples (EC) expressed as mg-C/kg oven dry 

soil according to Equation 3.4. A constant of 2.64 is used to correct for the DOC that is 

not extracted (Vance et al. 1987). 

 

SMB-C (mg-C/kg) = 2.64 EC        Equation 3.4 
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All measurements are expressed as oven-dry equivalent weights of soil. Three replicates 

of each soil were determined for SMB-C. 

 

3.2.4.3 Microbial Indices  

The specific respiration rate, qCO2, was determined according to Equation 3.5 at the end 

of the 12-week incubation period to provide an indication of the effects of EC/SAR on 

microbial activity. 

 

qCO2  (mg CO2-C/mg SMB-C/day )= r/SMB    Equation 3.5 

 

Where r = respiration rate (mg CO2-C /kg/day) 

SMB-C = soil microbial biomass-C (mg-C/kg) 

 

The microbial quotient, Cmic:Corg, was determined as the ratio of SMB-C (mg/kg) to SOC 

(mg/kg) expressed as a percentage (%) at the end of the 12-week incubation period.  

3.2.5 Statistical Analysis 

Data were analysed using the GENSTAT 8.0 statistical analysis program (Payne 2005). 

Differences found between the different treatments were subjected to an analysis of 

variance (ANOVA). The block structure was given by depth within EC by SAR, within 

replicate, within week, and the treatment structure by depth, EC, SAR, week and their 

interactions. Differences found in the SMB and respiration over the 12 week incubation 

period were analysed by residual maximum likelihood (REML), as the two factors were 

found to be significantly correlated over time (P<0.05). The fixed effects were depth, EC, 

SAR and their interaction, and random effects were the interaction of depth, EC, SAR 

and week. Where significant differences were found (P<0.05), data were subjected to 

least significant difference testing (LSD). The SMB data were square-root transformed to 

satisfy the assumptions for ANOVA, with back-transformed means presented.  
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3.3 Results 

3.3.1 Soil Characterisation 

Soil chemical properties of the bulk soil are shown in Table 3.2. The pH was acidic to 

slightly acidic throughout the profile. The soil profile was non-saline (EC(1:5) < 1.5 dS/m; 

Murphy and Eldridge 1998). A large decrease in EC occurred between 0-5 cm and 5-10 

cm depth, while SAR increased with depth to 30 cm. ESP increased with depth to 50 cm, 

while SOC, total N and total S showed highest values at the surface, and decreased with 

depth.  

 

The particle size distribution and bulk density are shown in Table 3.3. Bulk density 

displayed an increase with depth to 30 cm, after which it decreased slightly. The soil 

texture was a sandy loam at the surface, grading to a sandy clay loam at depth.  

 

Table 3.2 Soil chemical properties of the original soil before treatment with the 
EC and SAR solutions   

Depth 
(cm) 

pH1:5(H2O) EC1:5 
(dS/m) 

SAR ESP SOC (%) Total N (%) Total S (%) 

0-5 4.40 0.31 1.25 1.17 3.87 0.298 0.029 
5-10 5.23 0.17 2.37 4.91 1.88 0.136 0.011 

10-20 5.32 0.15 2.51 13.12 0.99 0.060 0.007 
20-30 5.68 0.16 4.22 15.37 0.74 0.040 0.004 
30-50 5.95 0.15 3.60 15.94 0.48 0.029 0.003 

 

 

Table 3.3 Particle size distribution and bulk density of the bulk soil 
Depth (cm) Sand (%) Silt (%) Clay (%) Soil Texture Bulk Density 

(Mg/m3) 
0-5 71.0 13.6 14.5 Sandy loam 1.19 

5-10 73.7 10.5 20.4 Sandy loam 1.48 
10-20 71.7 3.6 24.0 Sandy clay loam 1.61 
20-30 68.3 12.2 21.0 Sandy clay loam 1.68 
30-50 71.6 5.5 22.1 Sandy clay loam 1.61 

 

Following leaching with the solutions containing combinations of EC and SAR, the pH, 

EC, SAR and ESP values were measured again after the equilibration period of three 

days. Figure 3.3 shows that, following leaching, the pH of all combinations of EC and 

SAR in the 0-5 cm increased relative to the bulk (original) soil. However, below 5 cm, 

the pH of all treatments was different to that of the untreated soil, but no clear pattern 

emerged.  
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Figure 3.3 pH1:5(H2O) of the leached soils after equilibration 
 

Figure 3.4 indicates that the original soil profile had a constant and low EC with depth. 

Following leaching, there was a decrease in EC with depth in the control and low-

salinity high-sodicity treatments. The high-salinity treatments showed the greatest 

increases in EC following leaching, while the mid-salinity treatments showed a smaller 

increase.  
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Figure 3.4  EC1:5 of the leached soils after equilibration 
 

Figure 3.5 indicates that the SAR of the original soil solution increased with depth. 

Following leaching, the SAR in the 0-5 cm layer increased in three of the treatments 
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(mid-salinity low-sodicity, mid-salinity high-sodicity, and high-salinity high-sodicity), 

while the SAR was greater than the bulk soil at all depths in the two high sodicity 

treatments. The soil solutions of the treated soils did not display the same EC or SAR as 

the salt solutions they were originally leached with.  
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Figure 3.5  SAR of the leached soils after equilibration 
 

Figure 3.6 indicates that the original soil increased in ESP with depth, and would be 

considered sodic from 10 cm to 50 cm (ESP > 6). Figure 3.6 also indicates that 

following leaching, the high-salinity high-sodicity and mid-salinity high-sodicity 

treatments showed the greatest increases in ESP. Leaching with distilled water (control) 

increased the ESP to a depth of 10 cm, before causing a decrease between 10 cm and 50 

cm relative to the bulk soil. The mid-salinity low-sodicity treatment showed a similar 

trend, while the high-salinity low-sodicity treatment showed a lower ESP compared to 

the bulk soil at all depths with the exception of the 0-5 cm layer.  
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Figure 3.6  ESP of the leached soils after equilibration.  
Note:  The dashed line indicates ESP = 6 
 

3.3.2 Soil Respiration 

An example of the calculation of CO2 evolution is shown in Table B1 in Appendix B. 

Because respiration was minimal at depths below 10 cm (soda lime sample ≈ blank soda 

lime), it was below the detection limit of the soda lime method, and hence, too low to 

measure with confidence at depth. Therefore, only results from the 0-5 cm and 5-10 cm 

layers are shown. Soil respiration was significantly different with EC (P<0.001) and 

SAR (P<0.01). There were also significant interactions between EC and SAR (P<0.01). 

Data pooled over the 12 weeks to 10 cm showed that respiration was highest in the 

control treatment (EC 0.5 SAR 1; Table 3.4). Respiration was lowest in the mid-salinity 

treatments, with the respiration rate significantly lower in the mid-salinity high-sodicity 

treatment compared to the mid-salinity low-sodicity treatment.  

 

 Table 3.4 Interaction of the treatment effects on soil respiration rates (CO2-C 
mg/kgOD soil/week) for 0-10 cm depth soil.  

SAR EC 1 30 
0.5 80.0a 55.9ab 
10 5.4c 1.3d 
30 27.0b 37.9b 

Note: Data were square-root transformed for statistical analysis with back-transformed means 
presented. Different letters within a column or within a row represent a significant difference (P<0.05). 
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Figures 3.7a and 3.7b shows the cumulative soil respiration measured at two-week 

intervals for the six treatments at the 0-5 and 5-10 cm depths, respectively. The control 

and low-salinity high-sodicity treatments showed the highest cumulative respiration 

rates with 2246 mg CO2-C/kg and 1947 mg CO2-C/kg evolved, respectively, at the end 

of the 12-week incubation period in the 0-5 cm layer. The mid-salinity high-sodicity 

treatment had the lowest cumulative respiration rate (705 mg CO2-C/kg; Figure 3.7a). 

Similarly, in the 5-10 cm layer, the mid-salinity high-sodicity treatment also showed the 

lowest respiration rate (64 mg CO2-C/kg; Figure 3.7b). In the same layer, the low-

salinity high-sodicity treatment had a significantly higher rate of respiration (867 mg 

CO2-C/kg) at the end of the 12-week incubation period compared to the other treatments. 

The cumulative respiration rates in the control and high-salinity high-sodicity 

treatments were similar after 12 weeks (551 mg CO2-C/kg and 524 mg CO2-C/kg, 

respectively), as were the respiration rates in the mid-salinity low-sodicity and high-

salinity low-sodicity treatments (280 mg CO2-C/kg and 309 mg CO2-C/kg, respectively).   
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Figure 3.7 Effects of the different EC/SAR treatments on cumulative 
respiration rates over the 12 week incubation period at a) 0-5 cm and b) 5-10 cm.  
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Vertical bar represents the SED. 

b) 
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3.3.3 Soil Microbial Biomass 

SMB data pooled over the 12 weeks, showed the SMB decreased significantly with 

depth to 30 cm (P<0.001), increased significantly with increasing EC (P<0.001), and 

decreased significantly with increasing SAR in the mid-salinity (EC 10) treatment 

(P<0.001; Tables 3.5 and 3.6). There was also a highly significant interaction between 

EC and SAR (P<0.001; Table 3.6). 

 

Table 3.5 Effects of the different EC/SAR treatments on SMB with depth, EC 
and SAR.   
Depth (cm) 0-5 5-10 10-20 20-30 30-50 
SMB-C (mg/kg) 803.72a 396.41b 236.24c 164.10d 145.93d 
EC 0.5 10.0 30   
SMB-C (mg/kg) 165.38a 311.52b 510.76c   
SAR 1 30    
SMB-C (mg/kg) 337.82a 289.68b    
Note:  Data were square-root transformed for statistical analysis with back-transformed means 
presented. Different letters within a row indicate a significant difference (P<0.001). 
 

Table 3.6 Interaction of the treatment effects on the SMB (mg/kg).  
SAR EC 1 30 

0.5 158.46a 172.42a 
10 352.69c 273.01b 
30 565.44d 458.73d 

Note:  Data were square-root transformed for statistical analysis with back-transformed means 
presented. Different letters within a column or within a row represent a highly significant difference 
(P<0.001).  
 

Significant interactions also occurred between depth, EC and SAR (P<0.05; Figure 3.8). 

The control treatment had the lowest levels of SMB at the surface. SMB declined in all 

treatments with depthexcept in the high-salinity low-sodicity treatment, which declined 

to 30 cm, then increased in the 30-50 cm layer. 
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Figure 3.8 Treatment effects on the SMB with depth.  
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Horizontal bar represents the SED. 
 

Figure 3.9 (a, b, c, d, and e) shows the effect of the EC/SAR treatments on the SMB for 

the 0-5, 5-10, 10-20, 20-30 and 30-50 cm depths respectively. There were significant 

interactions between treatments, depths and time over the 12-week incubation period 

(P<0.01). The high-salinity treatments generally displayed the highest levels of SMB 

over the 12-week incubation period, while the control and low-salinity treatments 

displayed the lowest levels of SMB. The SMB in the high-salinity treatments also 

increased at Week 1 at all depths, while the mid-salinity, low-salinity and control 

treatments all decreased. However, the mid-salinity low-sodicity treatment increased in 

SMB at depth (from 10 -50 cm). In the 0-5 cm and 5-10 cm layers, there is a gradual 

decrease in SMB over the 12 weeks in the control, low- and mid-salinity treatments.
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Figure 3.9 Treatment effects on the SMB over the 12-week incubation period at 
a) 0-5 cm, b) 5-10 cm, c) 10-20 cm, d) 20-30 cm and e) 30-50 cm.  
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Vertical bar represents the SED 
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3.3.4 Microbial Indices  

Table 3.7 shows the effects of EC and SAR on qCO2 and Cmic:Corg in the 0-5 and 5-10 

cm layers at the end of the 12-week incubation period. The qCO2 was highest in the 

control (EC 0.5 SAR 1) and low-salinity high-sodicity (EC 0.5 SAR 30) treatments at 

both depths. The qCO2 decreased as EC increased in the 0-5 cm layer. Similarly, the 

qCO2 was lower in the mid- and high-salinity treatments in the 5-10 cm layer compared 

to the control and low-salinity high-sodicity treatments. The Cmic:Corg increased with 

increasing EC in both the 0-5 and 5-10 cm layers (Table 3.7). 

 

Table 3.7 Effects of the different EC/SAR treatments on qCO2 and Cmic:Corg  

Depth (cm) EC 
(salinity) 

SAR 
(sodicity) 

qCO2 
(mg CO2-C/d/mg 

SMB-C) 
Cmic:Corg 

0.5 (control) 1 (control) 0.080 0.88 
0.5 (low) 30 (high) 0.060 1.02 
10 (mid) 1 (low) 0.014 1.86 
10 (mid) 30 (high) 0.015 1.47 
30 (high) 1 (low) 0.013 2.31 

0-5 

30 (high) 30 (high) 0.010 2.77 
0.5 (control) 1 (control) 0.035 1.00 

0.5 (low) 30 (high) 0.080 0.68 
10 (mid) 1 (low) 0.009 1.99 
10 (mid) 30 (high) 0.003 1.52 
30 (high) 1 (low) 0.006 3.58 

5-10 

30 (high) 30 (high) 0.012 2.72 
 
 

3.4 Discussion 

3.4.1 Effects of Leaching 

Following leaching, pH values were altered but there was no distinct pattern. The 

decrease in EC throughout the profile following leaching with distilled water and in the 

low-salinity high-sodicity treatment was most likely due to soluble salts contained in the 

profile being leached out with a low EC solution. Conversely, the increase in EC 

following leaching with the higher salinity solutions (mid-salinity and high-salinity) 

was due to the addition of soluble salts from the leaching solutions. However, this effect 

is dependent on the initial EC values of the original soil, and occurred in this case 

because the EC values of the original soils were lower than those of the mid-salinity and 

high-salinity treatments.  
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The largest increases in sodicity, measured by SAR and ESP, occurred following 

leaching with the high-sodicity solutions combined with the mid- and high-salinities. In 

these solutions, the highest concentrations of soluble Na+ in the leaching solutions 

increased the SAR of the soil solution and concomitantly increased the ESP of the 

exchange complex. Similarly, Crescimanno and De Santis (2004) found Na+ is adsorbed 

by the exchange phase on soils when leached with solutions high in Na+, while Ca2+ is 

displaced from soil as a result of Na-Ca exchange, indicating that Na can be 

progressively accumulated, enhancing sodification of soils. In this study, following 

leaching with the high-salinity low-sodicity solution, the addition of soluble Ca2+ 

provided excess Ca2+ for exchange, causing the resultant decrease in the SAR and ESP. 

 

3.4.2 Measures of Biological Activity 

In the current study, the qCO2, the specific respiration rate, was lowest in the high-

salinity treatment and highest in the low-salinity treatments. However, a study by 

Wichern et al. (2006) showed that the qCO2 did not differ significantly with salt content, 

indicating that the microbial biomass was in a similar physiological condition, despite 

the salt content. They suggested that a microbial community previously prone to salinity 

has adapted to it. Similarly, a study by Anderson (1998) showed that irrigation with 

acidic waters to an already acidic soil did not affect the qCO2, as the microbial 

population had already adapted to the conditions. Wardle and Ghani (1995) have 

suggested that while qCO2 may provide a measure of the efficiency by which the SMB 

is utilising C resources, its use as an indicator of disturbance and stress can be 

confounding. They suggested that a reduction in stress by imposing a chemical 

disturbance may increase microbial efficiency and decrease qCO2, but this was 

dependent on the nutrient status of the system in question. Increased stress has been 

shown to reduce qCO2 (eg. Chander and Brookes 1991b) due to shorter life span and 

lower efficiency, or increase qCO2  due to either a diversion of energy to maintenance 

rather than growth of the microbial population, or a shift in the bacteria to fungi ratio 

(Anderson and Domsch 1993). In this study, it is possible that the increase in the 

Cmic:Corg with increasing EC may reflect increasing substrate availability with increasing 

salt concentration for microbial synthesis but decreasing respiration; thus the qCO2 may 

reflect a shift in population structure to one that is dominated by less active 

microorganisms with lower respiration rates compared to a population dominated by 
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more active mircroorganisms (Adu and Oades 1978; Sadinha et al. 2003). Alternatively, 

more SMB-C was respired as a proportion of SOC at low salinity than at high salinity, 

resulting in high respiration rates but low SMB-C at low salinity levels, compared to the 

high salinity treatments treatments. However, both the qCO2 and Cmic:Corg should also 

be used with caution as they were determined at the end of the 12-week incubation 

period only, and can merely provide an indication on microbial activity due to EC and 

SAR.  

 

While the SMB showed the largest increases in the high-salinity treatments in this study, 

biological activity will cease at very high salinities as a result of high osmotic pressure. 

McCormick and Wolf (1980) also found microbial activity ceased at a salt concentration 

of 100 mg/g (EC = 37.30 dS/m in 1:5 soil:water extracts). In the same study, the 

addition of NaCl at all concentrations inhibited respiration, including at the lowest rate 

of 0.25 mg NaCl/g, which gave an EC1:5 of 0.19 dS/m. In the current study, salinity 

levels were well below those previously reported to cause microbial activity to cease, 

with the highest EC in the study measured at 3.65 dS/m in a 1:5 soil:water extract, 

following leaching with a solution at an EC of 30 dS/m. However, EC levels following 

leaching with the mid- and high-salinity solutions were higher than the 0.19 dS/m 

reported by McCormick and Wolf (1980) which decreased respiration. 

 

It has been suggested by Beltran-Hernandez et al. (1999) that applying salt to a soil may 

deleteriously affect microorganisms not adapted to saline conditions, however, this does 

not appear to be the case in this study. The initial microbial biomass increased in the 

high-salinity treatments following the equilibration period as soil environmental 

conditions in terms of temperature and moisture were optimal, with the easily 

decomposable substrate being mineralised first. The gradual decline in SMB over the 

duration of the 12 week experimental period (Figure 3.9) may indicate that the system is 

reaching a steady state after the initial disturbance of salinisation and sodication. The 

microbial biomass may also be affected by gradual changes in the osmotic potential due 

to an increased concentration in salt from moisture loss, as water was not added to 

samples analysed for SMB during the incubation period. Simultaneously, as the period 

of the incubation increased, it is probable that the amount of easily decomposable 

substrate decreased, resulting in an increase in the proportion of substrate that is of a 

lower quality, or material that is physically protected in aggregates, and hence, more 

difficult to decompose. While the determination of changes in SOM chemistry may 
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have provided an indication as to whether these processes occurred, time and budgetary 

constraints precluded this measurement. It is therefore suggested that the microbial 

population adjusted to compensate for the substrate becoming increasingly more 

difficult to decompose. However, a study by Baldock and Oades (1989) showed that 

increasing the electrolyte concentration caused alterations in the rate of decomposition. 

At the end of the experimental period, they showed that the amount of material 

decomposed was similar between treatments as the change in rate was attributed to 

alterations in the osmotic effect. In the current study, the electrolyte concentration 

appeared to alter the rate of decomposition, but the extent of decomposition cannot be 

confirmed. 

 

In the low-salinity high-sodicity treatment, the concentration of Na+ available for 

exchange was not sufficient to cause problems associated with sodicity, and caused a 

decrease in ESP (Figure 3.6), indicating the availability of substrate was not related to 

increased dispersion. Figure 3.10 shows that the two effects related to increased 

dispersion and increased solubility of organic matter, both of which increase substrate 

availability to microbial population, can occur. Increasing sodicity can increase the 

disruption of microaggregates due to slaking and dispersion which alters soil physical 

properties (Rengasamy and Sumner 1998). Dispersion is most likely the dominant 

process causing increased substrate availability in those soils which had been leached 

with the high-sodicity solutions, particularly in the high-salinity high-sodicity treatment 

(Figure 3.10). Both macro- and microaggregates have been shown to contain organic 

matter in their cores (Tisdall and Oades 1982), which is physically protected from 

decomposition. Thus, under sodic conditions, SOC can be rapidly lost when these 

aggregates disperse, and the organic matter contained within the aggregates is available 

for decomposition. Conversely, increasing electrolyte concentration causes soil to 

flocculate, offsetting those effects caused by sodicity on a soil’s physical properties 

(Shainberg and Letey 1984). However, sodic behaviour is dependent on the electrolyte 

concentration of the applied water (Quirk and Schofield 1955), with the electrolyte 

concentrations of the leaching solutions in the mid-salinity low-sodicity and the high-

salinity low-sodicity treatments likely to be sufficient to prevent dispersion. In those 

soils which are likely to remain flocculated following leaching with the mid- and high-

salinity solutions, the increased availability of substrate is probably due to the effects of 

the salts increasing the solubility of the organic matter present. However, time and 

budgetary constraints prevented the measurement of DOC.  
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Figure 3.10  The likely effect of dispersion and aggregation following leaching 
with the EC/SAR treatments.  
Note:   CFC indicates the Critical Flocculation Concentration. 
Source:   Adapted from Rengasamy et al. (1984). 
 
 
Respiration does not appear to correlate with SMB, although it does not necessarily 

need to follow the same trends. The low-salinity and control treatments showed the 

highest rates of CO2 evolution, despite displaying the lowest levels of SMB throughout 

the incubation period. Respiration rates can be confounded by factors such as the 

substrate availability and the composition of the microbial population (Wang et al. 

2003), which may be altered under different physicochemical conditions such that the 

size of the SMB may not reflect biological activities. Sarig et al. (1993) found a greater 

accumulation of SMB under saline irrigation water (EC 5 and SAR 10) compared to 

regular water (EC 1 SAR 10). This can be attributed to increasing osmotic stress 

causing an increase in the microbial population (Polonenko et al. 1981), and lower 

levels of C mineralisation, and hence, lower respiration rates.  

 

Water-soluble C is considered to be the most active and immediately available organic 

substrate for the microbial population (Liu et al. 2006). Hence, additional water-soluble 

C can become available in all treatments due to the increase in moisture content 
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following leaching. This could result in the increased respiratory activities of the 

microbial population, with the highest rates of respiration occurring in the low-salinity 

and control treatments as osmotic stresses may play a role in the mid- and high-salinity 

treatments. The higher levels of SMB and lower rates of respiration in the high-salinity 

treatments may be the result of a shift in the composition of the microbial community, 

as suggested earlier. Rasul et al. (2006) found the proportion of fungi in the total 

microbial biomass to be lower in a saline soil compared to a non-saline soil. Similarly, 

Pankhurst et al.  (2001) found that increasing salinity caused a shift towards a less 

active bacterial dominated community that was less diverse. However, the 

determination of any shifts in community structure is beyond the scope of this project.  

 

3.4.3 Salinity and Sodicity Effects on Soil Carbon Dynamics 

Two competing processes occur in saline and sodic soils which affect microbial activity: 

increasing osmotic potential as salt concentration increases (low SMB turnover and low 

respiration rate) and increasing availability of organic matter (high SMB turnover and 

high respiration rate). Availability of organic matter can be increased through either 

dispersion or increased dissolution and hydrolysis by salts. Increasing salinity and 

sodicity have the potential to increase the amount of DOC available to the microbial 

population by either i) dissolving organic matter, or  ii) converting it either to a more 

dispersed form (disaggregation) or one that is more easily decomposable, and hence, 

more readily available. Jandl and Sollins (1997) have suggested that soluble C can 

provide a large proportion of the microbial substrate, and has the potential to be 

replenished rapidly by the continued dissolution of organic matter.  

 

When organic matter is solubilised into colloidal form, the increased availability of 

substrate can counter some of the environmental stresses on the microbial population 

(Pathak and Rao 1998), such as that caused by increased osmotic potential and ion 

toxicities. In a separate process, additional substrate for the microbial biomass may also 

be provided through the process of desorption of SOC from clays. High EC solutions, 

particularly those high in Na+, can rapidly alter the composition of exchange sites on 

clays, causing SOC sorbed on to clay surfaces to be desorbed, which may have occurred 

in this study. In the high-salinity treatments, it is possible that substrate was readily 

available and also easily decomposable to offset some of the stresses caused by the 

increased salt concentration. This process may be indicated by the higher Cmic:Corg in 
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the high-salinity treatments compared to the low- and mid-salinity treatments, as the 

ratio usually increases where substrate availability increases (Anderson and Domsch 1989; 

Haynes 1999). As a result, the microbial population increased due to increased nutrient 

supply. After the initial increase in SMB within a week, there was a small decrease in SMB, 

accompanied by low respiration rates in the high-salinity treatments over the 12-week 

period. As previously mentioned, the Cmic:Corg should be used with caution in this study as 

it was determined at the end of the incubation period only and therefore only provides an 

indication on the effects of the EC/SAR treatments on C fluxes. 

 

In the mid-salinity treatments, it is possible that the salt concentrations in solution were not 

high enough to dissolve additional organic matter. However, it is also suggested that the salt 

concentrations were high enough to increase the osmotic stress, and hence, decrease the 

microbial respiration (indicated in the cumulative respiration), and the size of the microbial 

population relative to the high-salinity treatments. Thus, processes that increase the 

solubility of organic matter could conceivably increase the microbial population in the short 

term. However, in the longer term, continued dissolution of organic matter and its 

mineralisation can lead to increased losses of SOC stocks, particularly in areas where 

biomass inputs are decreased as a result of degraded environmental conditions.  

 

3.5 Summary and Conclusion  

The effects on the SMB are more evident with increasing salinity than with increasing 

sodicity. This has implications for natural resource management and C accounting. Where 

salinisation and sodification of soils is occurring, it is suggested that soil C stores are 

becoming depleted as organic matter is increasingly solubilised, providing additional 

substrate for the microbial population, while plant inputs decrease due to stresses caused by 

increasing salt content, induced ion toxicities and deficiencies, and declines in soil physical 

conditions. As this process continues, SOC is likely to be rapidly depleted as mineralisation 

of SOM continues and inputs of C decrease. However, in this study, saline and sodic effects 

on the SMB and microbial respiration were artificially created from soil sampled from a 

vegetated profile. Salinisation and sodication occurs over longer time frames than that 

measured in this study, and hence, may allow the microbial population to adapt to hostile 

environmental conditions. Chapter 4 describes the SMB and respiration rates from salt-

scalded profiles sampled from the field.   
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CHAPTER 4: LABORATORY DETERMINATIONS OF SOIL MICROBIAL 

BIOMASS AND SOIL RESPIRATION FROM SALT-SCALDED SOILS 

 

4.1 Introduction 

Extensive research has been undertaken in the past on the physicochemical properties of 

saline and sodic soils and their amelioration, particularly in regards to soil structure and 

vegetation health. However, the effects of salinity and sodicity on C dynamics, with 

respect to C mineralisation or losses from soils, are not as well documented or 

understood.  

 

As described in Section 2.3, the rate of C accumulation or loss is dependent on the 

balance between the amount of C input and C loss.  C input is dependent on plant inputs 

and biomass accumulation, as SOC levels are dominated by deposition from litterfall 

and roots. C inputs in salt-affected soils are also likely to decrease as vegetation health 

declines due to the direct effects of toxic ions and changes in osmotic potential, as 

described in Section 2.2.3 and indirect effects in the form of declining soil structure. 

Sodic soils can also indirectly impact on plant growth due to their adverse effects on 

soil physical properties which alter plant-water relations. 

 

This chapter addresses key issues in regard to C dynamics in saline-sodic soils under 

controlled conditions in the laboratory. It assesses how soil respiration and the SMB are 

affected by salinity and sodicity in existing scalded soils, and assesses the effects 

following amelioration with gypsum. Soil respiration was determined with the use of 

soda lime traps, while recognising the issues discussed in Section 3.1. Soils affected by 

secondary salinisation from Bevendale and Young were sampled and used in the 

laboratory experiments; these effects were compared with those on prepared saline and 

saline-sodic soils, as described in Chapter 3. 
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4.2 Materials and Methods 

4.2.1 Site Descriptions 

The soil samples used in the laboratory experiments were collected from salt-scalded 

profiles located on two properties. The first profile was located on a property, 

“Tarcoola” in Bevendale, approximately 40 km south-west of Crookwell (34 30’ 45” S, 

149 05’ 00” E; Figure 4.1), in the Southern Tablelands region of NSW. The area has 

been affected by seepage salinity and hence, exhibits scalding of the soil surface. This 

scalding is estimated to have existed for approximately 60 years (Wagner 2001). The 

soil profile sampled was a Yellow Sodosol (Isbell 1996), located in an area that was 

extensively scalded (Plate 4.1). The profile consisted of a loamy sand overlying a sandy 

loam. The second profile was a Red Kurosol (Isbell 1996), located on a property, 

“Avoca,” approximately 20 km north-west of Young (34 o 14’ 52.31” S, 148o 24’ 37.02” 

E; Figure 4.1) in the South West Slopes region of NSW. The profile consisted of a 

loamy sand overlying a heavy clay. The profile was located in an area that showed 

patches of scalding (Plate 4.2); the scalds at the Avoca site have become apparent 

within the last 10 years (B. Murphy pers. comm. September 2003). 
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Figure 4.1 Location of the two field sites, “Tarcoola” approximately 40 km 
south west of Crookwell, and “Avoca,” 20 km north-west of Young.  
  

 
Plate 4.1 Extensive scalding at the “Tarcoola” site 

Scald 

Scald 
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Plate 4.2  Scalding at the “Avoca” site 
 

4.2.2 Field Sampling 

Samples were taken from 0-5, 5-10, 10-20, 20-30, 30-50 cm depths of each of the soil 

profiles, transported back to the laboratory in polyethylene bags, and stored at 4oC prior 

to analysis. Soils were sampled with a shovel from a soil pit at each depth interval. Bulk 

density cores were also taken from each depth as described in Section A1.1 in Appendix 

A. 

 

4.2.3 Sample Preparation and Soil Chemical Analyses 

Bulk density cores were oven dried at 105oC for 24 hours, and from the known soil core 

volume and oven dry weight contained in the soil core, bulk density was calculated, 

which is described in more detail in Section A1.1 in Appendix A. EC, pH and soluble 

cations were determined in 1:5 soil:water extracts. Soluble cations in the 1:5 soil:water 

extracts were analysed by ICP-AES. Exchangeable cations were extracted by using 1 M 

ammonium acetate extracts buffered to a pH of 7 and also determined by ICP-AES. A 

more detailed description of the analysis is found in Appendix A. The sodicity of the 

Scald 

Scald 
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samples were determined by calculating the SAR and ESP, described in Equations 2.1 

and 2.2, respectively. 

 

Organic C, total N and total S were determined by high temperature combustion on a 

CNS LECO-2000 analyser. Where the pH ≥ 7, samples were pre-treated with sulfurous 

acid prior to C analysis. Particle size analysis was undertaken using the hydrometer 

method (Bouyoucos 1936).  

 

Samples used for soil biological analysis were stored at 4oC prior to analysis. Soils from 

all depths were used for the measurement of soil respiration and SMB and were initially 

sieved at their field moisture contents through a 5 mm sieve. Sub-samples were then 

placed into 9.6 L buckets with holes drilled through the bottoms and covered with filter 

paper. The “unamended” soils were supersaturated to field capacity with water and 

allowed to equilibrate for 72 hours (termed Tarcoola and Avoca, respectively). The 

“amended” soils (termed Amended Tarcoola and Amended Avoca, respectively) were 

prepared with the incorporation of nursery grade gypsum (CaSO4.2H2O) at a rate of 10 

t/ha in powder form and subjected to the same wetting conditions as for the unamended 

soils. The soils were then maintained in a constant temperature environment at 25oC for 

the duration of the incubation, and analysed for respiration and SMB, as described 

below. 

 

4.3.4 Soil Biological Analysis 

Soil respiration was determined according to a modification of the method originally 

developed by Edwards (1982), as described in Section 3.3.4, using soda lime traps.  

 

Soil microbial biomass was measured by the chloroform fumigation-extraction 

procedure described in Vance et al. (1987) and set out in Section 3.3.5.  

 

All biological analyses were undertaken in quadruplicate.  
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4.2.5 Statistical Analysis 

Data were statistically analysed using the GENSTAT Version 8.0 statistical analysis 

program (Payne 2005). Where respiration and SMB displayed negative values 

(negligible respiration and SMB), 0.01 was inserted; the data were then square-root 

transformed in order to satisfy the assumptions of ANOVA with back-transformed 

means presented. The block structure was given by week within replicate, within depth, 

within site, and the treatment structure was given by depth, gypsum, site, week and their 

interaction. Data were analysed by ANOVA and subjected to LSD testing at the 5 % 

level where significant differences were found.  

4.2.6 Microbial Indices 

The qCO2 was calculated from the soil respiration rate and SMB according to Equation 

3.5 in Section 3.2.4.3 at the end of the 12-week incubation period to provide an 

indication of the effects of gypsum on microbial activity. The Cmic:Corg was also 

calculated, as described in Section 3.2.4.3 at the end of the 12-week incubation period. 

 

4.3 Results  

4.3.1 Soil Properties 

Soil bulk density, pH, EC, SAR, ESP, SOC, N and S were measured in the soils from 

the two sites, Tarcoola and Avoca. Soil bulk density at Tarcoola showed a general 

increase with depth to 30 cm, after which it decreased again; at Avoca, it generally 

remained constant (Table 4.1).  

 

Table 4.1  Soil bulk density with depth 
Depth (cm) Tarcoola (Mg/m3) Avoca (Mg/m3) 

0-5 1.46 1.65 
5-10 1.48 1.69 

10-20 1.56 1.73 
20-30 1.60 1.72 
30-50 1.47 1.63 

 

The particle size distribution and soil texture of the bulk soils from Tarcoola and Avoca 

is shown in Table 4.2. At Tarcoola, the soil texture changed gradually from a loamy 

sand at the surface to a sandy loam from 10 cm to the bottom of the profile.  The 

decrease in bulk density from 30 cm at Tarcoola coincided with an increase in the sand 
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content and a decrease in the silt content relative to the 20-30 cm depth. At Avoca, the 

soil texture was a loamy sand at the surface, with an abrupt change at 30 cm to a heavy 

clay.   

 

Table 4.2 Particle size distribution  
Tarcoola 

 
Avoca 

Depth 
(cm) Sand 

(%) 
Silt 
(%) 

Clay 
(%) 

Soil Texture Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Soil Texture 

0-5 82.9 10.6 16.7 Loamy sand 83.5 2.5 14.4 Loamy sand 
5-10 82.3 9.7 17.1 Sandy loam 85.6 2.6 14.7 Loamy sand 
10-20 61.2 19.8 33.2 Sandy loam 88.7 6.5 14.5 Loamy sand 
20-30 66.4 19.4 28.8 Sandy loam 89.5 6.5 15.1 Loamy sand 
30-50 70.0 5.9 29.2 Sandy loam 32.7 6.6 62.4 Heavy clay 

 

Soil properties of the bulk samples from the two sites are shown in Table 4.3. The 

Tarcoola samples were highly alkaline (ie. pH ≥ 9.6), non-saline (EC ≤ 0.84 dS/m) and 

highly sodic (ie. ESP ≥ 12) at all depths. EC decreased with depth from 10 cm, and SOC, 

total N and total S were also very low throughout the profile, with SOC < 1% at all 

depths. The Avoca soils were highly acidic (pH ≤ 4.8), non-saline (EC ≤ 1.5dS/m) and 

highly sodic (ie. ESP ≥ 12) throughout the soil profile. EC decreased with depth to 30 

cm, and then increased in the 30-50 cm layer while SOC, total N and total S were low 

throughout the profile. Whilst the soils were non-saline at the time of sampling, the sites 

were selected on the basis of a lack of vegetation, which indicated that salinity had 

occurred in the past. This is supported by a study of historical aerial photographs in the 

area by Wagner (2001), and discussed in more detail in Section 6.4.3. 

 
Table 4.3  Soil properties of the bulk soil from Avoca and Tarcoola 

pH 1:5(H2O) EC1:5 
(dS/m) 

ESP SAR SOC (%) Total N 
(%) 

Total S 
(%) Depth (cm) 

Tarcoola 
0-5 10.22 0.70 86.4 3.6 0.39 0.018 0.205 

5-10 10.31 0.84 67.2 4.6 0.47 0.020 0.246 
10-20 10.12 0.74 52.0 3.7 0.18 <0.01 0.250 
20-30 9.56 0.27 51.7 1.6 0.28 0.011 0.281 
30-50 9.63 0.19 35.1 1.0 0.20 0.013 0.272 

 Avoca 
0-5 4.81 1.50 11.6 1.2 1.06 0.075 0.010 

5-10 4.58 0.60 72.7 1.0 0.23 0.014 0.003 
10-20 4.32 0.86 62.1 1.1 0.11 <0.01 0.003 
20-30 4.27 0.62 41.1 0.8 0.10 <0.01 0.002 
30-50 4.36 1.20 37.7 2.7 0.29 0.016 0.023 
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Soil properties, pH, EC, SAR and ESP, of the amended and unamended soils from 

Tarcoola and Avoca are shown in Figures 4.2, 4.3, 4.4 and 4.5, respectively. The pH of 

the Tarcoola soil was highly alkaline, with a pH of 10 decreasing to a pH of 9.6 at depth. 

The addition of gypsum decreased the pH to approximately 8 at all depths. The pH of 

the Avoca soil was acidic, and showed a general decrease with depth to 30 cm. The 

addition of gypsum resulted in an increase in pH at all depths.  
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Figure 4.2 pH1:5H2O of the soils amended with gypsum and unamended soils 
from Tarcoola and Avoca  
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Figure 4.3 EC1:5 of the soils amended with gypsum and unamended soils from 
Tarcoola and Avoca  
 

The EC of the Tarcoola soil was moderately high in the top three layers (EC of 0.70, 

0.84 and 0.74 dS/m respectively) before decreasing with depth (Figure 4.2). The EC of 

the Avoca soil was relatively high in the 0-5 cm layer (EC = 1.5 dS/m) but showed no 

pattern with depth. Following the incorporation of gypsum, the EC of both soils was 

increased at all depths. 
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Figure 4.4  SAR of the soils amended with gypsum and unamended soils from 
Avoca and Tarcoola 
 

The SAR of the soil solution from the Tarcoola profile generally showed an overall 

decline with depth (Figure 4.4). However, the Amended Tarcoola soil showed no clear 

pattern with depth. The SAR of the unamended Avoca soil was lower than the 

unamended Tarcoola soil at all depths with the exception of the 30-50 cm layer. With 

the addition of gypsum, the SAR of the Amended Avoca soil decreased at all depths 

relative to the unamended Avoca soil. In both the Avoca and Amended Avoca soils, the 

highest SAR was found in the 30-50 cm layer. 
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Figure 4.5 ESP of the unamended soils and soils amended with gypsum 
 

The ESP showed the greatest increase between 0-5 cm and 5-10 cm depth before decreasing with 

depth in the Tarcoola soil (Figure 4.4). Following the incorporation of gypsum, the ESP 

decreased at all depths. Similarly, the ESP of the Amended Avoca soils decreased at all depths 

following incorporation of gypsum compared to the unamended soils.  

 

4.3.2 Soil Respiration 

Figures 4.6a and 4.6b shows the cumulative soil respiration measured at two-week intervals for 

the six treatments at the 0-5 and 5-10 cm depths, respectively. Because respiration was minimal 

at depths below 10 cm (soda lime sample ≈ blank soda lime), it was below the detection limit of 

the soda lime method, and hence, data for the lower depths are not shown.  

 

There was a significant interaction in respiration rates between site, depth, week and gypsum 

addition, as shown in Figure 4.6 (P<0.001). Respiration was higher in the 0-5 cm layer in the 

Avoca soils compared to the Tarcoola soils in the 0-5 cm layer, while the Amended Tarcoola soil 

had the lowest cumulative respiration rate. However, in the 5-10 cm layer the Tarcoola soils 

displayed the highest rates of respiration. The respiration rates in the Amended Tarcoola and 
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Amended Avoca soils were generally slightly lower than the respiration rates in the unamended 

counterparts over the 12-week experimental period. 
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Figure 4.6 Gypsum effects on cumulative respiration rates over the 12 week 
incubation period from Avoca and Tarcoola at a) 0-5 cm and b) 5-10 cm 
Note:  Data were square-root transformed for statistical analysis with back-transformed means 
presented. Vertical bar represents the SED. 
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4.3.3. Soil Microbial Biomass 

Data pooled for both soils over the 12 weeks showed the SMB decreased significantly 

with depth down to 30 cm but increased again at the 30-50 cm  depth(P<0.001). The 

SMB did not differ significantly with the addition of gypsum nor with site (P>0.05; 

Table 4.4). There was a significant interaction between site and depth (P<0.01), as 

shown in Figure 4.7. The SMB decreased with depth at both sites to 30 cm, and 

increased in the 30-50 cm layer. Interactions were found to be highly significant 

between site, depth, week and gypsum addition (P<0.001), as shown in Figure 4.8.  

 

Table 4.4 Effects of depth, gypsum addition and site on the SMB.   
Depth (cm) 0-5 5-10 10-20 20-30 30-50 P 
SMB mg/kg 50.55a 23.52b 12.53c 7.08d 18.40bc P<0.001 
Gypsum (t/ha) 0 10     
SMB mg/kg 20.25a 20.07a    NS 
Site Avoca Tarcoola     
SMB mg/kg 19.18a 21.16a    NS 
Note:  Different letters within a row indicate a significant difference. NS indicates result is not 
significantly different. Data were square-root transformed for statistical analysis with back-transformed 
means presented. 
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Figure 4.7 Pooled SMB data from Avoca and Tarcoola.  
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Horizontal bar represents the SED. 
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Figure 4.8  Gypsum effects on SMB over the 12 week incubation period from 
Avoca and Tarcoola at a) 0-5 cm, b) 5-10 cm, c) 10-20 cm, d) 20-30 cm and e) 30-50 
cm.  
Note: Data were square-root transformed for statistical analysis with back-transformed means 
presented. Vertical bar represents the SED. 
 

No clear differences could be discerned in the SMB between sites in the amended and 

unamended soils. 

 

a) 
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4.3.4 Microbial Indices  

Table 4.5 shows the effects of gypsum incorporation (0 and 10 t/ha) on qCO2 and 

Cmic:Corg in the 0-5 and 5-10 cm layers at the end of the 12-week incubation period. The 

qCO2 was higher in the Avoca soils compared to the Tarcoola soils in the 0-5 cm layer, 

while no consistent effect of gypum or site was seen in the 5-10 cm layer. The addition 

of gypsum did not have a consistent effect on the qCO2. The Cmic:Corg was lower in the 

Avoca soils compared to the Tarcoola soils in the 0-5 cm layer, while there were no 

apparent differences in the 5-10 cm layer. The addition of gypsum at both sites appeared 

to decrease the Cmic:Corg compared to the unamended counterpart, primarily due to lower 

respiration rates in the former treatment. 

 

Table 4.5 Effects on qCO2 and Cmic:Corg due to gypsum incorporation and site.  

Depth (cm) Site Gypsum 
(t/ha) 

qCO2 
(mg CO2-C/d/mg 

SMB-C) 
Cmic:Corg 

Avoca 0 0.109 0.74 
Avoca 10 0.185 0.34 

Tarcoola 0 0.078 2.26 0-5 

Tarcoola 10 0.060 1.50 
Avoca 0 0.068 2.83 
Avoca 10 0.051 1.57 

Tarcoola 0 0.046 2.38 5-10 

Tarcoola 10 0.063 1.44 
 

4.4 Discussion 

4.4.1 Effects of gypsum addition 

The decrease in pH at all depths in the Amended Tarcoola soils was due to the 

incorporation and dissolution of gypsum. The decrease in pH from 10.3 in the Tarcoola 

soils to 8.3 in the Amended Tarcoola samples with the addition of gypsum is due to 

reactions of CO3
2- and HCO3

- in the original soil solution with Ca2+ from the gypsum 

(Equations 4.1a and 4.1b). Due to the high pH of the soil as a result of Na2CO3, which 

dissociates to Na+ and CO3
2- ions (Equations 4. 2a and 4.2b), the addition of gypsum 

provides a source of Ca2+ ions which precipitates as CaCO3 and Ca(HCO3)2, resulting in 

a decrease in soil pH. This may have also caused the slight increase in SAR in the 0-5 

cm layer of the Amended Tarcoola soil, due to lower concentrations of Ca2+ ions in 

solution. Alternatively, the increase in the SAR may have been caused by increases in 

Na+ ions in solution, due to exchange with Ca2+, which is most likely. This is confirmed 
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in the decrease in ESP at all depths, including the 0-5 cm layer, indicating that the 

exchangeable Ca2+ concentration had increased, and the exchangeable Na+ concentration 

had decreased. In addition to decreasing soil pH due to its role in the precipitation of 

CaCO3 and Ca(HCO3)2, the addition of gypsum also leads to proton generation and 

further reductions in pH (Chorom and Rengasamy 1997).  

 

Ca2+ + CO3
2- ↔ CaCO3      Equation 4.1a 

Ca2+ + 2HCO3
- ↔ Ca(HCO3)2     Equation 4.1b 

 

Na2CO3 ↔ 2Na+ + CO3
2-      Equation 4.2a 

CO3
2- + H2O ↔ OH- + HCO3

-     Equation 4.2b 

 

In the Amended Avoca soils, however, the pH increased at all depths with the addition 

of gypsum. It is possible that the increase in pH was the result of SO4
2- exchange from 

gypsum with hydroxyl groups on the clay particles, increasing the concentration of OH- 

in solution which results in an increase in pH. However, it is more likely that the 

increase in pH occurred due to the pH of a saturated gypsum solution from the nursery 

grade gypsum used, which was 6.6. Because the pH of the gypsum solution was higher 

than that of the Avoca soil solutions, the pH of the Amended Avoca soil solutions 

increased. This effect is further compounded by the lower buffering capacity of the soil 

due to the low clay content and high sand content throughout the profile to a depth of 30 

cm. The decrease in the ESP in the Amended Avoca soils was the result of Na-Ca 

exchange processes similar to those which occurred in the Amended Tarcoola soils. 

 

In both soils, because the amended soils were not subjected to leaching, the EC of the 

soil solution was increased compared to the unamended soils. Similarly, because the 

soils were not subjected to leaching, the SAR of the soil solutions showed a smaller 

decrease than expected in the field. While exchange reactions took place, indicated in 

the decrease in ESP, Na+ was not leached from the soil.  

 

4.4.2 Soil respiration and microbial biomass  in salt-scalded soils 

In general, gypsum-amended soils exhibited lower respiration rates than the unamended 

soils, thus supporting the salinity effects on respiration, as shown in Table 3.4 and 
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Figure 3.7. The higher respiration rate in the Avoca soil from the 0-5 cm depth 

compared to the Tarcoola soil is related to the higher SOC concentration found in the 

Avoca soil (1.06% at Avoca compared to 0.39% at Tarcoola). Previous studies have 

found a correlation between organic matter content and the size of the SMB, with higher 

levels of organic matter resulting in a larger SMB (Schnurer et al. 1985). Low SOC 

levels measured at both sites are attributed to the absence of vegetation growth in the 

scalded areas. Therefore, any C inputs into the soil are external, and most likely related 

to depositional processes. In this study, SOC levels were less than 1 % at both sites, and 

at all depths with the exception of the 0-5 cm layer at Avoca. Slightly higher SOC levels 

were found at Avoca most likely due to the difference in the length of time each site had 

been subjected to scalding, with the Avoca site having been scalded for approximately 

10 years compared to the Tarcoola site which has been scalded for approximately 60 

years. In addition, the sizes of the scalds at Avoca were smaller than those found at 

Tarcoola, and probably had SOC contributions from the lateral distribution of roots 

from nearby areas. Because scalded areas are more susceptible to erosion, losses of 

SOC are increased as SOC is usually concentrated in the surface layer and is relatively 

unconsolidated (Lal 2001). As the topsoil is eroded, SMB is also lost as it is also 

concentrated in the upper layers of the soil profile (Murphy et al. 1998), while the soil’s 

fertility and microbial resilience are decreased (Mabuhay et al. 2006). Low levels of 

SMB are further compounded in salt-scalded areas because the SMB is intimately 

associated with the rhizosphere, with microbial population densities up to an order of 

magnitude higher than in the bulk soil (Toal et al. 2000). Therefore, areas with little or 

no vegetation will have very little C deposited in the form of root exudates and root 

turnover, and hence will exhibit low levels of SMB. In this study, low levels of SMB 

were found in the profiles of both sites, and as a result, any treatment effects are 

negligible despite optimal soil moisture and temperature conditions.  

 

Under acidic conditions, the SMB can be further stressed by salinity (Rasul et al. 2006), 

which may be the case in the Avoca soils. Similarly, pH stress may also be occurring in 

the Tarcoola soils under alkaline conditions. However, because the Tarcoola site has 

been estimated to have been scalded for 60 years, the lack of C input due to absence of 

vegetation is the most likely cause of the low levels of SOC, and hence SMB and the 

lower respiration rates, which is likely to be at a minimum level, particularly in the 0-5 

cm layer. In stabilised conditions, the size of the microbial  biomass will reach 
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equilibrium with substrate supply in the soil (Liu et al. 2006); therefore, where biomass 

is low for a significant amount of time, the SMB and soil respiration rate will also 

follow a similar pattern. Similarly, the SMB and cumulative respiration rates from the 

Avoca soils will also be lower than that of a vegetated soil, such as that described in 

Chapter 3, due to scalding which has occurred over a period of 10 years, as turnover of 

the SMB occurs in the order of weeks to months (Jenkinson and Raynor 1977). Because 

microorganisms are generally more salt-tolerant than plants, the availability of substrate 

in the form of litterfall or root exudates is the limiting factor (Sarig and Steinberger 

1994) with the substrate that is available, of a lower quality in terms of biochemistry 

(Tejada et al. 2006).  

 

4.4.3 Gypsum and soil biological activity 

Soil microbial activity and the size of the microbial population are also dependent on 

soil environmental conditions (Conant et al. 2000). Gypsum has been found to increase 

the SMB by Carter (1986) and Chorom and Rengasamy (1997), who have attributed this 

to improvements in the physicochemical environment caused by the addition of gypsum. 

Improvement in soil physical properties can contribute to increased biological activity 

indirectly by improving soil structure which allows water and air to pass through pores.  

In this study, samples were subjected to optimal soil moisture and temperature 

conditions. While the addition of gypsum resulted in a pH change towards neutral in 

both soils, it may be argued that the high salinity levels as a result of gypsum addition 

can deleteriously affect microbial activity and the size of the microbial population. 

However, both amended and unamended soils at both sites exhibited low levels of SMB 

and lower levels of cumulative respiration compared to that found in Chapter 3 from a 

soil that is vegetated, which suggests that the microbial biomass in scalded soils is the 

result of low SOC stocks and consequently low C substrates in both acidic and alkaline 

conditions. Because soil respiration is a function of the decomposition of SOM, root 

respiration, and root associated respiration, it is not surprising that scalded soils show 

low rates of respiration as there is likely to be little substrate to decompose. The readily 

decomposable C pool is concentrated in the short-lived fraction of the larger vegetative 

fraction, with plant life cycles the most important factor defining C supply (Buyanovsky 

and Wagner 1995). It is likely that the fluctuating levels of the SMB and low levels of 

soil respiration, compared to that found in Chapter 3, are most likely a result of the 
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microbial population turning over on itself, and decomposing the dead population and 

its metabolites. 

 

4.4.4 Microbial Indices  

It is of interest to note that the qCO2 in the unamended Tarcoola soil (0.078 mg CO2-

C/d/mg SMB-C; Table 4.5) is comparable to that of the control treatment described in 

Chapter 3 (0.080 mg CO2-C/d/mg SMB-C; Table 3.7) in the 0-5 cm layer. While the 

CO2-C evolved at the end of the 12 weeks from the Tarcoola soil without gypsum 

amendment was approximately 25 % of the CO2-C evolved from the control treatment 

in Chapter 3 (2246 CO2-C mg/kg and 598 CO2-C mg/kg, respectively), there was 10 

times less SOC found in the scalded soil compared to that found in a vegetated soil 

(Table 4.3; 0.39 % SOC and Table 3.2; 3.87 % SOC, respectively). It is possible that 

over long periods of time, such as the time taken for scalding to occur as a result of 

salinisation and sodication, the SMB can adapt to soil environmental conditions. 

Adaptation of the microbial biomass has implications for C stocks during the 

degradation process, resulting in the efficient use of the available substrate while C 

inputs decrease. Over long periods of time, it is therefore conceivable that SOC 

becomes depleted.  

 

The Cmic:Corg was lower than the 1-5 % suggested in Section 2.2.3 in the 0-5 cm layer of 

the Avoca (Table 4.5), most likely due to the scalding of the soil surface. It is possible 

the microbial biomass is still in the process of adapting to the current degradation 

processes, as the qCO2 was higher and Cmic:Corg was lower compared to the Tarcoola 

site. The qCO2 was also higher in the Avoca soil which had been amended gypsum  

compared to the Avoca soil which had not been amended. This may have been due to an 

increase in stress following the addition of gypsum due to the increase in EC. Similarly, 

in a study by Usman et al. (2004), an increase in EC following the addition of sewage 

sludge resulted in an increase in the qCO2 to 0.130 mg CO2-C/d/mg SMB-C, which was 

attributed to an increase in stress. In the current study, the addition of gypsum in both 

soils decreased the Cmic:Corg at both depths. This was due to the low levels of SMB, and 

may be related to the osmotic effect from salt addition. Because the addition of gypsum 

increases the electrolyte concentration of the soil solution, it is suggested that gysum 

addition resulted in flocculation of soil particles and the formation of aggregates due to 
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processes described in Section 2.2.4. These aggregates physically protect substrate, and 

therefore, the availability of substrate for the microbial biomass decreases, resulting in a 

decrease in the Cmic:Corg. However, given the large variability in the SMB-C over the 

12-week incubation period (Figure 4.8), it is likely that the qCO2 and Cmic:Corg 

determined at the end of the incubation period only merely provides an indication of 

trends rather than an accurate measure of biological activity.  

 

4.5 Summary and Conclusion  

In comparison to the results found in Chapter 3, C stocks and fluxes in salt-scalded soils 

in this series of experiments were found to be low. The lower levels of SMB and 

respiration rates are attributed to the low SOC levels found at both Avoca and Tarcoola, 

which are most likely the result of low plant biomass C inputs. It is suggested that as C 

inputs slow, or cease, native SOM is decomposed until the biochemically recalcitrant or 

physically protected C remains. While it was beyond the scope of this project, further 

research in fractionation of SOM under such conditions would confirm this hypothesis. 

It is likely that a lack of substrate restricts the SMB and respiration rates. Chapter 5 will 

determine whether decomposition processes can be restored in salt-scalded soils if 

substrate is available under controlled conditions. Therefore, the effects of salinity and 

sodicity on decomposition in a salt-scalded soil can be ascertained. 
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CHAPTER 5: DECOMPOSITION OF ADDED ORGANIC MATERIAL IN SALT-

AFFECTED SOILS 

 

5.1 Introduction 

The addition of organic materials to soil has frequently been used in the past to aid in 

the rehabilitation of degraded lands. The importance of maintaining high levels of 

SOM, and hence, high levels of SOC, has been well established. SOM can improve soil 

structure and aggregation (Oades 1988; Tisdall and Oades 1982), increase hydraulic 

conductivity (Baldock et al. 1994), and promote higher nutrient levels and greater 

cation exchange capacity (von Lutzow et al. 2002). Incorporation of organic material, 

notably in the form of crop residues has been shown to improve soil aggregation and 

increase SOC stocks (Lal et al. 1999), while retaining stubble increases SOM and soil 

faunal activity (Valzano et al. 2001a).  

 

Gypsum (CaSO4.2H2O) is the most commonly used ameliorant to reduce soil sodicity or 

to treat saline-sodic soils (Chapter 4). However, limited studies have been undertaken 

on the effects of gypsum on microbial processes in soils. One such study found that in 

the short term, the addition of gypsum caused a decrease in microbial activity, but 

tended to increase SMB; this was attributed to changes in the soil chemical environment 

(Carter 1986). However, the findings are far from conclusive. 

 

Chapter 4 showed that very low levels of SMB and soil respiration rates occurred under 

controlled conditions in soils sampled from scalded areas in south-eastern Australia, 

both with and without gypsum ameliorant compared to SMB and soil respiration rates 

found in a vegetated soil as discussed in Chapter 3. In Chapter 4, these low rates were 

attributed to low levels of SOC, which provide little substrate for decomposition and 

hence, low levels of microbial activity. This current chapter aims to determine the 

behaviour of the labile C pool in scalded soils when treated with gypsum and organic 

material amendment under controlled temperature and moisture conditions. By 

providing additional organic material which the microbial biomass can decompose, C 

fluxes in degraded soils where substrate is available can be elucidated.  
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5.2 Materials and Methods 

5.2.1 Site Descriptions 

The soil used for analysis was collected from the same two salt-scalded sites as 

described in Chapter 4. The first profile was a  Yellow Sodosol (Isbell 1996) from a 

property, “Tarcoola” in Bevendale, while the second profile was a Red Kurosol (Isbell 

1996), located on a property “Avoca.” Descriptions of these two sites are given in 

Section 4.2.1. 

 

5.2.2 Field Sampling 

Samples were taken from 0-5, 5-10, 10-20, 20-30 and 30-50 cm depths of the soil 

profile and subjected to the same treatment as described in Section 3.2.2. 

 

5.2.3 Sample Preparation and Soil Chemical Analyses 

Samples used for soil biological analysis were stored at 4oC prior to analysis. Organic 

material was added in the form of kangaroo grass (Themeda australis). Following 

collection, the plant material was air dried for 72 hours, and coarsely ground with the 

use of a coffee grinder until the plant material was approximately 10-20 mm in length. 

Due to the amount of plant material required, grinding was undertaken in batches, with 

all the batches of plant material bulked prior to weighing out the required amount for 

incorporation into the soils. The kangaroo grass had a total C, N, C:N ratio and S 

content of 40.4 %, 0.531 %, 76 and 0.062 %, respectively. 

 

Soils that were used for the measurement of microbial biomass and respiration were 

initially sieved at their field moisture contents through a 5 mm sieve. It should be noted 

that the organic material was incorporated into the soils after being passed through the 5 

mm sieve. Subsamples were then placed into 9.6L buckets with holes drilled through 

the bottoms and covered with filter paper. Plant material was then incorporated into the 

soils of each separate depth interval in the laboratory at a rate of 10 t/ha (termed 

Tarcoola+OM and Avoca+OM soils, respectively) according to Equations 5.1 and 5.2.  
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S  = 10 000 * 10 000 * d * BD     Equation 5.1 

Where  S = mass of soil (g) in one ha  

 d = depth interval (cm) 

 BD = oven-dried bulk density (g/cm3) 

 10 000 * 10 000 is the area of one ha in cm2 

 

 

OM = i/S * 10        Equation 5.2  

Where OM = weight of organic material required for incorporation (g)  

 i = weight of soil sampled from a depth interval 

 S = mass of soil in one ha from a particular depth interval from Equation 5.1 

 10 refers to incorporation rate of 10 t/ha 

 

The soils amended with both gypsum (CaSO4.2H2O) and organic material (termed 

Amended Tarcoola+OM and Amended Avoca+OM soils, respectively) were prepared 

by applying nursery grade gypsum at a rate of 10 t/ha in addition to the organic material.  

 

Water was then added to field capacity to all the samples, with the samples allowed to 

equilibrate for 72 hours. The soils were then maintained in a constant temperature 

environment at 25oC for the duration of the incubation, and analysed for respiration and 

SMB, as described below.  

 

Following the equilibration period of 72 hours after the incorporation of organic 

material and gypsum, approximately 10 g of soil was sub-sampled for soil chemical 

analysis. The same chemical analyses were undertaken as described in Section 3.2.3. 

Bulk density cores were oven dried at 105oC for 24 hours. pH and EC were analysed in 

1:5 soil:water extracts. Soluble cations were analysed by ICP-AES in the 1:5 soil:water 

extracts. Exchangeable cations were extracted using 1:5 soil:1 M ammonium acetate 

(CH3COONH4) solutions buffered to a pH of 7. Exchangeable cations were determined 

by ICP-AES.  

 

Organic C, total N and total S were determined by high temperature combustion on a 

LECO CNS-2000 analyser. Inorganic C was removed with sulphurous acid where the 

pH ≥ 7. Samples analysed for organic C, N and S were air-dried and crushed with a 
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mortar and pestle to pass through a 2 mm sieve to remove gravel sized particles. It 

should be noted however, that when the sub-sampled air-dried soil was passed through 

the 2mm sieve for chemical analysis, some plant material did not pass through the sieve. 

Where organic material was incorporated into the soil, as described below, inorganic C 

was removed prior to incorporation. Organic C, total N and total S of the soil samples 

were determined after incorporation of organic material and prior to the incubation of 

the samples. Particle size analysis was undertaken using the hydrometer method 

(Bouyoucos 1936).  

 

5.2.4 Soil Biological Analysis 

Soil respiration was determined using soda lime traps according to the method 

described in Edwards (1982) and Section 3.2.4.1.  

 

Soil microbial biomass was measured by the chloroform fumigation-extraction 

procedure described by  Vance et al. (1987) and in Section 3.3.5.  

 

The results were then compared with those found in Chapter 4, which did not have 

organic material incorporated, as described in Section 5.2.6. 

 

All biological analyses were done in quadruplicate. 

 

5.2.5 Microbial Indices 

The qCO2 was calculated according to Equation 3.5 in Section 3.2.4.3 at the end of the 

12-week incubation period to provide an indication of the effects of gypsum on 

microbial activity. The Cmic:Corg was also calculated, as described in Section 3.2.4.3 at 

the end of the 12-week incubation period. 

5.2.6 Statistical Analysis 

Data were analysed using the GENSTAT 8.0 statistical analysis program (Payne 2005). 

Differences occurring in the different treatments were subjected to an ANOVA. The 

block structure was given by week within replicate, within depth, within site, and the 

treatment structure was given by depth, gypsum, site, week and their interaction.
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 Differences found in respiration rates over the 12-week incubation period were 

analysed by REML, as the respiration data were found to be significantly correlated 

over time (P<0.05), with fixed effects for site, depth, week and their interaction, and 

random effects for the interaction of site, depth, gypsum addition and week. Where 

significant differences were found (P<0.05), data were subjected to LSD testing at the 5 

% level. The SMB data were square-root transformed to satisfy the assumptions of 

normal distribution for ANOVA with back-transformed means presented.  

 

Differences occurring in the SMB and soil respiration due to the different treatments 

described in Section 5.2.3 and those described in Chapter 4 were analysed by REML. 

Fixed effects were given by site, depth, week and their interaction, and random effects 

for the interaction of site, depth, gypsum addition, organic material addition and week. 

Where significant differences were found (P<0.05), data were subjected to LSD testing 

at the 5 % level.  

 

5.3 Results  

5.3.1 Soil Properties 

Soil bulk density values were high in both the Tarcoola and Avoca soils, but did not 

show a clear pattern with depth (Table 5.1). 

 

Table 5.1 Soil bulk density at five depths of the soil profile 
Depth (cm) Avoca (Mg/m3) Tarcoola (Mg/m3) 

0-5 1.40 1.61 
5-10 1.61 1.47 

10-20 1.47 1.72 
20-30 1.43 1.69 
30-50 1.61 1.84 

 
The particle size distribution of the bulked soils is shown in Table 5.2. The soil texture 

at Avoca was a sandy clay loam at the surface, with a distinct change to a medium clay 

at 10 cm. The increase in clay content was not reflected in the bulk density values. At 

Tarcoola, the soil texture was also a sandy clay loam at the surface to 10 cm, a sandy 

clay between 10-30 cm, and a sandy clay loam at 30-50 cm. 

  



Chapter 5: Decomposition of added organic material 

Salinity, sodicity and soil carbon 97

 

Table 5.2 Particle size distribution of the Avoca and Tarcoola soil profiles 
Avoca Tarcoola Depth 

(cm) Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Soil Texture Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Soil Texture 

0-5 73.5 5.1 22.3 Sandy clay loam 55.9 14.3 32.1 Sandy clay loam 
5-10 70.1 8.6 25.3 Sandy clay loam 47.1 12.3 39.8 Sandy clay loam 

10-20 44.5 6.6 54.9 Medium clay 52.3 16.5 42.3 Sandy clay 
20-30 45.9 4.6 49.2 Medium clay 47.4 16.6 48.6 Sandy clay loam 
30-50 45.1 4.2 46.7 Medium clay 58.6 12.6 32.6 Sandy clay loam 

 

Soil chemical properties of the untreated soil are shown in Table 5.3. The 0-5 cm layer 

from Tarcoola was saline (EC1:5 ≥ 1.5 dS/m), while non-saline EC values were found 

from 5–50 cm depths. At the surface, the profile was highly sodic (ESP > 6) and 

alkaline (pH > 7) but these properties generally decreased with depth. The SOC 

concentration was very low (< 0.2 %), and with N, displayed a general decrease with 

depth, while S did not show any pattern. The Avoca soils were acidic (pH < 7) and 

saline (EC1:5 ≥ 1.5 dS/m) throughout the profile with the exception of the 5-10 cm layer. 

The profile was sodic (ESP > 6) at all depths and did not display a clear pattern. The 

SOC and N concentrations showed a general decrease with depth, while total S did not 

show a clear pattern.  

 
 
Table 5.3  Soil properties of the untreated soil from Avoca and Tarcoola 

pH 1:5(H2O) EC1:5 
(dS/m) 

ESP SAR SOC (%) Total N 
(%) 

Total S 
(%) Depth 

(cm) Tarcoola 
0-5 10.42 2.65 89.1 21.9 0.14 0.022 0.376 

5-10 9.95 0.60 62.2 2.4 0.13 0.023 0.355 
10-20 9.81 0.22 48.3 1.0 0.12 0.017 0.407 
20-30 9.43 0.22 51.0 0.8 0.12 0.015 0.384 
30-50 9.32 0.11 38.6 0.7 0.08 0.015 0.321 

 Avoca 
0-5 4.83 2.00 35.9 2.4 1.19 0.088 0.010 

5-10 4.70 1.10 28.3 1.9 0.87 0.055 0.009 
10-20 4.45 1.55 30.8 2.6 0.69 0.051 0.017 
20-30 4.61 1.75 18.9 2.7 0.50 0.040 0.024 
30-50 4.37 1.72 20.9 2.7 0.57 0.063 0.024 
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The pH of the soil solutions of the untreated and treated soils from both sites are shown 

in Figure 5.1. The soil sampled from Tarcoola was highly alkaline, with pH values 

between 9.32 and 10.42. The pH of the soil solution decreased slightly with the addition 

of organic material alone, but decreased markedly with the addition of organic material 

and gypsum, with the largest decrease occurring in the 5-10 cm layer. The soil sampled 

from Avoca was acidic, with little change with depth and showed very little change with 

the addition of organic material or with the combined addition of gypsum and organic 

material.   
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Figure 5.1 pH1:5(H2O) profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
NB. pH1:5(H2O) profiles were determined following incorporation of organic material and gypsum at the 
end of the equilibration period.  
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The EC profiles of the treated soils are shown in Figure 5.2. Following the addition of 

organic material, both soils showed a general increase in EC at all depths. The Amended 

Tarcoola and Amended Avoca soils had the highest EC values at all depths compared to 

their respective soils amended with organic material only, and with the untreated soil. 
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Figure 5.2  EC1:5 profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
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The SAR of the untreated Tarcoola soil was highest at the surface, and showed a 

general decrease with depth (Figure 5.3). The addition of organic material resulted in an 

increase in SAR at all depths compared to the untreated soil, while the addition of 

organic material and gypsum caused the SAR to decrease in the 0-5 cm layer only, with 

no clear pattern shown with depth (Figure 5.3). The SAR of the untreated Avoca did not 

display a clear pattern with depth (Table 5.3). The Amended Avoca+OM soil and 

Avoca+OM soil had slightly lower SAR at all depths compared to the untreated soil 

(Figure 5.3). 
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Figure 5.3 SAR profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
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The untreated soils from both Avoca and Tarcoola were highly sodic, with very high 

ESP, particularly in the 0-5 cm layer (Table 5.3). Following the addition of organic 

material, and gypsum in conjunction with organic material, the ESP decreased in the 

soils from both sites (Figure 5.4). At both sites and at all depths, the ESP decreased with 

the addition of organic material alone, but showed very little additional decrease in ESP 

where organic material and gypsum were added together, with the exception of the 

Amended Avoca+OM soil in the 30-50 cm layer. 
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Figure 5.4 ESP profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
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SOC was relatively low in the untreated soils from both sites at all depths, with the 

Tarcoola soil containing < 0.5 % SOC at all depths (Figure 5.5). Following the addition 

of organic material, SOC increased in both soils at all depths.  
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Figure 5.5 SOC profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
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No clear pattern in total N could be discerned from both sites and at all depths (Figure 

5.6). The addition of organic material did not appear to influence the Tarcoola soils; 

however, total N generally increased in the Avoca soils throughout the profile.  
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Figure 5.6 Total N profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
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Total S profiles are shown in Figure 5.7. The Amended Tarcoola+OM soils showed an 

increase in total S compared to the untreated soil at all depths except the 0-5 cm layer, 

while there was a decrease in the 10-20 cm layer in the Tarcoola+OM compared to the 

untreated soil. Similarly, the Avoca+OM soils showed a negligible difference in S 

compared to the untreated soil, while the Amended Avoca+OM showed a distinct 

increase.  
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Figure 5.7 Total S profiles of the untreated Tarcoola and Avoca soils without 
organic material addition, and the treated Tarcoola and Avoca soils with organic 
material addition (OM). 
 

5.3.2 Soil Respiration 

Data pooled over the 12 weeks from both sites showed that differences in respiration 

rates were highly significant (P<0.001) with the addition of gypsum (Table 5.4), while 

site effects were not significantly different (P>0.05).  
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Table 5.4 Effects on respiration following organic material addition with 
gypsum addition and site.   
Gypsum (t/ha) 0 10 P 
Respiration rate 
(CO2-C mg/kg/week) 229.36a 278.73b P<0.001 

Site Avoca Tarcoola  
Respiration rate 
(CO2-C mg/kg/week) 260.45a 247.64a NS 

Note:  Different letters within a row indicate a significant difference. NS indicates that no significant 
difference was found. 
 

Differences in cumulative respiration rates were highly significant with gypsum 

addition (P<0.001). However, there was also a highly significant interaction between 

site, week and gypsum addition, as shown in Figure 5.8 (P<0.001). In the surface layer 

(0-5 cm), the Tarcoola+OM soil showed the lowest rates of respiration. The Amended 

Avoca+OM soils showed the highest rate of respiration over the 12 week incubation 

period in the surface layer (0-5 cm). At both sites, the soils amended with both organic 

material and gypsum showed higher rates of respiration compared to the respective soils 

amended with organic material alone (Figure 5.9a). Similarly, in the 5-10 cm layer, the 

soils amended with both gypsum and organic material displayed higher rates of 

respiration than their counterparts amended with organic material only (Figure 5.9b).  
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Figure 5.8 Cumulative respiration rates following organic material addition 
over the 12 week period with and without gypsum amendment from Avoca and 
Tarcoola at a) 0-5 cm and b) 5-10 cm.  
Note:   Vertical bar represents the SED 
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Differences in respiration rates due to organic material addition are shown in Table 5.5. 

Data pooled over the 12 weeks and from both sites showed that respiration was 

significantly higher following the addition of organic material (P<0.001; Table 5.5). 

Respiration was also significantly higher following addition of organic material when 

compared to the respective gypsum treatments (P<0.001; Table 5.5). Those samples 

with organic material incorporated showed higher respiration rates than those samples 

which did not have organic material incorporated. Those samples which had gypsum 

and organic material incorporated showed higher levels of respiration than those with 

gypsum incorporated alone.  

 

Table 5.5 Effects in respiration due to organic material addition and 
interactions with gypsum addition  
Organic material (t/ha) 0 10   
Respiration  
(CO2-C mg/kg/week) 

185.18a 256.09b   

Organic material (t/ha)-Gypsum (t/ha) 0-0 0-10 10-0 10-10 
Respiration  
(CO2-C mg/kg/week) 

187.09a 183.00a 231.00b 281.18c 

Note: Different letters within a row indicate a significant difference 
 

5.3.3 Soil Microbial Biomass 

Data pooled over the 12 weeks from both sites following incorporation of organic 

material showed highly significant differences in SMB (P<0.001) with depth and by site 

(Table 5.6). SMB showed a general decrease with depth; however, there was a small 

increase at the 20-30 cm depth. While differences with gypsum addition were not 

significant (P>0.05), overall SMB was significantly lower (P<0.001) at the Tarcoola 

site compared to the Avoca site. SMB data pooled over the 12 weeks indicated that 

SMB levels were similar at both sites to a depth of 10 cm, with the Tarcoola soils 

decreasing more with depth than the Avoca soils, below 10 cm depth (Figure 5.9).  
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Table 5.6 Effects in the SMB with depth, gypsum addition and site following 
incorporation of organic material.   

Depth (cm) 0-5 5-10 10-20 20-30 30-50 P 
SMB-C mg/kg 671.33a 337.82b 175.83d 240.25c 149.82e P<0.001 
Gypsum (t/ha) 0 10     
SMB-C mg/kg 287.64a 294.12a    NS 
Site Avoca Tarcoola     
SMB-C (mg/kg) 361.38a 228.31b    P<0.001 

Note:  Different letters within a row indicate a significant difference. Data have been square-root 
transformed, with back-transformed means presented. NS indicates that no significant difference was 
found 
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Figure 5.9 Pooled SMB data per week from Avoca and Tarcoola  
Note: Data were square-root transformed for statistical analysis with back-transformed means 
presented. Horizontal bar represents the SED. 
 

Apart from the 0-5 and 5-10 cm depths, there were significant interactions in the SMB 

between site, depth, week and gypsum addition (P<0.01), shown in Figure 5.10. Below 

the 10 cm depth, site effects become apparent, with the Avoca+OM and Amended 

Avoca+OM soils displaying higher levels of SMB than those from Tarcoola. In the 30-

50 cm layer, the soils amended with both gypsum and organic material at the two sites 

showed higher levels of SMB than the respective soils amended with organic material 

alone from Week 2. 
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Figure 5.10 SMB-C over the 12 week period with and without gypsum 
amendment from Avoca and Tarcoola following organic material incorporation at 
a) 0-5 cm, b) 5-10 cm, c) 10-20 cm, d) 20-30 cm and e) 30-50 cm.  
Note: Data were square-root transformed for statistical analysis with back-transformed means 
presented. Vertical bar represents the SED. 
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Differences in the SMB due to the addition of organic material are shown in Table 5.7. 

Data pooled over the 12-week experimental period showed that the SMB was 

significantly higher with the addition of organic material (P<0.001; Table 5.7). The 

SMB was significantly higher at each site following the incorporation of organic 

material, compared to those samples which did not have organic material incorporated 

(P<.001; Table 5.7). Those samples from Avoca displayed higher levels of SMB than 

those from Tarcoola following addition of organic material. While the addition of 

organic material resulted in significantly higher levels of SMB compared to those 

without organic material, there were no significant differences when gypsum was also 

incorporated.  

 

Table 5.7 Effects due to organic material addition and interactions with 
gypsum addition in the SMB-C 

Organic material (t/ha) 0 10   
SMB-C (mg/kg) 20.16a 292.07b   
Organic material (t/ha)-Site 0-Avoca 10-Avoca 0-Tarcoola 10-Tarcoola 
SMB-C (mg/kg) 19.36a 361.00c 20.88a 230.43b 
Organic material (t/ha)-Gypsum (t/ha) 0-0 0-10 10-0 10-10 
SMB-C (mg/kg) 20.07a 20.16a 289.00b 293.44b 

Note:  Data have been square-root transformed with back-transformed means presented. Different 
letters within a row indicate a significant difference 
 

Data pooled over the 12 weeks from both sites showed differences in the SMB 

following organic material addition with depth, as shown in Table 5.8. The SMB was 

significantly higher at all depths following incorporation of organic material compared 

to those samples which had no organic material incorporated at each respective depth 

(P<0.001, Table 5.9).  

 

Table 5.8 Effects due to organic material addition and interactions with depth 
in the SMB-C (mg/kg).  

Depth (cm) Organic material 
(t/ha) 0-5 5-10 10-20 20-30 30-50 

0 44.76a 24.50b 12.89c 6.66d 19.10bc 
10 672.36e 337.46f 14.27g 203.63h 152.52i 

Note:  Data have been square-root transformed with back transformed means presented. Different 
letters indicate a significant difference. 
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5.3.4 Microbial Indices 

Table 5.9 shows the effects of gypsum incorporation on qCO2 and Cmic:Corg in the 0-5 

and 5-10 cm layers following organic material addition at the end of the 12-week 

incubation period. The qCO2 was higher in the soils with gypsum incorporation in the 0-

5 cm layer. There were no trends in the qCO2 between sites in both the 0-5 and 5-10 cm 

layers. The Cmic:Corg was slightly lower in the soils which had gypsum incorporated 

compared to their unamended counterparts in the 0-5 cm layer.  

 

Table 5.9 Effects of gypsum addition and site on qCO2 and Cmic:Corg following 
incorporation of organic material.  

Depth (cm) Site Gypsum 
(t/ha) 

qCO2 
(mg CO2-C/d/mg 

SMB-C) 
Cmic:Corg 

Avoca 0 0.036 3.66 
Avoca 10 0.062 3.24 

Tarcoola 0 0.029 11.73 0-5 

Tarcoola 10 0.053 9.84 
Avoca 0 0.040 3.57 
Avoca 10 0.048 3.22 

Tarcoola 0 0.049 7.93 5-10 

Tarcoola 10 0.110 4.52 
 

 5.4 Discussion 

5.4.1 The effects of organic material and gypsum on soil properties 

The decrease in pH in the Tarcoola soils following the addition of organic material 

(Figure 5.1) results from a number of processes. With the addition of organic material, 

microbial respiration is increased, described in Section 5.4.2. The pH is lowered as a 

result of: i) organic acid produced during the decomposition of organic material; and ii) 

the H+
 is increased (Equation 5.3; Nelson and Oades 1998) as a result of increased PCO2.  

2CO2(gas) + H2O ↔ H2CO3 + CO2(aq) ↔ 2HCO3
- + 2H+   Equation 5.3 

 

This effect was greatest where organic material was added in conjunction with gypsum; 

the effects due to gypsum addition are described in Section 4.4.1. Similarly, Chorom 

and Rengasamy (1997) found a greater decrease in pH in a highly alkaline soil with the 

combined addition of gypsum and green manure, compared with the addition of green 

manure or gypsum alone, through the additional production of protons from fatty acids. 
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Malik and Haider (1977) also found pH and ESP decreased following the addition of 

plant material due to increased CO2 evolution and humic acid formation. Where the pH 

was less than 5, as was the case in the Avoca soils (Figure 5.1), the addition of organic 

material and the concomitant production of organic and carbonic acids is likely to have 

had a negligible effect on pH (Nelson and Oades 1998), and may have buffered any 

potential increase in pH. Although this was not confirmed in this study, additional plant 

residues also have the potential to increase pH through processes such as the microbial 

decomposition of organic anions, which results in a release of alkalinity and 

ammonification of N in the added plant material (Equation 5.4; Xu et al. 2006). It may 

be that the soil pH in the untreated Avoca soils was not low enough for this process to 

be apparent, or alternatively, the pH was low enough to inhibit the micro-organisms 

responsible for this process. 

 

NH3 + H2O ↔ NH4
+ + OH-       Equation 5.4 

 

EC was increased with the incorporation of organic material in both the soils amended 

with gypsum and those without (Figure 5.2). Increasing EC due to gypsum addition was 

due to the dissolution of gypsum and the electrolyte effect, as described in Section 4.4.1. 

The increase in EC in the soils amended with organic material alone at both sites was 

most likely due to an increase of ions in solution, which may have resulted from mineral 

dissolution caused by the increase in PCO2 (Sekhon and Bajwa 1993), or the formation of 

organic acids. 

 

Not surprisingly, the addition of organic material resulted in an increase in SOC (Figure 

5.5) due to the addition of C contained in the plant material. The incorporation of 

kangaroo grass at a rate of 10 t/ha is equivalent to the addition of approximately 4 t/ha 

of SOC. However, the measured SOC levels following incorporation of kangaroo grass 

were lower as the kangaroo grass was coarsely ground prior to incorporation. Due to the 

method of sample preparation used for the determination SOC, some of the kangaroo 

grass was removed by sieving prior to analysis. Subsamples of approximately 10 g were 

passed through a 2 mm sieve after the incorporation of kangaroo grass to remove gravel 

sized particles. However, following sieving, some organic material which was too long 

to pass through the 2 mm mesh remained in the sieve, resulting in an underestimation of 

SOC levels, and may be why the curves in Figure 5.5 do not track parallel to the 

unamended soils. Similarly, the addition of gypsum increased total S at all depths 
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except in the 0-5 cm layer of the Amended Tarcoola+OM sample. This is most likely 

due to the heterogeneity of the soil sample, and the small amount of subsample required 

for analysis (< 0.5 g). Total N content did not increase at any depths in either the 

Tarcoola or Avoca soils following the addition of organic material. This was most likely 

due to the low N content of the kangaroo grass that was incorporated (≈ 0.5 %; Section 

5.2.3), and N additions within the error of measurements.  

5.4.2 Microbial activity and the soil microbial biomass 

Just as increased salt concentration increased substrate availability for the SMB through 

the dissolution of SOM, as described in Chapter 4, the addition of organic material in 

the short term provides additional substrates for the microbial population. This also 

resulted in an increase in the level of respiration (Table 5.5) and SMB (Tables 5.6 and 

5.7). The increase in respiration and SMB occurred despite the large C:N ratio of 76 

found in the kangaroo grass used in this study, indicating that plant C was still available 

to microorganisms for both biomass increase and respiration activity. Also, in a process 

similar to that found in Chapter 3, this additional substrate may still relieve osmotic and 

pH stress on the microorganisms, while improving soil physical and chemical 

conditions (Chander et al. 1994). The presence of SOM can provide a buffer to the soil 

solution and to soil microorganisms and their activity, particularly where salinity or 

sodicity increases (McCormick and Wolf 1980), or as in this study, under adverse soil 

pH conditions and where salinity and sodicity levels are already high.  

 

The higher levels of soil respiration and SMB due to increased substrate in this chapter 

compared to a scalded soil which did not have organic material added, as discussed in 

Chapter 4, may have also been aided by the partial breakdown of the added organic 

material in the case of the high pH Tarcoola soils. Laura (1973) found that higher 

alkalinity increases mineralisation of organic matter as a result of dissolution of plant C 

compounds, thus increasing its susceptibility to decomposition. Nelson et al. (1996) 

have suggested, in the case of sodic soils, that Na+ dissolves readily decomposable plant 

components and microbial metabolites following the initial addition of organic material, 

while a small portion of the native organic matter is constantly available due to the 

solubilisation processes by Na+.  

 

However, while high pH increases mineralisation, low soil pH levels have been shown 

to depress microbial activity as a result of reduced substrate utilisation efficiency 
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(Sadinha et al. 2003). Substrate availability can also be restricted under acidic 

conditions due to the effects of acidity on substrate availability, and hence, SMB and 

respiration. The effects are largely attributable to interactions at low pH that result in the 

formation of Al-organic matter or Fe-organic matter complexes (Brunner and Blaser 

1989; Xu et al. 2006). However, soluble Al and Fe concentrations in the Avoca soils 

were low, with exchangeable Al and Fe below the detection limit of the ICP-AES (see 

Tables C1 and C2, Appendix C). Therefore, the higher levels of SMB and soil 

respiration of the Avoca+OM and Amended Avoca+OM soils compared to the 

respective counterparts without organic material, as discussed in Chapter 4, are 

predominantly the result of additional, easily accessible and decomposable substrate.  

 

In the absence of pH or aeration effects, sodicity has been found to increase, and salinity 

decrease, the decomposition of plant material indicated by an increase in the respiration 

rate (Nelson et al. 1996). In this study, however, the addition of gypsum and organic 

matter caused large changes in EC and pH in the Tarcoola soils, while the EC increased 

without the concomitant pH changes in the Avoca soils. Despite changes in EC and pH, 

the SMB did not appear to be altered, but respiration rates were increased. The higher 

levels of sodicity in the Tarcoola soils may have contributed to the differences found in 

the SMB, particularly at depth, as the substrate may have become coated with dispersed 

clay at high sodicity levels (Nelson et al. 1997), although this could not be confirmed.  

 

It is suggested that a dormant population of salt-tolerant SMB is present in the salt-

scalded soils in this study, which has become adapted to such environmental conditions 

over time. Following the addition of organic material, the population multiplies rapidly 

due to the availability of substrate. Similarly, Sarig and Steinberger (1994) found, in 

saline conditions, the highest amount of SMB occurred under a desert halophyte 

following the addition of litterfall resulting in a newly available substrate to 

microorganisms. Enzymatic activity can also increase following the addition of organic 

material, which aids in microbial activity while improving nutrient availability in the 

untreated soil (Liang et al. 2005; Tejada et al. 2006). Microbial and enzymatic activity 

is most likely stimulated due to the increase in readily utilisable energy sources. 

McCormick and Wolf (1980) found that the addition of organic material can act as a 

buffer to salinisation processes. The deleterious effects of NaCl were reduced following 

the addition of a readily available substrate while respiration was less affected in soils 

amended with alfalfa than those that were left unamended. However, Rasul et al. (2006) 
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suggested that the effect of the addition of substrate on the subsequent SMB is 

dependent on the ratio of substrate to the initial microbial biomass, which may have also 

been the case at depth in this experiment. Higher levels of SMB in the Avoca soils 

compared to the Tarcoola soils at depth are most likely due to a higher initial microbial 

biomass because of higher SOC levels in the former. 

 

Following the incorporation of organic material, the qCO2 was generally lower (Table 

5.9) compared to the qCO2 from a scalded soil that did not have organic material 

incorporated (Table 4.5). It is likely that the addition of organic material for 

decomposition alleviates stress on the microbial biomass by providing additional 

substrate, as described previously. Therefore, with the addition of organic material, the 

qCO2 decreased as the microbial population increased due to the additional substrate of 

high C:N ratio, despite hostile environmental conditions, in both alkaline and acidic 

soils.  

 

The Cmic:Corg was higher in those soils with organic material addition (Table 5.9) 

compared to those without (Table 4.6). Similarly, a previous study showed that salinity 

intensifies stress on the microbial community under acidic conditions, which was 

indicated by a reduction in the SMB to SOC ratio and an increase in the specific 

respiration rate (Rasul et al. 2006). In the same study by Rasul et al. (2006), it was 

found that the SMB and CO2 production were similar in both soils after the addition of a 

complex organic amendment in the form of sugar cane filter cake, with the SMB and 

CO2 production linearly related to the amount of filter cake added and was not affected 

by the differences in the initial SMB content. However, in the current experiment, it is 

likely that the Cmic:Corg has been overestimated due to the level of SOC being 

underestimated, as described previously. This may have been the case particularly in the 

Tarcoola soils in the 0-5 cm layer, where the Cmic:Corg was approximately 12. Moreover, 

it is likely to be transitory, as C substrate for microbial biomass synthesis becomes 

limiting over time. However, it should be noted that the qCO2 and Cmic:Corg provide an 

indication of trends only, as the indices were only calculated at the end of the 

experimental period, with further research required to determine whether the differences 

found in Section 5.3.4 and Section 4.3.4 are significant.  
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5.4.3 The effects of gypsum 

While the addition of gypsum improved the soil environment, as shown in this chapter 

by the decrease in pH in the Tarcoola soils, it also caused an increase in EC in soils that 

were already saline. It has been noted that Cl- salts are more toxic to microbial activity, 

in terms of nitrification, than the corresponding sulfate salt (McCormick and Wolf 

1980), and may also apply to C mineralisation. Most of the salinity in Australia is due to 

Cl- (Naidu and Rengasamy 1993). At equal molar concentrations, Cl- salts have the 

potential to be more toxic to biological activity compared to the SO4
2- counterpart, due 

to the higher activity of Cl- ions, and the potential for SO4
2- to precipitate with Ca2+ 

(Garcia and Hernandez 1996). Similarly, Baldock and Oades (1989) found that at equal 

EC levels but different Ca concentrations, Ca2+ did not influence microbial activity.  

 

Following the addition of gypsum, respiration rates increased, which may be attributed 

to the decline in pH or more amenable environmental conditions as in the case of the 

Tarcoola soils. Batra and Manna (1997) found that microbial activity is linked to soil 

pH and levels of SOC. Despite up to a five-fold increase in EC following the addition of 

gypsum in this study, there were no distinct differences in trends in the SMB from 

either the Avoca or the Tarcoola soils, both with and without gypsum addition. This 

indicates that osmotic stresses were not great enough to affect the microbial population 

in the short term. Where soils are saline, osmotic stress usually limits microbial growth 

and activity, while under sodic conditions, ion toxicities and adverse pH conditions may 

also inhibit microbial growth (Rietz and Haynes 2003). However, the results in Chapter 

3 indicate that microbial activity need not be suppressed by high salt concentration nor 

high pH conditions, as the microbial population may be well-adapted to such 

environmental conditions (Beltran-Hernandez et al. 1999). 

 

Previous studies have also shown an interaction between the addition of gypsum and the 

incorporation of organic matter. The addition of Ca compounds with organic materials 

can decrease spontaneous dispersion (Vance et al. 1998), and thus, have an additive 

effect of improving aggregate stability (Muneer and Oades 1989b). Furthermore, 

Muneer and Oades (1989b) found that C mineralisation rates were also decreased, 

indicating that losses of organic matter from soils can be decreased with the addition of 

gypsum. This may be due to increased aggregate stabilisation from the formation of Ca-

organic linkages in the form of clay particle-Ca-organic molecule (Baldock et al. 1994). 

The biological stabilisation of substrate C is suggested to result from the organic 
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compounds synthesised by the biomass utilising the substrate, presumably carboxylic 

materials which are capable of forming Ca2+-organic complexes (Baldock and Oades 

1989). Loss of SOC decreases during the formation of soil aggregates, as SOM becomes 

physically protected and inaccessible for microbial decay. Similarly, concentrations of 

DOC in soils have decreased following gypsum application due to the inhibition of 

decomposition of organic matter by microorganisms and the reduced release of DOC by 

leaching (Suriadi et al. 2002). The addition of organic matter may also promote 

flocculation by increasing the EC and hence, improve soil structural stability (Tejada et 

al. 2006) while providing physical protection to SOM.  

 

Furthermore, Muneer and Oades (1989a) found a reduction in the mineralisation of 

glucose with the addition of Ca compounds in the form of either lime or gypsum, with 

gypsum being more effective than lime. This can be attributed to stabilisation by 

microbial products leading to prolonged stabilisation of macroaggregates, in addition to 

flocculation of dispersive soils due to an electrolyte effect. It was assumed by Muneer 

and Oades (1989a) that glucose decomposition was not inhibited, with the reduction in 

mineralisation due to the stabilisation of the products of decomposition. Glucose is 

soluble and readily degradable, hence, is decomposed rapidly. In this study, kangaroo 

grass was used which is comparatively less easily decomposed. Therefore, it produces 

lower amounts of microbial residues, with the stabilisation effect of decomposition 

products, and hence physical protection, likely to be small.  

 

In terms of reclamation, increasing SOM increases the re-establishment of soil nutrient 

cycles, and the retention and supply of these nutrients, especially N (Mummey et al. 

2002). This highlights the importance of plant cover and the associated SOM inputs in 

the reclamation of bare soils. During periods of growth, roots provide substrate in the 

form of exudates, sloughed-off material and dead roots (Buyanovsky and Wagner 1995). 

This chapter has demonstrated that soil microbial activity can be restored following 

addition of organic material in highly degraded salt-scalded areas at both low and high 

pH levels. Despite hostile soil environmental conditions, it appears that these systems 

are limited by substrate supply rather than by adverse soil conditions. Hence, if 

rehabilitation efforts are successful in re-introducing plant growth into bare areas, 

through the initial addition of organic material or gypsum, or a combination of both, the 

production of organic material and, therefore, SOM, can become self-sustaining and aid 

in the restoration of soil ecosystem processes. 
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5.5 Summary and Conclusion 

Chapter 4 demonstrated that those soils sampled from scalded areas without organic 

material addition showed low levels of SMB and respiration. The results from this 

chapter demonstrate that while SMB levels are low in scalded soils, where organic 

material is available as substrate for decomposition, the microbial population is still 

active and present. It is likely that a dormant population of salt-tolerant micro-

organisms exists in soils that have been degraded and hence, scalded, for a significant 

period of time, which can multiply rapidly when substrate is readily available. Despite 

the large increases in EC caused by the addition of gypsum, microbial respiration does 

not appear to be adversely affected, while the increase in SMB may improve soil 

structure by increasing fungal hyphae, mucilages, and other decomposition products. 

Therefore, it is apparent from this study that decomposition processes are limited by 

substrate rather than by the deleterious soil conditions commonly found in salt-scalded 

areas. While biomass production is likely to be limited at the soil pH values found in 

this study, the potential still exists for these degraded areas to return to functioning soil 

ecosystems if rehabilitation is successful in remediating adverse soil pH and EC 

conditions, and plant production is re-established in both alkaline and acidic conditions. 

Chapters 3, 4 and 5 have demonstrated the effects of salinity and sodicity on C fluxes 

under controlled conditions in the laboratory. Chapter 6 will determine the level of SOC 

stocks in the field in salt-scalded, revegetated and unaffected soil profiles.  
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CHAPTER 6: CARBON STOCKS IN SALT-SCALDED AND NON-SCALDED 

LANDSCAPES 

6.1 Introduction 

Increasing soil salinity and sodicity currently cause significant impacts on agricultural 

production and native vegetation. These impacts are predicted to increase in the future.  

The processes associated with salinisation in terms of altered hydrology and its effects 

on plant health have been extensively reviewed and described in Section 2.2.1. 

 

In salt-affected soils, plant growth is restricted by osmotic and specific ion effects, low 

availability of plant nutrients and indirect effects related to adverse soil physical 

properties. The degree of salinisation can range from slight salinisation with marginal 

impact on crop production to the development of extensive salt scalds. C accounting in 

saline and sodic areas is complicated by topographic factors. Because soil C efflux and 

stocks are dependent on clay content and soil moisture (Jobaggy and Jackson 2000), 

processes which commonly occur in saline and sodic areas such as waterlogging in 

lower parts of the landscape can enhance C sequestration. Increasing clay content with 

depth will also enhance SOC concentrations (Bird et al. 2001), while scalding increases 

susceptibility to erosion and hence, enhances SOC loss. Decomposition processes are 

slowed due to the formation of massive structure, commonly found in sodic soils, as 

substrate availability is limited to the microbial population (Nelson and Oades 1998). 

Difficulties can also arise when assessing C stocks in revegetated saline, sodic and 

saline-sodic areas due to high spatial and temporal variability. 

 

This chapter aims to determine the level of SOC and the associated soil properties in 

saline-sodic scalds, eroded, revegetated and unaffected soil profiles. This will ascertain 

the amount of SOC lost due to salinisation and sodication relative to an unaffected soil 

profile, and the increase in the level of SOC following revegetation. 
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6.2 Materials and Methods 

6.2.1 Site Descriptions and Field Sampling 

Soil samples were taken from two sites in the Southern Tablelands region of NSW; 

“Tarcoola” located at Bevendale and “Gunyah” located at Rugby (Figure 6.1) with 

comparisons made between scalded and non-scalded soil profiles. A paired sites 

approach was undertaken to to estimate the loss of soil carbon as a consequence of salt-

scalding, with the experimental site set-up shown in Table 6.1. 

 

 
Figure 6.1      Location of fieldsites  
Note:   Square indicates Gunyah site, star indicates Tarcoola site 

N 
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Table 6.1 Site set-up 
Site Tarcoola Gunyah 
Microsite Scald Vegetated Depression Eroded Scald Revegetated Vegetated 

6.2.1.1 Tarcoola Site 

The first site was located on a property, “Tarcoola” in Bevendale (34 30’ 45” S, 149 05’ 00” 

E), approximately 40 km south-west of Crookwell. An area on an adjacent property, 

“Riverview” was also used. The area has an average annual rainfall of 660 mm. In January, 

the average daily maximum temperature for the area is 29.2oC. In July, the average 

minimum temperature is 1.3oC, as determined from a nearby weather station.  

 
The scalded and vegetated paired sites were located on the same landform element of a 

footslope, with a vegetated depression microsite added for comparison. The scalded 

microsite was located in a bare scalded patch (termed Tarcoola Scald) while the vegetated 

microsite was located on the same footslope approximately 100 m to the east of the scalded 

site (termed Tarcoola Vegetated).  A further microsite was located on a non-scalded, 

vegetated patch in a drainage depression (termed Tarcoola Depression), along 

approximately the same contour approximately 100 m to the north of the Tarcoola Scald 

site. 

 
At each microsite, soil pits were excavated to dimensions of at least 2 m wide * 5 m long * 

1 m deep with a mini-excavator. Two soil profiles were described at the ends of each pit 

and bulk density cores were sampled using stainless steel cores of volume 209.81 cm3 (Plate 

6.1). Triplicate samples taken from depths 0-5, 5-10, 10-20, 20-30, 30-50, 50-70 and 70-100 

cm of each profile, giving six replicates per soil pit in total. Due to the length of the soil 

pits, it is assumed that sampling at each end of each pit will address the heterogeneity 

common to salt-affected sites. The samples were transported back to the laboratory in 

polyethylene bags for analysis, as described in Section 6.2.2. At the Tarcoola Vegetated 

microsite, the soils were sampled from the side of a gully using profiles approximately 5 m 

apart.  The gully walls were scraped back approximately 50 cm, and then sampled 

according to the methods described above to a depth of 50 cm. Due to difficulties 

encountered at the 50 cm depth from the presence of a pebble layer, samples were only 

taken to this depth.  

 

The Tarcoola Scald, Tarcool Depression and Tarcoola Vegetated microsites are shown in 

Plates 6.2, 6.3 and 6.4, respectively. The vegetated areas (Tarcoola Depression and 

Tarcoola Vegetated) were dominated by Red Grass (Bothriochloa spp) with minor 

occurrences of Couch (Cynodon dactylon). The soil types at the Tarcoola Scald, 
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Tarcoola Depression pit and Tarcoola Vegetated microsites were all Yellow Sodosols 

(Isbell 1996). The locality is underlain by undifferentiated Ordovician and Silurian 

metasediments (Hird 1991), with the property predominantly grazed by sheep. 

 

6.2.1.2 Gunyah Site 

The second site was located on a property, “Gunyah” in Rugby, approximately 35 km 

east of Boorowa (Figure 6.1; 34° 29' 0.32" S 149 ° 1' 27.99" E). Climate data have been 

taken from Boorowa, the nearest meteorological station, with average annual rainfall of 

610 mm. The average maximum temperature for the area in January is 29.5oC and 

average minimum temperature is 0oC in July. All the microsites (soil pits) were located 

on a lower footslope position in the landscape, and were within 300 m of each other. 

Four soil pits (microsites) were excavated with a mini-excavator, with dimensions 

similar to those described in Section 6.2.1.1. The soil pits were located as follows: on a 

bare scalded patch which had been eroded and hence, had lost its A horizon (Gunyah 

Eroded; Plate 6.5); a bare scalded patch which had not been eroded (Gunyah Scalded; 

Plate 6.6); a vegetated patch of what is assumed to be the original vegetation (Gunyah 

Vegetated; Plate 6.6); and an area that had been reclaimed by revegetation (Gunyah 

Pasture; Plate 6.6). The area of the Vegetated soil pit was dominated by wallaby grass 

(Austrodanthonia bipartita) with minor occurrences of kangaroo grass (Themeda 

australis). Reclamation of saline patches, which highlight the spatial variability of 

salinity-issues, had been undertaken by the landholder with the use of salt-tolerant 

pasture, namely Tall Wheatgrass (Thinopyron ponticum) approximately 10 years ago. 

Reclamation of the Gunyah Pasture site involved fencing the area to exclude stock and 

revegetation with Tall Wheatgrass, with no additional treatment of any amendment. It is 

assumed that the Pasture microsite was very similar to the Scald and Eroded microsites 

prior to revegetation. 

 

Soils were sampled according to the method described above with the exception of the 

Pasture profiles, which were sampled to a depth of 70 cm due to difficulties 

experienced in placing the cores into the profile at depth. The soil types were a Red 

Sodosol (Isbell 1996) at the Gunyah Eroded, Gunyah Vegetated and Gunyah Scald 

profiles and a Red Kurosol (Isbell 1996) at the Gunyah Pasture profile. The locality is 

underlain by undifferentiated Ordovician and Silurian metasediments (Hird 1991), with 

the property predominantly grazed by sheep.  
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Plate 6.1     The bulk density corer used to obtain bulk density cores 
 

Plate 6.2     Location of the Tarcoola Scalded soil pit 

Scalded Pit
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Plate 6.3     Location of the Tarcoola Depression soil pit (foreground) 

Plate 6.4     The Tarcoola Vegetated site 

Depression Pit
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Plate 6.5     Location of the Gunyah Eroded soil pit. The red circle highlights the 
loss of topsoil  

Plate 6.6     Location of the Gunyah Scalded, Gunyah Pasture and Gunyah Vegetated 
soil pits 
 

Pasture 

Scalded 

Vegetated
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6.2.2 Laboratory Analysis 

Following transportation to the laboratory, the bulk density samples were weighed 

before subsamples of approximately 50 g were oven dried at 105oC for 24 hours to 

determine the moisture content. Bulk density was determined according to the method 

described in Section A1.1 in Appendix 1. Samples were then subjected to the same 

chemical analysis as described in Section 3.2.3. The remainder of the sample was air 

dried. Soil pH, EC and soluble cations were determined on 1:5 soil:water extracts. 

Where the EC1:5  > 0.3 dS/m, soluble salts were removed with an ethanediol/ethanol 

wash, described in more detail in Appendix A, according to the method of Rayment and 

Higginson (1992). Exchangeable cations were extracted with 1 M ammonium acetate 

(CH3COONH4) buffered to a pH of 7. Soluble and exchangeable cations were analysed 

by ICP-AES and were used to determine the SAR and ESP.  

 

Organic carbon and total nitrogen (N) were determined by high temperature combustion 

on a LECO CNS-2000 analyser. Inorganic C was removed with sulphurous acid where 

the pH ≥ 7. SOC stocks were determined according to the Equation 6.1 and summed to 

30 cm, which gives the numerical equivalent in t/ha. 

 

SOC (t/ha) = D * BD * C     Equation 6.1 

 

Where D = thickness of soil layer (cm) 

 BD = bulk density (g/cm3) 

 C  = soil organic carbon (%) 

 

The three samples from each soil profile were subsampled and bulked for particle size 

analysis. Particle size analysis was undertaken using the hydrometer method 

(Bouyoucos 1936). The mean values of the two profiles are presented. 

 

6.2.3 Statistical Analysis 

Data were analysed using the GENSTAT 8.0 statistical analysis program (Payne 2005). 

The sites were analysed as a split-plot design. Data were subjected to a non-orthogonal 

ANOVA, as the data were unbalanced. The SAR and SOC data were square-root 

transformed to satisfy the assumptions for normal distribution for ANOVA, with back 
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transformed means presented. Differences in soil properties (bulk density, pH, EC, SAR, 

ESP, SOC, N, and Ca) due to sites by microsites and depth were analysed. Due to the 

split-plot design and lack of replication, differences between sites (ie. Tarcoola and 

Gunyah) and between microsites (ie. Vegetated, Scald, Depression and Pasture) were 

not analysed. Where significant differences were found (P<0.05), data were subjected to 

LSD testing at the 5% level. Correlations between soil properties were undertaken using 

a correlation matrix. Where correlations were found, SOC was set as a dependent 

variate with soil properties fitted after site factors in a non-orthogonal ANOVA.  

 

6.3 Results 

Descriptions of the soil profiles sampled are given in Appendix D.  

 

6.3.1 Soil Bulk Density and Particle Size Analysis 

Soil bulk density profiles are shown in Figure 6.2 for a) Tarcoola, and b) Gunyah. There 

were significant interactions in bulk density between site, microsite and depth (P<0.05). 

The Tarcoola Scald profile had higher bulk density values at all depths compared to the 

Tarcoola Depression and Tarcoola Vegetated profiles. The lowest bulk density values 

at the Tarcoola site were found in the Tarcoola Depression profile at all depths. At the 

0-5 cm depth bulk density was higher in the Gunyah Eroded profile than in the Gunyah 

Scald, Pasture and Vegetated profiles. From 5-50 cm, the bulk density was higher in the 

Gunyah Scald and Gunyah Eroded profiles compared to the Gunyah Pasture and 

Gunyah Vegetated profiles.   
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Figure 6.2   Oven-dried soil bulk density profiles from a) Tarcoola, and b) 
Gunyah  
Note:   Solid horizontal line indicates LSD for microsite effects; dashed line indicates the LSD 
for depth effects. 
 

Particle size distribution at each microsite for both the Tarcoola and Gunyah sites are 

shown in Figures 6.3 and 6.4, respectively. A more detailed table of the particle size 

analysis is shown in Table D2 in Appendix D. The mean values of each depth from the 

two soil profiles in each pit are presented in Figures 6.3 and 6.4. The Tarcoola Scald 

profile increased in clay content with depth, while the Tarcoola Depression and 

Tarcoola Vegetated profiles generally had a uniform texture (Figures 6.3b and 6.3c, 

respectively). The Gunyah profiles all showed a general increase in clay content and 

a) 

b) 
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decrease in sand content with depth. At both sites, there was no obvious relationship 

between texture and bulk density values for all profiles. 

 

The soil texture at the Tarcoola Scald profile was a loamy sand at the surface which 

graded with depth to a sandy loam at 30-50 cm. There was an abrupt change in texture 

at the 50-70 cm depth to a medium clay (Figure 6.3a). The Tarcoola Depression and 

Tarcoola Vegetated profiles were a sandy clay loam throughout. The texture at the 

surface in the Gunyah profiles was a sandy loam. At the 50-70 cm depth, there was an 

abrupt increase in soil texture in the Gunyah Eroded and Gunyah Scald profiles to a 

medium clay. In the Gunyah Pasture profile the soil texture was a sandy clay loam 

throughout. In the Gunyah Vegetated profile, there was a distinct change to a sandy clay 

at 50-70 cm, then to a light clay at 70-100 cm.  
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Figure 6.3      Particle size distribution of the profiles from a) Tarcoola Scald b) Tarcoola Depression and c) Tarcoola Vegetated sites 
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Figure 6.4 Particle size distribution of the profiles from a) Gunyah Eroded, b) Gunyah Scald, c) Gunyah Pasture and d) Gunyah Vegetated 
profiles 
 

a) b) 
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6.3.2 Soil pH and EC 

Soil pH profiles for both the Tarcoola and Gunyah sites are shown in Figures 6.5a and 

6.5b, respectively. There were highly significant differences in pH with microsite and 

depth (P<0.001), and significant interactions between microsite and depth (P<0.01), and 

microsite and site (P<0.01). At the Tarcoola site, soil pH was highest at all depths in the 

Tarcoola Scald profile, while the Tarcoola Depression and Tarcoola Vegetated profiles 

were both acidic, with pH values significantly less than that of the Tarcoola Scald 

profile at all depths (Figure 6.5a). At the Gunyah site (Figure 6.5b), the Gunyah Eroded 

and Gunyah Scald microsites had uniform pH profiles with values near neutral. The 

Gunyah Pasture and Gunyah Vegetated microsites were both acidic profiles, with the 

Gunyah Pasture profile showing a large decrease in pH between the surface (0-5 cm) 

and 20 cm, and hence, had pH values significantly less than the respective Eroded and 

Scald profiles. However, below 20 cm, the pH of the Gunyah Pasture profile increased. 
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Figure 6.5  Soil pH1:5(H2O) profiles from a) Tarcoola and b) Gunyah 
Note:   Solid horizontal line indicates LSD for microsite effects; dashed line indicates the LSD 
for depth effects. 
 
Soil EC profiles for both the Tarcoola and Gunyah sites are shown in Figures 6.6a and 

6.6b, respectively. Differences in soil EC were highly significant with microsite 

(P<0.001), and with depth (P<0.01), with significant interactions between microsite and 

depth (P<0.05), and microsite and site (P<0.01). In general, the Tarcoola Depression 

and Tarcoola Vegetated profiles had lower EC levels compared to the Tarcoola Scald 

profile (Figure 6.6a). Similarly, the Gunyah Vegetated and Gunyah Pasture profiles had 

lower EC levels compared to the Gunyah Scald or Gunyah Eroded profiles. From 40-

a) 

b) 
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100 cm, the Gunyah Vegetated profile showed a large increase in EC, which coincides 

with an increase in soil moisture in the field (refer to soil profile descriptions in 

Appendix D), indicating soil water not used by the vegetation from the highly saline 

layer. The Gunyah Eroded profile had the highest EC levels of all profiles to a depth of 

20 cm, before generally decreasing.  
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Figure 6.6  Soil EC1:5 profiles from a) Tarcoola and b) Gunyah  
Note:   Solid horizontal line indicates LSD for microsite effects; dashed line indicates the LSD 
for depth effects. 
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6.3.3 SAR and ESP 

SAR was square-root transformed to satisfy the assumptions of ANOVA, with the back-

transformed means presented. Raw means are shown in Table D3 in Appendix D. 

Concentrations of the soluble and exchangeable cations are shown in Tables D2 and D3 

in Appendix D for profiles at both sites, respectively. SAR was highly significantly 

different with microsite and depth (P<0.001), with significant interactions between 

microsite and site (P<0.01), and microsite and depth (P<0.001). The Tarcoola Scald 

profile did not show a clear pattern with depth. The Tarcoola Depression and the 

Tarcoola Vegetated profiles had lower SAR values than the Tarcoola Scald profile. The 

Gunyah Eroded profile had the highest SAR at the surface and generally decreased with 

depth. The Gunyah Scald profile showed the opposite pattern; increasing in SAR with 

depth to 30 cm, decreasing to 50 cm and increasing again from 50 cm to the bottom of 

the profile. The Gunyah Pasture profile had the lowest SAR at the surface, which 

increased with depth to values greater that those found in the corresponding Gunyah 

Scald and Gunyah Eroded profiles.  
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Figure 6.7 SAR Profiles from a) Tarcoola and b) Gunyah; note that data have 
been square-root transformed  
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Solid horizontal line indicates SED for microsite effects; dashed line indicates the SED for 
depth effects. 
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The ESP profiles for both the Tarcoola and Gunyah sites are shown in Figure 6.8a and 

6.8b, respectively. Differences in ESP were highly significant with microsite (P<0.001), 

and with depth (P<0.01), with significant interactions between site and microsite 

(P<0.001) and microsite and depth (P<0.05). The Tarcoola Scald profile was highly 

sodic and had the highest ESP at all depths. The Tarcoola Depression and Tarcoola 

Vegetated profiles showed a general increase in ESP to a depth of 30 cm. Below 30 cm, 

the ESP of the Tarcoola Vegetated profile increased sharply with depth, while the 

Tarcoola Depression profile showed a slight increase with depth. The Gunyah 

Vegetated and Gunyah Pasture profiles showed a general increase in ESP to a depth of 

30 cm, with the Gunyah Vegetated and Gunyah Pasture profiles reaching a maximum at 

20-30 cm and 30-40 cm, respectively. The ESP of the Gunyah Scald profile followed a 

similar pattern to that of the Gunyah Vegetated profile to 20 cm, while the ESP was 

higher in the Gunyah Eroded profile compared to the Gunyah Scald profile to a depth of 

30 cm, and then both profiles displayed a similar pattern with depth.  
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Figure 6.8 ESP profiles from a) Tarcoola and b) Gunyah  
Note:   Solid horizontal line indicates LSD for microsite effects; dashed line indicates the LSD 
for depth effects. 
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6.3.4 Soluble and Exchangeable Ca 

Soluble and exchangeable Ca values were square-root transformed to satisfy the 

assumptions of ANOVA, with the back-transformed means presented in Figures 6.9 and 

6.10, respectively. Differences in soluble Ca concentration were highly significant 

between sites and with depth (P<0.001), with significant interactions occurring between 

sites, microsites and depth (Figure 6.9). At the Tarcoola Vegetated profile, soluble Ca 

decreased with depth to 30 cm and then increased to 50 cm. The Tarcoola Scald profile 

did not show any pattern with depth. The Gunyah Pasture profile had the highest 

soluble Ca concentration at the surface, which decreased with depth to 30 cm. Similarly, 

the soluble Ca concentration in the Gunyah Vegetated profile also decreased with depth 

to 30 cm, while the Gunyah Scald profile decreased to 10 cm and then showed very 

little change with depth. The Gunyah Eroded profile did not show any pattern with 

depth.  

 

Differences in exchangeable Ca were highly significant with site and microsite 

(P<0.001), with highly significant interactions occurring between site, microsite and 

depth (P<0.001; Figure 6.10). At the Tarcoola site, the Scald profile had the lowest 

exchangeable Ca values at all depths. The Tarcoola Depression profile decreased to 50 

cm, increased in the 50-70 cm layer, and decreased with depth, while the Tarcoola 

Vegetated and Tarcoola Scald profiles had the lowest exchangeable Ca values at the 

lowest depth sampled from each profile. At the Gunyah site, the Pasture profile had the 

highest exchangeable Ca concentrations at the surface, while the Eroded profile had the 

lowest concentration.  Exchangeable Ca concentration displayed a general decrease with 

depth in the Gunyah Pasture profile, while the Gunyah Eroded and Gunyah Scald 

profiles displayed similar patterns, decreasing with depth to 30 cm and then increasing 

to 70 cm. The Gunyah Vegetated exchangeable Ca profile decreased to 30 cm, but did 

not display a clear pattern to 100 cm.  
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Figure 6.9 Soluble Ca profiles from a) Tarcoola and b) Gunyah 
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Solid horizontal line indicates SED for microsite effects; dashed line indicates the LSD for 
depth effects. 
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Figure 6.9 Exchangeable Ca profiles from a) Tarcoola and b) Gunyah 
Note: Data were square-root transformed for statistical analysis with back-transformed means 
presented. Solid horizontal line indicates SED for microsite effects; dashed line indicates the SED for 
depth effects. 
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6.3.5 Soil Organic Carbon and Total Nitrogen  

Back-transformed means of SOC for both sites are shown in Figure 6.11, with raw 

means shown in Table D5 in Appendix D. Differences were highly significant with 

microsite and depth (P<0.001), with significant interactions occurring between site, 

microsite and depth (P<0.001). SOC in the Tarcoola Depression profile decreased to 50 

cm, increased in the 50-70 cm depth, before decreasing again. The Tarcoola Scald 

profile did not appear to follow any patterns, while SOC in the Tarcoola Vegetated 

profile decreased to 10 cm, increased to 30 cm, and decreased to 50 cm. All the Gunyah 

profiles showed a general decrease of SOC with depth. In general, the Vegetated and 

Pasture profiles had higher SOC values than the Eroded and Scald profiles at all depths.  

 

The cumulative SOC stocks profiles for both sites are shown in Figure 6.12. The 

Tarcoola Scald profile had the lowest SOC stocks at all depths compared to the 

Tarcoola Depression and Tarcoola Vegetated profiles (Figure 6.12a). There was a 

notable increase in SOC stocks in the Tarcoola Depression profile occurring at the 50-

70 cm depth. At the Gunyah site, the Gunyah Eroded profile had the lowest SOC 

stocks. The Gunyah Vegetated and Gunyah Pasture profiles showed similar levels of 

SOC stocks to a depth of 30 cm. From 30 cm, the Gunyah Vegetated profile had the 

highest SOC stocks. The increase in SOC stocks with depth was not as apparent in the 

Scald and Eroded profiles as it was in the Vegetated and Pasture profiles at both sites. 

 

SOC stocks were highly significantly different between sites and microsite to a depth of 

30 cm (P<0.001; Figure 6.13). SOC stocks were significantly higher in the Tarcoola 

Depression and Tarcoola Vegetated sites compared to the Tarcoola Scald site. 

Similarly, at the Gunyah site, SOC stocks were significantly higher in the Vegetated and 

Pasture microsites compared to the respective Scald and Eroded microsites, with at 

least 2.5 times more C in the Vegetated profiles. There was significantly more SOC in 

the Gunyah Scald profile compared to the Gunyah Eroded profile, while the differences 

in SOC between the Gunyah Vegetated and the Gunyah Pasture profiles were not 

significantly different. 
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Figure 6.11 SOC profiles from a) Tarcoola and b) Gunyah 
Note:   Data were square-root transformed for statistical analysis with back-transformed means 
presented. Solid horizontal line indicates SED for microsite effects; dashed line indicates the SED for 
depth effects. 
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Figure 6.12 Cumulative SOC stocks with depth at a) Tarcoola and b) Gunyah 
Note:  Error bars indicate the standard error of the mean. 
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Figure 6.13 SOC stocks to a depth of 30 cm from each site and microsite  
Note:   Vertical bar indicates the LSD.  
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Total N profiles at both sites are shown in Figure 6.14. Total N followed similar 

patterns to that of the SOC profiles. Nitrogen was highly significantly different with 

microsite and depth (P<0.001), and showed significant interactions between microsite, 

site and depth (P<0.001). 
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Figure 6.14 Total N profiles from a) Tarcoola and b) Gunyah 
Note: Solid horizontal line indicates LSD for microsite effects; dashed line indicates the LSD for depth 
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6.3.6 Correlations Between Soil Properties 

The correlation matrix between the soil properties is shown in Table 6.2. Fitting pH, 

EC, ESP, SAR and S after site factors did not significantly affect SOC. However, N was 

strongly correlated with SOC (ie. 0.935; P<0.001), as shown in the correlation matrix 

(Table 6.2). 

 
Table 6.2 Correlation matrix of soil properties 

pH 1.000       
EC 0.276 1.000      

SAR 0.259 0.511 1.000     
ESP 0.597 0.275 0.455 1.000    
SOC -0.492 -0.269 -0.335 -0.462 1.000   

N -0.395 -0.195 -0.366 -0.440 0.935 1.000  
Bulk 

Density 0.386 0.191 0.315 0.454 -0.793 -0.790 1.000 

pH EC SAR ESP SOC N 
Bulk 

Density 
 
 

6.4 Discussion 

6.4.1 Soil Properties: Bulk Density, pH, EC, ESP and SAR 

These results demonstrate that the presence of existing vegetation aids in maintaining a 

number of important soil properties, while the revegetation of formerly degraded sites 

can aid in the mediation of adverse soil conditions, such as those commonly found in 

saline and sodic landscapes. Processes associated with vegetation growth can improve 

soil fertility in general, in addition to a number of soil properties. This occurs in alkaline 

soils by increasing the partial pressure of CO2 in the soil environment, as discussed in 

Section 2.2.4, and through increased inputs of litter, which further promotes vegetation 

growth in a process of positive feedback.   

 

At both sites, the presence of a scalded or eroded profile resulted in high bulk density 

values relative to the vegetated profiles. The lower bulk density at the surface in the 

Gunyah Scald profile (1.2 Mg/m3) compared to the Gunyah Eroded profile (1.6 Mg/m3) 

is probably due to unconsolidated material present at the surface of the scald due to 

deposition processes. High bulk density values were apparent in the Gunyah Eroded and 

Tarcoola Scald (1.50 Mg/m3) profiles due to the exposure of the subsoil, which results 
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in higher bulk density values at the surface, as bulk density tends to be higher in 

subsoils than surface soils.  

 

Crusting and hardsetting commonly occur in sodic soils (Levy et al. 1998), which can 

increase bulk density and impact upon root growth by reducing root penetration. The 

lack of plant growth on the scalded areas can also result in a lower number of pores due 

to a decrease in root channels, both horizontally and vertically. With plant growth, bulk 

density in the surface layers decreases due to the presence of root channels (Bruand and 

Gilkes 2002) and an increase in the build-up of organic material on the soil surface 

which is unconsolidated, as noted in the Vegetated and Pasture profiles. The input of 

organic matter from vegetation improves aggregation, resulting in an improvement in 

soil structure, and hence, an increase in pore space. At depth, however, there are few 

roots, and hence, very little improvement in soil structure. This is also reflected in the 

bulk density values at depth, which increase with increasing clay content. No such 

pattern in bulk density occurred in the Scald and Eroded profiles due to the dominance 

of sodic processes throughout the entire profile. 

 

Soil pH at the Tarcoola site showed similar values to those previously described, with 

high pH in the scalded areas, in Chapters 4 and 5, and near neutral pH in the vegetated 

areas, in Chapter 3. Similarly, pH decreased with the presence of native vegetation and 

planted pasture in the Gunyah profiles. The SAR and ESP were also generally higher in 

the Scald and Eroded profiles compared to the Vegetated and Pasture profiles. 

Interestingly, the ESP in the Gunyah Scald profile is lower than that found in the 

Gunyah Vegetated profile at the surface, and is not comparable to the Gunyah Eroded 

profiles until the 20-30 cm layer. The Gunyah Eroded profile is estimated to have lost 

the top 5 cm of its original profile; however, the ESP of the 0-5 cm layer is still higher 

than the ESP of the 5-10 cm layer from the Gunyah Scald profile. It may be that the loss 

of the top 5 cm of the Gunyah Eroded profile has decreased the soil’s buffering capacity 

against degradation processes due to increased losses of SOM associated with the top 

layer of soil, as described in more detail in Section 6.4.2. 

 

Vegetation has been noted to reduce pH and ESP in sodic soils in previous studies (eg. 

Garg 1998; Mishra and Sharma 2003). Those processes described in the laboratory 

experiment in Section 5.4 are likely to also occur in the field, whereby production of 

CO2 from decomposition of organic material results in a decrease in soil pH due to an 
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increase in PCO2. While decomposition processes produce CO2, as described in Section 

5.4.1, the growth of plants also results in CO2 production from root respiration, 

increasing PCO2 in the root-zone (Figure 2.4; Qadir et al. 2003). Concurrently, protons 

are excreted from plant roots in the form of organic acids, while mineralisation of 

organic N, P and S also produces acidity, which contributes to lowering of pH in 

vegetated areas (Nelson and Oades 1998), indicated in the Tarcoola Depression and 

Tarcoola Vegetated microsites. 

 

At both sites, EC was generally lower in vegetated profiles. At Tarcoola, the EC was 

consistently lower in the Tarcoola Vegetated profile than in the Tarcoola Scald profile, 

except in the 0-5 cm layer. Similarly, at Gunyah, the EC values of the Vegetated and 

Pasture profiles were lower than those of the Eroded and Scald profiles, notably in the 

upper parts of the profiles where roots are likely to be concentrated. It could be argued 

that either the presence of vegetation decreases soil EC by enhancing the leaching of 

salts, or that vegetation growth occurs as a result of the lower salt concentrations 

already present. However, evidence indicates that the vegetation was present prior to the 

development of salinity, as described in more detail in Section 6.4.3, with subsequent 

outbreaks of salinity resulting in the death of vegetation and the establishment of the 

scalds. Increasing EC with depth under the Vegetated and Pasture profiles is most likely 

due to salt exclusion by the plants present and its subsequent translocation down the 

profile by leaching, which is enhanced by improved soil properties under vegetation. 

Similarly, soluble Na+ may also be excluded by plants and also translocated down the 

profile, as evidenced in the general increase in SAR with depth in the Vegetated and 

Pasture profiles. The high EC values in the Gunyah Vegetated and Gunyah Pasture 

profiles below 40 cm support the occurrence of leaching.  

 

However, it is unlikely that the scalds at either Gunyah or Tarcoola have developed as a 

result of salinity alone, as the EC profiles indicate that it is not considered to be of high 

enough salinity for plant growth to cease (EC(1:5) < 1.5 dS/m; Murphy and Eldridge 

1998).. The scalds at Gunyah and Tarcoola are most likely the result of both salinity and 

sodicity, with the alkaline nature of Tarcoola also playing a role in the lack of plant 

growth and hence, increasing dispersion and erosion of top soil. However, it is likely 

that the EC will be high enough in certain microsites at times of moisture stress to 

negatively impact on plant growth. 
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6.4.2 Soil Organic Carbon and Total Nitrogen  

At both Tarcoola and Gunyah, SOC was higher in the Vegetated and Pasture profiles 

compared to the corresponding Scald profile in the surface 30 cm; SOC was also higher 

in the Gunyah Scald profile compared to the Gunyah Eroded profile in the same depth 

interval. Vegetation is a major determinant in the relative distribution of SOC as a result 

of patterns of  C input (Jobaggy and Jackson 2000). Hence, if little or no vegetation 

occurs on the surface, as is the case in the scalded soils, then very little C input is 

occurring, as reflected in low SOC concentrations.  

 

The large increase in SOC in the 50-70 cm layer of the Tarcoola Depression profile 

coincides with an increase in soil moisture and clay content. It is likely that this layer at 

represents a buried soil surface layer, which is supported by a change in soil colour 

from dull yellowish brown in the layer above to brownish grey (see profile description 

in Appendix D). Where soils are waterlogged, which commonly occurs in saline and 

sodic landscapes, decomposition processes are slowed. Clay content also increases with 

depth in duplex soils, commonly found in the Southern Tablelands region (Murphy and 

Eldridge 1998), which is also linked to higher SOC contents (Bird et al. 2001). 

Similarly, poor drainage conditions and high clay contents favoured C sequestration in 

the upper 20 cm of the soil profile in a range of land use types in Ohio in the United 

States of America (Tan et al. 2004). Because SOC is generally highest at the surface, a 

buried surface layer of soil will also exhibit very high concentrations of SOC due to 

limited decomposition at depth, particularly where conditions are anoxic or sub-oxic. 

Similarly, Fang et al. (2006) found SOC to increase to levels greater than that found in 

the topsoil, where an original surface soil layer had been buried at depth. Leaching 

processes may also translocate DOC to lower layers which accumulate where there is an 

increase in soil texture, and may also lead to a build up in SOC stocks at depth. These 

processes are likely to affect the SOC concentration at depth of the Tarcoola 

Depression profile.  

 

Effects due to land use, and hence land management, on SOC are usually only observed 

in the topsoil, or surface layers, with SOC profiles usually approaching similar values at 

depth (Jinbo et al. 2006). However, in this study, differences were apparent even in the 

70-100 cm layer, with concentrations of SOC significantly higher in the Gunyah 

Vegetated and Tarcoola Depression and Vegetated profiles compared to their respective 

Scald and Eroded profiles. While the Gunyah Pasture site had significantly higher SOC 
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levels than the Gunyah Eroded and Gunyah Scald profiles to 30 cm, the concentration 

of SOC was similar at depth (Figure 6.11b). These patterns indicate that where SOC is 

lost as a result of scalding, these losses continue to occur throughout the soil profile, 

including at depth. Through revegetation with introduced pasture, it is possible to 

restore SOC concentrations to levels similar to that of native pasture. However, in this 

study, these effects are only evident at one site (Gunyah) in the top 30 cm, and did not 

occur at depth over the 10 years since revegetation. 

 

The loss of SOC in the Gunyah Eroded profile, particularly the top layers, is clearly 

evident in both concentrations of SOC (Figure 6.11) and SOC stocks (Figure 6.13). The 

loss of SOC highlights the importance of preserving the upper layers of soil and the 

potential for SOC loss, with over 10 t/ha less SOC in the top 30 cm of the Gunyah 

Eroded profile compared to the Gunyah Scald profile. Loss of topsoil also results in a 

decrease in soil fertility and resilience, and hence, increases its susceptibility to further 

erosion (Mabuhay et al. 2006). As erosion increases, loss of SOC also increases since 

SOM is concentrated near the soil surface, as the SOM at the soil surface is of relatively 

low density and contains the most labile fractions (Lal 2001). The loss of SOM further 

decreases the soil’s buffering capacity against degradation processes such as high 

alkalinity, sodicity or salinity, as SOM contributes a significant proportion of a soil’s 

CEC (Nelson and Oades 1998) and nutrients. Further losses of SOC can occur as the 

loss of the upper layers exposes subsoil layers, resulting in increased accessibility of 

SOM in the lower layers for decomposition.  

 

Whilst the presence of vegetation can mediate adverse soil conditions, the difficulty lies 

in establishing and maintaining vegetative production on salt-affected sites over time. It 

is likely that the successful revegetation strategy evident at Gunyah is due to the soils 

being of moderate salinity, neutral pH with adequate Ca concentrations. The high levels 

of soluble and exchangeable Ca found in the Gunyah Pasture site compared to the 

Tarcoola Scald site probably played a role in the re-establishment of vegetation at 

Gunyah, as Ca can aid in mediating against the toxic offects of Na (Reid and Smith 

2000).  Similarly, the neutral pH values found in the Gunyah Scald and Gunyah Eroded 

sites compared to the high pH conditions of the Tarcoola Scald site probably also 

played a role in the successful establishment of vegetation at Gunyah, as soil pH was 

already within the limits for plant growth, with no further remediation required. 

Previous revegetation strategies at Tarcoola have failed, most likely due to the high 
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alkalinity and ESP evident in the Tarcoola Scald profile which occurred at levels which 

prevented seedling establishment and plant growth (B. Murphy pers. comm). As 

vegetation health declines in such environments, there is the potential for a positive 

feedback system to establish, whereby alkalinity and sodicity increase as root 

respiration decreases. Vegetation growth slows, then ceases over time as alkalinity and 

sodicity increase to levels above plant tolerance limits. Unfortunately, in saline and 

sodic landscapes, a simple solution for rehabilitation, which was found at Gunyah, 

usually does not exist, with revegetation strategies generally site specific. It is likely that 

multiple remediation strategies, which include deep-ripping and addition of soil 

ameliorants, will need to be employed in hostile soil environments, such as that found at 

Tarcoola where plant establishment is difficult. It is also possible in extreme cases that 

vegetation will only re-establish at a great financial and labour cost. Therefore, the best 

solution in such cases may be to fence scalded areas to remove from production to 

prevent further degradation.  

 

SOC stocks in the top 30 cm were increased to a level comparable to that under native 

vegetation (Gunyah Vegetated; Figure 6.12) following revegetation with pasture 

(Gunyah Pasture), with no significant differences found between the Gunyah Vegetated 

and Gunyah Pasture profiles. It has been noted in a meta-analysis by Conant et al. 

(2001) that an improvement in land management practices, such as the revegetation 

practices used in this study, can increase SOC stocks, with these net increases in SOC 

persisting for at least 40 years. Similarly, Young et al. (2005) have shown that after a 

period of 15 years or more, SOC concentrations in the upper soil layers under perennial 

pasture were approaching equilibrium conditions characteristic of a perennial system 

such as a grassy woodland. As pasture age increases, more SOC is physically protected 

in microaggregates due to continual development of the root system (Conant et al. 

2004). As SOC increases, so too does the stability of the C pool (Rutigliano et al. 2004), 

as SOM can become increasingly protected as soil structure improves. Many 

macroaggregates form around new root derived POM, such as sloughed-off root 

material, during periods of vegetative growth and senescence (Gale et al. 2000). 

Mucilages are also produced in situ by roots which aid in aggregation and physically 

protect C (Oades 1984). After the death of plants, macroaggregates continue to form 

around new root-derived POM. As the roots decompose, microbial binding agents are 

produced resulting in an increase in macroaggregate stability and the formation of 

microaggregates over time. Concurrently, microbial products and SMB are adsorbed to 
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mineral particles, aiding in the maintenance of stable soil structure (Golchin et al. 1994) 

and the physical protection of SOM. 

 

It has been suggested that SOC concentrations and SOC stocks near the surface can be 

poor predictors of the amounts of C at depth, particularly as land-use, topography and 

vegetation type all influence C distribution down the profile (Young et al. 2005). In this 

study, SOC stocks were calculated to a depth of 30 cm because it is an internationally 

recommended practice in C accounting to express C stocks to a depth of 30 cm (IPCC 

1997). However, SOC stocks in areas where groundwater tables are high may be 

underestimated. Where watertables are high or waterlogging occurs, decomposition may 

be slowed resulting in an accumulation of SOC in the wetter parts of the soil profile, as 

described in Section 2.2.3. SOC stocks may also be underestimated where SOC stocks 

are assessed to a depth of 30 cm as a result of increasing bulk density and clay content 

with depths, where there are likely to be significant stores of SOC. Similarly, in areas 

where buried soil horizons are found, which is not uncommon in salt-affected 

landscapes, SOC can also be underestimated when assessed to a depth of 30 cm, as seen 

in the Tarcoola Depression site. Similarly, SOC can accumulate in areas of deposition, 

or display a sharp increase at depth due to the burial of SOC from continued deposition 

of eroded material (Fang et al. 2006; VandenBygaart 2001). It is likely that this process 

occurred in the Tarcoola Depression profile, which was located in a drainage 

depression position, with approximately 60 cm of material deposited over the original 

soil surface, which was darker in colour and contained a higher content of SOC 

compared to the layer above of recently deposited materials.  

 

Soil C profiles can provide information on the pedological history and soil formation in 

the landscape. Under equilibrium soil conditions, SOC profiles generally follow a depth 

function if uninterrupted by geomorphological or pedological events, decreasing with 

depth due to root density distribution and adsorption processes in mineral horizons. 

However, where degradation has previously occurred, SOC can show a smaller decrease 

with depth in profiles, and is less likely to be retained at depth compared to non-

degraded profiles due to lower initial SOC levels at the surface (Kalbitz 2001). This was 

also reflected in this study, with lower SOC concentrations evident in the topsoil of the 

Gunyah Scalded and Gunyah Eroded profiles. This trend continued with depth, 

compared to the Vegetated and Pasture profiles. Similarly, the SOC content in the 

Tarcoola Scald profile did not display a decrease with depth, which is may be indicative 
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of previously high losses of SOC at the surface. Where extensive redistribution of soil 

occurs through processes such as erosion, SOC profiles can be expected to differ 

significantly.  

 

Nitrogen concentrations followed a similar pattern to that of SOC, exhibiting lower 

levels in the Scald and Eroded profiles and higher levels in the Vegetated and Pasture 

profiles. N concentrations were also were highly correlated with SOC concentrations. 

Soil C and N cycles are intimately linked, and hence, generally follow similar patterns 

(Breuer et al. 2006), being strongly tied to SOM input. N is frequently limiting for 

growth in disturbed or degraded soils (Ross et al. 1982), with  N fertilisation shown to 

increase SOC concentrations and decrease SAR in a Solonetzic soil in Canada, despite a 

decrease in pH (McAndrew and Malhi 1992). Hence, while the lower N concentrations 

in the Scald and Eroded profiles are the result of a limited SOM input, the re-

establishment of vegetation in such areas is most likely limited by low N 

concentrations. Therefore, any future rehabilitation efforts will also need to consider 

inputs of N.  

  

6.4.3 Historical Salinity Issues in the Region 

A previous study by Wagner (2001) indicated that saline areas in the Lachlan and 

Murrumbidgee region catchments have increased dramatically since settlement. Prior to 

the onset of salinity, scalded areas and non-scalded areas were equally vegetated, 

ascertained with the use of aerial photography. From the historical aerial photographs, it 

was seen that scalded areas in the Bevendale region have been expanding since the 

1940s, and have become subject to extensive sheet and gully erosion. In the Rugby 

region, saline areas developed in the 1960s and have been expanding since that period. 

On some farming properties in the area, structural works have been constructed in 

conjunction with tree planting and sowing of salt-tolerant grasses in an effort to 

rehabilitate the area. This was evident in a separate paddock at the Tarcoola Vegetated 

site, with revegetation with Pinus radiata having been undertaken approximately 15 

years ago with limited success (M. Rankin pers comm.).  

 

As a result of increasing salinity, losses of SOC have been occurring over a period of 

over 60 years due to a number of processes. In this time frame, losses due to erosion are 

likely to become more apparent, which is reflected in the lower SOC stocks of the Scald 
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and Eroded profiles. As erosion continues, the exposure of subsoil layers of the profile 

further enhances SOC loss, as described above. In vegetated areas of similar soil types, 

there can be up to 2.5 times more SOC stocks compared to those profiles which had 

been scalded, as shown in Figure 6.13. However, it has been noted that management 

improvements and land use conversions which increase forage production, and hence 

vegetation, will generally increase SOC (Conant et al. 2001). This is evident in the SOC 

stocks found in the Gunyah Pasture profile following revegetation, on a formerly 

scalded area, which were comparable to the SOC stocks found in the Gunyah Vegetated 

profile, with the apparent ease of revegetation largely attributed to the neutral pH values 

of the site and exclusion of stock. 

 

6.4.4 Area Affected by Salinity 

It has been estimated that 7330 ha of land was affected by salinity in 2004 in the Upper 

Lachlan catchment (ACT Government 2004). Because both the Gunyah and Tarcoola 

sites lie in the Upper Lachlan catchment, the difference in the average of the SOC 

stocks from the Vegetated and Scald profiles was taken to determine the loss of SOC 

associated with salinisation. Therefore, at a very coarse scale, the total loss of SOC 

stocks in the Upper Lachlan Catchment is estimated to be in the vicinity of 190 000 t of 

SOC to a depth of 30 cm. It should be noted, however, that extrapolation of results from 

paddock scale to one at a catchment scale should always be done with caution due to 

differences across catchments in geomorphology, geology and soil types. A number of 

sites in the Upper Lachlan catchment will need to be assessed to further refine this 

figure.  

 

Morevoer, it is also notoriously difficult to have well paired sites in saline and sodic 

landscapes, as the expression of salinity and sodicity are dependent on geomorphology. 

Salinity and sodicity effects occur at a catchment scale, and exhibit high temporal and 

spatial variability. These effects are usually evident in low areas of the catchment and 

where there is a break of slope (McFarlane and George 1992). One option in a paired 

sites study in salt-affected areas is to select a scalded site, with its opposite pair located 

in an adjacent catchment at the same position in the landscape which is not salt-affected. 

However, this option also has drawbacks as differences in hydrology and geology, in 

particular, will render the pair incomparable. Therefore, in this study, the pairs that were 

chosen were located within the same catchment at the same landscape position. It is 
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likely that soil types between saline and/or sodic sites and unaffected sites will be 

different due to differences in chemistry as a result of salinity and sodicity. Therefore, in 

selecting paired sites in such studies, while soil types cannot be exactly matched, the 

underlying geology, land use, hydrology, vegetation and geomorphology should be the 

same where possible. 

 

Whilst it was unfortunate that the Tarcoola Depression site had what was most likely an 

in-fill layer overlying a buried soil surface, such incidences are not unique in the 

Southern Tablelands region of NSW (B. Murphy, pers. comm.). However, as the 

microsites had already been established, it was not viable to establish another Vegetated 

microsite. Therefore, the Tarcoola Vegetated profiles were sampled to compare the 

Tarcoola Scald site with another vegetated site.   

 

6.5 Summary and Conclusion 

Scalded and vegetated profiles display very different soil properties at the surface and at 

depth. These differences are most likely due to the presence of vegetation, which 

mediates soil properties largely through organic matter deposition and processes related 

to root respiration and growth. Thus, soil pH, EC, SAR and ESP were generally lower 

in the surfaces layers of those profiles with vegetation compared to those without. Total 

N and SOC are largely related to SOM accumulation, and hence, followed similar 

patterns. SOC concentration was higher in the profiles that were vegetated with both 

native and sown pasture, and lower in those profiles that were scalded or eroded. 

Similarly, SOC stocks followed a similar pattern, with the profiles that had been 

formerly scalded and subsequently revegetated displaying similar SOC stocks to those 

under native pasture in the top 30 cm. However, SOC stocks in eroded profiles that had 

lost the top 5 cm of soil had also lost a substantial amount of SOC compared to a similar 

scalded profile where the top layer was still intact. Therefore, in salt-scalded areas, SOC 

is substantially lower than that found in non-degraded vegetated and revegetated 

profiles, highlighting the losses in SOC stocks as a result of increasing salinity and 

sodicity. Further losses in SOC will occur if the scalded profiles are subsequently 

eroded. Chapter 7 will discuss the links between SOC stocks described in this chapter, 

and SOC flux described in previous chapters. 
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CHAPTER 7: GENERAL DISCUSSION 

 

7.1 Carbon Processes in Landscapes Affected by Salinity and Sodicity 

The accumulation of SOC stocks is essentially a balance between inputs by plants and 

losses by decomposition, erosion and leaching, with accumulation occurring where 

inputs are greater than losses. The importance of maintaining SOC levels, particularly in 

agricultural soils, is well established. This is evident in terms of a soil’s buffering 

capacity, where losses of SOM, particularly in an agricultural soil, can significantly 

reduce a soil’s CEC and hence, retention of available nutrients for plant growth, and the 

soil’s capacity to buffer against environmental changes (Slattery et al. 1998). The 

importance of SOC lies in its close association with the SMB and its impact on plant 

health, as changes in the soil environment can place the microbial community and 

vegetation under high levels of stress, as indicated in Chapter 4. Higher levels of SOM 

can also aid in maintaining soil structure and soil fertility, as reviewed in Chapter 2, but 

was beyond the scope of this project. This chapter will integrate the results from 

Chapters 3, 4, 5 and 6, as shown in Table 7.1. 

 

7.1.2 Losses of Soil Organic Matter in Saline and Sodic Environments 

The SMB only makes up a small proportion of the total SOC (ie. 1-5%), yet is the 

driving force of soil C turnover, as all organic material has to pass through the SMB. 

The benefits of having high levels of SMB are well established, and include efficient 

soil ecosystem and nutrient cycling processes, and hence, accessibility to plant available 

nutrients, as reviewed in Chapter 2. Due to the faster turnover rate of the SMB 

compared to the total SOC pool, microbial parameters can be more sensitive and 

consistent indicators of management-induced changes to soil quality than other soil 

physical or chemical properties when comparing the impacts of management (Bending 

et al. 2004).  
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Table 7.1 Integration of results chapters 
Chapter Description Experimental 

Conditions 
Key Finding 

3 Leaching of non-
scalded vegetated soil 
with a combination of 
saline and sodic 
solutions 

Controlled 
temperature and 
moisture conditions 

SMB was highest in the high-
salintiy treatments, attributed to 
more easily accessible and 
decomposable SOM due to high 
salt concentrations. Therefore, it 
is possible that SOC is rapidly 
lost as salinity and sodicity 
increase. 

4 Gypsum addition to 
saline-sodic soils 
which are scalded and 
free of vegetation 

Controlled 
temperature and 
moisture conditions 

Low levels of SMB and 
cumulative soil respiration are 
due to a lack of substrate, 
confirmed in the SOC stocks in 
Chapter 6, as the soil surface is 
scalded. Therefore, in extreme 
cases, little microbiological 
activity is occurring in scalded 
areas. 

5 Organic material and 
gypsum addition to 
saline-sodic soils 
which are scalded and 
free of vegetation 

Controlled 
temperature and 
moisture conditions 

Higher levels of SMB and soil 
respiration compared to the 
results from Chapters 3 and 4 are 
due to availability of substrate for 
decomposition. Therefore, the 
SMB is limited by substrate, 
rather than by high EC, ESP and 
adverse pH conditions.  

6 SOC stocks in salt-
scalded, eroded, 
revegetated and 
unaffected soil 
profiles. 

Field conditions Low levels of SOC stocks found 
in salt-scalded profiles, are 
compounded by erosion. 
Following revegetation, SOC 
stocks can increase to levels 
similar to those found in 
unaffected soil profiles. 

 

Increasing salinity and sodicity ultimately results in a decrease in SOC through a 

number of mechanisms. Chapter 3 showed higher levels of SMB in the high-salinity 

treatments compared to the control treatments. Soil respiration did not follow similar 

patterns to the SMB, which is attributed to a shift in the community structure from one 

dominated by fungi to one dominated by bacteria. The survival of specialised and 

adapted species in saline conditions may result in a microbial community dominated by 

bacteria with lower respiration rates compared to a population dominated by fungi (Adu 

and Oades 1978), with a bacteria dominated community also less active and less diverse 

(Pankhurst et al. 2001). It is possible that the shift in community structure will also 

influence the qCO2, as discussed in Chapter 3.  
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It is suggested that the higher levels of SMB in the high-salinity treatments found in 

Chapter 3 is due to the increased solubility, decomposability and accessibility of SOM. 

Extrapolating from these results, it is also suggested that with the onset of salinity and 

sodicity, native SOM can be rapidly lost. Concurrently, C inputs into the soil are 

decreased as salinity and sodicity cause plant health to decline through adverse soil 

physical and chemical conditions. Under these conditions, it is likely that concentrations 

of dissolved SOC increase due to increased solubility of SOM. This process provides 

additional substrate which is easily decomposed by the microbial population, as shown 

by Jandl and Sollins (1997), and can also be easily lost by leaching. Dispersion of 

aggregates due to sodicity, many with cores containing organic material (Tisdall and 

Oades 1982), also increases the availability of C. As a result, SOC accessibility and 

degradability is increased for the microbial population, which can also offset stresses 

placed on the microbial biomass, discussed below. It is also possible that additional 

substrate can become available for decomposition when SOC is released from clays 

with increases in salinity. Under such conditions, SOM adsorbed on clays is released 

due to exchange processes as cations flood exchange sites, as described in Chapter 3. It 

should be noted, however, that the SMB levels and soil respiration rates found in 

Chapters 3, 4 and 5 represent the maximum response of the active C pool, as the 

analyses were conducted on disturbed samples. Therefore, oxygen availability was 

increased compared to in situ conditions in the field, particularly at depth. In addition, 

the soils were placed in optimal moisture and temperature conditions during the 

experimental period.  

 

Initial losses of SOC can be attributed to the response of the faster-cycling C pools that 

contribute most of the decomposition flux according to the processes suggested above. 

However, in the longer term, decadally cycling pools continue to lose C at rates that are 

significant in terms of ecosystem level C storage, but are frequently not detectable as 

they represent less than 5 % increase in soil respiration rates after the first several years 

(Trumbore 2006). Death of vegetation occurs with high levels of salinity and sodicity, 

resulting in bare, scalded patches which are increasingly susceptible to further losses of 

C by water and wind erosion, as seen in Plates 6.2, 6.5 and 6.6, and in the low SOC 

stocks in the Scald and Eroded profiles discussed in Chapter 6. The SMB is placed 

under increasing stress as substrate availability and decomposability decline, with little 

SOC input occurring due to the absence of vegetation. It is likely that vegetation death, 

which results in scalding of the soil surface, will generally precede the decline in SMB, 
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as vegetation is generally less tolerant of saline and sodic conditions. This was shown in 

a study by Rietz and Haynes (2003), who found that sugarcane yields were negatively 

correlated to sodicity rather than salinity, while the qCO2 increased with both salinity 

and sodicity. However, despite the decreases in microbial activity, there was still 

substantial activity occurring in areas where vegetation had died. Over time, the 

microbial population can become adapted to a high salt environment (Polonenko et al. 

1981; Zahran 1997), which may have been the case in the studies reported in Chapters 4 

and 5. For example, following leaching with distilled water, the qCO2 was 0.080 mg 

CO2-C/d/mg SMB-C, while leaching with the high-salinity high-sodicity solution gave a 

qCO2 of 0.010 CO2-C/d/mg SMB-C in the surface layer of soil in Chapter 3. In 

comparison, the qCO2 found at the same site from a scalded profile was 0.078 CO2-

C/d/mg SMB-C in Chapter 4, which suggests some adaptation to the soil environmental 

conditions found at the site of high ESP and high pH. However, as suggested previously, 

the qCO2 in this study only provides an indication of the stresses placed on the 

microbial population, while Section 2.3.1.1 describes the mixed results which have 

resulted with the use of the qCO2. Further research with the use of other microbial 

indices such as dehydrogenase activity and arginine ammonification rate and fluorescein 

diacetate (FDA) hydrolysis (Chander and Brookes 1991a; Haynes 1999), which 

measures enzymatic activity, and ergosterol content, which measures fungal biomass 

(Rasul et al. 2006), would clarify the results found in this study.  

 

Low levels of SMB were found in scalded profiles (Chapter 4), which were attributed to 

limited SOC input at these sites. However, it is suggested that the SMB in scalded soils 

is dormant, and becomes active where substrate, such as kangaroo grass, is available for 

decomposition. The adapted microbial population can rapidly multiply when substrate 

becomes available despite adverse soil conditions. This most likely occurred following 

the addition of organic material in Chapter 5, where the Cmic:Corg increased compared to 

those results found in Chapter 4, while the qCO2 decreased. It is possible that increased 

substrate availability can offset the stresses placed on to the microbial community. This 

can also occur in the field either through direct incorporation of organic material, such 

as straw, in the rehabilitation process or increasing vegetation cover through replanting. 

The addition of gypsum with organic material did not adversely affect the population, 

despite increases in soil-solution EC. Therefore, it may be possible to re-establish 

microbial activity and hence, nutrient cycling in the field following the addition of 

organic material in conjunction with gypsum. As plant growth is established, SOC input 
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increases, largely due to inputs from litterfall, and rhizodepositions. The presence of 

plants further promotes microbial activity and the build-up of microbial biomass, as root 

exudates are a source of substrate for the microbial community, favouring remediation 

processes (Tejada et al. 2006).  

 

7.1.3 Soil Properties and Geomorphic Factors 

A number of opposing processes affecting SOC stocks and fluxes occur during 

salinisation and sodication. Dalal and Mayer (1986) have linked the loss of SOM to 

factors that affected its accessibility and stability to attack by the microbial population 

and enzymes. Macro- and microaggregates can contain, and physically protect a 

considerable portion of SOC (Conant et al. 2004). In sodic soils, dispersion of 

aggregates on wetting can increase substrate accessibility and availability (Oades 1984). 

However, on drying, the bulk density of a soil increases and waterholding capacity 

decreases which decreases the availability of SOM to the microbial biomass. Thus, 

hardsetting soils of high bulk density restrict substrate availability to the microbial 

population due to the breakdown of soil structure on wetting and its subsequent 

formation of massive structure when dry, as substrate can be located in pores that are 

too small for the microbial population to access.  

 

Wetting of the soil, either through rainfall or irrigation, can also result in soil structural 

breakdown at the soil surface and the formation of surface crusts. These crusts result in 

restricted infiltration causing waterlogging on the soil surface and dry subsoils. Such 

conditions further decrease the decomposition of SOM. In saline soils, high soil-

solution EC results in flocculation of clay particles into aggregates which may also 

restrict substrate availability and hence, the decomposition of SOM. Any process which 

slows decomposition in normal circumstances will also result in increases in SOC. For 

example, Tan et al. (2004) found that poor drainage conditions favour C sequestration, 

regardless of land use, as a result of reduced oxidation of SOC from the upper layers of 

soils. Similarly, at depth, waterlogging will also enhance SOC accumulation due to 

reduced oxygen availability. This process probably also played a role in the higher 

concentrations of SOC found in the buried surface horizon (50-70 cm layer) in the 

Tarcoola Depression profile, which was very moist, as discussed in Chapter 6 and 

described in Appendix D.  
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The presence of perched ephemeral aquifers has implications for C flux and oxygen 

availability for soil biota and is frequently responsible for waterlogged conditions in the 

landscape. However, despite the common occurrence of waterlogging, in general, saline 

and sodic soil conditions result in losses of SOC due to their adverse effects on plant 

growth. This could occur either directly through ion toxicities, or indirectly through 

decline in soil structure and limited access to nutrients and water for plants. Because 

vegetation cover is the dominant factor in determining SOC stocks and fluxes, SOC 

levels will most likely show a general net loss in the long term if highly saline and sodic 

conditions persist. 

 

In scalded soils, the A horizon has frequently been eroded, as shown in the Gunyah 

Eroded profile in Chapter 6. Following erosion, the less fertile B horizon remains as the 

soil surface. Because SOC generally decreases with depth (Murphy et al. 1998), erosion 

and increased mineralisation of the SOM in the B horizon result in a substantial loss of 

soil C. Transported sediments are frequently enriched in SOC, of relatively low density 

due and concentrated close to the soil surface. Therefore, where erosion occurs, SOC 

levels are lower in eroded compared to uneroded soils (Lal 2001). This was evident in 

the eroded profile in Chapter 6, with the Gunyah Eroded profile containing half the 

SOC stocks found in the Gunyah Scald profile. This indicates that a substantial amount 

of SOC can be lost in scalded soils as a result of erosion, particularly where the topsoil 

is lost in the process in addition to SOC losses as a result of scalding.  

 

Areas affected by salinity and sodicity are characterised by high spatial and temporal 

heterogeneity in the landscape. While SOC stocks are generally assessed at a regional 

scale, variations between vegetated and scalded soils occur at a paddock scale, resulting 

in difficulties in the accurate determination of C stocks and fluxes. Topographic effects 

further complicate assessments, as soils in lower slope positions have EC profiles which 

decrease with depth due to evaporation from shallow groundwaters, while those from 

upper slopes show increasing EC with depth, indicating that leaching has taken place 

(Harker and Mikalson 1990). Therefore, it is difficult to determine differences in SOC 

stocks in salt-affected compared to non salt-affected landscapes. Because expressions of 

salinity and sodicity are frequently governed by topography, those salt-affected sites are 

likely to be located in lower slope positions, while a non salt-affected analogue in a 

similar slope position may be difficult to establish, as described in Chapter 6. Also, 

because increasing salt concentrations can increase SOC losses, as shown in Chapter 3, 
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EC profiles and salt flux are likely to affect mineralisation of SOC at different depths in 

the profile. This has implications for C dynamics, as SOC is frequently less labile, older 

and more stable at depth (Wang et al. 1996).  

 

7.2 Building Up Soil Organic Carbon Stocks 

There is a high potential to build up SOC stocks in salt-scalded areas as there is a higher 

capacity to accumulate SOC where stocks are initially low. In this study, the low SOC 

stocks found in the Scald and Eroded profiles in Chapter 6, which were nearly three 

times lower than those found in Vegetated and Pasture profiles, are most likely caused 

by the absence of vegetation cover on those areas. This results in little or no C input in 

the scalded areas. In Chapter 4, soils sampled from a scalded profile also displayed low 

levels of SMB and soil respiration. Similarly, Pankhurst et al. (2001) found lower SOC 

levels in saline soils compared to non-saline soils. They attributed this to reduced inputs 

of organic matter due to sparser plant cover and the reduced presence of salt sensitive 

pasture. Soil C stocks are influenced by land use and land management practices, and 

hence, any decrease in biomass production will also decrease SOC levels. Due to very 

low SOC stocks in salt-scalded profiles, successful revegetation of these landscapes can 

result in rapid SOC accumulation. For example, revegetation with introduced pasture at 

the Gunyah site resulted in an increase in SOC stocks to levels similar to those found 

under native pasture when assessed to a depth of 30 cm after 10 years. However, these 

results are specific to this site alone, as the results are only indicative of the possible 

magnitude of the impact of planting pasture. Further research is required to confirm 

these findings with a replicated field study based on a time-series of change after scalds 

are re-vegetated.  

 

7.2.1 Land Management and Rehabilitation of Salt-Affected Areas  

In saline and sodic areas, the key issue in rehabilitation is the maintenance of biomass 

production in an environment that is essentially adverse and often prohibits plant 

growth. The influence of vegetation on a number of soil properties and processes is well 

established, as discussed in Chapter 2. Briefly, the maintenance of soil structure in 

saline and sodic profiles is aided by the presence of vegetation and its associated root 

systems. Roots and root hairs are continuously decomposed, while root mucilages 

stabilise soil structure in the area surrounding the root-zone (Oades 1984). Clays can 
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stabilise SOM through direct interactions with microbes, alter the rate and pathways of 

microbial metabolism, and promote aggregation through sorption (Sollins et al. 1996). 

The  incorporation of organic material can also stabilise clays into macroaggregates and 

increase the CEC, with preferential retention of Ca2+ over Na+ (Muneer and Oades 

1989b). As nutrient levels in saline and sodic soils are frequently low, litterfall can 

provide a substantial concentration of nutrients, which can sustain plant growth (Garg 

1999).  

 

The presence of plant roots has been shown to increase PCO2 in aerobic (Mishra and 

Sharma 2003) and waterlogged soils (Boivin et al. 2002). Because salt-affected soils 

commonly occur in alkaline conditions, the increase in PCO2 has been shown to decrease 

soil pH. This effect was reflected in the Vegetated, Pasture and Gully profiles, which 

were all vegetated, at both the Tarcoola and Gunyah sites, as discussed in Chapter 6.  In 

Australia, sodic soils are commonly alkaline and contain CaCO3 in the profile, usually 

in the subsoil but remains relatively insoluble due to high pH conditions. Decreasing 

soil pH by increasing PCO2 and organic matter in soils prevents CaCO3 precipitation and 

enhance its solubility, facilitating the reclamation of sodic areas (Chorom and 

Rengasamy 1997). However, this process may release previously sequestered C; further 

examination of this is beyond the scope of this project.  

 

As the demand for high quality water for urban supply increases, the use of lower 

quality irrigation water for agricultural areas will also increase, as described in Section 

3.1. However, attempts to increase biomass production through application of poor 

quality irrigation water, which is often saline and/or sodic, can result in the development 

of moderately to highly saline and sodic soils with the concomitant decline in biomass 

production (Rogers 2002). According to the processes described in Chapter 3, it is 

possible that with the application of saline irrigation waters, losses of native SOM will 

most likely increase as SOM can be rapidly solubilised and lost. Similarly, where 

hydraulic conductivity and infiltration need to be improved in a sodic soil, a solution of 

high EC is required to ameliorate the soil. However, as outlined above, increasing EC 

can deplete SOM stores in the soil prior to remediation taking place.  

 

While this project has focused on the amelioration of pasture systems affected by 

salinity and sodicity, other studies have shown that catchments planted with trees 

reduced levels of salinity due to lower recharge rates (eg. George et al. 1999; Schofield 
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1992). The planted trees then lower water table levels to below the salt bulge in the soil 

profile and hence, prevent the release of more salt into the groundwater (Salama et al. 

1993b). It has been suggested that catchments require between 70-80 % tree cover in 

order for groundwater levels to stabilise or decrease (George et al. 1999). Revegetation 

in recharge areas may be more successful than the process of revegetating seepage areas 

or areas that are scalded. Recharge areas are frequently at higher positions in the 

landscape, where the expression of salinity and sodicity may not be as severe, and hence 

soil environmental conditions may be less hostile such that plant establishment and 

growth may be more successful. Revegetation of discharge areas may only be a short to 

medium term strategy if plant establishment is initially successful, as evapotranspiration 

by trees will concentrate the salts and cause an increase in the salinity of the 

groundwater in the longer term (Stolte et al. 1997). Concentration of salts not only 

occurs following revegetation with trees, as perennial shrubs and grasses may also 

accumulate salt in their root zones which can lead to vegetation health decline in the 

longer term (Barrett-Lennard 2002). Difficulties also exist in establishing and 

maintaining vegetation growth in salt-affected sites, as revegetation needs to be 

successful at a catchment scale to reduce watertable levels. In addition, sites severely 

affected by salinity which are of high value will most likely also require engineering 

strategies to be employed to pump groundwater in conjunction with revegetation for 

these areas to remain in production (Clarke et al. 2002). 

 

Not only can the presence of trees reduce recharge rates, but they can also increase C 

inputs into the soil to a greater depth compared to pasture. A study by Young et al. 

(2005) found that SOC stocks under pasture and woodland were comparable to a depth 

of 20 cm. However, when stocks were assessed to a depth of 1 m, woodland soils 

contained significantly more SOC than the pasture soil. This was a result of C allocation 

by deeper roots in sites with trees. The allocation of SOC at depth can decrease 

decomposition rates and hence, enhance SOC accumulation. This is mainly attributed to 

limited N availability, limited oxygen availability and increased bulk density, while 

SOM in the form of plant roots is of a lower quality (Newey 2005). 

 

Estimation of SOC stocks to a depth of 30 cm can result in an underestimation of actual 

stocks, as described in Chapter 6. The lower depth limit of 30 cm has been established 

to focus on the effects of land use and management on the labile C pool, as labile C 

dominates the upper layers of a soil profile and is easily oxidised and lost. For example, 
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a study by Jinbo et al. (2006) found that the effects of land use on the total SOC and 

labile fraction organic C were mainly observed in the upper 20 cm of the soil profile, 

with leachate from the topsoil providing a substantial portion of SOC at depth. However, 

a meta-analysis by Conant et al. (2001) found that SOC can be gained or lost at depths 

greater than one metre following land use or land management conversion resulting in 

an underestimation of  SOC stocks. In this study, one SOC profile assessed to a depth of 

one metre displayed significant accumulations of SOC below 30 cm, attributed to the 

burial of a former surface horizon, a process which is not uncommon in saline and sodic 

landscapes (Chapter 6). 

 

7.2.2 Gypsum and Organic Amendments 

This research demonstrates that where sodic or saline-sodic soils are remediated, the 

presence of organic material can aid in re-establishing soil ecosystem functions. The use 

of Ca compounds as soil ameliorants is essential, particularly in sodic or saline-sodic 

soils, as described in Chapter 2, while the presence of high levels of Ca can aid in plant 

growth and establishment as shown in Chapter 6. The addition of Ca compounds can 

accelerate changes in soil-solution composition conducive to reclamation of sodic soils. 

Addition of Ca as gypsum or lime is critical for plant growth in saline and sodic sites, 

which are frequently Ca-limited, resulting in Ca deficiencies in plants (Reid and Smith 

2000). Initial addition of gypsum to sodic soils in the field aids in improving soil 

physical properties for vegetation growth. It is likely that further reclamation of sodic 

soils by organic matter can also facilitate remediation, as demonstrated under controlled 

conditions in Chapter 5. In this study, gypsum caused a reduction in ESP and, in 

alkaline conditions, resulted in reduced soil pH, as shown in Chapters 4 and 5.  

 

It has been suggested that increasing the SMB will generally improve soil condition. 

Microbial cells generally possess a net negative charge which assists in flocculation of 

clay particles (Oades 1984) which improves soil structure, while the decomposition of 

organic material by the SMB is essential for nutrient cycling.  In sodic soils with high 

levels of insoluble Ca, commonly found in arid and semi-arid regions of Australia due 

to the presence of CaCO3, an increase in the SMB may aid in the greater solubilisation 

of Ca2+. The ESP can be  decreased in these areas as a result of greater CO2 evolution 

and humic acid formation from decomposition of SOM (Malik and Haider 1977). 

Similarly, linkages can be formed between products of microbial decomposition 
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processes and Ca2+ to further aid in improving soil condition (Baldock and Skjemstad 

2000). Humic acids are stronger acids than H2CO3, which is commonly formed in the 

presence of respiration and water, and can have a greater potential to dissolve inorganic 

carbonates while releasing Ca2+ (Nelson and Oades 1998), as described in Chapter 5. 

Mineralisation of organic matter also has the potential to release Ca, as complexes with 

Ca are formed more readily than those with Na (Nelson et al. 1998).  

 

Despite increases in EC following the addition of gypsum, microbial activity remained 

unaffected (Chapters 4 and 5). The maintenance of microbial activity was most likely 

due to the presence of a microbial population that was adapted to high EC and pH 

conditions, particularly where scalded soils have been present for many decades. 

Results of previous studies on the effect of salinity and/or sodicity on soil 

microbiological processes have been contradictory, particularly where salinity has been 

induced, as described in Chapter 2. The contradictory effects may have been due to a 

range of adaptation mechanisms, or lack thereof, by the microbial community to saline 

soil environmental conditions in the different studies. Thus, in those soils where salinity 

and/or sodicity have occurred for a number of years, the microbial population has most 

likely developed adaptations to cope with hostile environments. In addition, higher 

activity of Cl- ions compared to SO4
2- ions can produce a greater increase in EC, with 

Cl- more toxic to the microbial population at the same EC (Garcia and Hernandez 1996). 

The sites of Avoca and Tarcoola, discussed in Chapters 4 and 5, have been scalded for 

periods of approximately 10 and 60 years, respectively; this has most likely allowed the 

microbial population time for adaptation to such conditions at both sites. As a result, the 

addition of gypsum had little or no effect on the SMB. 

 

The presence of plant cover in establishing an active SMB for nutrient cycling is 

important and has been well established by studies relating to ecological succession (eg. 

Rutigliano et al. 2004).  Amelioration of hostile soil environmental conditions through 

the addition of gypsum alone, or in combination with lime, has been linked to higher 

levels of plant growth and accumulations of SOC (Valzano et al. 2001b). However, in 

terms of management of saline and sodic landscapes, while reclamation of soils with the 

use of gypsum may remediate soil conditions in the root zone of plants, leaching of Na+ 

ions may lead to further problems due to increasing sodicity at depth and in the 

groundwater (Surapaneni and Olsson 2002). Australian soils commonly have different 

layers in the soil profile which suffer from different constraints in the different layers, 
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resulting in difficulties when attempting to establish or maintain plant growth. This is 

often due to the common occurrence of duplex soils, where the topsoil of a profile may 

be sodic while the subsoil is saline or vice versa (Rengasamy 2006). Revegetation was 

successful in restoring SOC stocks in this study at the Gunyah site by revegetation alone, 

which is attributed to neutral pH values and adequate Ca concentrations, as discussed in 

Chapter 6. However, it is likely that at more severely affected sites, such as Tarcoola, a 

number of strategies will need to be employed for revegetation to be successful. This 

includes deep-ripping to break up the hard pan that has formed as a result of sodicity 

and the addition of ameliorants, which may include gypsum, lime, organic material, or a 

combination of all three prior to sowing, as discussed in Chapter 6. 

 

Lime is a commonly-used ameliorant where soils are acidic, and it would have been of 

interest to assess the differences in the effects between lime and gypsum in the SMB 

and microbial respiration, particularly in the acidic Avoca soils discussed in Chapters 4 

and 5. However, time and budgetary constraints prevented further investigation. A 

previous study by Haynes and Naidu (1998) showed that short term effects following 

additions of lime to ameliorate soil pH conditions have resulted in a flush of microbial 

activity, and hence, increased mineralisation rates and loss of SOC content while soil 

aggregation was improved due to production of microbial products. This was attributed 

to an improvement in soil environment, with pH conditions more amenable for 

microbial growth. Where soils are moderately saline and/or sodic, a similar process may 

occur following the addition of gypsum, with a flush of microbial activity when pH 

conditions improve, followed by a longer term build up in SOC levels as plant growth 

improves due to improved soil conditions.  

 

The effect of soil pH change is likely to play a major role in C dynamics, particularly in 

the degradation and rehabilitation processes of salt-affected landscapes, due to its 

effects on both the microbial population and vegetation health. Results reported in 

Chapter 6 indicated that soil pH was consistently lower where plant growth had become 

established. The presence of vegetation is likely to mediate pH conditions affected 

through processes such as the production of root exudates and litterfall for 

decomposition (Kemmit et al. 2006; Xu et al. 2006). Soil pH change, as reported in 

Chapter 5, appeared to affect respiration, but not SMB, while pH did not appear affect 

microbial activity (Chapter 4). High pH decreases the solubility and availability of a 

number of plant nutrients including phosphates, Fe, Zn and Mn, while low pH can 
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induce iron and aluminium toxicities (Russell 1973) for plant growth. Therefore, to 

increase SOC stocks, soil pH conditions will need to be mediated in order for plant 

growth to become re-established in salt-affected areas, and hence, allow for efficient 

functioning of the microbial population. 

 

The addition of organic material in the form of manures, sewage sludge and plant 

material for rehabilitation of degraded landscapes has been commonly undertaken in the 

past (eg. Kumar and Singh 2003; Liang et al. 2005; Suriadi et al. 2002; Tejada et al. 

2006). In a previous field-based study, the incorporation of organic materials into mine 

spoils, which were originally free of vegetation and susceptible to erosion and crusting, 

was shown to decrease crust strength and increase soil moisture, allowing for salt-

tolerant plants to establish in a saline-sodic environment (Grigg et al. 2006). Chapter 5 

showed that the addition of plant material to salt-affected soils can aid in the 

rehabilitation process by increasing the SMB and microbial activity, and decreasing soil 

pH in highly alkaline conditions. Organic material can provide a buffer and reduce 

microbial sensitivity to adverse soil conditions (McCormick and Wolf 1980), while the 

solubilisation of organic matter at high pH into colloidal forms results in increased 

availability of substrates, thus relieving the pH stress on microbes (Pathak and Rao 

1998). 

 

 The addition of plant material, as reported in Chapter 5, also showed that the 

amendment incorporated does not need to have a narrow C/N ratio, despite low N 

contents present in the soil. However, while the addition of organic material and 

gypsum may aid in the recovery of scalded areas, the overall aim of the rehabilitation 

process is to establish vegetation on these vegetation-free areas so that the incorporation 

of organic material is part of a self-sustaining system. One study showed that the 

incorporation of organic amendments may lead to spontaneous vegetation growth on a 

saline soil due to the amelioration of ESP and soil structure, and the efficient 

functioning of microbial and enzymatic activities (Tejada et al. 2006). It should be 

noted, however, that while SOC stocks can accumulate following successful 

revegetation quite rapidly, Buyanovsky and Wagner (1995) found that in a short period 

of time, it is unlikely that the main reserve of SOM can be significantly altered, with the 

build up in SOC stocks likely to result in an initial build up of the more labile fractions. 

Therefore, if vegetation fails to establish, the accumulated SOM can also be rapidly lost. 
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7.3 Summary 

The potential to accumulate significant amounts of SOC in salt-affected landscapes is 

high, as SOC stocks are initially low in salt-scalded areas. It is suggested, from Chapter 

3, that during the degradation process, SOC can be rapidly lost as the SMB increases 

with increasing salt concentration which is attributed to the increased solubility and 

decomposability of native SOM. As salinity and sodicity continue to increase, SOC loss 

continues as decomposition continues, while SOC inputs decline as vegetation 

productivity decreases. In extreme cases, scalding of the soil surface occurs resulting in 

very low SOC stocks. Scalded soils are susceptible to further losses caused by erosion, 

resulting in low levels SMB in both scalded and eroded profiles, probably due to low 

levels of SOC. However, it is suggested that SOC can also be rapidly accumulated 

during reclamation by the addition of organic material, replanting, or a combination of 

both, which can increase the standing biomass and hence, increase in SOC stocks. It is 

also likely that soil ecosystem processes are also restored in the process, which results 

in efficient nutrient cycling, and hence, C cycling.  
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CHAPTER 8: CONCLUSIONS 

 

8.1 Research objectives revisited 

Salinity, sodicity and SOC dynamics are three critically important yet seemingly 

separate issues in natural resource management. By investigating all three issues, this 

study found that salinity and sodicity adversely impacted upon SOC stocks, largely due 

to the importance of vegetation production on SOC inputs. Increasing salinity and 

sodicity results in declines in vegetation health, and hence, decreases SOC inputs. 

Similarly, during the rehabilitation process, SOC can be accumulated as a result of 

revegetation to levels similar to those found in unaffected soils. Moreover, the lower 

SOC stocks found in saline and sodic landscapes were not due to impacts on vegetation 

alone. The overall aim of this thesis was to determine SOC dynamics as affected by 

salinity and sodicity. This section revisits the objectives of this study, as set out in 

Section 1.1. The processes involved in decreasing SOC during degradation, and 

conversely increasing SOC during rehabilitation are described below.  

 

8.1.1 Quantification of the effects of different levels of salinity and/or sodicity on 

carbon stocks and fluxes  

Under controlled temperature and moisture conditions in the laboratory, the SMB was 

highest in the high salinity treatments. It was suggested that the high levels of SMB 

were due to the increased solubility of the SOM which renders it more easily 

decomposable. Soil respiration did not follow the same patterns as the SMB, which may 

have been due to a shift in community structure, from one dominated by fungi to one 

dominated by less active bacteria. Therefore, as salinity and sodicity increase, it is 

suggested that SOC input decreases due to declining vegetation health, while the SOM 

present continues to be decomposed. As a result, SOC can be rapidly lost where salinity 

and sodicity levels increase in a vegetated soil profile. 
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8.1.2  Determination of the behaviour of the labile carbon pool in a saline-sodic soil, 

with and without gypsum amendment 

The SMB and cumulative soil respiration rates were low over the 12-week incubation 

period in soils sampled from scalded areas when compared to soil from a vegetated 

profile. The addition of gypsum did not affect the SMB or soil respiration. It is 

suggested that the low levels of SMB and soil respiration are the result of limited C 

input due to a lack of vegetation associated with the scalded areas. Vegetation-free areas 

are most likely caused by adverse soil pH, EC and ESP conditions.  

 

8.1.3 Determination of how decomposition is affected in saline-sodic soils following 

addition of organic material, with and without gypsum amendment  

Following the addition of organic material in the form of kangaroo grass, the SMB and 

soil respiration rates from two scalded profiles increased to decompose the available 

substrate. This occurred despite the adverse soil environmental conditions of high 

salinity and sodicity, high alkalinity in the Tarcoola soil and high acidity in the Avoca 

soil. It is therefore suggested that the increase in the SMB and respiration rates indicates 

that a dormant salt-tolerant microbial population is present in salt-scalded soils which 

multiplies rapidly when substrate is available. The addition of gypsum did not affect the 

population despite increasing the EC of the soil solution. This suggests that microbial 

activity is limited by substrate in scalded areas and not by adverse soil conditions such 

as high EC, ESP and pH.  

 

8.1.4 Quantification of soil organic carbon stocks in vegetated, salt-scalded and 

revegetated profiles  

SOC stocks were up to three times less in scalded profiles compared with those profiles 

that were under native vegetation. In a scalded profile where the topsoil had been 

eroded, further losses of SOC had occurred, with SOC stocks half of that found in the 

scalded profiles. Where one of the scalded areas had been revegetated with introduced 

pasture, it is possible that SOC stocks to a depth of 30 cm are comparable to those 

found under native vegetation which had not been degraded. It is tentatively suggested 

that rehabilitation of these salt-scalded landscapes by revegetation has the potential to 
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restore SOC stocks to original levels to a depth of 30 cm where plant growth can be 

established.  

 

8.2 Limitations of the Research 

In all projects, time and budgetary constraints limit the scope of what is to be achieved. 

This project concentrated on soils characteristic of the Southern Tablelands region of 

NSW, which were duplex in character and formed on Devonian and Ordovician 

metasediments. However, areas in the southwest of Western Australia (WA), in Victoria 

and South Australia are extensively salt-affected, and salinity is also described as an 

emerging problem in Queensland. Because soil texture can play a large role in C stocks 

and dynamics, it is important to determine the differences in C dynamics and C stocks 

in these other areas of Australia that are salt-affected, particularly in the sandier textured 

soils of WA. While it was determined that SOC stocks in scalded areas were up to three 

times less than those found in vegetated areas, it would be unwise to scale this figure up 

to a regional level from two sites. A more extensive determination of SOC stocks is 

required in order to accurately gauge SOC stocks from salt-affected landscapes in 

Australia.  

 

8.3 Future Research 

This research has shown that increasing salinity and sodicity results in increased C 

mineralisation, and hence, increased soil C losses. In those areas that are extensively 

scalded and eroded as a result of scalding, C stocks can be up to five times less than 

those found in areas that are vegetated and not eroded. Where salt-affected areas have 

been revegetated, SOC stocks can be increased to levels comparable to non salt-affected 

areas. While this research has established baseline data in terms of C stocks and fluxes 

in salt-affected soils, further research is required if the effects and implications of 

salinity and sodicity on C stocks and fluxes are to be fully understood. As previously 

discussed, a replicated field study based on a times series of change following 

revegetation of scalds would confirm the extent to which SOC stocks can be 

accumulated. Because the C and N cycles are intricately linked, and Australian soils are 

frequently N-limited, research is also required into how salinity and sodicity affects the 

N cycle and whether N dynamics follow patterns similar to that of C dynamics in these 

degraded areas. The C sequestration potential in these severely degraded salt-affected 
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areas is high due to the low C stocks that are currently found. Potential, therefore, exists 

for studies to determine how to maximise C stocks while re-vegetating salt-affected 

areas for crop and pasture production. Similarly, as agroforestry increases in popularity 

as a means of controlling groundwater levels, potential also exists for studies to 

determine how to maximise C stocks in such land use practices.     

 

The data presented in this project does not represent a complete C budget. While an in-

depth study on the effects of salinity and sodicity on SOC was undertaken, the effects 

and influences of carbonates, and hence SIC, were not examined. It is likely that SIC 

plays a large role in the C cycle in these degraded landscapes, particularly in soils where 

alkalinity is an important issue, such as the site at Tarcoola. For a complete 

understanding of C dynamics in salt-affected soils, the role SIC plays will need to be 

determined, particularly in areas where groundwater high in CO3
2- and HCO3

- interacts 

with respiration from soils and vegetation to form SIC. Due to the common occurrence 

of alkaline conditions in saline and sodic landscapes, the effect of inorganic C in the 

form of CaCO3 will most likely play a large role in C dynamics in these landscapes. The 

role of carbonates will be particularly important where processes affect changes in soil 

pH. Where Ca2+ is mobilised from CaCO3 as a result of decreasing pH from 

decomposition and respiration processes, soil physical properties can be improved. 

However, CO2 will be released from respiration processes in addition to the dissolution 

of CaCO3. While the issues related to inorganic C are beyond the scope of this project, 

loss of C related to CaCO3 solubilisation is likely to play a substantial role in C flux in 

these alkaline landscapes.  

 

The effects of pH have been notable throughout the trials conducted within the project. 

Those soils sampled from areas affected by salts in general showed alkali pH values, 

while leaching of a non-degraded soil caused the pH to decrease to values that affected 

the microbial community. Where highly alkaline conditions occur (ie. pH > 8), the 

potential exists for respired CO2 to be sequestered as inorganic C. Conversely, where 

the pH decreases, which occurred following leaching, any inorganic C becomes soluble 

and available for mineralisation. The effects of changing soil pH on the active C pool 

cannot be discounted, and further research is required to determine how soil pH affects 

C stocks and fluxes. While salinity and sodicity are major soil degradation issues in 

Australia, soil acidification also plays a major role in soil degradation, and its effects on 

C would also be of interest in terms of C accounting.  
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To assess the effects of salinity and sodicity on soil carbon stocks and fluxes, this 

project focused on the labile C pool and measured SMB and respiration over time. The 

methods used in this study assessed the labile C pool by measuring the SMB and soil 

respiration rates. However, the assessment of functionality of the microbial population, 

the population structure, and the determination of the SMB by different methods would 

be useful.  It would be interesting to determine how salinity and sodicity affect SOC and 

decomposition by focussing on the chemical, rather than biological aspects by assessing 

the chemical composition of the SOM and the extent of decomposition. It is likely that 

the increase in SOC in scalded profiles following revegetation with introduced pasture, 

as described in Chapter 6, was predominantly due to an increase in the more labile POC 

fraction, rather than the more stable humus fraction. This requires further investigation.  

 

By addressing these issues of uncertainty, our understanding of C cycling in an 

environment degraded by salinity and sodicity and during the rehabilitation process, 

will be enhanced. This will allow for more accurate assessments of C stocks and fluxes, 

and the promotion of management practices to maximise accumulations of SOC stocks 

where rehabilitation efforts are undertaken. 
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APPENDIX A 

 

A1.1 Bulk Density  

Bulk density was determined by extracting soil cores of volume 91.952 cm3 in the field. The 

cores were hammered into appropriate depth interval of a soil pit so that the mid-point of each 

depth interval could be sampled. In the 0-5 and 5-10 cm depths, the whole interval was samped 

as each core had a height of 5 cm. The cores were oven dried at 105oC for 24 hours before 

weighing to determine the mass of dry soil per unit of volumetric space occupied.   

 

A1.2 Preparation of 1:5 extracts 

Electrical conductivity (EC), pH and soluble cations were measured in 1:5 soil:water extracts. A 

1:5 soil:water extract was shaken for one hour on a rotary shaker, centrifuged for 10 minutes at 

a rate of 2000 rpm and filtered through Whatman’s No. 41 filter paper prior to analysis.  

 

Exchangeable cations were extracted with 1 M CH3COONH4 buffered to a pH of 7 with acetic 

acid. Where the EC ≥ 0.3 dS/m of the 1:5 soil:water extract, soluble salts were removed with an 

ethanediol/ethanol wash, described below.  The 1:5 soil: CH3COONH4 extracts were shaken for 

one hour on a rotary shaker, centrifuged for 10 minutes at a rate of 2000 rpm and filtered 

through Whatmans’s No. 42 filter paper. Each sample was extracted three times, and the extract 

made up to 100 mL.   

 

The removal of soluble salts is based on a method described in Rayment and Higginson (1992). 

100 mL of ethanediol and 36 mL of deionised water was bulked to 1 L with ethanol. 20 mL of 

the ethanediol/ethanol mixture was added to 2.5 g of air-dried soil, and shaken for 30 minutes 

on a rotary shaker. The samples were centrifuged at 3000 rpm for five minutes, and the 

supernatant decanted. The process was undertaken twice per sample prior to extraction with 

CH3COONH4 described above.  

 

A1.3 pH, Electrical Conductivity, Soluble and Exchangeable Cations Measurements 

pH was measured using a standard pH meter with a Denver Instrument Ultra Basic UB-10 pH/ 

mV meter after calibrating with standard buffer solutions of pH 4.0 and 7.0. EC was measured 

using a Radiometer CDM3 conductivity meter. Soluble and exchangeable cations were 

determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). 
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Table B1 An example of CO2 calculations 

Dish No. 
Depth 
(cm) EC SAR Replicate 

Weight Soda Lime 
(Pre incubation) 

(g) 

Weight Soda lime 
(Post Incubation) 

(g) 
Difference 

(g) 

Average 
Blank 

(g) 
CO2 

(mg/g) 

Oven dry 
equivalent 

soil (g) 

CO2 
(mg/g/2 

wks) 

CO2-C 
(mg/kg/2 
weeks) 

CO2-C 
(mg/kg/ 

wk) 
61 2.5 0.5 1 1 101.9142 102.4319 0.5177 0.3075 0.3552 69.8202 5.0879 1387.6083 693.8042 
62 2.5 0.5 1 2 102.4875 102.9381 0.4506 0.3075 0.2418 69.5048 3.4795 948.9430 474.4715 
63 2.5 0.5 1 3 104.5749 105.0286 0.4537 0.3075 0.2471 69.5836 3.5508 968.4022 484.2011 
76 2.5 0.5 30 1 100.3511 100.8074 0.4563 0.3075 0.2515 68.1559 3.6897 1006.2705 503.1353 
77 2.5 0.5 30 2 103.8100 104.2187 0.4087 0.3075 0.1710 68.2529 2.5058 683.3995 341.6998 
78 2.5 0.5 30 3 107.7663 108.1383 0.3720 0.3075 0.1090 67.8865 1.6057 437.9168 218.9584 
Blank    1 105.7435 105.4407 0.3028       
Blank    2 101.0943 101.4011 0.3068       
Blank    3 105.858 106.1708 0.3128       
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APPENDIX C 

 

Table C1. Soluble cation concentrations following addition of organic material 
Depth 
(cm) Site 

Gypsum 
(t/ha) 

Al 
(cmolc/kg) 

Ca 
(cmolc/kg) 

Mg 
(cmolc/kg) 

Na 
(cmolc/kg) 

Fe 
(cmolc/kg) 

K 
(cmolc/kg) 

0-5 Tarcoola Bulk soil 0.025 0.06 0.04 0.73 0.006 0.0031 
5-10 Tarcoola Bulk soil 0.036 0.05 0.04 0.87 0.007 0.0024 

10-20 Tarcoola Bulk soil 0.063 0.01 0.09 0.74 0.012 0.0033 
20-30 Tarcoola Bulk soil 0.031 0.01 0.16 0.35 0.003 0.0016 
30-50 Tarcoola Bulk soil 0.045 0.01 0.22 0.30 0.005 0.0021 

0-5 Tarcoola 0 0.001 1.06 0.03 2.57 nd 0.0026 
5-10 Tarcoola 0 nd 1.93 0.08 2.08 nd 0.0023 

10-20 Tarcoola 0 nd 0.68 0.10 1.74 nd 0.0017 
20-30 Tarcoola 0 nd 0.53 0.23 0.79 nd 0.0015 
30-50 Tarcoola 0 0.001 0.13 0.11 0.53 nd 0.0014 

0-5 Tarcoola 10 0.021 0.20 0.64 0.71 0.005 0.0155 
5-10 Tarcoola 10 0.019 0.07 0.19 0.31 0.004 0.0063 

10-20 Tarcoola 10 0.002 0.11 0.29 0.42 nd 0.0044 
20-30 Tarcoola 10 0.001 0.09 0.23 0.31 nd 0.0031 
30-50 Tarcoola 10 nd 0.10 0.17 0.88 nd 0.0092 

0-5 Avoca Bulk soil 0.001 2.82 1.28 1.12 0.001 0.0220 
5-10 Avoca Bulk soil nd 3.70 0.26 0.31 nd 0.0096 

10-20 Avoca Bulk soil nd 1.24 0.26 0.36 nd 0.0048 
20-30 Avoca Bulk soil nd 0.58 0.16 0.21 nd 0.0025 
30-50 Avoca Bulk soil 0.001 0.37 0.32 0.64 nd 0.0105 

0-5 Avoca 0 0.025 0.06 0.04 0.73 0.006 0.0031 
5-10 Avoca 0 0.036 0.05 0.04 0.87 0.007 0.0024 

10-20 Avoca 0 0.063 0.01 0.09 0.74 0.012 0.0033 
20-30 Avoca 0 0.031 0.01 0.16 0.35 0.003 0.0016 
30-50 Avoca 0 0.045 0.01 0.22 0.30 0.005 0.0021 

0-5 Avoca 10 0.001 1.06 0.03 2.57 nd 0.0026 
5-10 Avoca 10 nd 1.93 0.08 2.08 nd 0.0023 

10-20 Avoca 10 nd 0.68 0.10 1.74 nd 0.0017 
20-30 Avoca 10 nd 0.53 0.23 0.79 nd 0.0015 
30-50 Avoca 10 0.001 0.13 0.11 0.53 nd 0.0014 
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Table C2. Exchangeable cation concentrations following addition of organic 
material 

Depth Site 
Gypsum 

(t/ha) 
Al 

(cmolc/kg) 
Ca 

(cmolc/kg) 
Mg 

(cmolc/kg) 
Na 

(cmolc/kg) 
Fe 

(cmolc/kg) 
K 

(cmolc/kg) 
0-5 Tarcoola Bulk soil nd 0.1003 0.1507 0.0343 nd 0.0094 

5-10 Tarcoola Bulk soil nd 0.0240 0.0207 0.1254 nd 0.0022 
10-20 Tarcoola Bulk soil nd 0.0058 0.0381 0.0757 nd 0.0023 
20-30 Tarcoola Bulk soil nd 0.0045 0.0885 0.0678 nd 0.0024 
30-50 Tarcoola Bulk soil nd 0.0017 0.0922 0.0582 nd 0.0024 

0-5 Tarcoola 0 nd 0.0411 0.0488 0.0070 nd 0.0040 
5-10 Tarcoola 0 nd 0.0176 0.0210 0.0039 nd 0.0028 

10-20 Tarcoola 0 nd 0.0111 0.0110 0.0029 nd 0.0023 
20-30 Tarcoola 0 nd 0.0084 0.0077 0.0023 nd 0.0021 
30-50 Tarcoola 0 nd 0.1591 0.2209 0.0458 nd 0.0104 

0-5 Tarcoola 10 nd 0.0005 0.0499 0.3413 nd 0.0035 
5-10 Tarcoola 10 nd 0.0005 0.1081 0.2308 nd 0.0039 

10-20 Tarcoola 10 nd 0.0005 0.1247 0.1403 nd 0.0041 
20-30 Tarcoola 10 nd 0.0005 0.1174 0.1306 nd 0.0039 
30-50 Tarcoola 10 nd 0.0005 0.0982 0.0552 nd 0.0033 

0-5 Avoca Bulk soil nd 0.2278 0.0245 0.2692 nd 0.0034 
5-10 Avoca Bulk soil nd 0.3175 0.1096 0.1868 nd 0.0049 

10-20 Avoca Bulk soil nd 0.2053 0.1245 0.1281 nd 0.0045 
20-30 Avoca Bulk soil nd 0.1741 0.1575 0.1715 nd 0.0049 
30-50 Avoca Bulk soil nd 0.0785 0.1325 0.1026 nd 0.0045 

0-5 Avoca 0 nd 0.1003 0.1507 0.0343 nd 0.0094 
5-10 Avoca 0 nd 0.0240 0.0207 0.1254 nd 0.0022 

10-20 Avoca 0 nd 0.0058 0.0381 0.0757 nd 0.0023 
20-30 Avoca 0 nd 0.0045 0.0885 0.0678 nd 0.0024 
30-50 Avoca 0 nd 0.0017 0.0922 0.0582 nd 0.0024 

0-5 Avoca 10 nd 0.0411 0.0488 0.0070 nd 0.0040 
5-10 Avoca 10 nd 0.0176 0.0210 0.0039 nd 0.0028 

10-20 Avoca 10 nd 0.0111 0.0110 0.0029 nd 0.0023 
20-30 Avoca 10 nd 0.0084 0.0077 0.0023 nd 0.0021 
30-50 Avoca 10 nd 0.1591 0.2209 0.0458 nd 0.0104 
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Locality: Bevendale: Property “Tarcoola” 
Scalded Profile 1 
Elevation:  505 m 
UTM:    0691216 
   6178847 
Date:   19/12/05 
Site Morphology: Footslopes 
Vegetation:  Unvegetated 
Land use:  Grazing 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-1 9     Strongly versicular crust 
1 A1 1-6 8 10YR 5/4 wet 

10YR 7/2 dry 
Loamy fine 
sand 

 Extensively 
layered 

Variability in surface layer 

1 A2 6-12 9 10YR 5/4  Loamy coarse 
sand 

 Structureless  

2 B1 12-40 9 10YR 6/3 
mottled with 
10YR 6/4 

Fine sandy 
loam 

< 10  Bleached, 10% coarse fraction 
of rounded gravel 2-5 mm 

2 B1 40-80 9 10YR 6/2 
mottled with 
7.5YR 5/6 

Light medium 
clay 

40 Sub-angular 
blocky 

10% coarse fraction of rounded 
gravel 2-5 mm 

2 B1 80-100 9 7.5YR 5/6 
mottled with 
10YR 6/2 

Light medium 
clay 

40 Sub-angular 
blocky 

Approximately 30 % coarse 
fraction of rounded gravel 2-5 
mm; free water at the bottom of 
the pit (120 cm) with vertically 
bedded fractured bedrock 
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Scalded Profile 2 

Elevation:  505 m 
UTM:    0691216 
   6178847 
Date:   19/12/05 
Site Morphology: Footslopes 
Vegetation:  Unvegetated 
Land use:  Grazing 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-12 9 10YR 4/4 Loamy fine 
sand 

 Platy 5 % coarse fraction of rounded 
gravel 2-5 mm 

1 A2 12-23 9 10YR 4/6 Clayey sand  Structureless, 
massive 

5 % coarse fraction of rounded 
gravel 2-5 mm 

2 B1 23-66 9 10YR 6/8 
mottled with 
7.5YR 4/6 

Light medium 
clay 

30 Sub-angular 
blocky 

10 % coarse fraction of 
rounded gravel 2-5 mm 

2 B1 66-100 9 7.5YR 4/6 
mottled with 
10YR 6/8 

Silty clay loam 30 Sub-angular 
blocky 

10 % coarse fracion of 10 % 
coarse fraction of rounded 
gravel 2-5 mm; free water at 
the bottom of the pit (120 cm) 
with vertically bedded 
fractured rock 
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Depression Profile 1 
Elevation:  498 m 
UTM:    0691122 
   6178862 
Date:   19/12/05 
Site Morphology: Footslopes 
Vegetation:  Red grass (Botriochloa spp), minor occurrences of tall wheat grass 
Land use:  Grazing 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 In fill 
layer 

0-50 8 10YR 5/3 
mottled with 
7.5YR 5/6 

Loamy fine 
sand 

< 10% Weak Many roots; layered 

2 A1 50-70 9 10YR 4/1 with 
rust flecks 

Silty loam  Very moist at time 
of sampling: 
difficult to 
describe structure 

Clear change from Layer 1 to 
Layer 2; true soil profile’ 
charcoal at boundary between 
layer 1 and layer 2 

2 A2 70-90 9 10YR 5/4 
mottled with 
7.5 YR 5/6 

Sandy clay 
loam 

40 Very moist at time 
of sampling: 
difficult to 
describe structure 

Gradual change from horizon 
above; 10-20 % coarse fraction 
of rounded bedrock 

2 B2 90-100 10 10YR 5/4 
mottled with 
7.5YR 5/6 

Light medium 
clay 

40 Very moist at time 
of sampling: 
difficult to 
describe structure 

Distinct change in horizon; free 
water at the bottom of the pit 
(120 cm) with vertically 
bedded fractured rock 
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Depression Profile 2 
Elevation:  498 m 
UTM:    0691122 
   6178862 
Date:   19/12/05 
Site Morphology: Footslopes 
Vegetation:  Red grass (Botriochloa spp), minor occurrences of tall wheat grass 
Land use:  Grazing 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 In fill 
layer 

0-60 8 10YR 5/3 
mottled with 
7.5YR 5/6 

Loamy fine 
sand 

< 10% Weak Many roots; layered 

2 A1 60-90 9 10YR 5/4 
mottled with 
7.5YR 5/6 

Sandy clay 
loam 

40 Very moist at time 
of sampling: 
difficult to 
describe structure 

Gradual change from horizon 
above; 10-20 % coarse fraction 
of rounded bedrock ; true soil 
profile 
 

2 B2 90-100 9 10YR 5/4 
mottled with 
7.5YR 5/6 

Light medium 
clay 

40 Very moist at time 
of sampling: 
difficult to 
describe structure 

Distinct change in horizon; free 
water at the bottom of the pit 
(120 cm) with vertically 
bedded fractured rock 
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Locality: Bevendale: Property “Riverview” 
Vegetated Profile 1 
Elevation:  500 m 
Date:   08/02/06 
Site Morphology: Gully wall 
Vegetation:  Wallaby grass 
Land use:  Fenced from stock 

Layer Horizon Depth 
(cm) 

Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-3 4 10YR 4/3 Sandy loam  Well structured: 
sub-angular 
blocky 

Extensive roots 

1 A2 3-12 5.5 10YR 5/4 Silty loam  Sub-angular 
blocky 

Bleached; fine roots 
present; minor occurrences 
of charcoal and gravel 
(<5mm) 

2 B1 12-22 6 10YR 4/4 Silty loam Minor Sub-angular 
blocky 

Fine roots present 

2 B1 22-34 6.5 10 YR 4/4 
mottled with 
10 YR 5/6 

Silty loam 30 Sub-angular 
blocky 

Fine roots present; minor 
occurrences of charcoal and 
gravel (< 5mm) 

2 B2 34-50 7 10YR 6/4 Silty loam  Versicular  
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Vegetated Profile 2 
Elevation:  500 m 
Date:   08/02/06 
Site Morphology: Gully wall 
Vegetation:  Wallaby grass 
Land use:  Fenced from stock 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-5 4 10YR 4/3 Sandy loam  Well structured: 
sub-angular 
blocky 

Extensive roots 

1 A2 5-14 5.5 10YR 5/4 Silty loam  Sub-angular 
blocky 

Bleached; fine roots 
present; minor occurrences 
of charcoal and gravel 
(<5mm) 

2 B1 14-23 6 10YR 4/4 Silty loam Minor Sub-angular 
blocky 

Fine roots present 

2 B1 23-26 7 10 YR 4/4 
mottled with 
10 YR 5/6 

Gravel layer 30  Fine roots present; gravel 
layer 

2 B2 26-50 8 10YR 6/4 Silty loam  Versicular 30-40 % large gravel 
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Locality: Rugby: Property “Gunyah” 
Pasture Profile 1 
Elevation:  547 m 
UTM:    0685901 
   6182381 
Date:   24/01/06 
Site Morphology: Plain 
Vegetation:  Revegetated with tall wheat grass, minor occurrences of Wallaby Grass and Couch 
Land use:  Sheep grazing 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-8 7 5YR 4/2 Silty loam  Sub-angular 
blocky 

Extensive roots 

1 A2 8-35 6.5 7.5YR 6/4 Silty loam  Weak Roots present, bleached, 
gradual change from 
horizon above 

2 B1 35-60 8 5YR 7/3 
mottled with 
7.5 YR 6/8 

Silty clay loam 40 Sub-angular 
blocky 

Fine roots present 

2 B1 60-100 8 5YR 5/8 Silty clay loam  Massive Fine roots present 
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Pasture Profile 2 
Elevation:  547 m 
UTM:    0685901 
   6182381 
Date:   24/01/06 
Site Morphology: Plain 
Vegetation:  Revegetated with tall wheat grass, minor occurrences of Wallaby Grass and Couch 
Land use:  Sheep grazing 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-8 7 5YR 4/2 Silty loam  Sub-angular 
blocky 

Extensive roots 

1 A2 8-35 6.5 7.5YR 6/4 Silty loam  Weak Roots present, bleached, 
gradual change from 
horizon above 

2 B1 35-60 8 5YR 7/3 
mottled with 
7.5 YR 6/8 

Silty clay loam 40 Sub-angular 
blocky 

Fine roots present 

2 B1 60-100 8 5YR 5/8 Silty clay loam  Massive Fine roots present 
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Vegetated Profile 1 
Elevation:  543 m 
UTM:    0685908 
   6182497 
Date:   24/01/06 
Site Morphology: Plain 
Vegetation:  Wallaby grass with minor occurrences of Couch 
Land use:  Fenced from stock 

Layer Horizon Depth 
(cm) 

Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-5 5.5 7.5YR 5/2 Loam  Weak Extensive roots 
1  A2 5-20 5 7.5 YR 6/3 Loam  Sub-angular 

blocky 
Bleached, gradual change 
from horizon above 

1 A2 20-45 6 7.5YR 7/1 Silty loam  Sub-angular 
blocky 

Bleached, fine roots 
present, charcoal present 

2 B1 45-55 6.5 10YR 8/1 
mottled with 
10YR 5/6 

Silty loam 20 Sub-angular 
blocky 

Bleached, charcoal present 

2 B2 55-100 7 5YR 5/8 Light clay  Massive  
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Vegetated Profile 2 
Elevation:  543 m 
UTM:    0685908 
   6182497 
Date:   25/01/06 
Site Morphology: Plain 
Vegetation:  Wallaby Grass with minor occurrences of Couch 
Land use:  Fenced from stock 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-10 5.5 7.5YR 3/3 Loam  Weak Extensive roots 
1  A2 10-23 6 7.5 YR 6/4 Loam  Sub-angular 

blocky 
Bleached, gradual change 
from horizon above 

1 A2 23-59 6 7.5YR 7/2 Silty loam  Sub-angular 
blocky 

Bleached, fine roots 
present, charcoal present 

2 B1 59-70 8 7.5YR 7/2 
mottled with 
7.5YR 6/8 

Silty loam 20 Sub-angular 
blocky 

Bleached, charcoal present 

2 B2 70-100 8.5 5YR 5/8 Light clay  Massive  
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Eroded Profile 1 
Elevation:  544 m 
UTM:    0685890 
   6182507 
Date:   25/01/06 
Site Morphology: Plain 
Vegetation:  Unvegetated 
Land use:  Fenced from stock 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A2 0-10 8.5 5YR 5/2 Sandy clay 
loam 

 Platy; versicular 
crust 

Black surface crust 

1  A2 10-30 8.5 5YR 6/2 Sandy clay 
loam 

 Massive Bleached, charcoal present, 
fine roots present 

2 B1 30-48 9 7.5YR 6/1 
mottled with 
7.5YR 6/8 

Light clay 40 Massive Coarse fraction of rounded 
gravel and quartz <5mm 

2 B2 48-100 9 7.5YR 5/8 
mottled with 
7.5YR 6/1 

Light medium 
clay 

30 Moist Free water at the bottom of 
the pit (110cm) 
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Eroded Profile 2 
Elevation:  544 m 
UTM:    0685890 
   6182507 
Date:   25/01/06 
Site Morphology: Plain 
Vegetation:  Unvegetated 
Land use:  Fenced from stock 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A2 0-13 8.5 7.5YR 7/1 Sandy clay 
loam 

 Platy; versicular 
crust 

Black surface crust 

1  A2 13-28 9 7.5YR 5/4 Sandy clay 
loam 

 Massive Bleached, charcoal present, 
fine roots present, coarse 
fraction of rounded gravel 
and quartz <5mm 

2 B1 28-57 9 10YR 7/4 
mottled with 
5YR 6/8 

Light clay 40 Massive Coarse fraction of rounded 
gravel and quartz <5mm 

2 B2 57-100 9 7.5YR 6/8 
mottled with 
5YR 5/8 

Light medium 
clay 

30 Moist Free water at the bottom of 
the pit (110cm) 
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Scalded Profile 1 
Elevation:  542 m 
UTM:    0685879 
   6182510 
Date:   25/01/06 
Site Morphology: Plain 
Vegetation:  Unvegetated 
Land use:  Fenced from stock 
 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-3 8.5 10YR 5/2 Loam  Weak Depositional material, fine 
roots present 

1  A2 3-20 9 10YR 6/2 Loam  Weak Charcoal present, fine roots 
present 

2 B1 20-41 9 10YR 6/1 
mottled with 
10YR 6/4 

Clay loam 30 Weak 30% coarse fraction of 
rounded gravel < 5mm 

2 B2 41-100 9 7.5YR 5/8 
mottled with 
5YR 7/1 

Light medium 
clay 

30 Moist 10% coarse fraction of 
rounded gravel < 5mm,  
free water at the bottom of 
the pit (110cm) 
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Scalded Profile 2 
Elevation:  542 m 
UTM:    0685879 
   6182510 
Date:   25/01/06 
Site Morphology: Plain 
Vegetation:  Unvegetated 
Land use:  Fenced from stock 
Layer Horizon Depth 

(cm) 
Field pH Colour Texture Mottle % Structure Notes 

1 A1 0-5 9 10YR 4/2 Loam  Weak Depositional material, fine 
roots present 

1  A2 5-28 9 7.5YR 5/2 Loam  Weak Charcoal present, fine roots 
present 

2 B1 28-41 9 7.5YR 6/1 
mottled with 
7.5YR 5/6 

Clay loam 30 Weak 30% coarse fraction of 
rounded gravel < 5mm 

2 B2 41-100 9 7.5YR 5/6 
mottled with 
2.5YR 4/8 

Light medium 
clay 

30 Moist 10% coarse fraction of 
rounded gravel < 5mm,  
free water at the bottom of 
the pit (110cm) 
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Table D1 Particle size distribution from each depth at each microsite and site 

Site Microsite 
Profile 
Number 

Depth 
(cm) Sand (%) Silt (%) Clay (%) Total 

Gunyah Eroded 1 0-5 65.29 11.79 17.89 94.96 
Gunyah Eroded 2 0-5 78.37 22.02 14.32 114.71 
Gunyah Eroded 1 5-10 66.48 17.77 19.86 104.11 
Gunyah Eroded 2 5-10 66.49 26.31 22.45 115.25 
Gunyah Eroded 1 10-20 65.18 21.21 12.51 98.90 
Gunyah Eroded 2 10-20 64.87 23.86 23.96 112.69 
Gunyah Eroded 1 20-30 66.69 23.18 24.48 114.35 
Gunyah Eroded 2 20-30 62.90 24.39 26.47 113.76 
Gunyah Eroded 1 30-50 58.12 22.81 33.62 114.56 
Gunyah Eroded 2 30-50 53.77 20.55 36.61 110.93 
Gunyah Eroded 1 50-70 44.58 22.38 45.86 112.83 
Gunyah Eroded 2 50-70 29.68 20.57 58.62 108.87 
Gunyah Eroded 1 70-100 27.99 28.93 53.77 110.69 
Gunyah Eroded 2 70-100 29.84 30.41 52.38 112.62 
Gunyah Pasture 1 0-5 68.66 15.60 18.46 102.73 
Gunyah Pasture 2 0-5 73.60 13.79 13.89 101.28 
Gunyah Pasture 1 5-10 69.32 17.80 18.70 105.82 
Gunyah Pasture 2 5-10 72.91 13.71 17.79 104.41 
Gunyah Pasture 1 10-20 69.31 19.53 20.41 109.25 
Gunyah Pasture 2 10-20 70.24 15.85 17.96 104.05 
Gunyah Pasture 1 20-30 68.17 25.14 18.22 111.54 
Gunyah Pasture 2 20-30 72.57 21.79 17.89 112.26 
Gunyah Pasture 1 30-50 62.76 17.69 26.54 107.00 
Gunyah Pasture 2 30-50 72.84 20.49 19.39 112.72 
Gunyah Pasture 1 50-70 67.40 15.68 28.49 111.57 
Gunyah Pasture 2 50-70 63.29 14.40 31.29 108.98 
Gunyah Scald 1 0-5 68.73 25.91 13.05 107.70 
Gunyah Scald 2 0-5 61.79 29.75 15.27 106.81 
Gunyah Scald 1 5-10 68.24 24.37 19.27 111.88 
Gunyah Scald 2 5-10 59.96 17.63 17.19 94.78 
Gunyah Scald 1 10-20 66.32 24.40 23.30 114.02 
Gunyah Scald 2 10-20 74.36 25.72 23.23 123.31 
Gunyah Scald 1 20-30 67.86 22.36 23.26 113.48 
Gunyah Scald 2 20-30 64.79 21.11 25.19 111.09 
Gunyah Scald 1 30-50 56.07 18.36 35.23 109.66 
Gunyah Scald 2 30-50 61.18 21.80 31.30 114.28 
Gunyah Scald 1 50-70 29.95 20.36 45.22 95.53 
Gunyah Scald 2 50-70 59.64 10.36 47.11 117.11 
Gunyah Scald 1 70-100 35.80 26.38 51.27 113.45 
Gunyah Scald 2 70-100 34.85 19.82 55.34 110.01 
Gunyah Vegetated 1 0-5 78.10 22.60 16.70 117.40 
Gunyah Vegetated 2 0-5 81.67 11.19 18.69 111.55 
Gunyah Vegetated 1 5-10 77.65 21.19 14.69 113.53 
Gunyah Vegetated 2 5-10 81.08 18.66 16.75 116.49 
Gunyah Vegetated 1 10-20 79.72 22.55 16.67 118.94 
Gunyah Vegetated 2 10-20 82.71 18.53 16.63 117.87 
Gunyah Vegetated 1 20-30 73.19 21.73 17.98 112.90 
Gunyah Vegetated 2 20-30 82.55 18.65 18.75 119.96 
Gunyah Vegetated 1 30-50 75.14 23.94 18.20 117.29 
Gunyah Vegetated 2 30-50 82.90 23.20 18.70 124.80 
Gunyah Vegetated 1 50-70 67.71 20.61 22.71 111.02 
Gunyah Vegetated 2 50-70 28.84 30.68 47.34 106.86 
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Gunyah Vegetated 1 70-100 23.23 46.19 23.47 92.89 
Gunyah Vegetated 2 70-100 31.24 14.61 52.74 98.60 
Tarcoola Vegetated 1 0-5 66.22 25.95 21.42 113.60 
Tarcoola Vegetated 2 0-5 63.15 20.40 23.90 107.46 
Tarcoola Vegetated 1 5-10 69.77 23.80 23.30 116.86 
Tarcoola Vegetated 2 5-10 66.94 29.96 19.61 116.52 
Tarcoola Vegetated 1 10-20 59.82 28.36 26.66 114.84 
Tarcoola Vegetated 2 10-20 66.46 30.38 27.88 124.73 
Tarcoola Vegetated 1 20-30 62.91 19.66 29.09 111.66 
Tarcoola Vegetated 2 20-30 39.05 25.03 27.93 92.01 
Tarcoola Vegetated 1 30-50 76.28 13.78 21.26 111.32 
Tarcoola Vegetated 2 30-50 69.33 20.43 23.94 113.70 
Tarcoola Scald 1 0-5 89.30 11.39 10.72 111.40 
Tarcoola Scald 2 0-5 93.95 5.19 10.68 109.82 
Tarcoola Scald 1 5-10 88.95 6.57 15.24 110.75 
Tarcoola Scald 2 5-10 87.61 7.17 15.23 110.02 
Tarcoola Scald 1 10-20 83.46 15.82 14.58 113.86 
Tarcoola Scald 2 10-20 79.73 9.09 21.63 110.45 
Tarcoola Scald 1 20-30 76.00 16.38 19.04 111.43 
Tarcoola Scald 2 20-30 68.57 18.78 25.89 113.24 
Tarcoola Scald 1 30-50 63.50 16.54 31.19 111.24 
Tarcoola Scald 2 30-50 56.21 15.77 37.84 109.82 
Tarcoola Scald 1 50-70 37.23 18.94 52.57 108.74 
Tarcoola Scald 2 50-70 40.87 19.99 49.78 110.64 
Tarcoola Scald 1 70-100 47.12 20.55 43.20 110.88 
Tarcoola Scald 2 70-100 51.09 2.18 51.47 104.74 
Tarcoola Depression 1 0-5 83.59 15.19 23.89 122.67 
Tarcoola Depression 2 0-5 72.05 14.61 21.31 107.96 
Tarcoola Depression 1 5-10 62.94 25.59 27.08 115.61 
Tarcoola Depression 2 5-10 69.08 15.94 27.19 112.21 
Tarcoola Depression 1 10-20 61.44 21.81 29.31 112.57 
Tarcoola Depression 2 10-20 57.63 28.10 30.75 116.49 
Tarcoola Depression 1 20-30 56.56 25.80 33.30 115.66 
Tarcoola Depression 2 20-30 56.56 26.48 32.55 115.59 
Tarcoola Depression 1 30-50 71.01 13.79 27.29 112.10 
Tarcoola Depression 2 30-50 49.39 30.93 36.38 116.69 
Tarcoola Depression 1 50-70 61.95 17.90 31.47 111.32 
Tarcoola Depression 2 50-70 40.10 28.39 40.40 108.89 
Tarcoola Depression 1 70-100 59.51 17.55 36.79 113.85 
Tarcoola Depression 2 70-100 53.31 26.42 35.05 114.78 
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Table D2 Soluble cation concentrations for each sample. Nd indicates 
concentration was below the detection limit 

Site Description Profile Depth Rep 
Al 

(cmolc/kg)
B  

(cmolc/kg)
Fe 

(cmolc/kg)
Mn 

(cmolc/kg)
Ca 

(cmolc/kg) 
K 

(cmolc/kg)
Mg 

(cmolc/kg)
Na 

(cmolc/kg)
Tarcoola Scald 1 2.5 1 0.083 nd 0.014 nd 0.000 0.004 0.051 0.160 
Tarcoola Scald 1 2.5 2 0.094 nd 0.015 nd 0.001 0.004 0.055 0.293 
Tarcoola Scald 1 2.5 3 0.151 0.004 0.034 nd 0.001 0.005 0.072 0.246 
Tarcoola Scald 1 7.5 1 0.212 nd 0.053 nd 0.001 0.006 0.122 0.204 
Tarcoola Scald 1 7.5 2 0.216 0.004 0.036 nd 0.001 0.005 0.175 0.217 
Tarcoola Scald 1 7.5 3 0.565 0.017 0.100 0.000 0.018 0.011 0.459 0.297 
Tarcoola Scald 1 15 1 0.146 nd 0.027 nd 0.000 0.005 0.114 0.344 
Tarcoola Scald 1 15 2 0.280 nd 0.049 nd 0.002 0.007 0.190 0.358 
Tarcoola Scald 1 15 3 0.328 0.004 0.039 nd 0.002 0.006 0.106 0.332 
Tarcoola Scald 1 25 1 0.101 nd 0.016 nd 0.000 0.003 0.011 0.270 
Tarcoola Scald 1 25 2 0.209 nd 0.034 nd 0.000 0.004 0.047 0.310 
Tarcoola Scald 1 25 3 0.103 nd 0.020 nd 0.000 0.003 0.011 0.267 
Tarcoola Scald 1 40 1 0.390 nd 0.090 nd 0.000 0.006 0.142 0.375 
Tarcoola Scald 1 40 2 0.336 nd 0.058 nd 0.000 0.006 0.173 0.406 
Tarcoola Scald 1 40 3 0.294 nd 0.048 nd 0.000 0.005 0.083 0.299 
Tarcoola Scald 1 60 1 0.325 nd 0.033 nd 0.009 0.008 1.378 1.052 
Tarcoola Scald 1 60 2 0.696 nd 0.025 nd 0.001 0.009 1.616 1.438 
Tarcoola Scald 1 60 3 0.108 nd 0.000 nd 0.001 0.005 1.114 1.466 
Tarcoola Scald 1 85 1 0.495 nd 0.105 nd 0.000 0.007 0.325 0.464 
Tarcoola Scald 1 85 2 0.222 0.010 0.026 nd 0.004 0.004 0.145 0.283 
Tarcoola Scald 1 85 3 0.257 nd 0.033 nd 0.000 0.005 0.213 0.331 
Tarcoola Scald 2 2.5 1 0.081 nd 0.012 nd 0.001 0.003 0.062 0.119 
Tarcoola Scald 2 2.5 2 0.123 nd 0.021 nd 0.000 0.004 0.069 0.117 
Tarcoola Scald 2 2.5 3 0.045 nd 0.008 nd 0.000 0.003 0.019 0.074 
Tarcoola Scald 2 7.5 1 0.184 nd 0.026 nd 0.002 0.006 0.180 0.252 
Tarcoola Scald 2 7.5 2 0.201 nd 0.032 nd 0.000 0.005 0.145 0.273 
Tarcoola Scald 2 7.5 3 0.306 nd 0.040 nd 0.003 0.007 0.362 0.281 
Tarcoola Scald 2 15 1 0.248 0.014 0.030 nd 0.007 0.004 0.046 0.254 
Tarcoola Scald 2 15 2 0.313 nd 0.039 nd 0.002 0.008 0.169 0.430 
Tarcoola Scald 2 15 3 0.345 nd 0.052 nd 0.001 0.008 0.175 0.402 
Tarcoola Scald 2 25 1 0.218 nd 0.044 nd 0.000 0.006 0.047 0.274 
Tarcoola Scald 2 25 2 0.243 nd 0.043 nd 0.000 0.005 0.045 0.317 
Tarcoola Scald 2 25 3 0.248 nd 0.064 nd 0.000 0.005 0.047 0.273 
Tarcoola Scald 2 40 1 0.424 nd 0.030 nd 0.000 0.009 0.412 0.598 
Tarcoola Scald 2 40 2 0.158 nd 0.022 nd 0.000 0.004 0.139 0.383 
Tarcoola Scald 2 40 3 0.026 nd 0.000 nd 0.031 0.007 1.011 2.101 
Tarcoola Scald 2 60 1 0.648 nd 0.014 nd 0.002 0.009 0.813 0.796 
Tarcoola Scald 2 60 2 0.113 nd 0.003 nd 0.003 0.005 1.201 1.349 
Tarcoola Scald 2 60 3 0.148 nd 0.002 nd 0.001 0.007 1.349 1.463 
Tarcoola Scald 2 85 1 0.280 nd 0.033 nd 0.000 0.005 0.173 0.323 
Tarcoola Scald 2 85 2 0.198 nd 0.025 nd 0.000 0.003 0.120 0.260 
Tarcoola Scald 2 85 3 0.290 nd 0.033 nd 0.000 0.005 0.218 0.365 
Tarcoola Depression 1 2.5 1 0.006 0.005 0.015 0.003 0.030 0.017 0.218 0.055 
Tarcoola Depression 1 2.5 2 0.006 0.004 0.015 0.005 0.031 0.012 0.217 0.057 
Tarcoola Depression 1 2.5 3 0.021 nd 0.009 0.000 0.009 0.005 0.119 0.054 
Tarcoola Depression 1 7.5 1 0.005 nd 0.019 0.004 0.027 0.013 0.210 0.046 
Tarcoola Depression 1 7.5 2 0.029 nd 0.011 0.001 0.009 0.004 0.106 0.052 
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Tarcoola Depression 1 7.5 3 0.032 nd 0.013 0.001 0.010 0.004 0.113 0.065 
Tarcoola Depression 1 15 1 0.035 nd 0.013 0.001 0.008 0.004 0.105 0.094 
Tarcoola Depression 1 15 2 0.026 nd 0.009 0.002 0.008 0.003 0.107 0.082 
Tarcoola Depression 1 15 3 0.018 nd 0.006 0.002 0.013 0.004 0.142 0.063 
Tarcoola Depression 1 25 1 0.054 nd 0.015 0.001 0.003 0.003 0.056 0.104 
Tarcoola Depression 1 25 2 0.034 nd 0.011 0.000 0.004 0.003 0.066 0.101 
Tarcoola Depression 1 25 3 0.035 nd 0.012 0.001 0.006 0.003 0.087 0.119 
Tarcoola Depression 1 40 1 0.118 nd 0.028 0.001 0.006 0.004 0.095 0.201 
Tarcoola Depression 1 40 2 0.217 nd 0.079 0.001 0.006 0.005 0.098 0.179 
Tarcoola Depression 1 40 3 0.134 nd 0.028 0.000 0.006 0.004 0.083 0.213 
Tarcoola Depression 1 60 1 0.080 nd 0.017 0.000 0.009 0.003 0.099 0.430 
Tarcoola Depression 1 60 2 0.110 nd 0.027 0.000 0.009 0.003 0.106 0.365 
Tarcoola Depression 1 60 3 0.099 nd 0.023 0.000 0.006 0.003 0.095 0.321 
Tarcoola Depression 1 85 1 0.087 nd 0.011 0.001 0.004 0.003 0.074 0.385 
Tarcoola Depression 1 85 2 0.084 nd 0.013 0.002 0.006 0.004 0.079 0.338 
Tarcoola Depression 1 85 3 0.108 0.011 0.013 0.002 0.016 0.004 0.097 0.367 
Tarcoola Depression 2 2.5 1 0.004 0.006 0.024 0.005 0.035 0.013 0.249 0.111 
Tarcoola Depression 2 2.5 2 0.008 nd 0.020 0.004 0.030 0.012 0.218 0.099 
Tarcoola Depression 2 2.5 3 0.003 nd 0.023 0.005 0.038 0.017 0.258 0.106 
Tarcoola Depression 2 7.5 1 0.013 0.005 0.005 0.003 0.013 0.005 0.133 0.091 
Tarcoola Depression 2 7.5 2 0.153 0.005 0.025 0.001 0.000 0.004 0.048 0.117 
Tarcoola Depression 2 7.5 3 0.025 nd 0.011 0.002 0.011 0.005 0.131 0.094 
Tarcoola Depression 2 15 1 0.017 nd 0.006 0.001 0.007 0.004 0.103 0.080 
Tarcoola Depression 2 15 2 0.051 nd 0.021 0.001 0.005 0.004 0.081 0.070 
Tarcoola Depression 2 15 3 0.048 nd 0.019 0.001 0.002 0.003 0.073 0.070 
Tarcoola Depression 2 25 1 0.074 nd 0.041 0.001 0.004 0.004 0.063 0.067 
Tarcoola Depression 2 25 2 0.048 nd 0.015 0.001 0.003 0.004 0.067 0.089 
Tarcoola Depression 2 25 3 0.055 nd 0.021 0.001 0.003 0.005 0.070 0.088 
Tarcoola Depression 2 40 1 0.054 nd 0.015 0.001 0.002 0.004 0.072 0.080 
Tarcoola Depression 2 40 2 0.079 nd 0.034 0.002 0.001 0.004 0.048 0.064 
Tarcoola Depression 2 40 3 0.107 nd 0.033 0.002 0.002 0.004 0.068 0.090 
Tarcoola Depression 2 60 1 0.051 nd 0.006 0.000 0.002 0.003 0.060 0.142 
Tarcoola Depression 2 60 2 0.067 nd 0.010 0.000 0.002 0.003 0.079 0.148 
Tarcoola Depression 2 60 3 0.049 nd 0.007 0.000 0.004 0.003 0.092 0.136 
Tarcoola Depression 2 85 1 0.188 0.018 0.027 0.001 0.007 0.004 0.051 0.141 
Tarcoola Depression 2 85 2 0.168 nd 0.021 0.001 0.001 0.005 0.062 0.132 
Tarcoola Depression 2 85 3 0.104 nd 0.029 0.001 0.000 0.004 0.061 0.092 
Gunyah Pasture 1 2.5 1 0.004 nd 0.006 0.001 0.186 0.016 0.026 0.028 
Gunyah Pasture 1 2.5 2 0.005 nd 0.006 0.001 0.145 0.012 0.018 0.016 
Gunyah Pasture 1 2.5 3 0.009 nd 0.013 0.001 0.083 0.010 0.014 0.015 
Gunyah Pasture 1 7.5 1 0.016 0.005 0.007 0.000 0.012 0.003 0.007 0.009 
Gunyah Pasture 1 7.5 2 0.013 nd 0.001 nd 0.015 0.003 0.000 0.007 
Gunyah Pasture 1 7.5 3 0.014 nd 0.012 0.000 0.017 0.004 0.001 0.016 
Gunyah Pasture 1 15 1 0.016 nd 0.002 nd 0.007 0.003 0.000 0.012 
Gunyah Pasture 1 15 2 0.017 nd 0.002 nd 0.006 0.002 0.000 0.005 
Gunyah Pasture 1 15 3 0.017 nd 0.001 nd 0.008 0.002 0.000 0.007 
Gunyah Pasture 1 25 1 0.010 nd 0.000 nd 0.000 0.002 0.000 0.017 
Gunyah Pasture 1 25 2 0.011 nd 0.000 nd 0.000 0.002 0.000 0.017 
Gunyah Pasture 1 25 3 0.010 nd 0.000 nd 0.000 0.002 0.000 0.013 
Gunyah Pasture 1 40 1 0.124 nd 0.115 nd 0.007 0.003 0.053 0.151 
Gunyah Pasture 1 40 2 0.187 nd 0.144 nd 0.016 0.004 0.107 0.131 
Gunyah Pasture 1 40 3 0.094 0.005 0.094 nd 0.004 0.003 0.038 0.139 
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Gunyah Pasture 1 60 1 0.099 nd 0.028 nd 0.021 0.003 0.070 0.443 
Gunyah Pasture 1 60 2 0.054 nd 0.014 nd 0.000 0.003 0.027 0.166 
Gunyah Pasture 1 60 3 0.125 nd 0.039 nd 0.001 0.002 0.094 0.524 
Gunyah Pasture 2 2.5 1 0.004 nd 0.002 0.000 0.219 0.006 0.013 0.011 
Gunyah Pasture 2 2.5 2 0.007 nd 0.004 0.001 0.147 0.011 0.013 0.007 
Gunyah Pasture 2 2.5 3 0.006 nd 0.007 0.000 0.195 0.005 0.015 0.014 
Gunyah Pasture 2 7.5 1 0.017 nd 0.018 nd 0.026 0.003 0.005 0.005 
Gunyah Pasture 2 7.5 2 0.015 nd 0.010 nd 0.027 0.003 0.003 0.010 
Gunyah Pasture 2 7.5 3 0.012 nd 0.005 nd 0.012 0.003 0.000 0.008 
Gunyah Pasture 2 15 1 0.019 nd 0.030 nd 0.021 0.004 0.007 0.006 
Gunyah Pasture 2 15 2 0.013 nd 0.031 nd 0.014 0.003 0.000 0.006 
Gunyah Pasture 2 15 3 0.010 nd 0.010 nd 0.008 0.004 0.003 0.013 
Gunyah Pasture 2 25 1 0.010 nd 0.009 nd 0.003 0.002 0.004 0.007 
Gunyah Pasture 2 25 2 0.016 nd 0.032 nd 0.005 0.003 0.001 0.006 
Gunyah Pasture 2 25 3 0.017 nd 0.032 nd 0.010 0.003 0.000 0.007 
Gunyah Pasture 2 40 1 0.006 nd 0.001 nd 0.003 0.002 0.000 0.008 
Gunyah Pasture 2 40 2 0.007 nd 0.000 nd 0.000 0.002 0.001 0.009 
Gunyah Pasture 2 40 3 0.009 0.004 0.001 nd 0.000 0.002 0.000 0.010 
Gunyah Pasture 2 60 1 0.078 nd 0.053 nd 0.000 0.002 0.041 0.173 
Gunyah Pasture 2 60 2 0.129 nd 0.087 nd 0.000 0.004 0.050 0.170 
Gunyah Pasture 2 60 3 0.199 nd 0.175 nd 0.000 0.004 0.102 0.213 
Gunyah Vegetated 1 2.5 1 0.018 nd 0.080 0.006 0.041 0.007 0.043 0.023 
Gunyah Vegetated 1 2.5 2 0.011 nd 0.059 0.005 0.033 0.010 0.036 0.023 
Gunyah Vegetated 1 2.5 3 0.013 0.005 0.059 0.007 0.038 0.012 0.060 0.020 
Gunyah Vegetated 1 7.5 1 0.019 nd 0.063 0.007 0.027 0.004 0.018 0.021 
Gunyah Vegetated 1 7.5 2 0.010 nd 0.014 0.002 0.009 0.002 0.006 0.009 
Gunyah Vegetated 1 7.5 3 0.016 nd 0.040 0.005 0.021 0.003 0.013 0.021 
Gunyah Vegetated 1 15 1 0.010 nd 0.003 0.002 0.004 0.002 0.000 0.020 
Gunyah Vegetated 1 15 2 0.009 nd 0.000 0.001 0.005 0.002 0.002 0.016 
Gunyah Vegetated 1 15 3 0.010 0.005 0.000 0.001 0.006 0.002 0.004 0.013 
Gunyah Vegetated 1 25 1 0.018 nd 0.002 nd 0.000 0.002 0.000 0.015 
Gunyah Vegetated 1 25 2 0.020 nd 0.003 nd 0.001 0.002 0.003 0.013 
Gunyah Vegetated 1 25 3 0.021 nd 0.004 nd 0.000 0.002 0.002 0.015 
Gunyah Vegetated 1 40 1 0.024 nd 0.008 nd 0.000 0.002 0.000 0.024 
Gunyah Vegetated 1 40 2 0.033 nd 0.008 nd 0.000 0.002 0.000 0.022 
Gunyah Vegetated 1 40 3 0.022 nd 0.009 nd 0.000 0.002 0.002 0.018 
Gunyah Vegetated 1 60 1 0.059 nd 0.046 nd 0.000 0.003 0.035 0.159 
Gunyah Vegetated 1 60 2 0.077 nd 0.064 nd 0.000 0.003 0.053 0.176 
Gunyah Vegetated 1 60 3 0.045 nd 0.041 nd 0.000 0.002 0.022 0.115 
Gunyah Vegetated 1 85 1 0.423 nd 0.109 nd 0.003 0.006 0.543 0.703 
Gunyah Vegetated 1 85 2 0.026 nd 0.002 nd 0.001 0.003 0.040 0.931 
Gunyah Vegetated 1 85 3 0.134 nd 0.030 nd 0.001 0.005 0.292 0.495 
Gunyah Vegetated 2 2.5 1 0.016 nd 0.036 0.002 0.025 0.004 0.032 0.039 
Gunyah Vegetated 2 2.5 2 0.017 nd 0.046 0.002 0.041 0.006 0.058 0.083 
Gunyah Vegetated 2 2.5 3 0.023 nd 0.061 0.002 0.088 0.003 0.162 0.273 
Gunyah Vegetated 2 7.5 1 0.026 nd 0.006 0.001 0.051 0.002 0.115 0.310 
Gunyah Vegetated 2 7.5 2 0.014 nd 0.036 0.003 0.030 0.003 0.083 0.162 
Gunyah Vegetated 2 7.5 3 0.011 0.005 0.005 0.001 0.006 0.003 0.021 0.024 
Gunyah Vegetated 2 15 1 0.014 nd 0.003 nd 0.000 0.002 0.002 0.109 
Gunyah Vegetated 2 15 2 0.015 nd 0.002 0.001 0.011 0.002 0.030 0.194 
Gunyah Vegetated 2 15 3 0.016 nd 0.002 0.001 0.007 0.002 0.016 0.102 
Gunyah Vegetated 2 25 1 0.016 nd 0.003 nd 0.000 0.002 0.000 0.058 
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Gunyah Vegetated 2 25 2 0.017 nd 0.005 nd 0.000 0.002 0.000 0.057 
Gunyah Vegetated 2 25 3 0.016 nd 0.002 nd 0.003 0.002 0.019 0.190 
Gunyah Vegetated 2 40 1 0.013 nd 0.000 nd 0.000 0.002 0.000 0.058 
Gunyah Vegetated 2 40 2 0.070 0.012 0.000 nd 0.018 0.002 0.088 0.351 
Gunyah Vegetated 2 40 3 0.013 nd 0.000 nd 0.000 0.002 0.006 0.129 
Gunyah Vegetated 2 60 1 0.124 nd 0.085 nd 0.001 0.003 0.137 0.428 
Gunyah Vegetated 2 60 2 0.144 0.009 0.076 nd 0.011 0.003 0.156 0.420 
Gunyah Vegetated 2 60 3 0.106 nd 0.060 nd 0.001 0.003 0.142 0.421 
Gunyah Vegetated 2 85 1 0.093 nd 0.014 0.000 0.001 0.002 0.213 0.653 
Gunyah Vegetated 2 85 2 0.203 nd 0.063 nd 0.001 0.003 0.219 0.702 
Gunyah Vegetated 2 85 3 0.165 nd 0.040 nd 0.001 0.002 0.235 0.693 
Gunyah Eroded 1 2.5 1 0.066 nd 0.014 nd 0.001 0.001 0.063 0.329 
Gunyah Eroded 1 2.5 2 0.054 nd 0.012 nd 0.000 0.002 0.039 0.204 
Gunyah Eroded 1 2.5 3 0.044 nd 0.009 nd 0.000 0.001 0.047 0.215 
Gunyah Eroded 1 7.5 1 0.053 nd 0.011 nd 0.000 0.002 0.035 0.160 
Gunyah Eroded 1 7.5 2 0.030 nd 0.008 nd 0.000 0.003 0.030 0.207 
Gunyah Eroded 1 7.5 3 0.064 nd 0.012 nd 0.001 0.002 0.048 0.159 
Gunyah Eroded 1 15 1 0.072 nd 0.024 nd 0.000 0.002 0.030 0.135 
Gunyah Eroded 1 15 2 0.058 0.020 0.009 nd 0.007 0.001 0.026 0.126 
Gunyah Eroded 1 15 3 0.078 0.012 0.022 nd 0.003 0.002 0.032 0.119 
Gunyah Eroded 1 25 1 0.093 nd 0.034 nd 0.001 0.001 0.045 0.178 
Gunyah Eroded 1 25 2 0.068 nd 0.034 nd 0.000 0.002 0.037 0.096 
Gunyah Eroded 1 25 3 0.088 nd 0.042 nd 0.000 0.002 0.054 0.094 
Gunyah Eroded 1 40 1 0.200 nd 0.086 nd 0.001 0.005 0.138 0.153 
Gunyah Eroded 1 40 2 0.254 nd 0.109 nd 0.003 0.006 0.203 0.134 
Gunyah Eroded 1 40 3 0.113 nd 0.031 nd 0.000 0.003 0.130 0.132 
Gunyah Eroded 1 60 1 0.270 nd 0.066 nd 0.000 0.004 0.171 0.173 
Gunyah Eroded 1 60 2 0.255 nd 0.073 nd 0.000 0.004 0.134 0.151 
Gunyah Eroded 1 60 3 0.234 nd 0.066 nd 0.000 0.004 0.135 0.154 
Gunyah Eroded 1 85 1 0.274 nd 0.071 nd 0.000 0.004 0.161 0.170 
Gunyah Eroded 1 85 2 0.206 nd 0.055 nd 0.000 0.003 0.097 0.177 
Gunyah Eroded 1 85 3 0.255 0.013 0.062 nd 0.006 0.003 0.113 0.164 
Gunyah Eroded 2 2.5 1 0.013 nd 0.005 nd 0.000 0.002 0.030 0.195 
Gunyah Eroded 2 2.5 2 0.015 nd 0.006 nd 0.001 0.002 0.040 0.783 
Gunyah Eroded 2 2.5 3 0.005 nd 0.002 nd 0.000 0.002 0.029 0.335 
Gunyah Eroded 2 7.5 1 0.010 nd 0.005 nd 0.001 0.001 0.077 0.747 
Gunyah Eroded 2 7.5 2 0.002 nd 0.001 nd 0.003 0.002 0.187 0.671 
Gunyah Eroded 2 7.5 3 0.002 nd 0.001 nd 0.001 0.002 0.106 0.759 
Gunyah Eroded 2 15 1 0.012 nd 0.005 nd 0.001 0.001 0.178 0.395 
Gunyah Eroded 2 15 2 0.010 nd 0.004 nd 0.002 0.001 0.212 0.420 
Gunyah Eroded 2 15 3 0.008 nd 0.003 nd 0.001 0.001 0.100 0.294 
Gunyah Eroded 2 25 1 0.036 nd 0.024 nd 0.000 0.002 0.041 0.152 
Gunyah Eroded 2 25 2 0.024 nd 0.013 nd 0.000 0.002 0.026 0.116 
Gunyah Eroded 2 25 3 0.029 nd 0.018 nd 0.000 0.001 0.029 0.131 
Gunyah Eroded 2 40 1 0.133 nd 0.071 nd 0.002 0.003 0.084 0.152 
Gunyah Eroded 2 40 2 0.143 nd 0.090 nd 0.001 0.003 0.093 0.145 
Gunyah Eroded 2 40 3 0.093 nd 0.041 nd 0.002 0.003 0.091 0.164 
Gunyah Eroded 2 60 1 0.198 nd 0.061 nd 0.000 0.004 0.088 0.197 
Gunyah Eroded 2 60 2 0.249 nd 0.075 nd 0.002 0.005 0.125 0.206 
Gunyah Eroded 2 60 3 0.185 nd 0.052 nd 0.002 0.003 0.104 0.205 
Gunyah Eroded 2 85 1 0.108 nd 0.027 nd 0.000 0.002 0.052 0.166 
Gunyah Eroded 2 85 2 0.129 nd 0.037 nd 0.000 0.003 0.059 0.168 
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Gunyah Eroded 2 85 3 0.098 nd 0.020 nd 0.000 0.002 0.058 0.165 
Gunyah Scalded 1 2.5 1 0.003 nd 0.001 nd 0.062 0.009 0.177 0.127 
Gunyah Scalded 1 2.5 2 0.019 0.013 0.001 nd 0.033 0.011 0.097 0.071 
Gunyah Scalded 1 2.5 3 0.002 nd 0.001 nd 0.056 0.016 0.150 0.055 
Gunyah Scalded 1 7.5 1 0.014 nd 0.005 nd 0.002 0.002 0.068 0.248 
Gunyah Scalded 1 7.5 2 0.011 nd 0.006 nd 0.003 0.001 0.075 0.222 
Gunyah Scalded 1 7.5 3 0.016 nd 0.007 nd 0.000 0.002 0.057 0.166 
Gunyah Scalded 1 15 1 0.029 0.009 0.005 nd 0.003 0.001 0.076 0.220 
Gunyah Scalded 1 15 2 0.018 nd 0.006 nd 0.000 0.001 0.067 0.204 
Gunyah Scalded 1 15 3 0.023 nd 0.006 nd 0.000 0.002 0.048 0.189 
Gunyah Scalded 1 25 1 0.024 0.011 0.003 nd 0.004 0.001 0.033 0.177 
Gunyah Scalded 1 25 2 0.031 nd 0.012 nd 0.000 0.002 0.035 0.116 
Gunyah Scalded 1 25 3 0.010 nd 0.000 nd 0.000 0.002 0.023 0.153 
Gunyah Scalded 1 40 1 0.147 nd 0.114 nd 0.000 0.005 0.098 0.203 
Gunyah Scalded 1 40 2 0.198 nd 0.098 nd 0.001 0.005 0.122 0.187 
Gunyah Scalded 1 40 3 0.176 nd 0.096 nd 0.000 0.004 0.113 0.174 
Gunyah Scalded 1 60 1 0.160 0.019 0.041 nd 0.008 0.004 0.083 0.259 
Gunyah Scalded 1 60 2 0.148 nd 0.052 nd 0.000 0.004 0.081 0.195 
Gunyah Scalded 1 60 3 0.148 nd 0.049 nd 0.000 0.003 0.076 0.204 
Gunyah Scalded 1 85 1 0.139 nd 0.035 nd 0.000 0.003 0.067 0.201 
Gunyah Scalded 1 85 2 0.180 nd 0.052 nd 0.000 0.004 0.075 0.167 
Gunyah Scalded 1 85 3 0.150 0.005 0.037 nd 0.000 0.003 0.075 0.196 
Gunyah Scalded 2 2.5 1 0.004 nd 0.000 nd 0.007 0.007 0.064 0.354 
Gunyah Scalded 2 2.5 2 0.022 nd 0.000 0.002 0.019 0.012 0.083 0.256 
Gunyah Scalded 2 2.5 3 0.003 nd 0.001 nd 0.038 0.014 0.134 0.164 
Gunyah Scalded 2 7.5 1 0.024 nd 0.002 nd 0.000 0.002 0.051 0.150 
Gunyah Scalded 2 7.5 2 0.022 nd 0.002 nd 0.001 0.002 0.057 0.159 
Gunyah Scalded 2 7.5 3 0.002 nd 0.000 nd 0.000 0.001 0.000 0.000 
Gunyah Scalded 2 15 1 0.030 nd 0.006 nd 0.001 0.003 0.046 0.143 
Gunyah Scalded 2 15 2 0.034 nd 0.006 nd 0.000 0.002 0.043 0.139 
Gunyah Scalded 2 15 3 0.021 nd 0.005 nd 0.000 0.003 0.037 0.182 
Tarcoola Vegetated 1 2.5 1 0.030 nd 0.011 nd 0.000 0.004 0.035 0.153 
Tarcoola Vegetated 1 2.5 2 0.053 nd 0.023 nd 0.000 0.004 0.037 0.131 
Tarcoola Vegetated 1 2.5 3 0.023 nd 0.004 nd 0.000 0.004 0.035 0.174 
Tarcoola Vegetated 1 7.5 1 0.081 nd 0.024 nd 0.000 0.003 0.052 0.141 
Tarcoola Vegetated 1 7.5 2 0.120 nd 0.053 nd 0.000 0.005 0.054 0.126 
Tarcoola Vegetated 1 7.5 3 0.106 nd 0.068 nd 0.000 0.003 0.059 0.144 
Tarcoola Vegetated 1 15 1 0.171 nd 0.060 nd 0.002 0.004 0.096 0.219 
Tarcoola Vegetated 1 15 2 0.190 nd 0.071 nd 0.002 0.004 0.099 0.188 
Tarcoola Vegetated 1 15 3 0.097 nd 0.027 nd 0.002 0.003 0.082 0.280 
Tarcoola Vegetated 1 25 1 0.165 nd 0.047 nd 0.000 0.005 0.064 0.283 
Tarcoola Vegetated 1 25 2 0.117 nd 0.019 nd 0.000 0.003 0.065 0.247 
Tarcoola Vegetated 1 25 3 0.112 nd 0.023 nd 0.000 0.003 0.054 0.266 
Tarcoola Vegetated 1 40 1 0.007 nd 0.031 0.005 0.017 0.008 0.033 0.007 
Tarcoola Vegetated 1 40 2 nd nd 0.000 nd 0.000 0.001 0.000 0.000 
Tarcoola Vegetated 1 40 3 0.008 nd 0.032 0.005 0.035 0.026 0.061 0.007 
Tarcoola Vegetated 2 2.5 1 0.021 0.007 0.012 0.001 0.001 0.004 0.008 0.009 
Tarcoola Vegetated 2 2.5 2 0.016 nd 0.003 0.000 0.002 0.003 0.015 0.016 
Tarcoola Vegetated 2 2.5 3 0.014 nd 0.002 0.001 0.005 0.003 0.026 0.017 
Tarcoola Vegetated 2 7.5 1 0.013 nd 0.002 0.001 0.002 0.002 0.019 0.025 
Tarcoola Vegetated 2 7.5 2 0.019 nd 0.003 0.001 0.002 0.004 0.022 0.030 
Tarcoola Vegetated 2 7.5 3 0.016 nd 0.002 0.001 0.002 0.003 0.021 0.026 
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Tarcoola Vegetated 2 15 1 0.014 nd 0.003 0.001 0.000 0.002 0.021 0.035 
Tarcoola Vegetated 2 15 2 0.016 nd 0.004 0.001 0.002 0.003 0.022 0.032 
Tarcoola Vegetated 2 15 3 0.012 nd 0.002 0.000 0.000 0.002 0.015 0.025 
Tarcoola Vegetated 2 25 1 0.026 nd 0.007 nd 0.000 0.002 0.000 0.017 
Tarcoola Vegetated 2 25 2 0.022 nd 0.005 nd 0.000 0.002 0.000 0.027 
Tarcoola Vegetated 2 25 3 0.028 nd 0.009 nd 0.000 0.002 0.000 0.024 
Tarcoola Vegetated 2 40 1 0.006 nd 0.019 0.002 0.010 0.022 0.020 0.031 
Tarcoola Vegetated 2 40 2 0.007 nd 0.017 0.002 0.008 0.006 0.023 0.014 
Tarcoola Vegetated 2 40 3 0.008 nd 0.010 0.001 0.003 0.006 0.011 0.026 

 
 

Table D3 Exchangeable cation concentrations for each sample. Nd indicates 
that the concentration was below the detection limit. 

Site Description Profile Depth Rep 
Al 

(cmolc/kg)
B  

(cmolc/kg)
Fe 

(cmolc/kg)
Mn 

(cmolc/kg)
Ca 

(cmolc/kg) 
K 

(cmolc/kg) 
Mg 

(cmolc/kg)
Na 

(cmolc/kg)
Tarcoola Scald 1 2.5 1 nd nd nd nd 0.005 0.002 0.020 0.074 
Tarcoola Scald 1 2.5 2 nd nd nd nd 0.004 0.001 0.017 0.055 
Tarcoola Scald 1 2.5 3 nd nd nd nd 0.003 0.001 0.013 0.053 
Tarcoola Scald 1 7.5 1 nd nd nd nd 0.004 0.001 0.027 0.044 
Tarcoola Scald 1 7.5 2 nd nd nd nd 0.003 0.001 0.033 0.050 
Tarcoola Scald 1 7.5 3 nd nd nd nd 0.004 0.001 0.037 0.048 
Tarcoola Scald 1 15 1 nd nd nd nd 0.003 0.001 0.031 0.061 
Tarcoola Scald 1 15 2 nd nd nd nd 0.003 0.001 0.042 0.064 
Tarcoola Scald 1 15 3 nd nd nd nd 0.002 0.001 0.036 0.068 
Tarcoola Scald 1 25 1 nd nd nd nd 0.001 0.001 0.013 0.072 
Tarcoola Scald 1 25 2 nd nd nd nd 0.001 0.001 0.027 0.074 
Tarcoola Scald 1 25 3 nd nd nd nd 0.000 0.001 0.008 0.074 
Tarcoola Scald 1 40 1 nd nd nd nd 0.000 0.001 0.042 0.082 
Tarcoola Scald 1 40 2 nd nd nd nd 0.000 0.001 0.045 0.074 
Tarcoola Scald 1 40 3 nd nd nd nd 0.000 0.001 0.035 0.087 
Tarcoola Scald 1 60 1 nd nd nd nd 0.001 0.002 0.162 0.124 
Tarcoola Scald 1 60 2 nd nd nd nd 0.002 0.004 0.220 0.170 
Tarcoola Scald 1 60 3 nd nd nd nd 0.001 0.003 0.165 0.141 
Tarcoola Scald 1 85 1 nd nd nd nd 0.000 0.002 0.182 0.140 
Tarcoola Scald 1 85 2 nd nd nd nd 0.000 0.002 0.132 0.106 
Tarcoola Scald 1 85 3 nd nd nd nd 0.000 0.002 0.154 0.121 
Tarcoola Scald 2 2.5 1 nd nd nd nd 0.003 0.001 0.025 0.028 
Tarcoola Scald 2 2.5 2 nd nd nd nd 0.003 0.001 0.027 0.028 
Tarcoola Scald 2 2.5 3 nd nd nd nd 0.003 0.001 0.023 0.027 
Tarcoola Scald 2 7.5 1 nd nd nd nd 0.004 0.001 0.050 0.052 
Tarcoola Scald 2 7.5 2 nd nd nd nd 0.003 0.001 0.041 0.038 
Tarcoola Scald 2 7.5 3 nd nd nd nd 0.006 0.001 0.059 0.056 
Tarcoola Scald 2 15 1 nd nd nd nd 0.003 0.002 0.034 0.072 
Tarcoola Scald 2 15 2 nd nd nd nd 0.003 0.002 0.031 0.067 
Tarcoola Scald 2 15 3 nd nd nd nd 0.003 0.001 0.034 0.064 
Tarcoola Scald 2 25 1 nd nd nd nd 0.001 0.001 0.018 0.065 
Tarcoola Scald 2 25 2 nd nd nd nd 0.001 0.001 0.020 0.067 
Tarcoola Scald 2 25 3 nd nd nd nd 0.001 0.001 0.062 0.067 
Tarcoola Scald 2 40 1 nd nd nd nd 0.001 0.001 0.027 0.062 
Tarcoola Scald 2 40 2 nd nd nd nd 0.003 0.003 0.120 0.138 
Tarcoola Scald 2 40 3 nd nd nd nd 0.002 0.002 0.070 0.081 
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Tarcoola Scald 2 60 1 nd nd nd nd 0.003 0.002 0.137 0.123 
Tarcoola Scald 2 60 2 nd nd nd nd 0.002 0.003 0.154 0.129 
Tarcoola Scald 2 60 3 nd nd nd nd 0.002 0.003 0.156 0.143 
Tarcoola Scald 2 85 1 nd nd nd nd 0.001 0.001 0.102 0.097 
Tarcoola Scald 2 85 2 nd nd nd nd 0.002 0.001 0.106 0.101 
Tarcoola Scald 2 85 3 nd nd nd nd 0.000 0.001 0.107 0.098 
Tarcoola Depression 1 2.5 1 nd nd nd 0.001 0.040 0.004 0.137 0.010 
Tarcoola Depression 1 2.5 2 nd nd nd 0.001 0.050 0.005 0.169 0.010 
Tarcoola Depression 1 2.5 3 nd nd nd 0.001 0.050 0.004 0.180 0.011 
Tarcoola Depression 1 7.5 1 nd nd nd 0.000 0.036 0.003 0.180 0.012 
Tarcoola Depression 1 7.5 2 nd nd nd 0.000 0.037 0.003 0.187 0.010 
Tarcoola Depression 1 7.5 3 nd nd nd 0.000 0.036 0.003 0.181 0.011 
Tarcoola Depression 1 15 1 nd nd nd nd 0.027 0.002 0.156 0.009 
Tarcoola Depression 1 15 2 nd nd nd nd 0.029 0.002 0.174 0.009 
Tarcoola Depression 1 15 3 nd nd nd nd 0.026 0.002 0.156 0.008 
Tarcoola Depression 1 25 1 nd nd nd nd 0.025 0.002 0.160 0.009 
Tarcoola Depression 1 25 2 nd nd nd nd 0.028 0.002 0.200 0.011 
Tarcoola Depression 1 25 3 nd nd nd nd 0.032 0.002 0.207 0.013 
Tarcoola Depression 1 40 1 nd nd nd nd 0.020 0.002 0.169 0.014 
Tarcoola Depression 1 40 2 nd nd nd nd 0.019 0.002 0.159 0.012 
Tarcoola Depression 1 40 3 nd nd nd nd 0.016 0.002 0.152 0.011 
Tarcoola Depression 1 60 1 nd nd nd nd 0.039 0.002 0.305 0.022 
Tarcoola Depression 1 60 2 nd nd nd nd 0.036 0.002 0.280 0.023 
Tarcoola Depression 1 60 3 nd nd nd nd 0.045 0.002 0.351 0.020 
Tarcoola Depression 1 85 1 nd nd nd nd 0.009 0.002 0.100 0.016 
Tarcoola Depression 1 85 2 nd nd nd nd 0.010 0.002 0.134 0.024 
Tarcoola Depression 1 85 3 nd nd nd nd 0.010 0.002 0.141 0.019 
Tarcoola Depression 2 2.5 1 nd nd nd 0.001 0.078 0.007 0.212 0.006 
Tarcoola Depression 2 2.5 2 nd nd nd 0.001 0.061 0.006 0.174 0.008 
Tarcoola Depression 2 2.5 3 nd nd nd 0.001 0.055 0.006 0.166 0.006 
Tarcoola Depression 2 7.5 1 nd nd nd nd 0.036 0.003 0.189 0.008 
Tarcoola Depression 2 7.5 2 nd nd nd nd 0.038 0.003 0.178 0.008 
Tarcoola Depression 2 7.5 3 nd nd nd nd 0.036 0.004 0.191 0.010 
Tarcoola Depression 2 15 1 nd nd nd nd 0.031 0.002 0.191 0.011 
Tarcoola Depression 2 15 2 nd nd nd nd 0.035 0.002 0.199 0.009 
Tarcoola Depression 2 15 3 nd nd nd nd 0.043 0.003 0.215 0.007 
Tarcoola Depression 2 25 1 nd nd nd nd 0.032 0.002 0.235 0.017 
Tarcoola Depression 2 25 2 nd nd nd nd 0.033 0.002 0.208 0.015 
Tarcoola Depression 2 25 3 nd nd nd nd 0.022 0.002 0.148 0.013 
Tarcoola Depression 2 40 1 nd nd nd nd 0.022 0.002 0.185 0.031 
Tarcoola Depression 2 40 2 nd nd nd nd 0.024 0.002 0.196 0.036 
Tarcoola Depression 2 40 3 nd nd nd nd 0.021 0.002 0.181 0.028 
Tarcoola Depression 2 60 1 nd nd nd nd 0.060 0.003 0.410 0.076 
Tarcoola Depression 2 60 2 nd nd nd nd 0.057 0.002 0.388 0.067 
Tarcoola Depression 2 60 3 nd nd nd nd 0.033 0.002 0.272 0.053 
Tarcoola Depression 2 85 1 nd nd nd nd 0.036 0.002 0.289 0.055 
Tarcoola Depression 2 85 2 nd nd nd nd 0.035 0.002 0.313 0.056 
Tarcoola Depression 2 85 3 nd nd nd nd 0.038 0.002 0.324 0.067 
Gunyah Pasture 1 2.5 1 nd nd 0.001 nd 0.154 0.002 0.006 0.003 
Gunyah Pasture 1 2.5 2 nd nd 0.000 0.000 0.148 0.004 0.010 0.003 
Gunyah Pasture 1 2.5 3 nd nd 0.001 0.000 0.113 0.003 0.006 0.002 
Gunyah Pasture 1 7.5 1 nd nd 0.001 nd 0.026 0.001 0.000 0.002 
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Gunyah Pasture 1 7.5 2 nd nd 0.001 nd 0.040 0.001 0.000 0.002 
Gunyah Pasture 1 7.5 3 nd nd nd nd 0.021 0.001 0.005 0.003 
Gunyah Pasture 1 15 1 nd nd nd nd 0.013 0.001 0.000 0.002 
Gunyah Pasture 1 15 2 nd nd nd nd 0.010 0.001 0.000 0.001 
Gunyah Pasture 1 15 3 nd nd nd nd 0.017 0.001 0.000 0.002 
Gunyah Pasture 1 25 1 nd nd nd nd 0.005 0.001 0.002 0.003 
Gunyah Pasture 1 25 2 nd nd nd nd 0.007 0.000 0.002 0.003 
Gunyah Pasture 1 25 3 nd nd nd nd 0.007 0.000 0.001 0.002 
Gunyah Pasture 1 40 1 nd nd nd nd 0.012 0.001 0.051 0.030 
Gunyah Pasture 1 40 2 nd nd nd nd 0.012 0.001 0.051 0.027 
Gunyah Pasture 1 40 3 nd nd nd nd 0.009 0.001 0.044 0.023 
Gunyah Pasture 1 60 1 nd nd nd nd 0.009 0.002 0.248 0.063 
Gunyah Pasture 1 60 2 nd nd nd nd 0.007 0.001 0.082 0.033 
Gunyah Pasture 1 60 3 nd nd nd nd 0.014 0.001 0.078 0.039 
Gunyah Pasture 2 2.5 1 nd nd nd nd 0.248 0.002 0.004 0.003 
Gunyah Pasture 2 2.5 2 nd nd nd nd 0.147 0.003 0.008 0.004 
Gunyah Pasture 2 2.5 3 nd nd 0.001 nd 0.181 0.002 0.003 0.002 
Gunyah Pasture 2 7.5 1 nd nd 0.001 nd 0.018 0.001 0.000 0.001 
Gunyah Pasture 2 7.5 2 nd nd 0.001 nd 0.020 0.001 0.000 0.001 
Gunyah Pasture 2 7.5 3 nd nd nd 0.000 0.019 0.001 0.000 0.001 
Gunyah Pasture 2 15 1 nd nd nd 0.000 0.029 0.001 0.000 0.001 
Gunyah Pasture 2 15 2 nd nd nd 0.000 0.010 0.001 0.000 0.001 
Gunyah Pasture 2 15 3 nd nd nd 0.000 0.008 0.001 0.000 0.001 
Gunyah Pasture 2 25 1 nd nd nd 0.000 0.005 0.001 0.000 0.001 
Gunyah Pasture 2 25 2 nd nd nd 0.000 0.004 0.001 0.000 0.001 
Gunyah Pasture 2 25 3 nd nd nd 0.000 0.008 0.001 0.000 0.001 
Gunyah Pasture 2 40 1 nd nd nd 0.000 0.007 0.001 0.000 0.001 
Gunyah Pasture 2 40 2 nd nd nd 0.000 0.003 0.000 0.000 0.001 
Gunyah Pasture 2 40 3 nd nd nd 0.000 0.003 0.001 0.000 0.002 
Gunyah Pasture 2 60 1 nd nd nd nd 0.003 0.001 0.102 0.033 
Gunyah Pasture 2 60 2 nd nd nd nd 0.003 0.001 0.127 0.039 
Gunyah Pasture 2 60 3 nd nd nd nd 0.004 0.002 0.153 0.043 
Gunyah Vegetated 1 2.5 1 nd nd nd 0.002 0.047 0.004 0.023 0.003 
Gunyah Vegetated 1 2.5 2 nd nd nd 0.001 0.039 0.003 0.018 0.003 
Gunyah Vegetated 1 2.5 3 nd nd nd 0.001 0.045 0.004 0.028 0.003 
Gunyah Vegetated 1 7.5 1 nd nd nd 0.001 0.027 0.001 0.006 0.004 
Gunyah Vegetated 1 7.5 2 nd nd nd 0.000 0.022 0.001 0.005 0.002 
Gunyah Vegetated 1 7.5 3 nd nd nd 0.000 0.021 0.001 0.004 0.002 
Gunyah Vegetated 1 15 1 nd nd nd 0.000 0.017 0.001 0.008 0.002 
Gunyah Vegetated 1 15 2 nd nd nd 0.000 0.020 0.001 0.010 0.002 
Gunyah Vegetated 1 15 3 nd nd nd 0.000 0.018 0.000 0.008 0.002 
Gunyah Vegetated 1 25 1 nd nd nd nd 0.004 0.000 0.013 0.004 
Gunyah Vegetated 1 25 2 nd nd nd nd 0.005 0.001 0.025 0.005 
Gunyah Vegetated 1 25 3 nd nd nd nd 0.006 0.001 0.013 0.003 
Gunyah Vegetated 1 40 1 nd nd nd 0.000 0.028 0.001 0.003 0.004 
Gunyah Vegetated 1 40 2 nd nd nd 0.000 0.020 0.001 0.002 0.003 
Gunyah Vegetated 1 40 3 nd nd nd 0.000 0.021 0.001 0.004 0.002 
Gunyah Vegetated 1 60 1 nd nd nd nd 0.003 0.001 0.072 0.021 
Gunyah Vegetated 1 60 2 nd nd nd nd 0.003 0.001 0.074 0.023 
Gunyah Vegetated 1 60 3 nd nd nd nd 0.002 0.001 0.040 0.012 
Gunyah Vegetated 1 85 1 nd nd nd nd 0.004 0.003 0.190 0.061 
Gunyah Vegetated 1 85 2 nd nd nd nd 0.005 0.003 0.258 0.085 
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Gunyah Vegetated 1 85 3 nd nd nd nd 0.005 0.003 0.235 0.086 
Gunyah Vegetated 2 2.5 1 nd nd nd 0.001 0.028 0.001 0.012 0.005 
Gunyah Vegetated 2 2.5 2 nd nd nd 0.001 0.041 0.002 0.024 0.009 
Gunyah Vegetated 2 2.5 3 nd nd nd 0.002 0.048 0.001 0.035 0.012 
Gunyah Vegetated 2 7.5 1 nd nd nd 0.001 0.028 0.001 0.025 0.011 
Gunyah Vegetated 2 7.5 2 nd nd nd 0.001 0.020 0.001 0.019 0.014 
Gunyah Vegetated 2 7.5 3 nd nd nd 0.001 0.013 0.001 0.011 0.003 
Gunyah Vegetated 2 15 1 nd nd nd 0.000 0.013 0.001 0.011 0.010 
Gunyah Vegetated 2 15 2 nd nd nd 0.000 0.018 0.001 0.014 0.018 
Gunyah Vegetated 2 15 3 nd nd nd 0.000 0.020 0.001 0.013 0.011 
Gunyah Vegetated 2 25 1 nd nd nd 0.000 0.008 0.000 0.008 0.009 
Gunyah Vegetated 2 25 2 nd nd nd 0.000 0.006 0.000 0.005 0.008 
Gunyah Vegetated 2 25 3 nd nd nd 0.000 0.013 0.000 0.015 0.016 
Gunyah Vegetated 2 40 1 nd nd nd nd 0.004 0.000 0.008 0.008 
Gunyah Vegetated 2 40 2 nd nd nd 0.000 0.006 0.000 0.016 0.009 
Gunyah Vegetated 2 40 3 nd nd nd nd 0.004 0.000 0.010 0.013 
Gunyah Vegetated 2 60 1 nd nd nd nd 0.006 0.001 0.086 0.027 
Gunyah Vegetated 2 60 2 nd nd nd nd 0.007 0.001 0.104 0.027 
Gunyah Vegetated 2 60 3 nd nd nd nd 0.004 0.001 0.063 0.019 
Gunyah Vegetated 2 85 1 nd nd nd nd 0.007 0.001 0.079 0.034 
Gunyah Vegetated 2 85 2 nd nd nd nd 0.008 0.002 0.282 0.093 
Gunyah Vegetated 2 85 3 nd nd nd nd 0.007 0.002 0.241 0.084 
Gunyah Eroded 1 2.5 1 nd nd nd 0.000 0.011 0.001 0.075 0.022 
Gunyah Eroded 1 2.5 2 nd nd nd nd 0.006 0.001 0.055 0.026 
Gunyah Eroded 1 2.5 3 nd nd nd nd 0.012 0.001 0.074 0.026 
Gunyah Eroded 1 7.5 1 nd nd nd nd 0.005 0.001 0.060 0.024 
Gunyah Eroded 1 7.5 2 nd nd nd nd 0.007 0.001 0.062 0.018 
Gunyah Eroded 1 7.5 3 nd nd nd nd 0.008 0.001 0.065 0.021 
Gunyah Eroded 1 15 1 nd nd nd nd 0.003 0.001 0.049 0.017 
Gunyah Eroded 1 15 2 nd nd nd nd 0.005 0.001 0.057 0.015 
Gunyah Eroded 1 15 3 nd nd nd nd 0.003 0.001 0.043 0.016 
Gunyah Eroded 1 25 1 nd nd nd nd 0.003 0.001 0.048 0.014 
Gunyah Eroded 1 25 2 nd nd nd nd 0.003 0.001 0.068 0.017 
Gunyah Eroded 1 25 3 nd nd nd nd 0.003 0.001 0.064 0.015 
Gunyah Eroded 1 40 1 nd nd nd nd 0.003 0.001 0.118 0.025 
Gunyah Eroded 1 40 2 nd nd nd nd 0.005 0.002 0.149 0.027 
Gunyah Eroded 1 40 3 nd nd nd nd 0.005 0.002 0.147 0.026 
Gunyah Eroded 1 60 1 nd nd nd nd 0.008 0.003 0.234 0.041 
Gunyah Eroded 1 60 2 nd nd nd nd 0.008 0.002 0.219 0.035 
Gunyah Eroded 1 60 3 nd nd nd nd 0.008 0.003 0.238 0.037 
Gunyah Eroded 1 85 1 nd nd nd nd 0.011 0.003 0.289 0.048 
Gunyah Eroded 1 85 2 nd nd nd nd 0.013 0.003 0.303 0.046 
Gunyah Eroded 1 85 3 nd nd nd nd 0.013 0.002 0.276 0.041 
Gunyah Eroded 2 2.5 1 nd nd nd nd 0.035 0.002 0.137 0.020 
Gunyah Eroded 2 2.5 2 nd nd nd nd 0.024 0.002 0.139 0.047 
Gunyah Eroded 2 2.5 3 nd nd nd nd 0.038 0.001 0.155 0.039 
Gunyah Eroded 2 7.5 1 nd nd nd nd 0.009 0.001 0.061 0.020 
Gunyah Eroded 2 7.5 2 nd nd nd nd 0.008 0.001 0.067 0.025 
Gunyah Eroded 2 7.5 3 nd nd nd nd 0.010 0.001 0.057 0.023 
Gunyah Eroded 2 15 1 nd nd nd nd 0.007 0.001 0.060 0.024 
Gunyah Eroded 2 15 2 nd nd nd nd 0.006 0.001 0.052 0.017 
Gunyah Eroded 2 15 3 nd nd nd nd 0.005 0.001 0.042 0.011 
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Gunyah Eroded 2 25 1 nd nd nd nd 0.005 0.001 0.054 0.016 
Gunyah Eroded 2 25 2 nd nd nd nd 0.004 0.001 0.051 0.018 
Gunyah Eroded 2 25 3 nd nd nd nd 0.004 0.001 0.048 0.015 
Gunyah Eroded 2 40 1 nd nd nd nd 0.011 0.002 0.192 0.029 
Gunyah Eroded 2 40 2 nd nd nd nd 0.009 0.002 0.152 0.022 
Gunyah Eroded 2 40 3 nd nd nd nd 0.009 0.002 0.170 0.024 
Gunyah Eroded 2 60 1 nd nd nd nd 0.020 0.004 0.370 0.041 
Gunyah Eroded 2 60 2 nd nd nd nd 0.020 0.003 0.375 0.041 
Gunyah Eroded 2 60 3 nd nd nd nd 0.017 0.003 0.326 0.037 
Gunyah Eroded 2 85 1 nd nd nd nd 0.015 0.002 0.262 0.031 
Gunyah Eroded 2 85 2 nd nd nd nd 0.016 0.003 0.297 0.034 
Gunyah Eroded 2 85 3 nd nd nd nd 0.016 0.002 0.266 0.030 
Gunyah Scalded 1 2.5 1 nd nd nd 0.000 0.072 0.002 0.178 0.014 
Gunyah Scalded 1 2.5 2 nd nd nd 0.000 0.114 0.005 0.163 0.007 
Gunyah Scalded 1 2.5 3 nd nd nd nd 0.118 0.005 0.160 0.005 
Gunyah Scalded 1 7.5 1 nd nd nd nd 0.020 0.001 0.123 0.024 
Gunyah Scalded 1 7.5 2 nd nd nd nd 0.020 0.001 0.119 0.023 
Gunyah Scalded 1 7.5 3 nd nd nd nd 0.018 0.001 0.110 0.019 
Gunyah Scalded 1 15 1 nd nd nd nd 0.016 0.001 0.105 0.023 
Gunyah Scalded 1 15 2 nd nd nd nd 0.011 0.001 0.070 0.018 
Gunyah Scalded 1 15 3 nd nd nd nd 0.012 0.001 0.080 0.022 
Gunyah Scalded 1 25 1 nd nd nd nd 0.007 0.001 0.057 0.019 
Gunyah Scalded 1 25 2 nd nd nd nd 0.008 0.001 0.052 0.015 
Gunyah Scalded 1 25 3 nd nd nd nd 0.006 0.000 0.044 0.017 
Gunyah Scalded 1 40 1 nd nd nd nd 0.009 0.001 0.141 0.027 
Gunyah Scalded 1 40 2 nd nd nd nd 0.010 0.001 0.166 0.027 
Gunyah Scalded 1 40 3 nd nd nd nd 0.011 0.001 0.171 0.027 
Gunyah Scalded 1 60 1 nd nd nd nd 0.017 0.002 0.265 0.041 
Gunyah Scalded 1 60 2 nd nd nd nd 0.015 0.002 0.217 0.030 
Gunyah Scalded 1 60 3 nd nd nd nd 0.015 0.002 0.218 0.030 
Gunyah Scalded 1 85 1 nd nd nd nd 0.018 0.002 0.262 0.035 
Gunyah Scalded 1 85 2 nd nd nd nd 0.019 0.003 0.278 0.035 
Gunyah Scalded 1 85 3 nd nd nd nd 0.019 0.002 0.275 0.037 
Gunyah Scalded 2 2.5 1 nd nd nd 0.000 0.096 0.003 0.238 0.036 
Gunyah Scalded 2 2.5 2 nd nd nd 0.000 0.068 0.003 0.235 0.023 
Gunyah Scalded 2 2.5 3 nd nd nd 0.000 0.104 0.003 0.193 0.016 
Gunyah Scalded 2 7.5 1 nd nd nd 0.000 0.021 0.001 0.101 0.015 
Gunyah Scalded 2 7.5 2 nd nd nd nd 0.021 0.001 0.124 0.016 
Gunyah Scalded 2 7.5 3 nd nd nd 0.000 0.019 0.001 0.104 0.022 
Gunyah Scalded 2 15 1 nd nd nd nd 0.012 0.001 0.066 0.013 
Gunyah Scalded 2 15 2 nd nd nd 0.000 0.014 0.001 0.071 0.014 
Gunyah Scalded 2 15 3 nd nd nd nd 0.011 0.000 0.064 0.015 
Tarcoola Vegetated 1 2.5 1 nd nd nd nd 0.008 0.001 0.054 0.013 
Tarcoola Vegetated 1 2.5 2 nd nd nd nd 0.008 0.001 0.060 0.011 
Tarcoola Vegetated 1 2.5 3 nd nd nd nd 0.009 0.001 0.059 0.014 
Tarcoola Vegetated 1 7.5 1 nd nd nd nd 0.008 0.001 0.101 0.017 
Tarcoola Vegetated 1 7.5 2 nd nd nd nd 0.009 0.001 0.096 0.015 
Tarcoola Vegetated 1 7.5 3 nd nd nd nd 0.011 0.001 0.120 0.019 
Tarcoola Vegetated 1 15 1 nd nd nd nd 0.019 0.002 0.257 0.030 
Tarcoola Vegetated 1 15 2 nd nd nd nd 0.019 0.002 0.267 0.032 
Tarcoola Vegetated 1 15 3 nd nd nd nd 0.026 0.004 0.370 0.046 
Tarcoola Vegetated 1 25 1 nd nd nd nd 0.023 0.003 0.317 0.041 
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Tarcoola Vegetated 1 25 2 nd nd nd nd 0.021 0.002 0.303 0.038 
Tarcoola Vegetated 1 25 3 nd nd nd nd 0.023 0.003 0.330 0.046 
Tarcoola Vegetated 1 40 1 nd nd nd 0.003 0.038 0.005 0.032 0.002 
Tarcoola Vegetated 1 40 2 nd nd nd 0.003 0.036 0.006 0.034 0.002 
Tarcoola Vegetated 1 40 3 nd nd nd 0.002 0.054 0.008 0.040 0.004 
Tarcoola Vegetated 2 2.5 1 nd nd nd 0.001 0.038 0.002 0.041 0.002 
Tarcoola Vegetated 2 2.5 2 nd nd nd 0.000 0.037 0.002 0.046 0.002 
Tarcoola Vegetated 2 2.5 3 nd nd nd 0.000 0.045 0.002 0.063 0.003 
Tarcoola Vegetated 2 7.5 1 nd nd nd 0.000 0.049 0.002 0.081 0.004 
Tarcoola Vegetated 2 7.5 2 nd nd nd 0.000 0.049 0.002 0.093 0.004 
Tarcoola Vegetated 2 7.5 3 nd nd nd 0.000 0.044 0.002 0.085 0.004 
Tarcoola Vegetated 2 15 1 nd nd nd 0.000 0.041 0.002 0.091 0.006 
Tarcoola Vegetated 2 15 2 nd nd nd 0.000 0.039 0.002 0.076 0.005 
Tarcoola Vegetated 2 15 3 nd nd nd 0.000 0.033 0.002 0.070 0.005 
Tarcoola Vegetated 2 25 1 nd nd nd nd 0.008 0.001 0.023 0.004 
Tarcoola Vegetated 2 25 2 nd nd nd nd 0.007 0.001 0.018 0.004 
Tarcoola Vegetated 2 25 3 nd nd nd 0.000 0.009 0.001 0.026 0.006 
Tarcoola Vegetated 2 40 1 nd nd nd 0.002 0.023 0.006 0.016 0.002 
Tarcoola Vegetated 2 40 2 nd nd nd 0.004 0.033 0.004 0.026 0.002 
Tarcoola Vegetated 2 40 3 nd nd nd 0.003 0.034 0.005 0.028 0.003 
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Table D4 Raw means of SAR of each depth at each microsite and site (* 
indicates that data is not applicable) 
Depth (cm) 0-5 5-10 10-20 20-30 30-50 50-70 70-100 

Description Site        
Gunyah 5.408 4.898 2.563 2.083 1.372 1.968 1.879 

Riverview * * * * * * * Eroded 
Tarcoola * * * * * * * 
Gunyah 0.115 0.21 0.261 1.13 1.271 3.406 * 

Riverview * * * * * * * Pasture 
Tarcoola * * * * * * * 
Gunyah 1.636 1.973 2.479 2.611 1.812 2.394 2.799 

Riverview * * * * * * * Scald 
Tarcoola 2.264 1.738 3.132 5.508 3.698 3.575 2.409 
Gunyah 0.634 0.885 2.351 3.738 3.756 2.983 5.694 
Tarcoola 0.280 0.797 1.768 5.157 2.901 * * Vegetated Tarcoola 

(Depression) 0.515 0.765 0.745 1.118 1.487 2.602 2.697 
 
 
Table D5 Raw means of SOC (%) of each depth at each microsite and site (* 
indicates that no data is available) 
Depth (cm) 

Description Site 0-5 5-10 10-20 20-30 30-50 50-70 70-100 

Gunyah 0.3017 0.2050 0.1317 0.0850 0.0983 0.1167 0.1150
Riverview * * * * * * *Eroded 
Tarcoola * * * * * * *
Gunyah 2.3500 1.2817 0.9700 0.4717 0.1683 0.0933 *
Riverview * * * * * * *Pasture 
Tarcoola * * * * * * *
Gunyah 1.5200 0.4500 0.2533 0.1517 0.0933 0.1017 0.0850
Riverview * * * * * * *Scald 
Tarcoola 0.1583 0.1933 0.2217 0.2650 0.1400 0.1417 0.0800
Gunyah 2.3083 1.600 1.0467 0.6983 0.6667 0.2617 0.1883
Tarcoola 1.9600 0.8333 1.1650 1.4600 0.3083 * *Vegetated Tarcoola 
(Depression) 2.7133 0.8283 0.700 0.600 0.4317 2.000 0.8550

 


