
Reasoning with Inconsistent

Information

Paul Wong

A thesis submitted for the degree of

Doctor of Philosophy at

The Australian National University

December 2004

c© Paul Wong

Typeset in Palatino and Euler by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Paul Wong

1 December 2004

To Fiona, Little Woks, Smallness, Tickles, Tigger, Gollie and Mother Superior.

Acknowledgements

My undying gratitude goes to all those who helped me along the way – members

of my committee, Dr. John Slaney, Dr. Rajeev Gore, Professor John Lloyd, and Pro-

fessor Robert Meyer for their wise advice and for providing me with the intellectual

freedom to explore my own ideas, Dr. Philippe Besnard for his patience and willing-

ness to listen to my absurd ideas and co-authorship of papers (and thereby assisting

me in acquiring my first Erdös number). I am also indebted to Professor Ray Jen-

nings and Professor Peter Schotch for their inspiration, and to Professor Peter Appos-

toli and Professor Bryson Brown for their elegant proof of the completeness of Kn. I

have also benefited from conversations with Professor Graham Priest, Professor Chris

Mortensen, Professor Dov Gabbay and Professor John Wood about all things inconsis-

tent. My examiners, Dr. Anthony Hunter, Professor Greg Restall and Dr. Edwin Mares

also deserve special thanks for their careful and generous comments.

My thanks also go to Dr. Timothy Surendonk and Dr. Glenn Moy for their friend-

ship and assistance in settling into Canberra initially. I am also thankful to my logic

siblings David Low and Dr. Ng Ping Wong from ‘up above’ and Nicolette Bonnette,

Kalhil Hodgson, and Dr. Andrew Slater from ‘down under’. Nicholas and Chwee

Chwee von Sanden offered their generous friendship while I was an apprentice lec-

turer at the University of Wollongong during the academic year of 2002-2003. Thanks

also go to other CSL suspects especially Dr. Jen Davoren for her encouragement and

cool hair parties, Dr. Matthias Fuchs for being the impeccable lunch police and for

his great passes during soccer, Dr. Doug Aberdeen for starting the construction of the

Coke Castle (and thereby provided the motivation for the exponential consumption

of cokes in the lab), Dr. Arthur Gretton for starting the Star Wars collectors’ card com-

petition. I thank all the CSL students who provided endless hours of amusement,

laughter, and excuses for procrastination – Evan, Edward, Kee Siong, Cheng, Agnes,

Phil, Dave, Kerry, Vaughan, Pietro, Charles, Greg, David, Jemma and Tatiana.

I would like to thank the Commonwealth of Australia for providing an IPRS Schol-

arship and the Australian National University for providing an ANU scholarship.

vii

. . . [M]ysticism might be characterized as the study of those propositions

which are equivalent to their own negations. The Western point of view is

that the class of all such propositions is empty. The Eastern point of view

is that this class is empty if and only if it isn’t.

Raymond Smullyan [174]

Abstract

In this thesis we are concerned with developing formal and representational mech-

anisms for reasoning with inconsistent information. Strictly speaking there are two

conceptually distinct senses in which we are interested in reasoning with inconsis-

tent information. In one sense, we are interested in using logical deduction to draw

inferences in a symbolic system. More specifically, we are interested in mechanisms

that can continue to perform deduction in a reasonable manner despite the threat of

inconsistencies as a direct result of errors or misrepresentations. So in this sense we

are interested in inconsistency-tolerant or paraconsistent deduction.

However, not every case of inconsistent description is a case of misrepresentation.

In many practical situations, logically inconsistent descriptions may be deployed as

representations for problems that are inherently conflicting. The issue of error or mis-

representation is irrelevant in these cases. Rather the main concern in these cases is to

provide meaningful analyses of the underlying structure and properties of our logi-

cal representation which in turn informs us about the salient features of the problem

under consideration. So in this second sense, we are interested in deploying logic as a

representation to model situations involving conflict.

In this thesis we adopt a novel framework to unify both logic-as-deduction and

logic-as-representation approaches to reasoning with inconsistent information. From

a preservational view point, we take deduction as a process by which metalogical prop-

erties are preserved from premises to conclusions. Thus methodologically we may be-

gin by identifying inconsistency-tolerant deduction mechanisms and then investigate

what additional properties of inconsistent premises are preserved by these mecha-

nisms; or alternatively we may begin by identifying properties of inconsistent logical

descriptions and investigate which deductive mechanisms can preserve these proper-

ties. We view these as two aspects of the same investigation. A key assumption in this

work is that adequate analyses of inconsistencies require provisions to quantitatively

measure and compare inconsistent logical representations. While paraconsistent log-

ics have enjoyed considerable success in recent years, proper quantitative analysis of

inconsistencies seems to have lapsed behind to some extent. In this thesis we’ll ex-

plore different ways in which we can compare and measure inconsistencies. We hope

xi

xii

to show that both inference and analysis can fruitfully be brought to bear on the issue

of inconsistency handling under the same methodological scheme.

Contents

Acknowledgements vii

Abstract xi

1 Introduction 1

1.1 Motivation . 1

1.2 Two Approaches to Inconsistencies . 3

1.3 Symbolic and Numeric Approaches to Uncertainty 6

1.4 Preservation and Measuring Inconsistent Information 7

1.5 Representation of Inconsistent Information 12

1.6 Overview . 13

1.7 Notation . 14

2 Paraconsistent Inference and Preservation 17

2.1 Introduction . 17

2.2 Paraconsistent Inferences . 18

2.3 Some Structural Properties . 26

2.4 Properties of Sets . 28

2.4.1 Level of Incoherence . 28

2.4.2 Quantity of Empirical Information 29

2.5 Σ-Forced Consequence . 32

2.6 Preservation . 33

2.6.1 Maximality . 39

2.6.2 Special Conditions . 39

2.6.3 Combining Inference Mechanisms 40

2.7 Conclusion . 41

3 Rescher-Mechanism 43

3.1 Introduction . 43

3.2 Connection With Default Reasoning . 44

3.3 Belnap’s Conjunctive Containment . 52

xiii

xiv Contents

3.3.1 Maximal Equivalent Extension . 61

3.4 An Improvement to Belnap’s Strategy . 62

3.4.1 Logic Minimisation . 66

3.4.2 Algorithmic Considerations . 75

3.4.2.1 PRI via Classical PI Generation 76

3.4.2.2 Semantic Graphs . 78

3.5 Conclusion . 85

4 Uncertainties and Inconsistencies 87

4.1 Introduction . 87

4.2 Probabilities over Possible Worlds . 88

4.3 Bounded USAT and Inconsistencies . 90

4.4 Geometric Rendering of Inconsistencies 93

4.5 Multiple Inconsistencies . 97

4.6 Uncertain Inference . 104

4.7 Bounded Reasoning in Natural Deduction 111

4.8 Conclusion . 119

5 QC Logic 121

5.1 Introduction . 121

5.2 Paraconsistent Logics . 121

5.3 Information Measurement . 129

5.3.1 Inconsistent Information . 130

5.4 QC Logic and Information Measure . 132

5.5 The Number of Q-Models . 134

5.6 Application . 138

5.6.1 Constraint Satisfaction Problems 138

5.6.2 Over-constrained Problems . 139

5.7 Conclusion . 140

6 Modalized Inconsistencies 141

6.1 Introduction . 141

6.2 Logical Preliminaries . 146

6.2.1 Syntax . 146

6.2.2 Models . 146

6.3 n-Forcing and Coherence Level . 147

Contents xv

6.4 Completeness of n-Forcing . 154

6.5 Completeness of Km
n . 154

6.6 Further Work . 157

7 Hypergraph Satisfiability 159

7.1 Introduction . 159

7.2 n-satisfiability on Hypergraphs . 162

7.3 Resolution and n-satisfiability . 166

7.4 n-Consequence Relations . 168

7.5 BPI and Complexity Theory . 172

8 Conclusion 175

A Dunn’s Ambi-Valuation Semantics 181

B The Pair Extension Lemma in Analytic Implicational Logics 185

C List of Publications 191

Bibliography 193

xvi Contents

Chapter 1

Introduction

1.1 Motivation

It is customary nowadays to begin a thesis with some remarks about the motivation

behind the work. This is typically done with the aid of an example. This thesis is

no exception. We shall begin with the following imaginary scenario which we shall

call the information fusion problem. Consider a situation in which an object O may

be located in one out of nine distinct possible locations represented by a 3 × 3 grid.

Information about the location of O is encoded in a simple propositional language

with p’s representing the rows and q’s representing the columns (see figure (1.1)).

Furthermore, complex expressions are generated using the usual Boolean connectives

{¬,∧,∨} with their usual truth conditions. We are interested in locating O, and infor-

mation is gathered from various sensors or sources about the location of O.

q1 q2 q3

p1 × ×
p2

p3

Figure 1.1: A simple logical representation of an object’s location.

Suppose we receive two messages:

A : p1 B : ¬q2

From the received messages we conclude that the possible location of O is:

C : (p1 ∧ q1) ∨ (p1 ∧ q3)

1

2 Introduction

Our example highlights several important methodological points. The first is the

obvious point that information about the state of the world can be encapsulated in a

formal language. The practical corollary of this is that more expressive formal lan-

guages are required for more demanding representational tasks. But more impor-

tantly, since a more expressive language may involve a greater computational cost,

the choice of language should be gauged in terms of the representational task at is-

sue. In our example it is clear that a simple propositional language suffices for the

representational task.

The second point is that contextual information is often crucial to a reasoning task.

In our example, the background information is that the object O is located in exactly

one and no more then one location, and that there are exactly nine possible locations

of O. It is only in the context of this background information that we can deduce C

from A and B. More importantly, background information is not always explicitly

stated in a given situation.

Thirdly, our example illustrates how the process of reasoning can be viewed as

exploration in the space of possibilities – eliminating some and further exploring oth-

ers. Our symbolic representations A and B impose certain restrictions on the space of

possibilities. These expressions have truth conditions which inform us that the world is

one way but not another. Furthermore, this information is compositional in the sense

that the aggregate of A and B is simply the aggregate of their restrictions on the space

of possibilities. The conclusion C is simply what is possible relative to the restrictions

imposed by A and B together with the background information.

Finally, our example also illustrates the role and importance of uncertainties in rea-

soning. If we want to know whether O is located at p1 ∧ q1, the information given is

insufficient to answer our question. In this sense, the given information is incomplete

with respect to our query. Now just as it is possible that we may have incomplete

information, it is equally possible that we may have too much information – we may

receive a third message:

D : p3

D is not consistent with A since our background assumption is that the nine loca-

tions are distinct and no physical object can be at different places at the same time. In

short, there is no guarantee that the information we gather from different sources is ei-

ther complete or consistent. The possibility of misrepresentation or error is a genuine

threat in the process of information fusion.

§1.2 Two Approaches to Inconsistencies 3

1.2 Two Approaches to Inconsistencies

As the title suggests, the purpose of this thesis is to examine and develop formal and

representational mechanisms for reasoning with inconsistent information. Strictly

speaking there are at least two conceptually distinct senses in which we are interested

in reasoning with inconsistent information. In one sense, we are interested in using

logical deduction to draw inferences in a symbolic system. This is the traditional ap-

proach to AI where a logic is used to perform deduction over a logical description

or a knowledge base representing various states of the environment external to the sys-

tem. But we are interested in more then that. As we have illustrated with the problem

of information fusion, we are interested in mechanisms that can continue to perform

deduction in a reasonable manner despite the threat of inconsistencies. In these cases,

our logical descriptions are inconsistent essentially because they have misrepresented

the external environment. So in this sense our deduction must be fault tolerant – it

must operate under the explicit assumption that the input data may be erroneous or

unreliable. However, not every case of inconsistent description is a case of misrepre-

sentation. Consider for instance,

• negotiation amongst agents with conflicting goals, e.g. selling at the highest

price vs buying at the lowest price

• constitutions or legal documents in which incompatible rules apply to the same

situation, e.g. you must obey the speed limit vs you must maintain a speed that

is consistent with the other traffic

• software requirements engineering process in which different stake-holders

have different and incompatible requirements, e.g. ease of use vs advanced fea-

tures

• faulty artifacts and systems in which expected behaviours diverge from their

observed behaviours, e.g. brake lights should be on when braking occurs vs no

brake lights when braking

• constraint satisfaction problems that are over-determined, e.g. no one should

work more then 8 hours in any given work day vs there is a shortage of staff to

cover all work days

In these cases, our logical descriptions may be inconsistent because they correctly

represent situations or problems involving conflict in one form or another. So there

4 Introduction

need not be any misrepresentation involved. The main issue in these cases is not fault

tolerant deduction per se but an analysis of the structure and the underlying prop-

erties of our logical representation which in turn informs us about the nature of the

situation or problem under consideration. Of course to provide such an analysis, our

logical description must capture the salient features of the problem at some appropriate

level of abstraction. But this is very much a question of the representational efficacy

of the formal language and not so much a question about deduction. So in another

sense, we are interested in deploying logic as a representation to model situations and

problems involving conflict.

In terms of using a formal language to model real world problems, there is a subtle

question as to whether inconsistency in the strictly logical (proof theoretic or model

theoretic) sense is the right formalism for modelling conflicts. Conceivably, we can

deploy a very different formalism to represent these problems so that the resulting

representation is no longer inconsistent in the strictly logical sense. But to do so is

to miss an important point. What makes an over-constrained scheduling problem

interesting and difficult is precisely that the real world cannot meet its demands. A

change in formalism may allow us to find hidden structures of the problem more

easily or to perform computation over the representation more efficiently, but this by

itself would not resolve the underlying conflict. There is a genuine sense in which the

salient feature of conflict is captured in terms of logical inconsistency.

So a map of our conceptual space should include at least two distinct senses of

‘reasoning with inconsistent information’:

Inconsistency Inconsistency
as error as conflict

Logical deduction as inference
√

Logical description as representation
√

Figure 1.2: Reasoning with inconsistent information: a conceptual map

Underlying these different senses of ‘reasoning with inconsistent information’ is

of course the traditional distinction between the proof theory and the model theory

of a logic. From a purely theoretical standpoint, these are of course distinct and inde-

pendent approaches to studying logic. But from a computational and system design

standpoint, it makes good sense to consider a single symbolic system that can in-

corporate both the functionality of a prover and the functionality of an analyst for

handling inconsistent information. Viewed as a fault tolerant reasoner our prover

§1.2 Two Approaches to Inconsistencies 5

should provide support for drawing inferences from inconsistent and erroneous data.

But viewed as a modeller of problems our analyst should provide support for ex-

tracting useful information and patterns from data that represent situations involving

conflicts. The overall architecture of such a hybrid system is depicted in figure (1.3).

analyst

inconsistent
description

conclusions
queries

prover-

?

-
�

?

6

���
���

���
���*

���
���

���
����

Figure 1.3: A hybrid symbolic system for handling inconsistent information

Indeed, the idea of such a hybrid system is not new. In [172; 173], Slaney and

co-workers have proposed and implemented the system SCOTT (Semantically Con-

strained OTTER) and more recently MSCOTT (Multi-SCOTT) which combines the

first-order resolution prover OTTER with the finite model generator FINDER (Fi-

nite Domain Enumerator). For our purposes here, we need not be concerned about

the detailed workings of SCOTT. Figure (1.3) doesn’t in fact capture the structure of

SCOTT – for instance, FINDER and OTTER do not communicate directly with each

other. The main point is that SCOTT is a system that combines both reasoning and

modelling to accomplish its task. The overall philosophy behind SCOTT is to inject

some intelligence into a prover by providing semantic information to assist in proof

search.

Stated as such, the aim of SCOTT is clearly directed towards theorem proving. So

in this respect, the role of FINDER is mainly to provide assistance to OTTER. But we

need not think of our hybrid system merely as a theorem proving system. For our

purposes, it would be more advantageous to view such a system as a practical reason-

ing system. Firstly, it is practical in the sense that, unlike SCOTT, its target domain

of application need not be limited to proving mathematical theorems. Like many tra-

ditional knowledge base systems such as relational or deductive databases, we can

view our hybrid system as a symbolic system for representing and reasoning with

information about the external environment. So in this sense, the knowledge base of

6 Introduction

the system may include empirical information of various sorts. Secondly, our hybrid

system is also practical in the sense that it is goal directed. The goal of the system

may be specified by its immediate user, or alternatively the system may operate as a

component of a larger complex system. In either case, what our hybrid system does

with its knowledge base depends on what the user or the rest of the system wants.

This view of our hybrid system is of course more open-ended. But it does capture

both senses of reasoning with inconsistent information within the framework of a sin-

gle system. As a fault tolerant reasoning system for handling information fusion, the

emphasis is perhaps on deduction where the role of the analyst is to assist the prover.

But as a modelling system for representing problems or situations, the emphasis is

perhaps on analysis where the role of the prover is to assist the analyst. In this thesis,

our aim is to explore the theoretical foundation for such a system. In particular we

would like to offer a novel theoretical underpinning of the interaction between the

analyst and the prover. We would like to consider how inference and analysis can

fruitfully be brought to bear on the issue of inconsistency handling under one and the

same conceptual scheme.

1.3 Symbolic and Numeric Approaches to Uncertainty

In a broader context, the problem of reasoning with inconsistent information is of

course a special case of the more general problem of reasoning with uncertainties. Like

reasoning with inconsistent information, reasoning with uncertain information can be

viewed as an inference problem as well as a representation problem. In recent years,

AI researchers have focused on two general approaches to uncertainty which closely

parallel our interests in the use of logical deduction to draw inferences and the use of

logical description as a representation. In the traditional symbolic approach the empha-

sis is on developing logical mechanisms for handling uncertainty. This includes de-

veloping new deduction mechanisms together with corresponding semantics for rea-

soning with uncertain information. The symbolic approach has a long history dating

back to the works of Newell and Simon on General Problem Solver [133], McCarthy’s

works on circumscription [128], Reiter’s works on Default logics [151], Doyle’s works

on Truth Maintenance Systems [63] and de Kleer’s extension to Assumption-based

Truth Maintenance Systems [54; 55]. In contrast, the emphasis of the more recent nu-

meric approach is on the representation of uncertainty. Here, the key concern is to

develop quantitative methods for measuring uncertainties. This includes approaches

§1.4 Preservation and Measuring Inconsistent Information 7

that are based on complete ordering, e.g. fuzzy set theory and its offspring possibility

theory, as well as approaches that are based on counting, e.g. statistical or probabilis-

tic methods (for a review see chapter 1 and 2 of [95]). In this thesis we would like

to consider the symbolic and numeric approaches to inconsistency within the gen-

eral framework of our hybrid symbolic system. Indeed, a main assumption behind

this thesis is that these two approaches should not be viewed as competing strate-

gies for managing inconsistency. On the one hand, there is no doubt that we need to

develop inference mechanisms that can perform deduction in a principled way in an

environment in which inconsistencies may arise. The underlying assumption is that

on occasions it may be desirable to tolerate the presence of inconsistencies rather than

revising one’s data. This is especially important in situations in which the turn-over

rate of information is much higher than the rate at which consistency checks can be

made. On the other hand, there is also a need to develop theoretical and conceptual

tools to analyse inconsistencies. In some situations, it may be more desirable for a

user to clearly identify data that are in conflict before any decision or action is taken.

Perhaps the inconsistencies have no bearing on the overall objective of the user, e.g.

it is unlikely that an inconsistent description of the colour of the seats in an aircraft is

relevant to the overall safety of the aircraft. Even in cases where corrective measures

must be taken toward inconsistencies, it is unclear that a single action would suffice.

In some cases, corrections must be performed gradually over time and there may be a

need to provide a more quantitative way to monitor the progress of the repair.

1.4 Preservation and Measuring Inconsistent Information

Our main strategy for integrating the symbolic and numeric approaches, the logic

as deduction and logic as representation views of knowledge representation, is to

develop a very general methodology for comparing different inconsistency tolerant

inference mechanisms quantitatively. This is a departure from standard methods for

comparing inference mechanisms. Typically, comparisons between different inference

mechanisms are drawn along the lines of

1. set theoretic relations (inclusion): we ask whether conclusions of one mechanism

can be deduced by another mechanism for a given set of premises.

2. proof theory, i.e. axioms or derivable inference rules: we ask whether the axioms

or inference rules of one mechanism can be derived by another mechanism.

8 Introduction

3. computational complexity: we ask whether one mechanism is computationally

more expensive (space and time) than another mechanism.

Our strategy here is rather different. We would like to provide a novel and useful

way to compare inference mechanisms in terms of various quantitative properties

or measurements that can be preserved from a given set of premises to conclusions.

We envision that a key role of the analyst in our hybrid system is to provide such

quantitative analyses of the input data. The key issue here is the notion of preservation.

In the standard account of inference, the validity of an inference is defined in terms

of the preservation of truth relative to the class of standard two-valued models – in

a valid inference it is not possible for the premises to be true while the conclusion is

false. Truths are transmitted from premises to conclusions in valid inferences. But

this account is unhelpful for inconsistent premises since, according the standard two-

valued semantics, inconsistent premises cannot be true together. So for inconsistent

premises, there is simply no truth to be preserved. For information that is uncertain,

we need a more pragmatic approach to the notion of preservation. The general idea is

that, apart from the standard semantic or model theoretic properties, there may well

be other metalogical properties that are transmitted from premises to conclusions in

an inference. Presumably some of these properties would be of interest to a user of

the system, depending of course on the user’s overall objective. And on occasions, it

may even be desirable to preserve these properties in an inference. So the role of the

analyst here, at least in part, is to keep the user (and the prover) informed about the

hidden structure and properties of the input data and perhaps to serve as an adviser

for selecting the appropriate inference mechanism to preserve the properties of choice.

Of course the requirement that an inference mechanism preserves more then truth

in the standard models also implies that the mechanism, though sound, would not

be complete with respect to standard valid inferences. Such a mechanism would in

general preserve truth in the standard models but not all truth preserving inferences

would be provable. The use of sound but incomplete as well as unsound but complete

reasoning has already been investigated by Levesque in [119] from the point of view

of computational complexity and Schaerf and Cadoli [162] from the point of view of

approximate reasoning. But for us, the use of incomplete reasoning is an interesting

paraconsistent approach to inconsistency. In general we agree that there is a need to

adopt a weaker inference mechanism to perform deduction with inconsistent input

data. But from a preservationist point of view adopting weaker inference mechanisms

is not enough, we need to understand how different sound but incomplete inference

§1.4 Preservation and Measuring Inconsistent Information 9

mechanisms would preserve different properties of different inconsistent premises. In

this respect we have at least two options within which to proceed.

1. we can identify sound but incomplete provers and investigate which additional

properties they can preserve (or fail to preserve).

2. we can identify properties of inconsistent logical descriptions and investigate

which prover can preserve (or fail to preserve) these properties.

These two options are really two aspects of the same picture. Viewed more ab-

stractly (see figure (1.4)), the preservational approach takes deduction to be an opera-

tion, C, defined over a formal language Φ, i.e. C : ℘(Φ) −→ ℘(Φ). Given a (partially

or totally) ordered set (S,≤), a metalogical property is simply a function from ℘(Φ) to

S, i.e. f : ℘(Φ) −→ S. From the preservational point of view, the crucial question is:

given an arbitrary Γ ⊆ Φ, what is the relation between f(C(Γ)) and f(Γ) in terms of the

ordering ≤?

r
℘(Φ)

Γ

r
℘(Φ)

C(Γ) r
S

f(C(Γ))

f(Γ)

-
f

6

C

���
����

���
���

���
���*

f

Figure 1.4: An abstract view of Preservation

It is easy to see that this abstract view of preservation captures the standard notion

of the soundness and completeness of a logic. Let C be the closure under deduction

of a logic L, and let members of S be collections of models defined according to a

fixed semantics, take the ordering on S to be the usual inclusion ordering ⊆. Let f be

the function which assigns to each Γ ⊆ Φ, the collection of models for Γ , i.e. every

element of the collection is a model of Γ . Then to say that the logic L is sound and

complete with respect to S is precisely to say that f(C(Γ)) = f(Γ) for every Γ ⊆ Φ. The

10 Introduction

soundness of L is captured by the inclusion f(Γ) ⊆ f(C(Γ)), whereas the completeness

of L is captured by the inclusion, f(C(Γ)) ⊆ f(Γ).

This abstract view of preservation is extremely minimal. In figure (1.4), we make

no assumption about the nature of the set S or the function f. But different f and

S would in fact give us different ways to partition ℘(Φ). For each x ∈ S, the set

f−1[x] = {Γ ⊆ Φ : f(Γ) = x} obviously forms an equivalence class. Similarly, this is

true with respect to the deductive closure C. Since we are interested in both inference

and analysis, we are interested in both deductive closures C and functions f that can

distinguish between different inconsistent sets. Moreover, since we want to provide

quantitative ways to distinguish inconsistent sets, our interest is in those functions f

that range over different numerical sets S, e.g. S may simply be N, [0, 1] or even [0, 1]n.

To take one particular example from probabilistic inference, the uncertainty of a

proposition A is defined as by

U(A) = 1 − P(A) (1.1)

In (1.1), P(A) is the probability that A is true. It is a straightforward consequence of the

Kolmogorov Axioms for probability that if B is deducible from A in classical propo-

sitional or first order logics, then U(B) ≤ U(A), i.e. U(B) 6> U(A) given that ≤ is the

usual total ordering on [0, 1]. In particular, this means that for any classical inference

if we begin with a single premise with small uncertainty (high certainty), then any

one of its conclusions can only have small uncertainty (high certainty). Conversely,

the uncertainty of a conclusion is large only if the uncertainty of its (single) premise

is large (see [3; 4] for more details). Accordingly, in the limiting case in which the

uncertainty of a premise A is zero, U(A) = 0, then the uncertainty of its conclusion B

must be zero, U(B) = 0. Not surprisingly, this just is the classical notion of deductive

validity.

Clearly, the uncertainty measure U is one of many different properties that can be

transmitted from premises to conclusions in an inference. But as we have suggested

earlier, the preservation approach to inference is sensitive to the issue of developing

theoretically meaningful ways to measure, compare and analyse inconsistent data.

This is particularly important when we are using logic as a representation. Consider

again a very simple example in which we are modeling negotiation by agents with

conflicting objectives. Suppose we have 3 agents negotiating over 3 issues represented

by a set of propositional variables {p1, p2, p3}. In the first round of the negotiation

§1.4 Preservation and Measuring Inconsistent Information 11

the agents’ positions are represented by

Γ0 = {p1 ∧ p2 ∧ p3, ¬p1 ∧ p2 ∧ ¬p3, p1 ∧ ¬p2 ∧ ¬p3}

In the second round the agents’ positions are represented by

Γ1 = {p1 ∧ p2 ∧ p3, ¬p1 ∧ p2 ∧ p3, p1 ∧ ¬p2 ∧ p3}

Are there significant differences between Γ0 and Γ1? The answer is ‘no’ if we take C

to be the closure under deduction of classical logic and f to be the standard mapping

of sets of formulae to their classical models. As far as classical C and standard f are

concerned, Γ0 and Γ1 belong to the same equivalence class. But if we are interested in

monitoring the progress of the negotiation, then the answer is a definite ‘yes’. Clearly

in the second round of the negotiation the agents reach an agreement about p3 even

though there is no general agreement about p1 or p2. The take home message of our

example is this: even at a very simple propositional level different inconsistent logical

descriptions are endowed with very different combinatorial structures and properties.

An inference mechanism that fails to differentiate between Γ0 and Γ1 also fails to rec-

ognize potentially important and useful information for the user. Thus in the design

of an inference mechanism that can handle and tolerate inconsistencies, we need to

pay attention to these underlying combinatorial structures and properties.

What kind of analysis must the analyst in our hybrid system provide in order to

distinguish between Γ0 and Γ1? Since a main assumption in this thesis is that logical

descriptions are information bearing, a natural starting point would seem to be the

traditional information theory of Shannon – it provides a theoretical foundation for

measuring the amount of information in a set of data. But as it stands, the standard in-

formation theory is inadequate since it typically treats inconsistent data as containing

either maximum amount of information or no information at all (see [6] for instance).

In this respect, we are interested in both extending standard information theory to

cover inconsistent data and in finding alternative ways to measure and compare in-

consistent data. These alternatives are more or less what we may call a divide and

conquer method for handling inconsistency. The basic strategy is to divide an incon-

sistent set into (not necessary consistent) subsets, depending on how we make the cut,

we get different ways to measure and classify sets.

12 Introduction

1.5 Representation of Inconsistent Information

What makes one quantitative analysis more fruitful and meaningful then another?

There is no fast and easy answer to this question. The answer to the question is largely

dependent on the underlying objective of the user in possession of the logical descrip-

tion. But minimally, it would be desirable if the analysis can be reused across different

representational formalisms. This would show that the properties so specified are in-

variant under different formalisms, and hence that they are not just incidental features

of a particular formalism. One way in which we can demonstrate this is to actually

apply the concepts and analyses developed for one formalism to another. In this re-

spect, there are two natural ways to proceed. Since inconsistencies often occur within

intensional linguistic contexts involving various form of modalities, a natural way to

extend the expressive power of a propositional language to introduce modal opera-

tors for the corresponding doxastic, epistemic or deontic contexts.1 This gives us a

direct way to study inconsistency within a modal context. But doing so also raises an

interesting issue about the choice of modal logics. The weakest modal logic adequate

for Kripkean binary relational semantics is the logic K. Although in K we can provide

a binary relational model for {�A, �¬A}, the following rule is derivable in K and any

of its extension:

[� ECQ]
�A �¬A

�B

So in any binary relational model adequate for the logic K, any world which ver-

ifies {�A,�¬A} would be a world which also verifies �B for any B. For the purpose

of modelling intensionalized inconsistencies then, the standard modal logics and their

corresponding Kripkean semantics seem to be out of place. How can we avoid the rule

[� ECQ]? One possible option is to adopt modal logics that are strictly weaker then K

and to develop alternative semantics for these logics. In particular, we need a provide

semantics for modeling {�A,�¬A} without also modelling �B for any B. This is the

approach taken by Fagin and Halpern [67], Jaspars [98], Massacci [127] and Rantala

[148]. In this thesis, we’ll be looking at weaker modal logics for the representation of

intensionalised inconsistencies.

While extending propositional language with modalities is one direction which we

may take to explore representational issues of inconsistency, another direction is dia-

grammatic reasoning systems where information is encoded not as a linear sequence

of symbols but as two dimensional figures or diagrams. Indeed many forms of propo-

1 See [75] for more details concerning the distinction between extensional and intensional contexts.

§1.6 Overview 13

sitional reasoning can be represented as graphs or hypergraphs. So it is natural for us

to explore these formalisms for representing inconsistent information.

1.6 Overview

In chapter two, we’ll carry out the preservational approach to analyse various stan-

dard inference mechanisms based on reasoning from consistent subsets. We’ll intro-

duce various quantitative measurements for inconsistency and investigate the preser-

vational properties of these mechanisms in light of these measurements.

In chapter three, we’ll highlight the well known connection between reasoning

from maximal consistent subsets and the standard default reasoning developed by

Reiter. The implication is that the kind of preservational analyses offered in chapter

three have direct counterparts in default reasoning. We’ll also address a criticism

offered by Belnap against reasoning based on maximal consistent subsets (and hence,

indirectly against default reasoning). We’ll point out that Belnap’s own amendment

does not in fact resolve the very difficulty he raised. We’ll propose an amendment to

Belnap’s’ amendment.

In chapter four, we’ll look at the issue of preservation from the point of view of un-

certainties that are transmitted from premises to conclusions. As we have already seen

in the single premise case the uncertainty of a classical conclusion is always bound

by the uncertainty of the premise. But for a set of premises this is no longer true for

classical logic. Although the uncertainty of each premise in a set may be small, the

uncertainty of a conclusion may turn out to be prohibitively high. In this chapter,

we’ll investigate uncertainty phenomena in light of inconsistency. This leads to some

surprising results and conjectures.

In chapter five, we’ll introduce the paraconsistent logic QC developed originally

by Besnard and Hunter in [34; 91; 92]. We outline a particular strategy to use (half of)

QC logic as an assistant to analyse inconsistent data. We’ll also consider using this

strategy to study over-constrained problems.

In chapter six, we’ll investigate the use of modal logics for representing incon-

sistency. The family of modal logics presented here is a generalization of those devel-

oped by Jennings and Schotch in [100; 101; 164; 165]. Instead of treating modality as an

unary operator, we take modality to be a multi-ary operator. The models developed

here combine both relational semantics and neighbourhood semantics. A complete-

ness proof is given utilising the technique developed by Brown and Apostoli [11; 9;

14 Introduction

10].

In chapter seven, we’ll look at a hypergraph representation of a covering theoretic

measurement of inconsistency. We’ll develop a general notion of n-satisfiability on

hypergraphs and show that the compactness statement of n-satisfiability on hyper-

graphs is equivalent to BPI in ZF set theory. We give a syntactic characterization of

n-satisfiability on hypergraphs in terms of a resolution style proof procedure. A gen-

eral notion of consequence relations based on hypergraphs will also be introduced.

We’ll conclude with a discussion of a conjecture of Cowen relating BPI and complex-

ity theory.

Finally in chapter eight, we present the conclusions and directions for future work.

For completeness, we have also included several appendices at the end.

1.7 Notation

In subsequent discussions we’ll assume the simplest logical language – propositional

language – and examine various inconsistent tolerant formal mechanisms therein. We

assume that Φ is a set of propositional formulae generated from propositional atoms

or variables, {p1, q1, p2, q2, . . .}, with the usual boolean connectives, ¬,∧,∨,⊃. We

use A, B, C, . . . , to denote formulae, > for any tautology, ⊥ for any contradiction,

Γ , Σ, ∆, . . . , to denote sets of formulae, and A, B, . . . , to denote subsets of a set of

formulae. From time to time we’ll use ‘Γ, ∆’ and ‘Γ ∪ ∆’ interchangeably especially if

∆ is a singleton. We assume the equivalence between A ⊃ B and ¬A ∨ B.

There are many extensionally equivalent ways to characterize classical logic. We

give the standard Hilbert style axiomatic definition here. By a deduction of A from a

(possibly infinite) set Γ , we mean a finite sequence 〈A1, . . . , An〉 such that An = A and

for each i ≤ n, Ai is either an axiom, a member of the set Γ , or obtained by modus

ponens from two previous formulae Aj and Ak where j < k < i. We use ` to denote

the classical deducibility relation and Cn(Γ) to denote {A ∈ Φ : Γ ` A}. A set of

formulae Γ is inconsistent if Γ ` ⊥, otherwise Γ is consistent. A theory T is a set of

formulae that is closed under `, i.e. A ∈ T iff T ` A.

From time to time we’ll also make use of the fact that Cn is a compact Tarskian

closure operator over Φ, i.e. Cn has the following properties:

Inclusion Γ ⊆ Cn(Γ)

Monotonicity Γ ⊆ ∆ =⇒ Cn(Γ) ⊆ Cn(∆)

§1.7 Notation 15

Idempotence Cn(Cn(Γ)) = Cn(Γ)

Compactness Cn(Γ) = Φ =⇒ Cn(Γ ′) = Φ for some Γ ′ ⊆fin Γ

As usual we’ll use the standard set theoretic abstraction notation {x| P(x)} for the

set of objects that has the property P. Notations of operations and functions defined

on sets are given in the usual way. Where f and g are functions defined over the same

sets, we use f−1 to denote the inverse of f, i.e. f−1 = {〈y, x〉 : 〈x, y〉 ∈ f}. f ◦ g is

the composition of g and f, i.e. for each x, f ◦ g(x) = g(f(x)). f � A is the restriction

of f to A, i.e. f � A = {〈x, f(x)〉 : x ∈ A}. f[A] is the image of A under f, i.e. f[A] =

{f(x) : x ∈ A}. Note that inverse, composition, restriction and image need not apply

only to functions, they can be defined for relations as well. We take an injection to be

a 1 − 1 function, a surjection to be an onto function, and a bijection to be an injective

and surjective function. A cartesian product of A and B, denoted by A × B, is defined

by setting A × B = {〈x, y〉| x ∈ A ∧ y ∈ B}. A binary relation R defined on A is any

subset of the cartesian product A × A (or A2). For readability we write xRy or Rxy to

denote 〈x, y〉 ∈ R. A binary relation R defined on A is reflexive if for all x ∈ A, xRx.

R is symmetric if for all x, y ∈ A, xRy → yRx. R is antisymmetric if for all x, y ∈ A,

(xRy ∧ yRx) → x = y. R is connected if for all x, y ∈ A, x 6= y → (xRy ∨ yRx). R is

transitive if for all x, y, z ∈ A, (xRy ∧ yRz) → xRz. A binary relation is an equivalence

relation if it is reflexive, symmetric and transitive. A binary relation is a partial ordering

if it is reflexive, antisymmetric and transitive. A binary relation is a total ordering or

linear ordering if it is connected partial ordering relation. A partial ordering set or poset

is a pair 〈A,≤〉 where ≤ is a partial ordering defined on A. A poset 〈A,≤〉 is well

founded if every nonempty subset of A has a ≤-minimal element (equivalently there is

no infinitely descending ≤-chain). A total ordering set or toset is a pair 〈A,≤〉 where ≤
is a total ordering defined on A. A well ordering set or woset is a well founded poset.

16 Introduction

Chapter 2

Paraconsistent Inference and

Preservation

2.1 Introduction

Correct reasoning is usually characterised as patterns of inference which preserve

truth. According to the standard view an inference is valid if it is impossible for its

premises to be true but its conclusion false. While not incorrect, the standard view is

unhelpful when we are confronted with inconsistent data. Since all inconsistent sets

are unsatisfiable in the standard two-valued semantics, inferences licensed by classical

logics become unprincipled in the presence of inconsistencies.

Many proposals and remedies are available to achieve inconsistency tolerant rea-

soning. They include both semantic and syntactic approaches:

1. introduce additional truth values to alter the semantics [12; 21; 37; 138]

2. introduce additional semantic parameters such as nonstandard possible worlds,

setups or situations to evaluate formulae [68; 155; 157]

3. introduce labels or annotations into the object language, typically attached to

formulae, to represent inconsistencies [41; 108; 124]

Undoubtedly, many semantic and syntactic innovations are involved in these ap-

proaches. In [99], Jennings et al have proposed a more pragmatic account of reasoning

according to which the aim of logic is to provide a theory of reasoning which speci-

fies the procedures for preserving important metalinguistic properties of premise sets.

Accordingly, a practical reasoning system provides procedures by which a set of sen-

tences having some metalinguistic properties can be unfailingly extended to a larger

set with the same properties.

17

18 Paraconsistent Inference and Preservation

From this preservation-theoretic framework we can articulate two strategies for

studying reasoning: the first is the identification of important metalinguistic proper-

ties of premises, and the second is the discovery of mechanisms that preserve these

properties. Provisionally, no restriction is imposed on the kind of properties to be

studied, except the properties in question must be strictly non-monotonic, i.e. not

closed under supersets. Our main objective in this chapter is to carry out a program

of research which takes the notion of preservation seriously and to give an analysis

of various inconsistency tolerant reasoning strategies therein. Note that in stating

our objective, we have implicitly endorsed a set theoretic presentation of premises

and conclusions. But this assumption is inessential to the underlying methodologi-

cal point. If premises and conclusions are modelled as different abstract data types,

e.g. as multisets or lists, we can rephrase all our definitions accordingly. In any case,

we are interested in inconsistency-tolerant inferences, whatever ways premises and

conclusions are presented, and their preservational properties.

2.2 Paraconsistent Inferences

One common approach to handling inconsistencies resulting from information fusion

from multiple sources is to fragment an inconsistent set into maximal consistent sub-

sets and then extract conclusions by applying classical inference to these subsets. This

approach was first introduced by Rescher and Manor [152; 153; 154; 156] and more

recently extended by Benferhat et al [25; 27; 26; 28; 29; 32; 33; 31; 30].

In this section we present similar but slightly more general inference mechanisms

to extract conclusions from an inconsistent set. As we shall see in the next chapter,

the inference strategies presented here are expressively equivalent to reasoning from

maximal consistent subsets. In our framework, an inference is a ternary relation be-

tween a premiss set Γ , a consistent constraint set Σ and a conclusion A.

Definition 2.2.1

Let Γ be a premiss set and Σ be an arbitrary but fixed consistent set which we call a

constraint set on Γ . Then a subset A of Γ is Σ-inconsistent iff A∪Σ is inconsistent, else

A is Σ-consistent. A maximal Σ-consistent subset of Γ is a subset of Γ which has no

proper Σ-consistent extension.

The main motivation behind definition (2.2.1) is that we need to be able to distin-

guish between different types of information in certain reasoning tasks. For instance,

§2.2 Paraconsistent Inferences 19

some information may have higher priority than others or it may provide us with spe-

cific knowledge of a domain. The role of Σ in definition (2.2.1) is to rule out data in Γ

that is bad relative to Σ. Intuitively, we may think of Σ as a set of secured or prioritized

data, or even just a set of background beliefs of an agent at a given time. But more

concretely, it is similar to the idea of integrity constraints in database theory where

the known relationships between various data elements are specified. To illustrate,

consider the following example:

Example 2.2.1

The following information about a particular individual is obtained through a ques-

tionnaire:

marital status = married

age = 1

In countries in which the legal age for marriage is 18, the above information is in-

consistent.1 In such cases, we need to check our data against the following integrity

constraint:

marital status = married ⊃ age > 17

So the idea to view an inference as a ternary relation makes sense both theoretically

and practically from the point of view of information processing. In many knowledge

base and knowledge representation systems there are additional restrictions imposed

on the knowledge base language used to express information available in Γ , the integrity

constraint Σ and the query language for expressing the inferred conclusion A. In a

relational database for instance, Γ is a set of negation free positive facts and integrity

constraints in Σ are negated closed formulae. In a deductive database, Γ can contain

either positive facts or rules whose heads are atoms and bodies are literals. These

restrictions not only provide a greater degree of control over inference in terms of

what can be derived from what, but in some cases they are indispensable to reducing

the complexity of inferences (see Wagner [179] for more discussion).

For our purpose, we’ll assume that Σ is an arbitrary but fixed constraint set. The set

of all maximal Σ-consistent subsets of Γ is denoted by MΣ(Γ). Given a Σ-inconsistent

premiss set Γ , an element A ∈ Γ is a Σ-witness if {A} is Σ-consistent, otherwise A is

a Σ-villain. We define the safe part of Γ as, SΣ(Γ) =
⋂

MΣ(Γ). We say that a subset

1In different counteries the integrity contraint may be different. As far as we know, no country cur-
rently permit legal marriage of children of age one

20 Paraconsistent Inference and Preservation

A ⊂ Γ is large iff A ∈ MΣ(Γ) and for each B ∈ MΣ(Γ), |B| ≤ |A|. We use LΣ(Γ) to

denote the set of all large subsets of Γ . A subset A of Γ is a minimally Σ-inconsistent

subset if it is Σ-inconsistent and no proper subset of A is Σ-inconsistent. The set of all

minimally Σ-inconsistent subset of Γ is denoted by MIΣ(Γ). The Σ-inconsistent part of

Γ is defined by:

InΣ(Γ) =
⋃

MIΣ(Γ)

A set H is a hitting set of a collection of sets, C = {Si : i ∈ I}, if for every i ∈ I,

Si ∩ H 6= ∅. H is a minimal hitting set if none of its proper subsets are hitting sets of C.

Given the notion of minimal hitting set, MΣ(Γ) and MIΣ(Γ) are interdefinable.

Proposition 2.2.1

Let Σ be an arbitrary but fixed constraint set and Γ be any premise set.

1. A ∈ MΣ(Γ) ⇐⇒ Γ \A is a minimal hitting set of MIΣ(Γ).

2. B ∈ MIΣ(Γ) ⇐⇒ B is a minimal hitting set of {Γ \A : A ∈ MΣ(Γ)}.

3. |MΣ(Γ)| ≥ max{|B| : B ∈ MIΣ(Γ)}, moreover equality holds if |MIΣ(Γ)| = 1.

4. |MIΣ(Γ)| ≥ max{|Γ \A| : A ∈ MΣ(Γ)}, moreover equality holds if |MΣ(Γ)| = 1.

Proof:

(1. ⇒) Suppose A ∈ MΣ(Γ) but Γ \ A is not a hitting set of MIΣ(Γ). Then for some

B ∈ MIΣ(Γ), (Γ \ A) ∩ B = ∅. This implies that B ⊆ A which is impossible given the

Σ-consistency of A. Hence, Γ \ A must be a hitting set. Suppose that Γ \ A is not a

minimal hitting set of MIΣ(Γ), then there must be a proper superset A′ ⊃ A such that

Γ \A′ is a hitting set of MIΣ(Γ). Since Γ \A′ and A′ are disjoint, A′ cannot contain any

B ∈ MIΣ(Γ). This implies that A′ is Σ-consistent which contradicts the maximality of

A.

(1. ⇐) Let A be an arbitrary but fixed subset of Γ such that Γ \A is a minimal hitting

set of MIΣ(Γ). Then by the disjointness of Γ and Γ \A for no B ∈ MIΣ(Γ) do we have

B ⊆ A. Hence A is Σ-consistent. Since every proper subset of Γ \A is not a hitting set

of MIΣ(Γ), every proper superset of A must contain some B ∈ MIΣ(Γ). Hence A must

be maximally Σ-consistent.

(2. ⇒) Consider an arbitrary B ∈ MIΣ(Γ). From (1) above, for every A ∈ MΣ(Γ), Γ \A
is a minimal hitting set of MIΣ(Γ). So every Γ \Amust intersect B. Hence B is a hitting

set of {Γ \A : A ∈ MΣ(Γ)}. Suppose that B is not minimal. Then there exists a proper

§2.2 Paraconsistent Inferences 21

subset B′ ⊂ B such that B′ is a hitting set of {Γ \ A : A ∈ MΣ(Γ)}. Since Γ \ A and A
are disjoint for every A ∈ MΣ(Γ), for no A ∈ MΣ(Γ) do we have B′ ⊆ A. But this is

impossible since B ∈ MIΣ(Γ), B′ must be Σ-consistent. Hence, B must be a minimal

hitting set.

(2. ⇐) Let B be a minimal hitting set of {Γ \ A : A ∈ MΣ(Γ)}. Suppose that B is

Σ-consistent. Then for some A0 ∈ MΣ(Γ), B ⊆ A0. This implies that B ∩ (Γ \A0) = ∅
which is impossible since B is a hitting set of {Γ \A : A ∈ MΣ(Γ)}. Hence, B must be

Σ-inconsistent. Suppose that B is not minimally Σ-inconsistent. Then there must be a

proper subset B′ ⊂ B which is minimally Σ-inconsistent. From (2. ⇒) above, B′ is a

minimal hitting set of {Γ \A : A ∈ MΣ(Γ)}. This contradicts the assumption that B is

a minimal hitting set.

(3) If B is the largest minimal Σ-inconsistent subset of Γ , then for each B ∈ B, B \ {B}

is Σ-consistent. There are exactly |B| many such sets. Hence there are at least |B| many

maximal Σ-consistent subsets of Γ . Clearly |MΣ(Γ)| = |B| if B is the only minimal

Σ-inconsistent subset.

(4) From (1) if A ∈ MΣ(Γ) , then Γ \A is a minimal hitting set of MIΣ(Γ). So if Γ \A is

the largest such set, then there are at least |Γ \A| many minimal Σ-inconsistent subsets

of Γ since (Γ \A) ∩ B 6= ∅ for each distinct B ∈ MIΣ(Γ). Clearly in the event that A is

the only maximal Σ-consistent subset of Γ , we have |MIΣ(Γ)| = |Γ \A|.

We now define the following notions of consequence in terms of MΣ(Γ). Given

proposition (2.2.1), each of the following consequences can be defined in terms of

MIΣ(Γ) as well.

Definition 2.2.2

Σ-universal-consequence A ∈ CUΣ(Γ) iff for each A ∈ MΣ(Γ), A ` A

Σ-existential-consequence A ∈ CEΣ(Γ) iff for some A ∈ MΣ(Γ), A ` A

Σ-argued-consequence A ∈ CAΣ(Γ) iff there exists some Ai ∈ MΣ(Γ) with Ai ` A

and for every Aj ∈ MΣ(Γ), Aj 6` ¬A.

Σ-safe-consequence A ∈ CSΣ(Γ) iff SΣ(Γ) ` A

Σ-large-consequence A ∈ CLΣ(Γ) iff A ` A for each A ∈ LΣ(Γ).

As usual for x ∈ {SΣ, UΣ, AΣ, LΣ, EΣ}, we can define the corresponding inference

relation `x by setting Γ `x A iff A ∈ Cx(Γ). The following proposition is an easy

22 Paraconsistent Inference and Preservation

consequence of our definitions.

Proposition 2.2.2

Let Σ be an arbitrary but fixed constraint set on Γ where MΣ(Γ) 6= ∅,

1. SΣ(Γ) = Γ \ InΣ(Γ)

2. CSΣ(Γ) ⊆ CUΣ(Γ) ⊆ CAΣ(Γ) ⊆ CEΣ(Γ)

3. CSΣ(Γ) ⊆ CUΣ(Γ) ⊆ CLΣ(Γ) ⊆ CEΣ(Γ)

Proof:

(1) SΣ(Γ) ⊆ Γ \ InΣ(Γ): Let A ∈ SΣ(Γ). Then A ∈
⋂

MΣ(Γ). Suppose to the contrary

that A ∈ InΣ(Γ). Then there must be some B0 ∈ MIΣ(Γ) such that A ∈ B0. But by the

minimality, B0 \{A} must be Σ-consistent. So there must be someA ∈ MΣ(Γ) such that

(B0 \ {A}) ⊆ A. But by the initial assumption A ∈
⋂

MΣ(Γ) and so A ∈ A. But then

(B0 \ {A}) ⊆ A and {A} ⊆ A. Hence B0 ⊆ A which contradicts the assumption that

B0 ∈ MIΣ(Γ). Hence we must reject the assumption that A ∈ InΣ(Γ).

Γ \ InΣ(Γ) ⊆ SΣ(Γ): Let A ∈ Γ but A 6∈
⋂

MΣ(Γ). Then there must be some A ∈ MΣ(Γ)

such that A ∪ {A} is Σ-inconsistent, for otherwise A ∪ {A} is Σ-consistent for every

A ∈ MΣ(Γ) and thus A ∈
⋂

MΣ(Γ) contradicting the initial assumption. Hence there

must be some B0 ∈ MIΣ(Γ) such that B0 ⊆ A ∪ {A} and A ∈ B0. Hence A 6∈ Γ \ InΣ(Γ)

as required.

(2) CSΣ(Γ) ⊆ CUΣ(Γ): Clearly the containment holds since

Cn(
⋂

MΣ(Γ)) ⊆
⋂

A∈MΣ(Γ)

Cn(A)

CUΣ(Γ) ⊆ CAΣ(Γ): we assume that A 6∈ CAΣ(Γ) and show that A 6∈ CUΣ(Γ). By

the definition of CAΣ, A 6∈ CAΣ(Γ) implies that A ∈ CEΣ(Γ) and ¬A ∈ CEΣ(Γ). Let

A0 ∈ MΣ(Γ) be such that ¬A ∈ Cn(A0). Towards a contradiction we assume that

A ∈
⋂

{Cn(A) : A ∈ MΣ(Γ)}. Thus in particular A ∈ Cn(A0). But this is impossible

sinceA0 is Σ-consistent and thusA0 must be consistent. This contradicts our previous

claims.

CAΣ(Γ) ⊆ CEΣ(Γ): the containment follows directly from the definitions.

(3) CUΣ(Γ) ⊆ CLΣ(Γ): since LΣ(Γ) ⊆ MΣ(Γ),

⋂
A∈MΣ(Γ)

Cn(A) ⊆
⋂

A∈LΣ(Γ)

Cn(A)

§2.2 Paraconsistent Inferences 23

Hence CUΣ(Γ) ⊆ CLΣ(Γ) as required.

We note that for particular Σ and Γ , CAΣ(Γ) and CLΣ(Γ) may be incomparable,

i.e. CAΣ(Γ) 6⊆ CLΣ(Γ) and CLΣ(Γ) 6⊆ CAΣ(Γ). To take an example Σ = ∅ and Γ =

{p, ¬p, ¬p ∨ q}. Clearly q ∈ CAΣ(Γ) but q 6∈ CLΣ(Γ).

The relative (set inclusion) ordering of Σ-consequences is summarised in fig-

ure (2.1). Downward arrows indicate proper set inclusions.

??

? ?

?

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�Σ-Safe

Σ-Universal

Σ-Argued Σ-Large

Σ-Existential

Figure 2.1: Inclusion ordering of Σ-consequences

From an inferential perspective, we can view CSΣ(Γ) and CEΣ(Γ) as reasoning

strategies along a continuum. On the one hand, the Σ-safe consequence can be char-

acterized as a species of skeptical inference since it regards any conflicting data as

suspect and thus allows a reasoner to draw conclusions only from the safe part of

a premiss set. Where the safe part of a premiss set is empty, CSΣ(Γ) contains only

classical theorems. Σ-existential consequence, on the other hand, can be character-

ized as a species of liberal inference since it allows a reasoner to draw conclusions

from any Σ-witness or cluster of Σ-witnesses of a set. So in the presence of both A

and ¬A in a set Γ , where A and ¬A are both Σ-witnesses of Γ , CEΣ(Γ) contains both

A and ¬A individually (but not A ∧ ¬A). With respect to CUΣ(Γ), it is more liberal

then CSΣ(Γ) but still remains cautious overall by accepting only the intersection of

the classical consequences of all maximal Σ-consistent subsets of a premiss set. As

for CAΣ(Γ), the main idea is to accept only those conclusions which we have direct

arguments in their favour and no direct arguments for rejecting them. The notion of

an argued-consequence forms the basis of the notion of an argument system which has

been studied extensively in recent years ([36; 136; 159]). Argument systems have a

24 Paraconsistent Inference and Preservation

game-theoretic flavour which makes them particularly suitable for modelling a vari-

ety of multi-agent systems ([160; 161; 177]).

One of the most peculiar features of Σ-argued consequence is captured in propo-

sition (2.2.3). It highlights the fact that although an argued consequence has no direct

refutation, each may still be rebutted when evidence is pooled together in some sense.

Proposition 2.2.3

1. For each A ∈ CAΣ(Γ), A is Σ-consistent but CAΣ(Γ) is not Σ-consistent in general.

2. If Σ = ∅, then CAΣ(Γ) is pairwise Σ-consistent.

Proof:

(1) If A ∈ CAΣ(Γ) is Σ-inconsistent, then Σ ` ¬A and for some A ∈ MΣ(Γ) A ` A.

Hence Σ ∪ A ` ⊥, a contradiction.

To see that CAΣ(Γ) is not Σ-consistent in general, the following example suffices:

Σ = {r ∧ s}

Γ = {p ∧ q, ¬p ∧ q}

∆ = {p ∨ ¬r,¬p ∨ ¬s}

We can easily verify that every member of ∆ is a Σ-argued consequence of Γ but ∆ is

not Σ-consistent.

(2) To see that CA∅(Γ) is pairwise ∅-consistent, it suffices to observe that if A,B ∈
CE∅(Γ) are such that {A,B} is ∅-inconsistent, then there must be distinct A,B ∈ M∅(Γ)

such that A ` A and B ` B but A ` ¬B and B ` ¬A. Hence A,B 6∈ CAΣ(Γ), a

contradiction.

Finally for CLΣ(Γ), the main idea is to accept only the intersection of the classical

consequences of all Σ-large subsets of Γ , i.e.

CLΣ(Γ) =
⋂

A∈LΣ(Γ)

Cn(A)

Note that the notion of largeness naturally induces a total ordering on MΣ(Γ). This

gives us a method to combine different strategies to obtain different consequences. For

instance, we can define a new consequence CSLΣ by setting

CSLΣ(Γ) = Cn(
⋂

L(Γ))

§2.2 Paraconsistent Inferences 25

Similarly, CELΣ and CALΣ can be defined accordingly. More generally, given a total

or partial ordering≤ on MΣ(Γ) we can apply any one of CSΣ, CUΣ, CAΣ, and CEΣ to the

≤-maximal (or the≤-minimal) elements of MΣ(Γ) to obtain a variety of consequences.

The introduction of orderings forms the basis for a variety of preferential systems and

semantics. Priest’s LPm for instance is a paraconsistent logic whose consequence re-

lation is defined in terms of the selection of LP models that are minimal with respect

to the usual ⊆ ordering (see [138] for more details).

We note that by setting Σ = ∅, we recover the paraconsistent consequences de-

fined in [29]. We also note that in our definitions Σ only provides side constraints on

premises. We can in fact allow Σ to be used directly to derive conclusions. We have

the following stronger notions of consequence:

Definition 2.2.3

Σ-universal-consequence* A ∈ C∗
UΣ(Γ) iff for each A ∈ MΣ(Γ), A ∪ Σ ` A

Σ-existential-consequence* A ∈ C∗
EΣ(Γ) iff for some A ∈ MΣ(Γ), A ∪ Σ ` A

Σ-argued-consequence* A ∈ C∗
AΣ(Γ) iff for every Aj ∈ MΣ(Γ), Aj ∪Σ 6` ¬A and there

exists some Ai ∈ MΣ(Γ) such that Ai ∪ Σ ` A.

Σ-safe-consequence* A ∈ C∗
SΣ(Γ) iff SΣ(Γ) ∪ Σ ` A

Σ-large-consequence* A ∈ C∗
LΣ(Γ) iff A ∪ Σ ` A for each A ∈ LΣ(Γ).

It is easy to verify the following proposition:

Proposition 2.2.4

1. For x ∈ {UΣ, EΣ, SΣ, LΣ}, Cx(Γ) ⊆ C∗
x(Γ).

2. For some Γ and Σ, CAΣ(Γ) and C∗
AΣ(Γ) are incomparable.

3. C∗
AΣ(Γ) is pairwise Σ-consistent, but not Σ-consistent in general.

Proof:

(1) Follows from the fact that Cn is monotonic.

(2) The following example suffices:

Σ = {r} Γ = {p ∧ q, ¬p ∧ q, ¬q}

26 Paraconsistent Inference and Preservation

It is straightforward to verify that

(¬q ∨ s) ∧ r ∈ C∗
AΣ(Γ) ¬q ∨ ¬r 6∈ C∗

AΣ(Γ)

(¬q ∨ s) ∧ r 6∈ CAΣ(Γ) ¬q ∨ ¬r ∈ CAΣ(Γ)

(3) To see that C∗
AΣ(Γ) is pairwise Σ-consistent, it suffices to observe that if A,B ∈

C∗
EΣ(Γ) are such that {A,B} is Σ-inconsistent, then there must be distinct A,B ∈ MΣ(Γ)

such that Σ∪A ` A and Σ∪B ` B but Σ∪A ` ¬B and Σ∪B ` ¬A. Hence A,B 6∈ CAΣ(Γ),

a contradiction.

To see that C∗
AΣ(Γ) is not Σ-consistent in general, the following example suffices:

Σ = {t}

Γ = {p ∧ r, ¬p ∧ r,¬r}

∆ = {(p ∧ r) ∨ (q ∧ s), (¬q ∧ r) ∨ (¬q ∧ s), (¬r ∨ ¬s)}

We can verify that every member of ∆ is a Σ-argued consequence* of Γ but ∆ is in-

consistent and hence also Σ-inconsistent. Note that our example also shows that the

structural rules known as monotonicity and transitivity fail for both CAΣ and C∗
AΣ.

Moreover, the relative set inclusion ordering of the Σ-consequences* is analogous

to figure (2.1).

2.3 Some Structural Properties

Although all our inference relations are defined in terms of the classical `, strictly

speaking they are not consequence relations in the Tarski-Scott sense. We follow the

terminology of Kraus, Lehmann and Magidor in [116] and list some structural prop-

erties commonly used for comparing nonmonotonic systems in table (2.1). We’ll use

|∼ to denote an arbitrary inference relation. Note that in stating these structural prop-

erties no assumption is made about the underlying syntax of the language. The intu-

itive contents of these structural rules are fairly straightforward. Reflexivity says that

any member of a set of assumptions is deducible. Monotonicity says that previously

deduced conclusions are deducible from any enlarged set of assumptions. Transitiv-

ity says that once a lemma is generated, ‘cut and paste’ of deductions is possible to

generate new deductions. Truth says that all tautologies are deducible. Consistency

says that all classically consistent sets remain consistent. Left logical equivalence says

§2.3 Some Structural Properties 27

that classically equivalent assumptions can be interchanged in deductions. Cautious

monotonicity says that assumptions can be safely accumulated if they are each de-

ducible. Right weakening says that classical consequences of deducible conclusions

are also deducible. Finally supraclassicality says that deducibility is an extension of

classical inference.

A ∈ Γ
[Reflexivity]

Γ |∼A

A a` B Γ, B |∼C
[Left Logical Equivalence]

Γ, A |∼C

Γ |∼A
[Monotonicity]

Γ, Γ ′ |∼A

Γ |∼A Γ |∼B
[Cautious Monotonicity]

Γ, A |∼B

Γ, A |∼B Γ |∼A
[Transitivity]

Γ |∼B

Γ |∼A A ` B
[Right Weakening]

Γ |∼B

` A
[Truth]

Γ |∼A

Γ ` A
[Supraclassicality]

Γ |∼A

Γ |∼⊥
[Consistency]

Γ ` ⊥

Table 2.1: Some structural properties of inference.

Relative to a fixed consistent constraint set Σ and a premise set Γ with MΣ(Γ) 6= ∅,

we can summarise the structural properties of our inference relations with table (2.2).

The properties of the corresponding ∗ versions are completely similar. We use ‘(∗)’ to

denote both versions of an inference relation, ‘+’ and ‘−’ to indicate that a structural

rule holds or fails to hold respectively. The proof is routine calculation; we leave it to

the reader.

The failure of transitivity in the case of `EΣ and `AΣ highlights an important con-

ceptual distinction between these two inference strategies on the one hand and the

remaining strategies on the other. Implicit in cases of `SΣ, `UΣ and `LΣ are the selec-

tion of a single Σ-consistent set of assumptions that are either implicitly or explicitly

represented by Γ . We can think of these assumptions as the set of available assump-

tions. Once the selection is completed, all permissible deductions are restricted to

the use of these available assumptions. In other words, there is a single set of Σ-

consistent available assumptions fixed for all permissible deductions in these cases.

Cutting and pasting of permissible deductions are thus also permissible since the ag-

28 Paraconsistent Inference and Preservation

`(∗)
SΣ `(∗)

UΣ `(∗)
AΣ `(∗)

LΣ `(∗)
EΣ

Reflexivity − − − − −
Monotonicity − − − − +

Transitivity + + − + −
Left Logical Equivalence + + + + +

Right Weakening + + + + +
Truth + + + + +

Consistency + + + + +
Cautious Monotonicity + + − + +

Supraclassicality − − − − −

Table 2.2: Some structural properties of Σ-consequences.

gregate of the assumptions used are always a subset of the set of Σ-consistent avail-

able assumptions. So transitivity holds for `SΣ, `UΣ and `LΣ. This is however not

the case for `EΣ and `AΣ. The set of available assumptions in these two cases are not

Σ-consistent even though assumptions used in any given permissible deduction form

a Σ-consistent subset. Cutting and pasting of permissible deductions may result in

impermissible deduction since the aggregate of the assumptions used may turn out to

be Σ-inconsistent. Hence transitivity fails for both `EΣ and `AΣ.

2.4 Properties of Sets

In this section, we introduce two different properties of inconsistent sets. The first

allows us to measure the relative level of incoherence of a premise set. The second

provides a measurement of the relative quantity of empirical information of a premise

set.

2.4.1 Level of Incoherence

Some inconsistent sets are clearly more unstable or incoherent then others. Consider,

for instance,

Example 2.4.1

Γ = {p ∧ q, ¬p ∧ q, ¬q} ∆ = {p, ¬p, q}

Clearly, there is a sense in which Γ is less stable, i.e. more incoherent, then ∆. More

specifically, we can define a function to measure the relative level of incoherence of a

set. By an n-covering of a set Γ , we mean a collection, C = {A1, . . . ,An}, of non-empty

§2.4 Properties of Sets 29

subsets of Γ such that Γ =
⋃
C (where n ≤ ω). Elements of an n-covering are called

clusters. An n-covering is Σ-consistent iff each of its clusters is Σ-consistent.

Definition 2.4.1

The `Σ-value of a set Γ is defined as:

`Σ(Γ) =

0 if Γ = ∅ or Γ ⊆ {A : ` A}

the cardinality of the least

Σ-consistent covering of Γ

up to and including ω

if such a covering exists

∞ otherwise

We use C`Σ
(Γ) to denote the set of all `Σ(Γ)-fold coverings of Γ . The sentence ‘`Σ(Γ) =∞’ does not say that Γ has infinite Σ-level; rather it says that Γ has no Σ-level at all.

So we must distinguish between `Σ(Γ) = ∞ and `Σ(Γ) = ω. More specifically if Γ

contains a Σ-villain, then `Σ(Γ) = ∞. Also observe that if `Σ(Γ) = n 6= ∞, then there

must be a Σ-consistent n-covering of Γ .

Though the `Σ function offers us a natural way to classify inconsistent sets, it is

sensitive to the syntax of the premises. Consider for instance,

Example 2.4.2

Σ = {q} Γ = {p ∧ ¬p} ∆ = {p,¬p}

According to our definition, the Σ-level of Γ and the Σ-level of ∆ are distinct –

`Σ(Γ) = ∞ but `Σ(∆) = 2. However, other less syntax-sensitive means to classify

inconsistent sets are available. In [80], Grant proposes three model theoretic means to

classify inconsistent first order theories. To our knowledge, Grant is the first to offer

such systematic classifications of inconsistent theories.

2.4.2 Quantity of Empirical Information

Some inconsistent data are less informative than others. While we agree that it is

difficult to come up with a useful definition of value of information, we do not agree

with Aisbett and Gibbon in [6] that inconsistent data provides no information to a

decision maker. What is and what isn’t informative seems to depend, at least partly,

on the goal of the agent in possession of the data. For a tax auditor, inconsistencies in a

taxpayer’s records are useful information for detecting possible fraud. Inconsistencies

30 Paraconsistent Inference and Preservation

may also be useful in cases where they are deployed as directives to guide learning or

as indicators for faulty components in a complex system. Hence we need to develop

a theoretical framework to distinguish different sorts of inconsistent data. In [123],

a definition for measuring the amount of semantic information of an inconsistent set

is given. In this section we give a definition for measuring the amount of empirical

information in an inconsistent set.

By a quasi-model of Γ , we mean any two-valued model of any A ∈ MΣ(Γ). Taking

Γ to be a set of empirical data, i.e. data about the state of the world, we may intuitively

interpret each quasi-model as representing a possible state of the world according to

Γ . To define the relative quantity of empirical information of an inconsistent set, we

first define the following function:

Definition 2.4.2

The λΣ-value of a set Γ is defined as:

λΣ(Γ) =

0 if Γ = ∅ or Γ ⊆ {A : ` A}

|MΣ(Γ)| if MΣ(Γ) 6= ∅

∞ otherwise

In effect, the λΣ-value is just the number of maximal Σ-consistent subsets of Γ . In terms

of the relation between `Σ and λΣ, it is straightforward to show the following:

Proposition 2.4.1

For any Γ ⊆ Φ, `Σ(Γ) = n =⇒ λΣ(Γ) ≥ n, for 1 ≤ n < ω

Proof:

If `Σ(Γ) = n, then there must be a Σ-consistent covering of Γ . Each cluster of such a

covering of Γ is Σ-consistent and thus can be extended to a maximally Σ-consistent

subset of Γ . There are n distinct and pairwise inconsistent clusters and thus there are

n distinct and pairwise inconsistent extensions. Hence n ≤ λΣ(Γ) as required.

Since Σ-villains are Σ-inconsistent and tautologies do not contribute any informa-

tion about the world, we may disregard them when we are considering the amount

of empirical information of a set. We let the root of Γ , R(Γ), be the set of propositional

atoms occurring in the set
⋃

MΣ(Γ) − {A ∈ Γ : ` A}, i.e., R(Γ) is the set the proposi-

tional atoms occurring in Σ-witnesses that are not tautologies. In counting the number

§2.4 Properties of Sets 31

of quasi-models of Γ , we are only concerned with the number of equivalence classes of

quasi-models with respect to R(Γ). So the maximum possible number of such equiv-

alence classes is 2|R(Γ)|. We use QR(Γ)(Γ) to denote the collection of such equivalence

classes of quasi-models. We note that |QR(Γ)(Γ)| ≤ 2|R(Γ)|.

Definition 2.4.3

The quantity of empirical information of Γ is given by:

IΣ(Γ) =

|R(Γ)| − log2 |QR(Γ)(Γ)| if λΣ(Γ) = 1

|R(Γ)| − log2 λΣ(Γ) if λΣ(Γ) > 1

0 otherwise

When λΣ(Γ) = 1, IΣ(Γ) is based on the ratio between 2|R(Γ)| and |QR(Γ)(Γ)|. When

λΣ(Γ) > 1, IΣ(Γ) is defined by a decreasing function of the λΣ-value of Γ . Intu-

itively, the λΣ-value of Γ provides one possible way to measure the amount of conflict

amongst the Σ-witnesses. When λΣ(Γ) = 1, there is no conflict and when λΣ(Γ) > 1

it means that there are conflicts amongst the Σ-witnesses. Moreover, the higher the

λΣ-value of Γ , the more Σ-inconsistent subsets reside amongst the Σ-witnesses. If

λΣ(Γ) = k > 1, then by taking the union of each distinct pairA,B ∈ MΣ(Γ) there are at

least k(k−1)
2 many ways to generate Σ-inconsistent subsets amongst the Σ-witnesses.

Consider the following example:

Example 2.4.3

Let Σ = {s}.

Γ1 = {p ∧ q, ¬p ∧ r, ¬s}

R(Γ1) {p, q, r}

|R(Γ1)| 3

λΣ(Γ1) 2

IΣ(Γ1) 2.00

Γ2 = {p ∧ q ∧ r, ¬p ∧ q ∧ r, p ∧ ¬q ∧ r, ¬s}

R(Γ2) {p, q, r}

|R(Γ2)| 3

λΣ(Γ2) 3

IΣ(Γ2) 1.42

Table 2.3: A comparison of two sets.

In table (2.3), R(Γ1) and R(Γ2) are identical. Moreover, since ¬s is a Σ-villain s is not

in R(Γi), i = 1, 2. The λΣ-value of Γ1 is lower and so the amount of conflict in the set of

Σ-witnesses in Γ1 is also lower. Consequently, IΣ(Γ1) > IΣ(Γ2).

32 Paraconsistent Inference and Preservation

2.5 Σ-Forced Consequence

In this section we introduce a new paraconsistent consequence, called Σ-forced con-

sequence, based on the notion of Σ-level. Σ-forced consequence is a generalization of

a paraconsistent consequence operator introduced in [164; 167].

Definition 2.5.1

Σ-forced consequence: A ∈ CFΣ(Γ) iff for each C ∈ C`Σ
(Γ), A ` A for some A ∈ C

Σ-forced consequence*: A ∈ C∗
FΣ(Γ) iff for each C ∈ C`Σ

(Γ), A ∪ Σ ` A for some A ∈ C

where C`Σ
(Γ) is the set of all `Σ(Γ)-fold coverings of Γ .

In other words, A is a Σ-forced consequence of Γ iff for every `Σ(Γ)-fold covering of

Γ , there is a cluster which classically implies A. Again, the main difference between

CFΣ and C∗
FΣ is the role Σ plays in deriving conclusions. Similarly to the previous

results, any Σ-forced consequence is a Σ-forced consequence*, i.e. for any Γ ⊆ Φ,

CFΣ(Γ) ⊆ C∗
FΣ(Γ).

We also note that CFΣ and C∗
FΣ are defined relative to the Σ-level of a set. Since

the Σ-level of a set is not closed under supersets in general, CFΣ and C∗
FΣ are both

non-monotonic with respect to Γ . However, if we define Σ-forced consequence and

consequence* relative to a fixed n, for n ∈ N, (i.e., replace ‘every `Σ(Γ)-fold covering’

with ‘every n-covering’ in the definition), then the resulting notions of consequence

are monotonic with respect to Γ . Nonetheless, these consequences are unprincipled

when `Σ(Γ) > n. From a nonmonotonic reasoning perspective, it would be of some

theoretical interest to study a varying-Σ approach to Σ-consequence. For instance, it

is easy to see that for a fixed premise set Γ , if Σ′ ⊇ Σ, then CxΣ(Γ) ⊆ CxΣ′(Γ), where

x ∈ {E,A, F, L,U, S}. In effect, we need to distinguish between two kinds of nonmono-

tonicity – those with respect to the premise set and those with respect to the constraint

set. This is particularly interesting in modelling agents who are endowed with meta-

beliefs that govern and provide constraints on lower level beliefs. Intriguing as it may

be, however, we will not work out the details of the varying-Σ approach here.

On the assumption that a premise set Γ does not contain any Σ-villain, the relation-

ship between Σ-forced consequence and other Σ-consequences (of Γ) is summarized

in figure (2.2). Downward arrows indicate set inclusions.

§2.6 Preservation 33

@
@@R

�
��	

�
��	

@
@@R

?

?

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�Σ-Safe

Σ-Universal

Σ-Argued Σ-LargeΣ-Forced

Σ-Existential

Figure 2.2: Inclusion ordering of Σ-consequences.

2.6 Preservation

In this section we will focus on the preservational properties of our inference mech-

anisms in terms of the `Σ, λΣ and IΣ values of premise sets. We can characterise the

preservational property of a consequence operator C both locally and globally. The

local characterisation specifies the effect of extending the premise set by a single con-

sequence; whereas the global characterization specifies the effect of extending the

premise set by the entire consequence set. These notions are given formally in the

following definitions:

Definition 2.6.1

Let C be a consequence operator defined over the language Φ, i.e., C : ℘(Φ) −→ ℘(Φ).

We say that C is

locally `Σ-preserving iff for any Γ ⊆ Φ and A ∈ C(Γ), `Σ(Γ) = n only if `Σ(Γ, A) = n

globally `Σ-preserving iff for any Γ ⊆ Φ, `Σ(Γ) = n only if `Σ(Γ, C(Γ)) = n

locally λΣ-preserving iff for any Γ ⊆ Φ and A ∈ C(Γ), λΣ(Γ) = n only if λΣ(Γ, A) = n

globally λΣ-preserving iff for any Γ ⊆ Φ, λΣ(Γ) = n only if λΣ(Γ, C(Γ)) = n

locally IΣ-preserving iff for any Γ ⊆ Φ and A ∈ C(Γ) with R(A) ⊆ R(Γ), IΣ(Γ) = n

only if IΣ(Γ, A) = n

globally IΣ-preserving iff for any Γ ⊆ Φ,

1. R(C(Γ)) ⊆ R(Γ)

34 Paraconsistent Inference and Preservation

2. λΣ(Γ) = 1 only if λΣ(Γ, C(Γ)) = 1

3. IΣ(Γ) = n only if IΣ(Γ, C(Γ)) = n

We note that to show that a consequence operator is not globally x-preserving, it suf-

fices to show that it is not locally x-preserving.

Proposition 2.6.1

1. For x ∈ {`Σ, λΣ, IΣ}, any globally x-preserving consequence operator is also

locally x-preserving.

2. Let C1 and C2 be consequence operators such that for any Γ ⊆ Φ, C1(Γ) ⊆ C2(Γ).

If C2(Γ) is locally (or globally) x-preserving, then C1(Γ) is locally (or globally) x-

preserving for x ∈ {`Σ, λΣ, IΣ}.

Proof:

(1) We’ll assume that C is globally x-preserving and consider each case in turn:

(`Σ): We note that `Σ is a monotonically increasing function over ⊆-ordering of Φ.

Hence given that Γ ⊆ (Γ ∪ {A}) ⊆ (Γ ∪ C(Γ)) holds for any A ∈ C(Γ), we have

`Σ(Γ) ≤ `Σ(Γ, A) ≤ `Σ(Γ, C(Γ))

By the initial assumption C is globally `Σ-preserving and thus `Σ(Γ) = n implies that

`Σ(Γ, C(Γ)) = n and hence `Σ(Γ, A) = n as required.

(λΣ): Similar to `Σ. λΣ is also monotonically increasing.

(IΣ): There are two cases to consider:

(λΣ(Γ) = 1): Then by (1) and (2) of definition (2.6.1), we have λΣ(Γ, C(Γ)) = 1 and

R(Γ) = R(Γ, A) = R(Γ, C(Γ)). It follows that λΣ(Γ, A)) = 1 for every A ∈ C(Γ). Hence it

follows that

|R(Γ)| − log2 |QR(Γ)(Γ)| = |R(Γ, C(Γ))| − log2 |QR(Γ,C(Γ))(Γ, C(Γ))|

= |R(Γ, A)| − log2 |QR(Γ,A)(Γ, A)|

i.e. IΣ(Γ) = IΣ(Γ, A) as required.

(λΣ(Γ) > 1): Then by the previous result, λΣ(Γ) = λΣ(Γ, A) for each A ∈ C(Γ) and

R(Γ) = R(Γ, A) = R(Γ, C(Γ)). Hence,

|R(Γ)| − λΣ(Γ) = |R(Γ, A)| − λΣ(Γ, A)

§2.6 Preservation 35

i.e. IΣ(Γ) = IΣ(Γ, A) as required.

(2) The cases for `Σ and λΣ are straightforward given that these functions are both

monotonically increasing and that C1(Γ) ⊆ C2(Γ). We’ll consider the case for IΣ:

(i) C2 is globally IΣ-preserving. If λΣ(Γ) = 1, then λΣ(Γ, C2(Γ)) = 1 by (2) of definition

(2.6.1). So by the monotonic increasing property of λΣ, λΣ(Γ, C1(Γ)) = 1. By (1) of def-

inition (2.6.1) and the assumption that C1(Γ) ⊆ C2(Γ), we have R(Γ) = R(Γ, C2(Γ)) =

R(Γ, C1(Γ)). Hence we have

|R(Γ)| − log2 |QR(Γ)(Γ)| = |R(Γ, C2(Γ))| − log2 |QR(Γ,C2(Γ))(Γ, C2(Γ))|

= |R(Γ, C1(Γ))| − log2 |QR(Γ,C1(Γ))(Γ, C1(Γ))|

i.e. IΣ(Γ) = IΣ(Γ, C1(Γ)) as required.

If λΣ(Γ) > 1, then by the monotonic increasing property of λΣ and the fact that C1(Γ) ⊆
C2(Γ), we have λΣ(Γ) = n implies that λΣ(Γ, C1(Γ)) = n. In either case C1 is globally

IΣ-preserving on the assumption that C2 is globally IΣ-preserving.

(ii) C2 is locally IΣ-preserving. Consider an arbitrary A ∈ C1(Γ) with R(A) ⊆ R(Γ).

Given C1(Γ) ⊆ C2(Γ), A ∈ C2(Γ) follows. Hence by the local IΣ-preserving property

of C2, IΣ(Γ) = n implies IΣ(Γ, A) = n. But A was arbitrary so for any A ∈ C1(Γ)

with R(A) ⊆ R(Γ), we have IΣ(Γ) = n implies IΣ(Γ, A) = n. Hence C1 is locally IΣ-

preserving.

We can summarize proposition (2.6.1) with figure (2.3). Arrows indicate implica-

tions between two statements.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

C2 is locally x-preserving

C2 is globally x-preserving

C1 is locally x-preserving

C1 is globally x-preserving

-

-

? ?

@
@

@
@

@
@

@@R

Figure 2.3: Local and global preservation for C1 ⊆ C2

Thus by propositions (2.2.4) and (2.6.1), to show that a Σ-consequence is x-

preserving it suffices to show that its Σ-consequence* counterpart is x-preserving (note

36 Paraconsistent Inference and Preservation

the exception for CAΣ and C∗
AΣ). And to show that a Σ-consequence is not globally

x-preserving it suffices to show that it is not locally x-preserving. In terms of the clas-

sical consequence operator Cn however, it is clear that for x ∈ {`∅, λ∅, I∅} Cn is neither

locally nor globally x-preserving (since for an inconsistent Γ , Cn(Γ) = Φ).

Proposition 2.6.2

1. For every x ∈ {EΣ, AΣ, FΣ, LΣ, UΣ, SΣ}, C
(∗)
x fails to be globally IΣ-preserving.

2. For every x ∈ {`Σ, λΣ, IΣ}, CAΣ fails to be globally and locally x-preserving.

3. For every x ∈ {`Σ, λΣ, IΣ}, C
(∗)
EΣ fails to be globally and locally x-preserving.

4. For every x ∈ {`Σ, λΣ, IΣ}, C∗
AΣ is locally x-preserving but not globally x-

preserving.

5. For x ∈ {λΣ, IΣ}, C
(∗)
FΣ is not globally and locally x-preserving, but are globally

and locally `Σ-preserving.

6. For x ∈ {`Σ, λΣ, IΣ}, C
(∗)
LΣ fail to be globally and locally x-preserving.

7. For x ∈ {`Σ, λΣ}, C
(∗)
UΣ and C

(∗)
SΣ are locally and globally x-preserving. Moreover,

C
(∗)
UΣ and C

(∗)
SΣ are locally IΣ-preserving but not globally IΣ-preserving.

Proof:

(1) It suffices to observe that A ` A ∨ B is a valid classical rule and thus using right

weakening if A ∈ C
(∗)
x (Γ), then A ∨ B ∈ C

(∗)
x (Γ) for any B. Hence R(C

(∗)
x (Γ)) 6⊆ R(Γ).

(2) It suffices to show that CAΣ is not locally x-preserving for x ∈ {`Σ, λΣ, IΣ}. We give

counterexamples for each case:

(`Σ): Clearly s ∧ t ∈ CAΣ(Γ) for the following Σ and Γ :

Σ = {¬s ∨ ¬t ∨ ¬q, ¬s ∨ ¬t ∨ ¬r} `Σ(Γ) = 2

Γ = {p ∧ q, ¬p ∧ r, s, t} `Σ(Γ, s ∧ t) = 3

(λΣ, IΣ): Clearly p ∨ (¬s ∨ ¬t) ∈ CAΣ(Γ) for the following Σ and Γ :

Σ = ∅ λΣ(Γ) = 2

Γ = {p, ¬p ∧ s, ¬p ∧ t} IΣ(Γ) = 2

λΣ(Γ, p ∨ (¬s ∨ ¬t)) = 4 IΣ(Γ, p ∨ (¬s ∨ ¬t)) = 1

(3) It follows from propositions (2.2.2), (2.6.1) and (2) above.

(4) We consider each case in turn:

§2.6 Preservation 37

(`Σ): Let A ∈ C∗
AΣ(Γ) and let C = {C1, . . . , Cn} be a Σ-consistent covering of Γ that

witnesses `Σ(Γ) = n. We claim that for each i ≤ n, Ci ∪ {A} is Σ-consistent and thus{
C1 ∪ {A}, . . . , Cn ∪ {A}

}
is a Σ-consistent covering of Γ ∪ {A}. The claim clearly holds

since for each i ≤ n, Ci is contained in some A ∈ MΣ(Γ) and for every A ∈ MΣ(Γ),

Σ ∪ A 6` ¬A. So for each i ≤ n, Σ ∪ Ci 6` ¬A. By the minimality of n, `Σ(Γ, A) = n as

required.

(λΣ): similar to the `Σ case.

(IΣ): Consider any A ∈ C∗
AΣ(Γ) with R(A) ⊆ R(Γ). There are two cases to consider:

(λΣ(Γ) = 1): Then by ordinary classical logic the following equality holds:

|QR(Γ)(Γ)| = |QR(Γ,A)(Γ, A)|

So IΣ(Γ) = IΣ(Γ, A) as required.

(λΣ(Γ) = n > 1): Then by the previous result C∗
AΣ is λΣ-preserving and thus

|R(Γ)| − log2 λΣ(Γ) = |R(Γ, A)| − log2 λΣ(Γ, A)

Hence IΣ(Γ) = IΣ(Γ, A) as required. Failure of global preservation for C∗
AΣ follows

immediately from (3) of proposition (2.2.4).

(5) For `Σ-preservation, it suffices to show that C∗
FΣ is globally `Σ-preserving. Assume

that `Σ(Γ) = n. We note that by the minimality of n, `Σ(Γ, C∗
FΣ(Γ)) ≥ n. Consider an

arbitrary but fixed Σ-consistent covering of Γ , C = {C1, . . . , Cn}. Let

C∗ =
{

Cn(Σ ∪ Ci) : i ≤ n
}

We claim that

(a) Γ ∪ C∗
FΣ(Γ) ⊆

⋃
C∗: If A ∈ Γ , then clearly A ∈

⋃
C∗ since C is an n-covering of Γ .

If A ∈ C∗
FΣ(Γ), then every n-covering of Γ contains a cluster which together with Σ

classically implies A. In particular for C, there must be a j ≤ n such that Σ ∪ Cj ` A,

i.e. A ∈ Cn(Σ ∪ Cj). Hence A ∈
⋃
C∗.

(b) `Σ(
⋃
C∗) = n: trivial given that for each i ≤ n, Ci is Σ-consistent.

(c) `Σ(Γ, C∗
FΣ(Γ)) = n: from (a) and (b) above, we have Γ ⊆

(
Γ ∪ C∗

FΣ(Γ)
)
⊆

⋃
C∗. But

`Σ(Γ) = `Σ(
⋃
C∗) = n, hence `Σ(Γ, C∗

FΣ(Γ)) = n.

38 Paraconsistent Inference and Preservation

To verify that C
(∗)
FΣ is neither λ-preserving nor IΣ-preserving, it suffices to consider the

following example where (p ∨ ¬q) ∨ (¬r ∨ ¬s) ∈ CFΣ(Γ):

Σ = ∅ λΣ

(
Γ, (p ∨ ¬q) ∨ (¬r ∨ ¬s)

)
= 6

Γ = {p, q, ¬q,¬p ∧ r, ¬p ∧ s} λΣ(Γ) = 4

(6) It suffices to show that for x ∈ {`Σ, λΣ, IΣ} CLΣ fails to be locally x-preserving. We

consider each case in turn:

(`Σ): We can modify the example used in (2). Clearly s ∧ t ∈ CLΣ(Γ) for the following

Σ and Γ :

Σ = {¬s ∨ ¬t ∨ ¬q, ¬s ∨ ¬t ∨ ¬r} `Σ(Γ, s ∧ t) = 3

Γ = {u ∧ p ∧ q, u ∧ ¬p ∧ r, ¬u ∧ s, ¬u ∧ t} `Σ(Γ) = 2

(λΣ, IΣ): Again a modification of the example used in (2) suffices. Clearly p ∨ (¬s ∨

¬t) ∈ CLΣ(Γ) for the following Σ and Γ :

Σ = ∅ IΣ(Γ, p ∨ (¬s ∨ ¬t)) = 3

Γ = {p, q, r, ¬p ∧ ¬q ∧ ¬r ∧ s, ¬p ∧ ¬q ∧ ¬r ∧ t} λΣ(Γ) = 2

IΣ(Γ) = 4 λΣ(Γ, p ∨ (¬s ∨ ¬t)) = 4

(7) The first part of the statement is straightforward since we have

C∗
UΣ(Γ) =

⋂
A∈MΣ(Γ)

Cn
(
Σ ∪ A

)

The second part of the statement is also straightforward since for any A ∈ C∗
UΣ(Γ)

with the property that R(A) ⊆ R(Γ), IΣ(Γ) and IΣ(Γ, A) are clearly equal.

The preservational properties of our Σ-consequences and Σ-consequences* are

summarized in table (2.4). ‘+’ (‘−’) indicates that the relevant property is (is not) pre-

served.

§2.6 Preservation 39

local global

`Σ λΣ IΣ `Σ λΣ IΣ

CEΣ − − − − − −

CAΣ − − − − − −

CFΣ + − − + − −

CLΣ − − − − − −

CUΣ + + + + + −

CSΣ + + + + + −

local global

`Σ λΣ IΣ `Σ λΣ IΣ

C∗
EΣ − − − − − −

C∗
AΣ + + + − − −

C∗
FΣ + − − + − −

C∗
LΣ − − − − − −

C∗
UΣ + + + + + −

C∗
SΣ + + + + + −

Table 2.4: Preservational properties of Σ-consequences.

2.6.1 Maximality

Since for each consequence operator C we can define a consequence relation |∼C such

that 〈Γ, A〉 ∈ |∼C iff A ∈ C(Γ), we may speak of the consequence relation |∼C as being

induced by C. Furthermore we say that |∼C is (locally or globally) x-preserving iff C

is. One important fact is that strictly speaking there is no smallest (locally or globally)

x-preserving consequence relation, x ∈ {`Σ, λΣ, IΣ}. By this we mean that for a fixed x

the intersection of all x-preserving consequence relations (induced by their respective

consequence operators) is in fact empty. However, it is possible that two consequence

operators C1 and C2 may be related in such a way that (1) C1 is (locally or globally)

x-preserving but C2 is not, and (2) for any Γ , C1(Γ) is contained in C2(Γ). In such a case

it is natural to ask whether |∼C1
can be extended maximally within |∼C2

to a (locally

or globally) x-preserving consequence relation. In fact, this is exactly the situation at

hand. For instance, CUΣ is globally `Σ-preserving but CLΣ is not (moreover for any Γ ,

CUΣ(Γ) ⊆ CLΣ(Γ)). So a natural question is whether |∼CUΣ
can be extended maximally

to a `Σ-preserving extension within |∼CLΣ
. Such maximal extensions are theoretically

interesting since they allow us to deduce more conclusions while still preserving the

relevant property in question.

2.6.2 Special Conditions

Another theoretically interesting question is whether there are special conditions un-

der which a particular inference mechanism can preserve a property even though the

mechanism does not preserve the property in general. We may think of these special

conditions as application conditions which allow us to use certain inference mecha-

40 Paraconsistent Inference and Preservation

nisms to preserve certain properties. For instance, if each maximal Σ-consistent subset

of a premise set Γ has the same cardinality, then CLΣ(Γ) is identical to CUΣ(Γ). So the

λΣ value of Γ is preserved by CLΣ in this case even though CLΣ is neither locally nor

globally λΣ-preserving in general. For instance, the following fact allows us to use

C∗
AΣ to globally preserve the `Σ value of Γ when λΣ(Γ) = n < ω.

Proposition 2.6.3

For any Γ ⊆ Φ, `Σ(Γ) = λΣ(Γ) = n < ω =⇒ `Σ(Γ, C∗
AΣ(Γ)) = n.

Proof:

We’ll assume that Γ is arbitrary and that `Σ(Γ) = λΣ(Γ) = n < ω. We construct a

Σ-consistent n-covering of Γ ∪C∗
AΣ(Γ). Let MΣ(Γ) = {A1, . . . ,An}. Let C = {B1, . . . ,Bn}

be an arbitrary but fixed Σ-consistent n-covering of Γ where the enumeration of C is

such that for each i ≤ n, Bi ⊆ Ai. This is clearly possible since every cluster in C is

Σ-consistent. For each Ai ∈ MΣ(Γ) we define:

A∗
i =

{
A ∈ Cn(Σ ∪ Ai) : ¬A 6∈

n⋃
j=1

Cn(Σ ∪ Aj)

}

Clearly, A∗
i ⊆ Cn(Σ ∪ Ai). Hence each A∗

i is Σ-consistent. It is straightforward to

verify that
n⋃

i=1

A∗
i = C∗

AΣ(Γ)

We now define

C′ = {B1 ∪ A∗
1, . . . , Bn ∪ A∗

n}

C′ is clearly a Σ-consistent n-covering of Γ ∪C∗
AΣ(Γ). Since Γ ⊆ Γ ∪CAΣ(Γ) and `Σ(Γ) =

n, by the minimality of n and the monotonic increasing property of `Σ, `Σ(Γ, C∗
AΣ(Γ)) =

n as required.

2.6.3 Combining Inference Mechanisms

Finally, we have not considered the effect of combining different inference mecha-

nisms. For instance by taking the union and intersection of |∼CFΣ
and |∼CUΣ

we can

obtain two new consequence relations. Clearly, |∼CFΣ
∩ |∼CUΣ

is both non-empty and

`Σ-preserving (since CFΣ and CUΣ are both `Σ-preserving). Again from the point of

view of section (2.6.1), |∼CFΣ
∪ |∼CUΣ

is a more interesting option since it extends both

|∼CFΣ
and |∼CUΣ

.

§2.7 Conclusion 41

2.7 Conclusion

In this chapter we have applied a preservation-theoretic approach to analyze and com-

pare six different inconsistency tolerant inference mechanisms. The crux of our moti-

vation is to demonstrate that truth is not the only property worthy of preservation. Which

properties are to be preserved in an inference can depend on our interests and goals.

As the late Jon Barwise puts it:

. . . the study of valid inference as a situated activity shifts attention from

truth preservation to information extraction and information processing. Valid

inference is seen not as a relation between sentences that simply preserves

truth, but rather as a situated, purposeful activity whose aim is the ex-

traction of information from a situation, information relevant to the agent.

([16], p.xiv)

In a broader context, the notion of preservation can provide a theoretically rich

framework for understanding a variety of formalisms. In future work, we hope to

extend our approach to analyse belief revision mechanisms, nonmonotonic reasoning

systems and other practical reasoning systems.

42 Paraconsistent Inference and Preservation

Chapter 3

Rescher-Mechanism

3.1 Introduction

A common complaint against reasoning based on maximal consistent subsets is that

it is too sensitive to the underlying syntax of the logical representation. This may

result in information being isolated, and thereby preventing useful information to be

extracted. Consider the following example:

Example 3.1.1

Two information sources may disagree with respect to p while not disagreeing in other

respects: Γ = {p ∧ ¬q,¬p ∧ (q ∨ r)}

In our example, there is a sufficiently clear sense in which neither ¬q nor q ∨ r are

directly involved in an inconsistency, though they are conjoined with something that

is inconsistent. Splitting Γ into consistent subsets will prevent us from deducing the

potentially useful information r. Hence according to Belnap,

. . . Rescher’s method gives wildly different accounts depending on just

how many ampersands are replaced by commas, or vice versa. It depends

too much on how our . . . subtheory . . . is itself separated into sentential

bits. (page 544 [8])

Belnap’s criticism is fair. It is intuitively implausible that an inference mechanism

for handling inconsistent information should give wildly different conclusions for mi-

nor syntactic variations in the logical representation. But Belnap’s criticism also ap-

plies to other formal mechanisms for handling inconsistency such as belief revision.

A syntax-based revision of Γ with r would require us to give up at least one member of

Γ (see Nebel’s [131; 132]). This may incur unwanted information loss.

In 1979 [23], Belnap proposed a particular amendment to Rescher’s strategy for

reasoning with maximal consistent subsets. In 1989 [24] Belnap changed his mind and

43

44 Rescher-Mechanism

made a further amendment to his earlier amendment. More recently in [87], Horty

explicitly endorsed Belnap’s second amendment to address a related problem in han-

dling inconsistent instructions and commands. In actual fact, Belnap’s suggestions

on both occasions amount to the same strategy of finding different ways to articulate

the input logical representation. According to Belnap, the input logical description Γ

is first to be closed under some non-classical logic generating a superset Γ∗ and then

Rescher’s strategy can be applied to Γ∗ in the normal way. The role of Γ∗ is to make

explicit the content of Γ so that the kind of difficulties that arise in situations similar

to example (3.1.1) can be avoided. In 1979, Belnap’s suggestion was to use Angell’s

analytic containment. In 1989 [24], Belnap’s suggestion was to use an even more re-

strictive non-classical logic based on the idea of conjunctive containment.

In this chapter, we’ll first highlight the connection between Rescher’s method of

reasoning from maximal consistent subsets and the default reasoning of Reiter [151].

This gives us the necessary background to appreciate Belnap’s criticism in relation to

more recent developments in AI. This also gives us a direct way to apply the preserva-

tion analysis from the previous chapter to various forms of default reasoning. Finally,

we’ll address Belnap’s criticism by pointing out that his suggestion of using conjunc-

tive containment seems to be open to the very objection he raised. We’ll suggest a

strategy to amend conjunctive containment.

3.2 Connection With Default Reasoning

In many ways Rescher’s method of reasoning from maximal consistent subsets has

anticipated many recent developments in AI. One in particular is the nonmonotonic

formalism developed by Reiter in [151]. In this section, we’ll recap the connection be-

tween Rescher’s method and Reiter’s original formalism for default reasoning. Since

the publication of [151], Reiter’s formalism has been revised and extended (see Schaub

[163] for a summary). Many of these new developments have been shown to be ex-

pressively equivalent to various forms of belief revision formalism. We’ll not be able

to summarise all these new developments here. But since many of these extensions

are theoretically grounded in some form of reasoning from maximal consistent sub-

sets, Belnap’s methodological criticism is still in force here. In any case, we’ll focus

on the standard default formalism of Reiter. We’ll begin by recalling some standard

definitions.

In Reiter’s formalism, a default theory is a pair 〈D,F〉, whereF is a set of formulae

§3.2 Connection With Default Reasoning 45

called facts and D is a set of default rules of the form:

A : B1, . . . , Bn

C

Intuitively, the meaning of the rule is that if A is provable and each Bi is consis-

tent, then we may conclude C. A is called a prerequisite of the default rule, each Bi is a

justification of the default rule and C is a consequent of the default rule. A default rule

without justification is equivalent to an inference rule in standard logics. Hence the

requirement of justification is responsible for the nonmonotonicity of default reason-

ing.

Example 3.2.1

F = {head light on} F ′ = {head light on, brake light fails}

D =

{
head light on: component 1 ok, ..., component n ok

electrical system ok

}
From the observed fact that the head light is working properly and in the absence of

evidence to the contrary it is reasonable to conclude that the electrical system is working

properly. But of course this conclusion can be defeated when we observe the failure

of some other component of the system even though the head light may still be in

operation. So in this sense a default rule is defeasible when new observation violates

some of the justifications of the rule.

The key concept in default reasoning is the notion of an extension. An extension

of a default theory is a deductive closure (under classical logic) of the facts together

with the consequents of the applicable default rules. Intuitively we can think of an

extension as a possible scenario according to the information provided by the facts

and the applicable default rules. More formally an extension for a default theory is

defined as follows:

Definition 3.2.1

(Reiter [151]) Let W = 〈D,F〉 be a default theory. For any deductively closed set

S ⊆ Φ, let γ(S) be the least set satisfying the following conditions:

1. F ⊆ γ(S)

2. Cn(γ(S)) = γ(S) (where Cn is closure under classical deduction)

3. If A:B1,...,Bn

C ∈ D, A ∈ γ(S), and ¬B1, . . . , ¬Bn 6∈ S , then C ∈ γ(S)

46 Rescher-Mechanism

A deductively closed set E ⊆ Φ is an extension for W (E ∈ ext(W)) iff γ(E) = E , i.e. E
is a fixed point of the operator γ.

Reiter’s definition of an extension is not recursive since it appeals to a fixed point

construction of γ. In example (3.2.1), the extensions of W = 〈D,F〉 and W ′ = 〈D,F ′〉
are respectively:

ext(W) =
{

Cn({head light on, electrical system ok})
}

ext(W ′) =
{

Cn({head light on, brake light fails})
}

However, the existence of an extension is not guaranteed in general for every de-

fault theory. Multiple extensions for a given default theory are also possible. There

are three basic decision problems associated with default reasoning:

Extension Existence: Given a default theory W , is ext(W) non-empty?

Intersection Membership: Given a default theoryW and a formula A, is A a member

of
⋂

ext(W)?

Union Membership: Given a default theory W and a formula A, is A a member of⋃
ext(W)?

The first order version of default theory is clearly not semi-decidable with respect

to these decision problems. Even in the propositional case, the complexities of these

problems are generally very high – ΣP
2 and ΠP

2 hard. Thus it is often desirable to

identify subclasses of default theories with either guaranteed existence of extension(s)

or with low computational complexity. A normal default theory for instance is one

whose default rules are of the form:

A : B

B

For the class N of normal propositional default theories the existence of an ex-

tension is guaranteed but the complexity of determining whether a formula is in an

extension is ΣP
2 complete. Analogously, the decision problem of determining whether

a formula is in every extension is ΠP
2 complete (see chapter 4 of [43] for a summary of

complexity results for default reasoning).

Another important class of default theories is the class of prerequisite free default

§3.2 Connection With Default Reasoning 47

theories. A prerequisite free default theory is one whose default rules are of the form:

: B1, . . . , Bn

C

Two default theories W and W ′ are said to be extension equivalent if they have the

same set of extensions, i.e. ext(W) = ext(W ′). The class of prerequisite free default

theories is representationally complete with respect to the class of all default theories in

the sense that every default theory is extension equivalent to some prerequisite free

default theory. A default theory W is said to be inconsistent if its only extension is Φ.

In [151] Reiter shows that:

Theorem 3.2.1

(Reiter [151])

1. Let Γ be a set of formulae and W = 〈D,F〉 be a default theory. Define Γ0 = F
and for each i ≥ 0,

Γi+1 = Cn(Γi) ∪
{

C :
A : B1, . . . , Bn

C
∈ D, A ∈ Γi, ¬B1, . . . , ¬Bn 6∈ Γ

}
Then Γ is an extension for W iff

Γ =

∞⋃
i=0

Γi

2. If E and E ′ are extensions of a default theory and E ′ ⊆ E , then E ′ = E

3. A default theory W = 〈D,F〉 is inconsistent iff F is classically inconsistent iff

ext(W) = {Φ}.

4. Extensions exist for every normal default theory.

5. Extensions of a normal default theory are orthogonal in the sense that they are

pairwise inconsistent.

We note that in (1) of theorem (3.2.1), the definition of Γi+1 makes essential ref-

erence to Γ and hence it is not a recursive definition. Using Reiter’s results, we can

show that there is a close relationship between consistent prerequisite free normal de-

fault theories and reasoning from maximal consistent subsets. Note that by (3) of

theorem (3.2.1), inconsistent default theories are extension equivalent trivially. By (4)

of theorem (3.2.1), extension is guaranteed to exist for any default theory in the class

P of consistent prerequisite free normal default theories.

48 Rescher-Mechanism

Theorem 3.2.2

For every W = 〈D,F〉 ∈ P , ext(W) is of the form

{Cn(Σ ∪ A) : A ∈ MΣ(Γ)}

for some Γ and consistent Σ.

Proof:

Let W = 〈D,F〉 ∈ P be arbitrary but fixed. We set Σ = F . First we observe that by

part (3) of theorem (3.2.1), Σ is consistent and each extension of W is also consistent.

Define

Γ =

{
A :

: A

A
∈ D

}
Let E ∈ ext(W) be an arbitrary but fixed extension, consider ∆ = Cn((E ∩ Γ) ∪ Σ). We

claim that

Claim: ∆ = E :

Proof of Claim: (∆ ⊆ E): Since E ∈ ext(W), γ(E) = E and thus by properties (1) and (2)

of definition (3.2.1) we have:

E ∩ Γ ⊆ E =⇒ (E ∩ Γ) ∪ Σ ⊆ E

=⇒ Cn((E ∩ Γ) ∪ Σ) ⊆ Cn(E)

=⇒ Cn((E ∩ Γ) ∪ Σ) ⊆ E

(∆ ⊇ E): Now we use part (1) of theorem (3.2.1). Since E ∈ ext(W), we have E =⋃∞
i=0 Ei. We prove inductively that Ei ⊆ ∆. For the basis it is trivial since E0 = Σ ⊆ ∆.

Now we assume the induction hypothesis that Ei ⊆ ∆ and prove that Ei+1 ⊆ ∆. If

A ∈ Ei+1, then A ∈ Ei or A ∈ {C : :C
C ∈ D, ¬C 6∈ E}. In the former case, we have A ∈ ∆

by the induction hypothesis. In the later case, we have A ∈ Γ and A ∈ γ(E) by (3) of

definition (3.2.1) hence A ∈ E as γ(E) = E . Hence A ∈ E ∩ Γ and so A ∈ ∆ as required.

This completes the proof that E =
⋃∞

i=0 Ei ⊆ ∆.

To continue with the main proof we need to show that E ∩ Γ ∈ MΣ(Γ). Clearly,

E ∩ Γ is Σ-consistent since E is Σ-consistent. To show maximal consistency, consider

any A ∈ Γ such that A 6∈ E ∩ Γ . Since γ(E) = E by part (3) of definition (3.2.1), we

have A ∈ E or ¬A ∈ E . Since A 6∈ E ∩ Γ , we have A 6∈ E . Thus, ¬A ∈ E . But ∆ = E so

(E ∩ Γ) ∪ Σ ` ¬A. Hence (E ∩ Γ) ∪ {A} is not Σ-consistent. This suffices to show that

§3.2 Connection With Default Reasoning 49

E ∩ Γ ∈ MΣ(Γ). Since E is arbitrary, we conclude that every extension of W must be of

the form Cn(Σ ∪ A) where A ∈ MΣ(Γ). Hence, ext(W) ⊆ {Cn(Σ ∪ A) : A ∈ MΣ(Γ)}.

Now to show that for everyA ∈ MΣ(Γ), Cn(Σ∪A) ∈ ext(W), we make use of part

(1) of theorem (3.2.1). We consider an arbitrary A ∈ MΣ(Γ) and define S0 = Σ = F
and for each i ≥ 0

Si+1 = Cn(Si) ∪
{

A :
: A

A
∈ D,¬A 6∈ Cn(Σ ∪ A)

}
We note that for i ≥ 2, Si = Si+1. Hence we only need to verify that S2 = Cn(Σ ∪ A),

i.e. we need to verify that

Cn(Σ ∪ A) = Cn
(

Cn(Σ) ∪
{

A :
: A

A
∈ D,¬A 6∈ Cn(Σ ∪ A)

})
(3.1)

We claim that in equation (3.1),{
A :

: A

A
∈ D,¬A 6∈ Cn(Σ ∪ A)

}
= A

To verify our claim consider an arbitrary B ∈ A. Since A ⊆ Γ , we have B ∈ Γ and thus
:B
B ∈ D. By the maximal Σ-consistency of A, we have ¬B 6∈ Cn(Σ ∪ A). Conversely

consider an arbitrary B ∈ {A : :A
A ∈ D,¬A 6∈ Cn(Σ ∪ A)}. It follows that B ∈ Γ

and ¬B 6∈ Cn(Σ ∪ A). Suppose to the contrary that B 6∈ A, then by the maximal Σ-

consistency of A we have ¬B ∈ Cn(Σ ∪ A) contradicting our previous claim. Hence

B ∈ A as required.

Thus equation (3.1) can be rewritten as:

Cn(Σ ∪ A) = Cn
(
Cn(Σ) ∪ A

)
(3.2)

To verify (3.2), we note that by reflexivity Σ ∪ A ⊆ Cn(Σ) ∪ A and thus by the mono-

tonicity we get Cn(Σ∪A) ⊆ Cn(Cn(Σ∪A)). Conversely by reflexivity and monotonic-

ity, Cn(Σ) ∪A ⊆ Cn(Σ ∪A) and thus Cn
(
Cn(Σ) ∪A)

)
⊆ Cn

(
Cn(Σ ∪A

)
= Cn(Σ ∪A)

by idempotence of Cn.

We note that for any given set Γ and any given consistent set Σ, the family of clo-

sures of Σ-maximal consistent subsets of Γ is precisely the family of extensions of some

consistent prerequisite free normal default theory. The corresponding default theory

is defined in the obvious way. It is easy to see that the following is an immediate

50 Rescher-Mechanism

corollary of theorem (3.2.2).

Corollary 3.2.1

Let W and Γ be defined as in theorem (3.2.2). Then C∗
UΣ(Γ) =

⋂
ext(W) and C∗

EΣ(Γ) =⋃
ext(W).

More interestingly, Marek, Treur, and Truszczyński [126] show that there is a close

relationship between consistent normal default theories and reasoning from maximal

consistent subsets. They also show that the class of consistent prerequisite free normal

default theories P is representationally complete with respect to the class of consistent

normal default theories N . Note that P is a proper subclass of N . Thus the results

of Marek, Treur, and Truszczyński can be seen as a strengthening of theorem (3.2.2).

The results of Marek, Treur, and Truszczyński can be restated in terms of representation

theory for default logic. A family of theories G is said to be trivial if Φ ∈ G, else

G is non-trivial. Furthermore G is said to be representable by a default theory W if

ext(W) = G.

Theorem 3.2.3

(Marek, Treur, and Truszczyński [126])

1. If a family of non-trivial theories G is representable by a default theory W ∈ N ,

then G is representable by a default theory W ′ ∈ P , i.e. P is representationally

complete with respect to N .

2. A family of non-trivial theories G is representable by a default theory W ∈ N iff

there is a set of formulae Γ such that

G = {Cn(A) : A ∈ M∅(Γ)}

Theorem (3.2.3) shows that each consistent normal default theory W is expres-

sively equivalent to a family of maximal consistent subsets of some set Γ , i.e. the

family of closures of these maximal consistent subsets of Γ is precisely the family of

extensions of W . But note that Γ need not be unique in general, i.e. it is possible that

for some Γ ′ 6= Γ , {Cn(A) : A ∈ M∅(Γ)} = {Cn(B) : B ∈ M∅(Γ
′)}. The following are

immediate corollaries of theorem (3.2.3).

Corollary 3.2.2

1. For any Γ ⊂ Φ with M∅(Γ) 6= ∅, CE∅(Γ) = C∗
E∅(Γ) =

⋃
ext(W) and CU∅(Γ) =

C∗
U∅(Γ) =

⋂
ext(W) for some W ∈ N .

§3.2 Connection With Default Reasoning 51

2. A family of non-trivial theories G is representable by a default theory W ∈ P iff

there is a set of formulae Γ such that

G = {Cn(A) : A ∈ M∅(Γ)}

Proposition 3.2.1

For every W ∈ N , ext(W) can be expressed in two equivalent forms:

{Cn(A) : A ∈ M∅(Γ
′)} = {Cn(Σ ∪ B) : B ∈ MΣ(Γ)} (3.3)

for some consistent Σ and some Γ and Γ ′.

Proof:

Consider an arbitraryW ∈ N . By (2) of theorem (3.2.3), there exits Γ ′ such that ext(W)

can be expressed as the LHS of equation (3.3). By (1) of theorem (3.2.3), P is represen-

tationally complete with respect to N . Hence, there exists a W ′ ∈ P where W ′ is

extensionally equivalent to W . By theorem (3.2.2), there exits Γ such that W ′ can be

expressed as the RHS of equation (3.3).

We can give a representational completeness result similar to (1) of theorem (3.2.3).

Set S′ = {(Γ, ∅) : Γ ⊆ Φ} and S = {(Γ, Σ) : Γ, Σ ⊆ Φ, Σ 6` ⊥}. We say that a family of

theories G is representable by a (Γ, Σ) ∈ S iff G = {Cn(Σ ∪ A) : A ∈ MΣ(Γ)}.

Theorem 3.2.4

If a family of theories G is representable by some (Γ, Σ) ∈ S, then G is representable by

some (Γ ′, ∅) ∈ S′

Proof:

Let G be a family of theories representable by some (Γ, Σ) ∈ S. Then G is representable

by some W ′ ∈ P . Since P is a subclass of N , we can apply proposition (3.2.1) to W ′

and thereby yielding the existence of a Γ ′ such that ext(W ′) = {Cn(A) : A ∈ M∅(Γ
′)}.

This suffices to show that G is representable by some (Γ ′, ∅) ∈ S′.

We can summarise our results with figure (3.1). P , N , S′ and S are all expressively

equivalent in the sense that a family of theories G is representable in one of these

classes iff G is representable in all the other classes.

Of course these results show that the formalism of default reasoning is equipped

with capabilities for handling inconsistencies. Taking union (intersection) over exten-

sions of a consistent normal default theory corresponds to existential (universal) con-

52 Rescher-Mechanism

ext(W ′) = ext(W) r

'
&

$
%

r
�

�
�

�
�	

�
�

�
�r

@
@

@
@
@R

S′
S

(Γ ′, ∅) (Γ, Σ)

'
&

$
%

r@
@

@
@

@I

�
�

�
�r��

�
�
��

P N
W ′ W

Figure 3.1: Expressive equivalence of P , N , S′ and S

sequence in Rescher’s sense. But there are also limitations to default reasoning – in-

consistencies in the set of facts in a default theory still trivialises the extension. Clearly

there is room for improvement here. One possible solution suggested by Hunter in

[91] is to replace the underlying classical logic with a weaker paraconsistent logic as

the underlying deduction mechanism. Indeed, we can keep most of definition (3.2.1)

intact. The only modification we need to make is the replacement of the closure con-

dition in clause 2 of definition (3.2.1) with the deductive closure of a weaker paracon-

sistent logic. As to which paraconsistent logic should be used, we need not decide

a priori here. In fact it would seem to be more useful to study and compare the be-

haviour of the resulting mechanisms obtained by plugging in various paraconsistent

logics. We’ll leave this analysis and study for future work.

From a preservational point of view, the upshot of theorem (3.2.2) and theo-

rem (3.2.3) is that the kind of analyses and accounts presented in the last chapter has

direct counterparts for default theories in P and N .

3.3 Belnap’s Conjunctive Containment

In [8], Belnap considered a strategy to improve the Rescher-mechanism by finding dif-

ferent articulations for a set of logical descriptions. Recall that Belnap’s main criticism

of Rescher is that reasoning with maximal consistent subsets is too syntax dependent

on the underlying logical representation. Hence a minor syntactic variant may yield

wildly different conclusions. Note that given the results from last section, Belnap’s

criticism is equally applicable to default reasoning. For the classes P and N of default

§3.3 Belnap’s Conjunctive Containment 53

theories, extensions are just closures of maximal consistent subsets. Hence any rea-

soning strategy involving extensions in these classes is equivalent to reasoning with

maximal consistent subsets.

Belnap’s main idea is that given a set of input premises Γ we can pre-process Γ with

certain closure operations so that the content of the input premises can be made ex-

plicit and information not involved in any inconsistency can be isolated. Once this

is done, we can then apply the Rescher-mechanism to reason with the extended set.

Indeed Belnap’s suggestion is not fundamentally different from the methodology of

knowledge compilation in AI (see [106; 107]). In knowledge compilation, the general aim

is to give a sound and complete translation of information represented in a general lan-

guage to a sub-language with lower complexity. The translation is done off-line so that

the computational cost of inference is shifted from run time query-answering to off-

line compilation. Thus in knowledge compilation, reasoning can be viewed as a two

stage process involving both data preparation and formal deduction from prepared

data. For Belnap however, the concern is not so much to reduce the computational

cost but to reduce the effect of syntactic variations on inferences from the innocent

part of the information. Clearly this can be seen as a form of data preparation. It is

instructive to recap Belnap’s reasons for rejecting the use of the first degree entailment

(FDE) of the relevant logic R, Parry’s analytic implication (AI) and Angell’s analytic

containment (AC) as candidate closures for the input premises:

Example 3.3.1

Γ = {p, ¬p, q}

In FDE and Parry’s AI we have, respectively

`FDE A → A ∨ B `AI A ∧ B → A ∨ ¬B

Hence the closure of Γ under either FDE or analytic implication yields ¬p ∨ ¬q which

conspires together with p to prevent q from being derived as a U-consequence.

Example 3.3.2

Γ = {p, ¬p, q, r ∨ ¬q}

In Angell’s AC we have

`AC A ∧ (B ∨ C) ↔ A ∧ (B ∨ C) ∧ (A ∨ C)

54 Rescher-Mechanism

Hence from Γ we get `AC ¬p ∧ (r ∨ ¬q) → ¬p ∨ ¬q. Once again ¬p ∨ ¬q conspires

together with p to prevent q from being derived as a U-consequence.

In each of these cases, the use of a certain version of disjunction introduction re-

sults in the introduction of additional inconsistencies. Indeed this is symptomatic of

the kind of difficulties involved in the use of disjunction introduction in the presence

of inconsistencies. To overcome this problem, Belnap proposes the use of conjunctive

containment. First we have the following definitions. To simplify the matter, we’ll

assume that our language is restricted to the truth functional connectives {¬,∧, ∨}.

Definition 3.3.1

A subformula B of a given formula A is said to be an even subformula if it is within

the scope of zero or an even number of negations, otherwise it is said to be odd.

Definition 3.3.2

Belnap’s replacement rules are given as follows:

[∗] . . . (B ∧ C) . . .

. . . B C . . .

provided that (B ∧ C) is an even subformula.

[#]
. . . (B ∨ C) . . .

. . . B C . . .

provided that (B ∨ C) is an odd subformula.

Clearly for any given A we can built a finite binary tree T such that

1. the root of T is just A,

2. each branching is an application of either [#] or [∗],

3. a node is either the root of T or a formula obtained by [#] or [∗], and

4. the leaves or end points are formulae which contain no even subformulae of the

form (B ∧ C) and no odd subformulae of the form (B ∨ C)

For convenience we shall draw a tree with the root at the bottom and all branches

extending upward, i.e. we apply the replacement rules as if they are upside down.

Since the order in which we apply [#] and [∗] can be permuted, clearly such a tree is

not unique for a given A in general. But there can be at most finitely many such trees

for a given A. Thus we can associate with each A a finite set of trees {T A
1 , . . . , T A

n }

§3.3 Belnap’s Conjunctive Containment 55

where each T A
i is a finite binary tree built in the prescribed way. We’ll call these the

Belnap trees associated with A.

Lemma 3.3.1

Let (B∧C) be a zero subformula in D = . . . (B∧C) . . ., then D is classically equivalent

to D′ = ((. . . B . . .) ∧ (. . . C . . .)).

Proof:

Since (B∧C) is a zero subformula, we can equivalently transform D into the following

form:

D0 =

n+1︷ ︸︸ ︷
(. . . (B ∧ C) ∗1 A1) ∗2 A2) ∗3 . . .) ∗n An)

where ∗i is either ∧ or ∨.

Since both ∧ and ∨ are commutative, we note any step in the transformation from

D to D0 is reversible and equivalence preserving. We’ll denote the transformation

from D to D0 as T and the reverse of T as T ′. We’ll show by induction on the depth

d of (B ∧ C), defined in terms of the number of ‘(’ to the left of B ∧ C, that D0 is

equivalent to

D′
0 = [

n︷ ︸︸ ︷
(. . . (B ∗1 A1) ∗2 . . .) ∗n An) ∧

n︷ ︸︸ ︷
(. . . (C ∗1 A1) ∗2 . . .) ∗n An)]

For the basis d = 1: this is trivial since (B∧C) is equivalent to itself. For the inductive

step, We’ll make the assumption that the statement holds for d = k and show that it

holds for the case when d = k + 1. Since we assume that d = k + 1, D0 must be of the

form:
k+1︷ ︸︸ ︷

(. . . (B ∧ C) ∗1 A1) ∗2 A2) ∗3 . . .) ∗k Ak)

By the induction hypothesis, the following subformula of D0

k︷ ︸︸ ︷
(. . . (B ∧ C) ∗1 A1) ∗2 A2) ∗3 . . .) ∗k−1 Ak−1)

is equivalent to

[

k︷ ︸︸ ︷
(. . . (B ∗1 A1) ∗2 . . .) ∗k−1 Ak−1) ∧

k︷ ︸︸ ︷
(. . . (C ∗1 A1) ∗2 . . .) ∗k−1 Ak−1)]

56 Rescher-Mechanism

Hence D0 must be equivalent to

E =
(
[

k︷ ︸︸ ︷
(. . . (B ∗1 A1) ∗2 . . .) ∗k−1 Ak−1) ∧

k−1︷ ︸︸ ︷
(. . . (C ∗1 A1) ∗2 . . .) ∗k−1 Ak−1)] ∗k Ak

)
There are two cases to consider: either ∗k is ∧ or ∨. In the first case E is equivalent to

[

k+1︷ ︸︸ ︷
(. . . (B ∗1 A1) . . . ∗k−1 Ak−1) ∧ Ak) ∧

k+1︷ ︸︸ ︷
(. . . (C ∗1 A1) . . . ∗k−1 Ak−1) ∧ Ak)]

In the later case, using distribution of ∨ over ∧, E is equivalent to

[

k+1︷ ︸︸ ︷
(. . . (B ∗1 A1) . . . ∗k−1 Ak−1) ∨ Ak) ∧

k+1︷ ︸︸ ︷
(. . . (C ∗1 A1) . . . ∗k−1 Ak−1) ∨ Ak)]

This suffices to show that D0 and D′
0 are equivalent. To complete the proof we

make use of the fact that the transformation T from D to D0 is reversible. Hence

by applying the reverse transformation T ′ to the left and right conjuncts of D′
0, the

equivalence of D and D′ follows.

Proposition 3.3.1

If E and F are obtained from A by an application of either [∗] or [#], then E ∧ F is

classically equivalent to A.

Proof:

If E and F are obtained from A by an application of [∗], then E and F must be obtained

via an even subformula (B ∧ C) of A. Since (B ∧ C) is even, repeat applications of

pushing negations onto (B ∧ C) will result in an even occurrences of negation in front

of (B ∧ C). By double negation elimination we can transform A into an equivalent

formula A′ where (B∧C) is a zero subformula. Using lemma (3.3.1) and reversing the

relevant transformation steps, the desired result follows.

If E and F are obtained via [#], then E and F must be obtained via an odd subfor-

mula (B ∨ C) of A. Since (B ∨ C) is odd, repeat application of pushing negation onto

(B∨C) will result in an odd occurrences of negation in front of (B∨C). Using double

negation elimination repeatedly and pushing the remaining negation into (B∨C) will

result in an even subformula (¬B ∧ ¬C). Again applying lemma 3.3.1 and reversing

all relevant transformation steps, the desired result follows.

§3.3 Belnap’s Conjunctive Containment 57

Corollary 3.3.1

For any Belnap tree T A associated with A, A is classically equivalent to the conjunc-

tion of all the leaves in T A.

Definition 3.3.3

Belnap’s Closure, CB, on a given A is defined as follows: D ∈ CB(A) iff D is a node

of some Belnap tree associated with A. For a given set of formulae Γ , CB(Γ) = {D ∈
CB(A) : A ∈ Γ }.

A set Γ conjunctively contains A in the strict sense iff A ∈ CB(Γ), i.e. A is a node of

some Belnap tree associated with some A ∈ Γ .

The extended Belnap’s Closure, C+
B on a set Γ is defined as follows: A ∈ C+

B(Γ) iff

every member of CB(A) is classically equivalent to a conjunction of some members of

CB(Γ).

Alternatively we may define CB(Γ) simply as the least superset of Γ that is closed

under [∗] and [#]. The use of Belnap’s trees gives us an easy way to visualise the un-

derlying mechanism: each piece of information A is conjunctively eliminated at each

level of a Belnap’s tree until all hidden conjunctions are eliminated; since [∗] and [#]

preserve the model of their premises, all information implicitly encoded in A is suc-

cessively passed on to the next level in its Belnap’s tree.

With respect to the extended Belnap’s closure C+
B , the basic idea is to regain

some limited form of conjunction introduction with members of CB while adding all

those that are classically equivalent to these conjunctions without creating unexpected

nonequivalence.

Example 3.3.3

Let Γ = {p}. We have p ∧ p ∈ C+
B(Γ) but p ∨ (p ∧ q) 6∈ C+

B(Γ) even though p ∧ p is

classically equivalent to p∨ (p∧q). Note that although we have p∨q ∈ CB({p∨ (p∧

q)}), p ∨ q is not classically equivalent to any conjunction of members of CB(Γ).

Fact 3.3.1

CB and C+
B are closure operators in the sense of Tarski, i.e. they satisfy inclusion,

monotonicity and idempotence. C+
B is an extension of CB, i.e. for any Γ ⊆ Φ, CB(Γ) ⊆

C+
B(Γ). Moreover they distribute over union, i.e. CB(Γ ∪ Γ ′) = CB(Γ) ∪ CB(Γ ′)

While we may think of Belnap’s closure CB as an articulation of a set of formulae,

the extension C+
B is a proper E-equivalent extension of CB in the following sense:

58 Rescher-Mechanism

Definition 3.3.4

A closure operator C is a proper E-equivalent extension of a closure operator C′ iff for

any premise set Γ ⊆ Φ,

1. C(Γ) and C′(Γ) have exactly the same set of existential-consequences, i.e.

C∗
E(C(Γ)) = C∗

E(C′(Γ)).

2. C′(Γ) ⊆ C(Γ)

3. C(C′(Γ)) = C(Γ)

If condition (1) holds for C, then we say that C is E-equivalent to C′.

Note that in our definition, we have dropped the reference to any constraint set

Σ. By the representational completeness of theorem (3.2.4), there is no loss of general-

ity here. By modifying clause (1) of our definition, we can obtain the corresponding

notions of proper U, A, S, L-equivalent extensions of a given closure operator. More

generally for x ∈ {E, U, A, S, L}, two sets Γ and Γ ′ are x-equivalent if Γ and Γ ′ have

exactly the same set of x-consequences. The following lemma can be used to show

that C+
B is a proper E and U-equivalent extension of CB:

Lemma 3.3.2

For an arbitrary but fixed Γ , let M(CB(Γ)) and M(C+
B(Γ)) be the collections of maximal

consistent subsets of CB(Γ) and C+
B(Γ) respectively. Then there is a bijection f with

domain M(CB(Γ)) and range M(C+
B(Γ)) such that for any A ∈ M(CB(Γ)), f(A) is

classically equivalent to A.

Proof:

Let Γ be arbitrary but fixed. Let

M(CB(Γ)) = {Ai : i ∈ I}

M(C+
B(Γ)) = {Bj : j ∈ J}

We observe that

1. for each i ∈ I there exists a j ∈ J such that Ai ⊆ Bj: by the consistency of Ai and

the fact that CB(Γ) ⊆ C+
B(Γ).

2. for each i ∈ I there is exactly one j ∈ J such thatAi ⊆ Bj: from (1) the existence of

such a Bj is guaranteed for each arbitrary but fixed i ∈ I. Toward a contradiction

§3.3 Belnap’s Conjunctive Containment 59

assume that for some k ∈ J, k 6= j, Ai ⊆ Bk. Note that since Bj 6= Bk, Bj ∪ Bk is

inconsistent. Hence there exists D1, . . . , Dm ∈ Bj and E1, . . . , En ∈ Bk such that

D1 ∧ . . . ∧ Dm ` ¬(E1 ∧ . . . ∧ En)

We claim that every member of CB(D1)∪ . . .∪CB(Dm) must be classically equiv-

alent to a conjunction of some members of Ai. Suppose not. Then there must

be a member of CB(D1) ∪ . . . ∪ CB(Dm) classically equivalent to a conjunction

of members involving elements of (CB(Γ) \ Ai). But this is impossible since by

the maximal consistency of Ai any A ∈ CB(Γ) \ Ai is inconsistent with Ai and

this would imply that Ai is inconsistent with Bj. Similar argument also shows

that every member of CB(E1) ∪ . . . ∪ CB(En) must be classically equivalent to a

conjunction of some members of Ai. But this clearly contradicts the consistency

of A. Hence Bj cannot be distinct from Bk afterall.

3. for no i, i′ ∈ I, i 6= i′ do we have Ai ⊆ Bj and Ai′ ⊆ Bj for some j ∈ J: by the

consistency of each Bj.

4. for each j ∈ J there exists an i ∈ I such that Ai ⊆ Bj: it is straightforward to

verify that for each j ∈ J, Bj ∩ CB(Γ) is a maximal consistent subset of CB(Γ).

We now define the function f : CB(Γ) −→ C+
B(Γ) as follows: for each i ∈ I

f(Ai) = Bj ⇔ Ai ⊆ Bj

for some j ∈ J. Clearly by observation (2), f is a well defined function. By observation

(4), f is surjective. By observation (3) f is injective. Hence f is a bijection.

Finally to show that for every i ∈ I, Ai and f(Ai) are classically equivalent, it

suffices to observe that the argument for observation (2) establishes that for every

A ∈ f(Ai), every member of CB(A) is classically equivalent to a conjunction of some

members of Ai.

Theorem 3.3.1

C+
B is a proper E and U-equivalent extension of CB.

Proof:

By lemma (3.3.2), condition (1) of definition (3.3.4) is clearly satisfied. Moreover

CB(Γ) ⊆ C+
B(Γ) clearly holds. It remains to verify that for any Γ , C+

B(CB(Γ)) = C+
B(Γ)

60 Rescher-Mechanism

(⊇): Since CB and C+
B are both Tarskian closure operators, we have Γ ⊆ CB(Γ) and

hence C+
B(Γ) ⊆ C+

B(CB(Γ)).

(⊆): If A ∈ C+
B(CB(Γ)), then for every B ∈ CB(A), there are C1, . . . , Cn ∈ CB(CB(Γ))

such that B is classically equivalent to C1 ∧ . . . ∧ Cn. But CB(CB(Γ)) = CB(Γ), hence

A ∈ C+
B(Γ) as required.

Corollary 3.3.2

For any Γ and consistent Σ ⊆ Φ, let D and D′ be default theories defined as follows:

D = 〈{ : A
A

: A ∈ CB(Γ)}, Σ〉 D′ = 〈{ : B
B

: B ∈ C+
B(Γ)}, Σ〉

Then ext(D) = ext(D′)

The notion of E-equivalence is an important idea and by theorem (3.2.3) it is related

to the notion of extension equivalence between default theories. Lemma (3.3.2) clearly

gives a sufficient condition for E-equivalence – two sets of formulae (with arbitrary

cardinalities) are E-equivalent if a bijection of the suitable sort exists between the two

collections of maximal consistent subsets of the two sets. But it is unclear that this is

also necessary in cases where infinite cardinalities are considered. In [156], Rescher

and Manor give the necessary and sufficient conditions for E-equivalence for finitely

generated sets of formulae. But no general characterisation is given there. For sets with

finitely many maximal consistent subsets (though not necessarily finitely generated

in Rescher’s sense), the following proposition gives a necessary condition for their

E-equivalence:

Proposition 3.3.2

Let |M(Γ)| < ω. If Γ ′ is E-equivalent to Γ , then |M(Γ ′)| = |M(Γ)|. Equivalently, for any

Γ and Γ ′, if |M(Γ ′)| and |M(Γ)| are finite and |M(Γ ′)| 6= |M(Γ)|, then Γ and Γ ′ are not

E-equivalent.

Proof:

Without loss of generality, we may assume that Γ and Γ ′ are such that |M(Γ)| = n and

|M(Γ ′)| = m where m < n. Towards a contradiction, we assume that Γ and Γ ′ are

E-equivalent. We let M(Γ) = {A1, . . . ,An} and M(Γ ′) = {B1, . . . ,Bm}. Since members

of M(Γ ′) are pairwise inconsistent, by the standard compactness theorem, there exist

formulae A1, . . . , An such that for every i ≤ n,

1. Ai ` Ai and

§3.3 Belnap’s Conjunctive Containment 61

2. Ai `
∧

i 6=j ¬Aj

By our reductio assumption Γ and Γ ′ are E-equivalent and hence by (1) above for

each i ≤ n there exists a k ≤ m such that Bk ` Ai. However by our initial assumption

m < n and thus by the pigeonhole principle, there exists a t ≤ m such that Bt `∧
i≤n ¬Ai. Clearly by the consistency of each Ai ∈ M(Γ), Ai 6`

∧
i≤n ¬Ai. But this

contradicts the assumption that Γ and Γ ′ are E-equivalent. This suffices to show that Γ

and Γ ′ are not E-equivalent on the assumption that n 6= m.

Thus for any two finite sets, we can test for their non-E-equivalence by simply

counting their number of maximal consistent subsets. In previous chapter, such a

counting function λ was introduced and studied. It was further argued that the λ

value of a set of formulae may be used as a way to measure the amount of inconsis-

tency in the set. Intuitively, if the λ values of two finite sets (with the same cardinality)

differ then the amounts of inconsistency in these two sets also differ. This intuition is

justified by the fact that if λ(Γ) = k 6= ω, then by taking the union of each distinct

pair of maximal consistent subsets there are at least k(k−1)
2 many ways of generating

inconsistent subsets of Γ . As such the λ function may be useful as a tool for analyzing

inconsistent data.

3.3.1 Maximal Equivalent Extension

In [8] Belnap considered the interesting possibility of finding a strongest, i.e. maximal,

closure operator C that U-equivalently extends CB. In particular, Belnap proposed

C+
B as a candidate. The following shows that C+

B fails to be such a maximal closure

operator.

Proposition 3.3.3

C+
B is not a maximal closure that U-equivalently extends CB.

Proof:

It suffices to find a closure operator that properly extends C+
B and U-equivalently ex-

tends CB. For any Γ let,

C∗(Γ) = C+
B(Γ) ∪ >

We claim that C+
B(Γ) ∪ > = C+

B(Γ ∪ >):

(⊆): trivial since C+
B is a closure operator.

62 Rescher-Mechanism

(⊇): let A ∈ C+
B(Γ ∪ >). Then each B ∈ CB(A) is classically equivalent to the conjunc-

tion of some C1, . . . , Cn ∈ CB(Γ ∪>). But CB(Γ ∪>) = CB(Γ)∪> by the distributivity

of CB, so we have 3 cases to consider:

1. C1, . . . , Cn ∈ CB(Γ). Then A ∈ C+
B(Γ) and hence A ∈ C+

B(Γ) ∪ >.

2. C1, . . . , Cn ∈ >. Then A is a tautology and hence A ∈ C+
B(Γ) ∪ >.

3. C1, . . . , Ci ∈ CB(Γ) and Ci+1 . . . Cn ∈ >. Then clearly A is equivalent to C1 ∧

. . . ∧ Ci. Hence A ∈ C+
B(Γ).

By our claim C∗ is a closure operator. We verify that C∗(CB(Γ)) = C∗(Γ):

(⊇): since Γ ⊆ CB(Γ), C∗(Γ) ⊆ C∗(CB(Γ)) holds as required.

(⊆): by the usual closure properties of CB, we have CB(CB(Γ)∪>) = CB(Γ ∪>). Hence

A ∈ C+
B(CB(Γ) ∪ >) implies that A ∈ C+

B(Γ ∪ >). Hence C∗(CB(Γ)) ⊆ C∗(Γ).

It remains to show that CB(Γ) and C∗(Γ) have the same set of U-consequences. But

this is trivial since tautologies are trivial consequences of any subset. Finally to see

that C∗ properly extends C+
B , we note that C+

B(Γ) ⊂ C∗(Γ) holds for any Γ such that

CB(Γ) contains no tautology.

Though technically correct, our proposition is unremarkable since it is straightfor-

ward to show that C∗ properly extends C+
B and U-equivalently extends CB. However,

we may think that we can continue the trick by adding every false sentence to Γ and

then closing the resulting set under C+
B . But this is clearly not a U-equivalent exten-

sion of CB. If we begin with a consistent set, e.g. {p} and then add the false sentence

p ∧ ¬p, we can no long obtain p as a U-consequence.

Another minor observation is that if there are countably many propositional

atoms, then there are at least countably many trivial U-equivalent extensions of CB

between CB and C∗: for each pi we can simply add pi ∨ ¬pi to Γ and then close it

under CB to obtain a U-equivalent extension.

3.4 An Improvement to Belnap’s Strategy

One of the main motivations for Belnap to introduce CB is to provide a standard way

to isolate the effect of the inconsistencies in a set. Recall that the rules [∗] and [#] are

§3.4 An Improvement to Belnap’s Strategy 63

replacement rules of the form:

[∗] . . . (B ∧ C) . . .

. . . B C . . .
[#]

. . . (B ∨ C) . . .

. . . B C . . .

where the [∗] rule applies if (B ∧ C) is even and the [#] rule applies if (B ∨ C) is odd.

These rules are introduced by Belnap specifically to eliminate concealed conjunctions.

In [87], Horty explicitly endorsed a similar strategy for handling inconsistent instruc-

tions using modalized versions of these replacement rules:

[�∗] �(. . . (B ∧ C) . . .)

�(. . . B . . .) �(. . . C . . .)
[�#]

�(. . . (B ∨ C) . . .)

�(. . . B . . .) �(. . . C . . .)

where again the even and odd restrictions apply to the respective rule.

To appreciate the significance of these rules, we quote a remark of Belnap:

Since different ways of articulating our beliefs . . . give different results un-

der Rescher’s proposal and since we do not want this, evidently we have

to have some views about which articulations we most want to reflect

. . . Policy: try to reflect maximum articulation. . . . if we maximally artic-

ulate . . . we may be able to isolate the effect of its contradiction, . . . [o]r,

which seems just as important, we may be able to block a consequence by

freeing for use some conjunct of a conjunction which is itself not consis-

tently available . . . (page 545 [8])

In light of the [∗] and [#] rules, maximum articulation here is cashed out in terms

of conjunction elimination. In certain cases, this seems to be just the right remedy.

Consider for instance:

Example 3.4.1

Let A = (p ∧ ¬p) ∧ (q ∨ r) and let Γ = {A, ¬r, ¬p}

Applying the [∗] rule to A we get

p ¬p

p ∧ ¬p q ∨ r

(p ∧ ¬p) ∧ (q ∨ r)

Figure 3.2: Belnap tree for (p ∧ ¬p) ∧ (q ∨ r)

In example (3.4.1), all conjunctions are eliminated to maximally articulate the infor-

mation encoded by A. The result is that the inconsistency with respect to p would

64 Rescher-Mechanism

neither interfere with ¬r nor q∨ r. We note however that an imprudent use of [∗] may

result in duplication and thereby increase the size of the tree.

p q ∨ r

p ∧ (q ∨ r)

¬p q ∨ r

¬p ∧ (q ∨ r)

(p ∧ ¬p) ∧ (q ∨ r)

Figure 3.3: Belnap tree for (p ∧ ¬p) ∧ (q ∨ r)

However, our main concern here is not with efficiency. Our main concern is that

there are cases in which [∗] and [#] cannot eliminate conjunctions without a detour in

using the distributive properties of ∧ over ∨ and vice versa. Consider for instance a

slight variant of example (3.4.1):

Example 3.4.2

Let B = ¬[(p ∨ ¬p) ∨ ¬q] ∨ ¬[(p ∨ ¬p) ∨ ¬r)] and Γ ′ = {B, ¬r, ¬p}

Assuming that we have the usual double negation elimination rule, contraction

for ∨ and ∧, and commutative and associative rules for ∨ and ∧, we can now apply

[#] to B in example (3.4.2) to obtain the Belnap tree for B (figure (3.4).

p ¬p

¬(p ∨ ¬p)

¬p ∨ r p ∨ r

¬[(p ∨ ¬p) ∨ ¬¬r]

¬(p ∨ ¬p) ∨ ¬[(p ∨ ¬p) ∨ ¬r]

q ∨ r

¬¬q ∨ ¬¬r

p ∨ q ¬p ∨ q

¬¬q ∨ ¬(p ∨ ¬p)

¬¬q ∨ ¬[(p ∨ ¬p) ∨ ¬r]

¬[(p ∨ ¬p) ∨ ¬q] ∨ ¬[(p ∨ ¬p) ∨ ¬r]

Figure 3.4: Belnap tree for ¬[(p ∨ ¬p) ∨ ¬q] ∨ ¬[(p ∨ ¬p) ∨ ¬r)]

This is not entirely satisfactory because in taking an unnecessary detour, we have

produced additional disjunctive information. Belnap’s initial objection against the use

of relevant implication and analytic implication is precisely that closures under these

implications are too liberal in generating disjunctive information. The point is that

disjunctive information can interact with inconsistencies in such a way that further

inconsistencies can be produced. In the presence of ¬r for instance, p∨ r and ¬p form

an inconsistent triad. Comparing this with figure (3.2) however, ¬r remains innocent.

We note further that the distributivity of ∧ over ∨ and ∨ over ∧ are built into Belnap’s

replacement rules – we cannot avoid the use of distributivity with these rules.

While our previous example demonstrates how distributivity is used in the con-

text of implicit conjunction, our next example shows that the same is true of explicit

§3.4 An Improvement to Belnap’s Strategy 65

conjunction:

Example 3.4.3

Let C = (p ∧ q) ∨ (p ∧ r) and Γ = {C, ¬r, ¬p}

Applying the [∗] rule to C we get the following Belnap tree:

p p ∨ r

p ∨ (p ∧ r)

p ∨ q q ∨ r

q ∨ (p ∧ r)

(p ∧ q) ∨ (p ∧ r)

Figure 3.5: Belnap tree for (p ∧ q) ∨ (p ∧ r)

p q ∨ r

p ∧ (q ∨ r)

(p ∧ q) ∨ (p ∧ r)

Figure 3.6: Factoring for (p ∧ q) ∨ (p ∧ r)

The example here is similar to the previous case: p∨r conspires with ¬p in Γ to prevent

¬r from being derived as an U-consequence. Contrasting this with the case where we

use a more direct route to eliminate conjunction while keeping disjunctive information

to a minimal, we get a very different result. But what can we say coherently about

these examples? There are two possible options:

1. our examples do encode different information in each instance and hence con-

junctive containment merely makes explicit the difference. This is reflected in

the production of different disjunctive information under conjunctive contain-

ment.

2. our examples do not encode substantively different information in each in-

stance. The fact that their conjunctive closures differ shows that conjunctive

containment still over generates – in particular it over generates by producing

too much disjunctive information.

Our intuition in this matter may not run very deep. Indeed there may not be

any definitive reason to settle for one over the other. While option (1) is certainly a

coherent position (and we suspect this is the option Belnap is likely to take), we would

like to explore option (2) here and flesh out an account where examples (3.4.1), (3.4.2),

66 Rescher-Mechanism

and (3.4.3) do not yield different U-consequences while their maximal articulations

are narrower then conjunctive containment.

3.4.1 Logic Minimisation

We start with example (3.4.3) first. We note that the set of leaves ∆′ = {p, q ∨ r} in

figure (3.6) is consistent and classically equivalent to the set of leaves ∆ = {p, p∨r, p∨

q, q ∨ r} in figure (3.5). However, they clearly differ in the way in which they interact

with the remaining members of Γ . ∆ would generate more inconsistent subsets when

added to Γ then would ∆′. Furthermore, we note that every member of ∆′ is a prime

implicate of C. We’ll briefly recap some of the standard definitions:

Definition 3.4.1

A literal is either a propositional atom or the negation of a propositional atom. A

disjunction of literals is said to be a clause. A clause D is an implicate of A iff

A |= D. An implicate D of A is prime iff for all implicates D′ of A if D′ |= D then

D |= D′. A set of prime implicates {D1, . . . , Dn} of A is complete iff {D1, . . . , Dn} |= A.

A set of prime implicates {D1, . . . , Dn} is independent iff for no Di do we have

{D1 . . . , Di−1, Di+1 . . . Dn} |= Di

The notion of prime implicate was introduced by Quine in [142; 143; 144]. Quine

was interested in simplifying truth functions and he showed that notion of prime

implicate plays a central role in simplifying truth functions and thereby contributed

directly to the minimisation and design of digital circuits. The emphasis on minimi-

sation stems from the days when the production of logic gates was expensive and

required considerable physical space and power. With the advent of semiconductor

processes and VSLI, it is of course no longer a central concern to reduce the actual gate

count for a system. Circuit design today is more concerned with physical space alloca-

tion, reliability and the correctness of a system. Interest in the use of prime implicates

in circuit design has decreased considerably as a result. But the notion of prime im-

plicate enjoys a renewed interest in recent years in light of works by de Kleer et al in

logic based diagnostic systems [56; 57; 58].

Returning to our example however, it is easy to see that ∆′ is a complete and in-

dependent set of prime implicates of C. It is thus natural to take ∆′ to be the maximal

articulation of C in example (3.4.3). Our choice can be justified on the grounds that

• ∆′ is a more compact representation of C,

§3.4 An Improvement to Belnap’s Strategy 67

• ∆′ minimises redundancies and disjunctive information, and

• ∆′ minimises interference with ¬r

However, the standard notion of prime implicate would not be able to handle

example (3.4.2) since definition (3.4.1) uses a classical notion of consequence and thus

inconsistent formulae would have the same (complete equivalence class) of prime

implicates – namely the empty clause ∅. But this is exactly what we are trying to avoid

in the first place. However, there is a straightforward way to amend the situation –

we use a relevant notion of prime implicate:

Definition 3.4.2

A clause D is a relevant implicate of A iff A |=FDE D. A relevant implicate D of A is

prime iff for all relevant implicates D′ of A if D′ |=FDE D then D |=FDE D′. A set of

relevant prime implicates {D1, . . . , Dn} of A is complete iff D1 ∧ . . . ∧ Dn |=FDE A. A

set of relevant prime implicates {D1, . . . , Dn} is independent iff for no Di do we have

D1 ∧ . . . ∧ Di−1 ∧ Di+1 ∧ . . . ∧ Dn |=FDE Di. We say that two sets of formulae Γ and

∆ are FDE equivalent, written as Γ ≡FDE ∆, iff
∧

Γ |=FDE
∧

∆ and
∧

∆ |=FDE
∧

Γ .

The dual notion of relevant prime implicant of a given formula A can easily be de-

fined: a relevant implicant of a formula A is a cube C (conjunction of literals) which

FDE-entails A. In addition, C is prime if it is a minimal cube that FDE-entails A.

Since FDE is a paraconsistent logic, the empty clause is not a FDE-consequence of

any (non-empty) inconsistent formula.

Proposition 3.4.1

For no A do we have A |=FDE ∅.

Proof:

Using the standard (4-valued) ambi-valuation of Dunn in [66] (also see appendix (A)

for more details), we can verify the existence of a 4-valued assignment v with 1 6∈ v(∅)
while 1 ∈ v(A) for any A 6= ∅

Given that resolution is not a valid form of inference in relevant logic in general,

it is easy to see that the set of classical prime implicates (PI) and the set of relevant

prime implicates (RPI) may be distinct for a given formula:

Example 3.4.4

A = (q ∨ r) ∧ ((p ∨ q) ∧ (¬p ∨ q))

68 Rescher-Mechanism

RPI PI

q ∨ r
√

×
q ×

√

Figure 3.7: RPI and PI of A

Although not every RPI of a given A is a PI of A, it is easy to see that:

Proposition 3.4.2

Every RPI of a given A is a classical implicate of A.

Proof:

It suffices to observe that |=FDE ⊂ |=.

Since any two complete independent sets of relevant prime implicates of a given

formula must be FDE equivalent, we can treat them as unique up to equivalence.

We’ll use the notation RPI(A) to denote any such complete independent set of rel-

evant prime implicates of A. Similarly we use PI(A) for the complete independent

set of classical prime implicates of A. We note that RPI(A) is a minimal set (ordered

under ⊆) that is both complete and independent. In classical logic, two formulae are

equivalent iff their prime implicates are equivalent. This is also true with respect to

FDE formulae:

Proposition 3.4.3

For any A and B, A |=FDE B and B |=FDE A iff RPI(A) ≡FDE RPI(B).

Proof:

(⇒): Suppose A and B are FDE equivalent. Let RPI(A) = {D1, . . . , Dm} and RPI(B) =

{E1, . . . , En}. By the transitivity of |=FDE we have,
∧

i≤m Di |=FDE Ej for each j ≤ n.

Hence
∧

i≤m Di |=FDE
∧

j≤n Ej. Similarly we can show that
∧

j≤n Ej |=FDE
∧

i≤m Di

(⇐): Suppose RPI(A) ≡FDE RPI(B). Then we have

A |=FDE

∧
i≤m

Di |=FDE

∧
j≤n

Ej |=FDE B

Similarly we have

B |=FDE

∧
j≤n

Ej |=FDE

∧
i≤m

Di |=FDE A

By the transitivity of these entailments, it follows that A and B are FDE equivalent.

§3.4 An Improvement to Belnap’s Strategy 69

An immediate corollary is that standard reduction rules for CNF (DNF) conversion

are RPI preserving:

Corollary 3.4.1

The following equivalences holds:

1. RPI(¬¬A) ≡FDE RPI(A)

2. RPI(¬(A ∨ B)) ≡FDE RPI(¬A ∧ ¬B)

3. RPI(¬(A ∧ B)) ≡FDE RPI(¬A ∨ ¬B)

4. RPI(A ∨ (B ∧ C)) ≡FDE RPI((A ∨ B) ∧ (A ∨ C))

The minimality of an RPI ensures that a certain transitivity property of RPI holds:

Proposition 3.4.4

For any formulae A, B and C, if C ∈ RPI(B) and B ∈ RPI(A), then C ∈ RPI(A)

Proof:

Given that B ∈ RPI(A), B must be a clause and thus B ∈ RPI(B) holds trivially. So if

C ∈ RPI(B), B ≡FDE C follows immediately from definition (3.4.2). Hence C ∈ RPI(A).

Just as Belnap’s replacement rules can be used as a basis for defining the closure

operators CB and C+
B , RPIs too can be used as a basis for defining certain Tarskian

closure operators:

Definition 3.4.3

For any A and Γ , define

CRPI(A) = RPI(A) ∪ {A}

CRPI(Γ) = {B ∈ CRPI(A)| A ∈ Γ }

C+
RPI(Γ) =

⋃
∆⊆finCRPI(Γ)

{B | B ≡FDE

∧
∆}

Proposition 3.4.5

CRPI and C+
RPI are both Tarskian closure operators. Moreover, C+

RPI is an E-equivalent

(U-equivalent) extension of CRPI.

70 Rescher-Mechanism

Proof:

Reflexivity: trivial since A ∈ CRPI(A) for every A ∈ Γ .

Monotonicity: Assume Γ ⊆ ∆, then if B ∈ CRPI(Γ), there must exist some A ∈ Γ such

that B ∈ CRPI(A). But A ∈ ∆ holds, so B ∈ CRPI(∆) as required.

Idempotence: CRPI(Γ) ⊆ CRPI(CRPI(Γ)) is implied by the monotonicity of CRPI above.

For CRPI(CRPI(Γ)) ⊆ CRPI(Γ), we note that proposition (3.4.4) gives us the transitivity

property of RPI:

D ∈ CRPI(CRPI(Γ)) =⇒ ∃A ∈ CRPI(Γ) : D ∈ CRPI(A)

=⇒ ∃B ∈ Γ : A ∈ CRPI(B)

=⇒ D ∈ CRPI(B)

=⇒ D ∈ CRPI(Γ)

Reflexivity and monotonicity for C+
RPI are straightforward. For idempotence, we ver-

ify that C+
RPI(C

+
RPI(Γ)) ⊆ C+

RPI(Γ):

A ∈ C+
RPI(C

+
RPI(Γ)) =⇒ ∃C1, . . . , Ci ∈ CRPI(C

+
RPI(Γ)) :

A ≡FDE C1 ∧ . . . ∧ Ci

=⇒ ∃D1, . . . , Di ∈ C+
RPI(Γ) :

∀j ≤ i, Cj ∈ CRPI(Dj)

=⇒ ∀j ≤ i, ∃E1
j , . . . , E

m
j ∈ CRPI(Γ) :

Dj ≡FDE E1
j ∧ . . . ∧ Em

j

=⇒ ∀j ≤ i, ∃F1
j , . . . , F

m
j ∈ Γ :

E1
j ∈ CRPI(F

1
j), . . . , E

m
j ∈ CRPI(F

m
j)

=⇒ ∀j ≤ i, Cj ∈ CRPI(E
1
j ∧ . . . ∧ Em

j)

=⇒ ∀j ≤ i, ∃k : Cj ≡FDE Ek
j

=⇒ ∀j ≤ i, ∃Fk
j ∈ Γ : Cj ∈ CRPI(F

k
j)

=⇒ C1, . . . , Ci ∈ CRPI(Γ)

=⇒ A ∈ C+
RPI(Γ)

To show that C+
RPI is an E-equivalent extension of CRPI, we need to show that

1. CRPI and C+
RPI have the same E-consequences.

§3.4 An Improvement to Belnap’s Strategy 71

2. For any Γ , CRPI(Γ) ⊆ C+
RPI(Γ)

3. For any Γ , C+
RPI(CRPI(Γ)) = C+

RPI(Γ)

(2) is trivial. For (1) we note that any FDE equivalent formula are also classically

equivalent, so an argument similar to lemma (3.3.2) suffices to show that C+
RPI is an

E-equivalent (U-equivalent) extension of CRPI. Finally we verify that C+
RPI(CRPI(Γ)) =

C+
RPI(Γ):

(⊇): Trivial since CRPI and C+
RPI are both Tarskian closure operators.

(⊆): We note that CRPI is idempotent.

A ∈ C+
RPI(CRPI(Γ)) =⇒ ∃B1, . . . , Bi ∈ CRPI(CRPI(Γ)) :

A ≡FDE (B1 ∧ . . . ∧ Bi)

=⇒ ∃B1, . . . , Bi ∈ CRPI(Γ) :

A ≡FDE (B1 ∧ . . . ∧ Bi)

=⇒ A ∈ C+
RPI(Γ)

We note that definition (3.4.3) makes use of RPI(A) for each A in a given set Γ ,

but
⋃

A∈Γ RPI(A) need not be an independent set of RPIs. In particular redundant

information can be spread across an entire set of formula. This motivates the following

alternative definition:

Definition 3.4.4

For any Γ and any clause C, we define C ∈ RPI∗(Γ) iff

1. for some A ∈ Γ , A |=FDE C and

2. for any B ∈ Γ and clause D, if B |=FDE D and D |=FDE C, then C |=FDE D

For any Γ ,

C∗
RPI(Γ) = RPI∗(Γ) ∪ Γ

Membership for C∗
RPI is clearly more stringent then CRPI – a clause C is in RPI∗(Γ)

only if C is entailed by some member of Γ and no other member of Γ entails a stronger

clause. This definition is similar to definition (3.4.2) for the RPI’s of an individual

formula. However, C∗
RPI is not a closure operator in Tarski’s sense. Although both

72 Rescher-Mechanism

reflexivity and idempotence remain intact, C∗
RPI does not have the usual monotonicity

property.

Example 3.4.5

Γ = {p ∧ (q ∨ r)}, p ∈ C∗
RPI(Γ) and q ∨ r ∈ C∗

RPI(Γ). But q ∨ r 6∈ C∗
RPI(Γ

′) where

Γ ′ = {p ∧ (q ∨ r), q}

The failure of monotonicity should not be regarded as a defect of C∗
RPI. Arguably,

implicit information need not always increase monotonically with respect to supersets;

C∗
RPI is a possible candidate for specifying the content of a given set of logical ex-

pressions. To illustrate the difference between C∗
RPI and CRPI consider the following

example:

Example 3.4.6

Γ = {p, (r ∧ ¬r) ∧ (p ∨ q),¬p}

Since p ∈ C∗
RPI(Γ) we have p ∨ q 6∈ C∗

RPI(Γ). However p ∨ q ∈ CRPI(Γ) given that

p ∨ q ∈ RPI((r ∧ ¬r) ∧ (p ∨ q)). Note that in example (3.4.6) q is an E-consequence of

CRPI(Γ) but not an E-consequence of C∗
RPI(Γ). In general, C∗

RPI does not yield the same

E-consequence (U-consequence) as CRPI.

Proposition 3.4.6

For any Γ ,

1. C∗
RPI(Γ) ⊆ CRPI(Γ)

2. CPRI(C
∗
RPI(Γ)) = CRPI(Γ)

3. C∗
RPI(CRPI(Γ)) = CRPI(Γ)

Proof:

For (1) it suffices to observe that RPI∗(Γ) ⊆
⋃

A∈Γ RPI(A).

(2⊇): Since Γ ⊆ C∗
RPI(Γ), we have CRPI(Γ) ⊆ CRPI(C

∗
RPI(Γ)) by the monotonicity of

CRPI.

(2⊆): From (1) we have C∗
RPI(Γ) ⊆ CRPI(Γ) so by the monotonicity of CRPI it fol-

lows that CRPI(C
∗
RPI(Γ)) ⊆ CRPI(CRPI(Γ)). By the idempotence of CRPI we have

CRPI(C
∗
RPI(Γ)) ⊆ CRPI((Γ)

(3): Trivial from (1).

§3.4 An Improvement to Belnap’s Strategy 73

Returning to examples (3.4.1) and (3.4.2), Belnap’s replacement rules are complete

with respect to the given A and B in these examples, i.e. CRPI(A) ⊂ CB(A) and

CRPI(B) ⊂ CB(B), but the generated implicates are not all prime. So Belnap’s re-

placement rules are unsound with respect to relevant prime implicates. In the general

case, Belnap’s replacement rules are not complete since they are insufficient to trans-

form formulae into clausal form. Clearly for clause reduction we need the additional

rule, ` ¬(B ∧ C) ↔ (¬B ∨ ¬C), to distribute negation over conjunction. However

C+
B is complete with respect to RPI’s, i.e. for any Γ , we have CRPI(Γ) ⊆ C+

B(Γ). We

summarise the relationships of these closure operators in figure (3.8).

�
�

�
�CB

�
�

�
�C∗

RPI

'

&

$

%
CRPI

'

&

$

%

C+
RPI

'

&

$

%

C+
B

1 2 3
4

Figure 3.8: Relationships between Closure Operators

To illustrate consider Γ = {(p ∧ q) ∨ (p ∧ r),¬(p ∧ q) ∧ s}. Clearly, p ∨ r ∈ CB(Γ)

but p ∨ r is not an RPI, so p ∨ r 6∈ C+
RPI(Γ). Region (1) is non-empty. Moreover

¬(p ∧ q) ∈ CB(Γ) but ¬p ∨ ¬q ∈ C+
RPI(Γ), so region (2) is non-empty. Example (3.4.6)

shows that region (3) is non-empty and with minor modification it can show that

region (4) is also non-empty. To see that C+
RPI ⊆ C+

B , it suffices to note that

Proposition 3.4.7

For any clause D and formula A, if D ∈ RPI(A), then E ≡FDE D for some E ∈ CB(A).

Proof:

We note that using arguments similar to the proofs of lemma (3.3.1) and proposi-

tion (3.3.1), we can show that any A is FDE-equivalent to the conjunction of the leaves

of the Belnap’s tree T A, i.e. le(T A) ≡FDE RPI(A). Moreover, each leaf of a Belnap’s

tree is conjunction free in the sense that each leaf is FDE-equivalent to a clause. Hence

if D ∈ RPI(A), there must be a leaf E of T A such that D ≡FDE E.

74 Rescher-Mechanism

We should point out that in adopting the use of either CRPI or C+
RPI for capturing

the informational content of a formula, there is no guarantee that conjunction elimina-

tion is a sound strategy for generating RPIs. In general RPI(A)∪RPI(B) 6= RPI(A∧B).

Example 3.4.7

A = p ∧ (p ∨ q)

In example (3.4.7), it is clear that RPI(p ∧ (p ∨ q)) ⊂ RPI(p) ∪ RPI(p ∨ q). The

containment here is proper. However, we do have the containment RPI(A ∧ B) ⊆
RPI(A) ∪ RPI(B) in the general case.

Lemma 3.4.1

For any clause C and any formula A and B, if A |=FDE C, then A ∧ B |=FDE C.

Proof:

Again we use the ambi-valuation of Dunn ([66]) to prove our claim. Assume that

A |=FDE C. Then we have the implication 1 ∈ v(A) ⇒ 1 ∈ v(C) for any standard

4-valued valuation v of FDE. Consider an arbitrary v′ such that 1 ∈ v′(A ∧ B). Then

it follows that 1 ∈ v′(A) and 1 ∈ v′(B). So on v′ in particular, 1 ∈ v′(C). Since v′ was

arbitrary, we have A ∧ B |=FDE D as required.

Proposition 3.4.8

For any A and B, RPI(A ∧ B) ⊆ RPI(A) ∪ RPI(B).

Proof:

Assume that for an arbitrary clause D we have D ∈ RPI(A ∧ B) but D 6∈ RPI(A) ∪
RPI(B). Then we have A ∧ B |=FDE D but D 6∈ RPI(A) and D 6∈ RPI(B). Then there are

4 cases to consider:

(case 1) A 6|=FDE D and B |=FDE D but D is not prime for B: it follows that there exists a

D0 ∈ RPI(B) such that B |=FDE D0 and D0 |=FDE D but D 6|=FDE D0. By lemma (3.4.1),

we have A ∧ B |=FDE D0. But given that D ∈ RPI(A ∧ B) and D0 |=FDE D, D |=FDE D0

holds. This is a contradiction.

(case 2) B 6|=FDE D and A |=FDE D but D is not prime for A: the proof is similar to case

1 with B replaced with A throughout.

(case 3) Both A |=FDE D and B |=FDE D, but D is prime for neither A nor B: the

argument in case (1) suffices to show that case 3 is impossible.

§3.4 An Improvement to Belnap’s Strategy 75

(case 4) A 6|=FDE D and B 6|=FDE D: we make use of the equivalence between FDE

and tautological entailment as described in Anderson and Belnap ([7]). Since A 6|=FDE D

and B 6|=FDE D, for any arbitrary but fixed DNF = CA
1 ∨ . . . ∨ CA

m of A and DNF =

CB
1 ∨ . . . ∨ CB

n of B, there exist some i ≤ m, and some j ≤ n such that CA
i 6|=FDE D

and CB
j 6|=FDE D. Denote the set of literals occurring in CA

i as lit(CA
i). We have

lit(CA
i)∩ lit(D) = ∅ and lit(CB

j)∩ lit(D) = ∅. Hence (lit(CA
i)∪ lit(CB

j))∩ lit(D) = ∅.

Now consider the formula

E =
∨

1≤k≤m, 1≤l≤n

(CA
k ∧ CB

l)

Clearly, E is a DNF of A ∧ B. Since lit(CA
i ∧ CB

j) = (lit(CA
i) ∪ lit(CB

j)), we note

that lit(CA
i ∧ CB

j) ∩ lit(D) = ∅. We define a 4-valued assignment v on the set of

propositional atoms as follows:

0 ∈ v(p) and 1 6∈ v(p) if ¬p ∈ lit(CA
i ∧ CB

j) and

p 6∈ lit(CA
i ∧ CB

j)

1 ∈ v(p) and 0 6∈ v(p) if p ∈ lit(CA
i ∧ CB

j) and

¬p 6∈ lit(CA
i ∧ CB

j)

1 ∈ v(p) and 0 ∈ v(p) if p ∈ lit(CA
i ∧ CB

j) and

¬p ∈ lit(CA
i ∧ CB

j)

1 6∈ v(p) and 0 6∈ v(p) otherwise

Clearly 1 ∈ v(CA
i ∧ CB

j) and hence 1 ∈ v(E) but by the disjointness of lit(CA
i ∧ CB

j)

and lit(D), 1 6∈ v(D). Hence A∧B 6|=FDE D. But this contradicts the initial assumption

that D ∈ RPI(A ∧ B).

3.4.2 Algorithmic Considerations

Proposition (3.4.8) shows that in terms of using replacement rules in the style of [∗] or

[#] for eliminating conjunctions, the RPIs of a child node need not be the RPIs of the

root node. So although corollary (3.4.1) shows that the standard reduction method for

CNF conversion is indeed complete for generating RPIs, there is no guarantee that the

clauses obtained are indeed independent. Checking for clause subsumption seems

76 Rescher-Mechanism

unavoidable and indeed critical when redundant information is presented. However

when combined with a clause subsumption check, the standard CNF conversion al-

gorithm can provide a sound and complete algorithm for generating RPIs.

Algorithm 3.4.1 RPI Generation
Require: input A ∈ Φ

Ensure: output S = RPI(A)

1: convert A into CNF(A) using the standard reduction method
2: for each C ∈ CNF(A), S := S ∪ {C} if C is relevant prime, else S := S.
3: return S

Algorithm (3.4.1) is a naive method for generating RPIs. It first generates a set of

relevant implicates of A and then prunes the set by removing all non-prime impli-

cates. Clearly we have CNF(A) ≡FDE RPI(A) given corollary (3.4.1). So completeness

is ensured in step (1) provided that step (2) does not remove implicates that are also

prime (and clearly it doesn’t). Although the clause subsumption check may be de-

ployed earlier while CNF(A) is generated, in the worst case the size of CNF(A) can

be exponentially related to the size of A, e.g. if A = (p1 ∧ p2) ∨ . . . ∨ (p2n−1 ∧ p2n),

there are 2n clauses in the corresponding CNF. Our problem is inherently difficult

computationally.

3.4.2.1 PRI via Classical PI Generation

In what follows, we’ll present an alternative algorithm for generating RPI(A) based on

ideas from Ramesh et al [147; 145; 146] and Arieli and Denecker [13; 14]. The main idea

here is to avoid the expensive CNF conversion by using negated normal form (NNF)

instead. Once a formula A is converted into NNF(A), we’ll make use of Arieli and

Denecker’s splitting transform to convert NNF(A) into a positive (i.e. negation free)

formula N̂NF(A).1 The conversion will preserve our problem in the sense that for any

clause D, D ∈ RPI(A) iff D̂ ∈ PI(N̂NF(A)). So in effect our problem is transformed

into the classical problem of prime implicate generation for a positive NNF formula.

The algorithm of [146; 145] can thus be invoked to generate the required PI’s via the

use of the corresponding semantic graph. Before we present the algorithm, we need to

present some of the main definitions.

1We note that Besnard and Schaub [38] employed the same transform for defining signed systems of
paraconsistent reasoning.

§3.4 An Improvement to Belnap’s Strategy 77

Definition 3.4.5

1. A formula A is in negated normal form (NNF) iff no complex subformula of A

is in the scope of a negation, i.e. only atomic formulae are within the scope of a

negation operator.

2. Let NNF(A) denotes the negated normal form of A. Then the splitting transform

of NNF(A), denoted by N̂NF(A), is the formula obtained by uniformly substi-

tuting every unnegated atom pi occurring in NNF(A) with a new (signed) atom

p+
i and every negated atom ¬pi in NNF(A) with a new (signed) atom p−

i [13;

14]. If B = Â for some A, then we define the inverse of splitting transform B

as the formula obtained by uniformly substituting every signed atom p+
i with

literal pi and every signed atom p−
i with literal ¬pi, i.e. Â = A

3. Let v be an arbitrary 4-valued assignment and NNF(A) an arbitrary NNF for-

mula. Then v̂ is the 2-valued (classical) assignment defined as follows:

• For all p+
i and p−

i occurring in N̂NF(A), v̂(p+
i) = 1 iff 1 ∈ v(pi) and v̂(p−

i) =

1 iff 0 ∈ v(pi).

We note that both the splitting transform and v̂ are well defined and do not depend

on A. The following are consequences of definition (3.4.5):

Proposition 3.4.9

1. Let v be an arbitrary 4-valued assignment and NNF(A) be an arbitrary NNF

formula. Let v̂ be a 2-valued assignment as defined in (3) of definition (3.4.5).

Then 1 ∈ v(NNF(A)) iff v̂(N̂NF(A)) = 1 (cf. Lemma (3.1) of [13])

2. For any A and B, A |=FDE B iff N̂NF(A) |= N̂NF(B) (cf. Theorem (3.1) of [13]).

3. For any clause D, D ∈ RPI(A) iff D̂ ∈ PI(N̂NF(A)).

4. The problem of relevant prime implicate generation is polynomially reducible

to classical prime implicate generation.

Proof:

We note that (2) is a simple corollary of (1). For (1), we use an induction on the struc-

ture of NNF(A). There are two base cases with either NNF(A) = pi or NNF(A) = ¬pi.

In the former case we have 1 ∈ v(pi) ⇔ v̂(p+
i) = 1 given by the definition of v̂. In the

later case we have 1 ∈ v(¬pi) ⇔ 0 ∈ v(pi) ⇔ v̂(p−
i) = 1.

78 Rescher-Mechanism

For the induction case we have either NNF(A) = B ∧ C or NNF(A) = B ∨ C.

We note that both B and C must be in NNF form and hence the induction hypothesis

applies. Thus we have 1 ∈ v(B) ⇔ v̂(B̂) = 1 and 1 ∈ v(C) ⇔ v̂(Ĉ) = 1. So 1 ∈
v(B ∧ C) ⇔ [1 ∈ v(B) and1 ∈ v(C)] ⇔ [v̂(B̂) = 1 and v̂(Ĉ) = 1] ⇔ v̂(B̂ ∧ C) = 1. The

case for B ∨ C is similar.

(3 ⇒): Since NNF(A) ≡FDE A it suffices for us to consider an arbitrary D ∈
RPI(NNF(A)). Then by (2) above we have N̂NF(A) |= D̂. This shows that D̂ is an

implicate of N̂NF(A). Toward a contradiction, suppose D̂ is not prime. Then there

exists a clause C such that N̂NF(A) |= C and C |= D̂ but D̂ 6|= C. But N̂NF(A) is

negation free and thus neither C nor D̂ are the empty clause, nor are they tautolo-

gies. Hence there must be a C′ such that NNF(A) |=FDE C′ where Ĉ′ = C. But then

we have C′ |=FDE D but D 6|=FDE C′. This contradicts the primeness of D. Hence

D̂ ∈ PI(N̂NF(A)) as required.

(3 ⇐): Suppose that D 6∈ RPI(NNF(A)). Then either NNF(A) 6|=FDE D or D is not

prime. In the former case, N̂NF(A) 6|= D̂ follows immediately from (2). So suppose

D is relevant implicate of NNF(A) but is not prime. Then there exists a C such that

NNF(A) |=FDE C and C |=FDE D but D 6|=FDE C. By (3⇒) and (2) above it follows that

Ĉ is prime implicate of N̂NF(A) but D̂ 6|= Ĉ. Hence D̂ 6∈ PI(N̂NF(A)) as required.

(4): We note that both NNF conversion and the splitting transform are linearly related

to the input formula. Hence by (3) above, the claim follows.

3.4.2.2 Semantic Graphs

In [147], a non-clausal approach is developed to compute classical prime impli-

cates (implicants). Their basic motivation is to avoid the computational overhead

of CNF/DNF based approaches to prime implicate (implicant) generation that are

known to be exponential. Their general strategy is to use an alternative graph the-

oretic representation of NNF formulae and to reduce the search for prime implicates

(implicants) to a search of un-subsumed d-paths (c-paths) in the graph. Although

the associated decision problems are known to be NP-hard and NP-complete (theo-

rem 8 and theorem 9 of [146]), their theoretical framework is both sound and elegant.

Their experimental results also show that for a certain class of formulae that are hard

for CNF − DNF based methods, their algorithms show significant improvement. We

present some of their central definitions and results here.

§3.4 An Improvement to Belnap’s Strategy 79

Definition 3.4.6

Given an arbitrary formula A in NNF, the semantic graph associated with A, GA =

(N , C,D), is a triple where the nodesN are the literals of NNF(A), C is the set of c-arcs

andD is the set of d-arcs. A c-arc (d-arc) is a conjunction (disjunction) of two semantic

subgraphs of GA. The notion of a subgraph is defined recursively in the standard way

where all elements of N are subgraphs of GA and all complex subgraphs are built up

using c-arcs and d-arcs.

Essentially a semantic graph is an alternative two dimensional representation of

an NNF formula. Following the standard convention, we display c-arcs vertically

and d-arcs horizontally and continue to overload our symbols ‘∧’ for c-arc and ‘∨’

for d-arc. Both c-arcs and d-arcs are obviously associative and commutative. We’ll

use the convention that a d-arc is displayed horizontally in the same order as the

corresponding disjunction from left to right, whereas a c-arc is displayed vertically

with the right conjunct below the left conjunct (see figure (3.9)). To increase readability

we may display a semantic graph with boxes around certain subgraphs. Like many

other graph based representations, the notion of a path plays a central role in graph

based computation.

Example 3.4.8

A = [(¬p ∧ q) ∨ (r ∨ s)] ∧ [¬q ∨ (t ∧ p)]

GA =

¬p

∧
q

∨ r ∨ s

∧

t
∧
p

∨¬q

Figure 3.9: Semantic Graph of A

Definition 3.4.7

Let GA be a semantic graph. Let X and Y be subgraphs of GA and let a and b be nodes

in X and Y respectively. Then a and b are said to be α-connected iff (X, Y) is an α-arc

(α = c, d). An α-link is a complementary (e.g. p and ¬p) pair of α-connected nodes.

80 Rescher-Mechanism

A partial α-path through GA is a multi-set of pairwise α-connected nodes of GA. An

α-path through GA is a partial α-path that is maximal, i.e. it has no proper extension

that is also a partial α-path through GA.

In example (3.4.8), {¬p, q, t, p}, {¬p, q, ¬q}, {r,¬q}, {s,¬q}, {r, t, p}, and {s, t, p} are

all c-paths. On the other hand, {¬p, r, s}, {q, r, s}, {¬q, t} and {¬q, p} are all d-paths.

Although our definition of an α-path is strictly stated in terms of multisets, it would

be convenient to continue to use set theoretic representation for paths. We say that

one α-path is subsumed by another α-path with the understanding that the set of

nodes of one path is contained in the set of nodes of the other. We write lit(P) to

denote the set of literals (nodes) of the path P . Intuitively, a linkless c-path through

GA corresponds to a model of A, whereas the set formed by complementing all literals

occurring in a linkless d-path through GA corresponds to a counter-model of A, i.e. a

truth assignment which falsifies A.

Some of the most important equivalence preserving operations on semantic graph

are path dissolution operations. Strictly speaking there are two types of path disso-

lution operations corresponding to c-path and d-path dissolution. Full details and

definitions are in [146], but roughly the idea of path dissolution is to select a link and

then restructure a semantic graph so that any α-path with the link is removed. A spe-

cial case of c-path dissolution is just the standard resolution rule. A semantic graph

is said to be a full dissolvent if all of its α-paths are linkless. Dissolution for c-paths

is strongly complete in the sense that any sequence of dissolution steps will termi-

nate in a c-linkless semantic graph. In the event that a semantic graph corresponds to

an unsatisfiable formula, repeat application of c-path dissolution will terminate with

the empty graph (∅, ∅, ∅). Similarly dissolution for d-paths will also terminate in a

d-linkless semantic graph. And in the event that the semantic graph corresponds to a

tautology, repeat application of d-path dissolution will also terminate with the empty

semantic graph. In this context the empty graph is ambiguous – it represents both >
and ⊥ in classical logic. In figure (3.9) for instance, GA is d-linkless but not c-linkless.

The interest in linkless graphs lies in the following theorem:

Theorem 3.4.1

([146] theorem 3) In any nonempty semantic graph in which no c-path (d-path) con-

tains a link, every implicate (implicant) of the corresponding formula is subsumed by

some d-path (c-path).

§3.4 An Improvement to Belnap’s Strategy 81

Given the fact that any N̂NF(A) is negation free, any semantic graph G
N̂NF(A)

must

be linkless (i.e. neither c-paths nor d-paths contain any links). Hence by (3) of propo-

sition (3.4.9) and theorem (3.4.1) above, we have the following immediate corollary:

Corollary 3.4.2

Let A be any formula and D be a clause, then D ∈ RPI(A) iff lit(D̂) is subsumed by

some d-path through the semantic graph G
N̂NF(A)

Corollary (3.4.2) provides us with the basis to incorporate the PI algorithm de-

scribed in [145] to generate RPIs. Moreover given (4) of proposition (3.4.9), the com-

putational overhead of the splitting transform will not adversely affect the PI algo-

rithm. However corollary (3.4.2) only warrants completeness but not soundness of

the method. In order to capture the exact RPI’s of a given A we need to define the

largest subset of d-paths of GA that is minimal:

Definition 3.4.8

Let GA be a non-empty semantic graph without c-links, then π(GA) is defined as fol-

lows: P ∈ π(GA) iff

1. P is a d-path through GA,

2. P is linkless (i.e. P 6= >) and

3. For all d-paths Q through GA, lit(Q) 6⊂ lit(P), i.e. P is not subsumed by any

other d-path through GA.

In definition (3.4.8), π(GA) captures exactly the set of prime implicates of A (theo-

rem 6 [145]). Thus for any A we have

RPI(A) = {
∨

lit(P) : P ∈ π(G
N̂NF(A)

)}

where
∨

lit(P) is a disjunction formed with the literals of the path P and
∨

lit(P)

is the inverse of the splitting transform of
∨

lit(P). In short we have the following

alternative algorithm for generating the RPIs for any given A:

In the original PI algorithm for computing classical prime implicates (implicants)

of an arbitrary NNF formula, additional steps are required to first dissolve a semantic

graph into a full dissolvent (with respect to c-paths). But this is clearly not required for

us since any G
N̂NF(A)

is linkless. Similarly PI is not required to check whether a d-path

contains links ((2) of definition (3.4.8)). The only real work to be done is to check for

82 Rescher-Mechanism

Algorithm 3.4.2 RPI Generation via splitting transform and semantic graph
Require: input A ∈ Φ

Ensure: output S = RPI(A)

1: convert A into NNF(A) using the standard reduction method
2: convert NNF(A) to N̂NF(A)

3: call PI to compute π(G
N̂NF(A)

)

4: S := {
∨

lit(P) : P ∈ π(G
N̂NF(A)

)}

5: return S

path subsumption ((3) of definition (3.4.8)). But unfortunately the path subsumption

check is the most computationally intensive task of the algorithm.

The basic idea of PI is to recursively traverse GA from a left-to-right, bottom-up

manner while partial paths are computed along the way. Both tautologies and sub-

sumed paths are eliminated as they are encountered. Each recursive call to PI takes a

collection of (possibly empty) sets of d-paths {Pi| i ∈ I} and a full dissolvent semantic

(sub)graph GB as inputs and correctly computes the maximal set of minimal d-paths,

π(GB) (theorem 8 [145]). The first call to PI will take ({∅},GA) as input and then subse-

quent recursive calls will move PI progressively towards the left bottom-most node of

GA. If a subgraph GB is of the form (X, Y)c then PI will first attempt to find solutions

for Y and then solutions for X while making sure that any subsumed d-path in X is

removed. If GB is of the form (X, Y)d, then PI will attempt to find solution for X first

and then extend all d-paths through X into Y. The set of d-paths {P : i ∈ I} at each

recursive call is the set of non-tautological and unsubsumed d-paths that have been

traversed by PI. Initially {P : i ∈ I} is empty until PI meets the left bottom-most node

of GA. Whenever PI is called for a node, it will attempt to extend all current d-paths

with the new node unless the complement of the node is already in a path (thereby

avoiding tautologous paths). This is done repeatedly until all nodes in the graph are

visited by PI at least once.

To illustrate consider GA in figure (3.10). After the initial recursive calls, PI will

meet the left bottom most node of GA. In this case it is n1. PI will update its current

set of d-paths to {{n1}} then go right to n2 and see if the single d-path {n1} can be

extended. Then PI will continue upward to see if n3 can be added to {n1}. At the

end of each move upward along a c-path, PI must check for path subsumption in the

current set of d-paths and remove any subsumed path. In this case if n2 and n3 are

neither complementary literals nor identical literals, then the current set of d-paths

would be {{n1, n2}, {n1, n3}}. After traversing through n1, n2 and n3, PI will again

§3.4 An Improvement to Belnap’s Strategy 83

Algorithm 3.4.3 PI for computing π(GA)

Require: input (paths,GA)

Ensure: output paths′′ = π(GA)

1: PI(paths, GA)
2: if paths = ∅ then
3: return ∅
4: end if
5: if GA is a literal then
6: paths′ := ∅;
7: paths′′ := ∅
8: for all P ∈ paths do
9: if GA ∈ P then

10: paths′ = paths′ ∪ P
11: else if ¬GA 6∈ P then
12: paths′′ := paths′′ ∪ P ∪ GA

13: end if
14: end for
15: paths′′ := paths′ ∪ (paths′ \ {P ∈ paths′ : ∃Q ∈ paths′ ∧Q ⊂ P})

16: return paths′′

17: else if GA = (X, Y)c then
18: paths′ := PI(paths, Y)

19: paths′′ := PI((paths \ paths′), X)

20: paths′′ := (paths′ ∪ paths′′)
21: \{P ∈ paths′| ∃Q ∈ paths′′ ∧Q ⊂ P}

22: \{P ∈ paths′′| ∃Q ∈ paths′ ∧Q ⊂ P}

23: return paths′′

24: else if GA = (X, Y)d then
25: paths′ := PI(paths, X)

26: paths′′ := PI(paths′, Y)

27: return paths′′

28: end if

84 Rescher-Mechanism

GA =

n7

∧
n4

∨ n5 ∨ n6

∧

n3

∧
n2

∨n1

Figure 3.10: Construction of π(GA) using PI

move to the left bottom most node of the upper subgraph, meeting n4. PI will then

attempt to extend {n4} with n5 and continuing with n6. After meeting n6, PI will once

again check for subsumption, if there is no subsumption then once again the current

set of d-paths is updated to {{n1, n2}, {n1, n3}, {n4, n5, n6}}. PI then continues with a

new d-path starting with n7 moving right toward n5 and then n6. Finally PI will

complete the last subsumption check before updating the current set of d-paths one

last time.

As we pointed out earlier, path subsumption checking is computationally expen-

sive. Thus in [146], various optimisation techniques based on anti-link operations are

introduced to restructure a semantic graph before PI is invoked. The restructuring

involves early removal of subsumed d-paths. In some cases the improvement is dra-

matic – without anti-link operations PI will take exponential time to find the solution

whereas with anti-link operations PI will only take polynomial time. Anti-links are

essentially multiple occurrences of the same literal. If (X, Y)α is an α-arc in a seman-

tic graph and AX and AY are nodes of the same literal A in X and Y respectively, then

{AX, AY} is said to be an (α-) anti-link. The presence of an anti-link in a semantic graph

is a necessary (but not sufficient) condition for the existence of a non-tautologous

subsumed d-paths in a semantic graph (theorem 15 [146]), i.e. the occurrence of a

non-tautologous subsumed d-paths implies the existence of either a c-anti-link or a

d-anti-link in a semantic graph. The amount of subsumption checking required can

be reduced by removing anti-links preemptively. In some cases, anti-links can be com-

pletely eliminated in a semantic graph, thereby eliminating the need for any subsump-

tion checking. But in the general case, complete elimination of anti-links in a semantic

graph is not always possible.

§3.5 Conclusion 85

3.5 Conclusion

In this chapter we have seen that reasoning with inconsistent information can be di-

vided into two distinct stages. In the first stage inconsistent information encoded in a

full language can be rewritten in such a way as to facilitate the isolation of the incon-

sistent part of the information. In the second stage various deduction strategies based

on either classical or nonclassical logics can then be applied to the rewrite. We note

that Belnap’s strategy of dividing reasoning into a preprocessing stage and a deduction

stage is akin to a recent approach to knowledge compilation. In knowledge compila-

tion a knowledge base encoded in a logical language is first complied into a target

language. The complied knowledge base is then deployed during run-time query

answering. The main objective of the compilation is to make on-line reasoning easier.

The hope is that the time required for compilation will have an eventual payoff during

run-time query answering.

With respect to preprocessing inconsistent information however, we find Belnap’s

suggestion of using conjunctive containment wanting. In particular, inconsistent infor-

mation tends to interact badly with disjunctive and redundant information. Although

conjunctive containment generally reduces disjunctive consequences, it is however in-

sufficient. Our remedy is to use a relevant notion of prime implicates as the basis to

both preserve information and minimise the potentially harmful disjunctive content

of inconsistent information.

86 Rescher-Mechanism

Chapter 4

Uncertainties and Inconsistencies

4.1 Introduction

In previous chapters, we have introduced a preservation theoretic analysis of infer-

ence. We have done so both in terms of a measurement based on coverings of a set

as well as an information theoretic measurement. We have also argued that, at least

with respect to the method of reasoning from maximal consistent subsets, we gener-

ally need to pay attention to the syntactic form of the premises since these measure-

ments are essentially syntax sensitive notions. In this chapter, we approach the issue

of preservation from a slightly different angle; we’ll look at the problem of uncertain-

ties that are transmitted from an inconsistent set of premises to the conclusion in a

given inference. The problem can be stated as follows: suppose we are given an in-

ference with an inconsistent set of premises {A1, . . . , Am} together with the conclusion

B derivable in some logic L. Suppose further that we have a particular method for

assigning uncertainties to each premise and to the conclusion in terms of probabili-

ties. Furthermore let’s suppose that for each i ≤ m, the uncertainty of each premise is

πi ∈ [0, 1], i.e. U(Ai) = πi. What then is the maximum value of the uncertainty of the

conclusion?

Our question is important for several reasons. Firstly, even if we have a classi-

cally valid inference with consistent premises it is not always the case that we can be

completely certain about each one of the premises. The validity of an inference only

guarantees that if there is no uncertainty in the premises, i.e. they are all true, then

there can be no uncertainty in the conclusion. In an extreme case we may have a valid

inference with a billion consistent premises and the conclusion is the conjunction of

all the premises. The uncertainty of each premise may be less then one in a billion but

the cumulative uncertainty of the conclusion may turn out to be prohibitively high.

To determine the uncertainty maxima of the conclusion of an inference is one way to

87

88 Uncertainties and Inconsistencies

provide probabilistic assurance in uncertain reasoning – a kind of assurance that goes

beyond mere deductive validity. Secondly, in the case of inferences with inconsistent

premises we have a general problem of assessing the general quality of the conclusion.

This problem cannot be solved by simply switching to a nonclassical logic. Indeed

with a few notable exceptions, most proponents of paraconsistent logics have not re-

ally addressed the issue of quality control at all. Even with a seemingly innocent

inference like the conjoining of premises, the resulting conclusion may turn out to be

unacceptable due to high uncertainty. Finally, our problem is important in light of the

remarks of Adams and Levine in [5] that

inconsistent premise sets introduce some surprising uncertainty phenom-

ena whose interpretations involve problems (p.432)

In this respect, the current chapter can be seen as a continuation of the unfinished

work of Adams and Levine in [5]. But the theoretical foundation can be traced back

to the work of Boole a century ago in [42] and has been revived, a century later, by

Hailperin in [81] and more recently by Nilsson in [134] and Knight in [109; 110; 111].

We do not proclaim that the theoretical work here is particularly new; but we do hope

to show that the general framework of probabilistic analysis of inferences fits well

with the preservational approach to paraconsistent reasoning.

4.2 Probabilities over Possible Worlds

An obvious way to generate an uncertainty function for a finite set of premises is

to assign probabilities to the set of interpretations of the premises and then sum the

probabilities over all interpretations that fail to support a given premise. There is

both a decision and an optimisation version of the problem. Since we are primarily

interested in the analysis of inference from inconsistent premises, for our purpose the

optimisation version is of more interest.

Before we formally define our problem, we’ll first fix some notations. Given a set

Γ = {A1, . . . , Am} with n distinct variables, the set of interpretations over Γ , written as

WΓ , is the set of truth assignments over Γ restricted to variables occurring in Γ . Since

Γ is assumed to have n distinct variables, |WΓ | is exactly 2n. We call each vi ∈ WΓ

a possible world for Γ and assume that there is an arbitrary but fixed enumeration

of these possible worlds. For each i ≤ 2n, we assign a probability Pi ∈ [0, 1] to vi.

Furthermore we require that
∑2n

i=1 Pi = 1. Intuitively, Pi is the probability that vi

§4.2 Probabilities over Possible Worlds 89

is the actual world or the actual outcome. Next we define a m × 2n binary matrix

A = (aij) by setting

aij =

0 if vj |= Ai

1 otherwise

(4.1)

We’ll call the matrix A an uncertainty matrix for Γ . We note that in the standard lit-

erature, aij is set to 1 if vj |= Ai and 0 otherwise. But since we take uncertainty to be

probability of Ai to fail, it is convenient for us to use (4.1) to define U(Ai) instead.

We note that different enumerations of Γ and WΓ would generate different uncer-

tainty matrices A = (aij) with different orderings on their rows and columns. But

we’ll treat these matrices as belonging to the same equivalence class invariant under

the usual row and column rotation. We define the uncertainty of Ai by setting

U(Ai) =

2n∑
j=1

aijPj = πi (4.2)

The set of equalities and inequalities can be written concisely in the matrix notation:

1 P = 1

A P = π (4.3)

P ≥ 0

where 1 is a 2n unit row vector, P and π are the column vectors [P1, . . . , P2n]T and

[π1, . . . , πm]T respectively. As usual we use [. . .]T to denote the transpose of [. . .]. We

call each distinct column vector P a probability distribution for Γ and each distinct

column vector π an uncertainty vector for Γ . We note that the uncertainty of Ai ex-

pressed in (4.2) is defined relative to a given probability distribution P. Where it is

necessary, we’ll use ‘UP(Ai)’ to denote the uncertainty of Ai relative to P. We note

that relative to any finite Γ and probability distribution P, the function UP() satisfies

the usual Kolmogorov’s Axioms.

The decision version of our problem (uncertainty satisfiability problem, USAT)

can now be stated as follows: given an uncertainty vector π for Γ , is there a probability

distribution P for Γ such that the set of equalities and inequalities in (4.3) holds with

respect to P and π? We note that although there are uncountably many probability

distributions for Γ and thus the search space is infinite, our problem is effectively de-

90 Uncertainties and Inconsistencies

cidable. Any of the standard algorithms (e.g. various versions of the simplex method

or the Fourier-Motzkin elimination procedure [82] p. 36–39) for solving linear systems

can be used as a decision procedure. If the answer to our decision problem is ‘yes’,

then we say that π is an uncertainty assignment for Γ .

Now consider the addition of one more sentence B with unknown uncertainty

πm+1. In the optimisation version, we wish to minimise (or maximise) the value U(B) =

πm+1 subject to the constraints imposed by (4.3). Again in matrix notion, we have:

min (max) πm+1 =

2n∑
j=1

am+1,jPj

subject to

1 P = 1

A P = π (4.4)

P ≥ 0

We note that in (4.4), A is now a (m+ 1)×2n matrix where n is now the number of

variables occurring in both Γ and B. Clearly, the optimisation version of USAT is just

a linear programming problem and thus can be effectively solved using the simplex

method. In general, linear programs of interest are those in which the number of

unknowns exceeds the number of equations. So for our purpose, we’ll assume that in

(4.4) m + 1 ≤ 2n. Since a set of premises {A1, . . . , Am} may not be logically independent

in the sense that some premise may be provable from the remaining premises, we

make no assumption about the rank of the matrix A in (4.4).

4.3 Bounded USAT and Inconsistencies

The decision and optimisation versions of USAT expressed in (4.3) and (4.4) should

be distinguished from a further version of USAT. In the bounded version of USAT,

(4.4) is replaced with the inequalities:

A P ≤ π (4.5)

We call any such π in (4.5) which has a solution a bound vector. A vector with

identical entries in all of its coordinate is a uniform vector. In the more general version

§4.3 Bounded USAT and Inconsistencies 91

of bounded USAT, A P is bounded from both above and below:

π ≤ A P ≤ π (4.6)

The decision version of bounded USAT is of particular interest since it captures

the classical notion of logical consistency and inconsistency. In particular we have the

follow equivalences:

Theorem 4.3.1

Let Γ = {A1, . . . , Am} and let A be a uncertainty matrix of Γ . The following statements

are equivalent:

1. Every vector π ∈ [0, 1]m is a bound vector for Γ , i.e. for every vector π ∈ [0, 1]m,

A P ≤ π hold for some P.

2. Every uniform vector π ∈ [0, 1]m is a bound vector for Γ , i.e. for every uniform

vector π ∈ [0, 1]m, A P ≤ π hold for some P.

3. Γ is classically consistent.

Proof:

(1. ⇒ 2.): Trivial.

(2. ⇒ 3.): If Γ is inconsistent, then every column of A must contain at least one entry

of 1. Thus for every probability distribution P of Γ , there must be an i ≤ m such that

U(Ai) = πi > 0. Hence A P 6≤ [0, · · · · · · , 0]T for every P.

(3. ⇒ 1.): If Γ is consistent, then there must be a j such that the j-th column of A is

the vector [0, · · · · · · , 0]T . Let P be the probability distribution where Pj = 1. Clearly,

A P = [0, · · · · · · , 0]T and so A P ≤ π for every uncertainty vector π.

The implication of the equivalence of (2) and (3) is that for any inconsistent set Γ ,

there would be uniform vectors that are not bound vectors for Γ . Of those uniform

vectors that are bound vectors for an inconsistent Γ , the most interesting one is of

course the minimal one, i.e. one that satisfies inequality (4.5), but no (co-ordinate

wise) smaller vector also satisfies (4.5). For minimally inconsistent sets, there is a

straightforward way to determine a minimal uniform bound. But first we note that

for an inconsistent set, the sum of the uncertainties of its members is bounded below

by 1:

92 Uncertainties and Inconsistencies

Theorem 4.3.2

If Γ is inconsistent then, for any probability distribution P,
∑

A∈Γ U(A) ≥ 1.

Proof:

Let n be the number of variables occurring in Γ . Let A be an uncertainty matrix for Γ .

Consider an arbitrary probability distribution P = [P1, . . . P2n]T and equalities:

A [P1, . . . , P2n]T = [π1, . . . , π|Γ |]
T (4.7)

Clearly it follows from (4.7) that

π1 + . . . + π|Γ | =

|Γ |∑
i=1

2n∑
j=1

aijPj (4.8)

Since Γ is inconsistent, each column of A must contain at least one entry of 1. Thus for

each Pj ∈ P, there must be an i ≤ |Γ | such that aij = 1 and thus 1 × Pj must occur at

least once in the RHS of (4.8). But P is a probability distribution and thus
∑2n

j=1 Pj = 1.

This implies in particular that RHS of (4.8) ≥ 1. We conclude that
∑

A∈Γ U(A) ≥ 1.

The converse of theorem (4.3.2) is obviously also true since the consistency of Γ

must be witnessed by a zero column in A so distributing maximum probability into

such a column yields
∑

A∈Γ U(A) = 0 immediately.

Theorem 4.3.3

Let Γ be a minimally inconsistent set of formulae such that |Γ | = m. Then the minimal

uniform bound vector for Γ is exactly m−1 (= [m−1 . . .m−1︸ ︷︷ ︸
m times

]T).

Proof:

Suppose Γ is minimally inconsistent and |Γ | = m. Let n be the number of variables

occuring in Γ . Let A be an uncertainty matrix for Γ . By the minimal inconsistency

of Γ , A must contain the identity matrix of order m as a sub-matrix. Without loss of

generality we may assume that the identity sub-matrix occupies the left most position

of A, otherwise we may perform the usual row and column operations to put A into

such a configuration. Let the probability distribution

D = [

2n times︷ ︸︸ ︷
m−1, . . . , m−1︸ ︷︷ ︸

m times

, 0, . . . , 0]T

§4.4 Geometric Rendering of Inconsistencies 93

Clearly we have AD = m−1, so m−1 is a uniform bound vector for Γ . It’s minimal-

ity follows from theorem (4.3.2) since we have
∑

m−1 = m(m−1) = 1.

In addition, the size of the largest minimal inconsistent subset of Γ gives an abso-

lute lower bound on the number of variables in Γ :

Theorem 4.3.4

If Γ = {A1, . . . , Am} is minimally inconsistent, then there are at least dlog2 me many

distinct variables occurring in Γ .

Proof:

We assume that |Γ | = m and Γ is minimally inconsistent. Towards a contradiction

suppose that there are k variables occurring in Γ where k < log2 m. Since there are k

variables occurring in Γ , there are exactly 2k distinct valuations for Γ . By the minimal

inconsistency of Γ however, for each i ≤ m, there must be a distinct valuation vi

satisfying Γ \{Ai}. Hence there must be at least m distinct valuations. But by the initial

assumption k < log2 m and so 2k < m. This contradicts the minimal inconsistency of

Γ . Hence k ≥ log2 m. But k ∈ Z+, hence k ≥ dlog2 me.

Corollary 4.3.1

If m is the cardinality of the largest minimal inconsistent subset of Γ , then there are at

least dlog2 me many distinct variables occurring in Γ .

4.4 Geometric Rendering of Inconsistencies

According to theorem (4.3.3), the minimal uniform uncertainty bound of a minimal

inconsistent set is inversely proportional to the size of the set. Thus the larger the set,

the smaller the bound. The geometric relationship between the uniform bound vectors

and the uncertainty vectors (of a minimally inconsistent Γ) can be displayed easily in

the 2-dimensional and 3-dimensional cases. The dimension here simply corresponds

to the cardinality of the set Γ .

94 Uncertainties and Inconsistencies

Figure 4.1: Uniform Bounds and Uncertainties in 2D

Figure 4.2: Uniform Bounds and Uncertainties in 3D

In the 2-dimensional case (figure (4.1)), the set of all possible uncertainty assign-

§4.4 Geometric Rendering of Inconsistencies 95

ment of Γ are contained within the area of the unit square on or above the diagonal

x + y = 1. Recall that in the proof of theorem (4.3.3), the sum of all the co-ordinates

of an uncertainty assignment is ≥ 1. The set of uniform vectors form the other main

diagonal of the unit square. The minimal bound vector is simply the intersection of

the two diagonals.

In the 3-dimensional case (figure (4.2)), the set of all possible uncertainty assign-

ments for Γ is contained within the unit cube on or above the plane x + y + z = 1.

The set of uniform vectors again forms the main diagonal joining the origin and its

opposing vertex. The minimal bound vector in this case is simply the intersection of

the diagonal and the plane.

The generalisation is obvious. For any minimal inconsistent set of size m, the

set of uncertainty assignments is contained within the unit hyper-cube on or above

the hyper-plane
∑m

i=1 xi = 1. The set of uniform vectors forms the diagonal from

the origin to the opposing vertex (1, . . . , 1). The minimal bound vector is again the

intersection of the diagonal and the hyper-plane.

Theorem 4.4.1

For any minimal inconsistent set Γ , the minimal bound vector for Γ is the minimal

uniform bound vector for Γ .

Proof:

Recall that the euclidean distance between x, y ∈ Rm is defined by

e(x, y) =

∣∣∣∣∣∣
√√√√ m∑

i=1

(xi − yi)2

∣∣∣∣∣∣ (4.9)

Thus the euclidean distance between any x = 〈x1, . . . xm〉 ∈ [0, 1]m and the ori-

gin is
∣∣∣∣√∑m

i=1 x2
i

∣∣∣∣. From theorem (4.3.2), we know that for any inconsistent Γ =

{A1, . . . , Am}, any uncertainty assignment x ∈ [0, 1]m for Γ is such that
∑m

i=1 xi ≥ 1.

There are two cases to consider:

(case 1)
∑m

i=1 xi = 1: We want to find value x ∈ [0, 1]m with minimal distance to the

96 Uncertainties and Inconsistencies

origin subject to the constraint that
∑m

i=1 xi = 1, i.e.

minimise e(x, 0) =

∣∣∣∣∣∣
√√√√ m∑

i=1

x2
i

∣∣∣∣∣∣ (4.10)

subject to
m∑

i=1

xi = 1 (4.11)

Without loss of generality we may consider minimising the square of (4.10) instead,

i.e.

f(x) =

m∑
i=1

x2
i (4.12)

We note that the constraint (4.11) is a closed and bounded subset of the hyper-cube

on which f is continuous, thus an absolute minimum value must occur. To find the

minima we let g(x) =
∑m

i=1 xi and use Lagrange multipliers on all partial derivatives

of f and g:

∇f(x) =
(

∂f
∂x1

, . . . , ∂f
∂xm

)
= (2x1, . . . , 2xm)

whereas

∇g(x) =
(

∂g
∂x1

, . . . , ∂g
∂xm

)
= (1, . . . , 1)

Solving for the Lagrange multiplier λ in ∇f(x) = λ∇g(x) yields:

∀i, 1 ≤ i ≤ m, 2xi = λ

=⇒ x1 = x2 = . . . = xm

But (x1, . . . , xm) is on the hyper-plane
∑m

i=1 xi = 1. Hence for each i, xi = m−1. The

other remaining possible locations for extrema to occur are the endpoints or the point

x where ∇g(x) = 0. We note however that for no x ∈ [0, 1]m do we have ∇g(x) = 0.

Hence the latter case is impossible after all. Now each of the endpoints of g is of the

form xe = (. . . , 0, 1, 0, . . .). Hence for each endpoint xe, f(xe) > f(m−1). Hence we

conclude that the m−1 must be the absolute minimum.

(case 2)
∑m

i=1 xi > 1: since [0, 1]m is a euclidean space, if x = (x1, . . . , xm) is such that

§4.5 Multiple Inconsistencies 97

∑m
i=1 xi > 1, then there must be a y = (y1, . . . , ym) such that

∑m
i=1 yi = 1 and

e(x, 0) = e(y, 0) + e(x, y) (4.13)

where e(x, y) > 0. From the previous case however, we know that the absolute

minima of f on the hyper-plane
∑m

i=1 xi = 1 occurs at m−1 . It follows then that

e(y, 0) ≥
√

m−1. Hence e(x, 0) >
√

m−1. Since x was arbitrary, we conclude that

any such x would have e(x, 0) >
√

m−1. This suffices to show that m−1 is the closest

uncertainty assignment to the origin.

4.5 Multiple Inconsistencies

The general situation for finding uniform bound vectors for an inconsistent set is con-

siderably more difficult. Although the set of uncertainty assignments is on or above

the hyper-plane
∑m

i=1 xi = 1, we have no information on where the uniform vector

may intersect with the set of uncertainty assignments (if they intersect at all). Even

if the two do intersect, we have no guarantee that result analogous to theorem (4.4.1)

should hold.

In the general case, an inconsistent set may have multiple minimally inconsistent

subsets. We say that a set of formulae is contradiction free if it contains no singleton

inconsistency. We can obtain some bounds, though not necessarily minimal ones, by

looking at the smallest minimal inconsistent subset(s).

Theorem 4.5.1

Let Γ be inconsistent but contradiction free. Let n be the number of variables occurring

in Γ and m be the size of the smallest minimal inconsistent subset of Γ . Then there exist

a probability distribution P such that for all A ∈ Γ , U(A) ≤ 2n−(m−1)
2n .

Proof:

We let ∆ = {A1, . . . , Am} ⊆ Γ be a smallest minimal inconsistent subset. Consider the

uncertainty matrix A for Γ where the first m row of A correspond to members of ∆. We

note that by the minimal inconsistency of ∆, A must be configurable with an identity

submatrix of order m in the top left most position, i.e.

A =

[
Im B

C D

]

98 Uncertainties and Inconsistencies

In the worst case B may contain only 1’s and thus the maximum possible number of

1’s in any given row of the submatrix [Im B] is 2n −(m−1). We let {Am+1, . . . , A|Γ |} ⊆ Γ

be the set of formulae corresponding to the rows of the submatrix [C D]. Let Aj be an

arbitrary but fixed element of {Am+1, . . . , A|Γ |} and consider

Π =
{
Σ ∪ {Aj} : Σ ⊂ ∆ and |Σ| = (m − 2)

}
We note that given |∆| = m, we have |Π| =

(
m

m−2

)
. Since every Σ ∪ {Aj} ∈ Π is of size

(m − 1), there must be a vΣ ∈ WΓ which witnesses the consistency of Σ ∪ {Aj}.

Claim 1: For no v ∈ WΓ do we have v witnesses the consistency of more than 2 mem-

bers of Π.

Proof of Claim 1: Suppose to the contrary that there is some v ∈ WΓ which witnesses

the consistency of some distinct Σ1 ∪ {Aj}, Σ2 ∪ {Aj}, Σ3 ∪ {Aj} ∈ Π. It follows that v

must witness the consistency of Σ1 ∪ Σ2 ∪ Σ3 ∪ {Aj}. But note that for each i ∈ {1, 2, 3},

|Σi| = m − 2 and Σi ⊂ ∆. So given that Σ1, Σ2 and Σ3 are all distinct it follows that

Σ1 ∪ Σ2 ∪ Σ3 = ∆ and thus ∆ ⊆ Σ1 ∪ Σ2 ∪ Σ3 ∪ {Aj}. Given that ∆ is inconsistent,

Σ1 ∪Σ2 ∪Σ3 ∪ {Aj} must be inconsistent. This contradicts the initial assumption that v

witnesses the consistency of Σ1 ∪ Σ2 ∪ Σ3 ∪ {Aj} and hence for no v ∈ WΓ do we have

v being the witness of more then 2 members of Π.

Claim 2: There are at least (m− 1) entries of zero’s in each row of the submatrix [C D].

Proof of Claim 2: We consider 3 cases:

Case 1: m = 2. We note that since Γ contains no contradictions, each row of A must

contain at least one entry of 0.

Case 2: m = 3. Then |Π| =
(

m
m−2

)
=

(
3
1

)
= 3. But by claim (1) no single v ∈ WΓ can

witness the consistency of all three members of Π. Hence to witness each member of Π

requires at least two distinct u, v ∈ W It follows that every row of [C D] must contain

at least two entries of 0.

Case 3: m ≥ 4. Clearly given claim (1), at least
⌈ |Π|

2

⌉
many distinct v ∈ WΓ are required

§4.5 Multiple Inconsistencies 99

to witness the consistency of each member of Π. But note that for m ≥ 4 we have

⌈(
m

m−2

)
2

⌉
≥ 1

2

(
m

m − 2

)

=
1

2
× m× (m − 1)

2

≥ (m − 1)

Hence there are at least (m − 1) entries of 0 in each row of [C D] as required.

Given claim (2) the maximum possible number of 1’s in each row of [C D] must be

2n − (m − 1). Hence,

A[2−n, . . . , 2−n]T ≤ [
2n − (m − 1)

2n
, . . . ,

2n − (m − 1)

2n
]T

We note that the bound given in theorem (4.5.1) is an absolute bound. However

it is not an attractive bound since 2n grows exponentially with n and thus the bound

approaches 1 very quickly as n grows. One obvious way to obtain a lower bound is

to consider the size of Γ instead.

Theorem 4.5.2

Let Γ be inconsistent but contradiction free. Let n be the number of variables occurring

in Γ and m be the size of the smallest minimal inconsistent subset of Γ . Then there

exists a probability distribution P such that for all A ∈ Γ , U(A) ≤ |Γ |−(m−1)
|Γ | .

Proof:

Let |Γ | = k. Since m is the size of the smallest inconsistent subset of Γ , every subset

∆ ⊆ Γ of size m−1 must be consistent. The number of such subsets is
(

k
m−1

)
. Let these

subsets be enumerated as ∆1, . . . , ∆(k
m−1)

.

For each subset ∆i, 1 ≤ i ≤
(

k
m−1

)
, there must be a v ∈ WΓ that witnesses the consis-

tency of ∆i. For each ∆i choose one such witness v∆i
and set

ti(v) =

(

k
m−1

)−1
if v = v∆i

0 otherwise

(4.14)

100 Uncertainties and Inconsistencies

We note that the v∆i
’s are not necessarily unique, i.e. for i 6= j, v∆i

= v∆j
but ∆i may

be distinct from ∆j.

For each j, 1 ≤ j ≤ 2n, we define the probability:

Pj = t1(vj) + . . . + t(k
m−1)

(vj)

We let the probability distribution P = [P1, . . . P2n]T , i.e.

P =

t1(v1) + . . . + t(k

m−1)
(v1)

t1(v2) + . . . + t(k
m−1)

(v2)

...

t1(v2n) + . . . + t(k
m−1)

(v2n)

 (4.15)

Claim 1: P is a probability distribution over WΓ , i.e.
∑2n

j=1 Pj = 1.

Proof of claim 1: We note that for each i, 1 ≤ i ≤
(

k
m−1

)
,

2n∑
j=1

ti(vj) =

(
k

m − 1

)−1

Hence

(k
m−1)∑
i=1

2n∑
j=1

ti(vj) =

(
k

m − 1

)
×

(
k

m − 1

)−1

= 1

This completes the proof of our claim. We note that in (4.15) there are exactly
(

k
m−1

)
many non-zero terms.

Let A be an arbitrary but fixed member of Γ , we note that there are exactly
(

k−1
m−2

)
many subsets ∆i containing A. Without loss of generality we may assume that A is

contained in the first
(

k−1
m−2

)
subsets ∆i. We let [a1, . . . , a2n] be the row vector in the

§4.5 Multiple Inconsistencies 101

uncertainty matrix A for the corresponding A ∈ Γ . Clearly we have

U(A) = a1 ×
[
t1(v1) + . . . + t(k

m−1)
(v1)

]
+ . . .

+ a2n ×
[
t1(v2n) + . . . + t(k

m−1)
(v2n)

]
= a1 × t1(v1) + . . . + a1 × t(k

m−1)
(v1)

+ . . .

+ a2n × t1(v2n) + . . . + a2n × t(k
m−1)

(v2n)

=

a1 × t1(v1)

+
...

+

a2n × t1(v2n)

+ . . . +

a1 × t(k
m−1)

(v1)

+
...

+

a2n × t(k
m−1)

(v2n)

(4.16)

Claim 2: For each i, 1 ≤ i ≤
(

k−1
m−2

)
, and each j, 1 ≤ j ≤ 2n, if ti(vj) 6= 0, then

aj × ti(vj) = 0.

Proof of claim 2:

ti(vj) 6= 0 =⇒ vj |=
∧

∆i

=⇒ vj |= A

=⇒ aj = 0

=⇒ aj × ti(vj) = 0

It follows from claim (2) and the definition of ti that there are at least
(

k−1
m−2

)
many

zero terms in (4.16). Thus the maximum number of non-zero terms in (4.16) is
(

k
m−1

)
−

102 Uncertainties and Inconsistencies

(
k−1
m−2

)
. But since each non-zero term in (4.16) is equal to

(
k

m−1

)−1
, we have

U(A) ≤
(

k
m−1

)
−

(
k−1
m−2

)(
k

m−1

) = 1 −

(
k−1
m−2

)(
k

m−1

)

= 1 −

[
(k − 1)!

[(k − 1) − (m − 2)]!(m − 2)!
× [(k − (m − 1)]!(m − 1)!

k!

]

= 1 −

[
1

[(k − 1) − (m − 2)]!
× [(k − (m − 1)]!(m − 1)

k

]

= 1 −

[
1

[(k − m + 1)]!
× (k − m + 1)!(m − 1)

k

]

=
k − (m − 1)

k

Since A was arbitrary, we conclude that A P ≤ k−(m−1)
k .

Since k−(m−1)
k approaches 1 at a rate that is only linearly related to increases in k,

theorem (4.5.2) is an improvement over theorem (4.5.1). We note that in obtaining the

bound in theorem (4.5.2) we make no assumption about whether members of Γ are

independent. Further improvement can be made if we consider only certain subsets

of Γ that are independent in a certain sense.

Definition 4.5.1

We say that a set of formulae Γ is pairwise independent iff for any A,B ∈ Γ , neither

A ` B, nor B ` A. A subset Π ⊆ Γ is said to be a cover of Γ iff

⋃
B∈Π

Cn(B) =
⋃
A∈Γ

Cn(A)

where Cn is the usual closure under classical deduction.

The notion of a pairwise independent set is an obvious generalisation of the usual

notion of independence – a set of formulae is independent if no member of the set is a

consequence of the remaining members of the set. Note that if a set Γ is independent

in the ordinary sense, then no proper subset of Γ can be inconsistent (though Γ may be

minimally inconsistent). Generalising this, sets that are pairwise independent must be

§4.5 Multiple Inconsistencies 103

contradiction free, whereas sets that are n-independent in the sense that no member

of the set is a consequence of any subset of size n − 1 must be free of any inconsistent

subset of size≤ n−1. Thus an n-independent inconsistent set must only have minimal

inconsistent subsets of size ≥ n. It is straightforward to verify from definition (4.5.1)

that every set of (contradiction free) formulae Γ must contain a pairwise independent

cover of Γ .

Theorem 4.5.3

Let Γ be inconsistent but contradiction free. Let m be the size of the smallest minimal

inconsistent subset of Γ and Π be any pairwise independent cover of Γ . Then there

exists a probability distribution P such that for all A ∈ Γ , U(A) ≤ |Π|−(m−1)
|Π| .

Proof:

Let Γ and Π fulfil the hypotheses.

Claim 1: m is the size of the smallest minimal inconsistent subset of Π.

Proof of Claim 1: Clearly given that Π ⊆ Γ , the size of the smallest minimal inconsistent

subset of Π cannot be less than m. We now show that there is a minimal inconsistent

subset of Π of size m. Let ∆ be a minimal inconsistent subset of Γ with |∆| = m. By

the covering property of Π, for each Ai ∈ ∆ there must be a Bk ∈ Π such that Bk ` Ai.

We note that for no two distinct Ai, Aj ∈ ∆ do we have Bk ` Ai and Bk ` Aj for some

Bk ∈ Π. For otherwise, (∆ \ {Ai, Aj}) ∪ {Bk} is a minimal inconsistent subset of size

< m. Let ∆′ ⊆ Π be a set with the property that each Ai ∈ ∆ is implied by exactly one

Bj ∈ ∆′. Clearly, ∆′ must be minimally inconsistent and of size m. This completes the

proof of our claim.

Claim 2: For any formulae A,B if A ` B then for all probability distributions P, U(B) ≤
U(A).

Proof of Claim 2: Suppose that A ` B. Consider an arbitrary but fixed l×2n uncertainty

matrix A with row ri = [ai1, . . . , ai2n] corresponding to A and row rj = [bj1, . . . , bj2n]

corresponding to B. Clearly for any k ≤ 2n, if aik = 0 then the corresponding bjk = 0.

So for any arbitrary probability distribution Q = [Q1, . . .Q2n]T , we have

2n∑
k=1

bjk ×Qk ≤
2n∑

k=1

aik ×Qk

But since A and Q were completely arbitrary, we conclude that U(B) ≤ U(A) on any

104 Uncertainties and Inconsistencies

probability distribution.

By the covering property of Π every A ∈ Γ \ Π is implied by some B ∈ Π, so it follows

from claim (2) that for any probability distribution, for each A ∈ Γ \ Π there exists

some B ∈ Π such that U(A) ≤ U(B). By theorem (4.5.2) and claim (1) however, there

must be a probability distribution P such that for all B ∈ Π, U(B) ≤ |Π|−(m−1)
|Π| . If

P is not defined for all of Γ , it is trivial to extend P
′ for all of Γ such that for any

B ∈ Π, U(B) ≤ |Π|−(m−1)
|Π| still holds with respect to P

′. But then claim (2) confirms

that on P
′, U(A) ≤ |Π|−(m−1)

|Π| holds for any A ∈ Γ \ Π. Hence we conclude that on P
′,

U(A) ≤ |Π|−(m−1)
|Π| holds for any A ∈ Γ .

The bound obtained in theorem (4.5.3) clearly improves as the value of m ap-

proaches |Π|. This shows that in a large data set, the uncertainty bound of any single

datum is better for dispersed inconsistencies than for concentrated inconsistencies.

We also note that in the event that Γ is minimally inconsistent, Γ must be a pairwise

independent cover of itself. Thus applying theorem (4.5.3) to Γ we get the uncertainty

bound |Γ |−1 which is in accordance with theorem (4.3.3). In light of this, theorem (4.5.3)

can be taken to be a generalisation of theorem (4.3.3).

4.6 Uncertain Inference

As we have already noted, premises that are inconsistent (but contradiction free) have

non-trivial uncertainties. In this section we would like to continue the investigation

initiated by Adams and Levine in [5] and examine how uncertainties may be trans-

mitted from premises to conclusions. In [1; 2; 3], Adams extended the result of [5] to

cover a language with a conditional connective. However the issue of uncertainties

transmitted from inconsistent premises to conclusions has not been addressed in any

of their subsequent works. We start by identifying several candidate (uncertainty) en-

tailment relations – all of which can be said to preserve the uncertainty bound of the

premises under some sense:

Definition 4.6.1

For any set of formulae Γ and formula B we define the following entailment between

Γ and B

Certainty Entailment: For any probability distribution P such that UP(A) = 0 for all

A ∈ Γ , we have UP(B) = 0. We denote this by Γ |=0 B.

§4.6 Uncertain Inference 105

Uncertainty Entailment: For any probability distribution P such that UP(A) < 1 for

all A ∈ Γ , we have UP(B) < 1. We denote this by Γ |=<1 B.

ε-Entailment: For any ε ∈ [0, 1], for any probability distribution P such that UP(A) ≤
ε for all A ∈ Γ we have UP(B) ≤ ε. We denote this by Γ |=≤ε B.

We note that an inconsistent set of formulae cannot all be certain together. Thus

certainty entailment is an explosive entailment for any inconsistent premises. In fact

it is just classical entailment:

Proposition 4.6.1

Certainty entailment is equivalent to classical entailment.

Proof:

We note that any v ∈ WΓ which verifies all of Γ but falsifies B would also confirm the

existence of a P with all A ∈ Γ having U(A) = 0 but U(B) 6= 0.

Conversely if Γ |= B, then for the uncertainty matrix A of Γ ∪ {B}, every column

[a1j, . . . a|Γ |+1j]
T with all 0’s in the first |Γ | entries (corresponding to members of Γ) will

have a|Γ |+1j = 0 (corresponding to B). Let P = [P1 . . . P2n]T be an arbitrary but fixed

probability distribution such that for all Ak ∈ Γ , UP(Ak) = 0. Clearly for each Ak ∈ Γ

UP(Ak) =

2n∑
j=1

akjPj

is zero if either akj = 0 or Pj = 0 for each i ≤ 2n. If Pj = 0 then obviously a|Γ |=1j×Pj =

0. But if Pj 6= 0 then akj = 0 for each k ≤ |Γ |. But then a|Γ |=1j = 0 as well and thus

a|Γ |=1j × Pj = 0. Hence
∑2n

j=1 a|Γ |+1jPj = 0, i.e. UP(B) = 0.

Turning now to uncertainty entailment, it is clearly an improvement over certainty

entailment for handling inconsistencies. The basic idea of uncertainty entailment is

that if each of the Ai ∈ Γ is free from complete uncertainty, then the conclusion B is

also free of complete uncertainty. Since contradiction free inconsistent premises have

non-trivial uncertainties, the antecedent of the conditional in our definition is never

falsified in such a case. Thus we do not have A,¬A |=<1 B in general. But note

that in the presence of contradictions, we do have A ∧ ¬A |=<1 B. Moreover for any

classical tautology > we have |=<1 > trivially. In fact the logic which captures |=<1

completely is the discursive logic(s) developed by Jaśkowski in [97]. For a complete

sequent formulation of discursive logic, the reader can consult the system S of Knight

in [111]. But the basic idea of a discursive logic is to take the union of all the theorems

106 Uncertainties and Inconsistencies

of an underlying logic `L together with the deductive closures (under `L) of each

singleton of the premises, i.e. for any Γ and B we have

Γ `D B iff `L B or A `L B for some A ∈ Γ

For a different choice of the underlying L we get a different discursive logic.

Proposition 4.6.2

For any Γ and B, Γ |=<1 B iff either ` B or A ` B for some A ∈ Γ where ` is the usual

classical propositional logic.

Proof:

As noted before it is trivially true that if B is a classical tautology, then for any proba-

bility distribution P we have UP(B) ≤ UP(A) for any A. So we’ll consider any B that is

not a tautology. For the only if direction we assume that A ` B for some A ∈ Γ . Then

from claim (2) of theorem (4.5.3), for every probability distribution P over Γ ∪ {B},

we have UP(B) ≤ UP(A). So in particular for any probability distribution Q with

UQ(C) < 1 for every C ∈ Γ we have UQ(B) < 1. This shows that Γ |=<1 B.

For the if direction, we assume that for no A ∈ Γ do we have A ` B. Now consider

the uncertainty matrix A = (aij) for Γ ∪ {B}. As usual we’ll assume that A is a (m +

1) × 2n matrix, where the first m rows correspond to members of Γ and the (m + 1)-

th row corresponds to B. Moreover we assume that t is the number of 1’s occurring

in the (m + 1)-th row of A. We note that t ≥ 1 since B is not a tautology by the

initial assumption. We define the probability distribution P as follows: for every j,

1 ≤ j ≤ 2n,

Pj =

t−1 if am+1,j = 1

0 otherwise

Clearly given how P is defined, UP(B) = [
∑2n

j=1(am+1,j × Pj)] = 1. But note that since

for each A ∈ Γ , A 6` B so we have, for each i ≤ m there must be a ji ≤ 2n such that

aiji = 0 but am+1,ji = 1. This implies that for each A ∈ Γ we have UP(A) ≤ t−1
t < 1.

Thus P witnesses the failure of Γ |=<1 B.

Turning now to ε-entailment, the basic requirement is that the uncertainty of a

conclusion B should never exceed the maximum value of the uncertainty of any given

A ∈ Γ , i.e. for any probability distribution P, U(B) ≤ max{U(A) : A ∈ Γ }. As it turns

§4.6 Uncertain Inference 107

out ε-entailment is in fact equivalent to uncertainty entailment:

Proposition 4.6.3

For any Γ and B, Γ |=≤ε B iff Γ |=<1 B.

Proof:

The only if direction is trivial since |=<1 is a special case of |=≤ε when ε < 1.

For the if direction, consider B where B is a tautology. Then for any Γ we have

Γ |=≤ε B since U(B) = 0 for any probability distribution. Suppose then that B is not

a tautology but for some A ∈ Γ , A ` B holds. Then from claim (2) of theorem (4.5.3)

again, for every probability distribution P over Γ ∪ {B}, we have U(B) ≤ U(A). Thus

we have U(B) ≤ max{U(A) : A ∈ Γ } as required.

To put the matter in terms of preservation, discursive logic is exactly the logic

which preserves the uncertainty bounds of premises. Note however that discursive

logic does not allow for full aggregation of premises. In general we have U(
∧m

i=1 Ai) ≤∑m
i=1 U(Ai), but not U(

∧m
i=1 Ai) ≤ max{U(Ai)| 1 ≤ i ≤ m}. In light of this, discur-

sive logic is a very extreme approach to bounding the uncertainty of the conclusion.

When the value of max{U(A) : A ∈ Γ } is close to 1, it is of course desirable to ensure

that the conclusion’s uncertainty should not exceed this bound. But when the value

of max{U(A) : A ∈ Γ } is small, a slightly riskier inference with a higher conclusion

uncertainty may be acceptable. More importantly, aggregation is particularly useful

for fusing information from multiple sources. We’ll introduce a kind of entailment

relation which permits a limited form of aggregation by bounding the size of the ag-

gregating set. Our entailment relation also provides a partial solution to a problem

stated in Knight [111] (page 360). But first we need to fix some terminologies and

definitions.

Definition 4.6.2

Let k ∈ Z+ be arbitrary but fixed. Let Γ be a finite set of formulae in n variables. The

set of all subsets of Γ of size ≤ k is denoted by ℘k(Γ).

If P = [P1, . . . , P2n]T is a probability distribution over Γ , we say that P is i-positive if

Pi > 0.

If ∆ ⊆ Γ , we say that P verifies ∆ if there exists an i ≤ 2n such that P is i-positive and

the ith term of UP(A) is 0 for each A ∈ ∆, i.e. where A is the uncertainty matrix for Γ

108 Uncertainties and Inconsistencies

and j(1), . . . , j(t) are the respective enumeration of members of ∆, we have aj(1)i×Pi =

. . . = aj(t)i × Pi = 0 under P.

Note that if ∆ ∈ ℘k(Γ) is inconsistent, then no P will verify ∆. Intuitively, P verifies

a ∆ only if P distributes non-zero probability into at least one model of ∆. We now

introduce a generalised version of ε-entailment with an additional parameter k as a

bound on the size of the aggregating set.

Definition 4.6.3

Let k ∈ Z+ be arbitrary but fixed. Let Γ be any finite set of formulae in n variables.

For any formula B, we say that Γ k-entails B, Γ |=k B, iff U(B) < 1 on every probability

distribution P which verifies every ∆ ∈ ℘k(Γ).

Now for different choices of k we can regain different degrees of aggregation. So

for instance if k ≥ 2 and A1, A2 ∈ Γ then Γ |=k A1 ∧ A2. Again k is the absolute upper

bound on the number of (independent) members of Γ that can be conjoined. Note

also that any tautology > is k-entailed by any Γ since U(>) = 0 < 1 holds trivially.

Moreover if the size of the smallest minimal inconsistent subset of Γ is m and m < k,

then no P will verify every ∆ ∈ ℘k(Γ) and thus Γ |=k B for any B holds trivially, i.e.

|=k explodes when m < k. We summarise the properties of |=k in theorem (4.6.1).

The content of our theorem is self-explanatory. Part (1) shows that |=k is an extension

of |=≤ε. Part (2) shows that |=k is a kind of substructural logic. Part (3) shows that

|=k is monotonically increasing with respect to k. Part (4) is a generalised version of

proposition (4.6.2) and therein shows that |=k can be viewed as a kind of generalised

discursive logic (and thus is decidable). Part (5) shows that |=k, like |=≤ε, preserves

the uncertainty bound of the premises in a certain sense.

Theorem 4.6.1

1. For any k ∈ Z+, |=≤ε ⊆ |=k.

2. |=k is reflexive and monotonic but transitivity fails.

3. If k′, k ∈ Z+ and k′ < k, then |=k′ ⊆ |=k.

4. Let k ∈ Z+ be fixed. For any Γ and B, Γ |=k B iff B ∈
⋃

{Cn(∆)| ∆ ∈ ℘k(Γ)}.

5. Let ε ∈ [0, 1] such that ε < 1. Let Γ |=k B. Then for any probability distribution

P, if
∑

A∈∆ UP(A) ≤ ε holds for each ∆ ∈ ℘k(Γ) then UP(B) ≤ ε.

Proof:

(1): As noted before for any tautology B, Γ |=k B holds trivially. So we’ll assume that B

§4.6 Uncertain Inference 109

is not a tautology and for an arbitrary Γ , we have Γ |=≤ε B. From propositions (4.6.2)

and (4.6.3), it follows that for some A ∈ Γ , A ` B. Again from claim (2) of theo-

rem (4.5.3) it follows that for any probability distribution Q, we have UQ(B) ≤ UQ(A).

Clearly {A} ∈ ℘k(Γ) for any k ∈ Z+. So if P verifies every ∆ ∈ ℘k(Γ), it must also verify

{A}. This implies the existence of some i such that Pi > 0 and the ith-term of UP(A) is 0.

Since A ` B, the ith term of UP(B) must be 0 as well. Thus UP(B) ≤ [(
∑2n

j Pj)−Pi] < 1.

(2): For reflexivity, clearly if A ∈ Γ then {A} ∈ ℘k(Γ) for any k ∈ Z+. So if P verifies

every ∆ ∈ ℘k(Γ), it must also verify {A} as well. This implies that for some i, U(A) ≤
[(

∑2n

j Pj) − Pi] < 1 as required.

For monotonicity, we note that ℘k(Γ) ⊆ ℘k(Γ, Σ) so if P verifies every member ℘k(Γ, Σ),

it must also verify every member of ℘k(Γ). So on the assumption that Γ |=k A holds

Γ, Σ |=k A must hold as well.

To see the failure of transitivity, consider Γ = {p, ¬p ∨ r, ¬r}. We have

Γ |=2 p ∧ (¬p ∨ r) and Γ, p ∧ (¬p ∨ r) |=2 q

But note that Γ 6|=2 q.

(3) We note if k′ < k then ℘k′(Γ) ⊆ ℘k(Γ) for any Γ . Thus if P verifies every member of
℘k(Γ) it must also verify every member of ℘k′(Γ). So on the assumption that Γ |=k′ A,

Γ |=k A must hold as well.

(4) For the if direction let P be any probability distribution which verifies every ∆ ∈
℘k(Γ). We want to show that UP(B) < 1 on the assumption that B ∈

⋃
{Cn(∆)| ∆ ∈

℘k(Γ)}. So we assume that for some ∆0 ∈ ℘k(Γ), ∆0 ` B. By the initial assumption

however P must verify ∆0, so there exists some i such that Pi > 0 and the ith term of

UP(A) is 0 for every A ∈ ∆0. But ∆0 ` B so the ith term of UP(B) is 0 as well. As in (1)

and (2), this suffices to show that UP(B) ≤ [(
∑2n

j=1 Pj) − Pi] < 1.

For the only if direction, we assume that B 6∈
⋃

{Cn(∆)| ∆ ∈ ℘k(Γ)}, i.e. for every

∆ ∈ ℘k(Γ), ∆ 6` B. We’ll show the existence of a P which verifies every ∆ ∈ ℘k(Γ) but

on P we have UP(B) = 1.

Consider the uncertainty matrix A = (aij) for Γ ∪ {B}. As usual we’ll assume that

A is a m + 1× 2n matrix, where the first m rows correspond to members of Γ and the

110 Uncertainties and Inconsistencies

(m + 1)-th row corresponds to B. Moreover we assume that t is the number of 1’s

occurring in the (m + 1)-th row of A. We note that t ≥ 1 since B cannot be a tautology

by the initial assumption. We define the probability distribution P as follows: for

every j, 1 ≤ j ≤ 2n,

Pj =

t−1 if am+1,j = 1

0 otherwise

Clearly given how P is defined, UP(B) = [
∑2n

j=1(am+1,j × Pj)] = 1.

Claim: P verifies every ∆ ∈ ℘k(Γ).

Proof of claim: Let ∆ ∈ ℘k(Γ) be arbitrary. By the initial assumption ∆ 6` B so there must

be a column in A which witnesses this. Let the witnessing column be the sth column

in A. We note that P must be s-positive since Ps = t−1 > 0. Moreover the sth term

of U(A) must be 0 for every A ∈ ∆. Hence P verifies ∆. Since ∆ was arbitrary, this

suffices to show that P verifies every member of ℘k(Γ).

(5) We assume that Γ |=k B and that P = [P1 . . . P2n]T is an arbitrary probability distri-

bution such that
∑

A∈∆ UP(A) ≤ ε < 1 holds for each ∆ ∈ ℘k(Γ). From (4) above it

follows that B ∈
⋃

{Cn(∆)| ∆ ∈ ℘k(Γ)}. This implies that for some ∆0 ∈ ℘k(Γ) we have

∆0 ` B. But by the initial assumption
∑

A∈∆0
UP(A) ≤ ε < 1. By theorem (4.3.2)), it

follows that ∆0 must be consistent. Let |Γ | = m with n variables and let |∆0| = t. With-

out loss of generality we may assume that the first t rows of the uncertainty matrix A

correspond to members of ∆0 and the (m+1)-th row of A corresponds to B. Using the

usual column rotation, A can be reconfigured into the following sub-matrices:

A =

[
B C

D E

]

B is a t × s submatrix with each column containing at least one entry of 1; C is a

t× (2n − s) zero submatrix. By the consistency of ∆0, C cannot be empty. We note that

since ∆0 ` B, the last row of E must be 0’s. This gives the following absolute upper

bound on UP(B):

UP(B) ≤ P1 + . . . + Pt

§4.7 Bounded Reasoning in Natural Deduction 111

However we note that since each column of B contains at least one entry of 1, we have

the following absolute lower bound on
∑

A∈∆0
UP(A):

P1 + . . . + Pt ≤
∑

A∈∆0

UP(A)

Hence UP(B) ≤
∑

A∈∆0
UP(A) ≤ ε < 1 as required.

4.7 Bounded Reasoning in Natural Deduction

Although our motivation for |=k has been stated solely in probabilistic terms so far,

we should point out that |=k can also be regarded as a kind of resource bounded rea-

soning. If we take the suggestion of the linear logician seriously and treat premises as

resources to be consumed, it is natural to be concerned with how premises are used

and propagated in a proof. In certain natural deduction systems for classical logics,

formulae can be labelled with numerals to facilitate bookkeeping of premise depen-

dence as well as to keep track of the subproof structure of a given proof. Lemmon’s

classic text [118] for instance uses such a labelling device. Anderson and Belnap also

introduce labels to a Fitch style natural deduction formulation of relevant logics in

their seminal work [7].1 The basic function of the labels is to serve as names for the

premises and the process of deduction involves propagating the labels from premises

to the conclusion in a systematic and controlled way. Of course in classical logics, a

premise can be reused as often as required in a proof. In linear logics however, this is

no longer the case – we may have A `L B but not A,A `L B. Hence in linear logics,

the fundamental data structure of premises is multisets instead of the usual sets. Of

course k-entailment is not a linear logic and does not require any accounting for how

many times a given premise is used in a proof. But |=k does require a mechanism

to keep track of how many distinct premises (from Γ) are used in a given proof. But

we must be careful to distinguish between different ways of introducing assumptions

into a proof. Using Lemmon’s system in [118] as a point of reference, there are at least

4 distinct ways to introduce assumptions into a proof:

1. the rule of assumption introduction (AI)

1The use of labels was first introduced by Jaśkowski in [96] and subsequently refined by Quine [141]
and Suppes [175]. For a history and discussion of various versions of natural deduction systems, see
Pelletier [137]. For a completely general approach to logics via the use of Labelled Deductive Systems,
see Gabbay [73].

112 Uncertainties and Inconsistencies

2. →-introduction (CP for conditional proof),

3. ∨-elimination rule, (∨ − E), and

4. the reductio ad absurdum rule (RAA)

The rule that is of immediate interest to us is the rule of AI:

...

{α} (i) A Assumption
...

Figure 4.3: Assumption Introduction

The notation is slightly modified here with the label α enclosed in set brackets. The

usual convention is that the label α is just a numeral indicating that the introduced

assumption A depends on itself. We’ll continue to use our convention from now on.

The rule of AI allows us to introduce an assumption at any stage in a proof and the

rule can be used for any number of assumptions in a given proof. The basic idea

is that given a set of premises Γ , we can introduce finitely many members of Γ into

a proof via the use of AI. Clearly AI cannot be a valid rule for |=k. Nonetheless,

it is possible to port AI into |=k by using double labelling – both keeping track of the

assumption dependence and keeping count of the number of assumptions introduced

from the given set Γ . For an arbitrary but fixed k, we let the set of labels for the rule of

assumption introduction be N× {1, . . . , k}:

The modified AI rule allows us to introduce an assumption into a proof at line (i)

provided that for no j < i do we have 〈j, β〉 (β ∈ {1, . . . k}) occurring as a label for a

distinct assumption introduced by AI.

...

{〈i, β〉} (i) A Assumption Intro
...

Figure 4.4: Modified Assumption Introduction

The net effect of our modification is that no more than k assumptions from a given

Γ can be introduced into a proof. What about other rules which also require the in-

troduction of assumptions? The simplest approach to take is to deploy a distinct set

§4.7 Bounded Reasoning in Natural Deduction 113

of labels for these rules. We take the set of labels for assumptions introduced via CP,

∨-E and RAA to be N× {0}. CP can be redefined using our labelling system as follows:

...

{〈i, 0〉} (i) A Assumption CP

...

J (j) B . . .

J \ {〈i, 0〉} (j + 1) A → B i − j CP

...

Figure 4.5: Modified rule of →-Introduction

...

I (i) A ∨ B

...

{〈j, 0〉} (j) A Assumption ∨ − E

...

L \ {〈j, 0〉} (l) C . . .
...

{〈m, 0〉} (m) B Assumption ∨ − E

...

N \ {〈m, 0〉} (n) C . . .

(I ∪ L ∪ N) \ {〈j, 0〉, 〈m, 0〉} (n+1) C i, j − l, m − n ∨ − E

...

Figure 4.6: Modified ∨ − E

Note that at line (j+1) (figure (4.5), the label 〈i, 0〉 is removed from the set of labels

J and thereby discharging (an occurrence of) the assumption A at line (i). The occur-

rences of formulae corresponding to labels in J \ {〈i, 0〉} are said to be undischarged

at line (j + 1). Note that the notion of a discharged and undischarged assumption is

defined over occurences of an assumption. An occurence of an assumption A may be

discharged at line k while a distinct occurrence of A may be undischarged at k. The

dotted line at line (j) represents some rule in the system which is being applied at line

(j) of the proof. The block beginning with the line with the assumption A and ending

114 Uncertainties and Inconsistencies

with the line with A being discharged is a subproof of the overall proof. Note also

that although A is discharged at line (j + 1), the label 〈i, 0〉 may not be a member of

J at all. The → introduced by the CP rule is the material implication – it allows us to

obtain A → B trivially if we can obtain B without actually using the assumption A.

In figure (4.6), the inferred statement C at line (n + 1) inherits all undischarged

assumptions of A∨B at line (i), as well as those from line (l) and line (n). Both A and

B (at line (j) and line (m) respectively) are discharged at line (n + 1). Also note that

there are two subproof structures involved here – blocks (j − l) and (m − n). For RAA

the assumption A is discharged at line (j + 1) as usual.

...

{〈i, 0〉} (i) A Assumption RAA

...

J (j) B ∧ ¬B . . .

J \ {〈i, 0〉} (j + 1) ¬A i − j RAA

...

Figure 4.7: Modified RAA

I A
...

J A → B
MP

I ∪ J B

I ¬B
...

J A → B
MT

I ∪ J ¬A

I A
...

J B
∧ − I

I ∪ J A ∧ B

I A ∧ B
∧ − E

I B

I A
∨ − I

I A ∨ B

I A
DN

I ¬¬A

Figure 4.8: Modified Lemmon’s Rules

§4.7 Bounded Reasoning in Natural Deduction 115

All remaining rules of Lemmon’s system involve no introduction of assumptions

and can be redefined in our double labelling system. We’ll simplify the graphical

representations of these rules by omitting some details here. We note that DN is an

invertible rule. ∨ − I, ∧ − I and ∧ − E are all commutative with respect to ∨ and ∧.

Note that each application of our rules involves no discharging of assumptions;

thus all undischarged assumptions prior to the application of a rule will remain undis-

charged at the line in which the rule is applied. We’ll call all the above rules non-

discharging rules and call CP, ∨ − E and RAA discharging rules. We’ll identify Lem-

mon’s original system as L′ and our modified system as L. The notion of provability

in L is defined in the usual way.

Definition 4.7.1

We say that a sentence B is L-provable from a set of sentences Γ , written as Γ `L B, iff

there is a finite sequence 〈〈I1, A1〉, . . . , 〈Is, As〉〉 such that

1. As = B,

2. Is is either empty or contains only labels introduced by AI in the sequence. In

the second case, all undischarged occurrences of assumptions are members of Γ .

3. For each t ≤ s, At is either an assumption introduced from the set Γ via AI or

introduced by CP, ∨ − E or RAA, or obtained from previous line(s) via either a

non-discharging or a discharging rule, and the set of labels It is obtained by the

application of the corresponding rule.

Before we show that `L is indeed adequate for |=k, we need a number of interme-

diate results. As usual for any Γ , we set CL(Γ) = {B| Γ `L B}.

Theorem 4.7.1

(see [118]) Lemmon’s system L′ is (strongly) sound and complete with respect to clas-

sical semantics.

An immediate corollary of theorem (4.7.1) is that all tautologies (theorems) of clas-

sical logic are L′ provable from ∅, i.e. the last line of any such L′ proof is 〈∅,>〉 where

> is a tautology.

Lemma 4.7.1

For any tautology >, every L′ proof of > can be converted into an L proof of > and

vice versa.

116 Uncertainties and Inconsistencies

Proof:

By theorem (4.7.1), there must be a L′ proof of > from ∅. We note that since CP,

∨ − E and RAA are the only discharging rules in L′, any L′ proof of > which contains

applications of AI can be converted into a L′ proof of > without AI. This holds since

any assumption introduced by AI will remain undischarged in the last line of a L′

proof if the assumption is actually used in the proof. To see that such a L′ proof can be

converted into a L proof of >, we observe that the only difference between L and L′ is

the labelling used. Since AI is not used in such a L′ proof of >, each line of the proof

can be rewritten with labels from N× {0}. This suffices to show that all tautologies are

provable in L from ∅. To see that the converse also holds, again observe that any L

proof of > can be converted into a AI free L proof of >. Each line of such a L proof can

be rewritten with the corresponding label in L′.

Lemma 4.7.2

L has the deduction theorem, i.e. for any A, B and Γ , Γ, A `L B only if Γ `L A → B.

Proof:

We assume that Γ, A `L B and the proof of B from Γ, A to be

D = 〈〈I1, C1〉, . . . , 〈Is, B〉〉

There are two cases to consider:

(case 1): There is no occurrence of A as an assumption introduced via AI in D. Then

D can be extended to a L proof of A → B from Γ as follows:

...

Is (s) B . . .

{〈s + 1, 0〉} (s + 1) A Assumption CP

Is ∪ {〈s + 1, 0〉} (s + 2) A ∧ B s, s + 1, ∧ − I

Is ∪ {〈s + 1, 0〉} (s + 3) B s + 2, ∧ − E

Is (s + 4) A → B (s + 1) – (s + 3), CP

We note that by the initial assumption, Is contains no label corresponding to any

occurrence of A. Hence at line (s+4) the only undischarged assumptions are members

of Γ .

(case 2): There is an occurrence of A in D via the rule of AI. Suppose that A occurs

at line (i) with label 〈i, j〉, with j ∈ {1, . . . , k}. We’ll construct an L proof, D′ from D

§4.7 Bounded Reasoning in Natural Deduction 117

as follows: line (i) of D is replaced with the assumption A for CP with the label 〈i, 0〉.
Each subsequent line of D which uses A with label 〈i, j〉will be replaced with the label

〈i, 0〉. At line (s + 1), A → B is obtained via the use of CP and thereby discharges the

occurrence of A at line (i):

...

{〈i, 0〉} (i) A Assumption CP
...

I ′s (s) B . . .

I ′s \ {〈i, 0〉} (s + 1) A → B (i − s) CP

We note that the set of labels I ′s is the same as Is except that any occurrence of

〈i, j〉 in Is is replaced by 〈i, 0〉. Thus at line (s + 1) all undischarged assumptions are

members of Γ . We conclude that in either case we have Γ `L A → B.

Lemma 4.7.3

Let k ∈ Z+ be arbitrary but fixed. For any Γ ,

⋃
∆∈℘k(Γ)

Cn(∆) ⊆ CL(Γ)

Proof:

We let k ∈ Z+ be fixed and Γ be any arbitrary set of formulae. We make the assumption

that for some arbitrary ∆ ∈ ℘k(Γ) and some arbitrary formula B, we have ∆ ` B. We

let ∆ = {A1, . . . , An}. By theorem (4.7.1) we have ∆ `L′ B. Since the deduction theorem

also holds with respect to L′, we have

∅ `L′ [A1 → (A2 → (. . . (An → B) . . .))]

Hence by lemma (4.7.1) we have

∅ `L [A1 → (A2 → (. . . (An → B) . . .))

We let D = 〈〈I1, C1〉, . . . , 〈Is, Cs〉〉 be the L proof of Cs = [A1 → (A2 → (. . . (An →
B) . . .)) We note that since ∆ = {A1, . . . , An} ∈ ℘k(Γ), D can be extended to a proof D′

by repeated application of AI and MP:

118 Uncertainties and Inconsistencies

...

∅ (s) [A1 → (. . . (An → B) . . .] . . .

{〈s + 1, 1〉} (s + 1) A1 Assumption AI

{〈s + 2, 2〉} (s + 2) A2 Assumption AI

...
...

...
...

{〈s + n, n〉} (s + n) An Assumption AI

{〈s + 1, 1〉} (s + n + 1) (A2 → (. . . (An → B) . . .) (s), (s + 1) MP

{〈s + 1, 1〉, 〈s + 2, 2〉} (s + n + 2) (A3 → (. . . (An → B) . . .) (s + n + 1),

(s + 2), MP

...
...

...
...

{〈s + 1, 1〉, . . . , 〈s + n − 1, n − 1〉} (s + 2n − 1) An → B (s + n − 1),

(s + 2n − 2), MP

{〈s + 1, 1〉, . . . , 〈s + n, n〉} (s + 2n) B (s + n),

(s + 2n − 1), MP

Note that the undischarged assumptions at line (s + 2n) are exactly the members of

∆. It follows that Γ `L B as required.

Lemma 4.7.4

Let k ∈ Z+ be arbitrary but fixed. For any Γ ,

CL(Γ) ⊆
⋃

∆∈℘k(Γ)

Cn(∆)

Proof:

We let k ∈ Z+ be arbitrary but fixed. For arbitrary Γ and B we let Γ `L B. By

lemma(4.7.2), there must be some ∆ = {A1, . . . , An} ∈ ℘k(Γ) such that

∅ `L [A1 → (A2 → (. . . (An → B) . . .))]

By lemma (4.7.1) we get

∅ `L′ [A1 → (A2 → (. . . (An → B) . . .))]

It follows that ∆ `L′ B. But ∆ ∈ ℘K(Γ), hence by theorem (4.7.1) B ∈
⋃

∆∈℘k(Γ) Cn(∆)

as required.

Theorem 4.7.2

For any arbitrary but fixed k ∈ Z+ we have |=k = `L.

Proof:

From part (4) of theorem (4.6.1) we get Γ |=k B iff B ∈
⋃

∆∈℘k(Γ) Cn(∆) for arbitrary Γ

§4.8 Conclusion 119

and B. So by lemmas (4.7.3) and (4.7.4), we get Γ |=k B iff Γ `L B for arbitrary Γ and B.

4.8 Conclusion

We note that although our uncertainty analyses of inconsistencies and inferences do

not seem to provide adequate provisions to deal with contradiction infested premises,

we can nonetheless adopt the approach from the previous chapter by rewriting each

premise as a set of relevant prime implicates. The result of such a rewrite will un-

doubtedly affect the uncertainty (bound) of the premises. We have not undertaken

any systematic study of the effect on the uncertainty function U() of either restricting

or rewriting the syntax of the premises. In the case in which all premises are restricted

to clauses, we conjecture that the uncertainty bound can be improved further. More

specifically we put forth the following conjecture:

Conjecture 4.8.1

If Γ = {C1, . . . , Cs} is a set of clauses and m is the size of the smallest inconsistent

subset of Γ , then there is a probability distribution P such that for all i ≤ n, U(Ci) ≤
m−1. Moreover this is the best possible bound.

We end this chapter by noting that given our modification of Lemmon’s system in

section (4.7), we agree with Slaney [171] that nonclassical logics, relevant logics and

many of their rivals, are far from being contrived and esoteric. Simple modifications

of the labelling procedure can produce logics that are both intuitive and intrinsically

interesting.

120 Uncertainties and Inconsistencies

Chapter 5

QC Logic

5.1 Introduction

Logic has long been recognized as the study of reasoning – reasoning not in the psy-

chological sense of how people actually reason or what inferences people tend to draw

given some initial assumptions, but reasoning in the sense of providing some stan-

dards for evaluating reasoning patterns and distinguishing good ones from bad ones.

The development of logic in the past has concentrated on both the proof theoretic and

model theoretic aspects of logic. Yet the pragmatics aspect of logic seems not to have

received the same attention. In this chapter we would like to demonstrate that a logic

can be practical in the sense that it can assist us in evaluating and measuring the amount

of information in an inconsistent set of data. Though we envision that any intelligent

practical reasoning system must have some mechanism for handling inconsistencies,

our goal here is not to address the issue of what is reasonable to conclude given some

inconsistent data. Indeed there seems to be no a priori reason to favor any one particu-

lar inconsistency tolerant system. Rather we would like to illustrate how a particular

paraconsistent logic can be used as a tool for analysing inconsistent information. In

particular, we would like to be able to quantitatively compare the relative information

value of different sets of inconsistent data.

5.2 Paraconsistent Logics

A recalcitrant problem in the development of practical reasoning systems is the issue

of uncertainty. One sort of uncertainty is the result of underdetermination of data. An-

other sort is the result of overdetermination. All this is well known and is documented

in Belnap’s [21; 22]. When information gathered from different sources is either in-

complete or inconsistent, it is difficult to draw reliable conclusions to guide further

121

122 QC Logic

action. More importantly, when inconsistencies arise a reasoner must take measures

to guard against drawing trivial conclusions. Revising one’s data to restore consis-

tency may be an available option, but on occasions it is more important to maintain

the integrity of the original data – perhaps the inconsistent data is irrelevant to one’s

overall project. On other occasions it may even be ‘desirable’ to have inconsistencies

in one’s database; for instance, inconsistencies may be deployed as directives to guide

learning, and inconsistencies in a taxpayer’s records can be used as a reason to prompt

further investigation (see [74] for more discussion). The important point is that many

ordinary circumstances require us to reason in the presence of inconsistencies. The

main motivation for paraconsistent logics is precisely to develop reasoning systems

that can tolerate inconsistencies. In classical logic, the rule ex contradictione quodlibet is

derivable:
A ¬A

B

The practical implication of this is that classical logic is unsuitable as a practical rea-

soning system – it provides no guidance on what can be concluded when inconsistent

information is presented, any formula can be derived from an inconsistent set of as-

sumptions. In paraconsistent logics however ex contradictione quodlibet is no longer

derivable. But as a result paraconsistent logics are also weaker than classical logic. In

C. I. Lewis’s original proof of ex contradictione quodlibet [120], various classical rules

are deployed and thus various strategies are open for weakening classical logic:

(1) A ∧ ¬A Assumption
(2) A 1, ∧ − E

(3) ¬A 1, ∧ − E

(4) A ∨ B 2, ∨ − I

(5) B 3,4 ∨ − E

Figure 5.1: Lewis’s Proof of Ex Falso Quodlibet

Ignoring for now the difference between {A ∧ ¬A} and {A,¬A}, it is clear that we

can block the derivation by blocking any one of the rules in line (2), (3), (4) or (5).

Relevant logicians, for instance, opt for a solution by blocking the use of ∨-E, also

known as disjunctive syllogism (see [7; 8]).1 Logicians favoring analytic implication

1We qualify with the warning that relevant logicians do not all agree on this point. See exchanges
between Burgess [45; 46; 47], Read [150], Mortensen [130] and Lavers [117].

§5.2 Paraconsistent Logics 123

opt for blocking the use of ∨-I, also known as the rule of addition (see [64; 178]). 2

Yet another novel approach is to restrict the order in which the rules are applied.

Clearly Lewis’s derivation requires that ∨-I be used before the use of ∨-E. So we can

impose restrictions on both ∨-I and ∨-E so that they cannot be used in that specific

combination. The resulting logic is called Quasi-classical logic (QC logic) by Besnard

and Hunter in [34] and Hunter in [91]. Indeed a very simple way to characterize QC

logic is this: rules in classical logic are divided into composition rules and decomposition

rules; a derivation in QC logic proceeds by first applying decomposition rules and

then applying composition rules, but not vice versa.

One of the main advantages of QC logic is that all connectives are interpreted clas-

sically as boolean connectives. The composition and decomposition rules are divided

roughly along the lines of introduction and elimination rules associated with these

connectives.3 Thus we have not changed any of the meanings of ¬, ∧ or ∨. To sim-

plify matters we take ¬, ∧ and ∨ to be the primitive connectives and assume that ∧

and ∨ are both commutative and associative and satisfy the contraction rules: A∨A
A

A∧A
A . We take the rules governing the commutativity, associativity and the contraction

property of ∧ and ∨ to be both decomposition and composition rules, i.e. they can

be used at any stage of a QC-proof. The remaining decomposition and composition

rules of QC are given in figure (5.2).

A few comments about the rules are in order. The composition rules are, for the

most part, the reversal of the decomposition rules. ¬¬-Introduction, C-Distribution

and C-de Morgan are the reversal of ¬¬-Elimination, D-Distribution and D-de Mor-

gan respectively. Obviously all our rules are classically valid. But more importantly,

all the rules except ∧-Elimination and ∨-Introduction preserve exactly the classical

models of their premises. By this we mean that any two-valued interpretation is a

model of the premises if and only if it is also a model of the conclusion. In the case

of ∧-Elimination and ∨-Introduction however, the set of models for the premises is

properly contained in the set of models for the conclusion, i.e. the conclusions of these

rules are strictly weaker then their assumptions. Amongst all the decomposition and

composition rules, ∨-Introduction is the only rule which allows the introduction of

new propositional variables not contained in the premises.

Also note that the set of decomposition rules is sufficient to reduce any formula to

its CNF and thus to an equivalent set of clauses. We can further obtain the resolvants

2See [158] for a detailed discussion of these positions.
3We qualify here that strictly speaking disjunctive syllogism is not an elimination rule associated with

the connective ∨. Note that in stating DS we are required to invoke both ¬ and ∨.

124 QC Logic

Decomposition Rules

∧-Elimination
A ∧ B

A

¬¬-Elimination
¬¬A ∨ B

A ∨ B

¬¬A

A

Resolution
A ∨ B ¬A ∨ C

A ∨ C

A ∨ B ¬A

B

A ¬A ∨ B

B

D-Distribution
A ∨ (B ∧ C)

(A ∨ B) ∧ (A ∨ C)

(A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C)

D-de Morgan
¬(A ∧ B) ∨ C

(¬A ∨ ¬B) ∨ C

¬(A ∨ B) ∨ C

(¬A ∧ ¬B) ∨ C

¬(A ∧ B)

¬A ∨ ¬B

¬(A ∨ B)

¬A ∧ ¬B

Composition Rules

∧-Introduction
A B

A ∧ B

∨-Introduction
A

A ∨ B

¬¬-Introduction
A ∨ B

¬¬A ∨ B

A

¬¬A

C-Distribution
(A ∨ B) ∧ (A ∨ C)

A ∨ (B ∧ C)

A ∧ (B ∨ C)

(A ∧ B) ∨ (A ∧ C)

C-de Morgan
(¬A ∨ ¬B) ∨ C

¬(A ∧ B) ∨ C

(¬A ∧ ¬B) ∨ C

¬(A ∨ B) ∨ C

¬A ∨ ¬B

¬(A ∧ B)

¬A ∧ ¬B

¬(A ∨ B)

Figure 5.2: Composition and Decomposition Rules

§5.2 Paraconsistent Logics 125

from these clauses via the use of the resolution rule. Normally the use of the resolution

rule in automated theorem proving aims at deriving the empty clause. But in our case,

the role of resolution is to decompose clauses into literals so that we can identify and

isolate all the inconsistencies in the assumptions.

Unlike a natural deduction system with a linear representation for proofs, a deriva-

tion in QC is best represented as a tree-like structure.4 Officially a derivation in QC

logic takes a (finite) set of formulae Γ = {A1, . . . , Ai} as assumptions and a formula B

as a conclusion. We write Γ `QC B to denote that there is a QC derivation of B from Γ .

The derivation proceeds first by the construction of a series of decomposition trees via

the decomposition rules. The leaves of these decomposition trees are simply members

of Γ ; nodes are formulae obtained via the application of the decomposition rules, and

finally their roots are either clauses or resolvants of clauses obtained by application of

the resolution rule. The roots of the decomposition trees are then used, as leaves, to

construct a composition tree via the composition rules. The composition tree termi-

nates when it reaches the conclusion B. The overall structure of a QC proof is given

in figure (5.3).

Decomposition Trees

A1, A2,

J
J

J
J

JJ

...

clause/resovlant

J
J

J
J

JJ

...

clause/resovlant

· · · · · ·
J

J
J

J
JJ

...

Composition Tree

J
J

J
J

J
J

J
J

J
J
J

...

B

Figure 5.3: The Structure of a QC Proof.

4Given the use of double labeling introduced in section (4.7), QC can be ported to a Lemmon style or
a Fitch style proof system. Once again we need two disjoint sets of labels – one for the decomposition
rules and one for the composition rules.

126 QC Logic

We should point out that the definition of a QC proof given here is one presented

in Hunter [91]. A different (and non-equivalent) definition is given in [34; 35]. In the

alternative version, all decomposition and composition rules can be applied in any

order except ∨ − I can only be used as the last step in a proof. We shall refer to this

alternative system as QC′.

The underlying proof theory of QC is reminiscent of the dual tableau systems

developed by Rasiowa and Sikorski in [149]. RS systems turn out to be a very flexible

framework for a variety of logics and have been further developed by Konikowska

and Avron [15; 114; 115] in recent years. In standard tableau systems for classical

logics, the validity of a formula B is proven by showing that ¬B has a closed tableau,

i.e. every branch contains a contradictory pair of formulae. But to determine whether

a branch in a tableau is closed, we need to keep a history of the nodes in the branch.

In RS systems however, there is no need to keep such a history. The termination

condition for a branch is always determined by the current node on the branch. In

RS systems the validity of B is proven by showing that B has a correct decomposition

tree. The key components of a RS system are

• decomposition rules

• expansion rules

• fundamental nodes (or sequences)

In RS systems, a decomposition rule is of the form:

Ω

Ω1| . . . |Ωi

An expansion rule is of the form:

Π1| . . . |Πi

Π

where all the Ω’s and Π’s are finite sequences of formulae and ‘. . . | . . .’ is branch split-

ting. Unlike a standard tableau rule, branch splitting is to be interpreted conjunctively

in RS systems.

A proof of the validity of B in a RS system begins with the application of decom-

position rules to B until each branch reaches a node that is either indecomposable or

fundamental. Depending on the particular logic in question, the fundamental nodes

or sequences are then extended by the expansion rules. Thus by modifying the com-

ponents of a RS system, we can achieve different controls over deduction and hence

§5.2 Paraconsistent Logics 127

obtain different logics. For standard classical logic, the key feature of the decomposi-

tion rules is that they are validity preserving in both directions. To prove the validity

of B we require that every branch in the finite decomposition tree of B terminates in a

node that is a tautology.

Returning to QC however, `QC is not designed as a system for proving theorems.

In fact, QC logic has no theorems, i.e. no formula is derivable from the empty set

of assumptions. Moreover, like `L from section (4.7), `QC does not satisfy the usual

transitivity or cut rule. However, `QC is both reflexive and monotonic, and like clas-

sical logic QC is decidable (see Hunter [91] for details). For our purpose here, the

most interesting aspect of QC is its decomposition rules. Recall that in section (3.4.1)

we have introduced the notions of prime implicate and relevant prime implicate. As is

well known, the resolution proof procedure is complete with respect to prime impli-

cate generation in the sense that if B is a prime implicate of a formula A, then B is

a resolvant of CNF(A). Similarly any set of rules that is sufficient to reduce any for-

mula into its equivalent CNF form is complete with respect to RPI generation. Hence

the decomposition rules of QC are both PI and RPI complete. Garson [77] and Priest

[140] both observe that certain formulations of resolution theorem provers are implic-

itly paraconsistent in the way they handle inconsistencies. This is true for the case in

which the resolution rule is used for PI generation – arbitrary clauses are not derivable

from an inconsistent set of clauses in general.

Definition 5.2.1

The decomposition closure of a set Γ , denoted by CD(Γ) is the least superset of Γ that

is closed under the decomposition rules of QC (including the contraction rules for ∧

and ∨).

We note two important facts about CD: for any Γ the set of propositional variables

occurring in Γ is exactly the set of propositional variables occurring in CD(Γ). More-

over, if Γ is finite, then CD(Γ) is also finite. We may say that CD is a variable and

finiteness preserving closure operator.

As usual we say that a CNF of a formula A is reduced if it is a minimal CNF

such that all of its propositional variables are variables occurring in A. We say that

a reduced CNF of a formula A respects CD(Γ) if all of its clauses can be composed

from members of CD(Γ) via the composition rules. Now to determine whether A is

QC derivable from a finite Γ is simply a matter of finding a reduced CNF of A that

respects CD(Γ). Though there is no unique reduced CNF for a formula A, it is easy

to see that one of them would respect CD(Γ) iff all of them would. Since CD(Γ) is

128 QC Logic

finiteness preserving, ℘(CD(Γ)) must be finite given that Γ is finite. Hence there are

only finitely many ways to generate composition trees from CD(Γ). The checking must

terminate eventually.

A key feature of CD is its ability to identify literals that are involved in an incon-

sistency. Other paraconsistent logics such as FDE [21] or da Costa’s Cω [53] lack this

feature since they lack the resolution rule. Consider for instance,

Example 5.2.1

For Γ = {p ∨ q, p ∨ ¬q, ¬p ∧ r}

Γ `QC p Γ `QC ¬p

Γ `QC q Γ `QC ¬q

Γ `QC r Γ 6`QC ¬r

In our example there is a clear sense in which the variable r is not involved in any

inconsistency though it is conjoined with ¬p which is a culprit. However, we should

point out that given the consideration in section (3.4), CD is subjected to the same crit-

icism raised in example (3.4.3) – applications of the D-Distribution rules will result in

disjunctive consequences which may be deemed unacceptable. Once again the under-

lying issue is how much disjunctively redundant information should be tolerated in

the presence of inconsistencies.

Example 5.2.2

Let Γ = {p,¬p, q ∨ r,¬r} and ∆ = Γ ∪ {p ∨ r}. We have

r 6∈ CD(Γ) ¬r ∈ CD(Γ)

r ∈ CD(∆) ¬r ∈ CD(∆)

We note that in full QC, we have both Γ `QC p∨r and ∆ `QC r but Γ 6`QC r. Exam-

ple (5.2.2) indeed demonstrates the failure of the transitivity of deduction in QC. But

more importantly, it reinforces a key point for section (3.4) – disjunctively redundant

information such as p ∨ r, when combined with the resolution rules, allows inconsis-

tencies to be propagated amongst premises. Thus in section (3.4.1) we propose to min-

imise disjunctive redundancies by considering only the relevant prime implicates of a

given formula. Indeed, given the procedural nature of a QC proof we can explicitly in-

troduce an additional minimisation step in a QC proof by requiring that only relevant

prime implicates of premises or resolvants of relevant prime implicates of premises

§5.3 Information Measurement 129

can be used to construct a composition tree. Instead of using QC’s decomposition

rules to convert each premise into CNF and then prune each CNF formula into RPI’s,

we could employ the semantic graph method of algorithm (3.4.2) from chapter 3 to

generate RPI’s. The collection of RPI’s can then be given to a conventional resolution

prover to generate resolvants. Once again, in consonance with the general method-

ology of knowledge compilation, RPI generation can be viewed as off-line processing

while resolution and composition can be viewed as run time query-answering.

5.3 Information Measurement

An old idea about information is that there is an inverse relationship between in-

formation and possibility. In Shannon-Weaver communication theory [169; 170] this

relationship is expressed by the following equation,5

I(A) = − log P(A) (5.1)

In equation (5.1), I(A) is the amount of information or information value conveyed by the

message A and P(A) is the probability of A occurring. Not surprisingly, the thrust of

the idea is that information eliminates possibilities – the more unlikely that A occurs

the more informative it is to assert A. In [17] Barwise called this the inverse relation

principle and gave an illuminating account of the interdependence of information

and possibility. To illustrate, consider our example from section (1.1). Recall that O is

located in one out of nine possible locations represented by a 3× 3 grid:

q1 q2 q3

p1

p2

p3

Figure 5.4: A simple logical representation of an object’s location.

The set of all possible locations of O can be regarded as a probability space. Fur-

thermore, we may assume that each possible location has an equal probability weight.

Using (5.1), we can calculate the information of values A = p1 and A′ = p1 ∧ ¬q2:

I(p1) = − log
3

9
= 0.48 I(p1 ∧ ¬q2) = − log

2

9
= 0.65

5 See [105] chapter 2-3 for an overview. For a related approach to semantic information theory see
Hintikka [84; 85; 86].

130 QC Logic

Not surprisingly, we have I(A) < I(A′). Even at an intuitive level it is clear that A′ is

more informative since A′ provides the additional information ¬q2.

Shannon’s information measure expressed by equation (5.1) has a number of im-

portant properties, in particular:

I(A) ≥ 0 for 0 ≤ P(A) ≤ 1 (5.2)

lim
P(A)→1

I(A) = 0 (5.3)

I(A) > I(B) for P(A) < P(B) (5.4)

Thus equations (5.2) and (5.3) say that I(A) is a non-negative quantity that ap-

proaches 0 as P(A) approaches 1. Equation (5.4) says that information increases with

uncertainty. Furthermore if A1, . . . , Ak are successive and independent messages with

the joint probability P(A1, . . . , Ak) = P(A1)× . . .× P(Ak) then

I(A1, . . . , Ak) = − log[P(A1)× . . .× P(Ak)] = −

k∑
i=1

log P(Ai) (5.5)

=

k∑
i=1

I(Ai)

In [169], Shannon showed the following remarkable theorem:

Theorem 5.3.1

The information measure defined by equation (5.1) is the only function that satisfies

all of the properties from (5.2) to (5.5).

5.3.1 Inconsistent Information

Data, encoded as formulae in a logical language, are representations of the state of

the world. For a consistent set of data each classical interpretation of the data can be

regarded as a possible state of the world. Since a consistent set of formulae in finitely

many propositional variables has only finitely many non-equivalent interpretations,

we can treat the collection of all possible non-equivalent interpretations as a proba-

bility space and assign equal probability weight to each interpretation. Naturally this

leads to a definition of information analogous to equation (5.1).

Definition 5.3.1

(Lozinskii [122]) Let Γ be a consistent set of formulae in n variables and let M(Γ)

denotes the collection of (equivalence classes of) models for Γ . The information value

§5.3 Information Measurement 131

of Γ is defined by the following equation:

I(Γ) = log
2n

|M(Γ)|
(5.6)

Replacing equation (5.6) in base 2 we have:

I(Γ) = n − log2 |M(Γ)| (5.7)

The intuitive justification of our definition is that the amount of information in

a data set should be based on the logarithmic ratio between the number of non-

equivalent interpretations and the number of equivalent models of the data. This

is generally in agreement with the underlying idea of equation (5.1). If a data set al-

lows us to exclude all interpretations except one as its model, then the data set has

maximum information value. We also note that the definition applies only to data

sets with finitely many variables. For sets with infinitely many variables we need to

modify our definition since it is not meaningful to talk about the ratio between two

infinite cardinals. For simplicity, we’ll focus on sets in finitely many variables. We

should mention that Lozinskii’s definition of information value is very similar to the

κ function defined by Gent, Prosser and Walsh [78] in their study of the constrainedness

of search problems. Gent’s κ function is intended to provide a quantitative measure-

ment for an ensemble of search problems (e.g. SAT or graph colouring problems), to

determine how hard or easy it is to find a solution for these problems.

In the context of inconsistent data it is natural to ask for a measurement of in-

formation analogous to our definition. However, unlike the approach of Aisbett and

Gibbon in [6], we do not agree that inconsistent data provides no information at all.

We equally reject the suggestion that inconsistent data provides the maximum amount

of information since all all possibilities are eliminated. Instead we should take a more

pragmatic approach here. What is and what isn’t informative seems to depend, at

least partly, on the goal of the agent in possession of the data. For a tax auditor, incon-

sistencies in a taxpayer’s records are useful information for detecting possible fraud.

Inconsistencies may also be useful in cases where they are deployed as directives to

guide learning or as indicators for faulty components in a complex system. Worse

still, by assigning null information value to all inconsistent data we may incur infor-

mation loss. As we mentioned earlier, an important aspect of handling inconsistencies

is the ability to compare and evaluate the relative merit of different inconsistent data

sets. We need to have some quantitative criteria to determine whether one data set is

132 QC Logic

more inconsistent or informative than another. Thus it is desirable to have a general

theoretical framework for measuring both consistent and inconsistent information. In

[123] Lozinskii provides such a framework.

Definition 5.3.2

(Lozinskii [123]) Let Γ be a set of formulae in n variables and M(Γ) be the set of max-

imal consistent subsets of Γ . For each ∆ ∈ M(Γ), if M(∆) is the collection of (equiva-

lence classes of) models of ∆ then the collection of quasi-models is defined by:

U(Γ) =
⋃

{M(∆) : ∆ ∈ M(Γ)} (5.8)

The information value of Γ is defined by the following equation:

I(Γ) = n − log2 |U(Γ)| (5.9)

Again, the main idea behind definition (5.3.2) is that the information value of a

set of formulae is determined by the logarithmic ratio between the number of non-

equivalent interpretations and the number of quasi-models. Clearly definition (5.3.2)

agrees with definition (5.3.1) when Γ is consistent and yields a defined value for I(Γ)

when M(Γ) is non-empty. We note that according to the new definition the informa-

tion value of a data set is monotonically increasing with respect to consistent super-

sets, i.e. for any consistent Γ ′ ⊇ Γ , I(Γ) ≤ I(Γ ′). For inconsistent sets however, the

information value is nonmonotonic when there is an increase in inconsistencies. For

instance,

Example 5.3.1

For ∆ = {p ∨ q, p ∨ ¬q, ¬p ∧ r}, Γ = ∆ ∪ {¬r} and Γ ′ = ∆ ∪ {s}

I(Γ) < I(∆) I(Γ ′) > I(∆)

5.4 QC Logic and Information Measure

Lozinskii’s new definition is problematic in two respects. The first is that the pres-

ence of tautologies will affect the value of I(Γ). Since we are primarily interested in

the amount of empirical information about the world, it seems reasonable to disregard

tautological statements in a data set. In a more general setting, of course, we may rel-

ativise the information value of a data set by nominating a particular set of formulae

to be disregarded. This is a useful generalisation since, as we have already pointed

§5.4 QC Logic and Information Measure 133

out, the information value of a data set is at least partly dependent on the agent in

possession of the data. Perhaps an agent has already independently confirmed A and

thus it is not informative to be told A again. The second problem is that I(Γ) is too

sensitive to the syntax of the formulae in Γ and thus may produce counter-intuitive

consequences. Indeed this is a general problem with any inconsistency tolerant mech-

anism based on maximal consistent subsets. The syntactic features of the formulae

in the set determine how the set can be fragmented into consistent subsets. In [182],

Wong considers the following example:

Γ1 = {p ∧ q, ¬p ∧ r} Γ2 = {p ∧ q ∧ r, ¬p ∧ q ∧ r, p ∧ ¬q ∧ r}

|M(Γ)| 2 3

|U(Γ)| 4 3

I(Γ) 1.00 1.42

Table 5.1: Information and Inconsistencies

In this example, Γ2 is in some sense more inconsistent than Γ1; yet we have I(Γ2) >

I(Γ1). Intuitively, the information value of a set should vary inversely to the amount

of inconsistency in the set. The information value of a highly inconsistent data set

should be lower than that of a set with fewer inconsistencies. A natural solution is

to relativise the information value of a set using the decomposition closure defined in

the previous section; that is, we let

I∗(Γ) = n − log2 |U(CD(Γ))| (5.10)

Since CD is a variable and finiteness preserving closure operator, replacing Γ with

CD(Γ) in (5.9) has no effect on the value of n. Indeed the advantage of (5.10) over (5.9)

is that it provides a more discriminating way of evaluating the information value of

a data set. This gives us a more realistic appraisal of the usefulness of our data. The

information value of a set no longer depends on how the formulae are syntactically

presented.

Example 5.4.1

Γ = {p ∨ q, p ∨ ¬q, ¬p ∧ r} and Γ ′ = {p ∨ q, p ∨ ¬q, ¬p, r}

Using equation (5.9) we have I(Γ) 6= I(Γ ′). According to equation (5.10) however

we have I∗(Γ) = I∗(Γ ′). In the extreme case when pi ∈ CD(Γ) and ¬pi ∈ CD(Γ) for

134 QC Logic

every variable pi occurring in Γ , we have I∗(Γ) = 0 since the number of quasi-models

for Γ is exactly 2n where n is the number of distinct variables in Γ . In one sense

CD gives us a syntactic normal form for a set of formulae. Looking at our previous

example, it is easy to see that I∗ provides a more appropriate information value for Γ1

and Γ2.

CD(Γ1) CD(Γ2)

|M(CD(Γ))| 2 4

|U(CD(Γ))| 2 4

I∗(Γ) 2.00 1.00

Table 5.2: Comparison of Γ1 and Γ2

We note that we have not made full use of QC logic here. Indeed this is unnec-

essary and undesirable since the composition rule ∨–I allows the introduction of ar-

bitrary new propositional variables. Clearly the introduction of new variables would

interfere with the information value of a data set. In addition, we can also consider

using CD in conjunction with inference mechanisms based on maximal consistent sub-

sets (chapters 2 and 3). The idea is similar in that we can first apply CD to obtain a

normal form for an inconsistent set and then use further inference mechanisms to

extract conclusions from the set.

5.5 The Number of Q-Models

In this section, we’ll address the question of how to compute the number of quasi-

models of an inconsistent set. We can represent all possible quasi-models of Γ using

the following scheme:

F =
∨

A∈M(Γ)

∧
C∈A

C

= (C1
1 ∧ . . . ∧ C1

r) ∨ . . . ∨ (C
|M(Γ)|
1 ∧ . . . ∧ C

|M(Γ |
s) (5.11)

where each Cx
y is a reduced clause and |M(Γ)| is the number of maximal consistent

subsets of Γ . It is easy to see that the number of assignments verifying F is precisely

|U(Γ)| since an assignment v is model of F iff it is a quasi-model of Γ . Thus we can

compute the number of quasi-models for Γ by counting the number of assignments

verifying F. To do this however we need to observe the following:

§5.5 The Number of Q-Models 135

Proposition 5.5.1

1. If Γ is a set of clauses in n variables, then any maximal consistent subset of Γ has

exactly n variables.

2. There are exactly n distinct variables in each disjunct of F.

3. The number of models for F is exactly the sum of the number of models for each

disjunct of F.

Proof:

(1) Since each A ∈ M(Γ) is a subset of Γ , the number of variables occurring in any

A ∈ M(Γ) cannot be greater then n. Suppose to the contrary that some A ∈ M(Γ) has

less than n variables. Let li be a literal whose variable does not occur in A but occurs

in Γ . Then either li ∈ Γ or li occurs as a disjunct of a clause C ∈ Γ . In both cases,

we can find an assignment that satisfies A ∪ {li} and A ∪ {C}, but this contradicts the

maximal consistency of A.

(2) Since each disjunct of F is a conjunction of all formulae of a maximal consistent

subset of Γ , it follows from (1) that there must be n distinct variables occurring in each

disjunct of F.

(3) This follows from the fact that the disjuncts of F are pairwise inconsistent and that

each disjunct of F is consistent.

From (3) of the above proposition, it suffices to calculate the number of models for

each disjunct of F and then sum them. Now consider the k-th disjunct of F. Suppose

it is of the form,

Dk = Ck
1 ∧ . . . ∧ Ck

m

We can calculate the number of assignments which verify Dk by counting the number

of assignments which verify ¬Dk. From (2) of the above proposition, there must be n

variables in Dk (respectively ¬Dk). So there must be 2n distinct assignments over Dk

(respectively ¬Dk). Where |Ck
i | is the number of distinct variables in the i-th clause of

Dk, the number distinct assignments which verify ¬Ck
i is then given by the equation

|{v| v |= ¬Ck
i }| = 2n−|Ck

i | (5.12)

In general, the size of the union of a given family of sets S1 ∪ S2 ∪ . . . ∪ Sm is given by

136 QC Logic

the Inclusion-Exclusion formula ([40; 121]):

|

m⋃
h=1

Sh| =
∑

1≤h≤m

|Sh| −
∑

1≤h<i≤m

|Sh ∩ Si| +
∑

1≤h<i<j≤m

|Sh ∩ Si ∩ Sj| − · · ·

+(−1)m|S1 ∩ . . . ∩ Sm| (5.13)

So on the basis of (5.13), the total number of assignments which verify ¬Dk is

|{v| v |= ¬Dk}| =
∑

1≤i≤m

|{v| v |= ¬Ck
i }| −

∑
1≤i<j≤m

|{v| v |= ¬Ck
i ∧ ¬Ck

j }| + · · ·

+(−1)m|{v| v |= ¬Ck
1 ∧ . . . ∧ ¬Ck

m}| (5.14)

So the number of assignments which verify Dk is

|{v| v |= Dk}| = 2n − |{v| v |= ¬Dk}|

= 2n −

(∑
1≤i≤m

|{v| v |= ¬Ck
i }| −

∑
1≤i<j≤m

|{v| v |= ¬Ck
i ∧ ¬Ck

j }| + · · ·

+(−1)m|{v| v |= ¬Ck
1 ∧ . . . ∧ ¬Ck

m}|

)
(5.15)

The number of assignments which verify F is simply the sum of assignments which

verify some disjunct of F,

|{v| v |= F}| =

(
2n − |{v| v |= ¬D1}|

)
+ · · ·+

(
2n − |{v| v |= ¬D|M(Γ)|}|

)

= |M(Γ)| · 2n −
∑

1≤i≤|M(Γ)|

|{v| v |= ¬Di}| (5.16)

We note that in equation (5.14), if Ck
i and Ck

j are clauses which contain complemen-

tary literals p and ¬p, then ¬Ck
i ∧¬Ck

j is unsatisfiable and thus |{v| v |= ¬Ck
i ∧¬Ck

j }| = 0.

Moreover any conjunctive extension of ¬Ck
i ∧¬Ck

j would clearly also be unsatisfiable.

Thus one or more terms of the RHS of (5.14) may turn out to be zero. On the other

hand if Ck
1 . . . Ck

m are pairwise free from complementary literals, then ¬Ck
1 ∧ . . .∧¬Ck

m

§5.5 The Number of Q-Models 137

is clearly satisfiable. As usual if we represent a clause C as a set of literals, the number

of models for ¬Ck
1 ∧ . . . ∧ ¬Ck

m can be given by

|{v| v |= (¬Ck
1 ∧ . . . ∧ ¬Ck

m)}| = 2n−(|Ck
1∪...∪Ck

m|) (5.17)

These observations provide the basis of an algorithm developed by Lozinskii in

[121] for computing the number of models of a CNF formula.

Algorithm 5.5.1 Lozinskii’s algorithm
Require: input CNF(E)

Ensure: output µCNF(E) = |{v| v |= CNF(E)}|

1: s := 1;
2: G1 := {{C}|C ∈ CNF(E)};
3: t1 :=

∑
{Ci∈G1} 2

n−|Ci|;
4: acc := t1;
5: while Gs 6= ∅ do
6: s := s + 1;
7: Gs := ∅;
8: ts := 0;
9: for all gs−1 ∈ Gs−1 do

10: for all C ∈ CNF(E) and C 6∈ gs−1 do
11: gs := gs−1 ∪ {C};
12: if gs is pairwise free from complementary literals then
13: Gs := Gs ∪ {gs};
14: ts := ts + 2n−|∪gs|;
15: end if
16: end for
17: acc := acc + (−1)s−1ts;
18: end for
19: end while
20: µCNF(E) := 2n − acc

The basic idea of algorithm (5.5.1) is to incrementally sum the terms of equa-

tion (5.14) from left to right. At the end of line (4), algorithm (5.5.1) computes the

first term of equation (5.14), giving the value for
∑

1≤i≤m |{v| v |= ¬Ck
i }|. The outer

loop at line (5) is then executed (at most m times). Each run of the loop adds the value

of the next term of the equation. The first execution of the outer loop computes the

value of the second term
∑

1≤i<j≤m |{v| v |= ¬Ck
i ∧¬Ck

j }|. If this value is non-zero, then

acc is updated to provide the sum of the first two terms of (5.14). The loop is executed

repeatedly until either control reaches the last term of (5.14) or when every possible

way to extend every gs−1 at line (11) results in complementary literals appearing in

138 QC Logic

some pair of clauses in the extension. At the first inner loop at line (9), Gs−1 is the set

of all subsets of CNF(E) that are of size (s − 1) i.e. each gs−1 ∈ Gs−1 contains exactly

s − 1 clauses of CNF(E). At line (10) the second inner loop extends gs−1 with a single

clause from CNF(E) and the resulting extension is tested for complementary literals.

If the extension is pairwise free from complementary literals, then Gs is extended to

include gs and ts is recalculated to reflect the change. Once all possible ways to extend

a given gs−1 have been examined, control exits from the inner most loop and acc is

updated to reflect the new value. Control then returns to the top of the loop at line (9)

and selects another member of Gs−1 and continues the process of the inner-most loop.

For a set of clauses Γ with a known number of maximal consistent subsets k, count-

ing quasi-models of Γ can be done by calling Lozinskii’s algorithm k times. But other

propositional model counting algorithms can also be deployed to achieve the task.

Indeed, experimental and theoretical results show that Lozinskii’s algorithm is super-

seded by the Counting Davis-Putnum algorithm (CDP) of Birnbaum and Lozinskii

[40] and by the Decomposing Davis-Putnum algorithm (DDP) of Bayardo and Pe-

houshek [18]. But we should point out that the general problem of counting proposi-

tional models (#SAT) is #P-complete. So according to the present state-of-the-art, the

problem is computationally intractable in the worst case. Counting quasi-models is

no easier.

5.6 Application

In previous works Hunter and Nuseibeh [93; 94] have illustrated the usefulness of

QC logic in the analysis of inconsistent specifications in software engineering. Hunter

and Nuseibeh have pointed out that inconsistent specifications are often unavoidable

during software development. They argued persuasively that during the software

development cycle it is often more important to manage inconsistencies intelligently,

i.e., we need to analyse and to keep track of inconsistencies rather then resolving them

immediately. In the same spirit we advocate using QC logic and the definition given

by equation (6) as a basis to analyse over-constrained problems.

5.6.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) involves,

1. a set of variables, X1, . . . , Xn

§5.6 Application 139

2. associated with each variable, Xi, is a domain, Di of values

3. a set of constraints, C1, . . . , Cm, each is defined on subset of variables over a

subset of the Cartesian product of the associated domains, i.e. Ci(Xi1 , . . . , Xik) ⊆
(Di1 × . . .×Dik)

A solution to a CSP is simply an assignment of values to variables such that all

constraints are satisfied. A CSP is a Finite Constraint Satisfaction Problem (FCSP)

if its constraint domains are finite. Many real world problems such as optimization

problems or job scheduling problems can be viewed as CSPs.

As is well known, there is a close relationship between FCSPs and logic (see [39;

125]). Any FCSP can be stated as an equivalent logic problem in a variety of settings.

In the model checking approach for instance, a FCSP is taken to have a solution iff

a certain propositional theory Γ is satisfiable. In fact, the solutions are just the set

of models of Γ . In this scheme, the theory Γ is constructed as a set of propositional

formulae in CNF such that

1. Each possible combination of values for the variables is represented by a set of

propositional variables, p
x1
d1

, . . . , pxm
dn

, . . ., where intuitively, p
xi
dj

is the proposi-

tion which says that the variable xi is instantiated by the value dj. For instance,

the sentence (pxi
dj

∨ p
xi
dk

) says that the variable xi is instantiated by at least one

of values dj and dk.

2. A constraint is stated negatively in terms of values that are forbidden, e.g. the

sentence ¬p
xi
dj

says that xi is never instantiated by value di, the sentence ¬p
xi
dk

∨

¬p
xj

dk
says that xi and xj are never instantiated by the same value dk. The set of

all constraints is represented by a set of propositional formulae in the variables,

p
x1
d1

, . . . , pxm
dn

,

5.6.2 Over-constrained Problems

As it is with many real world problems, a CSP can be without a solution. A solu-

tionless CSP is an over-constrained problem (OCP) – every assignment of values to

variables fails to satisfy at least one constraint. Consider for instance,

Example 5.6.1

Let X, Y, Z be variables whose domain is {1, 2, 3}. Let the constraints be: X < Y, Y < Z

and Z < X.

140 QC Logic

Clearly, this is an OCP since no natural numbers can satisfy all three constraints.

This example illustrates that there are two main factors which contribute to a prob-

lem being over-constrained – and thus provides two different approaches to resolving

OCPs. The first is the domain of possible values and the second is the constraints

themselves. In our example if we were to add a value w to the domain such that for

some m and n, m < n, n < w, and w < m, then all constraints would be satisfied (w

need not be a natural number), in which case we no longer have an over-constrained

problem. Alternatively, we may accept a certain partial assignment that satisfies some

but not all of the constraints as a solution. Typically, we may accept those assign-

ments that satisfy a maximal number of constraints or variables. Given that any FCSP

is equivalent to a model checking problem in propositional logic, the second approach

to solving a finite OCP is equivalent to finding models for a certain subset of an in-

consistent set of propositions.

Regardless of how we may resolve an OCP, it is sometime desirable to analyse

the problem first before any further action is taken. In this respect, it is clear that QC

logic is well suited to the task. According to our previous scheme, we can encode

a finite OCP as a propositional theory Γ ; Γ must be unsatisfiable and thus inconsis-

tent. We can then apply QC logic to analyse the information value of Γ . In particular

in an OCP not all variables may be involved in an inconsistency (i.e. being overly

constrained). Thus it is desirable to identify those variables that are involved in an

inconsistency. The strategy, as before, is to take the decomposition closure of Γ and

then measure the value I∗(Γ). In a highly over-constrained problem we should expect

to see a lower value for I∗(Γ) and vice versa. This gives us a relative measurement of

the constrainedness of OCPs.

5.7 Conclusion

In this chapter we have argued that there are general advantages in developing practi-

cal reasoning systems that can tolerate inconsistencies. In this respect we have consid-

ered a paraconsistent logic that can avoid drawing trivial conclusions in the presence

of inconsistencies. But more importantly we advocate the use of paraconsistent logic

in assisting us in analysing inconsistent data. In this light, the role of logic goes be-

yond capturing valid forms of inference. Logic can be seen as a tool for analysis.

Chapter 6

Modalized Inconsistencies

6.1 Introduction

In the standard Kripkean binary relational semantics, the truth condition for modal

formulae is defined by

|=M
x �A ⇔ ∀y, Rxy ⇒ |=M

y A

where the notions of frame, model, and satisfaction are defined in the usual way (see

[48; 88; 89; 90]).

The minimal modal logic determined by the Kripkean binary relational frame is

the logic K, most economically axiomatised by adding to propositional logic PL the

single rule called Scott Rule:

[SR]
Γ ` A

�[Γ] ` �A

where �[Γ] = {�B : B ∈ Γ }. Alternatively, K can be axiomatised by adding to PL the

axiom schemata

[K] �A ∧ �B → �(A ∧ B)

[N] �>

and the rule of monotonicity

[RM]
A → B

�A → �B

In [164; 165; 100; 101], Jennings and Schotch generalise the Kripkean binary relational

semantics for modal logics by replacing the Kripkean binary relation with an (n + 1)-

ary relation for each n > 1. The truth condition for modal formulae is then redefined

as

|=M
x �A ⇔ ∀y1, . . . , yn, Rxy1, . . . , yn ⇒ ∃i(1≤i≤n) : |=M

yi
A

141

142 Modalized Inconsistencies

Just as K is the minimal logic associated with the class of Kripkean binary relational

frames, associated with each class of (n+1)-ary frames is a minimal weak aggregative

modal logic Kn. For each n > 1, the logic Kn is obtained by replacing [K] with the

weaker aggregation schema

[Kn] �A1 ∧ . . . ∧ �An+1 → �(
∨

1≤i<j≤n+1

Ai ∧ Aj)

We have, in fact, a descending sequence of modal logics ordered by inclusion:

K ⊇ K2 ⊇ K3 ⊇ . . .

The limit of such a sequence turns out to be
⋂

n<ω Kn = N, which is finitely axiomatis-

able by PL, [N] and [RM] alone. As is well known, there are modal logics even weaker

than N, for instance E which has the single rule

[RE]
A ↔ B

�A ↔ �B

In [11], Apostoli and Brown deploy a general strategy to show that for each n > 1, Kn

is determined by its respective class of (n+1)-ary relational frames, and thereby verify

a claim made in [164]. Their strategy hinges on showing that Kn can be alternatively

axiomatised by the single rule

[RTn]
Γ `n A

�[Γ] ` �A

where Γ `n A just iff every n-partition of Γ contains a cell which classically entails A.

The inclusion ordering of various weak modal logics is summarised in figure (6.1).

The logic M adopts the rule [RM]; C adopts [RM] and [K]; and N∗ adopts the rule of

necessitation: [RN] ` A =⇒ ` �A. N∗∗ adopts a weakened version of [RN] without

the restriction that A is a theorem, i.e. necessitation applies to any formula. The logic

N∗∗ turns out to have some surprisingly deep connections with default logic (see [70]).

The initial motivation to study Kn logics comes partly from the interest in finding

a suitable medium to express deontic, doxastic and epistemic dilemmas ([101; 166]).

In the presence of the strong aggregation principle [K], no distinction can be made

between having several incompatible obligations (moral, legal etc.) and having an

obligation to inconsistency. In doxastic and epistemic contexts where we may take

‘�A’ to mean ‘It is warranted that A’ or ‘It is justified that A’, it is equally unreasonable

§6.1 Introduction 143

?

?

?

�
�

�
�

�
��	

@
@

@
@

@
@@R

�
�

�
�

�
��	

E

M

N C

N∗

N∗∗

Kn

K

Figure 6.1: Inclusion ordering of weak modal logics.

to suppose that having incompatible but individually warranted claims amounts to

an inconsistency being warranted. In each of these cases, the problem is the failure to

observe the distinction between

[I] �A ∧ �¬A and [I∗] �(A ∧ ¬A)

In the standard Kripkean binary relational semantics, points at which [I] is true are

exactly the same points where [I∗] is true - namely points from which other points are

not accessible. The collapse of the distinction between [I] and [I∗] leads immediately

to the collapse of the further distinction between the consistency principles:

[D] �A → ¬�¬A and [Con] ¬�⊥

Arguably, in the deontic or epistemic reading of ‘�’, [Con] is a plausible principle

which requires that no inconsistency be obligatory or warranted. [D] however makes

the stronger demand that incompatible obligations or claims are ruled out at the out-

set. Worst still, in the presence of [K] and [RM], [I] implies �B for any B. 1 Thus

in any extension of the logic K, having several incompatible obligations or having

1Since A ∧ ¬A → B is a tautology, we have �(A ∧ ¬A) → �B, and by [K] we get �A ∧ �¬A → �B.

144 Modalized Inconsistencies

incompatible but individually warranted claims tantamounts to everything is oblig-

atory or warranted. Of course, we may just bite the bullet and insist that dilemma,

moral and the like never arise in deontically and doxastically ideal worlds. But from a

design stance, if we are to make our robots reason more like us and less like God, un-

restricted aggregation of deontic or epistemic modalities is not always desirable. Our

robots, like us, live in a world in which dilemmas and conflicts lie abound. Thus it

seems desirable to endow our robots with some capacity to reason with incompatible

information or obligations.

So much for philosophical motivations. On a technical level, from both a proof

theoretic and a semantic standpoint, the generalisation from binary to (n + 1)-ary re-

lational frames is an interesting strategy with which to study modal logics weaker

than K while still remaining within some sort of relational semantics. But the de-

ployment of multi-ary relational semantics also stages another strategy to generalise

modal logics - in particular, from logics with unary modal operators to logics with

multi-ary modal operators. 2

Several examples of such generalisation are readily available. Routley and Meyer

[129; 157], Gabbay [72], Johnston [102], Goldblatt [79], and Bell [19] have all indepen-

dently introduced logics with multi-ary modal operators and shown their complete-

ness with respect to several multi-ary relational frames. If ‘�’ is now taken to be an

n-ary modal operator, and

C = �(B1, . . . , Bi−1, B, Bi+1, . . . , Bn)

then we may write ‘CB[A]’ to denote, the formula obtained by replacing B with A in

C, i. e.

CB[A] = �(B1, . . . , Bi−1, A, Bi+1, . . . , Bn)

Having this notation available at hand, in [79] Goldblatt shows that the logic Kn, 3

axiomatised by adding to PL the axiom schemata

[Kn] CB[A] ∧ CB[D] → CB[A ∧ D]

2 Of course this is not surprising since the algebraic foundations of relational semantics were articu-
lated by Jónsson and Tarski in their seminal papers [103; 104]. According to Copland [49], Kripke had
remarked that Jónsson and Tarski’s paper [103] was the ‘most surprising anticipation’ of his own work.
Routley and Meyer [157] also deserve credit for generalising binary relational semantics for modal logic
to ternary relational semantics for relevant implications.

3 Although Goldblatt’s axiomatisation differs from ours, his logic is equivalent to ours.

§6.1 Introduction 145

[Nn] CB[>]

and the rule of inference

[RMn]
Ai → Bi (1 ≤ i ≤ n)

�(A1, . . . , An) → �(B1, . . . , Bn)

is determined by the class of (n + 1)-ary relational frames whose truth condition for

modal formulae is defined by

|=M
x �(A1, . . . , An) ⇔ ∀y1, . . . , yn, Rxy1, . . . , yn ⇒ ∃j(1≤j≤n) : |=M

yj
Aj

We note that Goldblatt’s truth condition is almost but not quite the same as Jennings-

Schotch’s. In Jennings-Schotch’s semantics, �A is true at a point just in case A is true

somewhere in every related n-tuple of points. In Goldblatt’s semantics, �(A1, . . . , An)

is true at a point just in case each related n-tuple of points has some j, 1 ≤ j ≤ n,

where Aj is true in the j-th coordinate of the n-tuple. In each case, the Kripkean truth

condition is uniquely recovered when we set n = 1.

To no one’s surprise, just as K can be axiomatised by [SR], Goldblatt’s Kn can be

axiomatised by the rule

[GR]
Γ ` A

CB[Γ] ` CB[A]

where CB[Γ] = {CB[D] : D ∈ Γ }. There is clearly a symmetry between unary modal

logics and n-ary modal logics. [Kn], [Nn], and [RMn] are just n-ary counterparts of

the familiar [K], [N], and [RM]. Similarly, the rule [RE] can be restated as an n-ary

counterpart:

[REn]
Ai ↔ Bi (1 ≤ i ≤ n)

�(A1, . . . , An) ↔ �(B1, . . . , Bn)

Our main purpose here is to study a generalisation of Jennings-Schotch’s logics. In

particular, we’ll show that just as normal unary modal logic K can be weakened to

Kn by progressively relaxing the aggregation principle, multi-ary modal logic Kn can

also be weakened to the logics Km
n . Such logics can in fact be axiomatised by a rule

analogous to [RTn]. We’ll generalise the Apostoli-Brown strategy to show that Km
n is

determined by a class of m + n-ary relational frames. In section (6.2), we’ll intro-

duce our logics and their semantics. In section (6.3), we’ll introduce a species of para-

consistent consequence relations, called n-forcing, based on our logics and prove the

compactness property for such consequence relations. In section (6.4), we’ll present

Apostoli-Brown’s axiomatisation of n-forcing and its completeness. In section (6.5),

146 Modalized Inconsistencies

we’ll give completeness a proof for our logics. We’ll conclude with a conjecture.

6.2 Logical Preliminaries

6.2.1 Syntax

A set of formulae, Φ, is constructed in the usual way from a set of propositional atoms,

At = {p1, p2, . . .}, and a set of connectives, ¬,∧,∨,� where � is an m-ary connective.

As usual we’ll omit outermost parenthesis. We’ll use A → B and A ↔ B, ⊥ and >
as shorthand for ¬A ∨ B, (¬A ∨ B) ∧ (¬B ∨ A), A ∧ ¬A, A ∨ ¬A, respectively. For

each n ≥ 1 and each m ≥ 1, the modal logic Km
n (Λ ⊆ Φ) is the least set satisfying the

following conditions:

• PL ⊆ Λ and Λ is closed under the rules of PL

• where C = �(C1, . . . , Cm−1, B), [Km
n] ∈ Λ, i. e.

CB[A1] ∧ . . . ∧ CB[An+1] → CB[
∨

1≤i<j≤n+1

Ai ∧ Aj] ∈ Λ

• [Nm
n] ∈ Λ i. e.

CB[>] ∈ Λ

• Λ is closed under [RMm
n], i. e. for every i, 1 ≤ i ≤ m − 1,

Ai ↔ Bi ∈ Λ and Am → Bm ∈ Λ =⇒ �(A1, . . . , Am) → �(B1, . . . , Bm) ∈ Λ

If A is a theorem of Λ, we write, `Λ A. And for any Γ ⊆ Φ, Γ `Λ A iff there is an

n ∈ N such that B1, . . . , Bn ∈ Γ and `Λ B1 ∧ . . . ∧ Bn → A. A set Γ is Λ-inconsistent iff

Γ `Λ ⊥. Where the context is clear, we’ll use ‘consistent’ instead of Λ-consistent.

6.2.2 Models

A model M = 〈U ,R,V〉 where U 6= ∅, R ⊆ (℘(U))m−1 × Un+1 and V : At −→ ℘(U).

The satisfaction relation |= is defined inductively by

• |=M
x pi ⇔ x ∈ V(pi)

• |=M
x ¬A ⇔ 6|=M

x A

• |=M
x (A ∨ B) ⇔ |=M

x A or |=M
x B

§6.3 n-Forcing and Coherence Level 147

• |=M
x (A ∧ B) ⇔ |=M

x A and |=M
x B

• |=M
x �(A1, . . . , Am−1, B) ⇔ ∀y1, . . . , yn ∈ U ,

R‖A1‖M, . . . , ‖Am−1‖M, xy1, . . . , yn ⇒ ∃i(1≤i≤n) : |=M
yi

B

where for any C ∈ Φ, ‖C‖M = {x ∈ U : |=M
x C}. We note that the Jennings-Schotch’s

semantics is recovered when m = 1, one of Gabbay’s semantics as defined in [72] (p.

180) is recovered when n = 1. And when m = n = 1, then we have the standard

Kripkean semantics.

Theorem 6.2.1

Km
n is sound with respect to our models.

The soundness proof is standard. We leave it to the reader to verify.

6.3 n-Forcing and Coherence Level

Before we tackle the completeness problem of Km
n , we’ll need some additional defini-

tions and lemmata. In this section, we’ll introduce the n-forcing inference relation - a

species of paraconsistent inference relation, and the notion of coherence level of a set.

From now on, we’ll assume that m is fixed. Relative to Λ, the notion of n-forcing and

coherence level are defined as follows:

Definition 6.3.1

A non-empty Λ-inconsistent set Γ n-forces A, Γ `n A iff for every n-partition, π, of Γ ,

there is a cell, C ∈ π, such that C `Λ A. If Γ = ∅ or is Λ-consistent, then Γ `n A iff

Γ `Λ A.

The collection of all n-partitions of Γ will be denoted by
∏

n(Γ). We’ll say that a

partition of Γ is a Λ-consistent partition iff each cell of the partition is Λ-consistent.

148 Modalized Inconsistencies

Definition 6.3.2

The coherence level of a set Γ , ` : ℘(Φ) −→ N ∪ {∞} is defined as follows:

`(Γ) =

1 if Γ = ∅ or Γ 6`Λ ⊥

the cardinality of the least

Λ-consistent partition of Γ

up to and including ω

if such partition exists

∞ otherwise

Given the usual notion of a maximal consistent set, we can state more explicitly the

relationship between n-forcing and coherence level of a set and Λ-maximal consistent

sets. We’ll use [∧C]Γ to denote {B ∧ C : B ∈ Γ }, if Γ = ∅, then we let [∧C]Γ = {C}.

Where Σ = [∧C]Γ , we’ll let [∧C]∗Σ = {B : B ∧ C ∈ Σ}.

Proposition 6.3.1

The following statements are equivalent

1. Γ `n A

2. `([∧¬A]Γ) > n

3. For any maximal Λ-consistent sets x1, . . . , xn such that Γ ⊆
⋃

{x1, . . . , xn},

A ∈
⋃

{x1, . . . , xn}.

Proof:

(1)⇒(2): Assume that Γ `n A. If `(Γ) > n, clearly `([∧¬A]Γ) > n. So assume that

`(Γ) ≤ n. Towards a contradiction, assume that `([∧¬A]Γ) ≤ n. Then there must

be a consistent n-partition of [∧¬A]Γ . Let π = {C1, . . . , Cn} be such a consistent n-

partition. Then π∗ = {[∧¬A]∗C1, . . . , [∧¬A]∗Cn} is a consistent n-partition of Γ . But

Γ `n A, so ∃i(1≤i≤n): [∧¬A]∗Ci `Λ A. This contradicts our assumption that every Ci is

Λ-consistent. So `([∧¬A]Γ) > n as required.

(2)⇒(3): Assume that `([∧¬A]Γ) > n. Let x1, . . . , xn be any maximal Λ-consistent

sets such that Γ ⊆
⋃

{x1, . . . , xn}. Clearly there must be a consistent n-partition of Γ

such that each cell, Ci, is a subset of xi. Let π = {C1, . . . , Cn} be such a consistent n-

partition. Then π′ = {[∧¬A]C1, . . . , [∧¬A]Cn} is an n-partition of [∧¬A]Γ . But by our

initial assumption `([∧¬A]Γ) > n, so ∃i(1≤i≤n) : Ci `Λ A. Hence, ∃i(1≤i≤n) : xi `Λ A.

§6.3 n-Forcing and Coherence Level 149

By deductive closure of maximal consistent sets, A ∈ xi. Hence A ∈
⋃

{x1, . . . , xn} as

required.

(3)⇒(1): Assume that Γ 6`n A. Clearly, if `(Γ) > n, then Γ `n A. So `(Γ) ≤ n. Let

{C1, . . . , Cn} be a consistent n-partition such that ∀i(1≤i≤n) : Ci 6`Λ A. Such a partition

clearly exists, otherwise Γ `n A. Then ∀i(1≤i≤n), Ci ∪ {¬A} is Λ-consistent. We extend

each Ci ∪ {¬A} to its maximal Λ-consistent extension. Hence there exist n maximal

Λ-consistent sets x1, . . . , xn such that Γ ⊆
⋃

{x1, . . . , xn}, but A 6∈
⋃

{x1, . . . , xn}.

Calling `n a consequence relation is well suited since it satisfies the usual proper-

ties of reflexivity, monotonicity, and transitivity (we’ll leave it to the reader to verify

this). And as we show later, it is also finitary. However, stepping back from the partic-

ular logic Λ and looking at things a bit more abstractly, proposition (6.3.1) underscores

the fact that `n generalises the classical consequence relation `. The classical counter-

part to proposition (6.3.1) is the familiar equivalence between (1) Γ ` A, (2) Γ ∪ {¬A} is

inconsistent, and (3) A ∈ x for any maximal consistent extension x of Γ .

Another related generalisation at work is the notion of coherence level. In this

framework, classically consistent sets are simply level 1 sets whereas all classically

inconsistent sets are level n sets, where n ≥ 2. Thus a classically consistent theory,

in the sense of a consistent deductively closed set, is simply a level 1-theory closed

under classical `. It is not difficult to see that just as the closure of a level 1 set un-

der classical ` yields a level 1-theory, closure of a level n set under `n yields a level

n-theory. Thus we may say that `n is a level preserving relation for any set with level

≤ n. Now a theory is said to be trivial iff every formula is a deductive consequence of

the theory. As is well known, closing a level n ≥ 2 set under classical ` yields a triv-

ial theory. Thus as some put it colourfully, classical ` is inferentially explosive with

respect to inconsistent sets. Given these observations, `n provides a possible strategy

for studying inconsistent but non-trivial theories as well as paraconsistent formal sys-

tems in which not every B is a deductive consequence of {A,¬A}. More interestingly,

from an information processing viewpoint n-forcing provides a plausible inferential

strategy to extract information from multiple sources, where n corresponds to the

number of information channels or sources. More detailed discussions of n-forcing

and inconsistency-tolerant reasoning can be found in [99] and [167].

One of the crucial steps in Apostoli-Brown’s proof of the completeness of Kn is

to establish the compactness of `n. But proposition (6.3.1) now makes it clear that

the compactness of `n is an immediate corollary of the compactness of the coherence

150 Modalized Inconsistencies

levels of sets. We’ll state the problem of compactness of coherence level in terms of

trace, a kind of generalised filter base, as presented by Jennings and Schotch in [167].

The notion of trace, we may add, is in fact equivalent to the notion of non-colourability

of hypergraphs. 4

Definition 6.3.3

Let Σ be a collection of finite subsets of a non-empty set Γ . Then Σ is an n-trace over Γ

iff for every n-partition, π, of Γ , there is a cell C ∈ π such that some element of Σ is a

subset of C.

Lemma 6.3.1

If Σ and Γ are non-empty finite sets and Σ is an n-trace over Γ , then Σ is an m-trace

over Γ , for m < n.

Proof:

We assume that Σ and Γ are non-empty, finite and Σ is an n-trace over Γ . Let Σ = {Ai :

1 ≤ i ≤ k}. Suppose for some m < n, Σ is not an m-trace over Γ . Then there is an

m-partition π = {Cj : 1 ≤ j ≤ m} of Γ such that Ai 6⊆ Cj for all j. Let

π∗ = {Bl : 1 ≤ l ≤ n, ∅ 6= Bl ⊆ Cj, for some j}

Then π∗ is an n-partition such that Ai 6⊆ Bl for each Ai and each Bl. But this contra-

dicts the hypothesis that Σ is an n-trace over Γ . Hence, for each m < n, Σ is an m-trace

over Γ .

Lemma 6.3.2

Let Γ 6= ∅ and Σ be an n-trace over Γ . Then ∃Σ0 ⊆fin Σ such that Σ0 is an n-trace over

Γ .

Proof:

Our strategy is to prove the contrapositive, i.e. if every finite subset of Σ is not an

n-trace over Γ , then Σ is not an n-trace over Γ . We proceed to construct a first order

theory T such that every finite subset of Σ is not an n-trace of Γ iff every finite subset

of T has a model. So by the compactness of first order logic, if every finite subset of Σ

4A hypergraph, G, is a pair, (V(G), E(G)) where V(G) is a set of vertices, and E(G) is a collection of
edges, i.e. a collection of finite subsets of V(G). An n-colouring of a hypergraph G is an n-partition of
V(G). A hypergraph G is n-colourable iff some n-colouring c of G is such that no edge of G is monochro-
matic under c, i.e. no edge is a subset of any cell of the partition c. The compactness theorem for hyper-
graphs states that a hypergraph G is n-colourable iff every finite sub-hypergraph of G is n-colourable.
In proving the compactness of trace, we thereby also establish the compactness of hypergraphs.

§6.3 n-Forcing and Coherence Level 151

is not an n-trace of Γ , then T has a model and hence by the construction of T , Σ is not

an n-trace over Γ . Let

Σ = {Ai : i ∈ I}

For each i ∈ I, let

Ai = {ai
1, . . . , a

i
ki

}

Make the assumption that every finite subset of Σ is not an n-trace over Γ , i. e. for

each finite subset Σ′ of Σ there is an n-partition of Γ such that no cell in the partition

contains any element of Σ′. Towards the construction of our first order theory T , we

extend the first order language with

• n many predicate symbols, P1, . . . , Pn, each representing a cell in the n-partition

• for each i ∈ I, introduce constant symbols, ci
1, . . . , c

i
ki

each naming the corre-

sponding element in Ai.

Let

Θ = ∀x(
∨

1≤h≤n

Phx)

For each i ∈ I, let

Ωi =
{(∧

1≤h≤n

(∨
1≤j≤ki

¬Phci
j

))
∧ Θ

}
Let

Ω =
⋃
i∈I

Ωi

We obtain the first order theory T by adding all elements of Ω as proper axioms to

standard first order logic. But our assumption is that every finite subset of Σ is not an

n-trace over Γ , so every finite subset of Ω has a model. By first order compactness, T

has a model and thus Ω has a model. Hence there must be an n-partition of Γ such

that no cell of the partition contains any element of Σ, i.e. Σ is not an n-trace over Γ .

Lemma 6.3.3

Let Σ be finite, Γ 6= ∅. If Σ is an n-trace over Γ , then ∃Γ0 ⊆fin Γ such that Σ is an n-trace

over Γ0.

Proof:

Assume that Σ is finite and Γ 6= ∅. We’ll show that if Σ is not an n-trace over Γ ′,

∀Γ ′ ⊆fin Γ , then Σ is not an n-trace over Γ . Our strategy is similar to the proof of

152 Modalized Inconsistencies

lemma (6.3.2). We proceed to construct a first order theory T such that Σ is not an n-

trace over Γ ′, ∀Γ ′ ⊆fin Γ , iff every finite subset of T has a model. So by the compactness

of first order logic, if Σ is not an n-trace over Γ ′, ∀Γ ′ ⊆fin Γ , then T has a model and

hence by the construction of T , Σ is not an n-trace over Γ . Let I be an index set. For each

i ∈ I, let Γi ⊆fin Γ . Let Σ = {A1, . . . ,Am}. For 1 ≤ j ≤ m, let Aj = {aj
1, . . . , a

j
kj

}. Make

the assumption that Σ is not an n-trace over any finite subset of Γ , i. e. for each i ∈ I,

there is an n-partition of Γi such that no cell in the partition includes aj, 1 ≤ j ≤ m.

Towards the construction of our first order theory T , extend the first order language

with

• for each i ∈ I, n many predicate symbols, Pi
1, . . . , P

i
n, each represents a cell in the

n-partition of Γi

• for 1 ≤ j ≤ m, introduce constant symbols, cj
1, . . . , c

j
kj

, each name the corre-

sponding element of Aj

For each i ∈ I, let

Θi = ∀x(
∨

1≤h≤n

Pi
hx)

and

Ωi =
{(∧

1≤h≤n

(∨
1≤j≤k1

¬Pi
hc1

j

))
∧ . . . ∧

(∧
1≤h≤n

(∨
1≤j≤km

¬Pi
hcm

j

))
∧ Θi

}

Let

Ω =
⋃
i∈I

Ωi

We obtain our first order theory T by adding all elements of Ω as proper axioms to

first order logic. But our assumption is that Σ is not an n-trace over Γi, for each i ∈ I,

so every finite subset of Ω has a model. By first order compactness, T has a model and

thus Ω has a model. Hence there must be an n-partition of Γ such that no cell of the

partition contains any element of Σ, i. e. Σ is not an n-trace over Γ .

Theorem 6.3.1

Trace Compactness: let Γ be a non-empty set and Σ be a collection of finite subsets of

Γ . Then Σ is an n-trace over Γ iff there is a Γ0 ⊆fin Γ and a Σ0 ⊆fin Σ such that Σ0 is an

n-trace over Γ0.

Proof:

(⇐): Assume that Σ0 is an n-trace over Γ0, where Γ0 ⊆fin Γ and Σ0 ⊆fin Σ. To show

§6.3 n-Forcing and Coherence Level 153

that Σ is an n-trace over Γ , it suffices to show that Σ0 is an n-trace over Γ . Clearly

each n-partition of Γ must also partition Γ0 into n or fewer cells. If an n-partition of Γ

partitions Γ0 into n cells, then by our initial hypothesis, some element of Σ0 is a subset

of some cell in the partition. And if an n-partition of Γ partitions Γ0 into m cells, where

m < n, then by lemma (6.3.1), Σ0 is an m-trace over Γ0, so some element of Σ0 must

also be a subset of some cell of the partition. So either way, some element of Σ0 is a

subset of some cell in each n-partition of Γ . Hence Σ0 is an n-trace over Γ .

(⇒): Assume that Σ is an n-trace over Γ . By lemma (6.3.2), ∃Σ0 ⊆fin Γ such that Σ0 is

an n-trace over Γ . By lemma (6.3.3), ∃Γ0 ⊆fin Γ such that Σ0 is an n-trace over Γ0.

Having now established the compactness of traces, we are now in a position to prove

the compactness of coherence level of sets.

Theorem 6.3.2

Level Compactness: For Γ ⊆ Φ, if `(Γ) > n, then there is a finite subset Γ ′ of Γ , such

that `(Γ ′) > n.

Proof:

Let Γ ⊆ Φ such that `(Γ) > n. Let

Σ = {A : A ⊆fin Γ and A `Λ ⊥}

By our assumption that `(Γ) > n, Σ is an n-trace over Γ . By theorem (6.3.1), ∃Γ0 ⊆fin Γ ,

∃Σ0 ⊆fin Σ such that Σ0 is an n-trace over Γ0. But then every n-partition of Γ0 must

contain a cell which includes some element of Σ0. But Σ0 ⊆ Σ. Hence every n-partition

of Γ0 contains an inconsistent cell, i.e. `(Γ0) > n as required.

Theorem 6.3.3

Compactness of `n: For Γ ⊆ Φ, A ∈ Φ, if Γ `n A, then ∃Γ0 ⊆fin Γ such that Γ0 `n A.

Proof:

Let Γ ⊆ Φ, A ∈ Φ, such that Γ `n A. Then by proposition (6.3.1), `([∧¬A]Γ) > n.

By theorem (6.3.2), there is Γ0 ⊆fin Γ such that `([∧¬A]Γ0) > n. Hence by proposi-

tion (6.3.1) again, Γ0 `n A.

154 Modalized Inconsistencies

6.4 Completeness of n-Forcing

In [11], the completeness of Kn is proven in two stages: the first stage is to show

the compactness of `n using compactness of hypergraph colouring, the second stage

is to show the completeness of `n by presenting an axiomatisation of `n in term of

Gentzen-style sequents. In this section we will present the Apostoli-Brown axiomati-

sation of `n.

Axiom Schema:
[Ref]

A [̀ nA

Rules Schemata:

Γ [̀ nA
[Mon]

Γ, ∆ [̀ nA

Γ [̀ nA1 · · · Γ [̀ nAn+1
[RKn]

Γ [̀ n

∨
1≤i<j≤n+1

(Ai ∧ Aj)

Γ [̀ nA Γ,A [̀ nB
[N Cut]

Γ [̀ nB

Γ [̀ nA `Λ B
[Λ Cut]

Γ [̀ nB

Given the usual notions of derivation of a sequent and derivable sequent, we obtain

the following result:

Theorem 6.4.1

Completeness for n-forcing (Apostoli and Brown): Let Γ ⊆ Φ, A ∈ Φ. Then

Γ `n A ⇐⇒ Γ [̀ nA

Proof:

see proof of theorem (5.2), p.839, in [11]

6.5 Completeness of Km
n

We are now in a position to show that just as the schema [Kn] yields closure under the

rule schema [RTn], the schema [Km
n] yields closure under the rule schema

Γ `n A
[RTm

n]
CB[Γ] `Λ CB[A]

§6.5 Completeness of Km
n 155

where CB[Γ] = {CB[D] : D ∈ Γ } for for some C = �(C1, . . . , Cm−1, B).

Theorem 6.5.1

Let Γ ⊆ Φ, A ∈ Φ and C = �(C1, . . . , Cm−1, B), then

Γ [̀ nA =⇒ CB[Γ] `Λ CB[A]

Proof:

The proof is by induction on the complexity of the derivation of Γ [̀ nA.

Basis: Γ [̀ nA is an axiom. Then Γ = {A}. But CB[A] `Λ CB[A]. So CB[Γ] `Λ CB[A].

Induction Step: Assume that Γ [̀ nA is obtained as an endsequent by application of one

of the rule schemata, and that the theorem holds with respect to all proper subderiva-

tions therein. There are four cases:

(1) [Mon]: the result is obtained by the induction hypothesis and the monotonicity of

`Λ.

(2) [Λ Cut]: use the induction hypothesis, PL and [RMm
n].

(3) [N Cut]: use the induction hypothesis and PL.

(4) [RKm
n]: Then

A =
∨

1≤i<j≤n+1

(Ai ∧ Aj)

such that Γ [̀ nAk, for each k ≤ n + 1. By the induction hypothesis, CB[Γ] `Λ CB[Ak],

for each k ≤ n + 1. So

CB[Γ] `Λ CB[A1] ∧ . . . ∧ CB[An+1]

But

CB[A1] ∧ . . . ∧ CB[An+1] → CB[
∨

1≤i<j≤n+1

(Ai ∧ Aj)]

is an instance of [Km
n], hence by PL,

CB[Γ] `Λ CB[
∨

1≤i<j≤n+1

(Ai ∧ Aj)]

follows immediately. This completes the induction.

We now give the canonical model construction for Km
n , and show that every non-

156 Modalized Inconsistencies

theorem of Km
n is falsified in the corresponding canonical model.

Definition 6.5.1

The Canonical Model of Km
n , MΛ = 〈UΛ,RΛ,VΛ〉 where

• UΛ = {x : x is a maximal Km
n consistent set}

• RΛ ⊆ ℘(UΛ)
m−1 × UΛn+1 is defined by

∀xy1, . . . , yn ∈ U , ∀A1, . . . ,Am−1 ⊆ U , ∀A1, . . . , Am−1, B ∈ Φ,

RΛA1, . . . ,Am−1, xy1, . . . , yn ⇐⇒
∀i(1≤i≤m−1)Ai = |Ai|

Λ and �(A1, . . . , Am−1, B) ∈ x =⇒ ∃j(1≤j≤n) : B ∈ yj

where C ∈ Φ, |C|Λ = {x ∈ UΛ : C ∈ x} (note that |C|Λ = |D|Λ iff `Λ C ↔ D).

• VΛ : At −→ ℘(UΛ) is defined by

∀x ∈ UΛ, ∀pi ∈ At, x ∈ VΛ(pi) ⇐⇒ pi ∈ x

Theorem 6.5.2

The Fundamental Theorem for Km
n modal logics: ∀x ∈ UΛ, ∀A ∈ Φ,

|=M
x A ⇐⇒ A ∈ x

Proof:

The proof is by induction on the complexity of A. The basis is given by the definition

of VΛ. For the induction step, we assume the induction hypothesis that the theorem

holds with respect to all sub-formulae of A and show that the theorem holds for A.

The cases for the truth functional connectives are trivial, we’ll consider the case where

A = �(C1, . . . , Cm−1, B). We need to show that

|=M
x �(C1, . . . , Cm−1, B) ⇐⇒ �(C1, . . . , Cm−1, B) ∈ x

(⇐): follows immediately from the definition ofRΛ and the induction hypothesis that

‖Ci‖MΛ
= |Ci|

Λ for i ≤ m − 1.

(⇒): Assume that �(C1, . . . , Cm−1, B) 6∈ x. By the induction hypothesis, it suffices to

show that ∃y1, . . . , yn ∈ UΛ:

RΛ|C1|
Λ, . . . , |Cm−1|

Λ, xy1, . . . , yn and ∀j(1≤j≤n)¬B ∈ yj

§6.6 Further Work 157

We will construct such y1, . . . , yn ∈ UΛ. Let

�(x) = {D : �(C1, . . . , Cm−1, D) ∈ x}

Claim: `(∧¬B[�(x)]) ≤ n

Proof of Claim: Towards a contradiction we assume that `(∧¬B[�(x)]) > n. Then by

proposition (6.3.1), �(x) `n B. By the rule [RTm
n], x `Λ �(C1, . . . , Cm−1, B). By the de-

ductive closure of x, �(C1, . . . , Cm−1, B) ∈ x which contradicts our initial assumption.

This completes the proof of our claim.

By our claim, ∃π ∈
∏

n(�(x)) such that π = {C1, . . . , Cn} and for i ≤ n, Ci ∪ {¬B} is

Λ-consistent. By Lindenbaum’s lemma, for each i ≤ n, Ci ∪ {¬B} can be extended to

yi ∈ UΛ. It remains to be proven that

RΛ|C1|
Λ, . . . , |Cm−1|

Λ, xy1, . . . , yn

Let C1, . . . , Cm−1, D ∈ Φ be such that |Cj|
Λ = |Aj|

Λ for every j ≤ m − 1 and

�(C1, . . . , Cm−1, D) ∈ x. Then clearly, for each j ≤ m − 1, `Λ Cj ↔ Aj and `Λ D → D.

Hence by [RMm
n],

`Λ �(C1, . . . , Cm−1, D) → �(A1, . . . , Am−1, D)

But �(C1, . . . , Cm−1, D) ∈ x, so �(A1, . . . , Am−1, D) ∈ x. Hence, D ∈ �(x). But by our

construction �(x) ⊆
⋃

1≤i≤n yi. Hence, D ∈
⋃

1≤i≤n yi as required. This completes

the inductive proof of the fundamental theorem.

6.6 Further Work

It is clear that for each fixed m, we have a descending sequence of Km
n logics ordered

by inclusion:

Km
1 ⊇ Km

2 ⊇ Km
3 ⊇ . . .

In [100], Jennings and Schotch show that the limit of the descending sequence of Kn

logics is finitely axiomatisable by PL, [N] and [RM] alone. To show that this is indeed

the case, Jennings and Schotch show that

1. N is determined by a class, C, of locale frames.

158 Modalized Inconsistencies

2. Any formula that fails in C also fails in the class of relational frames of rank n+1

where n + 1 is the arity of the relation.

Since Kn is determined by the class of relational frames of rank n + 1, it follows

immediately from 1. and 2. that every non-theorem of N is a non-theorem of Kn and

hence
⋂

n<ω Kn = N.

Question 6.6.1

For each fixed m, does
⋂

n<ω Km
n = Nm, where Nm is axiomatised by PL [Nm] and

[RMm
n]?

Chapter 7

Hypergraph Satisfiability

7.1 Introduction

In [112], Kolany introduces the notion of weak satisfiability on hypergraphs, a gen-

eralisation of Cowen’s notion of strong satisfiability on hypergraphs [51], and shows

that the compactness property of weak satisfiability on hypergraphs is, in ZF set the-

ory, equivalent to BPI, i.e. to the statement that every Boolean Algebra contains an

ultrafilter [50]. Kolany’s notion of weak satisfiability provides a graph theoretic rep-

resentation of a wide range of combinatorial problems, including the satisfiability of

propositional formulae. In this chapter, we’ll generalise Kolany’s idea and introduce

the notion of n-satisfiability on hypergraphs. The motivation for such a generalisation

originates in the works [101; 164; 167]. In their study of inconsistency-tolerant logic,

Jennings and Schotch observe that a set of unsatisfiable formulae may be partitioned

into subsets which are satisfiable individually. Consider for instance,

Σ = {p ∧ q, ¬p ∧ ¬q, p ∧ ¬q, r}

Although Σ is unsatisfiable, it can be partitioned into 3 satisfiable subsets but every

partition of Σ into 2 subsets contains at least one unsatisfiable subset. Thus we may

think of Σ as a 3-satisfiable set but not a 2-satisfiable set. More precisely, for a set of

formulae, Σ, we say that it is n-satisfiable iff there is a partition of Σ into n or fewer

satisfiable subsets. For a set of satisfiable formulae, we may conveniently treat it as a

1-satisfiable set. The incoherence level of a set Σ, `(Σ), is then defined as the least n such

that Σ is n-satisfiable, if there is no such n then `(Σ) = ∞; if Σ = ∅ or is satisfiable,

we let `(Σ) = 1. The observations of Jennings and Schotch form the basis for a species

of paraconsistent logics in which the classical rule of ex contradictione quodlibet is not

derivable; i.e. A,¬A 6` B. Thus the Jennings-Schotch’s logics provide one particular

159

160 Hypergraph Satisfiability

strategy for reasoning with inconsistent information. More interestingly however, the

Jennings-Schotch’s logics have startling connections with modal logics as well as the

infamous four colour theorem, i.e. every planar graph is 4-colourable. We cannot give

a full summary of their works here. The reader is advised to consult [9; 11; 44] for

details.

Our aim here is to develop hypergraph theoretic counterparts to the notion of

n-satisfiability and the related notion of incoherence level of a set. Our motivation

is partly to continue the theoretical exploration of the connection between paracon-

sistent reasoning and hypergraph theory. But we are also interested in developing a

general framework for visualising logical problems that involve reasoning with incon-

sistent information. In this chapter, we’ll develop a general notion of n-satisfiability

on hypergraphs which subsumes Kolany’s notion of weak satisfiability. We’ll also

show that the compactness statement for n-satisfiability on hypergraphs is equiva-

lent to BPI in ZF set theory. We give a syntactic characterisation of n-satisfiability on

hypergraphs in terms of a resolution style proof procedure. A general notion of con-

sequence relation based on hypergraphs will also be introduced. We’ll conclude with

a discussion of a conjecture of Cowen relating BPI and complexity theory.

First we recall Kolany’s definitions.

Definition 7.1.1

A hypergraph H is a pair (V, E) where V is a non-empty set of vertices or literals, and

its finite subsets are called clauses; E is a collection of non-empty subsets of V . The

elements of E are called edges. A hypergraph is compact if all edges are finite. A

hypergraph is a graph if ∀e ∈ E, |e| = 2.

Let n ≥ 2. A (vertex) n-colouring of H = (V, E) is a function c : V −→ {1, . . . , n}

such that all edges are non-monochromatic under c. We say that H is n-colourable iff

there is an n-colouring of H. The chromatic number, χ(H), of H is the least n such that

H is n-colourable.

We note that if H contains a singleton edge, then H is not n-colourable. We are con-

cerned only with compact hypergraphs without singleton edges here. Kolany’s notion

of weak satisfiability is defined as follows:

Definition 7.1.2

Let H be an arbitrary but fixed hypergraph. Let Γ be a set of literals on H and Σ be a

family of clauses on H. Then Γ weakly satisfies Σ (on H) iff:

1. ∀e ∈ E, e 6⊂ Γ (Γ is consistent)

§7.1 Introduction 161

2. ∀σ ∈ Σ, Γ ∩ σ 6= ∅ (Γ pierces Σ)

Σ is weakly satisfiable on H iff some Γ ⊆ V weakly satisfies Σ.

It is very easy to visualize Kolany’s notion of weak satisfiability on hypergraphs.

In fact the problem of determining whether a family of clauses is weakly satisfiable

on a given hypergraph is structurally similar to the travelling salesman problem (see

[76]). We forgo formal definitions here and adopt a more intuitive presentation us-

ing descriptions such as points, regions and tours. In figure (7.1), vertices are repre-

sented by black dots and edges are represented by blue lines or blue regions. A family

of clauses, Σ, is represented by red lines or red regions. To determine whether Σ is

weakly satisfiable is simply a matter of finding a tour that

1. passes each red region at least once and

2. avoids passing through every point in any given blue region.

� �� � � �
� �

� �� �

� �� �

� �	 	

� �

� �

� �� �

� �� �
� � �� �

� �� �
� �� �

� �� �� �� �

� �� �

� �� �

 ! !

" "# #

$ $% % & &
' '

(())

* *+ +

, ,- -

. ./ /

0 01 1

2 23 3

4 45 5
6 6 67 7

8 89 9
: :; ;

< <= => >? ?

@ @A A

B BC C

D DE E

F FG G

H HI I

J JK K

L LM M
N NO O

P PQ Q

R RS S

T T TU U

V VW W

X XY YZ Z[[

\ \]]

^ ^_ _

` `a a

b bc c

d de e

f fg g

h hi i

j jk k

Figure 7.1: n-satisfiability on hypergraphs.

The green line represents a tour that weakly satisfies Σ. In [112], Kolany proved

the following:

Theorem 7.1.1

Kolany [112]

(1) Let H be a compact hypergraph and Σ a set of clauses on H. Then Σ is weakly

satisfiable iff every finite subset of Σ is weakly satisfiable.

162 Hypergraph Satisfiability

(2) The compactness theorem (in (1)) for weak satisfiability on hypergraphs is equiva-

lent to BPI (in ZF set theory).

7.2 n-satisfiability on Hypergraphs

To represent the Jennings-Schotch notion of n-satisfiability via hypergraphs, we need

to first extend Kolany’s definition of weak satisfiability. In particular a propositional

formula can be represented by a finite set of clauses, i.e. a finite set of finite sets of

vertices, and a set of propositional formulae can be represented by a collection of finite

sets of clauses. We call a finite set of clauses a formula of a hypergraph. Formulae will

be denoted by A, B, C, . . . etc. We now introduce a generalised version of Kolany’s

notion of weak satisfiability.

Definition 7.2.1

Let Σ be a set of formulae of a hypergraph H = (V, E) and Γ1, . . . , Γn ⊆ V . Then

Γ1, . . . , Γn n-satisfy Σ iff

1. ∀e ∈ E, ∀i ≤ n, e 6⊂ Γi (Γi is consistent)

2. ∀A ∈ Σ, ∃i ≤ n: ∀σ ∈ A, Γi ∩ σ 6= ∅ (each A ∈ Σ is weakly satisfied or covered by

some Γi)

We say that Σ is n-satisfiable on H iff some Γ1, . . . , Γn n-satisfy Σ on H.

Remark 7.2.1 We note that 1-satisfiability of a set of formulae Σ on H is equivalent

to the weak satisfiability of the set of clauses
⋃

Σ. Conversely, if Σ is a collection of

clauses, then the weak satisfiability of Σ on H is equivalent to the 1-satisfiability of

{Σ′ : Σ′ ⊆fin Σ}.

Notice that in our definition we do not require that Γ1, . . . , Γn be distinct, so our

definition says that a set of formulae is n-satisfiable on H iff they are covered by n or

fewer consistent sets of vertices. To illustrate, consider the following example:

Example 7.2.1

V = {u, v, w, x, y, z} E =
{
{u, v}, {w, x}, {y, z}}

Σ =
{{

{u,w}, {z}
}
,

{
{v}, {x}, {w,y}

}
,

{
{u,w}, {y}

}}

§7.2 n-satisfiability on Hypergraphs 163

It is straightforward to verify that Σ is neither 1-satisfiable nor 2-satisfiable; but it

is 3-satisfiable, e.g. {u, z}, {v, x, y} and {u, y} 3-satisfy Σ. Alternatively, we may view

our example as a propositional graph with u = p, v = ¬p, w = q, x = ¬q, y = r and

z = ¬r, in which case rewriting every member of Σ in conjunctive normal form, we

have:

Σ′ =
{
(p ∨ q) ∧ ¬r, ¬p ∧ ¬q ∧ (q ∨ r), (p ∨ q) ∧ r

}
Clearly, `(Σ′) = 3. In terms of visual representation, we can treat the n-satisfiability

problem on hypergraphs as a multi-dimensional version of the weak satisfiability prob-

lem on hypergraphs. The dimension is given by |Σ| where each A ∈ Σ is a distinct

dimension above the hypergraph H. To determine whether Σ is n-satisfiable on H is

then to find n or fewer tours such that

1. every region from a given dimension is visited by one of the tours, and

2. no one tour passes all vertices of any given edge.

For a set of formulae, Σ, on a hypergraph H, we can define a function analogous

to the incoherence level of Jennings and Schotch.

Definition 7.2.2

Let ∞ 6∈ N. Then relative to a hypergraph H, the λH-level of Σ is defined as follows:

λH(Σ) =

the least n such that

Σ is n-satisfiable

if n ∈ N exists

∞ otherwise

In effect, λH(Σ) computes the least number of tours required to achieve (1) and (2)

above for Σ. Moreover, our notion of n-satisfiability on hypergraphs is also closely

related to the ordinary notion of n-colourability of hypergraphs. The λH value of a set

Σ is in fact equal to the proper chromatic number of an appropriate hypergraph.

Theorem 7.2.1

Let Σ be a set of formulae of a hypergraph H. Let HΣ = (VΣ, EΣ) be the hypergraph

with VΣ = Σ and

EΣ =
{
Σ′ ⊆fin Σ : Σ′ 6= ∅ and λH(Σ′) > 1

}
Then λH(Σ) = χ(HΣ).

164 Hypergraph Satisfiability

Proof:

Let H, Σ, and HΣ be defined as above. Let χ(HΣ) = n. We show that λH(Σ) ≤ n.

Let c be a proper n-colouring of HΣ. For each i ≤ n, let σi = {A ∈ Σ : c(A) = i}.

By remark (7.2.1) and the compactness of weak satisfiability (see [112] p.396), it is

straightforward to verify that σi is 1-satisfiable on H. Let Γi 1-satisfy σi on H. To show

λH(Σ) ≤ n, it suffices to show that Γ1, . . . , Γn n-satisfy Σ, i.e. each A ∈ Σ is covered by

some Γi:

A ∈ Σ =⇒ A ∈ σi for some i ≤ n

=⇒ Γi 1-satisfies σi

=⇒ Γi 1-satisfies A

=⇒ ∀α ∈ A, Γi ∩ α 6= ∅

Towards a contradiction, let λH(Σ) = k where k < n. Let Γ1, . . . , Γk k-satisfy Σ. For

each i ≤ k, let γi = Γi ∩
⋃ ⋃

Σ. Then γ1, . . . , γk also k-satisfy Σ. To show that there is

a proper k-colouring on HΣ, we first define the following sequence of sets:

Σ1 = {A ∈ Σ : ∀α ∈ A, α ∩ γ1 6= ∅}

Σ2 = {A ∈ Σ \ Σ1 : ∀α ∈ A, α ∩ γ2 6= ∅}
...

Σk = {A ∈ Σ \ Σk−1 : ∀α ∈ A, α ∩ γk 6= ∅}

Clearly, Σi ∩ Σj = ∅, for each i 6= j ≤ k. Moreover, Σi is 1-satisfied by γi and thus no

edge of HΣ is a subset of Σi. Now define c : Σ −→ {1, . . . , k} such that c(A) = i iff

A ∈ Σi. Then c is a proper k-colouring of HΣ. This contradicts our assumption that

χ(HΣ) = n. Hence λH(Σ) = χ(HΣ) as required.

It is interesting to note that proper n-colouring problems can also be restated as

n-satisfiability problems. Let H = (V, E) be a hypergraph such that V = {x, y, z, . . .},

then the n-satisfiability of {{{x}}, {{y}}, {{z}}, . . .} on H is equivalent to the proper n-

colourability of H. We can in fact establish the compactness of n-satisfiability directly

from the compactness of proper n-colourability of hypergraphs.

Theorem 7.2.2

A compact hypergraph H is properly n-colourable iff every finite sub-hypergraph of

H is properly n-colourable.

§7.2 n-satisfiability on Hypergraphs 165

Proof:

Our proof of trace compactness from the previous chapter suffices (theorem (6.3.1)).

We note however that the Axiom of Choice is not required in the proof.

Theorem 7.2.3

Let H be a compact hypergraph and Σ be a set of formulae of H. Then Σ is n-satisfiable

iff every finite subset of Σ is n-satisfiable.

Proof:

One direction is trivial. For the other direction, we assume that Σ is not n-satisfiable

on H. By theorem (7.2.1), χ(HΣ) > n and thus HΣ is not properly n-colourable. By

theorem (7.2.2), some finite subhypergraph H′
Σ = (VH′

Σ
, EH′

Σ
) of HΣ is not properly

n-colourable. Clearly, VH′
Σ
⊆fin Σ and VH′

Σ
is not n-satisfiable on H.

Corollary 7.2.1

Let H be a compact hypergraph and Σ be a set of formulae of H. Then λH(Σ) ≤ n iff

for every finite subset Σ′ of Σ, λH(Σ′) ≤ n.

Theorem 7.2.4

The compactness theorem for n-satisfiability on hypergraphs is equivalent to BPI in

ZF set theory.

Proof:

Since BPI is equivalent to the compactness theorem for first order logic in ZF (see

[20] p.104), it follows immediately from the proof of theorem (6.3.1) that BPI implies

the compactness of n-satisfiability on hypergraphs. For the converse, Kolany showed

that the compactness of weak satisfiability is equivalent to BPI. But the compactness

of weak satisfiability is just a special case of the compactness of n-satisfiability with

n = 1 (see remark (7.2.1)). Hence the desired result follows immediately.

In [112], Kolany gives a partial list of problems in different branches of mathe-

matics that are equivalent to the weak satisfiability of some family of clauses on an

appropriate hypergraph. Many compactness statements in different areas of math-

ematics can in fact be viewed as instances of compactness of weak satisfiability on

hypergraphs. They include:

satisfiability of propositional formulae

Axiom of Choice for finite sets

166 Hypergraph Satisfiability

let ∆ be a collection of pairwise disjoint non-empty finite sets; then f is a choice

function on ∆ if f : ∆ −→ ⋃
∆ and for all δ ∈ ∆, f(δ) ∈ δ.

R-consistent choices (equivalent to BPI in ZF)

let ∆ be a collection of pairwise disjoint non-empty finite sets and let R be a

symmetric binary relation on
⋃

∆; then Π is an R-consistent choice if for all

α, β ∈ Π, αRβ.

graph n-colourability

polynomial equation system solvability over a finite field

(equivalent to BPI in ZF)

systems of distinct representatives

let ∆ be a collection of non-empty finite sets, then an injective function f is a

System of Distinct Representatives for ∆ if f : ∆ −→ ⋃
∆ and for all δ ∈ ∆,

f(δ) ∈ δ.

Remark (7.2.1) and theorem (7.2.4) make it clear that any such problem and its

corresponding compactness statement can be restated as an n-satisfiability problem

and a corresponding compactness statement on appropriate hypergraphs.

7.3 Resolution and n-satisfiability

The notion of n-satisfiability is essentially a semantic notion. We now wish to consider

a purely syntactic characterisation of the same notion. The characterization given

here is analogous to the resolution rule that J. A. Robinson developed for automated

theorem proving.

Definition 7.3.1

Let α1, . . . , αm be a set of clauses on an arbitrary but fixed hypergraph H and let

e = {a1, . . . , am} be an edge of H. Then the set

α =

m⋃
i=1

(αi \ {ai})

is said to result by resolution on e if ai ∈ αi for 1 ≤ i ≤ m. In which case, we write

α1, . . . , αm `e α. If A is a set of clauses on H, the closure of A under the resolution

rule on edges of H is denoted by [A]H.

§7.3 Resolution and n-satisfiability 167

Consider again example (7.2.1). It is easy to show that ∅ ∈ [
⋃

Σ]H; we display two

resolution proofs:

{u, w}, {v} `{u,v} {w} {u,w}, {x} `{w,x} {u}

{w}, {x} `{w,x} ∅ {u}, {v} `{u,v} ∅

In terms of weak satisfiability on hypergraphs, the resolution rule is a sound and

complete rule.

Theorem 7.3.1

(Kolany) Let H be a compact hypergraph and A be a finite collection of clauses. Then

∅ ∈ [A]H iff A is not weakly satisfiable on H.

For a set of formulae Σ on H, we call a function f : Σ −→ n a Σ-n-colouring. Where

i ≤ n, we take f−1[i] = {A ∈ Σ : f(A) = i}. We can now characterise n-satisfiability in

terms of resolution and Σ-n-colouring.

Theorem 7.3.2

Let Σ be a finite set of formulae on a compact hypergraph H. Then Σ is not n-satisfiable

iff for every Σ-n-colouring f, ∃i ≤ n : ∅ ∈ [∪(f−1[i])]H.

Proof:

(⇒) Let f be a Σ-n-colouring such that ∀i ≤ n, ∅ 6∈ [∪(f−1[i])]H. Then by theo-

rem (7.3.1), for each i ≤ n, ∪(f−1[i]) is weakly satisfiable on H. Let Γi weakly satisfy

∪(f−1[i]) on H for each i ≤ n. Then Γ1, . . . , Γn n-satisfy Σ on H.

(⇐): Assume that for any Σ-n-colouring f, ∃i ≤ n : ∅ ∈ [∪(f−1[i])]H. Then by theo-

rem (7.3.1), ∃i ≤ n : ∪(f−1[i]) is not weakly satisfiable on H. Towards a contradiction,

let Γ1, . . . , Γn n-satisfy Σ on H. Define the Σ-n-colouring g, such that

g−1[1] = {A ∈ Σ : ∀α ∈ A, α ∩ Γ1 6= ∅}

g−1[2] = {A ∈ Σ \ g−1[1] : ∀α ∈ A, α ∩ Γ2 6= ∅}
...

g−1[n] = {A ∈ Σ \ g−1[n − 1] : ∀α ∈ A, α ∩ Γn 6= ∅}

Since g is a Σ-n-colouring on Σ, ∃i ≤ n : ∪(g−1[i]) is not weakly satisfiable on H. This

implies that Γi does not weakly satisfy ∪(g−1[i]) and thus Γ1, . . . , Γn fail to n-satisfy Σ.

168 Hypergraph Satisfiability

Combining theorem (7.2.3) and theorem (7.3.2), we can immediately derive the

following theorem:

Theorem 7.3.3

For a set of formulae Σ on a compact hypergraph H, Σ is n-satisfiable iff there exists a

Σ-n-colouring f such that ∀i ≤ n, ∅ 6∈ [∪(f−1[i])]H.

In terms of complexity, the decision version of our problem is NP-complete.

Theorem 7.3.4

The decision problem for determining whether a finite set of formulae Σ is n-

satisfiable on a compact hypergraph H (H-n-SAT) is NP-complete.

Proof:

It is easy to see that H-n-SAT is at least NP-hard since an instance of our problem is

just SAT which is NP-complete. It is also clear that H-n-SAT∈NP, since a nondeter-

ministic turing machine can guess a sequence (Γ1, . . . , Γn), each of which is a subset of

Σ, and verify in polynomial time whether (Γ1, . . . , Γn) n-satisfy Σ.

7.4 n-Consequence Relations

We have seen that the notion of weak satisfiability can be generalised nicely to the

notion of n-satisfiability. In this section, we’ll develop two notions of consequence

relations based on n-satisfiability on hypergraphs. Again, these are natural generali-

sations of Kolany’s notion of consequence operations based on weak satisfiability (see

[113]).

In the subsequent exposition, we let H = (V, E) be a fixed compact hypergraph

without singleton edges. The set of all formulae on H will be denoted by Φ. We’ll use

the usual Σ,A and Σ,∆ to denote Σ ∪ {A} and Σ ∪ ∆ respectively.

Definition 7.4.1

Γ1, . . . , Γn ⊆ V is an n-model of Σ on H iff Γ1, . . . , Γn n-satisfy Σ on H. If in addition,

Γ1, . . . , Γn n-cover E, i.e. ∀e ∈ E, ∃i ≤ n: Γi ∩ e 6= ∅, then Γ1, . . . , Γn is an n+-model of Σ

on H. |=n and |=+
n are defined as follows:

• Σ |=n {A} iff every n-model of Σ is an n-model of {A} (on H). The set of n-

consequences of Σ, Cn(Σ) = {A : Σ |=n {A}}.

• Σ |=+
n {A} iff every n+-model of Σ is an n+-model of {A} (on H). The set of

n+-consequences of Σ, C+
n(Σ) = {A : Σ |=+

n {A}}.

§7.4 n-Consequence Relations 169

For readability we’ll write Σ |=n A and Σ |=+
n A instead. We’ll also omit references to

the underlying hypergraph. Before we show that |=n and |=+
n are genuine consequence

relations in the sense of [168] (i.e. reflexive, monotonic, and transitive), we’ll first state

some obvious facts based on definition (7.4.1):

Fact 7.4.1

For any Σ and A:

1. every n+-model of Σ is an n-model of Σ.

2. if Σ |=n A, then Σ |=+
n A (equivalently, Cn(Σ) ⊆ C+

n(Σ))

3. C+
n(Σ) = Cn(Σ) ∪ Cn(∅)

Where B is formula and α is a clause on H, we let

B \ α = {β \ α : β ∈ B}

We can now give a characterisation of |=n in terms of resolution and Σ-n-colourings.

Theorem 7.4.1

Let Σ be a set of formulae and A a formula on H, then relative to H, Σ |=n A iff for each

Σ-n-colouring f there exists an i ≤ n such that for each α ∈ A, ∅ ∈ [(∪(f−1[i])) \ α]H.

Proof:

(⇒) Assume that Σ |=n A. Towards a contradiction, let f0 be a Σ-n-colouring such that

for each i ≤ n there exists some α ∈ A with ∅ 6∈ [(∪(f−1
0 [i])) \ α]H. By theorem (7.3.1),

for each i ≤ n there exists an α ∈ A such that (∪(f−1
0 [i]))\α is weakly satisfiable on H.

For each i ≤ n, let Γi weakly satisfy (∪(f−1
0 [i])) \ α. Then each Γi also weakly satisfies

∪(f−1
0 [i]) and hence Γ1, . . . , Γn n-satisfy Σ. But for each Γi there exists some α ∈ A such

that Γi ∩ α = ∅, so Γ1, . . . , Γn doesn’t n-satisfy A.

(⇐) Let Γ1, . . . , Γn witness that Σ 6|=n A. For each i ≤ n, let σi = {B ∈ Σ :

Γ weakly satisfies B}. Without loss of generality, we may assume that σi and σj, i 6= j,

are disjoint, and each Γi ⊆
⋃ ⋃

σi. Define the Σ-n-colouring f0 such that for each

A ∈ Σ, f0(A) = i iff A ∈ σi. Towards a contradiction assume that there exists an

i0 ≤ n such that for each α ∈ A, ∅ ∈ [(∪(f−1
0 [i0])) \ α]H. Then by theorem (7.3.1),

for each α ∈ A, (∪(f−1
0 [i0])) \ α is not weakly satisfiable on H. But by the initial as-

sumption Γi0 must weakly satisfy ∪(f−1
0 [i0]) and there must be an α0 ∈ A such that

Γi0 ∩ α0 = ∅. Hence Γi0 weakly satisfies (∪(f−1
0 [i0])) \ α0 on H.

170 Hypergraph Satisfiability

Theorem 7.4.2

|=n has the following structural properties:

R: A ∈ Σ =⇒ Σ |=n A

M: Σ |=n A =⇒ Σ,∆ |=n A

T: Σ,A |=n B and Σ |=n A =⇒ Σ |=n B

Proof:

For [R], we observe that every n-model of Σ is also an n-model of A for every A ∈ Σ.

For [M], we observe that every n-model of Σ,∆ is also an n-model of Σ. For [T], we

observe that every n-model of Σ is an n-model of A and so it is an n-model of Σ,A.

Hence, it is also an n-model of B.

Corollary 7.4.1

Cn is a closure operator on Φ.

In light of fact (7.4.1), properties of |=n and Cn can be transferred directly to |=+
n

and C+
n . In terms of the level function λH, both Cn and C+

n are λH preserving closure

operators.

Theorem 7.4.3

For arbitrary but fixed n ∈ N, for any Σ ⊆ Φ, λH(Σ)n ⇔ λH(Cn(Σ)) = n

Proof:

Suppose that λH(Σ) = n. Then there must be an n-model, Γ1, . . . , Γn, of Σ. But any

n-model of Σ is an n-model of A for each A ∈ Cn(Σ), so Γ1, . . . , Γn is an n-model

of Cn(Σ). Hence, λH(Cn(Σ)) ≤ n. But λH(Cn(Σ)) 6< n, lest λH(Σ) < n. Thus

λH(Cn(Σ)) = n as required.

Conversely, suppose that λH(Cn(Σ)) = n. By Inclusion, Σ ⊆ Cn(Σ) and thus

λH(Σ) ≤ n. Towards a contradiction, suppose that λH(Σ) = m < n. Then by the first

part of our proof, λH(Cn(Σ)) = m < n. But this contradicts the leastness of n. Hence

λH(Cn(Σ)) 6< n, i.e. λH(Cn(Σ)) = n.

Finally it is straightforward to show the lattice theoretic properties of quotient sets

formed by equivalence classes of formulae (on H) defined in terms of Cn and C+
n .

Definition 7.4.2

Let Σ, Σ′ ⊆ Φ and n ∈ N be arbitrary but fixed. We define the binary relation ≡
over Φ2 by setting Σ ≡ Σ′ iff Cn(Σ) = Cn(Σ′). We let [Σ] = {Σ′ ⊆ Φ : Σ ≡ Σ′} and

H/≡ = {[Σ] : Σ ⊆ Φ}. For any [Σ], [Σ′] ∈ H/≡, we let [Σ] ≤ [Σ′] iff Cn(Σ′) ⊆ Cn(Σ)

§7.4 n-Consequence Relations 171

Theorem 7.4.4

Let H/≡ and ≤ be as defined in definition (7.4.2). Then L = 〈H/≡, ≤〉 is a complete

distributive lattice with a minimum: [Σ] = 0 iff Cn(Σ) = Cn(Φ). If Cn is replaced with

C+
n throughout in definition (7.4.2), then L is a complete distributive lattice with both

a minimum and maximum, in particular: [Σ] = 1 iff Cn(Σ) = Cn(∅)

Proof:

In light of fact (7.4.1), we only need to consider Cn. It is straightforward to verify that

≡ is an equivalence relation on Φ and thus every element of H/≡ is an equivalence

class modulo ≡. Moreover, ≤ is reflexive, antisymmetric, and transitive. Thus ≤ is a

partial ordering on H/≡.

Let I be an index set of arbitrary cardinality. Let {[Σi] : i ∈ I} ⊆ H/ ≡. We’ll show

that [
⋃

i∈I Cn(Σi)] and [
⋂

i∈I Cn(Σi)] are, respectively, the greatest lower bound and

the least upper bound of {[Σi] : i ∈ I}:

(1) [
⋂

i∈I Cn(Σi)] is an upper bound:

⋂
i∈I

Cn(Σi) ⊆ Cn(Σj) for each j ∈ I =⇒ Cn(
⋂
i∈I

Cn(Σi)) ⊆ Cn(Cn(Σj))

for each j ∈ I

=⇒ Cn(
⋂
i∈I

Cn(Σi)) ⊆ Cn(Σj)

for each j ∈ I

=⇒ [Σj] ≤ [
⋂
i∈I

Cn(Σi)]

for each j ∈ I

(2) [
⋂

i∈I Cn(Σi)] is the least upper bound:

[Σi] ≤ [∆] for each i ∈ I =⇒ Cn(∆) ⊆ Cn(Σi) for each i ∈ I

=⇒ Cn(∆) ⊆
⋂
i∈I

Cn(Σi)

=⇒ [
⋂
i∈I

Cn(Σi)] ≤ [∆]

(3) [
⋃

i∈I Cn(Σi)] is a lower bound: similar to (1).

(4) [
⋃

i∈I Cn(Σi)] is the greatest lower bound: similar to (2).

L is thus a complete lattice. The distributivity of L follows from the fact that ∩ is

172 Hypergraph Satisfiability

distributive over ∪ and vice versa. To verify that [Φ] is the minimum, we observe that

Cn(Σ) ⊆ Cn(Φ) and [Φ] ≤ [Σ] for any Σ. For the case of C+
n , since C+

n(∅) ⊆ C+
n(Σ) it

follows that [Σ] ≤ [∅] for any Σ. Hence [∅] is the maximum.

Question 7.4.1

Are Cn and C+
n algebraic closure operators, i.e. are |=n and |=+

n compact?

7.5 BPI and Complexity Theory

In section (7.2) we demonstrate that the compactness statement for n-satisfiability on

hypergraphs is equivalent to BPI in ZF set theory without the axiom of choice. In sec-

tion (7.3), we note further that the corresponding decision problem for n-satisfiability

on compact hypergraphs is NP-complete. Our investigation is partly motivated by

a conjecture from [50; 52]. Cowen notices that methods for proving certain decision

problems are NP-complete have also been used in showing that certain compactness

theorems are equivalent to BPI in ZF. More specifically, let R be a compactness state-

ment that says of a set S and a property P that if every finite subobject of an object in

S has P, then the object has P. Moreover, we assume that R is not equivalent in ZF to

the statement that every object in S has P. This additional assumption is required to

eliminate certain bogus compactness statements. If R is a compactness statement in

the above sense, R∗ will denote the corresponding decision problem which asks of a

finite object in S, does it have the property P; R < BPI will denote that R is weaker

than BPI in ZF, and R ⇔ BPI will denote that R is equivalent to BPI in ZF. In [50]

Cowen gives various examples for R and R∗. But all of Cowen’s examples fall into 3

types: (1) R ⇔ BPI and R∗ is NP-complete, (2) R < BPI and R∗ is polynomial, and (3)

R < BPI and R∗ is NP-complete.

R ⇔ BPI R < BPI

R∗ is polynomial ? +
R∗ is NP-complete + +

Figure 7.2: Known cases of R and R∗ in relation to BPI

But there is no known example of R where R ⇔ BPI while R∗ is polynomial.

Cowen makes the following conjecture:

Conjecture 7.5.1

(Cowen) If R∗ is polynomial, then R < BPI.

§7.5 BPI and Complexity Theory 173

Cowen’s conjecture implies, in particular, that P 6= NP since letting R be the com-

pactness statement for n-satisfiability on hypergraphs gives R ⇔ BPI. But R∗ would

be polynomial if P = NP. Hence any proof of Cowen’s conjecture would be a de facto

proof that P 6= NP.

The conjecture of Cowen also opens a new line of inquiry: of a particular polyno-

mial R∗, we can ask whether the corresponding R < BPI holds. To take one particular

example it is known that 2-SAT, i.e. satisfiability of clauses with at most 2 literals, is

polynomial; the corresponding compactness statement for 2-SAT has been shown by

Wojtylak in [181] to be weaker then BPI.

Question 7.5.1

Let R be the statement that a collection of finite sets has a system of distinct repre-

sentatives iff every finite subcollection has a system of distinct representatives. It is

known that the corresponding R∗ is polynomial. But is R < BPI?

174 Hypergraph Satisfiability

Chapter 8

Conclusion

The study of logic usually begins with one of two approaches. According to what

Priest [139] calls the canonical approach, the aim of logic is to establish a standard for

evaluating arguments – a standard by which we judge whether a conclusion can be le-

gitimately inferred from a body of assumptions. The legitimacy of an inference turns

on the notion of a consequence relation which can be defined proof theoretically in

terms of deduction or semantically in terms of class containment of models. Legit-

imate or valid inferences are those that are sanctioned by our consequence relation

specified in standard proof theoretic or model theoretic ways. The usual complete-

ness theorem of a logic is in turn an assurance that the proof theory and the semantics

capture one and the same consequence relation.

According to the representational approach however, logic is understood as the

study of the relationship between a formal language and its associated domains. It

addresses issues concerning how to express and what can be expressed in a formal

language. Although the two approaches have different aims, they are clearly related.

Amongst the sort of things we want a formal language to be able to express are declar-

ative sentences (in contrast to imperative sentences, e.g. goto s in some programming

languages). The content of these declarative sentences is fixed by their truth condi-

tions which in turn inform us that entities or states in the domain are one way but not

another. The availability of sentences bearing truth conditions allows us to be in the

business of reasoning and inference again. If a body of declarative sentences truthfully

represents the domain, we can infer further truthful sentences about the domain.

Given these two approaches to logic, it is not surprising that paraconsistent log-

ics are typically motivated in one of two ways. According to the epistemic account,

declarative sentences in a formal language can be used to represent states of a domain,

in particular they can be used to represent states of the actual world. We may think

of these representations as logical descriptions with empirical contents. Although we

175

176 Conclusion

are the masters of our own language, infallibility is not a given. We make mistakes

and some of them turn up as inconsistencies in our data and theories. As Wheeler

pointed out in [180], some of these mistakes, e.g. measurement errors, are so funda-

mental to the way we interact with the world that any attempt to eliminate them is a

practical impossibility. Our scientific theories and thus scientific reasoning must face

up to the force of inconsistencies. According to this view certain inconsistencies are

just misrepresentations. Since logic is about consequence, it is the logician’s business

to sort out what can be deduced from these misrepresentations. Classical logic is of no

help here since it does not distinguish between different sorts of mistakes and hence

all sorts of mistakes can be inferred. Adopting alternative logics is one way we can

continue to draw inferences under the threat of erroneous data.

According to the ontological account however, not all inconsistent descriptions are

infected with errors or misrepresentations. Instead an alternative hypothesis is that

certain inconsistent descriptions are just correct descriptions of entities or states that

are inconsistent in and of themselves. As Priest would say, some inconsistent infor-

mation or theories are true ([140]). According to the dialetheic thesis the recurrence

of certain paradoxical statements is not to be explained away in terms of mistakes on

our part or defects in our language. Instead the best explanation of the persistence of

these paradoxes is that they truly describe an ontology populated with inconsistent

entities. The implication of the ontological or dialetheic account is that just as we need

alternative logics to reason with potentially erroneous data or theories, we also need

alternative logics to reason with inconsistent entities and states. Once again, classical

logic is of no help since it provides no provision to deal with inconsistent entities or

states.

While dialetheism, the hypothesis that there are true inconsistent theories, is a con-

tentious claim, we have neither defended nor criticised dialetheism in this thesis. We

have taken it for granted that the epistemic account is a plausible motivation for para-

consistency and investigated a variety of inconsistency-tolerant reasoning strategies.

Nonetheless we are in agreement with the dialetheist that not every case of inconsis-

tent description is a case of misrepresentation or error. We have pointed out that there

are situations where the source of inconsistencies is neither rooted in error nor in in-

consistent ontologies. In drawing out these cases, our emphasis is on the practical use

of a logic as a formalism for representation. We have so far steered clear of any un-

due ontological commitment to endorse inconsistent entities or epistemic pressure to

eradicate inconsistencies. Our modus operandi is preservationalism – we look for use-

177

ful properties of inconsistent descriptions and find inference strategies that preserve

these properties.

In this thesis we have highlighted the fact that logic is as much about representation

as it is about consequence. In viewing logic as a language for modelling practical and

abstract problems, the emphasis is on the discriminatory power of our language. The

main issue in this thesis is not merely fault tolerant deduction per se or the reality of

an inconsistent ontology. Rather, it is the analysis of the structure and the underlying

combinatorial properties of our logical representation which in turn inform us about

the nature of the situation or problem under consideration. Of course to provide such

an analysis, our logical description must capture the salient features of the problem

at some appropriate level of abstraction. But this is very much a question about the rep-

resentational efficacy of the formal language and the representational fit between the

formal language and the problem domain. In saying this, we do not intend to suggest

that representational issues have nothing to do with deduction. Far from it, deduc-

tion is related to meaning. As is well known, the meaning of a logical connective

can be specified by the use of introduction and elimination rules. So deduction can

be used to ground and fix the meaning of a logical representation. But note that this

way of bringing deduction back into the picture requires no tacit assumption about

epistemic error or inconsistent ontology. We maintain that there are cases in which

a problem domain is best modelled by logically inconsistent descriptions involving

neither epistemic error nor ontological assertion. Of course the representational fit

between a logical description and a problem domain must be evaluated in the con-

text of a machinery for specifying the meaning of the description. In this work we

have not committed to any particular way to accomplish the task. There is no harm in

being a methodological pluralist. Whether one opts for a model theoretic or proof the-

oretic machinery, incompleteness and unsoundness are genuine possibilities. There is

no guarantee that a model theoretic specification must have a corresponding proof

theoretic specification or vice versa.

The usefulness of paraconsistent logics as a way to ground the meaning of formal

languages is perhaps analogous to the usefulness of a scientific instrument. Ancient

astronomers carved out the constellations with their bare eyes, charting the night sky

into distinct heavenly bodies and regions. They did what they could given what was

available at the time. Astronomers in the Renaissance were bestowed with the gift of

the telescope. They could now chart the night sky with finer precision and distinctions

that were not seen by ancient astronomers. Modern astronomers go one step further

178 Conclusion

by tapping into the unexplored territory of radio frequencies. Formal languages are

the symbolic constellations for the modern logician. The history of modern logic too

is punctuated with remarkable changes in the discriminatory and expressive power of

logics. Propositional logic delivers the calculus of propositions. But to formalise ‘Every

natural number has a successor’, we had to await for the advent of quantification the-

ory. To formalise ‘A relation is well-ordered if every non-empty subset has a least ele-

ment’, we have to go second-order or employ set theory of some form. 1 At each turn

of this refinement, more can be said and more can be discerned. But at the same time

it is also surprisingly conservative. In classical logics, sentences are sorted into three

distinct classes – those that are tautologous (true in all models), inconsistent (false in

all models), and contingent (true in some models and false in some models). 2 Even in

a simple classical propositional logic with countably many propositional atoms, there

are at least countably many distinct non-equivalent classes of contingent sentences

– one for each distinct atom. But oddly, there can only be one equivalence class of

tautologous sentences and one equivalence class of inconsistent sentences. Within the

classical scheme a contradiction, (p∧¬p), is indistinguishable from a denial of the ex-

cluded middle, ¬(q ∨ ¬q) – no classical model, no classical proof will separate them.

But note that we do distinguish these sentences meta-logically. They are not merely

distinct syntactic tokens of distinct types – while one can be used to assert a contra-

diction the other can be used to reject the law of excluded middle. The distinction also

carries a certain semantic weight.

Our take home message then is this: formal languages which express inconsisten-

cies are rich in structure and expressive power. Our complaint against classical conse-

quence and classical semantics is that they do not make room for the discrimination

of different types of inconsistencies within a formal language. Under the classical

scheme, all inconsistencies are proof-theoretically and model-theoretically equivalent.

But recall that the study of formal languages, standard first order model theory in

particular, is very much concerned with the discriminatory power of languages and

models. To make distinctions, we must be able to partition a language into distinct

equivalence classes. In fact, in a very general sense all formal languages are concerned

with equivalence classes – namely classes that are organised under the ‘sameness-in-

1We dare not say ‘the set theory’ here. As we all know ZF is to be distinguished from ZFC (with
choice axiom), from ZFA (with anti-foundation axiom) from NBG (NBG for von Neumman, Bernays
and Godel, not to be confused with the epithet ‘No Bloody Good’), from (Quine’s) NF. Set theories, like
logics, come in many varieties.

2Given soundness and completeness of classical logics, the reader may use the appropriate proof-
theoretic substitutes for ‘true in all models’ etc.

179

meaning’ relation. Indeed this is one of the main goals (and advantages) of the study

of formal languages – given any two expressions in a formal language we want to

provide a systematic and rigorous method to determine if the two have the same

meaning. Logic provides a paradigmatic method of doing this – in fact it provides

two methods, one via proofs the other via models.3 So the inability of the classical

scheme to discern different inconsistencies is a failing on its part to do its job.

Viewing the matter in this light gives us the satisfaction of putting a positive spin

on paraconsistency and turning the tables on the classicist. It is often said that para-

consistent logics are simply too weak to do any real work – they give up too many

classically acceptable rules of inference. Our rejoinder is that sometimes weakness is

also a strength. Recall that in the study of modalities, any finite sequence of ¬, �,

and ♦, strong modal logics such as S4 and S5 have finitely many modalities. More

precisely, S4 has 14 distinct modalities while S5 has only 6. So in terms of the discrim-

inatory power of these logics, we can only express 14 and 6 distinct types of modal

statements. These logics are strong, but they don’t necessarily give us greater distinc-

tion. The comparison between classical and paraconsistent logics is analogous to the

comparison between strong and weak modal logics. Strength in deducibility is not

tantamount to strength in discriminatory power. Paraconsistent logics and semantics

are not merely non-explosive, they also allow us to preserve important distinctions.

Not all inconsistencies are equal and they should not be. Paraconsistent logics are

endowed with the power to discriminate between different inconsistencies. This, we

maintain, is another way to ‘go beyond consistency’.

3We take this to be at least a necessary condition for such a semantic specification. However, it is
debatable whether it is also sufficient. Some may insist that the equivalence relation induced by the
underlying logic must also be a congruence relation. This amounts to the requirement that intersubstitu-
tivity of provable equivalents preserves equivalence. As is well known many paraconsistent logics e.g.
Priest’s LP and da Costa’s C-systems, do not have such a property. We do not wish to settle the issue
here. But we do think that it is a research direction worth further investigation.

180 Conclusion

Appendix A

Dunn’s Ambi-Valuation Semantics

Definition A.0.1

Let A and B be truth functional formulae (i.e. zero degree formulae). A tautologically

entails B, A → B, iff there is a disjunctive normal form (DNF) of A = A1 ∨ . . . ∨ An

and there is a conjunctive normal form (CNF) of B = B1 ∧ . . . ∧ Bm such that for each

i ≤ n and j ≤ m, Ai is a term and Bj is a clause and Ai and Bj have a common literal.

In Belnap [7], it is shown that the set of tautological entailments is precisely the

first degree fragment of the relevant logics E and R.

Definition A.0.2

A relevant assignment v is a function v : At −→ ℘{1, 0}. A relevant assignment v is

extended uniquely to v over Φ by the following recursion:

1. v(pi) = v(pi) for any pi ∈ At

2. 1 ∈ v(¬A) ⇔ 0 ∈ v(A)

0 ∈ v(¬A) ⇔ 1 ∈ v(A)

3. 1 ∈ v(A ∧ B) ⇔ 1 ∈ v(A) and 1 ∈ v(B)

0 ∈ v(A ∧ B) ⇔ 0 ∈ v(A) or 0 ∈ v(B)

4. 1 ∈ v(A ∨ B) ⇔ 1 ∈ v(A) or 1 ∈ v(B)

0 ∈ v(A ∨ B) ⇔ 0 ∈ v(A) and 0 ∈ v(B)

A relevant valuation v is a model of A iff 1 ∈ v(A). We write A |=R B, A relevantly

entails B, iff every relevant model of A is a relevant model of B.

Alternatively, we can define |=R using the four-valued matrices in figure (A.1) in-

stead. We use T for {1}, F for {0} and B for {1, 0} and N for ∅. Taking T and B as the

designated values, we can define A |=R B iff v(A) ∈ {T,B} =⇒ v(B) ∈ {T,B}. The

lattice 4 interpreted as subsets of {1, 0} is given in figure (A.2).

181

182 Dunn’s Ambi-Valuation Semantics

¬ T F B N

F T B N

∨ T F B N

T T T T T
F T F B N
B T B B T
N T N T N

∧ T F B N

T T F B N
F F F F F
B B F B F
N N F F N

Figure A.1: 4-valued matrices for FDE

u

u

u u

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

{0} = F

{1} = T

{} = N {1, 0} = B

Figure A.2: The lattice 4 interpreted as subsets of {1, 0}.

Theorem A.0.1

(Belnap[7], Dunn [65]) A → B ⇔ A |=R B.

Alternatively, FDE can also be characterised as entailment between clauses (see

Hanson [83] and Levesque [119]). For a clause or a term A we use lit(A) to denote the

set of literals occurring in A.

Definition A.0.3

Let A and B be truth functional formulae. Then A clausally entails B, A →c B iff there

is a CNF of A, A1 ∧ . . . ∧ An, and a CNF of B, B1 ∧ . . . ∧ Bm, such that for every i ≤ m

there is some j ≤ n with lit(Aj) ⊆ lit(Bi).

We note that if A and B are already in CNF, then it takes only O(|A| · |B|) time to

determine whether A →c B. Indeed this is the main reason why Levesque [119] finds

clausal entailment an attractive model of quick surface reasoning of an agent.

183

Proposition A.0.1

The set of tautological entailments is exactly the set of clausal entailments, i.e. for any

truth functional A and B, A → B ⇔ A →c B

Proof:

(⇒) Assume that A → B and let A′ = A1 ∨ . . . ∨ An and B′ = B1 ∧ . . . ∧ Bm be the

witness. We define A∗ as follows:

A∗ =

i≤n∧
lAi

∈lit(Ai)

(lA1
∨ . . . ∨ lAn)

i.e. A∗ is a formula in CNF, C1 ∧ . . .∧Ck, where each clause Cj is composed of literals

from distinct terms of A′. It is easy to verify that for every j ≤ m there is some i ≤ k

such that lit(Ci) ⊆ lit(Bj) (since all possible combinations of literals from distinct

terms of A′ are represented by clauses of A∗). Hence, A →c B as required.

(⇐) Assume that A →c B and let A′′ = A1 ∧ . . . ∧ An and B′′ = B1 ∧ . . . ∧ Bm be the

witnesses. We define A∗∗ similarly as follows:

A∗∗ =

i≤n∨
lAi

∈lit(Ai)

(lA1
∧ . . . ∧ lAm)

It is straightforward to verify that every term of A∗∗ and every clause of B′′ have a

common literal. Hence A → B as required.

184 Dunn’s Ambi-Valuation Semantics

Appendix B

The Pair Extension Lemma in

Analytic Implicational Logics

The role of the Pair Extension lemma in the completeness proof for relevant logics (see

[8]) is analogous to the role of Lindenbaum’s lemma in Henkin completeness proofs

for classical and modal logics. The Pair Extension lemma is in fact a very natural

generalisation of Lindenbaum’s lemma. In the words of Dunn, the Pair Extension (or

Belnap’s) lemma ‘symmetrizes the usual Henkin construction of 1st order classical

logic’ ([66] p. 160).1 Lindenbaum’s lemma says that an L-consistent set of formulae

can always be extended consistently to maximality. The Pair Extension lemma says

that an L-exclusive pair of sets of formulae can always be extended, L-exclusively, to

a pair of sets that is also L-exhaustive. The proofs of both of these lemmata require

constructions, from the original set(s), that can preserve either L-consistency or L-

exclusivity. In these constructions, a certain lattice property of disjunction is assumed.

In particular the axiom of addition, A → A ∨ B, must be a theorem of the logic (see p.

121 [8]). In this note we’ll show that for certain logics without A → A∨B as a theorem

we can still prove the Pair Extension lemma.

An implication, A → B, is said to be analytic if all of B’s sentential variables are

included in A’s sentential variables. An analytic implicational logic is one in which all

implicational theorems are analytic. The first axiomatisation of such a logic is given

by Parry [135]. In [64], Dunn modified Parry’s system by demodalising the system.

Urquhart [178] then studied a modal extension of Dunn’s system. The completeness of

Parry’s original system is finally proven by Fine in [69] thereby answering a question

of Gödel. In more recent years, certain paraconsistent versions of analytic implicational

logics have been studied by Deutsch [59; 60; 61; 62] and Sylvan (formerly Routley)

1While Dunn attributes the lemma to Belnap, Gabbay [71] gave an independent proof of the analogue
for first order intuitionistic logic with constant domain.

185

186 The Pair Extension Lemma in Analytic Implicational Logics

[176]. The main interest in these newer logics is that they combine features of both

analytic and relevant implication.

We say that an implicational logic L is pair extension acceptable if it satisfies the

following conditions:

Modus ponens `L A → B and `L A =⇒ `L B

Reflexivity `L A → A

Transitivity `L A → B and `L B → C =⇒ `L A → C

Conjunction

(a) `L A ∧ B → A `L A ∧ B → B,

(b) `L A → B and `L A → C =⇒ `L A → B ∧ C

(c) `L A and `L B =⇒ `L A ∧ B

Disjunction `L A → B and `L C → D =⇒ `L A ∨ C → B ∨ D

Distribution `L A ∧ (B ∨ C) → (A ∧ B) ∨ C

We note that the only difference between this definition and the definition of up-

down acceptability given in [8] (p.121) is the property of disjunction. Here we require

neither `L A → A ∨ B nor `L B → A ∨ B. This is in line with the main drift of analytic

implication. For up-down acceptable logics, disjunction has the following properties:

(∨R) `L A → A ∨ B `L B → A ∨ B

(∨L) `L A → C and `L B → C =⇒ `L A ∨ B → C

Proposition B.0.2

Any implicational logic L that satisfies (∨R), (∨L) and Transitivity above also satisfies

Disjunction.

Proof:

(1) `L A → B (Assumption)

(2) `L C → D (Assumption)

(3) `L B → B ∨ D (∨R)

(4) `L D → B ∨ D (∨R)

(5) `L A → B ∨ D (1, 3 Transitivity)

(6) `L C → B ∨ D (2, 4 Transitivity)

(7) `L A ∨ C → B ∨ D (5, 6 ∨L)

187

We should also note that, with the exception of Modus ponens, all stated condi-

tions are variable preserving. So for instance if A → B and C → D are both theorems

of an analytic implicational logic, then A ∨ C → B ∨ D will also pass the variable

containment requirement.

The following proposition shows that being an analytic implicational logic is com-

patible with being a pair extension acceptable logic.

Proposition B.0.3

There are analytic implicational logics that are pair extension acceptable.

Proof:

The logic S′ defined by Deutsch in [60] is analytic, moreover modus ponens is admis-

sible in S′. It is straightforward to verify that all the remaining rules of pair extension

acceptable logics are validity preserving in the corresponding Kripke semantics de-

fined for S′. Hence by the completeness result of Deutsch all of the rules are derivable

in S′.

We now introduce some key definitions. Let Γ, Γ ′, ∆, ∆′ be sets of formulae and let

L be a logic. Then we say that an ordered pair 〈Γ ′, ∆′〉 extends 〈Γ, ∆〉 iff Γ ⊆ Γ ′ and ∆ ⊆
∆′. A pair 〈Γ, ∆〉 is said to be L-exclusive if for no A1, . . . , An ∈ Γ and B1, . . . , Bm ∈ ∆

do we have `L A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm. A pair 〈Γ, ∆〉 is exhaustive if Γ ∪ ∆ is

the entire language Φ. We are now in a position to prove the following key lemma:

Lemma B.0.1

Let L be a pair extension acceptable logic. If 〈Γ, ∆〉 is a L-exclusive pair, then for any

formula C either 〈Γ ∪ {C}, ∆〉 is L-exclusive or 〈Γ, ∆ ∪ {C}〉 is L-exclusive.

Proof:

Let 〈Γ, ∆〉 be a L-exclusive pair. Towards a contradiction we assume that neither 〈Γ ∪
{C}, ∆〉 nor 〈Γ, ∆ ∪ {C}〉 is L-exclusive. Then there must be some A, A′, B and B′ such

that

1. A = A1 ∧ . . . ∧ Ai and A′ = A′
1 ∧ . . . ∧ A′

j where A1 . . . Ai, A
′
1 . . . A′

j ∈ Γ ;

2. B = B1 ∧ . . . ∧ Bm and B′ = B′
1 ∧ . . . ∧ B′

n where B1 . . . Bm, B′
1 . . . B′

n ∈ ∆;

3. (a) `L A → C ∨ B and (b) `L A′ ∧ C → B′

188 The Pair Extension Lemma in Analytic Implicational Logics

The following proof suffices to show that (3a) and (3b) implies that A ∧ A′ → B′ ∨ B

is a L-theorem which contradicts the L-exclusivity of 〈Γ, ∆〉.

(1) `L A → C ∨ B (Assumption 3a)

(2) `L A′ ∧ C → B′ (Assumption 3b)

(3) `L A ∧ A′ → A (Conjunction a)

(4) `L A ∧ A′ → C ∨ B (1, 3 by Transitivity)

(5) `L A ∧ A′ → A′ (Conjunction a)

(6) `L A ∧ A′ → A′ ∧ (C ∨ B) (4, 5 Conjunction b)

(7) `L A′ ∧ (C ∨ B) → (A′ ∧ C) ∨ B (Distribution)

(8) `L A ∧ A′ → (A′ ∧ C) ∨ B (6, 7 Transitivity)

(9) `L B → B (Reflexivity)

(10) `L (A′ ∧ C) ∨ B → B′ ∨ B (2, 9 Disjunction)

(11) `L A ∧ A′ → B′ ∨ B (9, 10 Transitivity)

The key to our proof of the lemma is in line (10) where we appeal to a weaker

condition on disjunction. We should also note that, with suitable modification of our

definitions, we can completely recast our proof in terms of the consequence relation

of L.

We can now officially record the Pair Extension Lemma. The proof is standard, but

we include it for completeness sake.

Theorem B.0.2

Pair Extension Lemma: Let L be a pair extension acceptable logic and 〈Γ, ∆〉 be a

L-exclusive pair. Then 〈Γ, ∆〉 can be extended to a L-exclusive and exhaustive pair

〈Γ ′, ∆′〉.

Proof:

Without loss of generality we may assume that Φ is countable. As usual we give

a fixed enumeration of formulae, A1, A2, A3 We then define a sequence of pairs

〈Γ0, ∆0〉 . . . 〈Γn, ∆n〉 . . . where 〈Γ0, ∆0〉 = 〈Γ, ∆〉, and given 〈Γn, ∆n〉 we define

〈Γn+1, ∆n+1〉 =

〈Γn ∪ {An}, ∆n〉 if 〈Γn ∪ {An}, ∆n〉 is L-exclusive

〈Γn, ∆n ∪ {An}〉 otherwise

189

It is straightforward to verify that 〈Γ ′, ∆′〉 = 〈
⋃

n∈ω Γn,
⋃

n∈ω ∆n〉 is a L-exclusive ex-

tension of 〈Γ, ∆〉. A simple induction on n and our previous lemma guarantees that

〈Γ ′, ∆′〉 is L-exclusive. Clearly it is also exhaustive.

An alternative proof can be given using Zorn’s lemma without the assumption

that Φ is countable. Let C be the set of L-exclusive pairs 〈Γ ′, ∆′〉 such that Γ ⊆ Γ ′ and

∆ ⊆ ∆′. We note that C is not empty since 〈Γ, ∆〉 ∈ C. Then partially order C by ≤
where 〈Γi, ∆i〉 ≤ 〈Γj, ∆j〉 just in case Γi ⊆ Γj and ∆i ⊆ ∆j. Clearly the union of any

≤-chain is an element in C. Hence, every ≤-chain has an upper bound and thus by

Zorn’s lemma, there is a ≤-maximal element in C. It is straightforward to verify that

this maximal element is the required extension of 〈Γ, ∆〉.

190 The Pair Extension Lemma in Analytic Implicational Logics

Appendix C

List of Publications

‘Modal (Logic) Paraconsistency’ with Philippe Besnard,

Proceedings of the Seventh European Conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty, July 2-5, 2003, Aalborg, Denmark;

page 540–511, Lecture Notes in Artificial Intelligence 2711, Springer-Verlag

‘Reasoning and Modeling: Two Views of Inconsistency Handling’, (under review)

Proceedings of the Third World Congress of Paraconsistency, IRIT, Toulouse,

France 28–31 July 2003

‘Paraconsistent Reasoning as an Analytic Tool’, with Philippe Besnard

The Proceedings of the International Conference on Formal and Applied Practi-

cal Reasoning, Imperial College, London, 18 – 20 Sept. 2000, Logic Journal of the

Interest Group in Pure and Applied Logics, volume 9, no. 2, page 233–246, 2001

‘Inconsistency and Preservation’,

PRICAI 2000 Topics in Artificial Intelligence, 6th Pacific Rim International Con-

ference on Artificial Intelligence, Melbourne, August/September 2000 Proceed-

ings; page 50–60, Lecture Notes in Artificial Intelligence 1886, Springer-Verlag

‘From Weak Satisfiability to n-Satisfiability on Hypergraphs’,

The Proceedings of the 12th European Summer School in Logic, Language and

Information, Student Session, University of Birmingham, 6–18 August 2000,

page 275-285 (CD ROM)

191

192 List of Publications

Bibliography

[1] E. W. Adams. Transmissible Improbabilities and Marginal Essentialness of Premises

in Inferences Involving Indicative Conditionals. Journal of Philosophical Logic,

10:149–177, 1981.

[2] E. W. Adams. On the Logic of High Probability. Journal of Philosophical Logic,

155:255–279, 1986.

[3] E. W. Adams. Four Probability-Preserving Properties of Inferences. Journal of Philo-

sophical Logic, 25:1–24, 1996.

[4] E. W. Adams. A Primer of Probability Logic. CSLI, 1998.

[5] E. W. Adams and H. P. Levine. On the Uncertainties Transmitted from Premises to

Conclusions in Deductive Inferences. Synthese, 30:429–460, 1975.

[6] J. Aisbett and G. Gibbon. A Practical Measure of the Information in a Logic Theory.

Journal of Experiment and Theoretical Artificial Intelligence, 11:201–217, 1999.

[7] A. E. Anderson and N. D. Belnap. Entailment: the Logic of Relevance and Necessity Vol

1. Princeton University Press, 1975.

[8] A. E. Anderson, N. D. Belnap, and J. M. Dunn. Entailment: the Logic of Relevance and

Necessity Vol 2. Princeton University Press, 1992.

[9] P. J. Apostoli. Modal Aggregation and the Theory of Paraconsistent Filters. Mathe-

matical Logic Quarterly, 42:175–190, 1996.

[10] P. J. Apostoli. On the Completeness of First Degree Weakly Aggregative Modal Log-

ics. Journal of Philosophical Logic, 26:169–180, 1997.

[11] P. J. Apostoli and B. Brown. A Solution to the Completeness Problem for Weakly

Aggregative Modal Logic. Journal of Symbolic Logic, 60 (3):832–842, 1995.

[12] O. Arieli and A. Avron. Reasoning with Logical Bilattices. Journal of Logic, Language,

and Information, 5:25–63, 1996.

[13] O. Arieli and M. Denecker. Modelling Paraconsistent Reasoning by Classical Logic.

In T. Eiter and K-D. Schewe, editors, Proceedings of the Second International Sympo-

193

194 Bibliography

sium on Foundations of Information and Knowledge Systems (FoIKS), Lecture Notes

in Computer Science 2284, pages 1–14. Springer Verlag, 2002.

[14] O. Arieli and M. Denecker. Reducing Preferential Paraconsistent Reasoning to Clas-

sical Entailment. Journal of Logic and Computation, 13 (4):557–580, 2003.

[15] A. Avron and B. Konikowska. Decomposition Proof Systems for Gödel-Dummett

Logics. To appear in Studia Logica, 2000.

[16] J. Barwise. The Situation in Logic. CSLI, 1989.

[17] J. Barwise. Information and Impossibilities. Notre Dame Journal of Formal Logic, 38

(4):488–515, 1997.

[18] R. J. Bayardo Jr. and J. D. Pehoushek. Counting Models Using Connected Com-

ponents. In Proceeding of the National Conference on Artificial Intelligence (AAAI-

2000), 2000.

[19] J. L. Bell. Polymodal Lattices and Polymodal Logic. Mathematical Logic Quarterly,

42:219–233, 1996.

[20] J. L. Bell and A. B. Slomson. Models and Ultraproducts: An Introduction. North-

Holland, 1971.

[21] N. D. Belnap. A Useful Four-Valued Logic. In J. M. Dunn and G. Epstein, editors,

Modern Uses of Multiple-Valued Logic, pages 8–37. D. Reidel Pub., 1975.

[22] N. D. Belnap. How Computer Should Think. In G. Ryle, editor, Contemporary As-

pects of Philosophy, pages 30–55. Oriel Press, 1976.

[23] N. D. Belnap. Rescher’s Hypothetical Reasoning. In E. Sosa, editor, The Philosophy

of Nicholas Rescher: Discussion and Replies, pages 19–28. D. Reidel Pub., 1979.

[24] N. D. Belnap. Conjunctive Containment. In J. Norman and R. Sylvan, editors, Di-

rections in Relevant Logic, pages 145–156. Kluwer Academic Pub., 1989.

[25] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade. Inconsistency Manage-

ment and Prioritized Syntax-Based Entailment. In Proceedings of the Thirteenth

International Joint Conferences on Artificial Intelligence, volume 1, pages 640–645,

1993.

[26] S. Benferhat, D. Dubois, and H. Prade. A Local Approach to Reasoning Under

Inconsistency in Stratified Knowledge Bases. In Symbolic and Quantitative Ap-

proaches to Reasoning and Uncertainty 95, Lecture Notes in Artificial Intelligence

946, pages 36–43. Springer Verlag, 1995.

Bibliography 195

[27] S. Benferhat, D. Dubois, and H. Prade. How to Infer from Inconsistent Beliefs with-

out Revising? In Proceedings of the Foureenth International Joint Conferences on

Artificial Intelligence, pages 1449–1455, 1995.

[28] S. Benferhat, D. Dubois, and H. Prade. Reasoning in Inconsistent Stratified Knowl-

edge Bases. In International Symposium on Multiple-Valued Logic, pages 189–184,

1996.

[29] S. Benferhat, D. Dubois, and H. Prade. Some Syntactic Approaches to the Handling

of Inconsistent Knowledge Bases: a Comparative Study, Part I: the Flat Case.

Studia Logica, 58 (1):17–45, 1997.

[30] S. Benferhat, D. Dubois, and H. Prade. An Overview of Inconsistency-tolerant

Inferences In Prioritized Knowledge Bases. In D. Dubois, E. P. Klement, and

H. Prade, editors, Fuzzy Sets, Logics and Reasoning About Knowledge, Applied

Logic Series vol 15, pages 395–418. Kluwer Academic Pub., 1999.

[31] S. Benferhat, D. Dubois, and H. Prade. Some Syntactic Approaches to the Handling

of Inconsistent Knowledge Bases: a Comparative Study Part 2: the Prioritized

Case. In E. Orłowska, editor, Logic at Work: Essays Dedicated to the Memory of

Helen Rasiowa, Studies in Fuzziness and Soft Computing vol 24, pages 437–511.

Physica-Verlag, 1999.

[32] S. Benferhat and L. Garcia. A Local Handling of Inconsistent Knowledge and De-

fault Bases. In A. Hunter and S. Parson, editors, Applications of Uncertainty For-

malisms, Lecture Notes in Artificial Intelligence 1455, pages 325–353. Springer

Verlag, 1998.

[33] S. Benferhat, J. Lang, D. Dubois, H. Prade, A. Saffiotti, and P. Smets. Reasoning

Under Inconsistency Based on Implicitly-specified Partial Qualitative Probabil-

ity Relations: a Unified Framework. In Proceedings: 15th National Conference on

Artificial Intelligence (AAAI-98) and 10th Conference on Innovative Applications of

Artificial Intelligence (IAAI-98). AAAI-MIT Press, 1998.

[34] P. Besnard and A. Hunter. Quasi-Classical Logic: Non-Trivializable Classical Rea-

soning From Inconsistent Information. In Symbolic and Quantitative Approaches to

Reasoning and Uncertainty 95, Lecture Notes in Artificial Intelligence 946, pages

44–51. Springer Verlag, 1995.

[35] P. Besnard and A. Hunter. Introduction to Actual and Potential Contradictions. In

P. Besnard and A. Hunter, editors, Handbook of Defeasible Reasoning and Uncertain

196 Bibliography

Information Volume 2, Reasoning wiht Actual and Potential Contradictions, pages

1–12. Kluwer Academic Pub., 1998.

[36] P. Besnard and A. Hunter. A Logic-based Theory of Deductive Arguments. Artificial

Intelligence, 128:203–235, 2001.

[37] P. Besnard and T. H. Schaub. Circumscribing Inconsistency. In Proceedings of the

Fifteenth International Joint Conferences on Artificial Intelligence, volume 1, pages

150–155, 1997.

[38] P. Besnard and T. H. Schaub. Signed Systems for Paraconsistent Reasoning. Journal

of Automated Reasoning, 20:191–213, 1998.

[39] W. Bibel. Constraint Satisfaction from a Deductive Viewpoint. Artificial Intelligence,

35:401–413, 1988.

[40] E. Birnbaum and E. L. Lozinskii. The Good Old Davis-Putnum Procedure Helps

Counting Models. Journal of Artificial Intelligence Research, 10:457–477, 1999.

[41] H. A. Blair and V. S. Subrahmanian. Paraconsistent Logic Programming. Theoretical

Computer Science, 68 (2):135, 1989.

[42] G. Boole. An Investigation of the Laws of Thought. Dover Pub., 1854.

[43] G. Brewka, J. Dix, and K. Konolige. Nonmonotonic Reasoning: An Overview. CSLI,

1997.

[44] B. Brown and P. K. Schotch. Logic and Aggregation. Journal of Philosophical Logic,

28:265–287, 1999.

[45] J. P. Burgess. Relevance: a Fallacy? Notre Dame Journal of Formal Logic, 22 (2):97–104,

1981.

[46] J. P. Burgess. Common Sense and ‘Relevance’. Notre Dame Journal of Formal Logic, 24

(1):41–53, 1983.

[47] J. P. Burgess. Read on Relevance: a Rejoinder. Notre Dame Journal of Formal Logic, 25

(3):217–223, 1984.

[48] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1990.

[49] J. Copeland. The Genesis of Possible Worlds Semantics. Journal of Philosophical Logic,

31:99–137, 2002.

[50] R. H. Cowen. Two Hypergraph Theorems Equivalent to BPI. Notre Dame Journal of

Formal Logic, 31:232–215, 1990.

Bibliography 197

[51] R. H. Cowen. Hypergraph Satisfiability. Reports on Mathematical Logic, 25:113–117,

1991.

[52] R. H. Cowen. Some Connections Between Set Theory and Computer Science. In

Computational Logic and Proof Theory: Third Kurt Gödel Colloquium, Lecture Notes

in Computer Science 713, pages 14–22. Springer Verlag, 1993.

[53] N. C. A. da Costa. On the Theory of Inconsistent Formal System. Notre Dame Journal

of Formal Logic, 15 (4):497–510, 1974.

[54] J. de Kleer. An Assumption-Based TMS. Artificial Intelligence, 28:127–162, 1986.

[55] J. de Kleer. Extending the ATMS. Artificial Intelligence, 28:163–196, 1986.

[56] J. de Kleer. Focusing on Probable Diagnoses. In Proceedings of the National Conference

on Artificial Intelligence (AAAI 1991), pages 842–848. Morgan Kaufmann, 1991.

[57] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing Diagnoses. In Proceed-

ings of the National Conference on Artificial Intelligence (AAAI 1990), pages 324–330.

Morgan Kaufmann, 1990.

[58] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing Diagnoses and Systems.

Artificial Intelligence, 56 (2-3):197–222, 1992.

[59] H. Deutsch. A Family of Conforming Relevant Logics. PhD thesis, Department of Phi-

losophy, University of California, Los Angeles, 1981.

[60] H. Deutsch. Paraconsistent Analytic Implication. Journal of Philosophical Logic, 13:1–

11, 1984.

[61] H. Deutsch. Relevance and Conformity. Notre Dame Journal of Formal Logic, 26

(4):455–462, 1985.

[62] H. Deutsch. Relevance and First-Degree Entailments. Logique Et Analyse, 28:3–20,

1985.

[63] J. Doyle. A Truth Maintenance System. Artificial Intelligence, 12:231–272, 1979.

[64] J. M. Dunn. A Modification of Parry’s Analytic Implication. Notre Dame Journal of

Formal Logic, 13 (2):195–205, 1972.

[65] J. M. Dunn. Intuitive Semantics for First-Degree Entailments and ‘Coupled Tree’.

Philosophical Studies, 29:149–168, 1976.

[66] J. M. Dunn. Relevance Logic and Entailment. In D. M. Gabbay and F. Guenthner,

editors, Handbook of Philosophical Logic Volume 3: Alternatives To Classical Logic,

pages 117–224. D. Reidel Pub., 1986.

198 Bibliography

[67] R. Fagin and J. Y. Halpern. Belief, Awareness and Limited Reasoning. Artificial In-

telligence, 34:39–76, 1988.

[68] R. Fagin, J. Y. Halpern, and M. Y. Vardi. A Nonstandard Approach to the Logical

Omniscience Problem. Artificial Intelligence, 79:203–240, 1995.

[69] K. Fine. Analytic Implication. Notre Dame Journal of Formal Logic, 27 (2):169–179,

1986.

[70] M. C. Fitting, V. W. Marek, and M. Truszczyński. The Pure Logic of Necessitation.

Journal of Logic and Computation, 2 (3):349–373, 1992.

[71] D. M. Gabbay. On Second Order Intuitionistic Propositional Calculus with

Full Comprehension. Archiv für Mathematische Logik und Grundlagenforschung,

16:177–186, 1974.

[72] D. M. Gabbay. Investigations in Modal and Tense Logics with Applications To Problems

in Philosophy and Linguistic. D. Reidel Pub., 1976.

[73] D. M. Gabbay. Labelled Deductive Systems: Volume 1, volume Oxford Logic Guides

33. Oxford University Press, 1996.

[74] D. M. Gabbay and A. Hunter. Making Inconsistency Respectable: a Logical Frame-

work For Inconsistency in Reasoning, Part I - a Position Paper. In Fundamentals of

Artificial Intelligence Research, Lecture Notes in Artificial Intelligence 535, pages

19–32. Springer Verlag, 1991.

[75] L.T.F. Gamut. Logic, Language, and Meaning: Volume 1 and 2. University of Chicago

Press, 1991.

[76] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory of

NP- Completeness. W. H. Freeman and Co., 1979.

[77] J. Garson. Modularity and Relevant Logic. Notre Dame Journal of Formal Logic, 30

(2):207–223, 1989.

[78] I. P. Gent, P. Prosser, and T. Walsh. The Constrainedness of Search. under review for

Journal of the ACM, 1999.

[79] R. Goldblatt. Mathematics of Modality. CSLI, 1993.

[80] J. Grant. Classifications for Inconsistent Theories. Notre Dame Journal of Formal Logic,

19 (3):435–444, 1978.

[81] T. Hailperin. Best Possible Inequalities for the Probability of a Logical Function of

Events. American Mathematical Monthly, 72 (4):343–359, 1965.

Bibliography 199

[82] T. Hailperin. Boole’s Logic and Probability. North-Holland, 1976.

[83] W. H. Hanson. First-Degree Entailments and Information. Notre Dame Journal of

Formal Logic, 21 (4):695–671, 1980.

[84] J. Hintikka. Information, Deduction, and the A Priori. Noûs, 4 (2):135–152, 1970.

[85] J. Hintikka. On Semantic Information. In J. Hintikka and P. Suppes, editors, Infor-

mation and Inference, pages 3–27. D. Reidel Pub., 1970.

[86] J. Hintikka. Surface Information and Depth Information. In J. Hintikka and P. Sup-

pes, editors, Information and Inference, pages 263–297. D. Reidel Pub., 1970.

[87] J. F. Horty. Nonmonotonic Foundations for Deontic Logic. In D. Nute, editor, De-

feasible Deontic Logic, Studies in Epistemology, Logic, Methodology, and Philos-

ophy of Science vol 263, pages 17–44. Kluwer Academic Pub., 1997.

[88] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen & Co.,

1968.

[89] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen & Co., 1984.

[90] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,

1996.

[91] A. Hunter. Reasoning with Contradictory Information Using Quasi-Classical Logic.

Journal of Logic and Computation, 10 (5):677–703, 2000.

[92] A. Hunter. A Semantic Tableau Version of First-Order Quasi-Classical Logic. In

S. Benferhat and P. Besnard, editors, Symbolic and Quantitative Approaches to

Reasoning with Uncertainty, 6th European Conference, ECSQARU 2001, Toulouse,

France, September 19-21, 2001, Proceedings, Lecture Notes in Artificial Intelligence

2143, pages 544–555. Springer Verlag, 2001.

[93] A. Hunter and B. Nuseibeh. Analysing Inconsistent Specifications. In Proceedings

of the Third IEEE International Symposium on Requirements Engineering (RE’97),

pages 78–86. IEEE Computer Society Press, 1997.

[94] A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications: Reasoning,

Analysis and Action. ACM Transactions on Software Engineering and Methodology,

7 (4):335–367, 1998.

[95] A. Hunter and S. Parson, editors. Applications of Uncertainty Formalisms. Lecture

Notes in Artificial Intelligence 1455. Springer Verlag, 1998.

200 Bibliography

[96] S. Jaśkowski. On the Rules of Suppositions in Formal Logic. Studia Logica, 1, 1934.

Reprinted in S. McCall (1967) Polish Logic 1920–1939, Oxford University Press,

pp. 232–258.

[97] S. Jaśkowski. Propositional Calculus for Contradictory Deductive Systems. Studia

Logica, 24:143–157, 1969.

[98] J. O. M. Jaspars. Logical Omniscience and Inconsistent Belief. In M. de Rijke, editor,

Diamonds and Defaults, pages 129–146. Kluwer Academic Pub., 1993.

[99] R. E. Jennings, C. W. Chan, and M. J. Dowad. Generalised Inference and Inference

Modelling. In Proceedings of the Twelfth International Joint Conferences on Artificial

Intelligence, volume 2, pages 1046–1051, 1991.

[100] R. E. Jennings and P. K. Schotch. Some Remarks on (Weakly) Weak Modal Logics.

Notre Dame Journal of Formal Logic, 22:309–314, 1981.

[101] R. E. Jennings and P. K. Schotch. The Preservation of Coherence. Studia Logica, 43

(1-2):89–106, 1984.

[102] D. K. Johnston. A Generalized Relational Semantics for Modal Logic. Master’s the-

sis, Department of Philosophy, Simon Fraser University, 1978.

[103] B. Jónsson and A. Tarski. Boolean Algebras with Operators: Part I. American Journal

of Mathematics, 73:891–939, 1951.

[104] B. Jónsson and A. Tarski. Boolean Algebras with Operators: Part II. American Journal

of Mathematics, 74:127–162, 1952.

[105] G. Jumarie. Relative Information: Theories and Applications. Springer Verlag, 1990.

[106] H. Kautz and B. Selman. A General Framework for Knowledge Compilation. In

H. Richter and M. Richter, editors, Proceedings of International Workshop on Pro-

cessing Delarative Knowledge, Lecture Notes in Artificial Intelligence 567, pages

287–300. Springer Verlag, 1991.

[107] H. Kautz and B. Selman. Knowledge Compilation and Theory Approximation. Jour-

nal of the ACM, 43 (2):193–224, 1996.

[108] M. Kifer and E. L. Lozinskii. A Logic for Reasoning with Inconsistency. Journal of

Automated Reasoning, 9:179–215, 1992.

[109] K. M. Knight. Measuring Inconsistency. Journal of Philosophical Logic, 31:77–98, 2002.

[110] K. M. Knight. Two Information Measures for Inconsistent Sets. Journal of Logic, Lan-

guage, and Information, 12:227–248, 2003.

Bibliography 201

[111] K. M. Knight. Two Probabilistic Entailment and a Non-Probabilistic Logic. Journal

of the Interest Group in Pure and Applied Logics, 11 (3):353–365, 2003.

[112] A. Kolany. Satisfiability on Hypergraphs. Studia Logica, 52 (3):393–404, 1993.

[113] A. Kolany. Consequence Operations Based on Hypergraph Satisfiability. Studia Log-

ica, 58 (2):261–272, 1997.

[114] B. Konikowska. Rasiowa-Sikorski Deduction System: a Handy Tool for Computer

Science Logics. In Proceedings WADT’s 98, Lecture Notes in Computer Science

1589, pages 183–197. Springer Verlag, 1999.

[115] B. Konikowska and M. Białasik. Reasoning with First Order Nondeterministic Spec-

ifications. Acta Informatica, 36:375–403, 1999.

[116] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic Reasoning, Preferential

Models and Cumulative Logics. Artificial Intelligence, 44:167–207, 1990.

[117] P. Lavers. Relevance and Disjunctive Syllogism. Notre Dame Journal of Formal Logic,

29 (1):34–44, 1988.

[118] E. J. Lemmon. Beginning Logic. Hackett Pub., 1978.

[119] H. J. Levesque. Logic and the Complexity of Reasoning. Journal of Philosophical Logic,

17 (4):355–389, 1988.

[120] C. I. Lewis and C. H. Langford. Symbolic Logic. New York, 1932.

[121] E. L. Lozinskii. Counting Propositional Models. Information Processing Letters,

41:327–332, 1992.

[122] E. L. Lozinskii. Information and Evidence in Logic Systems. Journal of Experiment

and Theoretical Artificial Intelligence, 6:163–193, 1994.

[123] E. L. Lozinskii. Resolving Contradictions: a Plausible Semantics For Inconsistent

Systems. Journal of Automated Reasoning, 12:1–31, 1994.

[124] J. J. Lu and E. Rosenthal. Annotations, Signs, and Generally Paraconsistent Logics.

In E. A. Yfantis, editor, Intelligent Systems: Third Golden West International Confer-

ence, Edited and Selected Papers Volume 1 and 2, pages 143–157. Kluwer Academic

Pub., 1995.

[125] A. K. Mackworth. The Logic of Constraint Satisfaction. Artificial Intelligence, 58:3–

20, 1992.

[126] V. W. Marek, J. Treur, and M. Truszczyński. Representation Theory for Default

Logic. Annals of Mathematics and Artificial Intelligence, 21 (2-4):343–358, 1997.

202 Bibliography

[127] F. Massacci. K-Clusters Tableaux: A Tool for Modal Logics and Inconsistent Belief

Sets. AI*IA Notizie, 4:23–33, 1994.

[128] J. McCarthy. Circumscription – A Form of Nonmonotonic Reasoning. Artificial In-

telligence, 13 (1-2):27–39, 1980.

[129] R. K. Meyer and R. Routley. Algebraic Analysis of Entailment. Logique Et Analyse,

15:407–428, 1972.

[130] C. Mortensen. Reply to Burgess and Read. Notre Dame Journal of Formal Logic, 27

(2):195–200, 1986.

[131] B. Nebel. Belief Revision and Default Reasoning: Syntax-Based Approaches. In J. A.

Allen, R. Fikes, and E. Sandewall, editors, Principle of Knowledge Representation

and Reasoning: Proceedings of the Second International Conference (KR91), pages

417–428. Morgan Kaufmann, 1991.

[132] B. Nebel. Syntax-Based Approaches to Belief Revision. In P. Gärdenfors, editor, Be-

lief Revision, pages 52–88. Cambridge University Press, 1992.

[133] A. Newell and H. Simon. GPS, a Program That Simulates Human Thought. In

E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279–296.

McGraw-Hill, 1963.

[134] N. J. Nilsson. Probabilistic Logic. Artificial Intelligence, 28:71–87, 1986.

[135] W. T. Parry. Ein Axiomsystem für eube beye Art von Implikation (analytische Imp-

likation). Ergebrisse eines Mathematischen Colloquiums, 4:5–6, 1933.

[136] S. Parsons and S. Green. Argumentation and Qualitative Decision Making. In

A. Hunter and S. Parsons, editors, Symbolic and Quantitative Approaches to Rea-

soning and Uncertainty, European Conference, ECSQARU’99, London, UK, July

1999. Proceedings, Lecture Notes in Artificial Intelligence 1638, pages 328–339.

Springer Verlag, 1999.

[137] F. J. Pelletier. A Brief History of Natural Deduction. History and Philosophy of Logic,

20:1–31, 1999.

[138] G. Priest. Minimally Inconsistent LP. Studia Logica, 50 (2):321, 1991.

[139] G. Priest. Negation as Cancellation and Connexive Logic. Topoi, 18:141–148, 1999.

[140] G. Priest. Paraconsistent Logic. In D. M. Gabbay, editor, Handbook of Philosophical

Logic Volume 6. Kluwer Academic Pub., second edition, 2002.

[141] W. V. O. Quine. Methods of Logic. Henry Holt & Co., 1950.

Bibliography 203

[142] W. V. O. Quine. The Problem of Simplifying Truth Functions. American Mathematical

Monthly, 59:521–531, 1952.

[143] W. V. O. Quine. A Way To Simplify Truth Functions. American Mathematical Monthly,

62:627–631, 1955.

[144] W. V. O. Quine. On Cores and Prime Implicants of Truth Functions. American Math-

ematical Monthly, 66:755–760, 1959.

[145] A. Ramesh, G. Becker, and N. V. Murray. CNF and DNF Considered Harmful

for Computing Prime Implicants/Implicates. Journal of Automated Reasoning,

18:337–356, 1997.

[146] A. Ramesh, B. Beckert, R. Hähnle, and N. V. Murray. Fast Subsumption Checks

Using Anti-Links. Journal of Automated Reasoning, 18:47–83, 1997.

[147] A. G. Ramesh. Some Applications of Non Clausal Deduction. PhD thesis, Department

of Computer Science, State University of New York at Albany, 1995.

[148] V. Rantala. Impossible Worlds Semantics and Logical Omniscience. Acta Philosoph-

ica Fennica, 35:107–115, 1982.

[149] H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics. PWN Warsaw,

1963.

[150] S. Read. Burgess on Relevance: a Fallacy Indeed. Notre Dame Journal of Formal Logic,

24 (4):473–481, 1983.

[151] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.

[152] N. Rescher. Hypothetical Reasoning. North-Holland, 1964.

[153] N. Rescher. The Coherence Theory of Truth. Oxford University Press, 1973.

[154] N. Rescher. Plausible Reasoning. Van Gorcum & Comp., 1976.

[155] N. Rescher and R. Brandom. The Logic of Inconsistency: a Study in Non-Standard Pos-

sible World Semantics and Ontology. American Philosophical Quarterly, 1979.

[156] N. Rescher and R. Manor. On Inference from Inconsistent Premisses. Theory and

Decision, 1:179–217, 1970.

[157] R. Routley and R. K. Meyer. The Semantics of Entailment. In H. Leblanc, editor,

Truth, Syntax and Modality: Proceedings of the Temple University Conference on Al-

ternative Semantics, pages 199–243. North-Holland, 1973.

[158] R. Routley, V. Plumwood, R. K. Meyer, and R. T. Brady. Relevant Logics and Their

Rivals Volume 1. Ridgeview Publishing Co., 1982.

204 Bibliography

[159] M. H. Saeedi and J. A. A. Sillince. Incorporating Rhetorical and Plausible Reason-

ing in a System for Simulating Argument. Knowledge-Based Systems, 12:113–127,

1999.

[160] H. Sawamura and S. Maeda. An Argumentation-Based Model of Multi-Agent Sys-

tems. preprint, Department of Information Engineering and Graduate School of

Science and Technology, Niigata University, Japan, 2000.

[161] H. Sawamura, Y. Umeda, and R. K. Meyer. Computational Dialectics for Argument-

based Systems. accepted for presentation at the Fourth International Conference

on MultiAgents Systems (ICMAS 2000), Bosten, USA, 2000.

[162] M. Schaerf and M. Cadoli. Tractable Reasoning via Approximation. Artificial Intelli-

gence, 74:249–310, 1995.

[163] T. H. Schaub. The Family of Default Logics. In P. Besnard and A. Hunter, editors,

Handbook of Defeasible Reasoning and Uncertain Information Volume 2, Reasoning

wiht Actual and Potential Contradictions, pages 77–134. Kluwer Academic Pub.,

1998.

[164] P. K. Schotch and R. E. Jennings. Inference and Necessity. Journal of Philosophical

Logic, 9:327–340, 1980.

[165] P. K. Schotch and R. E. Jennings. Modal Logic and the Theory of Modal Aggrega-

tion. Philosophia, 9:265–278, 1980.

[166] P. K. Schotch and R. E. Jennings. Non-Kripkean Deontic Logic. In R. Hilpinen, ed-

itor, New Studies in Deontic Logic: Norms, Actions, and the Foundations of Ethics,

pages 149–162. Reidel Pub Co., 1981.

[167] P. K. Schotch and R. E. Jennings. On Detonating. In G. Priest, R. Routley, and

J. Norman, editors, Paraconsistent Logic: Essays on the Inconsistent, pages 306–

327. Philosophia Verlag, 1989.

[168] D. Scott. Completeness and Axiomatizability in Many-Valued Logic. In L. Henkin

et al., editors, Proceedings of Symposia in Pure Mathematics Volume XXV: Proceed-

ings of the Tarski Symposium, pages 411–435, 1974.

[169] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical

Journal, 27:379–423 and 623–656, 1948.

[170] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University

of Illinois Press, 1949.

[171] J. K. Slaney. A General Logic. Australasian Journal of Philosophy, 68 (1):74–88, 1990.

Bibliography 205

[172] J. K. Slaney. SCOTT: A Model-Guided Theorem Prover. In Proceedings of the Thir-

teenth International Joint Conferences on Artificial Intelligence, volume 1, pages 109–

115, 1993.

[173] J. K. Slaney, E. Lusk, and W. W. McCune. SCOTT: Semantically constrained OT-

TER. In A. Bundy, editor, Proceedings of the 12th International Conference on Au-

tomated Deduction, Lecture Notes in Artificial Intelligence 814, pages 764–768.

Springer Verlag, 1994.

[174] R. M. Smullyan. This Book Needs No Title: A Budget of Living Paradoxes. Simon &

Schuster, Inc., 1980.

[175] P. Suppes. Introduction to Logic. Van Nostrand/Reinhold Press, 1957.

[176] R. Sylvan. Relevant Containment Logics and Certain Frame Problems of AI. Logique

Et Analyse, 31:11–24, 1988.

[177] Y. Umeda and H. Sawamura. Towards an Argument-based Agent System. In Pro-

ceedings of Third International Conference on Knowledge-Based Intelligent Intelligent

Information Engineering Systems, pages 30–33. IEEE Press, 1999.

[178] A. Urquhart. A Semantic Theory of Analytical Implication. Journal of Philosophical

Logic, 2:212–219, 1973.

[179] G. Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds of Negation. Lec-

ture Notes in Artificial Intelligence 764. Springer Verlag, 1994.

[180] G. R. Wheeler. Kinds of Inconsistency. In Paraconsistency: The Logical Way to the In-

consistent, Proceedings of the Second World Congress on Paraconsistency (WCP 2000),

pages 511–522. Marcel Dekker, Inc., 2000.

[181] P. Wojtylak. 2 Sat is not equivalent to Boolean Prime Ideal Theorem. In E. Orłowska,

editor, Logic at Work: Essays Dedicated to the Memory of Helen Rasiowa, Studies in

Fuzziness and Soft Computing vol 24, pages 580–583. Physica-Verlag, 1999.

[182] P. Wong. Paraconsistent Inference and Preservation. Workshop on Logic in Com-

puting Science, University of Technology, Sydney, 1998.

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Two Approaches to Inconsistencies
	Symbolic and Numeric Approaches to Uncertainty
	Preservation and Measuring Inconsistent Information
	Representation of Inconsistent Information
	Overview
	Notation

	Paraconsistent Inference and Preservation
	Introduction
	Paraconsistent Inferences
	Some Structural Properties
	Properties of Sets
	Level of Incoherence
	Quantity of Empirical Information

	-Forced Consequence
	Preservation
	Maximality
	Special Conditions
	Combining Inference Mechanisms

	Conclusion

	Rescher-Mechanism
	Introduction
	Connection With Default Reasoning
	Belnap's Conjunctive Containment
	Maximal Equivalent Extension

	An Improvement to Belnap's Strategy
	Logic Minimisation
	Algorithmic Considerations
	PRI via Classical PI Generation
	Semantic Graphs

	Conclusion

	Uncertainties and Inconsistencies
	Introduction
	Probabilities over Possible Worlds
	Bounded USAT and Inconsistencies
	Geometric Rendering of Inconsistencies
	Multiple Inconsistencies
	Uncertain Inference
	Bounded Reasoning in Natural Deduction
	Conclusion

	QC Logic
	Introduction
	Paraconsistent Logics
	Information Measurement
	Inconsistent Information

	QC Logic and Information Measure
	The Number of Q-Models
	Application
	Constraint Satisfaction Problems
	Over-constrained Problems

	Conclusion

	Modalized Inconsistencies
	Introduction
	Logical Preliminaries
	Syntax
	Models

	n-Forcing and Coherence Level
	Completeness of n-Forcing
	Completeness of Kmn
	Further Work

	Hypergraph Satisfiability
	Introduction
	n-satisfiability on Hypergraphs
	Resolution and n-satisfiability
	n-Consequence Relations
	BPI and Complexity Theory

	Conclusion
	Dunn's Ambi-Valuation Semantics
	The Pair Extension Lemma in Analytic Implicational Logics
	List of Publications
	Bibliography

