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Abstract

This thesis covers the investigation and application of continuous spatial models for multiple

antenna signal processing. The use of antenna arrays for advanced sensing and communi-

cations systems has been facilitated by the rapid increase in the capabilities of digital signal

processing systems. The wireless communications channel will vary across space as differ-

ent signal paths from the same source combine and interfere.This creates a level of spatial

diversity that can be exploited to improve the robustness and overall capacity of the wire-

less channel. Conventional approaches to using spatial diversity have centered on smart,

adaptive antennas and spatial beam forming. Recently, the more general theory of multiple

input, multiple output (MIMO) systems has been developed toutilise the independent spatial

communication modes offered in a scattering environment.

Underlying any multiple antenna system is the basic physicsof electromagnetic wave propa-

gation. Whilst a MIMO system may present a set of discrete inputs and outputs, each antenna

element must interact with the underlying continuous spatial field. Since an electromagnetic

disturbance will propagate through space, the field at different positions in the space will be

interrelated. In this way, each position in the field cannot assume an arbitrary independent

value and the nature of wave propagation places a constrainton the allowable complexity

of a wave-field over space. To take advantage of this underlying physical constraint, it is

necessary to have a model that incorporates the continuous nature of the spatial wave-field.

This thesis investigates continuous spatial models for thewave-field. The wave equation con-

straint is introduced by considering a natural basis expansion for the space of physically valid

wave-fields. This approach demonstrates that a wave-field over a finite spatial region has an

effective finite dimensionality. The optimal basis for representing such a field is dependent

on the shape of the region of interest and the angular power distribution of the incident field.

By applying the continuous spatial model to the problem of direction of arrival estimation,

it is shown that the spatial region occupied by the receiver places a fundamental limit on the

number and accuracy with which sources can be resolved. Continuous spatial models also

provide a parsimonious representation for modelling the spatial communications channel in-

dependent of specific antenna array configurations. The continuous spatial model is also

applied to consider limits to the problem of wireless sourcedirection and range localisation.
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Chapter 1

Introduction

Any sufficiently advanced technology is indistinguishablefrom magic.

Arthur C. Clarke, 1961.

1.1 History and Background

For most of history, the ability of people to communicate without any physical connection

was nothing but a magical fantasy. In 1865, James Clerk Maxwell published a seminal work

showing that “an electromagnetic disturbance in the form of waves” could propagate through

space [1]. This inspired work by Hertz, Marconi and Tesla that lead to the demonstration of

wireless communication over significant distances at the dawn of the twentieth century.

The concept of the mobile telephone emerged in 1947, with commercial systems becoming

available in the early 1980s and rapid consumer uptake in the1990s [2]. Now mobile phones

are ubiquitous and an accepted part of our culture. The demand for wireless communica-

tions continues to increase, driven by the high data rate connectivity requirements of mobile

computing and multimedia devices.

A wireless device must be designed to meet the regulatory emission and bandwidth con-

straints whilst also maximising battery life through low power usage. Such constraints moti-

vate the search for ways to improve the efficiency of wirelesscommunications systems – to

send more with less. Understanding the wireless communications channel and how to fully

and efficiently exploit it is an important area of research and development.

In 1948, Claude Shannon [3] introduced a mathematical theory for understanding commu-

nications and the field of Information Theory was born. Amongother things, this work
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Chapter 1 Introduction

established the notion of capacity for a continuous communications channel in the presence

of noise. For a channel with additive white Gaussian noise, the capacity is related to the

logarithm of the signal to noise ratioη. For a channel of bandwidthB, the capacity is given

by

C = B log(1 + η) (1.1)

in bits per second using a logarithm of base 2. This represents an upper bound on the infor-

mation that can be passed through the channel without error and is known as the “Shannon

Limit”.

When multiple transmitters use the same frequency spectrum, the signal detected by a re-

ceiver will be a combination of all the transmissions. For this reason, conventional sys-

tems were developed with each independent broadcaster occupying a unique spectral band

or spreading code1 within the range of radio coverage. Cellular systems were designed to

achieve some level of spectral reuse over large distances. With this approach, the Shannon

Limit implies that the only way to increase capacity is to increase the signal to noise ratio, or

increase the signal bandwidth. The noise floor is not easily reduced and increasing the trans-

mitted power results only in a logarithmic growth in capacity. Increasing the spectrum usage

is generally not possible due to practical or regulatory constrains. For much of the twentieth

century, this was thought to fundamentally limit the capacity of the wireless communication

channel.

For mobile wireless communications, the variation of the channel characteristics over time

and space presents many challenges [4]. There has been much research into ways of mitigat-

ing or dealing with the effects of the fading wireless channel. The variation of the wireless

channel over space is known as spatial diversity Recently there has been a significant shift

in the research community toward the idea of spatial diversity as an advantage rather than

a problem for wireless communications. The basic principlecentres around taking advan-

tage of this spatial diversity in the communications channel by using multiple receiver and

transmitter antennas.

Early work by Winters [5] hinted at the possibility of sending multiple streams of data si-

multaneously using multiple antennas. Further research cemented the theoretical results [6]

and practical architectures for achieving them [7]. Experiments at Bell Labs demonstrated

these techniques in practice [8, 9], creating great excitement by effectively shattering the sin-

gle channel Shannon Limit for communications spectral efficiency. The theory and practice

1Spread spectrum systems or code division multiple access systems utilise different spreading codes to
create signal diversity over the same spectrum.
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suggested a capacity limit of the wireless channel that would increase linearly with the num-

ber of antenna elements used. These events spawned the area of research and development

known as MIMO (multiple input, multiple output) communications.

MIMO is now becoming accepted in practice with the recent IEEE standards 802.11n and

802.16e both providing for higher data rates using spatial multiplexing. Despite the exten-

sive research and practical implementations of MIMO systems, there are some important

questions that do not yet have satisfactory answers. The development of MIMO commu-

nications theory, reviewed in the following section, stemsfrom strong mathematical results

for a general system with multiple inputs and outputs. Whilst the mathematical results are

well established, there remains open questions regarding the applicability of such results to

practical systems of multiple antennas. A critique of much of the research in this area is

that the assumptions follow mathematical convenience rather than arising from a study of

the physical MIMO communications system.

The underlying physical process responsible for wireless communications is the propagation

of electromagnetic waves. A suitable model of this must be able to represent the associated

physical value of the electric and magnetic fields continuously across a region of space.

However, by construction, the central ideas in MIMO theory rest on the assumption that there

is only a discrete set of input and output signals. The work ofthis thesis seeks to develop

the ideas central to multiple antenna signal processing from the underlying perspective of

a continuous spatial field. The development of the continuous spatial models to represent

a wave-field is proposed as a way forward to improve the theoretical understanding and

development of signal processing algorithms.

The use of a continuous spatial model permits the constraints inherent in electromagnetic

radiation to be implicitly embodied in the signal processing frameworks developed. Research

in this area will help to illuminate the physical processes and fundamental limitations critical

to the performance of MIMO communications systems. The development of a continuous

spatial framework will facilitate the effective representation, detection and signal processing

for the physical electromagnetic fields that carry information. The goal is to extend the theory

of MIMO communications systems beyond that of a discrete setof inputs and outputs, and

to elegantly incorporate relevant aspects of spatial wave propagation.

This thesis develops a framework for continuous spatial models and considers their applica-

tion to several problems in multiple antenna signal processing. The work will consider opti-

mal finite dimensional approximations, intrinsic limits and efficient statistical signal models

for the continuous spatial field associated with wireless communications. In covering a fairly

broad range of areas, the results vary in depth from observations and conjectures through to
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(a) Conventional view of wireless communications.
Space is filled by a broadcast as if it were a single
dimensional pipe for information.

(b) MIMO wireless communications. Different spa-
tial paths create spatial diversity at receiver and trans-
mitter and allow re-use of the spectrum.

Figure 1.1: Conceptual comparison of conventional and MIMO systems. Tothe extent that each
received signal is a linearly independent combination of the transmitted signals, it is possible to
exploit the channel as if it were multiple independent communications channels. Spectral reuse is
facilitated by the spatial diversity of the transmitter andreceiver antennas, along with the multiple
propagation paths introduced by the scattering environment.

well developed frameworks, theorems and proofs. It provides a contribution to communica-

tions theory to better reflect the medium over which the signal is being transmitted – in this

case the spatial dimension.

1.2 Multiple Antenna Communications

The fundamental premise of multiple antenna (MIMO) systemsis that the physical environ-

ment in which the wireless signal is transmitted provides a degree of diversity through the

existence of independent signal paths. With such spatial diversity, and through appropriate

signal processing and detection, it is possible to achieve the transmission of multiple symbols

using the same time and spectrum resource within a single wireless communications cell. To

the extent that the received signal combinations are linearly independent, the channel can be

utilised as if there were multiple independent channels. A conceptual comparison between

the conventional view, and that adopted in MIMO systems, is shown in Figure 1.1.

1.2.1 Multiple Antenna Channel Framework

This section presents the conventional framework for modelling and representation of the

MIMO communications channel Consider a system withnT transmitter antennas andnR
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receiver antennas. We defines(t) = [s1(t) · · · snT
(t)]T as the vector of signals transmit-

ted at timet. Assuming a linear system, the received signaly(t) = [y1(t) · · · ynR
(t)]T is

constructed by the convolution of the input signal with a setof channel impulse responses,

ym(t) =

nT∑

n=1

∫ ∞

−∞

hmn(t, τ)s(t− τ)dτ + wm(t) m = 1, . . . , nR (1.2)

y(t) =

∫ ∞

−∞

H(t, τ)s(t− τ)dτ + w(t), (1.3)

whereH is a matrix of channel impulse responseshmn(t, τ) representing the contribution at

time t of the signal at receive elementn from transmit elementm at timet − τ . The vector

w(t) = [w1(t) · · ·wnR
(t)]T represents an additive noise process.

Depending on the signalling bandwidth, we need only consider samples of the baseband

signals at an appropriate interval,T , such thaty[n] = y(nT ). The other signal vectors

s[n] = s(nT ) andw[n] = w(nT ) and sampled channel matrixH[n, k] = H(nT, kT ).

Assuming the channel is causal, we obtain a discrete time representation of the channel

y[n] =
∞∑

k=0

H[n, k]s[n− k] + w[n]. (1.4)

In the case of frequency flat fading, or where appropriate equalisation has been performed to

eliminate inter-symbol interference, we can simplify the model to consider the transmission

of a single symbol,

y = Hs + w, (1.5)

wheres is the transmitted symbol on thenT antenna,y is the received symbol on thenR

antenna,H is the instantaneousnR × nT channel transfer matrix andw is the noise vector.

This equation represents the effect of each “channel use” and is the general signal framework

adopted in works investigating the multiple antenna communication link such as [10].

For a given channel realisationH we can calculate the theoretical channel capacity by con-

sidering the number and strength of independent single dimensional channels supported by

H. This is dependent on the rank and the eigenvalues ofH with a value related to the loga-

rithmic determinant of the system matrix [11]. The capacitywill be

C = B log det

[
InR

+
η

nT
HHH

]
(1.6)

bits per second for a base 2 logarithm, whereInR
is thenR × nR identity matrix, andHH

is the Hermitian or complex transpose ofH. The signal to noise ratioη is interpreted in the

5



Chapter 1 Introduction

context of the components ofH having unity expected power. Provided there is sufficient

transmitter diversity, the capacity can scale linearly with the number of antennanR. This

can be compared to the the single antenna case, (1.1), which would only allow a logarithmic

increase in capacity as the addition of receiver antennas increased the effective signal to noise

ratio.

1.2.2 Statistical Model of Channel Matrix

At typical radio frequencies, the presence of multiple signal paths and their subtle time varia-

tions will cause random fluctuations in the individual antenna coupling parameters ofH [4].

For such situations, it is expected that the value and statistics of the channel capacity will be

of interest in a system design context.

Significant interest in the use of multiple antennas to achieve higher spectral efficiency in the

wireless channel commenced around 1995. The mathematical results of Telatar and Foschini

were key to demonstrating the potential for capacity gains when the channelH was consid-

ered as a statistical process [6, 12–14]. Some practical demonstrations soon followed that

demonstrated such potential in laboratory environments [7–9]. These activities catalysed an

explosion of research investigating the potential and realisable capacities for various classes

of random matrixH. With a relatively simple channel model, (1.5), and armed with decades

of statistical, matrix, and information theory many capacity results were presented as being

informative of the practical MIMO communications problem [15].

Prior to the increased interest in MIMO, the statistics of a single antenna wireless channel

were well studied. However, the statistics of the channel ensemble between two antenna

arrays was a challenging and open problem. The application of a complete physical and

electromagnetic propagation model had been considered forsomewhat similar problems in

optics [16] and introduced to communications [17]. In the case of a complex scattering

environment such an approach becomes unwieldy and is best suited to specific geometrical

investigations [18].

The characteristic behaviour and statistics of the channelmodel H depends on an array

of physical properties and environmental characteristics: the antenna properties, radiation

patterns, array geometry, orientation, scattering environment, movement and the overriding

laws of electromagnetic radiation. As depicted in Figure 1.2, the matrix equation conceals

the complexity and often abstracts the spatial aspects of the multiple antenna channel.

At the outset of the MIMO developments, it was realised that as antenna separation de-

creased, signals would become correlated, impacting system performance [19]. This
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Figure 1.2: The compact form of the MIMO matrix equation. The discrete MIMO matrix equation
represents the effects of a broad range of complex physical properties and processes.

prompted work to introduce additional models for correlation between the channel com-

ponents ofH [19–25]. There has also been significant interest in conducting measurement

campaigns to fit empirical distributions to observed data [26–29]. Other efforts have sought

to adopt convenient statistical distributions for analytic purposes [30–32]. A further review

of MIMO channel models is presented in Section 1.2.5.

Such models provide a numerical framework to characterise antenna correlation, without ref-

erence to the physical processes that cause it [25, 33–36]. Since these models are not directly

related to the physical propagation, they can be misleading. For example, the framework per-

mits degenerate “keyhole” channels [22, 37, 38], however inpractice these are rare [39] and

even difficult to reproduce in artificial situations [40]. The development of MIMO theory

around statistical channel distributions became an independent research field, and arguably

some results were of little practical significance.

1.2.3 Introducing Space into MIMO Channel Models

Around 2003, there was movement toward incorporating the spatial constraint of the MIMO

arrays into the channel modelling. Some results suggested afinite dimensionality of a mul-

tipath field over a region of space [41–43] and discuss the impact of this on channel mod-

elling [44]. It was recognised that discrete statistical channel models ignored the fundamental

aspects of wave propagation inherent in the problem [39, 45,46].

The performance of a MIMO system will be directly related to the degree of spatial diversity

available. However, for much of the MIMO literature, the spatial diversity and correlation of

antenna channels was assumed or approximated. Ironically,to address this, the concept of

“space” needed to be introduced in to the MIMO framework [47,48].

This work is a continuation of the development of a spatial theory intended to model, anal-

yse and design optimal signal processing for multiple antenna systems. Rather than being
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specific to a particular antenna configuration, the use of a continuous spatial model moves

closer to understanding the underlying dimensionality andappropriate representation of the

spatial field.

1.2.4 Suggested MIMO Review Articles

Since the explosion in the level of research interest in MIMOsystems, there has been numer-

ous publications on the subject. This section presents briefly some of the more useful review

and summary articles available.

One particular work [49] developed a wider interest in the field early on. A review by Gesbert

et al. addresses theoretical and practical aspects of MIMO systems [50] with explanations

and useful interpretations. Paulraj et al. present an overview of MIMO as the solution to

meet the needs of high data rate links [51].

Special issues of the Journal of Wireless Communications and Mobile Computing [52, 53],

EURASIP Journal on Applied Signal Processing [54], IEEE Transactions on Signal Process-

ing [55] and IEEE Journal on Selected areas in Communications [56, 57] contain a collec-

tion of relevant articles. Some key books on the subject havebeen compiled by Durgin [58],

Jankiraman [59], Paulraj et al. [60], Gershman and Sidiropoulos [61] and Tsoulos [62].

1.2.5 Review of MIMO Channel Models

A fairly central theme of this work is the representation andmodelling of the MIMO channel

using the continuous spatial fields. Whilst there is some work in this area, the majority of

MIMO channel models present a statistical model for the the discrete channel matrix specific

to a given antenna configuration. This section presents a review of the literature in this area.

The purpose of a channel model is to provide a way of capturingand simulating the behaviour

of the channel matrixH. A good channel model should allow for the development and testing

of systems to work in real practical situations. The qualityand utility of a model depends

on the intended application of the model and how well the model captures the parameters of

the channel critical to the application [63]. A comprehensive review of the various MIMO

channel models developed can be found in the work by Yu and Ottersen [64] and Jensen and

Wallace [65].

The models that have been developed can be grouped into two main categories. Statistical

or non-physical models directly model the statistics of theentries in the channel matrixH
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with statistics based on experimental measurements or convenient probability distributions

[22, 35, 36]. Given a system withnT transmitters andnR receivers, characterising the corre-

lations between the elements ofH requires(nTnR)2 parameters. Various models reduce this

by assuming certain structures of the correlations. For example, the Kronecker model [23]

assumes the overall correlation is separable as a product ofreceive side and transmitter side

correlation. The virtual channel model [66] assumes a Fourier structure and the Weichsel-

berger model [67] assumes a Kronecker style eigenbasis. Simple statistical models, such as

the Kronecker, can provide satisfactory results for small numbers of antenna elements but

will fail with more complex configurations [27, 68, 69]. Statistical models are easy to imple-

ment and can provide adequate modelling for some purposes. The effects of the propagation

channel and the transmit and receive arrays are coupled together in the resultant model.

Geometrical or physical models characterise the spatial propagation aspects of the channel in

terms of the directions of arrival and directions of departure [70]. Developed from early work

on the nature of the time response of radio channels [71], themodels incorporate the idea of

distributed scatterers and clusters of scatterers interacting with the wireless signal. Models

for the distribution and effect of scatterers can be based ongeometric models, such as the one-

ring and two-ring and other arrangements [72]. Alternately, the angular characteristics can

be modelled as statistical processes [73]. Distributions such as the Laplacian [74] and Von-

Mises [31] are used to characterise the angular spread of a scattering cluster. Such models

can be fitted to experimental data by identifying scatteringpaths in array measurement data.

This is typically achieved using subspace techniques for estimating direction of arrival.

For specific physical scenarios, it is possible to use point wise ray tracing methods to model

the channel [75]. With sufficient model detail, these have been shown to provide a good

match to the physical measurements [76]. The experimental validation of channel models is

an important area of research [29]. Complex models have beendeveloped that incorporate

many of the attributes discussed above and play a role in the development of future wireless

standards [77].

An alternative to direct modelling ofH or an angular representation is provided by con-

sidering a modal spatial decomposition of the channel [41, 42, 44, 48, 78–81]. The coupling

between the receive and transmit volume is described in terms of modes related to the essen-

tial dimensionality and degrees of freedom of the spatial field. It is these classes of models

that are further developed and investigated in Chapter 2, Chapter 4 and Chapter 6. The esti-

mation of direction of arrival is also an important topic forthe development and validation

of MIMO channel models. This is investigated in Chapter 5.
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1.3 Motivation and Scope of Thesis

There is an extensive amount of existing research on antennas and electromagnetic propaga-

tion. The direct application of such results to the field of multiple antenna signal processing

can create an onerous and often unnecessary level of complexity. The statistical models

for MIMO analysis can provide an over simplification and be guided by mathematical ele-

gance rather than practical correspondence. The motivation of this work is to develop the

idea of continuous spatial model in a signal processing context in order to introduce a more

appropriate level of complexity and physical correspondence to the MIMO problem. It is

anticipated that this will be advantageous in the pursuit ofunderstanding fundamental limits

and achieving optimal system design.

In many practical applications, system design will be basedon approximation or heuristics.

While conventional designs may adopt a half wavelength antenna spacing, it is important

to understand if this is efficient and optimal, or if there is room for improvement. Further-

more, as the antenna array is extended in three-dimensionalspace, a single antenna cannot

completely characterise the array geometry.

The motivation of this thesis is to understand spatial fieldsand multipath diversity to better

inform system design, antenna geometries and signal processing used for multiple antenna

communications systems.

Pioneering work in this area [41, 42, 44, 47, 78, 79, 82–84] has considered the limits of di-

mensionality of a multipath field. The electromagnetic waveequation imposes a structure

and constraint on the permissable wave-fields over a region of space. This work further de-

velops the proposal of continuous spatial models to naturally incorporate this constraint into

the problem formulation. The scope of the topics vary acrossoptimal representations, pa-

rameter estimation and statistical modelling in the area ofmultiple antenna systems. Since

the work is largely exploratory, the contributions of the thesis vary in strength from reviews

and observations through to detailed frameworks and theorems.

The structure and main ideas of the thesis are arranged as follows:-

• The remainder of this chapter provides some further background material related to

electromagnetic fields and multiple antenna communications.

• Chapter 2 provides a review of the key results regarding the spatial dimensionality and

the impact it has on the multiple antenna systems. Some developments and conjectures

are provided towards improving the bounds and limits in thisarea.
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• Chapter 3 considers the specific problem of modelling a field with restricted direction

of arrival. Formal proof of the relationship between dimensionality and angular spread

is provided along with a constructive approximation for theoptimal representation.

• Chapter 4 contains a significant technical contribution of the thesis in the formal devel-

opment of the framework required to determine the optimal representation of a spatial

field. It is shown clearly how the optimal basis depends on theangular power spectrum

and the shape of the region of interest. Several examples aresolved and investigated

numerically.

• Chapter 5 presents a detailed derivation of a fundamental bound for system perfor-

mance of direction of arrival estimation. This is a contribution in that the bound is

independent of the specific sensor geometry and has been derived for multiple sources.

It is shown that the number of sources that can be resolved is directly related to the

essential dimensionality of the spatial field independent of the algorithm employed.

• Chapter 6 presents a new continuous space statistical channel model. This model is

validated against experimental and simulated data and is shown to provide a more

efficient representation of experimental data than existing models. By using the spatial

model, this approach facilitates the prediction and optimisation of alternate antenna

array geometries from measurement data.

• Chapter 7 presents an exploratory investigation of the implications of the continuous

spatial model in the resolution of source location. Some newapproaches are developed

leading to some useful bounds for the problem defined.

• Chapter 8 offers concluding remarks and provides a set of open areas of research and

conjectures that have been identified through this researchwork.

Understanding the wave equation and how it constrains the signal subspace and thus perfor-

mance of an antenna array is not a simple matter. It bears a strong resemblance to the issues

of sampling and understanding the dimensionality of bandlimited functions [85], an issue

which was prevalent for several decades in the middle of lastcentury. Similar developments

in relation to multiple antennas and spatial fields will leadto a body of research to guide

engineering developments in the area.
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1.4 Space, Waves and Intrinsic Limits

Electromagnetic wireless communication requires the creation and detection of an electro-

magnetic field. By controlling a current distribution across a region of space, the transmitter

is able to generate or excite the field. The strength and direction of the electromagnetic field

is a physical quantity that varies over space and time, extending beyond the region occupied

by the transmitter. The continuous electromagnetic field, defined over the constrained re-

gion of the receiver, carries information about the transmitted signal. The interaction of the

electromagnetic field with antenna elements at the receiverwill generate current and voltage

signals.

Complete electromagnetic modelling of a MIMO system is generally prohibitive due to the

scope of the propagation environment. A review by Jensen andWallace [86] lists the physical

parameters that are relevant to system performance:

• antenna sensitivity and impedance matching,

• array size and configuration,

• element radiation patterns,

• polarisation,

• mutual coupling, and

• multipath propagation.

Modelling such parameters will increase the accuracy and applicability of the MIMO channel

representation. This will provide a benefit when the increase in complexity is justified by a

valuable improvement to matching and prediction of the model.

The first three of these items relate to the configuration of the sensor array. In practice,

arrays should be designed to maximise their ability to transmit or receive information from

the region of the electromagnetic field with which they interact. Jensen and Wallace suggest

that the “average capacity is relatively insensitive to array configuration” [86], which leads

to the concept of considering the intrinsic capacity of a region of space.

This section reviews literature covering the aspects of electromagnetic radiation relevant to

MIMO systems. Some recent ideas and results relating to the essential dimensionality of a

spatial field and resultant intrinsic limits are also reviewed. These works represent a foun-

dation and motivation for much of the work in this thesis regarding the study of continuous

spatial models for multiple antenna communication and signal processing.
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1.4.1 Wave Equation

The physics and associated mathematics of wave propagationand wave motion is an area

that has received a significant amount of attention [87, 88] and is accepted as a general en-

gineering principle [89]. A similar theory can be applied across a wide range of physical

waves, such as acoustic waves and electromagnetic radiation [90]. A central relationship is

known as the reduced wave equation, or Helmholtz equation [91],

△u(x) + k2u(x) = 0, (1.7)

where u(x) is a scalar valued field representing some spatial property of the medium,

k = 2π/λ is the wave-number related to the wavelength,λ, of waves in that medium

and△ is the Laplacian operator equal to the sum of second order partial derivatives ofu(x)

on a unitary orthogonal co-ordinate system. For three-dimensional cartesian coordinates

△ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.8)

The second order differential equation (1.7) characterises the spatial distribution of a narrow-

band wave-field across a region free of any sources. The time varying physical parameter is

obtained from considering

U(x, t) = Re
{
u(x)e−jωt

}
(1.9)

whereRe {·} is the real component,j =
√
−1 andω = 2πf is the angular frequency of the

waves.

This equation is widely studied in acoustics where it is derived from a linearisation of Eu-

lers’s equation and the equation of continuity for a compressible medium [91, 92]. The scalar

field, u(x), is related to the velocity potential or localised pressureof the medium.

In considering electromagnetic radiation, we have the additional complexity of considering

a vector field. The field at a point is fully characterised by six components – the electric

field vectorE(x) and the magnetic field vectorH(x). These fields must satisfy the vector

Helmholtz equations,

△E(x) + k2E(x) = 0 △H(x) + k2H(x) = 0. (1.10)

Where the region is free of sources, the fields will also be divergence free [91]. The magnetic

field and electric field are not independent; each field can be derived from the other. The
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Chapter 1 Introduction

complete constraint on the field can be expressed

△E(x) + k2E(x) = 0 ∇ · E(x) = 0 H(x) =
∇× E(x)

ik
or (1.11)

△H(x) + k2H(x) = 0 ∇ · H(x) = 0 E(x) =
−∇× H(x)

ik
(1.12)

where∇ is the vector differential operator

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k (1.13)

for three-dimensional space with orthogonal unit vectorsi, j andk and respective cartesian

coordinates(x, y, z). The divergence and curl operations on the vector fieldE(x) are then

defined by the scalar or dot product and the cross product as∇ · E(x) and∇× E(x).

The divergence constraint implies that the electric or magnetic field has only two degrees

of freedom. From this it is apparent that the complete electromagnetic field can be charac-

terised by a two-dimensional scalar field satisfying the wave equation. A similar case for

the importance of the wave equation was made in [93] where it was shown that the Green’s

function for radiating waves satisfying Maxwell’s equations has two degrees of freedom.

This brief analysis demonstrates why the properties of scalar fields satisfying the wave equa-

tion (1.7) are central to understanding the limits of wireless communications. To facilitate

the analysis, we will investigate the single dimensional scalar field. This approach matches

physical implementations that make use of unpolarised antennas to interact with the field.

The issue of polarisation will be discussed further in the next section.

1.4.2 Polarisation

Early work in the field demonstrated that different polarisation modes of the radio chan-

nel could exhibit uncorrelated amplitudes [94]. The complete electromagnetic field has six

components, suggesting that six communication modes are theoretically available [95, 96],

however simple antenna designs will generally only excite or detect three modes [97]. Where

the polarisation modes are independent, the use of polarisation will offer improved system

performance in the form of a diversity gain [98].

For scatterers in the far-field, the electric and magnetic fields are not independent. The rank

of the far-field array response matrix is only two [84]. In practice, compact trimode antenna

have been proposed [99] and performance approaching three [100] or four [101] independent

Rayleigh fading channels have been observed. Whilst such antenna offer multiple signals
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1.4 Space, Waves and Intrinsic Limits

from one antenna location, the antenna itself must have somespatial extent to couple with

the component modes of the electromagnetic field. It is likely that such results arising from

the array may also affect the pattern or directional diversity [102].

In this work we consider scatterers to be a reasonable distance from the array and thus in the

far-field. It is the far-field excitation and response of the transmitter and receiver array which

are of interest. In addition to satisfying the wave equation, these response matrices will

have two degrees of freedom. The use of polarisation could increase the available degrees

of freedom by a factor of 2. In this way, limits of capacity or system performance utilising

polarisation would be increased by a factor between 1 and 2 depending on the amount of

cross polarisation diversity. This approach has also been followed by others to develop a

MIMO spatial channel model incorporating polarisation [103].

1.4.3 Mutual Coupling

Practical antennas will exhibit coupling between the elements as they are brought close to-

gether. This effect is known as mutual coupling. Initial studies of this effect [104–107]

suggested a small improvement in system performance since mutual coupling would intro-

duce antenna pattern diversity, decorrelating the antennasignals. Other works suggested

the coupling would be detrimental [108] with a loss in signalto noise ratio degrading ca-

pacity [109]. Practical measurements showed that degradation in radiation efficiency would

outweigh any increase in pattern diversity leading to a lossin performance [110].

Conflicting views in the existing research literature on this topic are largely due to different

scopes and underlying assumptions [111]. Careful analysisshows a tradeoff between any di-

versity enhancement and the directional characteristics of the channel [112]. It is not possible

to make definite predictions without considering the complete impedance network model of

the antennas [113] and resultant changes in response and efficiency [114]. A rigourous ap-

proach and framework for investigating the effects of mutual coupling was proposed in [115].

With appropriate matching networks it has been shown that itis possible to decrease corre-

lation without loss in gain [116], however the system bandwidth is significantly reduced.

Most approaches to mutual coupling consider the main sourceof noise to be that generated

in the receiver amplifiers. When this is combined with power constraints based on the ra-

diated power rather than any internal element currents, it is possible to benefit from “super

directivity” with multiple antennas [117]. However, it is known that when circuit elements

are coupled, the thermal noise components generated withinthem generate correlated noise

at the network outputs [118]. This should be considered whenanalysing the effects of mutual

coupling [119, 120].
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Whichever approach to mutual coupling is considered, the underlying field incident on the

antenna array must satisfy the wave equation constraint. The mutual coupling effects and

antenna impedance matching network can be considered to perform a processing operation

on the wave-field. This can be well modelled by a linear transformation and consequently

cannot increase the information content of the underlying spatial field [121]. Thus mutual

coupling is a factor related to the efficiency of a particularantenna configuration, rather than

having an impact on the fundamental limits for spatial communication.

1.4.4 Dimensionality

We define a continuous spatial field,u(x), to be a scalar function varying over three-dimensional

spacex = (x, y, z). We are interested in modelling the field over some domain of in-

terestΛ ⊂ R3 which we require be bounded in extent such thatx,y ∈ Λ implies that

‖x − y‖ <∞. We also require thatΛ is not a set of measure zero, and thus contains at least

some open interval. We assume the field,u(x), is continuous, bounded and integrable over

this domain. With these assumptions we can define an inner product and induced norm

〈u, v〉 =

∫

Λ

u(x)v(x)dx ‖u‖Λ =

∫

Λ

|u(x)|2dx. (1.14)

DefineS as the space of fieldsu(x) created from this inner product and norm. The space

S is isomorphic to a separable Hilbert space with countable basis. For example, a Fourier

basis of spatial complex sinusoids can be easily constructed for an arbitrary region. Since

the fields are continuous, the dimensionality of the space offieldsS over the bounded region

Λ will be countably infinite.

If the fieldu(x) is required to satisfy the narrow-band wave equation, (1.7), this implies an

additional second order differential constraint. DefineS ′ as the space of functions satisfying

the wave equation (1.7) on the bounded regionΛ. The spaceS ′ is a strict subspace of the

spaceS and is again isomorphic to a countably infinite Hilbert space.

Consider a finite regionΛ′ ⊂ Λ whose closure lies in the interior ofΛ. A similar norm can be

defined onΛ′ as in (1.14). Any member ofS ′ with unit norm‖u‖Λ can be approximated on

the regionΛ′ with arbitrary precision with a fixed basisβm(x) for m = 1, . . . ,M for some

M <∞. That is, given an arbitraryǫ, there exists a numberM and set of basis functionsβm

such that

min
αm

∥∥∥∥∥u−
M∑

m=1

αmβm

∥∥∥∥∥
Λ′

< ǫ ∀ u(x) : ‖u‖Λ = 1. (1.15)
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1.4 Space, Waves and Intrinsic Limits

This result implies that provided a spatial field satisfies the wave equation over some larger

regionΛ, an arbitrary field over a bounded finite volumeΛ′ ⊂ Λ is essentially finite dimen-

sional. The combination of the wave equation constraint, a bounded domain of interest, and

a finite precision representation leads to a fixed number of degrees of freedom. This is inves-

tigated further in Chapter 2 and forms an underlying theme for this thesis. The notion that a

field is essentially finite dimensional leads to results regarding the efficient representation of

fields and fundamental limits to system performance.

The idea of dimensionality for the multipath spatial field inwireless communications was

developed recently [41], leading to a string of results regarding capacity limits [82, 122–

124], modelling [44, 48, 78, 125], extrapolation [126, 127]and direction of arrival estimation

[128, 129]. Similar ideas were developed by considering a suitable basis representation for

the signals observed by a spherical antenna array [43, 84, 130].

The idea of dimensionality and degrees of freedom has been investigated for a scattered field

resulting from objects in a finite volume [131–133]. This problem can be thought of as the

dual of that considered in this work, where we are interestedin the dimensionality of the

electromagnetic field itself in a finite volume.

1.4.5 Intrinsic Limits

In wireless communications systems, transmission is achieved by means of a modulated

narrow-band radio frequency transmission sent from a finitetransmitter region and received

in a finite receiver region. It follows then that the concept of the essential dimensionality of

a wave-field developed in Section 1.4.4 will be related to theintrinsic ability to send infor-

mation between the two regions. In the field of Wireless Communications and Information

Theory there have been several results presented towards understanding these limits. This

section presents a brief literature review of that area.

The assumption of independently fading channel coefficients must be examined in the con-

text of the wave equation [46]. The intrinsic limit can be related to the properties of a

continuous operator describing the electromagnetic coupling between the two spatial re-

gions [134, 135]. The laws of electromagnetism will have an effect on the maximum achiev-

able spatial capacity [136, 137].

The interaction with the electromagnetic field through a continuous or distributed sensor,

across the receiver and transmitter spatial region, suggests an intrinsic upper bound on the

capacity of a wireless channel [138, 139]. A similar result is obtained by taking the limit
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of a finite element approximation of the spatial channel [140]. The essentially finite dimen-

sionality of the spatial field can be used to derive bounds forthe scaling of the capacity of a

constrained antenna array [79, 82]. An extensive numericalinvestigation has been presented

with similar conclusions [121].

A recent detailed work by Jensen and Wallace reviewed the capacity saturation that results

from considering the laws of electromagnetism [141]. A moremathematical approach based

on the dimensionality of the spatial field is presented in [81].

Whilst this thesis will consider the application of continuous spatial models to several spe-

cific problems, it does not extend to incorporate the capacity limits established above. The

review in this section has presented the works that have taken the notion of the field dimen-

sionality and applied it to the communications capacity problem. However, since some of

the elements and aspects of the continuous spatial model remain poorly established, most

of these results sit on tenuous foundations. The motivationof this research and thesis has

been to provide a more systematic development of some of the aspects and applications of

continuous spatial models.

The following chapter leads into this work by a more thoroughreview of the dimensionality

results and analysis of their application to two-dimensional multipath fields.
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Chapter 2

Dimensionality of Multipath Fields

2.1 Introduction

In engineering terms, the dimensionality of a system relates to the degrees of freedom or the

number of intrinsic variables required to describe the state of a system. In practice, it is only

possible to observe or control a system with a finite dimensionality. Provided such systems

are also bounded in energy, they present a manageable level of complexity. We expect this

to be the case for most physical systems over a bounded domainof interest.

When we lend mathematical models to physical quantities, itis possible to create a frame-

work that permits unbounded dimensionality and complexity. For example, if we consider a

simple continuous functiong(t) defined on the real intervalt ∈ [0, T ], mathematically it can

be bounded in both magnitude and energy and still exhibit a countably infinite complexity:

g(t) =

∞∑

n=−∞

αne
j2πnt/T

∞∑

n=−∞

|αn| ≤ 1 ⇒ g(t) ≤ 1

∞∑

n=−∞

|αn|2 ≤ 1 ⇒
∫ T

0

|g(t)|2 ≤ T. (2.1)

A useful signal description requires a finite set of coefficientsαn selected from a countably

infinite possible set. There is generally some additional constraint or critical parameter that

will constrain the dimensionality. For example, any interaction with a physical system will

have some constraint on the resolution or scale of observation and control. Intuitively we

expect such a constraint to reduce the system model to a finitenumber of terms and thus a

finite dimensionality. For some applications a conservative estimate of this limit is adequate.

However, for telecommunications systems, we are interested in the ability to transmit and
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Chapter 2 Dimensionality of Multipath Fields

capture information. The number of terms and their relativestrength are directly related to

the information theoretical limits of the system.

An understanding of the relationship between physical constraints and system dimensionality

is an important problem. Consider the problem of a signal constrained to a duration ofT

seconds and a spectral bandwidth ofW Hz. The dimensionality of such a signal of2WT time

is an accepted result that underpins much of communicationsand digital signal processing

theory. Yet this result has a rich history and an extensive theoretical treatment with the key

result presented by Slepian as the second Shannon Lecture in1974 [85]

The approximate dimension of the set of bandlimited and timelimited functions

is asymptotically2WT asW or T becomes large.

For most applications,2WT ≫ 1 and the asymptotic relationship is appropriate. Whilst

the signal space is still infinite in dimensionality, any signal constrained in duration and

bandwidth can be well approximated by a finite dimensional representation. The error in

a representation decreases rapidly beyond the critical dimensionality. However, rather than

this being an absolute threshold, it occurs across a span of the order oflog 2WT [142–145].

Thus for small2WT the required accuracy can have a significant impact on the required

number of dimensions.

The recent interest in using multiple antennas for communications has created an active area

of research. Rather than considering a signal over a single dimension, we must consider a

signal over three possible spatial dimensions in addition to time. Continuous functions are

used to represent the variation of some physical property over the spatial region of the trans-

mitter and receiver. In this work the physical properties considered are the electromagnetic

field values. Therefore they have the additional constraintof Maxwell’s equations. We are

interested in developing an understanding of the dimensionality or degrees of freedom in a

continuous spatial field over a region of space. Such work will be fundamental to under-

standing the limits and optimal approaches for transmitting and receiving information from

within a confined spatial region.

There is now a significant amount of literature demonstrating a relationship between the

degrees of freedom and the spatial extent of an antenna array. Jones, Kennedy and Ab-

hayapala formalised the concept of dimensionality as it relates to the wireless multipath

field in 2002 [41, 42] leading to a series of publications regarding capacity limits [82, 122–

124], modelling [44, 48, 78, 125], extrapolation [126, 127]and direction of arrival estima-

tion [128, 129]. Poon, Brodersen and Tse developed similar ideas from a signal subspace

approach [43, 84, 130]. Rather than treating the MIMO problem as discrete set of antennas,
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the idea of taking a volumetric approach to space has been developed [146] and the notion

of an intrinsic capacity of the electromagnetic channel [136–139] has been presented.

Whilst these publications are all relatively recent, the observation of a finite dimensional

signal space based on the physical extent of the array, rather than the number of array el-

ements, is not new. The practical approach has been to use antenna spacing no less than

half a wavelength. Use of the Bessel expansion and principalterms for small ring arrays

was established in the 1960s [147, 148]. The signals representing the principal components

of variation across the antenna array were known as phase modes and have been applied to

problems of direction of arrival estimation [149–153] and extrapolation [154]. The phase

modes can be related to the signal from a virtual linear array[155]. The number of sig-

nificant phase modes is related to the size of the circular array, not the number of antenna

elements. Familiarity with the dimensionality of a spatialfield in communications and infor-

mation theory is still at an early stage. The attempts at creating a fundamental limit for the

capacity of a region of space provide apparently conflictingand incomplete results.

This chapter presents an analytical and numerical study of the dimensionality and degrees

of freedom of a continuous spatial field and its significance to the MIMO communications

channel. It is a collection and extension of several works previously published by the author

[156–158]. To provide some background, Section 2.2 reviewsthe framework for discussing

the approximate finite dimensionality of a band-limited function. Section 2.3 extends this

framework to consider a truncated representation of a two-dimensional multipath field. A

discrepancy between the published results of Kennedy [41, 42] and Poon [43] is highlighted

and explained. A numerical investigation of the truncationorder and modelling error of a

multipath field in Section 2.4 is used to demonstrate the applicability of the finite dimensional

approximation and bounds. Section 2.5 presents new work to derive a tighter bound on the

error and dimensionality of a multipath field, based on a new constructed bound for the

Bessel function. As the bounds are developed under the assumption of far-field sources,

Section 2.6 presents an analysis and investigation of the impact of near-field sources on the

results.

The contribution of this chapter is to provide context and understanding of the finite dimen-

sional approximation of a multipath spatial field. It is apparent that this is a similar problem

to that studied extensively by Slepian [142], however the results are subtly different. Most

importantly, however, with the spatial extent often a constraint of the system, the asymptotic

limit is of less importance than understanding the behaviour of the truncated approximation

around the selected representation dimensionality. In practice, this relates to the problem of

the optimal number of antennas to use in a particular system configuration, and highlights

the issue of diminishing returns for spatially constrainedMIMO systems.
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Chapter 2 Dimensionality of Multipath Fields

2.2 Dimensionality of a Bandlimited Function

In this section we consider the degrees of freedom or dimensionality of a bandlimited signal

with finite duration. It is true that no signal can be simultaneously limited in time and band-

width. Thus we must consider signals which are effectively contained or almost limited, in

some sense, to a given time and bandwidth. Without loss of generality, we assume a time

signalg(t) with unity energy,

∫ ∞

−∞

|g(t)|2 = 1. (2.2)

Adopting the approach set out by Slepian [85] we define a function as being “limited to a

duration ofT at levelǫ” to imply that the fraction of the signal’s total energy outside of the

interval[0, T ] is bounded from above byǫ,

∫

t/∈[0,T ]

|g(t)|2dt ≤ ε. (2.3)

Similarly, we can define a function as being “bandlimited to [-W,W] at level ǫ” with the

bound
∫

|f |>W

|G(f)|2df ≤ ε (2.4)

where

G(f) =

∫ ∞

−∞

e−2πjftg(t)dt. (2.5)

Now considerG as the set of all unit energy functions time limited to[0, T ] and bandlimited

to (−W,W ) both at levelε. Define the approximate dimensionalityN(W,T, ε, ε′) of G at

levelε′ as the minimumN for which there exists a fixed collection of functionsΨ1, . . . ,ΨN

such that for anyg ∈ G there exists a set of coefficientsαn such that

∫

|t|≤T/2

∣∣∣∣∣g(t) −
N∑

i=1

αnΨn(t)

∣∣∣∣∣

2

dt ≤ ε′. (2.6)

The dimensionality theorem is stated as

lim
T→∞

N(W,T, ε, ε′)

T
= 2W or lim

W→∞

N(W,T, ε, ε′)

W
= 2T. (2.7)
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2.2 Dimensionality of a Bandlimited Function

The works of Slepian, Pollak and Landau [142–145] derive theoptimal set of basis functions

Ψn related to this problem. In these works they consider two classes of functions – those that

are finite in duration with maximum concentration of spectral energy in a given interval, and

those that are finite in bandwidth with a maximum concentration of energy in a given time

interval. The case of signals concentrated in both a time andspectral interval was covered by

Slepian in [85] and elegantly generalised by Franks [159]. These turn out to be a family of

functions specified by the parameter2WT and scaled for the appropriate time and frequency

intervals. The differential equation involved in this derivation is identical to that which arises

in the separation of the wave equation in prolate spheroidalcoordinates. As a result, these

functions are known as the prolate spheroidal wave functions. It is the properties of these

functions that are used to prove the dimensionality theorem.

A comprehensive formal framework representing over a decade of research was required to

properly establish the dimensionality theorem for the one-dimensional time bandwidth case.

Much of the work for this thesis is related to extending such results to the case of multi-

dimensional spatial wave-fields. Despite the complexity underlying the formal results, it is

evident that in the limiting case of a large dimensionality2WT , the exponential basis func-

tions provide a reasonable approximation. This is consistent with the intuition and practical

application of signal processing theory.

Taking the infinite basis expansion from (2.1) and definition(2.5)

G(f) =

∫ ∞

−∞

e−2πjftg(t)dt =

∞∑

n=−∞

αn

∫ T

0

e2πjnt/T e−2πjftdt (2.8)

= Te−jπfT
∞∑

n=−∞

(−1)nαnsinc (π(fT − n)) (2.9)

wheresinc(x) = sin(x)/x. From the maximum of 1 atf = n/T , |sinc (π(fT − n))| will

decrease like|1/π(fT − n)| asn → ∞. Thus asT andW become larger, it is evident that

the bound (2.4) is approximately satisfied provided that

αn ≈ 0 ∀ |n| > WT (2.10)

which leaves2WT + 1 coefficientsαn to characterise the signal. Whilst the harmonic expo-

nential basis will be suboptimal for small values of2WT , it is evident that in the limit this

basis choice is consistent with the theoretical limit. Similar ideas and results will now be

explored for continuous spatial fields. These can be considered as continuous functions with

a multi-dimensional domain rather than the case of the one-dimensional domain function as

reviewed in this section.
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Chapter 2 Dimensionality of Multipath Fields

2.3 Dimensionality of a Multipath Field

Consider a spatial field represented by a continuous scalar value defined over some domain

representing the region of space. To begin with we can consider a field defined over a two-

dimensional domainu(x) wherex ∈ R
2. Rather than the entire field, we are only interested

in modelling, detecting or exciting the field in a restricteddomain of interest. A suitable

simple domain is the set of points within a fixed radius of the origin

B
2
R =

{
x : x ∈ R

2, ‖x‖ < R
}

(2.11)

where the norm‖·‖ is the usual cartesian distance norm. Whilst compact in notation, the

representation of a field asu(x) for x ∈ B2
R suggests an uncountably infinite set of values,

u(x), and thus does not lend itself to engineering application. As before in (2.1) of Section

2.1, we propose some countable spatial basis functions,βn(x), to represent possible fields

u(x) =

∞∑

n=−∞

αnβn(x). (2.12)

Such a representation is only useful provided we can obtain an appropriate basis representa-

tion for the problem of interest. In practice we must deal with a finite set of signals or basis

functions, and thus limit ourselves to consider the truncated space of fields

{
u(x) : u(x) =

N∑

n=−N

αnβn(x),
N∑

n=−N

|αn|2 <∞
}
. (2.13)

Our choice of basis functionsβn(x) should be constructed such that a truncated space at

any orderN provides an efficient representation of the desired signal space. The basis will

be optimal when aN th order truncated space represents the maximal variation in the un-

derlying signal over all possible basis of orderN . Without finite truncation of the signal

representation, no sense of optimality exists.

To achieve a particular error in modelling the underlying signal, an optimal basis function

set will allow a compact representation of the field through the least number of terms in the

expansion (2.12).

As discussed previously, we expect some physical constraints and considerations for the

engineering application to impose an effective finite dimensionality. Thus we anticipate

being able to consider only a finite set of the basis functionsto represent, with some level of

approximation error, all of the fields of interest for a givenproblem. The constraints relevant

to wireless communications are the properties of the electromagnetic field, the ability of the
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2.3 Dimensionality of a Multipath Field

antenna elements to excite and detect it, and the bounded nature of our region of observation.

Here we see a key thread of this thesis:-

Understanding the optimal basis representation and the appropriate truncation order

for a continuous spatial field related to electromagnetic radiation is key to understand-

ing the theoretical limits of wireless communication systems utilising spatial diversity.

The termmultipath fieldis used to describe a field that is constructed from many different

signal arrival paths. It is this multipath diversity that creates the spatial variation in the com-

munications channel that can be exploited for improved performance. Recent works on the

multipath field suggest that a field of arbitrary path complexity can be well approximated

over a finite domain of interest using a fixed number of signal terms [41, 84]. Beyond some

critical threshold, the error in such an approximation is bounded and exponentially decreas-

ing with respect to the order of the approximation. Two approaches from these works will

be reviewed and compared.

2.3.1 Representation by Wave Equation Basis Functions

The first approach to be reviewed was presented by Jones, Kennedy and Abhayapala [41,

42]. For communications systems, the signalling bandwidthis small compared to the carrier

frequency and we can typically make the assumption of a narrow-band source. In a region

free of any sources,‖x‖ < R, the field must satisfy the narrow-band wave equation [91]

△u(x) + k2u(x) = 0. (2.14)

All solutions to this differential equation can be represented from a set of basis functions.

Given a choice of a circular domain of interest, a natural setof basis functions are those

obtained by separating the wave equation in polar coordinates. The radial variation of the

basis functions is characterised by the Bessel function with the angular variation being the

harmonic complex exponentials. We can represent an arbitrary spatial field using this basis,

u(x) =

∞∑

n=−∞

αnβn(x) βn(x) = Jn(k ‖x‖)ejnθx . (2.15)

whereJn(·) represents thenth order Bessel function andθx represents the angle of the polar

coordinates for the pointx.

Given this basis function we are interested in the number of terms required to represent an

arbitrary multipath field. Consider a field as a superposition of P far-field sources, with am-

plitudeap and angleθp. The coefficients,αn, for the expansion of this field can be specified
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and bounded,

αn =

P∑

p=1

ape
jnθp ≤

P∑

p=1

|ap| = a. (2.16)

If the representation of the field is truncated at orderN , we can determine an upper bound

on the representation error across the domain of interest. This error will be bounded by

the worst case contribution resulting from the terms discarded in the truncation. Define the

truncation error as

εN = |u(x) − uN(x)| =

∣∣∣∣∣∣

∑

|n|>N

αn Jn(k ‖x‖)ejnθx

∣∣∣∣∣∣
. (2.17)

Using the bound (2.16)

εN ≤ 2a
∞∑

n=N+1

|Jn(k ‖x‖)| . (2.18)

The Bessel function can be approximated and bounded from above [160],

Jn(kr) =

(
kr

2

)n ∞∑

m=0

(
−1

4
k2r2

)m

m!Γ(n +m+ 1)
≤ (kr)n

2nΓ(n+ 1)
≈ 1√

2πn

(
ekr

2n

)n

(2.19)

using the first term of the alternating series as an upper bound and applying the Stirling

approximation for the Gamma function,Γ(·). The approximation holds for smallkr, whilst

the bound holds for allkr. This bound is monotonically increasing withr, and for our

domain of interest‖x‖ < R. The worst case for this error bound onεN will occur at the

extremity of the domain of interest‖x‖ = R. The truncation error from (2.18) is bounded

from above as

εN <
2aρN+1

(1 − ρ)
√

2π(N + 1)
<∞ where ρ =

ekR

2(N + 1)
< 1 (2.20)

for all ‖x‖ < R providedN is sufficiently large. Since the summation will only converge

for ρ < 1, the critical truncation point above which the bound will exist will be

N > ekR/2. (2.21)

The dimensionality of the field is then the number of requiredterms2N + 1. A two-

dimensional multipath field in a region with radiusR has an upper bound on its effective
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2.3 Dimensionality of a Multipath Field

dimensionality of

DR = 2
⌈e
2
kR
⌉

+ 1 ≈ 17R/λ. (2.22)

It can also be shown that the error decreases exponentially with additional terms beyond this

truncation point [41]. The approach is robust in that the bound is a true upper bound. The

contribution from all higher order terms is considered and bounded. A similar result was

presented by Rossi et al. [153]. However, as will be seen in Section 2.4 this bound is rather

conservative for larger regions.

2.3.2 Representation by Antenna Signal Subspace

Rather than considering the underlying field, an alternative approach is to consider the signal

space that would be observed by the antenna array [43, 84, 130]. Rather than considering

the dimensionality of the field itself, this approach considers the degrees of freedom in the

antenna signals. This comes from the assumption that a uniform circular array at the extent

of the two-dimensional region is optimal.

Consider a uniform circular array of radiusR and an arbitrary superposition ofP far-field

sources, with amplitudeap and angleθp. The signal received around the circular array will

be

u(θ) =
P∑

p=1

ape
jkr cos(θ−θp) =

P∑

p=1

ape
−jnθp

∞∑

n=−∞

jnJn(kR)ejnθ (2.23)

using the Jacobi-Anger summation expansion of a plane wave [91]. The basis functions

are the harmonic complex exponentials around the circular array weighted by the Bessel

function. This approach is also known as the phase mode signal representation of a circular

array [151].

The Bessel function of ordern > 0 will be zero at the origin,Jn(0) = 0 for all n > 0.

Furthermore, the derivatives ofJn(z) at z = 0 will be zero up until∂nJn(z)/∂zn = (1/2)n.

Thus as the order is increased, the Bessel function will remain small for a larger interval

from the origin [161]. This is often referred to as the “high pass” nature of the higher order

Bessel functions as they have little contribution around the origin. The assumption made in

the work of Poon et al. [43] is that

Jn(kR) ≈ 0 for n > kR. (2.24)
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Chapter 2 Dimensionality of Multipath Fields

Although this is only an approximation, it has been used for some time [149] and tends to

be an accepted result. Since the high order termsn > kR are small, we can truncate the

summation to give a finite dimensional subspace approximation of the circular array signal

space

u(θ) ≈
P∑

p=1

ape
−jnθp

N∑

n=−N

jnJn(kR)ejnθ. (2.25)

The truncated field representation of order ofN = kR has an associated dimensionality,

DR = 2⌈kR⌉ + 1 ≈ 12.57R/λ. (2.26)

This approach does not consider the cumulative sum of the truncated terms nor does it pro-

vide any estimate or bound on the representation error in theresultant truncation.

2.3.3 Comparison of Dimensionality Results

The previous two sections detailed two approaches for creating a finite dimensional repre-

sentation of the spatial field. Both of the suggested truncation orders, (2.22) and (2.26), show

a linear growth with the radius of the regionR. Both the approaches suggest that the error

in the representation of an arbitrary multipath field decreases rapidly with additional terms

beyond the suggested truncation. However, it is noted that the two results suggest a different

ratio in the limit ofR → ∞.

A notable difference between the two approaches is that the wave equation basis (Section

2.3.1) considers the dimensionality of the complete field over the entire domain of interest

‖x‖ ≤ R. The signal subspace approach (Section 2.3.2) considers only the antenna signals

at the extent of the region on the circular array‖x‖ = R. However, in the analysis it was

noted that the maximum error of the expansion (2.15) occurs near the edge of the array [41].

Also from Huygen’s principle [91] it is known that the field inthe interior can be completely

characterised from the boundary field conditions. This implies the edge of the field will have

a similar dimensionality to the entire field across the domain of interest. Therefore this is not

the reason for the differing ratios.

Both approaches are developed from electromagnetic theory. While the first approach di-

rectly considers a basis of the wave equation, the second restricts signals incident on the

array to plane waves (i.e., far-field sources). Both approaches effectively constrain the pos-

sible fields to valid solutions of the wave equation [91]. TheBessel function expansion of a

plane wave through the Jacobi-Anger expansion is central toboth approaches.
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2.3 Dimensionality of a Multipath Field

The most significant difference between the two approaches is that of obtaining a bound in

comparison to an approximation. The approach of Section 2.3.1 is a formal proof, which

considers and bounds all of the truncated terms. The heuristic approach of Section 2.3.2

simply considers the terms to be negligible.

An approximation ofJn(kR) at the critical pointn = kR is given by [160, p.366]

Jn(n) ≈ 21/3

32/3Γ(2
3
)

1

n1/3
≈ 0.4473n−1/3 (2.27)

which cautions the assumption (2.24) thatJn(kR) ≈ 0 for n > kR. Note that in the case of

kR = 1 thenJn(kR) ≈ 0.4473 which indicates that the second basis function of a region

with R = λ/2π has a significant contribution to modelling the field on this region. For

this reason the expression for dimensionality developed in2.3.2 tends to underestimate the

contribution from the truncated terms and will be inadequate for small regions.

The bound for the Bessel function (2.19) used in Section 2.3.1 suggests

Jn(n) < (e/2)n/
√

2πn (2.28)

which will be much larger than the approximate value (2.27) as the ordern increases. Thus

for larger regions withkR ≫ 1 the bound developed in Section 2.3.1 will overestimate the

contribution of the error from the truncated terms and thus the bound on dimensionality will

be conservative.

An intended outcome of the research work in this area was to develop a better understanding

and formal basis for the dimensionality results. This section presents the two starting points

for this development: a formal bound that is conservative inthe limit of a large region and

an approximation that is insufficient for the case of a small region. The subsequent sections

in this chapter will present further developments from thispoint to investigate the existence

of an alternate bound which can be used for both small and large regions.
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Chapter 2 Dimensionality of Multipath Fields

2.4 Numerical Investigation of Dimensionality

This section presents a numerical investigation on the appropriate truncation dimensionality

for a multipath field. In the investigation we consider threevariants of the error criteria

considered on a circular region. As will be seen, the bounds for these three error criteria

exhibit similar characteristics, but vary slightly in magnitude.

2.4.1 Bound for Worst Case Error Across Region

First we consider the worst case error possible for a particular field. This is the ratio between

the maximum error in the truncated field and the maximum valueof the field. This error is

similar to the error and upper bound that was considered in Section 2.3.1,

ε1 = max
‖x‖<R

|u(x) − uN(x)| uN(x) =

N∑

n=−N

αnβn. (2.29)

Again, we consider the field constructed from a set ofP plane waves, and note that the

maximum field amplitude is
∑P

p=1 |ap|. Without loss of generality, we can normalise this

to be unity. Thus from (2.16) we have|αn| ≤ 1. Provided that the truncation pointN is

sufficiently large,Jn(k ‖x‖) is monotonically increasing for‖x‖ ≤ R thus

ε1 =

∣∣∣∣∣∣

∑

|n|>N

αn j
nJn(k ‖x‖)ejnθx

∣∣∣∣∣∣
< 2

∞∑

n=N+1

|Jn(kR)| . (2.30)

2.4.2 Bound for Mean Error at Edge of Region

Often we are not interested in the error for a particular specific field, but rather the expected

error for representing a field generated from a random process. We consider the class of

fields generated from a large set of plane waves with independent random amplitudes and

random directions of arrivals. The incident waves are scaled by1/
√
P such that the expected

value of the field power is unity. Given a large enoughP , the field mode coefficientsαn will
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also be independent and unit power:

ap =
1√
P
a′p E

{
a′pa

′
q

}
= δpq

u(x) =

P∑

p=1

ape
jkrpcos(θ−θp) E

{
u(x)u(x)

}
=

P∑

p=1

apap =
1

P

P∑

p=1

a′pa
′
p ≈ 1

αn =
P∑

p=1

ape
jnθp E {αmαn} =

P∑

p=1

apape
j(m−n)θp ≈ δmn (2.31)

where the Kronecker delta functionδmn = 1 for m = n and zero otherwise. The final

approximation of (2.31) is valid provided that there is a suitable large number of incident

waves,P ≫ 1 andP ≫ max(|m|, |n|). This field has maximum richness or entropy in that

the field coefficients are independent random variables prohibiting a representation with a

reduced set of variables.

In the limit of P → ∞ this field is wide sense stationary in that the characteristics and

statistics of the field are independent of the positionx. The coefficientsαn are an infinite

set of independent random variables of unit variance. This implies

E
{
u(x)u(x)

}
= E

{
∞∑

m=−∞

αmβm

∞∑

n=−∞

αnβn

}

=

∞∑

m=−∞

∞∑

n=−∞

E {αmαn} Jm(k ‖x‖)Jn(k ‖x‖)ej(m−n)θx

=
∞∑

n=−∞

E {αnαn} J2
n(k ‖x‖) = 1 (2.32)

using some Bessel identities from [162].

In Section 2.3.1 it was shown that beyond a reasonable truncation order, the bound on the

worst case error is largest at the edge of the region‖x‖ = R. Consider the average error in

the truncated representation around this edge

ε2 = E





1

2π

∫ 2π

0

∣∣∣∣∣∣

∑

|n|>N

αn Jn(kR)ejnθ

∣∣∣∣∣∣

2

dθ





= E




∑

|m|>N

∑

|n|>N

αmαnJm(kR)Jn(kR)
1

2π

∫ 2π

0

ej(m−n)θdθ





≤
∑

|n|>N

E {αnαn} Jm(kr)Jn(kR) = 2
∞∑

n=N+1

J2
n(kR) (2.33)
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using the expectation around the circular boundary, changing the order of integration and

using the orthogonality of the harmonic exponentials in thebasis functionsβn.

2.4.3 Bound for Mean Error Across Region

For the third case we consider the expected error across the entire domain of interest. This

involves extending the domain of integration to include allradii r < R. The orthogonality of

the basis functions is still applicable since the integration is performed in polar coordinates.

ε3 = E





1

πR2

∫ R

0

∫ 2π

0

∣∣∣∣∣∣

∑

|n|>N

αn j
nJn(kr)ejnθ

∣∣∣∣∣∣

2

dθrdr



 (2.34)

≤ 2

R2

∑

|n|>N

E {αnαn}
∫ R

0

J2
n(kr)rdr = 2

∞∑

n=N+1

J2
n(kR) − Jn−1(kR)Jn+1(kR)

Figure 2.1 shows the locus of points satisfying the three errors,ε1, ε2 andε3, equal to−20dB

and−50dB. The ratio of the truncation order tokR plotted in Figure 2.1(b) indicates that the

ratio is asymptotically approaching 1 for large regions. Figure 2.1(a) demonstrates that the

truncation at⌈kR⌉ approximates a−20dB average error in the stochastic case. For radii up to

one wavelength, the truncation at⌈ekr/2⌉ provides a better match to the−20dB worst case

error. This observation matches the successful use of the⌈ekr/2⌉ truncation for capacity

results [79, 122].

2.4.4 Discussion

The numerical investigation in this section suggests the conjecture that for large regions the

dimensionality of a multipath field is asymptotically givenby the valueDR = 2kR + 1.

However, for small regions the representation of a field truncated to match this dimensional-

ity will have a considerably larger error. As a result we mustbe careful with any use of this

expression for the dimensionality of a field when dealing with a small region.

To consider the validity of the conjecture of the ratio asymptotically being unity, we can con-

sider the application of the sampling theorem and Huygen’s principle for a large region. The

complete field across the region can be characterised by the field on the boundary. This will

have length2πR. Since the field is generated from narrow-band sources, the field variation

along a one-dimensional path will be strictly bandlimited,and thus can be represented by a
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set of samples with the critical sampling period of one half wavelength. Thus the number of

samples required is

D =
2πR

λ/2
= 2kR ⇒ N =

D − 1

2
≈ kR. (2.35)

The use of the sampling theorem for these results highlightsthe similarity between the di-

mensionality of a two-dimensional field and the dimensionality of a bandlimited signal as

considered in Section 2.2.

The current interest in MIMO communications extends to considering antenna arrays num-

bering perhaps 8 to 16 elements. This corresponds to the dimensionality of the two-dimensional

field in a region of the order of one wavelength. The dimensionality bound ofDR = ekR+1

is perhaps a better match for reasonable error contours of truncation at this radius.

From this analysis, it is evident that the dimensionality result as it applies to small regions

cannot be simply captured by a single number. It is evident that only a finite number of terms

will be required to model a multipath field with a desired accuracy. This has implications for

the size of the space of detectable signals for a finite size sensor array. The dimensionality

will asymptotically increase linearly with the radius of the domain of interest. However, for

regions with a small radius, a more conservative estimate ofthe dimensionality is warranted.

For such small regions the truncated terms will have a greater significance to the represented

field.

Following on from this investigation, it would be desirableto have a formal derivation of

the asymptotic limit of dimensionality consistent with that suggested from the numerical

analysis. It was identified in Section 2.3.3 that the existing bound for the dimensionality

is conservative as the result of a conservative bound used for the Bessel function. The fol-

lowing section is presented as a work towards improving thisbound and thus the resultant

dimensionality bound.

2.5 Development of Tighter Bound on Dimensionality

The framework presented in Section 2.3.1 provides an approach to bounding the error in

a finite dimensional field approximation. However, the bound(2.19) used for the Bessel

function introduces an overestimation of dimensionality.
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Consider the terms of the expansion

Jn(kr) =

(
kr

2

)n ∞∑

m=0

(
−1

4
k2r2

)m

m!Γ(n +m+ 1)
≤ (kr)n

2nΓ(n+ 1)
. (2.36)

The ratio of the magnitude of the term form+ 1 to that ofm will be

(kr)2

4(m+ 1)(n+m+ 1)
. (2.37)

We are interested in bounding the terms for the truncation wheren > kR > kr. The

expression (2.37) suggests that we will need in the order ofn terms from the expansion for

an accurate approximation. It can also be seen that the boundis asymptotically tight towards

the origin askr → 0.

By using only the first term of the series expansion for the Bessel function as an upper bound,

the bound is quite conservative. For largen the bound (2.19) reaches unity atkr = n2/e

whilst it is known that the maximum value of the actual Besselfunction is upper bounded by

1 and does not occur untilkr > n. In order to improve this result we seek a tighter bound for

Bessel function across0 < kr < n. All Bessel functions of positive order are monotonically

increasing over this range [163]. We shall name this part theleading edge of the Bessel

function as it proceeds the oscillatory wave nature of the Bessel function askr → ∞.

2.5.1 New Upper Bound for the Bessel Function

The slope of the leading edge of the Bessel function on a log-log scale is monotonically

decreasing. The bound (2.19) has a single term in the power series of the argument with

exponentn. Whilst this term is a tight bound for the growth ofJn(z) at z = 0 it diverges

from the Bessel function asz increases.

We can generalise this to have a single term function of the form f(z) = Azm. To extend the

bound across the entire leading edge of the Bessel function,we choose to match the value

and derivative of this approximation to the value and derivative of Jn(z) at z = n,

f(n) = Anm ≈ Jn(n) (2.38)

∂f(z)

∂(z)

∣∣∣∣
z=n

= mAnm−1 ≈ J
′

n(n) = Jn−1(n) − Jn(n). (2.39)

Solving this for the two parametersA and using the recursion relationship for the Bessel
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functions and the bound forJn(n) (2.27) we obtain

A = Jn(n)/nm <
21/3

32/3Γ(2
3
)
n−1/3n−m ≤ 1

2
n−1/3n−m (2.40)

m = n

(
Jn−1(n)

Jn(n)
− 1

)
= n

(
1 − Jn+1(n)

Jn(n)

)
< n2/3. (2.41)

With some additional manipulation and approximations of the Bessel functions, it is possible

to show thatm will vary in proportion ton2/3. A comprehensive numerical investigation was

used to verify that this is also an upper bound provided thatn ≥ 1.

Combining the results we conjecture a new single term bound for the Bessel function,

Jn(z) <
1

2
n−1/3

(z
n

)n2/3

n ≥ 1. (2.42)

This bound can be verified numerically and provides an improved match to the leading edge

of the Bessel function as is shown in Figure 2.2. While this bound remains to be proven

analytically, it is an effective and simple expression for modelling the leading edge of the

Bessel function. A comparison of this bound with the bound (2.19) is shown in Figure 2.2.

By approximating the Bessel function atJn(n), the new conjectured bound does not diverge

from the leading edge of the true Bessel function as the ordern is increased. However, since

it is a single polynomial term with a power ofn2/3 it is not as tight as the previous bound

towards the origin.

2.5.2 Application of New Bound to Dimensionality

The bound (2.42) provides a fairly compact expression that bounds the Bessel function from

above, and is less conservative than the previous bound 2.19asz = kR approachesn. We

can use this new bound to consider the error in the truncationof the Bessel terms. From

(2.30) the error bound will be

ε1 < 2

∞∑

n=N+1

|Jn(kR)| ≤
∞∑

n=N+1

n−1/3

(
kR

n

)n2/3

< N−1/3
∞∑

n=N+1

(
kR

N

)n2/3

.

(2.43)

This becomes more problematic than a simple power series. Itis apparent that the terms in

the summation will be strictly decreasing provided thatkR < N . The summation can be
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Figure 2.2: Comparison of bounds for the Bessel Function. The new bound provides a better match
to the leading edge of Bessel function of higher order.

bounded by an integral,

∞∑

n=N+1

(
kR

N

)n2/3

<

∫ ∞

N

(
kR

N

)n2/3

dn <

∫ ∞

0

(
kR

N

)n2/3

dn

<
3
√
π

4
(
− log

(
kR
N

))3/2
, (2.44)

which exists provided thatkR < N . This suggests a critical dimension ofkR beyond which

the error will be bounded and decreasing. However, at this critical dimensionality, the bound

(2.43), suggests a relatively large error from the contribution of the truncated terms. The

previous bound (2.19) is much tighter on the Bessel functionfor small argumentkR ≪ n and

as such predicts a lower contribution of the higher order terms beyond the critical threshold.

2.5.3 Discussion

The motivation of this section was to develop a simple tighter bound on the Bessel functions

in an effort to improve the dimensionality bound. The conjectured bound (2.42) provides

a single term expression that is much tighter aroundJn(n) than the existing bound (2.36).
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However, when this bound is used to consider the error contribution from the truncated terms

in a field representation, a number of problems arise.

The previous bound (2.36) is known to be asymptotically tight at the origin. The new Bessel

bound has a lower polynomial order,n2/3 < n, and will overestimate the value of higher

order terms on the regionkR ≪ n. Whilst the bound suggests a tighter truncation threshold

for error convergence, it will lead to a conservative estimate of the error.

To bound the error we require an expression for the cumulative sum of all the terms of

ordern > N . The new term0.5n−1/3(z/n)n2/3

has a intricate dependence on the ordern.

Obtaining an expression for the summation of such terms proved to be a challenge. The

assumption thatn > N simplifies the term, but increases the error bound. A calculation of

the expression 2.44 leads to very large values forN ≈ kR.

The work of this section has provided the step of showing convergence in the error term for

N ≈ kR. It is conjectured that a composite bound for the Bessel function would be required

to obtain a tighter bound for the error expression, rather than a single term bound. Given

that the efforts to formally bound the dimensionality of single dimensional function spanned

over a decade [85, 142], it is to be expected that a similar bound for a multidimensional field

would be a challenging endeavour.

2.6 Impact of Near-Field Sources on Dimensionality

The dimensionality results presented and discussed in Section 2.3 are useful for determining

the number of variables that would be required to represent or model an arbitrary multipath

field across a region of space. However, the two approaches ofSection 2.3.1 and Section

2.3.2 both make global assumptions about the spatial field. In particular, the approach of

Jones et al. [41] assumes the field is a sum of a finite number of plane waves. Similarly,

Kennedy et al. [42] assume a far-field signal model and globalbound on the field amplitude.

The subspace dimensionality approach [84] rests on a plane wave or far-field source model.

The error measuresε2 andε3, presented in Section 2.5.2, were related to a stochastic field

assumed to be spatially stationary, again a global property.

In general, we are interested in the problem of describing a multipath field over the finite

region of observation. In terms of the spatial field modelu(x), we are limited to the domain

of interest‖x‖ < R and desire a framework that is independent of the field properties over

the extended domain‖x‖ > R. The global assumptions of the field in the frameworks

presented for dimensionality require some constraint or bounded behaviour on the field for

all x ∈ R2. However, in practice, this will not be the case.
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A practical field must be generated by some distribution of sources. For an ideal point

source, the field will increase without bound in the vicinityof the source. Whilst this is not

the case in general, it still is apparent that the presence ofany real sources near the domain

of interest will violate the global assumptions on the field.Any source distribution must be

at an effectively infinite distance – this is known as the far-field approximation. Since the

basic assumptions of Section 2.3.1 and Section 2.3.2 will not be valid for any sources near

the domain of interest, the question naturally arises:

What effects do near-field sources and scattering objects have on the dimensionality of the

multipath field?

For a near-field source at positionx′, the fundamental solution to the wave equation (2.14)

in two dimensions is [91]

u(x) = H
(1)
0 (k ‖x − x′‖) =

∞∑

n=−∞

H(1)
n (k ‖x′‖)e−inθx′Jn(k ‖x‖)ejnθx . (2.45)

The anglesθx andθx′ are the polar co-ordinate angles of the pointsx andx′. Since the

field value at the sourceu(x′) = H
(1)
0 (0) is not defined, this expansion is convergent for the

region from the origin to the source,‖x‖ < ‖x′‖.

From this we note that the coefficients of (2.15) for a point source atx′ will be αn =

H
(1)
n (k ‖x′‖)e−inθx′ with H

(1)
n (·) = Jn(·) + iYn(·) being the Hankel function of the first

kind andYn(·) the Neumann function. The Bessel and Neumann functions are known to

have the following asymptotic form forn≫ z [160],

Jn(z) ≈ 1√
2πn

( ez
2n

)n

Yn(z) ≈
√

2

πn

( ez
2n

)−n

. (2.46)

It can be seen that the Neumann function will be at least exponentially increasing with order

n oncen > ez/2. Thus the terms of the expansion (2.45) multiply a componentthat is

exponentially increasing with one that is exponentially decaying. The rate of convergence

of this summation will depend on the relative rates of growthand decay of the components

with respect to the summation ordern.

Using the asymptotic forms (2.46), it can be shown that the terms of (2.45) will only decay

like (‖x‖ / ‖x′‖)n/πn. Given our domain of interest is‖x‖ < R this suggests that sources

near the boundary‖x′‖ ≈ R may introduce additional degrees of freedom, or at least worsen

the error in the representation of a multipath field. Notably, if ‖x′‖ < R the field will have

an unbound dimensionality. However, in this case we have introduced a singularity and thus

a violation of our assumed field constraint within the domainof interest.
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Chapter 2 Dimensionality of Multipath Fields

A sensible way to formulate the problem would be to confine thesources to the region

‖x′‖ > S whereS = R + ∆. This raises questions regarding the appropriate separation

∆ between the observation region and the potential source region. How close can a source

be without impacting the essential dimensionality of the field ? Is this buffering distance∆

dependent on the radius of the domain of interestR ?

Consider the average field error defined previously (2.34). We can relax the assumption of

E {|αn|2} = 1 for all n to introduce the effect of near-field sources (2.45). Consider a field

generated by a source at a radius ofS with unit average power, the coefficients will have

power related to the squared magnitude of the Hankel function. If the source amplitude is

normalised such that the field amplitude at the origin is unity then

E
{
|αn|2

}
=

|H(1)
n (kS)|2

|H(1)
0 (kS)|2

. (2.47)

It is easily verified that this ratio is asymptotic to unity asS → ∞. This provides a match to

the far-field case considered previously. The average field error now becomes

ε3 = 2
∞∑

n=N+1

|H(1)
n (kS)|2

|H(1)
0 (kS)|2

(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)
. (2.48)

Figure 2.3 shows the error contours ofε3 for four different field radii as the source radius

is increased away from the domain of interest. A low truncation error is achieved after

sources are separated only a small distance from the domain of interest. The separation

required is much less than the radius of the domain of interest. From this investigation

it is demonstrated that only sources very close to the domainof interest will increase the

dimensionality required to represent the field. Although the required truncation order does

grow without bound as the source approaches the edge of the region‖x′‖ → R+, the effect

is restricted to a region of the order of one wavelength.

The ability of a near-field source to have an impact on the dimensionality decays rapidly as

the distance between the source and the domain boundary increases. This result is analogous

to recent results regarding the extrapolation of a multipath field [126, 127]. Regardless of

the size of the region of observation, the ability to predictthe behaviour of a multipath spa-

tial field decays rapidly based on the distance from the boundary of the observation domain.

The duality of the problem here is apparent. If the impact of asource or field singularity

diminishes rapidly outside the domain of interest, then given an observed field, it is diffi-

cult to ascertain the presence or absence of a singularity, and thus large uncertainty, in the

extrapolated field outside the domain of interest.
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Figure 2.3: Error contours for the truncation of a field generated by near-field sources. For an
observation region of radiusR = 1, 2, 3, 5λ, sources are present from the abscissa radiusS. The
dimensionality approaches the asymptotic value within onewavelengthS − R > λ. The sensitivity
to near-field sources increases slightly with increasing observation radius. The lines corresponding to
the truncation orderN = kR are shown for reference.

In answer to the question posed for the buffer distance between the domain of interest and

any sources, the dimensionality reaches its asymptotic value for a buffer distance less than

one wavelength. Furthermore, this does not vary significantly as the region size is increased.

2.7 Summary and Contributions

This chapter has developed the framework and clarified some existing results regarding the

dimensionality of a multipath field over a finite domain of interest. It has been shown that this

problem is important in developing a means of modelling and representation of a multipath

field as is required to develop fundamental limits regardingthe performance of communica-

tions systems using spatial diversity.

Central to this chapter is the result that the dimensionality of an arbitrary two-dimensional

multipath field is related to the radial extent of the region of observation scaled by the wave-
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Chapter 2 Dimensionality of Multipath Fields

length of the narrow-band field,

D = 2⌈kR⌉ + 1 ≈ 12.57R/λ. (2.49)

While a numerical investigation indicates this is asymptotically correct for large regions, it

is inappropriate for small regions. While a bound exists, itis conservative for larger radii.

This motivated an attempt to create a tighter formal bound. Whilst some progress was made,

it remains incomplete and important fundamental difficulties were identified. Through fur-

ther analysis and numerical investigation it was shown thatthese dimensionality results can

be extended to include fields with sources near the domain of interest, with the influence

of sources decaying to insignificance outside a few wavelengths distance from the region

boundary.

The following specific contributions were made in this chapter:

1. Provided a comparison of two existing dimensionality results:

• A dimensionality of2kR + 1, although not rigorously derived, appears to be the

correct asymptotic expression asR → ∞.

• The bound on the dimensionality ofekR+1, valid for allR, is conservative by a

multiplicative factor ofe/2 ≈ 1.35 for largeR, but tighter at smallR. In practical

MIMO applications, small radii are arguable more relevant.

2. Presented a numerical study to consider the effective dimensionality of regions over

a wide range of radii. This supported the use of the bound for small radii whilst the

asymptotic dimensionality was2kR asR → ∞.

3. Pursued the path of deriving a bound to obtain a tighter result for the dimensionality

bound asR → ∞. This motivated the development of a conjectured bound on the

Bessel functionJn(z) in the regionz < n. Several difficulties were highlighted in the

attempt to use this in the development of a tighter dimensionality bound.

4. Considered the impact of near-field sources on the required dimensionality for the

field representation. Analysis and numerical investigation demonstrated that the influ-

ence of sources need only be considered when within a few wavelengths of the region

boundary.
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Chapter 3

Impact of Direction of Arrival on

Dimensionality

3.1 Introduction

The previous chapter developed the framework for understanding dimensionality of the mul-

tipath field. This chapter investigates the effect of restricting the direction of arrival of the

multipath field.

Often in wireless communications the directions of arrivalare constrained in direction or

only span a sector. This restriction on the field can be incorporated into a model to use a

more appropriate basis function and more compact parameterisation of the field. It has been

noted that the richness, dimensionality or degrees of freedom for a spatial field decrease as

the angular diversity is reduced [47, 84, 156]. Whilst such results suggest the dimensionality

increases linearly with the angular spread, this has not been rigorously proven for a general

region. A formal expression of this relationship is an important tool in better understand-

ing the impact of angular diversity on the upper limits of thecapacity of a communications

system operating in a finite domain of interest. Conventional works on the limits of the

capacity of a multiple antenna communications system rely on specifics of the antenna ge-

ometry or spatial correlation models. By capturing the inherent dimensionality of the spatial

field, it is possible to show the existence of an upper limit without reference to any specific

configuration, thus providing a guide and reference for optimal system design.

The existing results that relate dimensionality to angulardiversity are not rigourous and are

based on simulation and approximations. Our aim is to provide a tight foundation to these

intuitive results. We have seen that the dimensionality varies linearly with the radius of
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Chapter 3 Impact of Direction of Arrival on Dimensionality

the domain of interestR. We now introduce a second variable,A, representing the angular

diversity. This leads to a spatial analogy of the well known2WT dimensionality of time-

bandwidth constrained signals discussed in Section 2.2. Inthis work we consider the problem

of a circular region with the source directions constrainedto a single contiguous interval. The

effect of different angular distributions is the subject ofChapter 4. The impact of discrete

clusters of scatterers was considered in [93].

The work presented in this chapter provides a formal proof ofthe linear relationship between

the dimensionality and angular spread. This key result has been published by the author

[157].

3.2 Representation by Wave-Field Basis Functions

A representation for a wave-field based on the basis functions of the wave equation was in-

troduced in Section 2.3.1. Consider a spatial field in two dimensions,x ∈ R2. The solutions

to the homogenous wave equation can be represented on a countable orthogonal basis,βn,

as shown previously (2.15),

u(x) =
∞∑

n=−∞

αnβn(x) with βn(x) = Jn(k ‖x‖)ejnθx , (3.1)

with Jn(·) the Bessel function of ordern andθx the angle ofx. Over a domain of interest,

B2
R = {x ∈ R2 : ‖x‖ ≤ R}, define the standard integral inner product, and note that,

〈βn, βm〉R =

∫

B2

R

βn(x)βm(x)dv = 2πδmn

∫ R

0

Jn(kr)2rdr (3.2)

whereδmn = 1 if m = n and0 otherwise. Using an integration identity from [164] then

‖βn‖R = πR2
(
Jn(kR)2 − Jn−1(kR)Jn+1(kR)

)
(3.3)

which is asymptotic to2R/k asR → ∞.

3.3 Representation by Herglotz Angular Function

The Herglotz representation of a wave-field is described in [91] and was proposed as a gen-

eralised framework for source distributions [165]. The concept is introduced here, specific

to the two-dimensional case, to provide the machinery for the main result. A standard model
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of a multipath field is to represent it as a superposition of plane waves. This can be gen-

eralised in two dimensions to a continuous distribution of far-field sources on the interval

S1 = [−π, π),

u(x) =

∫ π

−π

g(θ)ejkx.θ̂dθ (3.4)

with θ̂ as the unit vector with directionθ. If the representation of the wave-fieldg(θ) is square

integrable, that isg ∈ L2(S1), this is known as theHerglotz Kerneland (3.4) is theHerglotz

Wave Function. A plane wave with direction of arrivalθ has coefficientsαn = jne−jnθ. Thus

the coefficients for the overall field will be

αn =
1

2π

∫ π

−π

g(θ)jne−jnθdθ (3.5)

This relationship is an inverse Fourier transform. The restriction of g ∈ L2(S1) is equiva-

lent to
∑ |αn|2 < ∞ by Parseval’s identity. This slight restriction provides the significant

advantage of placing the problem into a Hilbert space. With this space, any bounded field,

including a plane waveg ∈ L1(S1), can be represented to arbitrary precision over a finite

domain of interest [80].

We can now define the class of fields represented by a restricted direction of arrival.

Definition 3.1 Multipath field with restricted direction of a rrival.

A restricted direction field is represented by a Herglotz Wave Function,gA ∈ L2(S1), such

that

gA(θ) = 0 A < |θ| ≤ π. (3.6)

In this formulation, the angular range of the multipath fieldis centred around a zero mean

without any loss of generality.

The space of Herglotz Wave Functions with restricted angle of arrival is a linear subspace

of the full set of Herglotz Wave Functions. It is noted that the restricted direction of arrival

field gA(θ) represents a distribution of far-field sources. A near-fieldsource could be ap-

proximated by a specific far-field distribution, however theassociated angular representation

would not be strictly restricted in angle. Thus the definition we adopt is specific to restricted

direction of arrival far-field wave functions. In practice,this result is appropriate with all

sources a small distance beyond the domain of interest, as was demonstrated in Section 2.6.
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3.4 Dimensionality of Multipath Field in a Region

It is known that the modal basis (3.1) is optimal under truncation for the representation of

a field over a disk of radiusR where the source distribution is unconstrained [80]. The

truncation,

uN(x) =

N∑

n=−N

αnβn(x) with βn(x) = Jn(k ‖x‖)ejnθx (3.7)

provides an approximation of the field with exponentially decreasing error forN > πeR/λ

[42]. This provides a model of the field with2N + 1 parametersαn for n = −N, . . . , N .

The general approach to dimensionality was discussed in Section 2.3 where the truncation

point was considered so that the error in representation wassufficiently small. Here we

present a tighter formal definition. The dimensionality is defined as the point beyond which

an exponential improvement in the approximation error can be achieved regardless of the

field.

Definition 3.2 Essential Dimensionality of a space of Multipath fields.

Consider a particular space of fields,U , defined on the domain of interestB2
R. If for some

valueNo, and choice of{ψi}∞i=0, and for anyu ∈ U
∥∥∥∥∥u−

No∑

i=0

〈u, ψi〉ψi

∥∥∥∥∥
B2

R

≤ ǫ <∞ (3.8)

and for anyn > No,

∥∥∥∥∥u−
n∑

i=0

〈u, ψi〉ψi

∥∥∥∥∥
B2

R

≤ ǫ e−α(n−No) (3.9)

for some fixedα > 0, then we say the spaceU has essential dimension ofNo.

Definition 3.2 is similar in application to the concept of “essential dimension” in operator

approximations [166]. Although this definition of dimensionality was not formally adopted

in Chapter 2, the bound that was developed in Section 2.3.1 does satisfy this definition [41].

The following lemmas are presented towards the main result.
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3.4 Dimensionality of Multipath Field in a Region

Lemma 3.3 Equivalence of Multipath field with Restricted Direction of Arrival and a

Bandlimited sequence.

The modal coefficientsαn, as determined by (3.5), of a restricted direction field are aban-

dlimited sequence. Other than the trivial solutionαn = 0 ∀ n, the sequenceαn will have

infinite support such that given anyN there exists|n| > N such thatαn 6= 0.

Proof of Lemma 3.3.From (3.5) we can express the modal coefficients of the field

αn =
1

2π

∫ π

−π

gA(θ)jnejnθdθ =

∫ A

−A

gA(θ)jnejnθdθ. (3.10)

By construction, the sequenceαn will be a bandlimited sequence. A corollary of this is that

it will have infinite support.

Lemma 3.4 Restricted DOA Field on Finite Domain≡ Finite Bandlimited Sequence.

A restricted direction field can be approximated over a finitedomain,{x : ‖x‖ ≤ R}, by

2N+1 terms from an infinite bandlimited sequence whereN > ⌈ekR/2⌉. The error resulting

from the truncation to2N + 1 terms will be bounded and will decrease exponentially asN

is increased.

Proof of Lemma 3.4.This is immediately apparent from Lemma 3.3 and (3.7) takinga finite

truncation of bandlimited sequence. The restricted direction of arrival fields are a subspace

of the Herglotz wave-fields. We can use the result from [42] todetermine an appropriate

truncation.

A bandlimited sequence that is also confined1 to a finite length has dimension approximated

by the product of its length and fractional bandwidth [167].Whilst this result is only true

asymptotically as the length increases [168] it has been used effectively for small sections

of bandlimited sequences that are not confined in time [169, 170]. A variant of the prolate

spheroidal functions, the Slepian series [171], provides an optimal basis for representing the

2N + 1 length bandlimited sequenceαn with a reduced number of coefficients.

1Here confined is in reference to most of the energy being contained in a finite length. Strictly a bandlimited
sequence cannot also be time limited.
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3.5 Slepian Series for Representing Bandlimited Sequence

The Slepian series are a family of discrete series basis function, each member of which

provides a set of basis functions for a finite length sequenceof defined length. Each member

of the family is specified by a sequence length,N , and the fractional bandwidthW . The

fractional bandwidth is related to the bandlimited processthat we infer the sequence ofN

discrete samples are drawn from. If the sequence ofN discrete samples was a section of a

larger periodic sequence with a period ofN , we could use the standard Fourier transform or

complex harmonic exponentialsejnm/N wheren is the sample index andm is the index of

the basis functions. A bandlimited periodic signal could berepresented from only the low

orderm terms through to the limiting frequency in the series. For such a periodic sequence, it

only makes sense to consider discrete steps in the bandwidthof the entire series. In the more

general case, whereN samples are drawn from a bandlimited process that is not periodic, the

Slepian Series is more appropriate. In this case the bandwidth,W , is a continuous parameter.

Definevm
n (N,W ) as the sample indexn = 0, . . . , N − 1 of the orderm = 0, . . . , N −

1 Slepian series basis function of lengthN with an associated scaled bandwidth ofW ∈
[0, 1/2]. These series are the ordered solutions of the system of equations [167]

N−1∑

n′=0

sin 2πW (n− n′)

π(n− n′)
vm

n′ (N,W ) = λm(N,W )vm
n (N,W ) . (3.11)

The series is orthonormal in that

N−1∑

n=0

vm
n (N,W ) vm′

n (N,W ) = δmm′ (3.12)

thus theN sequences,m = 0, . . . , N − 1, form a complete basis set for all sequences of

lengthN . The eigenvaluesλm(N,W ) are ordered monotonically decreasing between1 and

0. They represent the maximum ratio of the energy of the signalwithin theN samples to

that of the total energy of a bandlimited extension of that same sequence. Conversely, if we

know theN samples are drawn from a bounded and infinite length bandlimited series, the

eigenvaluesλm(N,W ) are related to the expected energy in the projection of the discrete set

of samples onto each of the basis functions.

Figure 3.1 shows the first six Slepian series of length 20 withan associated bandwidth of

W = 0.2. Also shown in the figure are the bandlimited extrapolationsof the basis func-

tions. It can be seen that after the fourth basis function theeigenvalues drop rapidly and the

bandlimited extension becomes increased in magnitude.
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Figure 3.1: Slepian series for lengthN = 20 andW = 0.2. The first six basis functions are shown
along with the bandlimited extension. The region of the defined series is shown with the inner box.
Beyond the critical basis function aroundm = 4 the eigenvalues drop rapidly and the bandlimited
extension increases in magnitude with less of the signal energy within the inner series.
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Whilst the extensive works of Slepian [142, 167] set out someasymptotic approximations,

the Slepian series have no simple algebraic expression. Their properties and behaviours can

all be derived from the eigenequation (3.11) from which theyare derived. Whilst this may

make them appear as a fairly esoteric function, the same is true of many other transcendental

functions. It is only that we are more familiar with functions such as the Bessel functions or

even trigonometric functions that we consider them easier to use and apply.

The nature and behaviour of the eigenvaluesλm(N,W ) has been studied in detail [167] and

is key to the result of the2WT result discussed in Section 2.2. From the analysis of Slepian,

we note the approximation for the eigenvalues [167, eq (61)],

λm(N,W ) ≈ 1

1 + exp [−b (2WN −m− 1/2)]

b =
π2

log(8N) + log(sin 2πW ) + γ
(3.13)

whereγ = 0.5772156 . . . is the Euler-Mascheroni constant. This leads to the following

assumption.

Assumption 3.5 Exponential upper bound for Slepian series eigenvalue.

The eigenvalueλm(N,W ) associated with themth basis function of the Slepian series of

lengthN and associated bandwidthW is bounded from above by

λm(N,W ) ≤ eb(2WN−m−1/2) where b =
π2

log(8N) + log(sin 2πW ) + γ
. (3.14)

The bound (3.14) is a true upper bound for the approximation (3.13) of the eigenvalue and is

tight in the limitm → N − 1 for largeN . The assumption that this upper bound also holds

for the true eigenvalue has been validated through an extensive computational investigation

up toN ≈ 200 for 0 < W < 1/2. Across this range the bound was satisfied and there was

no indication at the boundaries of the test range that the bound would not hold across a much

larger domain.

A critical review of the current practice in signal processing reveals that far too often we

apply the theories of complex exponential basis expansionsthrough techniques such as the

Fourier transform, without being aware of the effect of the inherent assumption of period-

icity. This can cause fundamental limitations in the accuracy of signal approximation and

negatively impact communications system performance [169]. This section should serve to

highlight some of the theory and encourage the use of the Slepian series for representing a

finite section of a non-periodic discrete sampled signal.
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3.6 Dimensionality of Restricted Direction of Arrival Field

The preceding sections have demonstrated that a multipath field over a finite domain of

interest with radiusR can be represented by2N + 1 termsαn with N ∼= πeR/λ [42]. Fur-

thermore, where the direction of arrival is restricted to anangular sectionA, this sequence is

representative of a bandlimited sequence with bandwidthA/2π. Thus we can use the Slepian

series basis of length2N + 1 and associated bandwidthW = A/2π. Following convention,

the Slepian series are indexedn = 0, . . . , N − 1 whilst our modal coefficients are indexed

n = −N, . . . , N . Thus we use the index shifted Slepian seriesvm
n+N (2N + 1, A/2π).

Consider an approximation of theαn, n = −N, . . . , N coefficients using the firstM basis

function from the Slepian series,

α̂n =
M−1∑

m=0

cmv
m
n+N (2N + 1, A/2π) . (3.15)

The sum is over theM terms,M ≤ 2N + 1. We will use the shorter notationvm
n+N from

this point dropping the length and bandwidth specification of the Slepian series. The Slepian

series is a complete real orthonormal basis so the coefficients cm can be determined by pro-

jection,

cm =
N∑

n=−N

αnv
m
n+N . (3.16)

In the case ofM = 2N + 1 the representation is complete andα̂n = αn.

Definition 3.6 Slepian Approximation for Spatial Field.

TheM th order Slepian approximation to theN th order modal field is given by

ûN(x) =
N∑

n=−N

α̂nβn(x) =
N∑

n=−N

M−1∑

m=0

cmv
m
n+Nβn(x) (3.17)

where

cm =

N∑

n=−N

αnv
m
n+N and α̂n =

M−1∑

m=0

cmv
m
n+N (2N + 1, A/2π) . (3.18)
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Lemma 3.7 Approximation of Restricted DOA Field.

Given a field with restricted direction of arrival,

u(x) =

∫ A

−A

g(θ)ejkx.θ̂dθ g ∈ L2(S1), (3.19)

the fieldu(x) on the domainB2
R = {x ∈ R2 : ‖x‖ ≤ R} can be approximated by a field

withM ≤ 2N + 1 parameterscm,

ûN(x) =

N∑

n=−N

M−1∑

m=0

cmv
m
n+Nβn(x) (3.20)

whereN = ⌈ekR/2⌉ with the error‖u− ûN‖R bounded and decreasing exponentially for

M

2N + 1
≥ A

π
. (3.21)

A brief explanation of this Lemma is warranted. The lower bound for the required number

of termsM grows linearly with the ratio of the support of the angular spectrum compared to

that of a full receiver2A/2π = A/π. The maximum number of terms is the same for the full

receiver being2N + 1.

Proof of Lemma 3.7.Given the orthogonality ofβn on the domain of interest‖x‖ < R, it

can be seen that

‖u− ûN‖2
R = ‖u− uN‖2

R + ‖uN − ûN‖2
R (3.22)

and using the triangle inequality we can obtain

‖u− ûN‖R ≤ ‖u− uN‖R + ‖uN − ûN‖R . (3.23)

The first term of the error bound‖u− uN‖R can be made small by the appropriate selection

of N > πeR/λ [42], beyond which this term will decrease exponentially. This results in a

sequence of2N + 1 termsαn, n = −N, . . . , N to represent the spatially limited approxima-

tion of the fielduN(x).

The second term of the error bound (3.23),‖uN − ûN‖R is the residual field error from the

Slepian expansion of the2N + 1 term bandlimited sequence. The Slepian series are also

orthogonal forn = −∞, . . . ,∞ with the energy in this infinite extension given byλ−1
m
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3.6 Dimensionality of Restricted Direction of Arrival Field

whereλm is the eigenvalue associated with themth Slepian sequence. The energy in the

infinite sequence obtained by extrapolating the2N + 1 terms using the complete Slepian

sequence must have less energy than the originalαn sequence. This provides the inequality

∞∑

n=−∞

|αn|2 ≥
2N∑

m=0

|cm|2
λm

≥ 1

λM

2N∑

m=M

|cm|2 (3.24)

sinceλm is strictly decreasing. Given that‖βn‖R is approximately bounded by2R/k, con-

sider the second term of (3.22) and use the result (3.24) to obtain

‖uN − ûN‖2
R =

N∑

n=−N

(αn − α̂n)2 ‖βn‖2
R ≤ 2R

k

2N∑

m=M

|cm|2

≤ 2R

k
λM

∞∑

n=−∞

|αn|2. (3.25)

Using Assumption 3.5, and making the substitutionsN , 2N + 1 andW , A/2π gives the

bound

λm ≤ exp

[
b

(
A(2N + 1)

π
−m− 1/2

)]
(3.26)

where

b =
π2

log(16N + 8) + log(sinA) + γ
. (3.27)

Thusλm ≤ 1 and decreases exponentially for

m ≥ A

π
(2N + 1) − 1

2
. (3.28)

The Herglotz condition,g ∈ L2(S1), implies that the total energy in the infinite bandlimited

sequence
∑ |αn|2 is finite. This combined with (3.25) and (3.22) completes theproof.

Theorem 3.8 Dimensionality of a Multipath Field with Restricted Direction of Arrival.

A field generated by far-field sources with direction of arrival restricted to[−A,A], A ≤ π,

with domain of interest constrained toB2
R = {x ∈ R

2 : ‖x‖ ≤ R}, has an essential dimen-

sion of

D = 2N ′ + 1 where N ′ =

⌈
ekR

2

A

π

⌉
(3.29)

with the definition of effective dimension as stated in Definition 3.2.
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Chapter 3 Impact of Direction of Arrival on Dimensionality

Proof of Theorem 3.8.Following from Lemmas 3.3,3.4 and 3.7, we have a constructive rep-

resentation for the field where the error is well behaved forM > A(2N +1)/π−1/2. Since

a/π ≤ 1 we can simplify this expression in line with the previous works to state the dimen-

sionality as2N ′ + 1 whereN ′ = ⌈ekR/2 A/π⌉ with ⌈·⌉ the integer ceiling function. This

completes the proof.

This result builds on the previous dimensionality results for an isotropic field. As discussed

in Section 2.3 this bound is not asymptotically tight for large regions and overestimates the

true dimensionality. We can use the same reasoning of the Slepian series approximation to

a truncated field of orderN = ⌈kR⌉. This provides the result for an approximation of the

dimensionality of the multipath field with restricted direction of arrival

D = 2

⌈
kRA

π

⌉
+ 1. (3.30)

3.7 Numerical Analysis of Multipath Dimensionality

The previous section set out a proof for the central dimensionality result of this chapter. In

this section we compare the bound obtained with numerical calculations based on the actual

restricted direction of arrival field basis expansion. In order to determine the dimensionality

of the space of restricted direction of arrival fields over a finite domain, we need to determine

the optimal basis for representation of such fields. The solution to this problem can be posed

as an eigenequation which can be solved numerically. This approach will be discussed in

greater detail in Chapter 4 Section 4.5 of this thesis.

The wave functions with restricted direction of arrival that are most concentrated in the

domainB
2
R satisfy the eigenequation

λngn(θ) =
1

4π2

∫ A

−A

gn(φ)

∫

B2

R

ekjx.(φ̂−θ̂)dxdφ =
kR

2π

∫ A

−A

gn(φ)
J1(zR)

z
dφ (3.31)

with z = 2 sin((φ− θ)/2). The theory behind this eigenequation is presented in Section 4.3

and the specific case of a circular region is analysed in Section 4.4.

A Q point quadrature rule on the interval[−A,A] is used such that

∫ A

−A

g(θ)dθ ≈
Q∑

i=1

wig(θi). (3.32)
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Figure 3.2: Plot of the eigenvalues and bounds for a regionR = 2λ with successive restriction on
the directions of arrival. The eigenvalues reflect the number of significant degrees of freedom of the
field. The dashed line for each case is the bound (3.26). The bound for the eigenvalues represent a
fairly tight bound on the actual eigenvalues at around -20dB. This corroborates the linear relationship
of dimensionality to the angular range of the field.

We can approximate (3.31) with the linear system of equations. This provides a numerical

approximation of the firstQ eigenvalues of the eigenequation (3.31) as the eigenvaluesof a

Q×Q matrix. This numerical method for solving such equations isdetailed in Section 4.5.

Figure 3.2 compares the numerically determined eigenvalues for the constrained angle of

arrival problem to the bound presented (3.26). This figure shows the upper bound and linear

dependence on the effective dimensionality with the direction of arrival restriction. For the

figure, atR = 2/λ a truncation pointN = ⌈kR⌉ = 13 was selected. The use ofN =

⌈keR/2⌉ = 18 presents a generous bound in all cases.
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Chapter 3 Impact of Direction of Arrival on Dimensionality

3.8 Summary and Contributions

Together with the preceding chapter, this chapter has provided an analysis of the dimension-

ality of a two-dimensional multipath field. The dimensionality is dependent on the size of

the region of observation and the angular diversity of the incident field.

Given a two-dimensional multipath field over a region with radiusR and the arrival from

sources restricted to the range|θ| < A the dimensionality of the field is given by

D = 2

⌈
kRA

π

⌉
+ 1 = 2

⌈
2RA

λ

⌉
+ 1. (3.33)

For large regionsR ≫ λ, this dimensionality is consistent with a modelling error across the

region of−20dB. A representation of a random multipath field with this number of terms

would be expected to capture 99% of the energy of the random field. For smaller regions

and low dimensionality a more conservative estimate with a formal error bound would be

2 ⌈eRA/λ⌉ + 1.

The following specific contributions were made in this chapter:

1. Provided a formal proof of the linear bound between restricting the direction of arrival

for a multipath field and the associated field dimensionality. This result will be the

subject of further analysis in Chapter 4.

2. Constructed an approximation for the optimal basis function of a restricted direction

of arrival multipath field. A field over‖x‖ ≤ R with direction of arrival constrained

to [−A,A] can be represented by

ûN(x) =
M−1∑

0

cmβ̂m(x) M ≤ 2N + 1, N =

⌈
ekR

2

⌉
(3.34)

β̂m(x) =

N∑

n=−N

vm
n+NJn(k ‖x‖)ejnθx m < M (3.35)

wherevm
n+N is the(n + N)th term of themth order Slepian series of length2N + 1

with bandwidthA/2π [167]. The functionŝβm(x) approximate the optimal basis func-

tions and can be used as an efficient representation for a multipath field with restricted

angular diversity.

3. Detailed the Slepian series and provided an example application where it can be used

to represent a finite sequence of samples drawn from an infinite aperiodic bandlimited

process.
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In conclusion, both the size of the domain of interest and theextent of angular diversity

linearly impact the dimensionality of a multipath spatial field. Removing the integer ceiling

function from the bound we can see in the limit thatD = 2 kR A/π whenkRA/π ≫ 1.

This is analogous to the bandlimited finite length signal dimensionality result2WT detailed

in Section 2.2. It is apparent from the investigation that there are some similarities between

the two bodies of research. However, the spatial domain and the circular and spherical spatial

regions introduce additional complexity and nuances to theproblem. Generally, the two areas

share several key observations:

• The dimensionality is asymptotic to a simple expression as it becomes large.

• Care must be taken when the expression predicts a small dimensionality since the

transition from significant to insignificant terms in any expansion is not abrupt.

• Obtaining specific approximations and formal bounds for thetruncation error and di-

mensionality is a difficult and tedious task.

As has been the case historically for the bandlimited signals, a better understanding of the

dimensionality and the nature of the basis functions will aid in the development of perfor-

mance bounds and suitable algorithms. This is an essential part of the development and use

of continuous spatial models for signal processing, especially in the area of spatial MIMO

communications.

The nature of the angular diversity considered in this chapter was a uniform distribution of

sources over a single angular sector. In practice, we often deal with more general source

distributions, or characterisations of random processes that describe the nature of the source

distribution. Also, the domain of interest may be somethingother than a simple circular

region. In the following chapter we will consider the process of determining the optimal

basis representation for a spatial field over a general domain of interest and a more general

description of the angular source distribution.
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Chapter 4

Angular Domain Representation of a

Random Multipath Field

4.1 Introduction

Recent interest in the use of multiple antenna communications systems (MIMO) stemmed

from key publications [6, 13] that suggested the potential for a linear growth in capacity with

the number of antennas utilised. It was soon realised that correlation between the antenna

elements due to the nature of wave propagation and the scattering environment would have

a negative effect on capacity [21, 30].

In a random multipath field there is a direct relationship between the spectrum of received

power across the incident angular range and the spatial correlation of the field [172–175].

Determining the spatial correlation would require extensive measurement of the field through-

out a spatial region. Alternately, an estimate of the angular power distribution may come

from knowledge of the characteristics and distribution of scatterers in the multipath propa-

gation environment. For this reason it is useful to have a framework to represent and analyse

a multipath random field in the angular domain. Such a framework will facilitate the under-

standing and modelling of the spatial aspects of the wireless channel. The set of directions

the multipath is coming from is something that can be directly measured and has direct phys-

ical interpretation.

The use of the angular domain also provides a simplification of the problem of modelling

multipath fields. A two-dimensional narrow-band field can berepresented by either the field

amplitude and phase across the two dimensions, or alternately by a far-field distribution over

a single dimension of angle of arrival. The angular domain implicitly captures the constraint
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Chapter 4 Angular Domain Representation of a Random Multipath Field

of the wave equation by only representing fields that can be generated by propagating waves.

Similarly in three dimensions, a three-dimensional spatial wave-field is constrained to satisfy

the wave equation, but the angular domain description is only two dimensional (function of

elevation and azimuth).

Various MIMO models based on the angular domain representation have been proposed. The

work of Pollock et. al. [47] utilised a truncation of the modal representation of the field at the

transmitter and receiver. The virtual channel model proposed by Sayeed [66] uses a discrete

set of resolvable angular ranges to model the channel.

This chapter is concerned with the most efficient representation of a random multipath field

in the angular domain. The detailed analysis of the spatial field at a single end of the channel

provides a framework which can then be extended to consider the complete MIMO channel.

Recent results have demonstrated that a multipath field has afinite essential dimensionality

[41, 78, 80]. Thus, given an arbitrary power spectrum, it should be possible to represent this

random process with a finite number of deterministic function components combined with

random weights (random variables). This chapter addressesthe question of determining

the optimal deterministic components (functions in the angular domain) and analysing the

critical attributes of the system that will influence the solution. This work has been submitted

for publication and is currently under review [176].

The remainder of the chapter is structured as follows. Section 4.2 introduces the angular

domain for representing a random multipath field and sets outthe problem of determining the

optimal finite dimensional angular representation. Section 4.3 derives an eigenequation that

determines the optimal basis for representing a multipath field in the angular domain. This is

the main result of the chapter. Section 4.4 shows that the eigenequation has a simple solution

for the circular isotropic two-dimensional field, but is nottractable for other configurations.

Section 4.5 presents a suitable numerical method to obtain specific solutions. Section 4.6

provides a study of the gross effects and complexity of the basis functions as the power

spectrum and region shape are altered. Section 4.7 considers the effect of the region and

angular spectrum on the number of significant components. Section 4.8 provides a summary

and closing remarks.

The contribution of this chapter is the formal development of a framework for representing

a multipath random field in the angular domain. The formulation follows classic signal

theory [159] with new material covering the application to the random multipath spatial

field. The new framework and analysis considers more generalregion shapes beyond the

simple uniform linear array, which has been covered in otherworks. The region of interest

for the spatial field shapes the optimal representation for the spatial field. The numerical
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method and examples presented provide some insight into thecritical factors effecting the

basis function for the angular domain representation.

4.2 Problem Formulation

4.2.1 Angular Domain Representation

To address the problem of modelling a random multipath field,we consider a scalar wave-

field u(x) for x ∈ R
3. As discussed in Section 1.4, the main interest is in spatialfields and

the characteristics of wave propagation. We restrict our attention to the case of narrow-band

fields. For a region free of sources,u(x) will satisfy the wave equation, also known as the

Helmholtz equation [91, 177],

△u(x) + k2u(x) = 0, (4.1)

where△ is the Laplacian, andk = 2π/λ is known as the wave number.

The wave equation constraint implies that the field in a region free of sources can be com-

pletely determined from the field around a surface enclosingthat region. This property is

referred to as Huygen’s principle [91]. Regardless of the richness or complexity of the scat-

tering environment, there will still be a level of correlation between two points in a random

field [174]. It is thus apparent that representing a field by its complete continuous spatial

field valueu(x) is not the most efficient representation. The spatial correlation can be better

captured by using appropriate basis functions that characterise the expected variation of a

wave field across space.

A standard model of a multipath field is to represent it as a superposition of plane waves

u(x) =
∑

p

ape
jkx.θ̂p (4.2)

where the plane wave of indexp has complex amplitudeap ∈ C and propagates in the

direction of the unit vector̂θp. The termx.θ̂p denotes the inner product between the two

vectors inR3.

This representation can be generalised to a continuous distribution of sources

u(x) =

∫

S2

g(θ̂)ejkx.θ̂ds(θ̂) (4.3)
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whereS2 denotes the unit sphere,s(θ̂) the surface element ofS2 with unit normal vector̂θ.

The functiong(θ̂) can be considered as the angular amplitude distribution of far-field sources

that represents the field.

When the functiong(θ̂) is restricted to be a member of the space of square integrablefunc-

tions,L2(S
2), this represents bounded incident energy. This implies thefield will be reason-

ably behaved in thatlimR→∞
1
R
‖u‖R < ∞. In this case the representation is known as a

Herglotz wave function andg(θ̂) is called the Herglotz kernel [91, 165].

4.2.2 Random Multipath Field

The framework introduced in the previous section provides an angular domain representation

of a spatial field. We model the random multipath propagationenvironment as a process gen-

erating random fields. Each realisation of the random process will have an associated angular

domain representationg(θ̂). We proceed by considering the statistics of these realisations.

A commonly accepted model is that of the Rayleigh fading non line of sight multipath field.

In this case the random nature of the field is completely captured in its second order statistics

[26, 30, 63, 66, 67]. This is typical of an environment where the multipath scenario is created

by a number of independent paths which are fading due to movement and the constructive

and destructive effects of doppler interference.

Another useful assumption is that of uncorrelated scatterers [178]. We assume an infinite

number of far-field scatterers with independent fading amplitudes. Taking the expectations

over the realisations of the random field, the following properties of the angular representa-

tion g(θ̂) are defined,

E
{
g(θ̂)

}
= 0 Zero mean (4.4)

E
{
g(θ̂)g(φ̂)

}
= 0 θ̂ 6= φ̂ Uncorrelated in Angle (4.5)

∫

S2

E
{
g(θ̂)g(φ̂)

}
ds(φ̂) = P (θ̂) Angular Power Spectrum (4.6)

with g(φ̂) representing the complex conjugate of the function. The functionP (θ̂) is known

as the angular power spectrum and represents the relative power coming from any direction.

Definitions (4.5) and (4.6) can be stated succinctly as

E
{
g(θ̂)g(φ̂)

}
= P (θ̂)δ(θ̂ − φ̂) (4.7)
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whereδ(θ̂−φ̂) is the Dirac delta function. While it is often formulated asP (θ̂) = E
{
g(θ̂)g(θ̂)

}
,

this is incomplete and hence not strictly true. To representa wide sense stationary process,

the angular representationg(θ̂) must become uncorrelated, even for an infinitesimal angular

shift. If g(θ̂) was to also have finite power, then note that at the origin

E
{
u(x)u(x)

}
=

∫

S2

∫

S2

E
{
g(θ̂)g(φ̂)

}
ds(θ̂)ds(φ̂) = 0 (4.8)

with the integral vanishing sinceE
{
g(θ̂)g(θ̂)

}
is finite and will only be non zero on a set

of measure zero. Thus assumingP (θ̂) = E
{
g(θ̂)g(θ̂)

}
also requires the multiplication or

division by∞ where appropriate. This is not consistent with the development of a formal

framework.

The associated spatial field will also be zero mean, with second order statistics

E {|u(x)|} = 0 (4.9)

E
{
|u(x)|2

}
= E

{
u(x)u(x)

}
=

∫

S2

∫

S2

E
{
g(θ̂)g(φ̂)

}
ejkx.θ̂e−jkx.φ̂ds(θ̂)ds(φ̂)

=

∫

S2

P (θ̂)ds(θ̂). (4.10)

With suitable normalisation, define

∫

S2

P (θ̂)ds(θ̂) = 1, (4.11)

representing a field with unit variance throughout all space. The spatial correlation function,

ρ(x,x′) = E
{
u(x)u(x′)

}
=

∫

S2

P (θ̂)ejk(x−x′).θ̂ds(θ̂) = ρ(x′ − x), (4.12)

represents the correlation between any two points in the field. The function is only dependent

on the vector linking the two pointsx andx′. The statistics of the field are stationary over all

space. For this reason, the model is often referred to as the wide sense stationary uncorrelated

scatterer model (WSSUS). In practice, the statistics of thefield will not be stationary over all

space, however this is a reasonable assumption when the antenna region is small compared

with the geometry of the scattering objects.

For an isotropic field in three dimensions,P (θ̂) = 1/4π. The spatial correlation is

ρ(x,x′) =
1

4π

∫

S2

ejk(x−x′).θ̂ds(θ̂)
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=
1

4π

∫

S2

∞∑

n=0

n∑

m=−n

jnjn(k ‖x − x′‖)Y n
m

(
x − x′

‖x − x′‖

)
Y n

m(θ̂)ds(θ̂)

= j0(k ‖x − x′‖) = sinc (k ‖x − x′‖) (4.13)

using the spherical harmonic expansion of a plane wave [91].The functionsY n
m(·) are the

spherical harmonic functions with unit vector argument with
∫

S2 Y
n
m(θ̂)ds(θ̂) = 4πδmδn and

Y n
m(·) = 1. The zero order spherical Bessel function is equal to the sinc functionj0(z) =

sinc(z) = sin(z)/z. Equation (4.13) is a classic result known in electromagnetic [4] and

acoustic [179] engineering.

The first zero ofsinc (k ‖x − x′‖) is atλ/2, though points beyond this are still correlated.

This example demonstrates how the angular domain representation implicitly captures the

wave equation constraint and provides a compact means of characterising the scattering en-

vironment. The angular domain provides an intuitive representation of the channel and is of

more practical interest than the spatial correlation function.

From (4.7) it is noted that the angular representation,g(θ̂), will have infinite variance for

any direction whereP (θ̂) 6= 0. Since the field is stationary over all space, it must have

infinite power. Hence a realisation,g(θ̂) of our random process satisfying (4.7) will not be a

member ofL2(S
2). However, when projected onto a square integrable function, f ∈ L2(S

2),

the result will have finite power,

E
{
| 〈g, f〉 |2

}
= E

{∫

S2

g(θ̂)f(θ̂)ds(θ̂)

∫

S2

f(φ̂)g(φ̂)ds(φ̂)

}

=

∫

S2

∫

S2

E
{
g(θ̂)g(φ̂)

}
f(θ̂)f(φ̂)ds(θ̂)ds(φ̂)

=

∫

S2

P (θ̂)f(θ̂)f(θ̂)ds(θ̂) <∞. (4.14)

Thus in the style of Gallager [11], rather than deal directlywith the random process, this

work will consider its projection in an appropriate Hilbertspace.

4.2.3 Finite Dimensional Representation

The preceding sections have shown the random process characterising a multipath field can

be represented in the angular domain. Previous works have introduced the notion of the

essential finite dimensionality of a multipath field. An arbitrary multipath field, when con-

sidered over a finite region, can be well approximated by a finite dimensional representa-

tion [41, 42, 84]. This section will consider the problem of finding the optimal finite dimen-

sional representation in the angular domain.
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Our representation for a particular realisation will take the form

gN(θ̂) =
N−1∑

n=0

αngn(θ̂), (4.15)

where the coefficientsαn capture the random nature of the field andgn(θ̂) are a set of deter-

ministic basis functions. For an optimal representation, the coefficientsαn should be uncor-

related and the basis functions selected to minimise the expected norm of some objective or

error function [159, 180, 181].

Such a representation captures the characteristics of a random multipath field in a practi-

cally useful manner. The random nature is captured through the coefficients being random

variables, whilst the wave nature of the multipath is captured through the deterministic ba-

sis functions. Use of the optimal set of basis functions willallow a given accuracy to be

achieved with the minimal set of random variables.

Given the angular domain framework, the following questions are posed and addressed:

• What is the optimal set of basis functions for the angular representation?

• What aspects of the multipath environment are required to determine them?

4.3 Optimal Basis for Spatially Constrained Field

This section will derive the optimal basis representation for a spatially constrained field. The

angular framework developed in the previous section is usedto derive some properties of

the desired basis functions. A maximisation problem is formulated to determine the optimal

basis set. This leads to an integral equation for which the eigenfunctions provide the desired

basis. We adopt the assumptions of the zero mean Rayleigh fading uncorrelated scatter

model for the remainder of this chapter. In practice, we are interested in representing and

generating realisations of the random field. We draw on the theory of representing a random

process through an orthogonal series expansion [159, 180, 181].

From the definition of the angular power spectrum (4.7), the correlation function for the

random process generatingg(θ̂) will be non-stationary, unbounded and discontinuous. As a

result of this, we cannot directly use the classical Karhunen-Loéve expansion to determine

an appropriate orthogonal expansion of the form (4.15) [182]. This section develops an

appropriate space, basis, and ordering for the angular representation of a random multipath

field with a specific angular power spectrum.
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4.3.1 Angular Representation of a Spatially Constrained Field

Definition 4.1 Space of far-field distributions.

Given a particular angular power spectrum,P (θ̂), let F be the space of square integrable

functions defined on

Ω = {θ̂ ∈ S
2 : P (θ̂) 6= 0} (4.16)

with associated inner product

〈f, g〉F =

∫

Ω

1

P (θ̂)
f(θ̂)g(θ̂)ds(θ̂) (4.17)

and induced norm

‖g‖2
F = 〈g, g〉F =

∫

Ω

1

P (θ̂)
|g(θ̂)|2ds(θ̂). (4.18)

To ensure a proper formulation,P (θ̂) must be non-zero and continuous on some open inter-

val in S2 such thatΩ is not a set of measure zero.

We can consider thatF is a linear subspace ofL2(S
2) with an implicit projection obtained

sinceΩ ⊆ S2. ThusF is a closed and separable Hilbert space [183]. The reason forweight-

ing the inner product with the reciprocal of the power spectrum,
(
P (θ̂)

)−1

, will become

apparent in Theorem 4.2. It is the weighting which connects orthogonality on the space

F to independence in the expansion of the random field. The integral is restricted to the

regionΩ for which
(
P (θ̂)

)−1

is defined. There is a question of convergence of the inte-

gral asP (θ̂) → 0. For a member of the spacef ∈ F , the norm‖f‖F must be defined

and hence whereP (θ̂) is small, the angular domain representationf(θ̂) must also be small.

In this way, rather than causing any convergence issues, thedistribution ofP (θ̂) serves to

weight the angular representationsf ∈ F towards the regions whereP (θ̂) is of a significant

magnitude.

We now consider a white noise random process in this space. Whilst such a process will

have infinite energy and does not strictly lie in the spaceF , we can consider the projection

of this process onto the basis functions of the space. A classically known theorem is that

white noise projects isotropically to all dimensions of a separable Hilbert space [11].
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4.3 Optimal Basis for Spatially Constrained Field

Theorem 4.2 White Random Process inF has Angular Power SpectraP (θ̂).

A white random process where each coefficient to an orthonormal basis inF has unit vari-

ance and is independent has an associated angular spectra distributionP (θ̂).

g(θ̂) ,
∞∑

n=0

αngn(θ̂) where
〈gm, gn〉F = δmn and

E {αmαn} = δmn

(4.19)

implies

E
{
g(θ̂)g(φ̂)

}
= P (θ̂)δ(θ̂ − φ̂). (4.20)

Proof of Theorem 4.2.Consider a sampling functionfε(θ̂, φ̂) defined as

fε(θ̂, φ̂) =

{
1

πε2

∥∥∥θ̂ − φ̂

∥∥∥ < ε

0 elsewhere
. (4.21)

It can be seen that

lim
ε→0

∫

S2

fε(θ̂, φ̂)ds(θ̂) = 1 and (4.22)

lim
ε→0

∫

S2

g(θ̂)fε(θ̂, φ̂)ds(θ̂) = g(φ̂). (4.23)

Assumingg(θ̂) is continuous, (4.23) arises from the mean value theorem. This provides

an approximation of the angular delta functionδ(θ̂ − φ̂) which remains square integrable

providedε > 0. Thus we can projectfε(θ̂, φ̂) intoF using the orthonormal basisgn(θ̂)

fε(θ̂
′
, φ̂) =

∞∑

n=0

〈
fε(θ̂, φ̂), gn(θ̂)

〉
gn(θ̂

′
). (4.24)

This is required to formally prove the theorem since strictly the distributionδ(θ̂− φ̂) cannot

be projected intoF for φ̂ ∈ Ω and cannot be used in the inner product.

Now given the representation of the angular distribution process (4.19)

E
{
g(θ̂)g(φ̂)

}
= E

{
∞∑

n=0

αngn(θ̂)

∞∑

m=0

αmgm(φ̂)

}

=

∞∑

n=0

∞∑

m=0

E {αnαm} gn(θ̂)gm(φ̂)

=

∞∑

n=0

gn(θ̂)gn(φ̂). (4.25)
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Chapter 4 Angular Domain Representation of a Random Multipath Field

Now consider the productP (φ̂)fε(θ̂, φ̂) for θ̂ ∈ Ω using the expansion (4.24) and assuming

P (θ̂) to be continuous

P (φ̂)fε(θ̂, φ̂) = P (φ̂)

∞∑

n=0

∫

Ω

1

P (θ̂
′
)
fε(θ̂

′
, φ̂)gn(θ̂

′
)ds(θ̂

′
)gn(θ̂) (4.26)

= P (φ̂)

∞∑

n=0

1

P (φ̂)
gn(θ̂)gn(φ̂) ε→ 0 (4.27)

=

∞∑

n=0

gn(θ̂)gn(φ̂) since P (φ̂) 6= 0 ∀ φ̂ ∈ Ω. (4.28)

Equating (4.25) and (4.28) and noting thatP (θ̂) = 0 andgn(θ̂) = 0 for all θ̂ /∈ Ω and taking

the limit asε → 0 we obtain

E
{
g(θ̂)g(φ̂)

}
= P (φ̂)δ(θ̂ − φ̂) = P (θ̂)δ(θ̂ − φ̂) (4.29)

which completes the proof.

For a general random process, an optimal representation of the form (4.15) will have uncor-

related coefficients or, if the process is Gaussian (which weshall assume for simplicity), in-

dependent coefficients [159]. Thus we see that Theorem 4.2 creates the link between efficient

representation of the random process for the angular distributionP (θ̂) and the orthogonality

of the basis functions inF .

Since the random process generatingg(θ̂) is white, any realisationg(θ̂) will not be a member

of the spaceF . Consider

E

{∫

Ω

g(θ̂)g(θ̂)ds(θ̂)

}
= E

{∫

Ω

∞∑

m=0

αmgm(θ̂)

∞∑

n=0

αngn(θ̂)ds(θ̂)

}

=

∞∑

n=0

E {αnαn} ‖gn‖2
F =

∞∑

n=0

1 → ∞. (4.30)

Hence the norm ofg(θ̂) in F is not defined. The realisationg(θ̂) is considered through its

projection onto{gn} ∈ F . Theorem 4.2 suggests any orthonormal basis is suitable forthe

representation. This is a consequence of representing a stationary random field with infinite

spatial extent. With no specified domain of interest, all basis sets are equally valid. The finite

dimensional representation we are interested in will be optimal for representing fields in a

specified bounded domain of interest.

There is a close analogy here with the representation of a random process generating an

infinite sequence of discrete samples and having a known frequency power spectra. Whilst
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4.3 Optimal Basis for Spatially Constrained Field

the power spectrum may constrain the bandwidth, the sequence is free to exist over an infinite

time range, thus there is no preferred set of basis functionsunless we constrain the time range

of interest.

Since‖g‖F is not defined, it is meaningless to consider the error in the angular domain

resulting from the finite dimensional representation,‖g − gN‖F . Our goal is to approximate

the spatial field over a finite region of space, so we must consider the error introduced by the

finite dimension representation to the reconstructed spatial field in this domain of interest.

Definition 4.3 Space of Spatially Constrained Fields.

Consider a bounded domain of interestΛ ⊂ R3 with bounded extent such thatx,y ∈ Λ

implies that‖x − y‖ < ∞. DefineS as the space of square integrable fields over the

domain of interest,Λ, with associated inner product

〈u, v〉S =

∫

Λ

u(x)v(x)dx (4.31)

and induced norm‖u‖2
S = 〈u, u〉S.

From the definition of the angular domain (4.3), we define an operator betweenF andS.

Definition 4.4 Wave-Field Mapping Operator and its Adjoint.

DefineA as an operator mapping an angular representation,f ∈ F , to a wave-field,v ∈ S,

A : F → S , v(x) =

∫

Ω

f(θ̂)ejkx.θ̂ds(θ̂) x ∈ Λ (4.32)

with the associated adjoint operatorA∗ mapping a spatial fieldv′ ∈ S to an angular repre-

sentationf ′ ∈ F ,

A∗ : S → F , f ′(θ̂) = P (θ̂)

∫

Λ

v′(x)e−jkx.θ̂dx θ̂ ∈ Ω. (4.33)

The adjoint is defined such that〈v,Af〉S = 〈A∗v, f〉F for anyv ∈ S andf ∈ F ,

〈v,Af〉S =

∫

Λ

v(x)

{∫

Ω

f(θ)e−jkx.θ̂ds(θ̂)

}
dx

=

∫

Ω

1

P (θ̂)

{
P (θ̂)

∫

Λ

v(x)e−jkx.θ̂dx

}
f(θ)ds(θ̂)

= 〈A∗v, f〉F . (4.34)
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Chapter 4 Angular Domain Representation of a Random Multipath Field

As stated previously, the basis functionsgn(θ̂) should be selected such that the finite repre-

sentationgN(θ̂) from (4.15) is optimal, however sinceg /∈ F the error function‖g − gN‖
is meaningless. From the definition (4.32) we can extend the domain ofA to all integrable

functionsL1(S
2). Giveng ∈ L1(S

2), we consider the error of the finite angular representa-

tion to the spatial field on the domain of interestΛ,

‖Ag − AgN‖Λ . (4.35)

This provides a method to order the basis elements ofF and determine an optimal rep-

resentation of the field in the domain of interest. Eachgn will map to a field with norm

‖Agn‖2
S = 〈Agn,Agn〉S . This represents the contribution of each component to a realisa-

tion of the random field over the domain of interest. In comparison to the discrete sequence,

this is analogous to constraining the time period over whichwe are interested in the sequence

values. We then are interested in the basis functions that match the desired power spectrum

and are confined mostly to the time period of interest.

This approach to constraining the domain of interest and ordering the basis function elements

leads to the following theorem.

Theorem 4.5 Finite Dimension Angular Representation of Spatially Constrained Field.

Given a bounded domain of interest,Λ, an optimalN term finite dimensional representation

in the angular domain ,F , for a random spatial field with WSSUS angular power spectrum

P (θ̂) will be

g
(P,Λ)
N (θ̂) =

N−1∑

n=0

αng
(P,Λ)
n (θ̂) (4.36)

whereαn are unit variance, independent random complex coefficients. The set{g(P,Λ)
n } are

the orthonormal eigenfunctions inF , ordered in decreasing eigenvalueλ(P,Λ)
n , of

λ(P,Λ)
n g(P,Λ)

n (θ̂) = A∗Ag(P,Λ)
n (φ̂)

= P (θ̂)

∫

Λ

∫

Ω

g(P,Λ)
n (φ̂)ejkx.(φ̂−θ̂)ds(φ̂)dx (4.37)

with the expected error in the field from truncation

E

{∥∥∥Ag − Ag
(P,Λ)
N

∥∥∥
2
}

=

∞∑

n=N

λ(P,Λ)
n (4.38)

and this truncation error will be optimal over all possible choices of basis functionsgn.
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4.3 Optimal Basis for Spatially Constrained Field

Proof of Theorem 4.5.For convenience we suppress the explicit notation·(P,Λ).

We consider the problem of finding a unit norm functiongn ∈ F , ‖gn‖F = 1 that when

projected intoS, Agn ∈ S, achieves the maximum norm‖Agn‖S. We can normalise by

‖gn‖F and use the adjoint operatorA∗ to state the equivalent problems

sup
‖gn‖F=1

‖Agn‖2
S ≡ sup

gn

〈Agn,Agn〉S
〈gn, gn〉F

≡ sup
gn

〈gn,A
∗Agn〉F

〈gn, gn〉F
. (4.39)

The solution for this problem is obtained whengn are the eigenfunctions of the composite

operatorA∗A. Using the definitions of the projection operators, Definition 4.4, this leads

directly to the eigenequation (4.37). An equation of this form is known as a Fredholm integral

equation of the second kind and the integrand is often expressed as the product of a kernel

with the function,

λngn(θ̂) =

∫

Ω

K(θ̂, φ̂)gn(φ̂)ds(φ̂) K(θ̂, φ̂) = P (θ̂)

∫

Λ

ejkx.(φ̂−θ̂)dx. (4.40)

The trace of the kernel,

∫

Ω

K(θ̂, θ̂) =

∫

Ω

P (θ̂)ds(θ̂)

∫

Λ

dx =

∫

Λ

dx, (4.41)

will be bounded for a finite domainΛ as defined in Definition 4.3. This is equal to the sum of

the eigenvalues [184] and there will be a countable set of solutions with non-zero eigenvalues

which can be orderedλ0 ≥ λ1 ≥ . . . λn ≥ 0 [182].

Consider the following integral

∫

Ω

∫

Ω

∫

Λ

gm(θ̂)gn(φ̂)ejkx.(θ̂−φ̂)dxds(θ̂)ds(φ̂) = λm

∫

Ω

1

P (φ̂)
gm(φ̂)gn(φ̂)ds(φ̂)

= λn

∫

Ω

1

P (θ̂)
gm(θ̂)gn(θ̂)ds(θ̂)

(4.42)

⇒
(
λn − λm

) ∫

Ω

1

P (θ̂)
gm(θ̂)gn(θ̂)ds(θ̂) =

(
λm − λn

)
〈gm, gn〉F = 0. (4.43)

From this it is noted that the eigenvalues,λn, will be real and that the eigenfunctions for

distinct eigenvalues will be orthogonal inF . With suitable normalisation,gn is a complete

orthonormal basis forF .

From Theorem 4.2, it was shown that the coefficients,αn, of the field with associated angular

power spectrumP (θ̂) are drawn from a set of unit variance, independent random variables.
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Chapter 4 Angular Domain Representation of a Random Multipath Field

We definegN from the firstN terms of such a representation,

gN(θ̂) =
N−1∑

n=0

αngn(θ̂) ψN (x) = (AgN)(x) =
N−1∑

n=0

αn (Agn) (x). (4.44)

The expected value of the error in the reconstructed field,

εN = E
{
‖Ag − AgN‖2

S

}
= E





∥∥∥∥∥

∞∑

n=N

αnAgn

∥∥∥∥∥

2

S



 (4.45)

=

∞∑

m=N

∞∑

n=N

E {αmαn} 〈Agm,Agn〉S =

∞∑

n=N

λn. (4.46)

The eigenvaluesλn are from a self adjoint operator and thus cannot be less than zero. Thus

the sequence of errorsεN asN is increased forms a non-increasing sequence. Since the

eigenvalues are ordered in decreasing magnitude, the expectation of the errorεN will be

minimal across all possible choices for any orthogonal set of functionsgn. Thus the repre-

sentation (4.36) is the optimal finiteN-dimensional representation with respect to the error

of the associated field across the domain of interestΛ.

This theorem demonstrates that both the angular power spectrum and the domain of interest

are required to determine the optimal set of angular basis functions for representing the

random field.

For a random multipath field with angular spectraP (θ̂), an expansion of the form (4.15) is

a weighted sum of the firstN basis functions. This provides the most efficientN parameter

representation for an instance of the random field. The truncation of a random field to thisN

dimensional representation will introduce an approximation error. The expected value of the

mean square error in the field across the domain of interestΛ will be minimal when using

this optimal set of basis functions.

4.3.2 Comments on Optimal Basis Representation

From the preceding results we see that the way in which the field is measured over space has

a direct bearing on the optimal angular representation of the random field. The eigenequation

sets out the relationship and interaction between the angular power spectrum and the spatial

region. This affects the number of terms and characteristics of the angular functions that

should be used to represent the random field.
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4.3 Optimal Basis for Spatially Constrained Field

• The random process representing the multipath field in the angular domain will have

infinite variance in any single direction and is not a member of L2(Ω).

• The random process can be represented by its projection ontoa set of basis functions

in the spaceF . If the basis is orthonormal inF and the coefficients of the basis unit

variance random independent variables, then the field will have an associated angular

power spectrumP (θ̂).

• By considering the domain of interest for representing the field, we can obtain an

ordered set of basis functionsg(P,Λ)
n which are dependent on both the angular power

spectrum and the domain of interest.

• By truncating the representation to the firstN terms, we can obtain anN-dimensional

subspace which will be optimal amongst all possible choicesof N-dimensional basis

with respect to the mean squared error onΛ.

• The optimal angular representation provides a means to generate realisations which

appropriately model the random field by weighting theN basis functions with a set of

independent identically distributed complex normal random variables.

A useful interpretation for this result is to consider the observation of a field over a finite

domain as a filtering operation. The input to this filter has infinite dimensionality and in the

angular domain resembles a “white” process with amplitude weighted with respect to angle.

The components of this input which will suffer the least attenuation through the observation

filter are the solutions of the eigenequation. This providesa basis and representation in the

input space (angular domain) to efficiently model the observation of a multipath field over

the region of space. We refer to this as an angular representation of a spatially constrained

field.

All the terms of (4.36) in the angular domain spaceF are weighted equally. Adding more

terms will continue to increase the power of the field representation. The series{gN} is not

convergent since

E {‖gN − gN−1‖F} = E {αNαN} = 1 (4.47)

which is consistent with the infinite point variance ofP (θ̂) from (4.7). However the series

of associated fields{uN} = {AgN} is convergent inS since

E {‖AgN − AgN−1‖S} = λNE {αNαN} → 0 as N → ∞. (4.48)
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Chapter 4 Angular Domain Representation of a Random Multipath Field

This is a corollary of the diminishing representation errorin the truncation asN is increased.

The higher order basis functionsgn become progressively spatially “high passed”, having

less energy in the domain of interestΛ.

4.3.3 Relationship to Karhunen-Lóeve Expansion

Since the correlation function in the angular domain, (4.7), was not bounded, it is not pos-

sible to develop a Karhunen-Loéve expansion directly in the angular domain. An alternate

approach is to consider a representation of the random field in the spatial domain [81]. The

spatial correlation function,ρ(x,x′) defined in (4.12), is stationary and continuous thus

allowing the use of a Karhunen-Loéve expansion to represent the field as an orthonormal ex-

pansion over a finite domainΛ. The Karhunen-Loéve expansion optimal provides a unique

optimal expansion (in the MMSE sense) of a random process restricted to a bounded do-

main [159],

u(x) =

N−1∑

n=0

√
λnαnun(x) (4.49)

where the basis set{un} and eigenvaluesλn are the eigenfunctions of the integral equation

λnun(x′) =

∫

Λ

ρ(x′,x)un(x)dx (4.50)

with the kernel of this Fredholm equation being the spatial correlation function.

Taking a finite set of the terms of (4.49) provides an optimal finite dimensional representation

in the sense of the expected mean square error for representing any realisation of the random

process. The use of the notation,λn andαn, equivalent to Theorem (4.5), is deliberate and

justified by the following theorem. The eigenequation derived from the spatial Karhunen-

Loéve expansion is equivalent to that obtained from considering the optimal decomposition

in the angular domain.

Theorem 4.6 Equivalence of Angular Representation and Karhunen-Loéve Expan-

sion.

The spatial Karhunen-Lóeve expansion provides an equivalent representation to that ob-

tained in Theorem 4.5 in that the eigenequations

λnun(x′) =

∫

Λ

ρ(x′,x)un(x)dx (4.51)

74



4.4 Angular Representation for Specific Configurations

and

λ(P,Λ)
n g(P,Λ)

n (θ̂) = P (θ̂)

∫

Λ

∫

Ω

g(P,Λ)
n (φ̂)ejkx.(φ̂−θ̂)ds(φ̂)dx, (4.52)

are equivalent with a one to one correspondence between the normalised associated eigen-

functions

√
λnun(x) =

∫

Ω

gn(θ̂)ejkx.θ̂ds(θ̂). (4.53)

Considering the eigenequation for the angular domain, the domain of interestΛ is reflected

in the kernel of the integral equation. For the spatial case,the domain of interest affects the

domain of integration.

Proof of Theorem 4.6.Take the eigenequation (4.37) from Theorem 4.5 and apply thewave-

field operatorA from (4.32) to both sides,

LHS = λn

∫

Ω

gn(θ̂)ejkx′.θ̂ds(θ̂) = λnun(x′)

RHS = P (θ̂)

∫

Ω

gn(φ̂)

∫

Λ

ejkx.(φ̂−θ̂)dxds(φ̂)ejkx′.θ̂ds(θ̂)

=

∫

Λ

∫

Ω

P (θ̂)ejk(x′−x).θ̂ds(θ̂)

∫

Ω

gn(φ̂)ejkx.φ̂ds(φ̂)dx

=

∫

Λ

ρ(x′,x)

∫

Ω

gn(φ̂)ejkx.φ̂ds(φ̂)dx =

∫

Λ

ρ(x′,x)un(x)dx. (4.54)

Sincegn(θ̂) is arbitrary,
∫
Ω
gn(θ̂)ejkx′.θ̂ represents an arbitrary wave function giving an

equivalent form to the Karhunen-Loéve eigenequation (4.50). The desired functionsun

are orthonormal onΛ, and since‖Agn‖2
S = λn, we obtain the equivalence relationship

(4.53).

4.4 Angular Representation for Specific Configurations

4.4.1 Circular Region with Isotropic Field

As an example, we can consider the case of a two-dimensional field isotropic field with a

circular region. In this case we can representθ̂ and φ̂ as single parameter angles in the

rangeΩ = [0, 2π] with P (θ) = 1/2π. The associated domain of interestΛ = BR
2 =

{x : ‖x‖ ≤ R}.
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The integral equation (4.37) can be written for the two-dimensional case,

λngn(θ) = A∗Agn(φ) =

∫

Ω

gn(φ)

{
P (θ)

∫

Λ

ejkx.(φ̂−θ̂)dx

}
dφ. (4.55)

The kernel of this integral equation is evaluated forΛ = BR
2 andP (θ) = 1/2π

K(θ, φ) = P (θ)

∫

B2

R

ejkx.(φ̂−θ̂)dx = P (θ)

∫ R

0

∫ 2π

0

ejkx.(φ̂−θ̂)rdθ′dr

=
1

2π

∫ R

0

∫ 2π

0

ejkzr cos(θ′)rdθ′dr =

∫ R

0

J0(kzr)rdr

=
R

kz
J1(kzR) (4.56)

with z = 2 sin((φ − θ)/2), Jn(·) is thenth order Bessel function and using an integral of

J0 from [185]. Since the integration in the kernel is over a circular region, the kernel (4.56)

is periodic in bothθ andφ with period2π. Furthermore, the kernel is invariant in a circular

sense under translation in either argument, that isK(θ + ∆, φ) = K(θ, φ− ∆). Hence, this

eigenequation is equivalent to a circular convolution for which the eigenfunctions are known

to be the harmonic complex exponentials. Thus the resultantnormalised eigenfunctions are

gn(θ) =
1

2π
ejnθ n = −∞, . . . ,∞. (4.57)

Using Definition 4.4, the associated spatial field, using theJacobi-Anger expansion [91],

un(x) = (Agn)(x) =

∫ 2π

0

gn(θ)ejkx.θ̂dθ

=
1

2π

∫ 2π

0

ejnθ
∞∑

m=−∞

jmJm(k ‖x‖)ejm(θx−θ)dθ = jnJn(k ‖x‖)ejnθx . (4.58)

with θx the associated angle of the polar coordinates of the pointx. The associated eigen-

values from (4.55) are the square of the norm on the domain of interest of the transformed

basis functionsgn,

λn =

∫ R

0

∫ 2π

0

J2
n(k ‖x‖)rdθdr = 2π

∫ R

0

J2
n(kr)rdr

= πR2
(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)
. (4.59)

The eigenvalues can be approximatedλn ≈ 2R/k for n < kR andλn ≈ 0 for n > kR with

a sharp transition aroundn = kR. This property has been discussed in previous works [41,

42, 84] and also Chapter 2 with a similar set of basis functions derived for the field. The sum

76



4.4 Angular Representation for Specific Configurations

of the eigenvalues and trace of the kernel [184] is simply thearea
∑∞

n=1 λn = πR2.

A similar result can be obtained for the three-dimensional case with the angular basis func-

tions being the spherical harmonics. In this case, the orderof truncation is againN = kR,

however with two angular dimensions the spherical harmonics are doubly indexed giving

(N + 1)2 terms compared with2N + 1 for the two-dimensional case.

4.4.2 Circular Region with Single Direction of Arrival

If the power spectrum is discrete from a single directionθ′ then in the limitP (θ) = δ(θ−θ′).
We can evaluate the eigenequation (4.37),

λngn(θ) = δ(θ − θ′)

∫

Λ

∫

Ω

gn(φ)ejkx.(φ̂−θ̂)dφdx

= δ(θ − θ′)

∫

Ω

gn(φ)
2πR

kz
J1(kzR)dφ (4.60)

with z = 2 sin((φ− θ)/2) and(φ̂− θ̂) is the vector difference between the two-dimensional

unit vectors corresponding to anglesφ andθ. By inspection, ifλn 6= 0 thengn(θ) = 0 for all

θ 6= θ′. Thus (4.60) permits a single nontrivial solution

g0(θ) = δ(θ − θ′), λ0 =
2πR

kz
J1(kzR) = πR2 (4.61)

since the integral is zero everywhere exceptφ = θ′ at which pointz = 0 and the (4.60) gives

the eigenvalue directly.

It is worth noting here that our spaceF is not formally defined for the case whereP (θ) =

δ(θ) or for any case whereP (θ) is unbounded. In generalising the above, the eigenequation

(4.37) reduces to a countable set of linear equations whenP (θ) is only non-zero on a setΩ

of measure zero. A more detailed proof would be required to establish this formally.

We present the framework here for the general case ofP (θ) being bounded and normalised∫
Ω
P (θ)dθ = 1. The result of (4.61) can be established by considering a narrow angular

power spectrum

P (θ) =

{
1/2∆ |θ| < ∆

0 elsewhere
(4.62)

and noting that

2πR

kz
J1(kzR) ≈ πR2, kzR ≪ 1. (4.63)
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By inspection, we obtain an approximation of the first solution as∆ → 0,

g0(θ) ≈
{

1/2∆ |θ| < ∆

0 elsewhere
λ0 → πR2. (4.64)

The eigenvalueλ0 approachesπR2 from below. Since
∑∞

n=0 λn = πR2, and all eigenvalues

are non-negative, the remainder of the eigenvalues vanish as∆ → 0.

This approach can be generalised to an arbitrary region. Thesingular nature of the power

spectraP (θ) permits only a single solution of (4.60) beingg0(θ) = δ(θ − θ′) regardless of

the region shape. This solution represents a plane wave across the region,u0(x) = ejkx.θ̂x .

Since this has a constant unity magnitude across the regionΛ, the eigenvalueλ0 will be the

area of the regionΛ.

4.4.3 Circular Region with Restricted Direction of Arrival

The examples presented in the two previous sections demonstrate the extremes of an isotropic

and unimodal angular power spectrum. The isotropic case will have a number of significant

components of the order of2kR whilst the single mode case will have a single term. Intu-

itively, the dimensionality will be related to the spread ofthe angular spectrum [82, 84, 157].

Consider the kernel for a restricted direction of arrival asset out in (4.56),

λngn(θ) =

∫ ∆

−∆

2πR

2∆kz
J1(kzR)gn(φ)dφ (4.65)

with z = 2 sin((φ − θ)/2). This kernel applies a smoothing low pass to the functiongn(θ)

and is structurally similar to a circularsinc(·) function. The eigenequation is thus similar to

that obtained when considering bandlimited functions [142].

Some further discussion of the dimensionality and basis functions for the restricted direction

of arrival case can be found in Chapter 3.

4.4.4 Uniform Linear Array

Consider the domain or interest associated with the spatialregion of a lineΛ = {(x, y) :

|x| < W, |y| < R}. For small W,

x.(φ̂ − θ̂) ≈ y (sinφ− sin θ) (4.66)

78
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and the integral equation kernel from (4.55) becomes

∫

Λ

ejkx.(φ̂−θ̂)dx ≈
∫ W

−W

∫ R

−R

ejk(sinφ−sin θ)dydx

=
2 sin (kR(sinφ− sin θ))

k(sin φ− sin θ)
2W. (4.67)

This does not lead towards any convenient solutions for the eigenequation. For small angles

around the broadside of the array, we can approximatesin θ ≈ θ. If we normalise by the

effective area of the uniform linear array,4RW , we obtain the eigenequation

λngn(θ) = P (θ)

∫

Ω

gn(φ)sinc(kR(θ − φ))dφ. (4.68)

This is a kernel that has received much attention associatedwith bandlimited functions [85,

142, 159]. For small ranges around the broadside of the arraywe would expect the number

of significant eigenvalues to increase linearly with the angular spread.

4.4.5 Other configurations

Whilst there is extensive literature on the problem of finding analytic solutions of a Fred-

holm integral equation, for this problem such solutions typically exist only for very simple

or construed regions and power spectra. The ability to determine an analytic solution for a

specific practical configuration will be limited. Existing techniques involve solving a related

differential equation, or numerical approximations [186]. For different region shapes, alter-

nate co-ordinate systems could be considered to match the region boundary [187]. Since the

wave equation is separable for at least eleven coordinate systems [188] this presents some

possibilities, for example the use of prolate spheroidal coordinates [160, 189].
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Chapter 4 Angular Domain Representation of a Random Multipath Field

4.5 Numerical Solution of the Eigenequation

The eigenequation (4.37) informs the solution for efficiently representing a random multipath

field. Whilst this approach provides a high level of precision, it will often lead to complex

series expansions for the solutions, see example [190]. Analytic solutions are known only

for fairly simple configurations requiring careful geometric arrangements of the problem and

thus having limited application. An alternative is to carryout numerical analysis to reveal the

dominant macroscopic effects and the effects of varying theregion shape or angular power

spectrum.

There is extensive literature on approaches for solving such integral equations numerically

[191–193]. The two approaches considered here are the Nyström method and approximation

by a separable kernel. A more thorough analysis of these and other approaches can be found

in other references [194, 195].

For the case of the two-dimensional field, the domain of the integral equationΩ ⊂ S1 which

is equivalent to the periodic domain[0, 2π]. The analysis is tailored to the specific integral

equation

λngn(θ) =

∫

Ω

K(θ, φ)gn(φ)dφ K(θ, φ) = P (θ)

∫

Λ

ejkx.(φ̂−θ̂)dx. (4.69)

It is shown that the integral equation can be solved numerically with a set2⌈kR⌉ + 1 linear

equations withR being the radial extent of the domain of interestΛ. This implies that only

a certain amount of information from the angular spectrum,P (θ) is relevant.

Whilst some of the principles discussed can be extended to the angular domain associated

with a three-dimensional field, the domainS2 creates additional complications. The field of

numerical interpolation and integration on the sphere is a extensive topic unto itself [196–

199]. We consider here only the integral equation associated with the two-dimensional field.

4.5.1 Nystr̈om Method

The Nyström method is a simple approach to reduce the integral equation to a set of linear

equations using a quadrature formula [191, 192]. It is applicable when the angular power

spectrum is smooth and continuous, resulting in a well conditioned integrand. The integral

can be approximated with a set of regular quadrature pointsθq = 2π(q − 1)/Q and weights
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4.5 Numerical Solution of the Eigenequation

wq = 2π/Q,

λngn(θ) =

∫

Ω

K(θ, φ)gn(φ)dφ =
2π

Q

Q∑

q=1

K(θ, θq)gn(θq). (4.70)

Evaluating this equation at the quadrature points gives thematrix eigenequation

λngn = Kgn gn =




gn(θ1)
...

gn(θQ)


 K =

2π

Q




K(θ1, θ1) · · · K(θ1, θQ)
...

. . .
...

K(θQ, θ1) · · · K(θQ, θQ)


 . (4.71)

The solutions obtained for{gn(θq)} can be interpolated with the reconstruction formula

gn(θ) =
1

λn

Q∑

q=1

wqK(θ, θq)gn(θq). (4.72)

The main benefit of this approach is its simplicity. It has been shown to perform well across

a wide class of problems [192] and is easily implemented [193].

To determine the number of quadrature points required, consider the spatial integral

∫

Λ

ejkx.(θ̂−φ̂)dx =

∫

Λ

∞∑

m=−∞

Jm(k ‖x‖)ejm(θx−θ)
∞∑

n=−∞

Jn(k ‖x‖)e−jn(θx−φ)dx

=
∞∑

m=−∞

∞∑

n=−∞

e−jmθejnφ

∫

Λ

Jm(k ‖x‖)Jn(k ‖x‖)ejθx(m−n)dx.

(4.73)

For a region with maximum radiusR, Jn(k ‖x‖) ≤ Jn(kR) ≈ 0 for n > kR. With only

kR significant terms, the spatial component of the kernel is a smooth bandlimited function.

WhenP (θ) is also a smooth bandlimited function, the number of quadrature points required

will of the order2kR+∆, with additional points∆ ≥ 1 as required to increase the accuracy.

4.5.2 Modified Nyström Method

If P (θ) contains any singularities, it is noted that these will be reflected directly in the solu-

tionsgn(θ). For such angular power spectrums it is no longer appropriate to directly sample
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Chapter 4 Angular Domain Representation of a Random Multipath Field

the kernel. Consider the related integral equation

λng̃n(θ) =

∫

S1

S(θ, φ)P (φ)g̃n(φ)dφ where S(θ, φ) =

∫

Λ

ejkx.(φ̂−θ̂)dx (4.74)

which is equivalent to (4.69) withgn(θ) = P (θ)g̃n(θ). In this case,P (φ) now captures the

only discontinuity in the integral and can be considered a weighting function on the domain.

This leads to a quadrature rule such that

∫

S1

P (θ)f(θ)dθ =

Q∑

q=1

w̃qf(θq). (4.75)

This quadrature rule should be satisfied for the maximal order of the integrand functionf(θ).

LettingQ = 2M + 1 the following system of equations is obtained to determinew̃q,

∫

S1

P (θ)e−jmθdθ =

Q∑

q=1

w̃qe
−jmθq , m = −M, . . . ,M. (4.76)

For regular spacedθq = 2π(q − 1)/Q the weights,̃wq, will be samples of the finite Fourier

series expansion ofP (θ),

w̃q = P̃ (θq) =
M∑

m=−M

γme
jmθq where γm =

1

2π

∫ 2π

0

P (θ)e−jmθdθ. (4.77)

This leads to an alternate set of equations to solve. It can beshown that this approach is

equivalent to using the smoothed version of the angular power spectrum,P̃ (θ) directly in

(4.71). The modified kernel samples

K̃(θp, θq) = P̃ (θp)S(θp, θq) = P̃ (θp)

∫

Λ

ejkx.(θq−θp)dx, (4.78)

are used in (4.71), whilst the actual kernelK(θ, θq) is used for interpolation in (4.72).

Improvements and variations of the Nyström method can be made through the selection of

the quadrature rule. For a three-dimensional field, the domain S2 presents a greater complex-

ity, however the area of integration on a sphere is well studied with many available quadrature

rules [196, 198, 200, 201]. The smoothing of the three-dimensional angular power spectrum

P (θ̂) can be obtained by a truncation of the spherical harmonic expansion ofP onS2.
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4.5 Numerical Solution of the Eigenequation

4.5.3 Separable Kernel using Harmonic Exponentials

Equation (4.73) demonstrates a linear decomposition of theeigenequation using a set of

complex harmonic exponential functions. From this it is apparent that there exists a separable

approximation of the kernel with a finite number of terms. Therange of the kernel and the

solutions of the integral equation will span the same linearsubspace [195].

Writing the solutions and the angular power spectrum as linear combinations of the harmonic

exponentials

gn(θ) = P (θ)
∞∑

m=−∞

αme
−jmθ P (θ) =

∞∑

m=−∞

γme
jmθ. (4.79)

The integral equation (4.69) becomes

λnP (θ)
∞∑

m=−∞

αme
−jmθ = P (θ)

∫

S1

∞∑

p=−∞

∞∑

q=−∞

e−jpθejqφJpqP (φ)
∞∑

s=−∞

αse
−jsφdφ

⇒ λn

∞∑

m=−∞

αme
−jmθ =

∞∑

p=−∞

∞∑

q=−∞

e−jpθJpq

∫

S1

ejqφ

∞∑

r=−∞

∞∑

s=−∞

γr−sαse
−jrφdφ

⇒ λnαm = 2π

∞∑

q=−∞

Jmq

∞∑

s=−∞

γq−sαs (4.80)

where

Jpq =

∫

Λ

Jp(k ‖x‖)Jq(k ‖x‖)ejθx(p−q)dx. (4.81)

From the nature of the Bessel functions,Jpq will be negligible for either index greater in

magnitude than beyondM = ⌈kR⌉. Truncating this set of equations at orderM gives

λna = JCa J =




J−M,−M · · · J−M,M

...
. . .

...

JM,−M · · · JM,M


 C =




γ0 · · · γ−2M

...
. . .

...

γ2M · · · γ0


 (4.82)

wherea = [α−M , . . . , αM ]T , C is the Hermitian Toeplitz matrix as shown andJ is the ma-

trix of termsJpq. By solving for the eigenvectorsa, we can substitute the2M+1 coefficients

αm back into (4.79) to form a truncated approximation of the actual solution.

For a radially symmetric region,Jpq = 0 for p 6= q andJ is diagonal. For circular region

Jpp = 2π
∫ R

0
J2

p (kr)rdr. The eigenvalues of (4.82) will be the same as those ofJ1/2CJ1/2

which is the correlation matrix for the coefficients of an expansion using the basis for a
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Chapter 4 Angular Domain Representation of a Random Multipath Field

circular region and isotropic field. Analysis of this matrixwas proposed in [81] as an algo-

rithm for the numerical calculation of the random field eigenvalues. The numerical approach

presented here encompasses this algorithm as a special case.

4.5.4 Validation of Numerical Methods

The preceding sections detailed two numerical methods for solving the integral equation re-

lated to the angular domain representation of a multipath field. Present here are two examples

to validate the proposed numerical methods. Both approaches suggest the use of a relatively

small linear system of equations with2⌈kR⌉ + 1 unknowns. Higher accuracy can be easily

achieved by using slightly more points than this critical threshold.

The first example presented is that of a circular region with unit wavelength radius and an-

gular power spectrum constrained to±π/4 = ±45◦. For this regionkR ≈ 6.3 suggesting

the use of a truncation order ofM = 7 and15 quadrature pointsθq = 2πq/(2M + 1) for

n = −M, . . . ,M . There will be around 4 significant eigenvalues for this configuration.

The second example is a more complex configuration with an elliptical region with major

axis2λ and minor axisλ/2. The angular power spectrum used was bimodal with Laplacian

distributions centred at0◦ and45◦. With a radial extent ofλ this configuration again suggests

a truncation order of7 with 15 sampling points.

A schematic for the geometry of the two examples is shown in Figure 4.1. Table 4.1 lists

the first 6 eigenvalues for the configurations along with the approximations using the two

proposed methods solved with15 unknowns. Both approximations are reasonably accurate

with the Fourier method providing the best match.

Figures 4.2 and 4.3 show the approximated angular power spectra and eigenfunctions. It

is evident that the main characteristics of the eigenfunctions are captured by the numerical

methods using only15 sampling points or unknowns in the matrix equation. The Fourier

separation method provides a more accurate solution for theeigenfunctions. Both methods

provide very accurate solutions for the first 4 eigenfunctions with discrepancies only noticed

in the higher order eigenfunctions.
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0

R=λ

(a) Circular regionR = λ with uniform angular
power spectrum

0

Major 2λ

 Minor λ/2

(b) Elliptical region major axis2λ, minor axis
λ/2 with bimodal Laplacian angular power spec-
trum

Figure 4.1: Schematic showing the geometry of the region shape and angular source distributions
used in the validation examples.

(a) Circular regionR = λ with uniform angular
power spectrum

Term Exact Method 1 Method 2
Num Value Nyström Separable
1 1.2222 1.2225 1.2222
2 1.0418 1.0935 1.0417
3 0.6315 0.5313 0.6314
4 0.2007 0.2339 0.1994
5 0.0390 0.1123 0.0366
6 0.0056 0.0163 0.0043

(b) Elliptical region major axis2λ, minor axisλ/2
with bimodal Laplacian angular power spectrum

Term Exact Method 1 Method 2
Num Value Nyström Separable
1 0.5714 0.5721 0.5719
2 0.1759 0.1771 0.1766
3 0.0237 0.0222 0.0241
4 0.0098 0.0096 0.0098
5 0.0030 0.0058 0.0031
6 0.0010 0.0031 0.0011

Table 4.1: Comparison of the eigenvalues obtained from the two numerical methods for solving
the spatial eigenequation. The eigenvalues are well approximated using a matrix equation with only
2⌈kR⌉ + 1 ≈ 15 unknowns. The method using the Fourier separation of the kernel provides greater
accuracy.
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Figure 4.2: Comparison of eigenfunctions obtained from numerical methods withR = λ and an an-
gular power spectrum restricted to|θ| < 45◦. The first panel shows the actual and smoothed sampled
angular power spectrum. The next two panels show eigenfunctions 5 and 6 and the approximations
obtained. The Fourier separation approach provides the better approximation.
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Figure 4.3: An elliptical region with major axis of2λ and minor axisλ/2. The angular power
spectrum is bimodal Laplacian distributed. Whilst the Nyström method is inaccurate for the6th

eigenfunction, it is noted that this component represents -29dB of the random field energy.
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4.5.5 Discussion of Numerical Method

The analysis and example demonstrates that accurate solutions to the integral equation can be

obtained numerically. The order of the system of linear equations used to solve the Fredholm

integral equation is related to the radius of the spatial region and thus the domain of interest.

Solving for 2⌈kR⌉ + 1 unknowns using the Fourier separation method provides excellent

results.

This work also demonstrates the insensitivity of the optimal basis functionsgn(θ̂) to com-

ponents of the power spectrumP (θ̂) beyond a threshold resolution. In the two-dimensional

case this was directly related to the Fourier series of the power spectrum. The Nyström

method was dependent only on terms up to orderM = ⌈kR⌉ whilst the Fourier separation

method was dependent on terms up to order2M . The Nystöm method requires a greater

level of smoothing and thus less information from the angular spectrum. Taking the higher

limit, we assert the following:

Observation 4.7 Significant aspects of angular power spectrum for modelling random

multipath field.

Take an arbitrary angular power spectrum,P (θ), for a two-dimensional random multipath

field. The terms of the Fourier expansion ofP (θ) to order2⌈kR⌉ define an equivalent power

spectrum,P̃ (θ) which captures all aspects ofP relevant to the field observed over a region

contained within a disc of radiusR.

P̃ (θq) =
2M∑

n=−2M

γne
jnθq

∣∣∣∣∣
M=⌈kR⌉

where γn =
1

2π

∫ 2π

0

P (θ)e−jnθdθ. (4.83)

Derivation for Observation 4.7.Consider the two-dimensional spatial correlation function

ρ(x,x′) =

∫

S1

P (θ)ejk(x−x′).θ̂dθ =

∞∑

n=−∞

jnJn(k ‖x − x′‖)e−inθxx′

∫

S1

P (θ)e−jnθdθ

=

∞∑

n=−∞

jnγnJn(k ‖x − x′‖)e−inθxx′ . (4.84)

Given the bounded domain of interest,‖x − x′‖ < 2R. Noting the high pass nature of

the Bessel functions,Jn(k ‖x − x′‖) ≈ 0 for n > k ‖x − x′‖ > 2kR. Givenγn are the

Fourier coefficients of the power spectrumP (θ) it is evident that only the first2kR terms are

significant to the spatial correlation in the region.

This result is consistent with previous works that have shown that for small angular distribu-
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tions, it is the spread of angles excited and not the exact shape of the angular power spectrum

that is significant to channel modelling, spatial correlation and capacity [47, 174, 202, 203].

4.6 Numerical Study of Angular Basis Functions

The eigenequation (4.37) informs the solution for efficiently representing a random multipath

field. Unfortunately it is only easily solved for fairly simple configurations. However, as

shown in the previous section, it is possible to obtain accurate solutions to the eigenequation

using a relatively low order numerical approximation.

This numerical technique allows us to investigate the impact of various changes to the region

shape and power spectrum. To facilitate the analysis, we consider a two-dimensional region

and azimuth only source distribution.

4.6.1 Basis Functions with Non-Uniform Angular Power Spectrum

Reducing the support of the angular power spectrum causes a concentration of the received

energy into the low order terms. The limiting case is that of asingle eigenvalue as seen

in Section 4.4.2. The basis functions are constrained to therange of non-zeroP (θ). They

resemble the prolate spheroidal wave functions [142] as therange of the angular spectrum is

decreased. As the order is increased, the discontinuity at the edge of the angular spectrum

becomes more pronounced. This is illustrated in Figure 4.4.The eigenvalues are normalised

such that they sum to unity.

For comparison, the effect of a truncated Gaussian power spectrum with the same angular

variance is shown in Figure 4.5. It is evident that the functions and eigenvalues become

consistent with the uniform angular power spectrum for small angular variance. Since the

integral kernel is smooth, the solution to the eigenequation is insensitive to details in the

angular power spectrum finer than a certain resolution. The angular spread of the power

spectrum becomes the dominant factor.

4.6.2 Basis Functions for Elliptical Region

The effect of the region shape on the eigenvalues and basis functions is also considered.

A simple perturbation to a circular region is effected by changing the scale along one axis

resulting in an elliptical region. This perturbation will cause a smaller number of eigenvalues
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to become more dominant compared to the circular region. Thelimiting case is similar to a

line array for which the number of significant eigenvalues isrelated to the array length. The

eigenvalues and basis functions for an elliptical region are shown in Fig 4.6. It is evident that

the eigenfunctions for this configuration are nontrivial functions.

4.7 Dimensionality of Optimal Representation

In Chapter 3 and Chapter 4 we considered the dimensionality for the representation of a

multipath field in a circular region. The field was consideredboth with a uniform angular

power spectrum and a restricted range of angles. For the isotropic case the basis functions

are the complex exponentials. For the restricted angular range, the basis functions can be

approximated by the prolate spheroidal wave functions. Further perturbations were shown

to introduce greater complexity into the basis functions, suggesting that convenient solutions

for such cases are unlikely.

Of interest in the general case is the essential dimensionality, or number of significant terms,

that could be utilised if the correct basis was determined for a particular scenario. This

provides a measure of the sub optimality of using the basis obtained from the isotropic case.

This is a property of the eigenvalues from (4.37). In particular, we can consider the number

of terms required for the expected residual error in a finite representation to fall below a set

threshold.

Definition 4.8 Dimensionality of a Multipath Field.

For any set of eigenvalues from (4.37), givenε > 0 there exists some integerD(ε) such that,

D(ε) = arg min
n

{∑
m≥n λm∑

m λm
< ε

}
. (4.85)

Of general interest is the value ofN = D(0.01) for which ourN term finite representation

(4.36) will capture 99% of the multipath energy. The modelling error in using such a rep-

resentation would be equivalent to a 20dB signal to noise ratio. We use this threshold as

the definition of the essential dimensionality to analyse the eigenvalues obtained from the

integral equation.

Strictly, D(ε) can only take on integer values. Of particular interest are the situations for

whichD(ε) will be fairly small such as a communications system with a small number of

antenna in a confined spatial region. The impact of changes tothe region shape and field

angular power distribution will be obscured by the coarse quantisation. To facilitate the
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Figure 4.4: Eigenvalues and first four angular basis functions for a circular region (R = λ) and
uniform restricted angular spectrum. The top plot in each column provides a schematic of the region
and source distribution. The second plot shows the restricted (◦) and eigenvalues with those for the
uniform spectrum (×) also plotted for comparison. Restricting the angular range lowers the number
of significant eigenvalues. The remaining four plots in eachcolumn show the basis functions, with
the equivalent prolate spheroidal functions shown as a dashed line. The angular basis functions are
zero beyond the domain shown in the figures.
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Figure 4.5: Eigenvalues and first four angular basis functions for a circular region (R = λ) and a
truncated Gaussian angular source spectrum. The top plot ineach column provides a schematic of
the region and source distribution. The second plot shows the Gaussian spectrum (◦) eigenvalues
with the uniform spectrum (×) eigenvalues also plotted for comparison. The remaining four plots in
each columns show the basis functions for the Gaussian distribution. For comparison, the dashed line
depicts the basis function for a uniform angular spread withthe same angular variance.
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Figure 4.6: Eigenvalues and first four angular basis functions for an elliptical region with an unre-
stricted uniform angular source distribution. The top plotin each column shows a schematic of the
region geometry and source distribution. The second plot shows the eigenvalues for the elliptical re-
gion (◦) with the eigenvalues of a circular region (×) shown for comparison. As the region becomes
more elliptical, the eigenvalues converge towards the limiting case of a line array which is shown for
comparison in the third column. For the elongated domain of interest and uniform linear array, the
basis functions are nontrivial.
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Figure 4.7: Essential dimension of a region with restricted uniform angular power spectrum. Scat-
tered points are obtained from the numerical eigenvalues obtained from (4.37). Lines are plotted to
show the empirical relationshipD = 2kRA/π + 1 which shows an excellent correspondence. This
figure demonstrates that dimensionality varies linearly with the radius and angular range.

analysis, we use an exponential interpolation to obtain a fractional dimensionality. The pro-

cedure is detailed in Appendix A. The fractional definition of essential dimension provides

smooth curves which aid in analysing the impact of configuration changes in the following

examples.

Figure 4.7 show the essential dimension as the radius is varied for four different angular

power spectra. The power spectra are uniformly distributedacross|θ| < A for A = 180◦,

90◦, 45◦ and 22.5◦. The values forD(0.01) obtained from the eigenvalues of (4.37) are

shown to be approximated by,

D(0.01) ≈ 2kR
A

π
+ 1. (4.86)

Whilst the scattered points are obtained from the eigenequation results, the lines are direct

plots of the simple relationship (4.86) and have not been in any way fitted to the data. The

general relationship is to be expected, as discussed in Chapter 2, Section 3. The match

between the scatter points and the lines will depend on the selected threshold value. A lower
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Figure 4.8: Essential dimension of an elliptical region with uniform angular power spectrum. Scat-
tered points are obtained from the numerical eigenvalues obtained from (4.37). Lines show the em-
pirical relationship for a circle (D = 2kR + 1) and uniform linear array (D = 2kR/π + 1). Between
these limits the variation of dimensionality with radius isdependent on the shape of the region.

threshold value would shift all the scatter points towards ahigher effective dimensionality.

In this case, the threshold of0.01 provides an excellent match for the simple dimensionality

expression (4.86).

For the isotropic case, an upper bound on the dimensionalityof a multipath field asN =

2⌈ekR/2⌉ + 1 has been rigorously proven [41, 42]. From the plots in Figure4.7 it can be

seen that the lower value from (4.86) is a better match for thedimensionality as defined in

Definition 4.8.

The next area of investigation is to study the impact of changes to the region shape. An

elliptical region is selected as a simple perturbation of the circular region. Keeping the

length of the major axis the same, the region is contracted bydecreasing the minor axis.

Figure 4.8 shows the effect of the overall region size and ratio of major to minor axis on the

dimensionality. The field is isotropic from all angles. The dimensionality is decreased as the

region becomes more elliptical. The limiting case of the uniform linear array with

D(0.01) ≈ 2kR
1

π
+ 1. (4.87)
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Figure 4.9: The effect of increasing angular spread on the dimensionality. The incident field is
constrained to|θ| < A whereA is the halfwidth of the uniform angular spread. The region lies within
a radius ofλ giving a major axis or linear array of length2λ. For the asymmetric regions (elliptical
and line array) the points are shown for the mean direction ofarrival being aligned with the end or
broad side of the array. The relative orientation has a significant impact on the dimensionality.

This is also a lower bound on the dimensionality. The scatterpoints approach this lower

bound as the minor axis becomes insignificant compared with the wavelength (≪ λ/20).

For such a region there is little diversity obtained from thewidth of the region since the field

cannot change significantly over this distance.

Further analysis can introduce both a perturbation to the region shape and a restriction to

the directions of arrival. For a circular region, the growthin dimensionality with the angular

spread is linear. With an elliptical region, the growth in dimensionality is dependent on

the relative orientation of the region shape and the mean direction of arrival. Figure 4.9

demonstrates the change in essential dimensionality with the angular spread. An increase

in angular spread has more impact on the dimensionality whenthe mean direction of arrival

is to the broad side of the region. The effect is minimised when the direction of arrival is

collinear with the major axis of the region.

Finally consider the effect of a small angular range as it is moved around the array. The

contribution to dimensionality will be maximal when aligned with the broad side of the

region. The geometry for the region and angular power spectrum is shown in Figure 4.10.
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Figure 4.10: Schematic of the geometries for the regions and offset in themean angle. The three
figures show the three cases for which the data points are plotted in Figure 4.11. The angular range is
±12.25◦ around the varied offset angle. A different offset angle is shown in each of the three figures.

The effect of the shift in mean angle offset on the dimensionality of the field is shown in

Figure 4.11. The angular range is12.25◦ orA = π/8 radians.

Consider the kernel, (4.67), for a uniform linear array. Using trigonometric identities it

follows that

λngn(θ) = P (θ)

∫

Ω

gn(φ)sinc

(
2kR cos(

θ + φ

2
) sin(

θ − φ

2
)

)
dφ

≈ P (θ)

∫ θ′+A

θ′−A

gn(φ)sinc (kR cos(θ′)(θ − φ)) dφ (4.88)

with θ′ = (θ + φ)/2 and for smallθ − φ. This is the much studied bandlimited kernel

with asymptotic dimensionality of2kR cos(θ′)A/π [142]. For a small angular spread and

elongated region, it is proposed that the dimensionality will vary as

D(0.01) = 2kR
A| cos(θ)|

π
+ 1. (4.89)

This line is plotted in Figure 4.11 and provides a good match for the limiting case of the

uniform linear array.

97



Chapter 4 Angular Domain Representation of a Random Multipath Field

−180 −135 −90 −45 0 45 90 135 180
0

0.5

1

1.5

2

2.5

3
E

ffe
ct

iv
e 

D
im

en
si

on
al

ity

Offset of Mean Angle of Arrival

 

 

Ellipse 2:1
Ellipse 4:1
Uniform Linear Array
kR|cos(θ)|/4+1

Figure 4.11: The effect of relative orientation between the array and thedirection of arrival. The
source distribution is restricted to a range of±12.25◦ and offset from the broadside of the elongated
region by the abscissa angle. The dimensionality is maximised when the source distribution is aligned
with the broad side of the array at0◦ and180◦. The variation is more severe as the region becomes
increasingly elliptical. Also shown is the theoretical curve that would be expected for a small angular
range incident on a uniform linear array.

4.8 Summary and Contributions

This chapter presented a theoretical framework for the representation of a random multipath

field in the angular domain. The framework leads to an integral equation whose solutions

are the optimal basis function for such a representation. Inanalysing this equation it is

clear that the most efficient representation depends directly on the scattering environment,

through the angular power spectrumP (θ), and also the way in which the field is measured or

observed, through the defined domain of interestΛ. Whilst the integral equation only leads

to analytical solutions in the simplest cases, it was shown that it can be accurately solved

numerically, providing a means to obtain the optimal angular representation.
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4.8 Summary and Contributions

The following specific contributions were made in this chapter:

1. Developed a framework for the representation of a random multipath field in the angu-

lar domain. The angular domain representation implicitly captures the wave equation

constraint. In addition, in comparison with a direct representation of the multipath

field in space, the angular domain has one less dimension. Theangular power spec-

tra for a multipath field corresponds with the physical and engineering intuition of a

spatial channel model.

2. Derived an integral eigenequation to determine the optimal set of deterministic angular

basis functions for representing a random multipath field. The solution of this integral

equation is dependent on both the angular power spectrum andthe spatial domain of

interest for the field. How the field is observed or measured has a direct bearing on the

optimal representation in the angular domain.

3. Demonstrated that the integral equation in the angular framework has a direct corre-

spondence to the Karhunen-Loéve expansion in the spatial domain. This result vali-

dated the consistency and optimality of the proposed framework.

4. Derived the closed form solutions to the eigenequation for the cases of an isotropic

field and singular direction of arrival with a circular region. Investigated and concluded

that the eigenequation is not easily soluble in closed form for general configurations.

5. Detailed two suitable numerical techniques to accurately approximate the solution of

the integral equation using a discrete matrix equation. Demonstrated that the size of the

matrix is determined by the extent of the domain of interest with a matrix dimension

of 2⌈kR⌉+1 required for a two-dimensional region with maximum radiusR and field

wavenumberk = 2π/λ.

6. Demonstrated that the high resolution details in the power spectrum,P (θ̂), beyond a

certain point are largely irrelevant in determining the optimal representation. For the

two-dimensional case it was shown that only the low order Fourier coefficients ofP (θ)

are significant. The critical characteristics of the systemfor determining the optimal

basis set are the physical extent of the region of interest and the low frequency content

of the angular power spectrum.

7. Presented examples to characterise the way in which the shape and distribution of the

region and the power spectrum interact and effect the numberof significant solutions

of the eigenequation. This directly relates to the optimal number of terms needed to

represent the random field. These examples demonstrated themacroscopic aspects of

the interaction between the angular power spectrum and the domain of interest.

99



Chapter 4 Angular Domain Representation of a Random Multipath Field

8. Introduced the essential dimensionality as the number ofterms required to capture

99% of the energy of the random multipath field. This represents a20dB signal to

truncation error ratio. Analysis of the eigenvalue resultsdemonstrated that this thresh-

old is consistent with previously stated expressions for dimensionality. In particular,

a circular region with a uniform restricted angular power spectrum has dimensionality

D = 2kRA/π + 1, where the range of incident angles is restricted to±A about the

mean angle.
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Chapter 5

Spatial Limits to Direction of Arrival

Estimation

5.1 Introduction and Motivation

The previous chapters have addressed the issue of dimensionality and effective representation

of a spatial field. A field over a finite region can be well modelled to an arbitrary precision by

a finite set of basis functions. In the presence of noise, an observed field cannot be arbitrarily

complex. Although space is continuous, the nature of wave propagation restricts the possible

variation of the spatial field across the observation volume. This result will have important

practical implications when considering the ability to resolve or estimate parameters from

the incident field.

The implications of the dimensionality result for the capacity of a multiple antenna system

have recently been highlighted [122] with the notion of an intrinsic capacity of a region

of [138, 146]. These works suggest capacity bounds and limiting performance for multiple

antenna communication systems. In this chapter we extend this work to a different but related

problem, that of estimating a source’s direction of arrival.

The question that will be posed and addressed in this chapteris:-

Is there a spatial limit to the ability to resolve direction of arrival?

Direction of arrival (DOA) estimation is an area of researchthat has achieved much attention

over the last few decades. The problem of DOA estimation is generally approached with

algorithms, estimates and bounds tied to specific sensor array geometries. An alternative

approach is to consider the fundamental limits imposed by the dimensionality or degrees of

freedom of the spatial field being observed.
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In Chapter 2 results were presented regarding the effectivefinite dimensionality of a wave-

field over a bounded region of space. Chapter 4 demonstrated that the number and func-

tional form of the basis functions representing these degrees of freedom was dependent on

the angular power spectrum and the shape and size of the region of interest. The effective

dimensionality and nature of the basis functions will constrain the number of independent

sources that can be resolved and resolution with which theirdirection can be estimated. In

this chapter we consider the impact of the region size on the performance of direction of

arrival estimation. The work represents an extension of some work which was previously

published [129] and has been submitted for publication [204].

Section 5.2 of this chapter provides a review and classification of some of the key literature

in this area. In Section 5.3 we provide a numerical investigation based on a finite element

uniform circular array that supports the intuition of fundamental limits to DOA performance.

Section 5.4 presents a new continuous sensor model and develops an appropriate noise model

that is consistent with the conventional sensor noise modelin the limit of a large number of

sensors. Using this framework, Section 5.5 presents the derivation of the Cramér-Rao bound

for DOA estimation of one and two sources given a finite observation region. These bounds

are verified through further numerical analysis in Section 5.6.

The main contribution of this chapter is the development of acontinuous sensor noise model

and its application to determine the fundamental limits of performance for direction of arrival

estimation. The numerical analysis provides support and validation of the theoretical results

presented. From these results it is apparent that the numberof sources that can be resolved,

given a finite observation region, are directly related to the essential dimensionality of the

multipath field.

The dimensionality of the field will be related to the size andgeneral shape of the region

of interest. In this chapter we focus on the limits resultingfrom the region size. Further

discussion of the impact of the region shape can be found in Chapter 4.
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5.2 Review of Direction of Arrival Literature

5.2 Review of Direction of Arrival Literature

Direction of arrival (DOA) estimation is an important problem in signal processing with di-

rect applications in radar, imaging, and wireless communications. Conventional approaches

to examining the performance limitations of DOA estimatorshave focussed on deriving res-

olution bounds based on sensor array geometry (size, shape and number of sensors).

A recent publication dedicated to the topic demonstrates the continued and active interest

in the area [205]. The topic is directly related to the modelling and understanding of the

spatial channel in MIMO systems. A preliminary treatise by Landmann et al. [206] provides

an intuitive discussion of how the resolution and limits of direction of arrival estimation is

related to MIMO channel sounding and modelling.

In this section we present a review of the key literature in the area, particularly that which

provides a context for the research presented in this chapter.

5.2.1 Direction of Arrival Estimation

The problem of general direction of arrival estimation became of significant interest around

the time of the Second World War. Whilst early practical systems employed physical means

of direction finding, the theoretical analysis and potential for signal processing advances in

the area was realised early on. Significant advances in the area coincided with the advance

of electronics and signal processing over the last three decades [207].

The Bartlett beamformer [208] was proposed in the 1950s. This approach utilised a Fourier

analysis of the antenna array signals to resolve the direction of arrival. Enhanced techniques

of spectral analysis, such as the Capon beamformer [209] were then applied to increase res-

olution [210]. The development of signal subspace approaches to resolving multiple source

directions of arrival created significant interest in the area. The MUSIC algorithm [211]

and general subspace techniques [212] offered computationally effective approaches to the

problem. Further advances such as Root-MUSIC [213] and ESPRIT algorithm [214] soon

followed. Maximum likelihood [215–217] and spatio-temporal parametric models have also

been developed [218].

The nature of the signal model, particularly for the uniformlinear array, is the same as that for

detecting complex sinusoids in noise [210]. As a result, advances, analysis and results in the

two fields have proceeded largely in parallel. Maximum likelihood techniques are generally

superior [216, 219] but computationally complex requiringmulti-dimensional maximisation.

The signal subspace approaches are popular since they are computationally less intensive
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

and facilitate practical implementation. The MUSIC algorithm requires a one-dimensional

search whilst the ESPRIT algorithm is centred on a singular value decomposition [207]. With

appropriate weighting it has been shown the subspace techniques have the same asymptotic

properties as the maximum likelihood estimates [212] and even simple MUSIC is known to

be asymptotically efficient [220].

The general approach to direction of arrival estimation is to integrate the sensor outputs over

time to estimate the covariance. This approach suffers a degradation with non stationary (in

direction of arrival) sources [221]. An alternate approachis to consider the temporal evo-

lution of directions of arrival and make use of tracking algorithms to improve performance.

Simple recursive tracking algorithms were proposed [222] leading to the development of a

Kalman filter framework [223]. This allowed the estimation of direction and angular veloc-

ity [224] with state models for modelling target dynamics [225]. The problem of tracking

and dynamic sources is not considered in this work.

5.2.2 Uncertainty in Direction of Arrival Estimates

In conjunction with the development of algorithms for estimating direction of arrival, many

works are concerned with understanding the theoretical limits of performance. The achiev-

able accuracy of an unbiased estimate of an unknown parameter is bounded by the Cramér-

Rao bound (CRB) [226]. In [219, 227], the Cramér-Rao bound (CRB) is derived for an array

with a known geometry and white noise. This result has since been extended to a variety of

other, more complicated, noise models [228, 229]. In such results, the CRB is given in ma-

trix form with a strong dependence on the geometry of the sensor array. A review of the area

( [230] and refs therein) presents some simplified expressions, but largely for the uniform

linear array. With more general geometries, it is difficult to investigate more fundamental

limitations on DOA performance.

There have been attempts to simplify and interpret the CRB [231] and its derivation [232].

Results are presented for the case of multiple sources incident on a uniform linear array

[233]. The CRB expressions can be simplified making some mildassumptions [234]. Asymp-

totic expressions of the CRB for one and two sources for a uniform linear array have been

derived [235].

Whilst the CRB is a local measure of uncertainty [230], thereis an additional problem of

ambiguities in the array manifold [236]. Linear combinations of the array from several

directions can be degenerate, creating problems in resolving direction of arrival.
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5.2.3 Number of Sources that can be Resolved

Another related area of research is concerned with the number of discrete sources that can be

resolved by an array. The problem relates to the uniqueness of the data generated by multiple

sources [237]. It has been suggested that the number of sources that can be resolved is related

to the co-array of sensor locations or the level of redundancy in the array [238–240]. Such

approaches provide a theoretical analysis based on numerical uniqueness [241, 242] and do

not reflect the uncertainty introduced by noise. A numericalstudy showed the accuracy of

resolving direction of arrival degrades rapidly as the sources become closer than the beam-

width of the array [243].

In MIMO systems the presence of correlated scattered sources created additional compli-

cations [244]. For multiple reflections of a single source, it is possible to use some of the

structure of the signal to enhance the resolution [245].

There is a need for clearer practical limits to the number of sources that can be resolved

by an array. An engineering intuition would suggest that thelimit is dependent on some

macroscopic property of the array such as the spatial extentand general shape rather than on

the numerical nuances of the sensor geometry.

5.2.4 Impact of Sensor Array Geometry

The uncertainty for direction of arrival estimation is related to the geometry of the sensor

array. Much of the work in this area has been concerned with uniform linear arrays and

appropriate element spacings [246]. Greater resolution can be obtained with non-uniform

linear arrays and maximum non-redundancy [238]. Such designs are usually concerned with

minimising the number of sensors, optimising the effectiveaperture [247] and reducing array

ambiguities [248]. Such arrays are under-sampled and will suffer from some ambiguities for

multiple sources [236], and although this does not always preclude resolving the sources

[249] it creates problems for signal subspace approaches.

A recent analysis provides a method of antenna array design by considering the impact of the

array geometry on the CRB [250]. The work considers planar arrays with relatively simple

geometries. Optimal and isotropic sensor geometries for direction of arrival estimation were

considered in [251]. A comprehensive study for three-dimensional arrays was carried out

[252] establishing a simple geometric relationship between sensor placement and the CRB.

This relationship was shown to correspond to the sensor array moment of inertia [251, 253].

This approach provides more general expressions for the CRBfor discrete sensor based

measurements.
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For this work we consider the use of unpolarised sensors, or the analysis of a scalar field. The

use of vector sensors for field measurements offers advantages in the estimation of direction

of arrival [254, 255].

5.2.5 Review and Discussion

The review of the literature shows an extensive amount of research in the area. The results

presented are generally specific to array configurations andoften constrained to linear ar-

rays or simple geometries. The most relevant result to this research is the link between the

Cramér-Rao bound and the sensor moments of inertia.

Often in practice, all that is certain is the physical extentover which the array can interact

with the spatial field. Antennas do not simply sample the fieldat a point. Multi-mode

sensors [102], mutual coupling [256] and other array uncertainties and interactions [257]

must be considered in addition to the sensor geometry.

In this chapter we present an alternate framework for considering the limiting performance

of a DOA estimator based on a continuous measurement over a given region. With this

approach we consider how the performance of DOA is fundamentally limited by the spatial

extent of the array without the need to consider the specific geometry of the sensor placement.

Previous work [128, 258] considered the spatial limits of DOA through simulations. In this

chapter we expand on this result and provide a more detailed theoretical investigation leading

to general results for the performance of direction of arrival estimation.

5.3 Numerical Investigation of Limits to DOA Estimation

To confirm the intuition of a spatial limit to the resolution of direction of arrival we can per-

form some numerical simulations. A popular algorithm for estimating the direction of arrival

of sources from data is the MUSIC algorithm [211]. The MUSIC algorithm offers compu-

tational advantages over a maximum likelihood approach, requiring only a one-dimensional

search for multiple sources. For large signal to noise ratios it is statistically efficient with

performance approaching that of the maximum likelihood estimator [227]. For these rea-

sons we use it to provide a preliminary investigation of the spatial limiting performance to

direction of arrival estimation.
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5.3.1 MUSIC Algorithm

The music algorithm uses a signal subspace formulation to estimate the directions of arrival

for multiple sources. AssumeP sources with narrow-band signal sampless(n) for time

samplesn = 1, . . . , N . We assume the following signal model forQ > P sensors,

y(n) = A(θ)s(n) + w(n) A(θ) =
[

a(θ1) . . . a(θP )
]

(5.1)

whereA(θ) is theQ × P array response steering matrix with a column for each source

direction. Assume the source signals(n) is zero mean with varianceRs and the noise vector

w(n) is white in space and time with varianceσ2
w. The covariance of the signal vectory is

R = E
{
yyH

}
= A(θ)RsA

H(θ) + σ2
wI. (5.2)

The first term of the covariance will have maximum rank ofP . Thus theQ − P smallest

eigenvalues ofR will match the noise varianceσ2
w. Construct an estimate of the covariance

matrix from the data

R̂ =
1

N

N∑

n=1

y(n)yH(n) (5.3)

and consider the ordered eigenvalues ofR̂ as êq, for q = 1, . . . , Q. We estimate the noise

subspace from theQ−P smallest eigenvalues, and use the associated eigenvectorsas a basis,

Ên =
[

êP+1 êP+2 . . . êQ

]
. (5.4)

This is then used to search over our direction parameterθ using the inverse of the projection

of the array steering vector onto the noise subspace. The MUSIC spectrum is defined as

SMUSIC(θ) =
aH(θ)a(θ)

aH(θ)ÊnÊH
n a(θ)

. (5.5)

The area of subspace based parameter estimation has received much attention in the last

few decades. There are many techniques for enhancing the performance of the MUSIC

algorithm for specific array geometries and noise conditions [207]. The MUSIC algorithm is

known to be asymptotically efficient [220]. We present simulations using the basic MUSIC

algorithm to gain a qualitative understanding of the limitsof the array size on direction of

arrival estimation. This will throw light on the factors that limit the performance of direction

of arrival estimation and inform the theoretical investigation of fundamental limits.
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5.3.2 MUSIC Spectra for Multiple Sources

Consider a 15 element uniform circular array with a number,P , of uncorrelated unity power

sources distributed uniformly in direction. This source configuration provides the least bias

and interaction between the estimated direction of arrivalparameters. We are interested in

the minimum size of the region required to correctly resolvetheP sources. Figure 5.1 shows

the MUSIC spectra forP = 4, 8 and12 sources. This simulation clearly demonstrates that

the minimum radius at which the sources are resolved increases with the number of sources.

The radius for resolving the sources is approximately0.3λ, 0.6λ and0.9λ respectively.

The previous simulation was for a specific array geometry with 15 sensors. If the limiting

factor for the resolution of direction of arrival is the spatial extent of the array, we would

expect changing the number of sensors to have little effect.Figure 5.2 shows the MUSIC

spectra forP = 12 incident sources withQ = 15, 30 and45 sensors. Whilst the larger

number of sensors creates a smoother MUSIC spectra, the transition point beyond which the

sources are successfully resolved remains at approximately 0.9λ independent of the number

of sensors.

As discussed in Chapter 2, an increase in the signal to noise ratio will have some effect on

the significant number of dimensions of the observed field. Figure 5.3 shows a simulation of

the 45 element uniform circular array with 12 sources as the effective signal to noise ratio

is increased. A significant increase in the signal power onlyhas a small secondary effect on

the critical radius for resolving the sources.

From these simulations, it is apparent that the spatial extent of a sensor array creates an

intrinsic limit to the number of sources that can be resolved. We will now investigate this

further analytically.

5.4 Continuous Sensor Framework

The previous section provided an investigation of the ability of a uniform circular array to

resolve source direction. The focus of this chapter is to investigate the fundamental limits

of direction of arrival estimation without reference to a particular sensor array configuration.

The concept of the continuous spatial field was introduced inChapter 2 and it was shown

that fields constrained by the wave equation have a finite dimensionality. In this section we

develop a signal model for the spatial field utilising the continuous spatial modes.
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5.4 Continuous Sensor Framework

(a) P = 4 Sources

(b) P = 8 Sources

(c) P = 12 Sources

Figure 5.1: Simulation of the estimation of multiple source direction of arrival using the MUSIC
algorithm with an 15 element UCA. As the number of sources is increased, the minimum radius at
which all of the sources are resolved also increases. The ability to resolve is related to the effective
dimensionality of the field in the sensor region. The vertical axis in the 3D plot represents the MUSIC
spectrum value in dB.
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(a) Q = 15 Element UCA

(b) Q = 30 Element UCA

(c) Q = 45 Element UCA

Figure 5.2: With P = 12 sources, the number of elements in the uniform circular array is increased.
The radius at which all of the sources can be resolved is fairly invariant as the number of sensors is
increased. Intuitively, the number of sources that can be resolved is intrinsically related to the extent
of the sensor array and not the sensor geometry. The verticalaxis in the 3D plot represents the MUSIC
spectrum value in dB.
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(a) Signal to Noise Ratio 20dB

(b) Signal to Noise Ratio 30dB

(c) Signal to Noise Ratio 40dB

Figure 5.3: With P = 12 sources and aQ = 45 sensor uniform circular array, the effective signal to
noise ratio is varied. While the resolving radius is decreased with increasing signal to noise ratio, a
100 fold increase in the signal power only reduces the radiusfrom 0.9λ to approximately0.7λ. The
resolution threshold is largely independent of the signal to noise ratio. The vertical axis in the 3D plot
represents the MUSIC spectrum value in dB.
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5.4.1 Continuous Field Model

Letu(x, n) represent the field over the sensor array regionΛ at time samplen. The field will

be continuous and satisfy the wave equation, allowing representation through a countable

basis. The series expansion for the field onΛ will be convergent in the mean, thus

u(x, n) =
∞∑

m=−∞

αm(n)βm(x), (5.6)

in the sense that

lim
M→∞

∥∥∥∥∥u(x, n) −
M∑

m=1

αm(n)βm(x)

∥∥∥∥∥
Λ

= 0 (5.7)

with the basis functionsβm orthogonal overΛ. This equation characterises the synthesis of

the field from a set of coefficientsαm(n). Chapter 4 dealt with the determination of such a

basis. The basis will span the space of possible solutions tothe wave equation, and in this

sense is complete.

Given the field over the regionΛ, we can perform an analysis to determine the continuous

mode coefficients. This is the normalised inner product

αm(n) = ‖βm‖−2
Λ 〈u(x, n), βm(x)〉Λ = ‖βm‖−2

Λ

∫

Λ

u(x, n)βm(x)dx, (5.8)

where‖βm‖2
Ω =

∫
Ω
|βm(x)|2dr is the usual norm. This framework captures the idea of a

continuous sensor across the measurement volume to recoverthe mode coefficients. These

coefficients contain all the information about the field and consequently can be used in the

direction of arrival estimation framework. As we have seen in Chapter 2, only a finite number

of modal coefficients will be required to accurately represent the field over a finite regionΛ.

5.4.2 Noise Model

In practice, any system will be limited by noise. Our abilityto recover and use the modal

coefficients from the analysis (5.8) will be constrained by noise. To analyse these limits, we

need to develop a suitable noise model in the continuous domain. To provide a context for

any results, we desire a noise model that is in some way consistent with the conventional

sensor noise model.

112



5.4 Continuous Sensor Framework

Consider a set ofQ sensors located at positionsxq, q = 1, . . . , Q. The sensor outputs,yq can

be viewed as discrete time spatial samples of the underlyingfield,

yq(n) = u(xq, n) + wq(n) n = 1, . . . , N. (5.9)

The conventional model assumes spatially and temporarily white Gaussian noise1 with vari-

anceE
{
wm(n)wm′(n′)

}
= δmm′δnn′σ2.

Consider a large number of sensors placed evenly throughoutthe measurement regionΛ.

Since the field is continuous and bounded we can write

lim
Q→∞

|Λ|
Q

Q∑

q=1

u(xq, n)βm(xq) =

∫

Λ

u(x, n)βm(x)dr xq ∈ Λ. (5.10)

where|Λ| =
∫
Λ
dx represents the volume of the region. Using this in the analysis equation

(5.8) gives an estimate of the modal coefficient

α̂m(n) = ‖βm‖−2
Λ

|Λ|
Q

Q∑

q=1

yq(n)βm(xq)

= αm + ‖βm‖−2
Λ

|Λ|
Q

Q∑

q=1

wq(n)βm(xq). (5.11)

The second term is a linear combination of the sensor noise and has variance

σ2
m =

|Λ|2
‖βm‖4

ΛQ
2
E

{
Q∑

q=1

wq(n)βm(xq)

Q∑

q′=1

wq′(n)βm(xq′)

}

=
|Λ|2

‖βm‖4
ΛQ

2
σ2

Q∑

q=1

βm(xq)βm(xq′) =
|Λ|2

‖βm‖2
ΛQ

2
σ2. (5.12)

The noise in estimating the modal coefficient is scaled by thevolume of the measurement

region, divided by the number of sensors and the squared normof the basis function on

the region. This at first may seem counterintuitive, since the noise decreases with a larger

number of sensors. This is a result of the model assuming independent noise on each sensor.

As more sensors are added, each detects the field with an independent noise term which

can be averaged out. More measurements increases the effective signal to noise ratio in

estimating the modal coefficients, thus the modal noise decreases.

1Where the noise is not white, it can be whitened with an appropriate linear transformation based on the
noise covariance structure.
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.4.3 Continuous Sensor Model

Consider a signal transformation to whiten the noise on the modes,

zm(n) =
√
Cmαm(n) + ŵm(n) where Cm = ‖βm‖2

ΛQ/|Λ|. (5.13)

The scaling factorCm is a function of the region, number of sensors and basis. The noise,

ŵm(n), has unit variance and is independent in time and for each mode.

The continuous sensor signalszm(n), provide a countable set of outputs. If the basis func-

tions,βm, are normalised over some region enclosingΛ, all but a finite set of‖βm‖2
Λ will be

negligible [80]. The scaling of the modal coefficient estimates captures the inherent dimen-

sionality of the spatial field.

This model is consistent with the standard sensor model for largeQ. For smallQ, the samples

βm(rq) will not be orthogonal. This will mean that the model of (5.13) will not be valid.

The noise term in the modeŝwm(n) will not be unit variance with the overall noise power

across the observed modes increasing. If the space is under sampled with lessQ samples

than the number of observed modes, the noise termsŵm(n) will also become correlated. In

this sense, the continuous signal model developed providesa bound of the performance of

a system with a finite number of sensors. It assumes the minimum achievable noise power

and noise correlation in the estimation of the modal signals. In practice, finite sensor and

sampling issues will further limit system performance [83].

5.4.4 Signal Model

For the direction of arrival problem, we consider a set ofP sources with directionsθ =

[θ1, . . . , θP ] with associated narrow-band signalss(n) = [s1(n), . . . , sP (n)]T . The narrow-

band assumption ensures the signalling bandwidth is sufficiently small that the delayed signal

acrossΩ is constant [259, p. 34]2. This approximation permits the signal model

z(n) = A(θ)s(n) + w(n) A(θ) = [a(θ1) . . .a(θQ)] (5.14)

whereA(θ) is the response matrix with an infinite column for each of the source directions

θp. This gives us a similar framework to that used in discrete sensor DOA problems, however

the signal space is the scaled coefficients of the field synthesis equation (5.6). This signal

2This can be achieved through narrow-band signalling, or appropriate signal sub-banding. For example,
the 802.11 standard uses OFDM with 64 subcarriers occupyinga 20MHz band. This creates a 312.5 kHz
bandwidth for signalling on each subcarrier. Thus narrow-band assumption is valid forR ≪ 960m.
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5.5 Bounds on the Performance of DOA Estimation

space represents the complete information that could be obtained from the measurement

regionΛ subject to the constraint of the noise model. We use this to determine the limiting

performance of direction of arrival estimation.

5.5 Bounds on the Performance of DOA Estimation

5.5.1 Continuous Circular Array

We apply the framework developed in the previous section to acircular region. As set out

in Chapter 4, Section 4.4.1, a suitable basis which is orthogonal for any radially symmetric

region is

u(x) =

∞∑

m=−∞

αmβm with βm = jmJm(k ‖x‖)ejmθx , (5.15)

whereJm(·) is the Bessel function of orderm, k = 2π/λ is the wave number andθx is the

angle in polar coordinates ofx. The coefficientsαm in this expansion for a plane wave with

incident directionθ areαm = e−jmθ [91].

The case of a uniform circular array corresponds to the sensors placed at the edge of the

region with radiusR. The scaling factor (5.13) for this case is

Cm =
Q

2πR

∫ 2π

0

|βm(x)|2Rdθ = QJ2
m(kR). (5.16)

The columns of the array steering matrixA for this basis will be

a(θ) =
[
. . . ,

√
C−me

jmθ, . . . ,
√
Cme

−jmθ, . . .
]T
. (5.17)
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.5.2 The Craḿer-Rao Lower Bound

The achievable accuracy of an unbiased estimate of an unknown parameter is bounded by

the Cramér-Rao bound (CRB) [226]. We are interested in the variance of an estimate of

the directions of arrivalθ. Since the signals,s(n), are also unknown, they must be ac-

counted for in the estimation. Two estimation frameworks are typically presented [128].

The deterministic or conditional signal model formulationestimates the actual signals [227],

whilst the stochastic or unconditional formulation provides an estimate of the signal covari-

ance [232, 260]. The deterministic CRB is lower than the stochastic [260] and is often used

as a good estimator of performance for large number of sensors [261]. To approach the de-

terministic CRB an estimator must determine the actual signals from each direction. This

becomes infeasible with a low signal to noise ratio [259, 262].

Generally, the noise power is also an unknown parameter thathas to be estimated. The form

of the CRB remains unchanged if the noise levelσ2 is a known or estimated parameter [263].

Since we are interested in the limiting case of many sensors and reasonable signal to noise

ratio, the deterministic CRB will be used in this work as an overall lower bound.

CRB =
σ2

2N

{
Re
[(

DHD − DHA
(
AHA

)−1
AHD

)
⊙ Rs

T
]}−1

, (5.18)

where

D ,

[
∂

∂θ1
a(θ1), . . . ,

∂

∂θP
a(θP )

]
. (5.19)

The matrixRs is the sample covariance matrix for the signalss and⊙ represents the elemen-

twise Schur-Hadamard product of the matrices. The matrixA ≡ A(θ) is dependent on the

source directions. Whilst the matrices are infinite, it is tobe noted thatCm ≈ 0 form > kR.

Previous work [41] models this effect as a truncation. In this framework the dimensionality

is introduced through the scaling
√
Cm in (5.13) which lowers the effective signal to noise

ratio in the higher order terms. As will be shown, we can obtain analytical results without

truncating the equations.
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5.5 Bounds on the Performance of DOA Estimation

5.5.3 Cramér-Rao Bound for Circular Array with Single Source

The case for a single source (P = 1) provides the ultimate lower bound for any direction

estimation. The continuous representation allows considerable simplifications using addition

and recurrence relations for integer order Bessel functions [162]. From (5.18) the three main

terms to be computed areAHA, DHD andDHA.

AHA =

∞∑

m=−∞

Cm = Q

∞∑

m=−∞

J2
m(kR) = Q (5.20)

DHD =

∞∑

m=−∞

m2Cm = Q

∞∑

m=−∞

m2J2
m(kR) =

Qk2R2

2
(5.21)

DHA =
∞∑

m=−∞

−mCm = 0. (5.22)

More detailed workings are provided in Appendix B, Section B.3. Assuming a source of unit

powerRs = 1, the following closed form expression for the CRB is obtained,

CRBP=1 =
σ2

2N

2

Qk2R2
=

σ2

QN

1

k2R2
. (5.23)

The first factor represents the impact of noise. Since the noise is independent the noise power

is scaled by the product of the number of sensors and number ofobservations (QN). We can

consider this term the reciprocal of the effective array signal to noise ratioQN/σ2.

The second factor represents the effect of the spatial extent of the array. A common measure

of resolving ability is the Rayleigh resolution limit, equal to λ/2R [230]. It is reasonable to

expect the variance to scale with the square of this term corresponding to the1/R2 factor.

The result obtained here is also consistent with the CRB relationship with the sensor moment

of inertia [251, 253].
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.5.4 Cramér-Rao Bound for Circular Array with Two Sources

To consider the ability to resolve independent sources, we analyse the case of two uncorre-

lated sources separated by some angle∆θ. The source correlation will be the identity matrix,

Rs = I, thus from (5.18) we see that only the diagonal entries of thebound calculation are

required. Complete workings are provided in Appendix B, Section B.4 and summarised

here:

AHA = Q

[
1 µ

µ 1

]
(5.24)

DHD =

[
Qk2R2

2
. . .

. . . Qk2R2

2

]
(5.25)

DHA = Q

[
0 ν

ν 0

]
(5.26)

Since we assume uncorrelated sources,Rs = I, the off diagonal terms ofDHD do not effect

the bound as a result of the elementwise product in (5.18).

µ =

∞∑

m=−∞

ejm∆θJ2
m(kR) = J0

(
2kR sin

∆θ

2

)

= J0(kR∆θ) +O
(
(∆θ)4) (5.27)

ν =

∞∑

m=−∞

−mejm∆θJ2
m(kR) = −jkR cos (∆θ) J1

(
2kR sin

∆θ

2

)

= −jkRJ1(kR∆θ) +O
(
(∆θ)3) . (5.28)

The approximations are valid for small∆θ. Substituting these results into 5.18, the diagonal

term for the Cramér-Rao bound for two uncorrelated sourcesis

CRBP=2 =
σ2

2QN

(
k2R2

2
+

ν2

1 − µ2

)−1

≈ σ2

QN

1

k2R2

(
1 − 2J2

1 (kR∆θ)

1 − J2
0 (kR∆θ)

)−1

. (5.29)

The form is similar to (5.23) with the addition of a second term. Using the summation iden-

tity J2
0 (z)+2

∑∞
n=1 J

2
n(z) = 1 [160, 9.1.76 p.363] it is evident that the bracketed expression

is bounded by 0 and 1. As expected, the variance can only increase due to the presence of the

second source. The result is asymptotically equal to the single source case for largekR∆θ.

With a large aperture, or sufficiently spaced sources, the variance of estimating direction of

arrival is not influenced by the presence of a second source.
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5.5 Bounds on the Performance of DOA Estimation

5.5.5 Discussion of Two Source Result

The result presented for the Cramér-Rao for two sources allows an investigation of the ability

to resolve source directions of arrival. By considering thepoint at which the variance is equal

to the source separation we can determine the limiting resolution [264].

CRBP=2 ≈
σ2

QN

1

k2R2

(
1 − 2J2

1 (kR∆θ)

1 − J2
0 (kR∆θ)

)−1

= (∆θ)2

QN

σ2
= SNR =

1

(kR∆θ)2

(
1 − 2J2

1 (kR∆θ)

1 − J2
0 (kR∆θ)

)−1

. (5.30)

The right hand side of this is a function only of the productkR∆θ. This reveals some insights

about the limits to resolving the direction of arrival.

For a fixed signal to noise ratio, the minimum source separation that can be resolved is

inversely proportional to the radius. This result is a more general case of previous results

that relate resolution to the length or number of elements ofa uniform linear array [230].

The relationship also reveals how the ability to resolve sources will change with the signal

to noise ratio. Consider the case of small values forkR∆θ,

SNR =
1

(kR∆θ)2

(
1 − J2

0 (kR∆θ) − 2J2
1 (kR∆θ)

1 − J2
0 (kR∆θ)

)−1

=
1

(kR∆θ)2

(∑∞
n=2 J

2
n(kR∆θ)∑∞

n=1 J
2
n(kR∆θ)

)−1

≈ 1

(kR∆θ)2

(
J2

2 (kR∆θ)

J2
1 (kR∆θ)

)−1

≈ 1

(kR∆θ)2

(
(kR∆θ)4/64

(kR∆θ)2/4

)
−1 =

16

(kR∆θ)4 kR∆θ ≪ 1 (5.31)

using small argument approximations of the Bessel function[160].

The relationship and approximation is shown in Figure 5.4. The resolution angle for two

sources is shown to decrease with the fourth root of the signal to noise ratio. Specifically,

∆θ ≈ 2

kR
SNR

1

4 . (5.32)

This result is consistent, up to a proportionality constant, with that reported previously for

the case of the uniform linear array [233, 264]. The result here is for a general shaped region

that lies in the interior of the circular domain. The derivation presented here offers a closed

form expression for the Cramér-Rao bound without requiring a series expansion. This is

useful for exposing the structure of the problem and determining the relationship between

signal to noise ratio and resolution.
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Figure 5.4: Relationship between the signal to noise ratio and the minimum resolvable direction of
arrival angle. The full expression is given by (5.30). It is well approximated by SNR= 16(kR∆θ)−4

for small arguments and large effective SNR.
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Figure 5.5: Factor for the increased variance of estimating source direction of arrival with a second
source present. The factor decreases to unity nearJ1(kR∆θ) = 0 atkR∆θ ≈ 3.8.

From (5.29) it is evident that whenJ1(kR∆θ) = 0 the variance of the estimate for each

source direction is not affected by the second source. Consider the increased variance factor,

CRBP=2

CRBP=1

=

(
1 − 2 cos2 (∆θ) J2

1

(
2kR sin ∆θ

2

)

1 − J2
0

(
2kR sin ∆θ

2

)
)−1

≈
(

1 − 2J2
1 (kR∆θ)

1 − J2
0 (kR∆θ)

)−1

, (5.33)

it becomes unity at this point and remains close to unity thereafter as shown in Figure 5.5.

For the case of a set ofP uncorrelated sources spread around the observer,∆θ = 2π/P . For

performance to match that of the sources in isolationkR∆θ > 3.8 > π which corresponds to

an upper bound ofP < 2kR sources. This is consistent with the dimensionality results from

Chapter 2 Section 2.3, and will be demonstrated through further simulations in this chapter.

121



Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.6 Numerical Analysis

5.6.1 Analysis of Continuous Array Spatial Craḿer-Rao Bound

In this section we examine the effect of varying region size,and number of sources on the

spatial CRB. In calculating the bound from (5.18), the infinite matrices had to be truncated.

The numerical analysis presented uses a truncation sizeN ≫ kR introducing a negligible

error.

We restrict our attention to the case of reasonably high signal to noise ratios where the

performance of an estimator will approach the CRB [265]. Allresults are presented for

an effective array signal to noise ratio of 20dB (QN/σ2 = 100). This would generally be

expected to be above the threshold regime.

Firstly we consider the spatial CRB for a number of equal power, equally spaced and un-

correlated sources (Rs = I). By virtue of symmetry, this configuration has the lowest equal

variance for the position of each source [128] and we need only consider one term of the

CRB matrix. Figure 5.6 shows the effect of increasing the number of sources. The square

root of the CRB, which represents the standard deviation of the estimate, is plotted in units

of degrees.

The single source case has the form (5.23). With multiple sources, the performance in es-

timation approaches the single source case beyond a threshold radius. Below this critical

threshold the performance diverges rapidly. This is consistent with the notion of the dimen-

sionality of a spatial region [41, 84] – we would expect poor performance when the number

of sources exceeds the approximate dimensionality of the spatial field. The points at which

the effective dimensionality and number of sources are equal (2kR + 1 = P ) are shown on

the figure. At this point the multi-source CRB is within a factor of two of the single source

case. The notion of dimensionality provides an alternativeto “sensor-based” identifiability

constraints set out in [266] and [237].

It has been suggested that the number of sources that can be resolved is related to the co-

array formed from all the unique inter element spacings of the sensor array [239, 240]. Such

approaches provide a theoretical analysis based on numerical uniqueness [241, 242] and do

not reflect the uncertainty introduced by noise. The result we present here encapsulates

the limitations placed in practice due to the spatial extentand inherent noise of the array.

Exceeding these limits becomes exceedingly difficult due tothe exponential decrease in the

power of the modal expansion terms beyond the critical dimensionality (see Chapter 2 for

discussion).
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5.6.2 Comparison with Discrete Sensor Craḿer-Rao Bound

We provide for comparison results from a discrete sensor uniform circular array (UCA). The

signal space for aQ sensor UCA can be expressed as in (5.14), with the steering array

a(θ) =
[
e−jkRτ1(θ), . . . , e−jkRτQ(θ)

]T
(5.34)

whereτq(θ) = cos (θ − 2π(q − 1)/Q) for q = 1, . . . , Q.

The CRB is obtained from (5.18). For the single source case,AHA = Q, and forQ ≥ 3,

DHD = k2R2

Q∑

q=1

sin2

(
2π(q − 1)

Q

)
=
Qk2R2

2
(5.35)

DHA =

Q∑

q=−1

jkR sin

(
2π(q − 1)

Q

)
= 0 (5.36)

giving the same result as that obtained for the continuous CRB (5.23). The expression for

two or more sources is not easily simplified.

Figure 5.7 compares the continuous CRB to that obtained for a15 sensor UCA. Below a

threshold radius, the performance of the UCA matches the limiting case for the continuous

sensor model. The threshold remains fairly constant as the number of sources is changed.

This threshold is related to the essential dimensionality.At a radius ofR = 1.1λ, the di-

mensionality is2kR + 1 ≈ 15. The performance of a 15 sensor array degrades beyond this

point since insufficient sensors are present to uniquely capture the degrees of freedom of the

spatial field. The continuous CRB provides a lower bound for the UCA performance. The

single source CRB provides an overall bound.

It should be noted that the CRB is a measure of the localised uncertainty in an estimate and

does not consider aliasing artifacts and array [230]. As thenumber of sensors falls below

the degrees of freedom of the array, it becomes increasinglylikely that the array will suffer

from ambiguities. The condition for ambiguities in linear arrays has been studied [267, 268],

however the case for circular arrays is more complex [269]. Generally it is accepted that the

sensors should be placed no more thanλ/2 apart. This corresponds toQ ≥ 2πR2/λ = 2kR

[151]. The results presented here are consistent with this.

The numerical analysis presented demonstrates that the sensor array CRB is lower bounded

by the spatial CRB. This is quite a powerful result. It shows that the performance of an

array based DOA estimator will be bounded by the maximal spatial extent of the array,

independent of the number of sensors. In the limit of a large number of sensors in the region,

the performance converges to the spatial CRB.
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Figure 5.6: Impact of region size on Cramér-Rao bound (
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CRB degrees) for direction estimation
given a number of equal power distributed sources. Varianceof the DOA estimation withP sources
approaches that for a single source when2kR + 1 > P . These points are shown on the plot.
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Figure 5.7: Comparison of the continuous Cramér-Rao bound with that ofa 15 element uniform
circular array. The UCA achieves the limiting performance up to a threshold radius at2kR + 1 = 15
(R ≈ 1.1 shown).
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5.7 Comparison of Circle and Disc Array

The previous numerical analysis was carried out for the caseof a circular array at the edge

of the region. A similar analysis can be performed for the case of a set of sensors spread

homogenously throughout the entire circular region. We refer to this configuration as a disc

array.

The complete workings for this case are presented in Appendix B, sections B.5 and B.6. The

expressions obtained are somewhat more complex with

Cm = Q
(
J2

m(kR) − Jm−1(kR)Jm+1(kR)
)

(5.37)

CRBP=1 =
σ2

QN

2

k2R2
(5.38)

CRBP=2 ≈
σ2

QN

2

k2R2

(
1 − (J1 (kR∆θ) + J3 (kR∆θ))2

1 − (J0 (kR∆θ) + J2 (kR∆θ))2

)−1

. (5.39)

Firstly consider the noise scaling coefficientCm. In the limit for largekR [160, 9.2.1 p. 364]

Jm(kR) ≈
√

2

πkR
cos

(
kR− 2πm+ 1

4

)
(5.40)

from which we can see thatCm ≈ 2/πkR, unlike the circular array for which the signal in

some modes will vanish whereJm(kR) ≈ 0. The continuous sensor over the disc does not

have the problem of degenerate modes, however the CRB variance is increased by a factor

of two. Since the total signal energy is the same in both cases,
∑
Cm = Q, the circular array

will have a larger range ofCm terms of significant value. This is shown in Figure 5.8.

Fig. 5.9 shows a plot comparing the CRB for the circular arrayand the disc array. The

results are plotted for an effective array signal to noise ration of 20dB (QN/σ2 = 100).

The array spread across the disc will perform worse than a uniform circular array with equal

radius. This seems at first counterintuitive – additional information about the field through

the interior should improve performance. The paradox is resolved by recalling the signal

model used – the sensors each add additional noise and they must be evenly distributed

through the entire volume.

The largest signal phase change with respect to direction occurs at the perpendicular extrem-

ities of the region. For this reason, if the noise is generated by the sensor, it is optimal to

place all sensors as far apart as possible and therefore at the edge of the circular region. This

result is consistent with that presented for a discrete set of sensors [251]. The circular array
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Figure 5.8: Comparison of the signal mode scaling coefficients for a circular and disc array. The
circular mode scaling becomes degenerate at or near zeroes of the Bessel function whilst the disc is
relatively constant.
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signal to noise ratio, the disc array results in an increasedvariance for DOA estimation and a larger
critical radius. When sensor noise is constant, it is optimal to place all sensors at the edge of the
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provides more signal in the higher order modes which allow better resolution of the direction

of arrival.

The expression (5.39) for the two source Cramér-Rao bound includes some additional terms

compared with the circular array two source CRB (5.29). However, in the limit of closely

spaced sources, this expression has the same relationship between resolvable angle and signal

to noise ratio. The variance for the disc array is a factor of two larger than the circular array,

however the variance scaling as the two sources move closer together is quite similar. This is

shown in Figure 5.10. It is evident that the two expressions have the same asymptotic form

for small angular separations.

5.8 Summary and Contributions

A review of the existing literature demonstrates that the theoretical performance of direction

of arrival estimation is generally linked to specific sensorarray geometries or problem sce-

narios. The continuous framework presented provides a technique for analysing the impact

of the spatial extent of an array on direction of arrival performance without concern for the

specific array geometry. The framework can be used to derive asimple form for the Cramér-

Rao bound for the cases of a single source and two uncorrelated sources. These expressions

show how the extent of the array creates a fundamental limit on the ability to resolve and

estimate the direction of arrival of sources.

The size of the region also has a direct impact on the number ofsources that can be resolved.

From numerical analysis, it is apparent thatP sources can be resolved once a critical radius

is reached such that2kR + 1 > P . The CRB for a discrete uniform circular array is lower

and converges to the continuous case rapidly once the numberof sensorsQ > 2kR + 1.

Thus we present a simple bound for the performance of a uniform circular array withN

measurements taken fromQ sensors forP sources,

σθ ≥ σ√
QN

1

kR
P < 2kR + 1 < Q (5.41)

This result stems from the consideration of the effective dimensionality of the measurement

region. A sufficient number of sensors are required to match the degrees of freedom which

the spatial field can exhibit. When the number of sources exceeds the degrees of freedom of

the spatial field, estimation of direction of arrival becomes increasingly difficult.

The following specific contributions were made in this chapter:

127



Chapter 5 Spatial Limits to Direction of Arrival Estimation

0 1 2 3 4 5 6
0

1

2

4

6

8

J 1(k
R

∆θ
)=

0
kR∆θ

V
ar

ia
nc

e 
F

ac
to

r

∆θ=π/2
∆θ=π/4
∆θ=π/6
Small ∆θ Approx

16/(kR∆θ)2

(a) Circular array

0 1 2 3 4 5 6
0

1

2

4

6

8

J 1(k
R

∆θ
)=

0

kR∆θ

V
ar

ia
nc

e 
F

ac
to

r

∆θ=π/2
∆θ=π/4
∆θ=π/6
Small ∆θ Approx

16/(kR∆θ)2

(b) Disc array

Figure 5.10: Comparison of the variance factor with two sources for the circular and disc arrays. The
variance factor is quite similar and has the same asymptoticform askR∆θ becomes small. Equivalent
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• Developed a continuous field framework for analysing the direction of arrival problem.

This allows for a generalised measurement volume to be considered in the performance

analysis.

• Developed a noise model that is consistent with the conventional model of sensor noise

in the limit of a large number of sensors. This noise model allows us to consider the

limiting performance of direction of arrival estimation inthe continuous framework.

• Derived a simple expression for the Cramér-Rao lower boundfor the case of a single

source.

• Derived the Cramér-Rao lower bound for the case of two uncorrelated sources sepa-

rated in angle.

• Analysed the CRB for two sources and derived a relationship for the limiting resolu-

tion of the array as a function of array size and signal to noise ratio. This result was

presented and shown to be consistent with similar results for the case of a uniform

linear array.

• Demonstrated, through numerical analysis, the relationship between the essential di-

mensionality of the spatial field in the measurement region and the number of sensors

required and number of discrete sources that can be resolved.

• Analysed the bounds developed and presented a comparison toresults for a conven-

tional sensor array. The results presented in this chapter are shown to be consistent with

previous results in the literature. The general spatial framework developed provides a

more general approach and therefore more general results which are not specific to a

particular array geometry.

The direction of arrival problem is generally posed with theassumption of the sources being

discrete and in the far-field. Whilst this structure facilitates the signal processing, it may

not be valid in practice. From the analysis in this chapter, it is also evident that there are

fundamental limits to the number of sources that can be accurately resolved. One approach to

characterising the spatial wireless channel has been to useantenna arrays to resolve discrete

paths or propagation, employing direction of arrival techniques. In the following chapter an

alternative approach will be presented that is more suited to the natural dimensionality and

information limits of the spatial field when observed over a finite volume.
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Chapter 6

Stochastic MIMO Model Utilising

Dimensionality and Modes

6.1 Introduction

6.1.1 Background and Motivation

The previous chapters have investigated the dimensionality and representation of a spatial

multipath field. Chapter 2 reviewed the approximation of a spatial field using a finite set of

spatial modes. Chapter 4 investigated the properties of these modes. Chapter 5 demonstrated

that the dimensionality creates a limit for the ability to resolve the direction of arrival of a

source.

Wireless communications systems achieve the transmissionof information through the ex-

citation and detection of electromagnetic fields. Whilst these fields exist continuously over

space and time, they are constrained in complexity by virtueof the wave equation described

in Chapter 1. A means of characterising the complexity or diversity of possible spatial fields

over a finite volume is to consider the dimensionality or degrees of freedom. This was the

subject of Chapter 2. Where there is only a single degree of freedom, it will only be possible

to achieve one channel or independent path of communicationbetween the sender and re-

ceiver. Additional degrees of freedom or dimensionality allow additional independent paths

which can be used to achieve a higher power or spectral efficiency in a communications

system.

The degrees of freedom of a spatial field is directly related to the size and shape of the

region of interest. This has a bearing on the accuracy and amount of information that can
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be obtained from the spatial field. In this chapter we are concerned with effect of the region

size on an appropriate channel model. The additional impactof the region shape could be

incorporated using some of the results from Chapter 4. This chapter presents a framework

for modelling the spatial channel incorporating the effective spatial dimensionality.

The development and use of spatial channel models is an important area of research for

multiple antenna (MIMO) communication systems. In practice, the capacity that can be

achieved will be limited by the extent to which the spatial environment supports parallel

independent data paths. Models for the spatial propagationchannel are therefore important

for the design, development and testing of system designs. Agood channel model will be

simple and provide a channel simulation that is consistent with measured data. The channel

model must capture the important characteristics of the physical channel.

There are two categories of stochastic channel models. Geometric or double directional

models [70] describe the statistics of physical multipath component parameters (directions

of arrival and departure, delay and amplitude). Analytic models approximate the complete

statistics of the antenna transfer parameters [63] and provide a simple means for generating

random channel matrices representative of a measured environment.

The geometric channel models require a large number of parameters to describe the general

characteristics and distributions of the paths. Parameters include the number of discrete

paths, the distributions of path direction, the angular spread of each path and correlations

between paths. As we have shown, it is only possible to resolve the directions of a fixed

number of paths given the receive region size, therefore this type of geometric model tends

to have redundancy in the parameters.

Analytic models provide a simple alternative. However, both the spatial aspects of the chan-

nel and the characteristics of the antenna arrays are captured in the model. In this way, any

simulation is restricted to the specific arrays used for the measurement.

In this chapter we address the following question:-

Is there an alternative approach to creating a model of the spatial channel without reference

to specific directional paths ?

This work is an extended version of a paper that was presentedat the Vehicular Technology

Conference, May 2006 [125].
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6.1.2 Review of MIMO Channel Models

Consider a MIMO system withNT transmit elements andNR receive elements. The trans-

mitted signalss and received signalsy are related by

y = Hs + w (6.1)

whereH is theNR × NT matrix of complex channel coefficients andw is the noise vector

at the receiver.

The statistical models considered [30, 66, 67, 270] assume the channel to be well modelled

by second order statistics. This is generally true of non line of sight MIMO channels such as

those expected in indoor environments. In this case the elements ofH are zero mean [26, 63].

The correlation matrix for the channel coefficients,RH is obtained,

RH = E
{−→
H
−→
H

H}
, (6.2)

where·H is the Hermitian operation, and−→· is the vector operation which stacks the columns

of a matrix. ExpectationsE {·} are taken over all channel matrix realisations. The matrix

RH is anNTNR×NTNR complex positive definite Hermitian matrix with(NTNR)2 degrees

of freedom. It is possible to approximateRH with fewer parameters. Specific examples are

the Kronecker model withN2
T +N2

R parameters [30], the virtual channel model withNTNR

parameters [66] and the recent Weichselberger model withN2
T +N2

R +NTNR −NT −NR

parameters [270].

A review of these models [63] demonstrated that the Weichselberger model provided the best

match to measured data. It also has the largest parameter space. Whilst the virtual channel

separates the propagation channel from the array geometry,it was shown to overestimate

channel diversity and capacity.

In this chapter, we present a MIMO channel model with the following properties:

• A simple analytic framework for generating channels.

• Ability to match measured channel data.

• The minimum number of internal parameters.

• Separability of antenna array and spatial channel.

The proposed model quantifies the relationship between the size of the array and number of

internal modelling parameters. Further, modelling accuracy can be adjusted with a single
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parameter. It applies to two-dimensional environments, with straight forward extension to

three dimensions.

Section 6.2 presents a new model framework to satisfy question posed above. This is fol-

lowed by a discussion in Section 6.3 highlighting the advantages of the proposed model.

Section 6.4 demonstrates the properties of the proposed model through simulation and ap-

plication to real MIMO data sets.

Whilst many MIMO channel models assume separability of the receiver and transmitter cor-

relations, this approach has come under scrutiny [68, 69]. Recent work by Lamahewa et al.

provides a parametric extension to the Kronecker style model to introduce joint correlations

between the angle of departure from the transmitter and the angle of arrival [271–273]. The

main contribution of this chapter is the development of a stochastic model that captures the

joint distribution of the receiver and transmitter correlations from experimental data.

6.2 New Framework using Continuous Spatial Model

Chapter 2 reviewed the framework demonstrating that the signal subspace or wave-field ob-

served by a receiver with finite volume has limited dimensionality or degrees of freedom.

The spatial region containing the antennas controls the spatial degrees of freedom, not the

number of antennas [44]. This has been shown from the perspective of the wave equation

constraint [41, 80] and an antenna signal subspace perspective [84].

We can express an arbitrary received or transmitted wave-field in terms of a set of basis

functions suited to the problem. These can be interpreted asthe most concentrated solutions

to the wave equation [80], for example through a truncation of the Jacobi-Anger expansion

of a plane wave [91] to2M + 1 terms, which is accurate over a finite volume,

ejkx.φ̂ ∼=
M∑

m=−M

[
Jm(k ‖x‖)e−jmθx

]
ejmφ, (6.3)

whereφ̂ is a unit vector with directionφ. Drawing from previous work [44], with transmitter

antennas located atxn and receiver antennas atyn, the modal decomposition of a channel

matrix is

H = JRHSJT
H , (6.4)
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where theNT × MT andNR × MR configuration matriciesJT andJR, respectively, are

defined as

[JT ]nm = jmJm(k‖xn‖)ejmθxn

[JR]nm = jmJm(k‖yn‖)ejmθyn , (6.5)

where[·]nm is the matrix element in rowm and columnn, and the antenna positionsxn and

yn have been expressed in the polar coordinates(‖xn‖, θxn) and(‖yn‖, θyn
), Jm(·) is the

mth order Bessel function andk = 2π/λ is the wave number.

The configuration matrices depend only on the geometry and size of the transmitter and re-

ceiver antenna arrays. Configuration matrices may additionally include the effects of antenna

directionality and mutual coupling, either through modelling or calibration of array elements.

The coupling matrixHS with dimension(2MR+1)×(2MT +1) captures the spatial coupling

between regions independent of the artifacts of antenna geometry. DimensionsMR andMT

are proportional to the aperture size of each antenna array.As was discussed in Chapter 2,

the truncation orderM & ⌈kR⌉ whereR is antenna aperture radius.

For a rich scattering environment, the elements ofHS will be independent, whereas the ele-

ments ofH will be correlated due to antenna proximity. The modal decomposition provides

a natural framework for representing the diversity of the spatial channel. We note that similar

observations have been used in [66].

Consider the correlation matrix forHS,

RHS
= E

{−→
HS

−→
HS

H}
. (6.6)

A common assumption for the non line of sight channel in statistical models is that the

channel is well modelled by its second order statistics.RHS
provides a full parametrisation

of the MIMO channel in this case with(2MT +1)2(2MR+1)2 degrees of freedom. For dense

antenna arrays,2MT +1 < NT and2MR +1 < NR thus providing a smaller parameter space

thanRH as evaluated in (6.2).

The elements ofHS are a set of correlated random variables. We seek a model to generate

instances ofHS and thusH from independent random variables. Consider the application of

unitary matrices,A andB, toHS,

H′
S = AHHSB. (6.7)
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This transformation preserves the energy inHS and can be selected to de-correlate the ele-

ments ofH′
S. The correlation matrix for the rotated matrixH′

S can be expressed

RH
′

S
= E

{−−−−−→
AHHSB

−−−−−→
AHHSB

H
}

= (BT ⊗ AH)RHS
(BT ⊗ AH)

H
(6.8)

using definition (6.7), the matrix Kronecker product⊗, and identity
−−−→
ABC = (CT ⊗ A)

−→
C

[274]. The elements ofH′
S will be independent withRH′

S
diagonal if and only if the eigen-

vectors ofRHS
are Kronecker separable. This assumption is restrictive but has been shown

to match real world data forRH [270]. Since the modal decomposition is linear, this result

also applies toRHS
.

If the correlation matrixRH
′

S
is diagonal then the receive side correlationE{HSHS

H} will

also be diagonal,

E
{
H′

SH
′
S

H
}

= Λ = E
{
AHHSBBHHS

HB
}

= E
{
AHHSHS

HA
}

AΛAH = E
{
HSHS

H
}
, (6.9)

with Λ a diagonal matrix. ThusA is the eigenvector matrix of the receiver side modal

correlation matrix. A similar result holds forB. This is equivalent to the result presented by

Weichselberger for the antenna channel [270].

The elements ofH′
S will be independent but not identically distributed. This is modelled

by the element-wise product of a weighting matrixW with an independent and identically

distributed random matrixG. Given a set ofN data matricesHn we can estimate the appro-

priate parameters and obtain the complete model as set out inTable 6.1.

The framework applies a Weichselberger style statistical model to the resultant modal chan-

nel matrix. The proposed model preserves the simplicity of analytic models and, if the

measurement and target arrays are co-incident,J′
T = JT andJ′

R = JR, the model will

match the performance of the Weichselberger approach. For dense arrays, it offers a more

efficient parametrisation and the ability to decouple the spatial and array geometry aspects

of the channel.

6.3 Discussion of the New Model Framework

The number of parameters to represent the model (A, B andW) are directly related to the

modal truncation order. For densely packed arrays, there are significantly less than the(NR×
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New Model Framework:
A MIMO channel model can be generated from a statistical model based on a modal
representation of the field across the transmitter arrays. Given the maximum radius of
the transmitter arrayRT , the modal order required for the transmitter isMT & ⌈kRT ⌉.
Similarly, for a receiver with maximum radial extentRR, the modal order required is
MR & ⌈kRR⌉.

The channel is generated for a simulated target array geometry withN ′
T transmit elements

andN ′
T × 2MT + 1 configuration matrixJ′

T given by (6.5). The simulated receiver array
geometry will haveN ′

R receive elements withN ′
R × 2MT + 1 configuration matrixJ′

R.

The channel model is generated from the equation:

Hmodel = J′
R A (W ⊙G)BH J′

T
H
, (6.10)

with ⊙ the Schur product, and the matricesA and B the eigenvector matrices of the
receiver and transmitter correlations,

AΛR AH =
1

N

N∑

n=1

HSnHSn
H , (6.11)

BΛT BH =
1

N

N∑

n=1

HSn
HHSn, (6.12)

W is a weighting matrix,

[W2
ij] =

1

N

∑
|AHHSnB|2 (6.13)

andG is a2MR +1× 2MT +1 matrix of unit variance, independent normally distributed
variables.

The modal space matricesHSn and thus channel statistics are generated fromN measure-
mentsH1,H2, . . . ,HN of the channel matrix using:

HSn = J−1
R HnJT

−H , (6.14)

whereJT is the2MT + 1 × NT configuration matrix for the measurement array with
NT > 2MT + 1 transmit elements, andRT is the2MR + 1×NR configuration matrix for
the measurement array withNR > 2MR + 1 receiver elements.

Table 6.1: Algorithmic representation of the proposed statistical channel model utilising spatial
modes. The equations show the generation of the MIMO model for the desired target array con-
figuration, and the analysis of the measured MIMO data to extract the statistical parameters.
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Figure 6.1: Schematic of data path for models comparing the conventional approach with the pro-
posed framework.

NT )2 parameters of the correlation matrixRH. The correlation matrix of the mixing matrix

RH combines the characteristics of the spatial channel with those of the array geometries.

The full statistical model contain redundant parameters which will manifest as transmission

paths with negligible connection strengths.

The modal framework eliminates redundant parameters by eliminating antenna excitation or

receive modes that do not couple well with real spatial fields. This yields the correlation

matrix of the modal mixing matrixRHS
. The modal decomposition is ideally suited to the

physical nature of the problem and provides an efficient parametrisation of the channel [44].

The model makes the further assumption that the eigenvectors ofRHS
can be represented as

a Kronecker product following the approach of Weichselberger [270].

The proposed framework provides the ability to investigatethe characteristics of the MIMO

spatial channel for alternate array configurations. By changing the truncation order, the

number of parameters can be adjusted to meet the desired level of model accuracy. The

modal projection (6.14) provides a linear transformation to separate the antenna geometry

from the spatial propagation model. It is computationally efficient and provides a simple

path to creating a channel model from measured data as depicted in Figure 6.1.

In contrast, the array geometry can be abstracted with a geometric approach. This approach

involves fitting a parameterised set of multipath components to the observed data using tech-

niques such as SAGE [275, 276]. Such an approach is intuitive, but is computationally ex-

pensive and subsequent models of scatterer angle statistics can be complex. Characterisation

of scatterer cluster shapes, distributions and correlations create a nonlinear and non-unique
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parameterisations of the channel statistics. Generally insuch models, as the channel is de-

composed into a set of independent spatial paths, it is assumed that the variation of the gain

along these paths will be independent and uncorrelated [28]. The new proposed model does

not assume that spatial paths are independent, rather the assumption of independence is based

on a more flexible eigenvector representation of the channel. Thus it would be expected that

the new approach would be better able to capture a channel where discrete spatial paths show

some level of correlation.

It is a requirement that the measurement arrays have sufficient elements to ensure the config-

uration matricesJR,JT in (6.5) are well conditioned. This requirement is satisfiedby typical

channel sounding experiments [275–277] with element spacing at or belowλ/2.

The model also has application when one array is under-sampled. If investigating the spatial

channel at a mobile receiver given a fixed sparse base stationarray, the modal decomposition

can be applied to one side. Essentially we replace (6.14) with HSn = J′−1
R Hn and (6.10)

with

Hmodel = J′
R A (W ⊙G)BH . (6.15)

The modal framework provides a general method to transpose channel data for an alternate

sensor configuration by providing a suitable basis with which to interpolate,

H′ = J′
R J−1

R HJ−1
T

H
J′

T
H
. (6.16)

Provided the target (simulated) array is within the confinesof the original volume sampled,

there are no restrictions to the geometry that can be modelled with the framework. The modal

decomposition provides an efficient basis to model the underlying physical wave-field over

the entire antenna array volume.

The modal basis can also be used to extrapolate, however, theerror due to uncertainty in field

prediction increases rapidly beyond the extent of the original array [126].

6.4 Simulation and Validation of New Model

6.4.1 Approach for Model Comparison

In order to validate the proposed model, a set of simulationshas been carried out. To compare

the performance of the model with existing models, it is necessary to have some metric or
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characteristic of model accuracy. We follow a similar approach to that proposed by Ozcelik,

Czink and Bonek [63]. Three different aspects of the model are analysed.

For comparison of models, we use a Monte-Carlo simulation approach. First we consider

the mean mutual information from a set of data obtained from the model to the set of original

data

I = E

{
log2 det

(
INR

+
ρ

NT
HHH

)}
, (6.17)

whereINR
denotes theNR×NR identity matrix,ρ is the average signal to noise ratio and the

expectation is over the snapshots of channel data. This provides a measure of the achievable

capacity of the spatial channel, and is an important property to be preserved by the model.

The channel mean mutual information provides no indicationof the correct structure of the

channel with regards to the number of significant spatial communication modes. To compare

this aspect of the channel model we use a measure of diversity,

D =

(
trace{RH}
‖RH‖F

)2

=

(∑NR×NT

m=1 λm

)2

∑NR×NT

m=1 λ2
m

. (6.18)

The diversity provides a measure of the spread of the eigenvalues of the channel. A higher

diversity corresponds to a channel that has many signal paths of similar strength. A lower

diversity corresponds to a channel with only a few strong signal paths. Higher diversity

generally corresponds to a higher rate of capacity increasewith respect to the signal to noise

ratio.

To consider the ability of the model to capture the finer detail of the channel structure, we can

analyse the effective double directional angular power spectrum. This is the joint distribution

of the angles of departure and angles of arrival for the transmitter and receiver. A good

channel model should be able to capture the finer detail in thedouble directional spectrum.

To consider the effects of the model on the spatial structureof the channel, we can use beam-

forming analysis to view the double directional spectrum ofthe original channel and compare

this with the spectrum obtained from the various channel models. If the full correlation

matrix is available, the Capon beam former provides an estimate of the signal power coming

from each direction to the extent that it can be resolved by the array [63, 207, 209]. By

evaluating the Capon beam former over the range of transmitter departure anglesθT and

receiver incident anglesθR we can obtain the double directional spectrum. The Capon beam
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former is evaluated as

SCAPON =
1

ã
H
R−1

H
a

ã = aT (θT ) ⊗ aR(θR). (6.19)

The steering vectoraT (θT ) represents the set of antenna gains at the transmitter that corre-

sponds to a beam in directionθT . Similarly the vectoraR(θR) is the receive array steering

matrix at the angle of arrivalθR.

For simulations, the data was normalised at each position for an effective 20dB signal to

noise ratio. This matches with [270], and also is a range of operation experienced in many

wireless systems [50].

6.4.2 Description and Validation of Experimental Data

To assess the performance of the proposed model, we use a set of experimental data obtained

from indoor MIMO channel measurements. This data was recorded at Brigham Young Uni-

versity [278] using a wide band MIMO channel sounder with eight elementλ/2 spaced

circular arrays. A sample of the matrices across time and frequency were collated for each

location. From the full data, 48 sets each having 640 channelmatrices was extracted to

represent the channel at different locations.

A requirement of the model framework set out in Section 6.2 isthat the data is characterised

by its second order statistics. We first validate this for theexperimental data which will be

used to test the model. This also serves to provide a baselinefor the performance of the

model – we would not expect any model based on the second orderstatistics to outperform

the use of the complete correlation matrixRH.

Figures 6.2 and 6.3 provide an analysis of the three measuresof model performance for a

complete second order model using the fullRH correlation matrix. It can be seen that the

data is well modelled by the second order statistics. This will serve as a baseline for the

evaluation of the performance of the new model.
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Figure 6.2: Comparison of measured and modelled mean mutual information and diversity. Valida-
tion that experimental data is well modelled by second orderstatistics. This comparison serves as a
baseline for best performance of any second order based model.
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(a) Original Data Spectrum

(b) Model Data Spectrum

(c) Error in Spectra

Figure 6.3: Comparison of angular spectra for the original and second order statistically modelled
data. The spectra are normalised to unity maximum with the colour scale in dB.
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6.4.3 Comparison of Performance of New Model

Using the approach set out in Section 6.4.1 we can compare theperformance of the new

model framework to that of some other channel models. For reference we will use the We-

ichselberger model [270] and the older Kronecker Model [30]. For the simulations, 8 terms

of the modal expansion were used requiring 176 coefficients to represent the model. The

Weichselberger model also required 176 coefficients, whilst the Kronecker model employed

128 coefficients.

The comparison is shown in Figures 6.4 and 6.5. Proximity of the Mutual Information and

Diversity points to the45◦ line indicates the accuracy of the model. Given the similarity

of the models, it is not surprising that the modal framework model has a similar level of

performance to the Weichselberger model. The double directional angular power spectra for

the two models are different, but display a similar level of detail in comparison to the original

spectrum. The Kronecker model has fewer parameters, and as has been observed in previous

works shows an underestimate of capacity and an overestimate of diversity [63]. All of the

models tend to overestimate the diversity.

From this simulation and validation, it is shown that the newmodel framework provides

a good model for the data with only 481 parameters compared with the 4096 parameters

that would be required for the full correlation matrix. The modal framework performance

is comparable with the Weichselberger model which would use736 parameters. However,

the framework offers the additional advantage of being ableto consider the performance of

the identified spatial channel with different array geometries. This is considered further in

Section 6.4.5.
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Figure 6.4: Comparison of the new spatial model framework with conventional statistical MIMO
channel models. The Mean Mutual Information and Diversity are compared for the original and mod-
elled data. The proposed approach has a comparable performance to the Weichselberger model whilst
providing the significant advantage of modelling the channel independent of the array geometry.
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(a) Error in spectrum for
proposed new model

(b) Error in spectrum for
Weichselberger model

(c) Error in spectrum for
Kronecker model

Figure 6.5: Comparison of the error in the angular spectra for proposed spatial model with two
conventional channel models. The spectra are normalised with the colour scale in dB.
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6.4.4 Performance of New Model with Dense Antenna Arrays

A significant advantage of the new model framework is offeredfor dense antenna arrays. In

this case, the effective degrees of freedom is constrained by the spatial extent of the array

and not by the number of antennas. To analyse the performanceof the new model in such

situations we make use of some synthetic data.

To generate synthetic data, an implementation of the channel model developed by the Third

Generation Partnership Project (3GPP) Spatial Channel model ad-hoc working group was

used [77]. Several scenarios were available for this model ranging from a suburban environ-

ment through to a pico-cell environment. The experimental data used in the previous section

was best matched by the pico-cell environment.

Figure 6.6 compares a sample of the experimental data to thatgenerated by the 3GPP Spatial

Channel Model pico cell environment. Both plots represent the evolution of the channel over

2 seconds as the mobile station is moved through a distance of63.5cm. The data is plotted

for 8 received antennas from a single transmit antenna. It isnoted that there is a similar level

of fades, fade duration and antenna correlation in the two data sets.

To simulate a dense antenna array, a 16 element uniform circular array was simulated with

the antenna elements placed one quarter wavelength apart. Acomparison of the experimental

and synthesised antenna arrays is shown in Figure 6.9. Use ofthe modal framework allows

for a significant reduction in the number of parameters over other models.

The 16 element array radius was0.65λ suggesting a truncation order of between 4 and 6 (See

Chapter 2 for discussion). A comparison of the performance of the new model at various

truncation orders is shown in Figures 6.7 and 6.8. The performance of the new model is

comparable to that of the Weichselberger model at the highersuggested truncation order. The

required accuracy can be traded against the number of parameters required by adjusting the

truncation order. For the truncation at orderM = 4 the modal model has half the parameters

of the Kronecker model, yet still provides a better match of the mean mutual information.

The joint angular spectra show the gradual degradation in the representation accuracy of the

spatial channel model as the truncation order is decreased.
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(b) Synthetic Data

Figure 6.6: Comparison of the experimental and synthetic data from 3GPPSpatial Channel model
for a pico-cell environment. Since the simulation is only representative, the data cannot be directly
compared. The experimental and synthetic data exhibit similar levels of fading and correlation.
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Figure 6.7: Performance of the new model with synthetic data for a dense antenna array. The model
allows a significant reduction in the number of parameters based on the essential dimensionality of
the measurement region.
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(a) Original data spectrum

(b) Error in spectrum for
New Model withM = 6

(c) Error in spectrum for
New Model withM = 4

Figure 6.8: Comparison of the error in the angular spectra for differentmodel order. The error in the
model is increased as the truncation order is decreased.
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One Wavelength

(a) Measured Data Array

One Wavelength

(b) Synthetic Data Array

Figure 6.9: Array geometries used for investigation of the use of model for prediction of MIMO
channel. Positions show actual (◦) and predicted (×) sensor locations.

6.4.5 Use of New Model to Model Alternate Array Configuration

The framework presented in Table 6.1 used the explicit notation of JT ,JR andJ′
T ,J

′
R to

represent the measurement sensor array configuration matrices and modelled array configu-

ration matrices. This gives the framework the ability to simulate the use of alternate array

configurations, using the same set of spatial modal statistics captured from the measured

array. To investigate this, we analyse two configurations:-

1. Using the experimental data [278], simulate the performance of a 2 element array,

spaced approximately one wavelength, at the mobile stationwith the full 8 element

uniform circular array at the base station.

2. Using the simulated data, simulate the performance of a one wavelength, 4 element

uniform linear array at both the base station and mobile station.

To provide a comparison for the alternate array configuration with the experimental data, two

pair of antenna from the array with the same spacing and orientation were used. With the

synthetic data, it was possible to simulate the alternate array configuration using the same

spatial channel configuration. The location of the initial and alternate sensor locations are

shown in Figure 6.9.

The ability of the model to predict the characteristics of the spatial channel for the alternate

array configurations is shown in Figure 6.10. It can be seen that the model is able to predict

the mean mutual information with an accuracy better than 10%. The error is slightly larger
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for the experimental data, which is to be expected since the true performance at the simulated

sensor locations is only estimated from an similarly oriented set of actual sensors.

6.4.6 Use of New Model to Optimise Antenna Configuration

As a final example we demonstrate the use of the new model to usereal world data in the

analysis of an antenna configuration optimisation problem.The experimental data is used

to create a model that captures the spatial aspects of the channel. This model can then be

used to investigate the effect of antenna separation at the mobile station on the mean mutual

information.

Fig. 6.11 shows the mean mutual information from a model simulation, as a function of the

receiver element separation. There is a noticeable variation in the shape of the curves due

to differing spatial channel characteristics captured by the model for each instance (posi-

tion) represented in the data. Since the stochastic model iscomputationally efficient, more

complicated array geometries could also be investigated.

For this data set, it is apparent that the optimal antenna separation would be around0.3λ.

Beyond this separation there is little gain in the mean mutual information, and in some cases

a considerable drop. Whilst it would be arduous to perform this experiment in practice, the

proposed model framework provides a means to capture the spatial channel and perform the

configuration optimisation using the model.
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(b) Synthetic Data to Predict4 × 4

Figure 6.10: Prediction of performance of an alternate array configuration. Data from the uniform
circular array is used to create a model and simulate the performance of a uniform linear array within
the measurement region. The array geometries are shown in Figure 6.9.
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Figure 6.11: Use of the model for configuration optimisation. Predictionof performance versus
antenna separation for 8x2 system. Individual traces represent the effect of the spatial channel char-
acteristics, captured by the model, on the optimal antenna separation.
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6.5 Summary and Contributions

The new model proposed creates a framework where the spatialMIMO channel is repre-

sented by coupling between spatial modes of the field at the receiver and transmitter. The

mechanism for moving between the antenna and modal signal domains is provided by the

antenna configuration matrix. This abstraction allows the characteristics of the antenna ge-

ometry to be removed from the model.

A stochastic framework was used to model the internal parameters in the modal space. This

then also allows generation of MIMO channel data for any antenna configuration within a

finite volume. The model represents an efficient parametrisation of the spatial characteristics

of a MIMO channel.

The following specific contributions were made in this chapter:

• Proposed an alternative to multipath parameter estimationfor capturing the character-

istics of a physical propagation environment. The proposedframework avoids making

any assumption on the number and nature of independent pathsthat create the spatial

channel.

• Validated the proposed model through simulation using realexperimental data and

data generated from the comprehensive 3GPP Spatial ChannelModel. The proposed

model was shown to perform at least as well as other comparable models, but offers

the significant advantage of abstracting the antenna array geometry.

• Demonstrated the advantage of a reduced parameter space when using the modal ap-

proach to model a channel in which the number of antennas exceeds the spatial dimen-

sionality of the measurement regions.

• Analysed several example scenarios to demonstrate how the model can be used to

simulate the performance of alternate antenna array configurations.

The proposed model and analysis of this chapter suggests that the modal framework is a vi-

able alternative to double directional discrete path channel models. Since the modal frame-

work efficiently represents the spatial field, the problems of over-parametrisation inherent

in any discrete scatterer path model are avoided. The modal framework captures the spa-

tial characteristics that can be accurately measured in theantenna regions, and the statistical

framework adopted from the Weichselberger model provides asignificant reduction in the

parameter space for the model.

155





Chapter 7

Resolution of Spatial Location from

within a Constrained Region

7.1 Introduction

The previous chapters have had a common theme of investigating the use of continuous

spatial models for signal representation and analysing thelimits of signal processing. The

areas covered have included the questions of finite dimensional approximations and optimal

representation, along with the application areas of direction of arrival estimation and MIMO

channel modelling. This chapter is a continuation of this theme addressing another problem

application area. The work serves to demonstrate how using acontinuous spatial model for

a sensor based problem can lead to a greater understanding ofthe problem of resolving the

spatial location of a wireless source when the observation region is a constrained region of

space.

The problem considered is that of localisation. We considerthe ability of a single receiver to

determine the location of a source. Localisation is intrinsically related to the receiver’s ability

to distinguish sources from different regions in space. Given that a receiver can detect the

field over a bounded region of space, we are interested in studying the ability of the receiver

to use measurements or observations within this constraintto estimate a source position.

This is a divergence from the more commonly studied locationproblem where location is

achieved by a set of co-operating receivers distributed in space. Objects are located within

the convex hull of the receivers using information regarding the time of arrival or power of

the signals at the receivers. In this work, we consider a different problem – that of the ability

of a single receiver to determine the location of transmitting objects outside of the receiver

volume. In a sense, this is an extension of the direction of arrival problem.
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The field of direction of arrival or beam-forming is well established and there are many

results covering the performance of sensor arrays for resolving angle. Chapter 5 presented

some theoretical work on the ability of a sensor array confined in space to determine direction

of arrival. We consider in this chapter a theoretical approach to analysing the ability of a

sensor array to resolve both the angle and distance of a source.

The approach taken is to first consider a simple problem in this area. We consider the case

where only the intensity of the source can be detected over a finite volume. Section 7.2 sets

out the problem formulation to address the questions posed.Some numerical analysis and

investigations are detailed in Section 7.3 to gain an understanding of the problem. Section

7.4 develops some continuous sensor models to determine bounds for the number of distinct

localisation regions. Section 7.5 considers the problem where the complete field information,

intensity and phase, is used for localisation. A discussionof the results and comparison to

some other results in the literature is provided in Section 7.6.

The main contribution of this work is to introduce an alternative approach to considering

the problem of source localisation. The number of distinct source regions for a receiver is

fundamental to the world view and efficient representation of source location that should be

adopted by that receiver. It is related to the measure of information that can be obtained from

the observed field regarding the source location. The introduction of continuous spatial field

models to this problem will help to overcome distractions due to specific sensor arrangements

and geometries. The problem considered is to bound the number of distinct locations that

can be assigned to a source.
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7.2 Problem Formulation

A set ofQ sensors are located at positionsrq ∈ R2 for q = 1, . . . , Q within a radiusR

such that‖xq‖ ≤ R. The sensors produce the measurement vectory = [y1, . . . , yQ]T , where

yq ∈ R, yq > 0 is a measure of the signal strength or intensity of the sourcefield at the

locationxq.

For an arbitrary uncooperative source, there may be no information regarding the power

level transmitted. Assume that the intensity of the signal received is normalised such that it

is unity at the origin. In this sense the problem relates to the ability to detect the location

of a source given that a reasonable signal level is present atthe receiver. In practice, the

ability to detect source movement would decrease with the signal strength and consequently

the source distance.

Given a source at positionx, the normalised intensity received by each sensor will be

yq =
‖x‖

‖x − xq‖
(7.1)

where‖·‖ represents the length of the vector argument. This matches our normalisation and

encapsulates the radial decay of intensity that would be expected in three-dimensional space.

Designate this multidimensional function as a vector

y = f(x) =
[
y1 . . . yQ

]T

. (7.2)

Due to noise, or some other constraint, the receiver is only able to distinguish sets of sig-

nals that differ by a certain threshold. That is the measurementsy andy′ are considered

indistinguishable if

‖y − y′‖2
R =

1

Q

Q∑

q=1

∣∣yq − y′q
∣∣2 < ε2. (7.3)

The scaling by1/Q is incorporated into this norm to normalise for the number ofsensors

present. The norm‖·‖R represents the root mean squared difference for the sensor array.

Given this arrangement, we are interested in studying the ability to determine the location of

the source from such measurements. Specifically the questions to be addressed are:-

• Is there some limit to the number of distinct locations that can be resolved or identified

outside the observation region ?
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• What can we say about the shape of the source regions that can be discerned ?

• How does this depend on the number and arrangement of the sensors ?

7.3 Numerical Investigation of Distinct Localities

7.3.1 Proposed Tiling Algorithm

A first observation is that the number of distinct localitieswill be infinite if the source is

allowed arbitrarily close to the sensor array. This is notedfrom (7.1) that‖f(x)‖R → ∞
asx → xq. With this unbound normalised measurement there will be an infinite number of

distinct zones around each sensor.

Consider the problem of the source and sensors lying in the same two-dimensional plane.

The sensors are located within a disc of radiusR. DefineS as a region excluding the sensor

array being points of normS or greater,

S =
{
x ∈ R

2 : ‖x‖ ≥ S > R
}
. (7.4)

We perform a tiling of the spaceS by constructing a set of pointsP such that any point inS
is not more than a certain measurement threshold,ε, from a member ofP. Formally,

∀x ∈ S ∃ p ∈ P such that ‖f(x) − f(p)‖R ≤ ε. (7.5)

Since we are interested in determining the number of distinct regions, we are looking for the

smallest setP that satisfies this property. We can determine a reasonably small, though not

optimal, setP by commencing with the empty set,P = {∅} and progressively adding points

from S. As points are added to the tiling, we keep track of the regionwhich is withinε of

any point inP,

P =
⋃

x∈P

{x′ : ‖f(x′) − f(x)‖R < ε} . (7.6)

This is shown for a single point in Figure 7.1. We can then add another point from the

set obtained whenP is subtracted fromS which is written asS \ P. This process can be

continued untilS \ P = {∅}. At this point we conjecture that this can be achieved with a

finite number of points inP. This conjecture is proven in Section 7.4.1.
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Figure 7.1: Schematic showing the set definitions for the tiling algorithm used in the numerical
investigations. The sensors are confined to the central region with radiusR. A single pointP = {x} is
selected in the regionS where‖x‖ > S. Around this point, the setP = {x′ : ‖f(x′) − f(x)‖R < ε}
is removed or tiled from the setS.

Whilst the process for selecting the next point inS \ P to add toP can be arbitrary, a

systematic approach can be obtained by selecting the point with minimum radius,

P = P ∪ arg min
x∈S\P

‖x‖ . (7.7)

In this way, the algorithm starts by selecting points on the inner radiusS, and proceeding

outwards. This procedure creates a set of points that is a suboptimalε covering of the setS,

however we can be sure that (7.5) will be satisfied.

This process is shown over a small region ofS in Figure 7.2(a) with the addition to the set

P shown for each of the four points inP for this tiling. The second part, Figure 7.2(b),

shows the boundaries of the regions for a sensor measurementof half that used in the tiling

algorithm. These regions do not overlap and in some cases just touch. This is a consequence

of the fact that the norm used for determining a unique location, (7.3), is a valid norm and

satisfies the triangle inequality.

Thus it can be seen that while the setP is a suboptimal covering ofS at levelε, it is an

insufficient set of points to coverS at levelε/2. If we calculate the number of points required

for a tiling at levelε, this will represent the number of regions for some optimal tiling at a

smaller level betweenε/2 andε.

Formally, defineNε as the minimum integer for which there exists a set withNε elements that

is a covering ofS at levelε. The number of elements in the tilingP will be an upper bound
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(a) Additional coverage ofS for eachP .
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(b) Regions for half of the sensor error.

Figure 7.2: Demonstration of the tiling algorithm used to partition thespace into resolvable locations.
The simulation uses 8 sensors with unity radius and a minimumradius forS of 1.5. The threshold for
the distinguishable locations wasε = 0.2. The first figure shows the tiling regions with‖y − y′‖R =
‖f(x) − f(x′)‖R ≤ ε for each of the four points added to the tiling. The second region shows the
boundary of the region for‖y − y′‖R ≤ ε/2.
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Figure 7.3: An example of the distinguishable location regions for an 8 element uniform circular
array or radiusR = 1. Points are plotted for radii greater thanS = 1.5. The signal is normalised
to be unity at the origin. The points correspond to a minimum spacing ofε = 0.1 with the contour
shown representingε/2. There are 216 distinct localisation regions.

for Nε and a lower bound forNε/2. The tiling algorithm is not likely to be the algorithm

used to partition the space for a practical application, however it serves to provide an upper

bound.

7.3.2 Numerical Examples of Location Tiling

The numerical analysis is carried out using a fine grid of points to represent the set member-

ship ofP. Whilst this is not an accurate numerical method, it is suitable for investigating

the flavour of the problem. Tracking the exact boundary ofP would be an arduous task. A

suitable level of detail is obtained by making the grid size small enough to reveal the smallest

regions near the region boundary with radiusS.

Figure 7.3 shows a plot of such a point set obtained for an 8 element uniform circular array
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Figure 7.4: Comparison of the discernable region shapes for an 8 and 16 element UCA. The regions
are fairly insensitive to the number of sensors, becoming almost identical forR > 2. The regions
close to the array are slightly smaller. A complete tiling for the 16 element configuration would have
228 distinct regions.

with radius ofR = 1 with minimum radiusS = 1.5 for a value ofε = 0.1. The boundaries

show on the plot represent the region around each point for which the level of distinguishable

‖y − y′‖R = ε/2. These regions do not overlap since the distance between anytwo points

in the tiling is at leastε, ‖y − y′‖R ≥ ε, and the norm as defined in (7.3) is sub-additive.

The regions become densely packed near the sensor array and grow in size further away from

the array. Beyond the limits shown in the figure, all points become indistinguishable with

one region covering the entire range ofS beyond the regions shown. Thus the regions shown

represent a complete tiling of the spaceS.

With the same configuration as the previous example, the sensor geometry is changed to a

16 element uniform circular array. The shape of the localisation regions for the two different

array geometries are compared in Figure 7.4. The characteristics of the regions are not overly

sensitive to the number of sensors. While there is some variation in the region size and shape
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Figure 7.5: An example of the discernable location regions for an 8 element array with random sensor
location on the circle with radiusR = 1. The tiling covers points with radius greater thanS = 1.5.
The density of the indistinguishable regions varies with the sensor arrangement, and the total number
is reduced to 161.

closer to the sensor array, any difference becomes negligible once the radius exceeds twice

that of the sensor array.

Since the larger number of sensors offers an improved resolution close to the sensor array,

the total number of distinguishable regions is increased. For the 16 element UCA the tiling

has 228 points compared with 216 points for the 8 element UCA.

If a more random distribution of sensor locations is considered, the distortion in the region

shapes becomes more apparent as shown in Figure 7.5. Region sizes are smaller closer to the

clustered sensors and become larger for the orientations where the sensors are further apart.

While the region shapes have changed, the total number of distinguishable regions has not

changed significantly. For the example presented, the tiling consists of 161 points compared

with 216 for the 8 element uniform circular array.
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Figure 7.6: Comparison of the discernable location regions for two different detection norms. The
threshold was selected so the regions are approximately thesame size. The maximum sensor differ-
ence norm regions show abrupt corners and grow faster with increasing radius than the RMS norm.

The uniform circular array has desirable properties of symmetry and maximal minimum

inter-element spacings. It is reasonable to expect that thetiling for the uniform circular

array would provide an upper bound for the number of points ina tiling of an arbitrary array

geometry confined to the same radius.

The previous examples used a measure of unique location detection, (7.3), being the root

mean squared (RMS) of the difference in the intensity at the sensors. If the sensor measure-

ments were in some way quantised, the indistinguishable region would be that for which the

largest change in any sensor value was less than some threshold. This gives the norm

‖y − y′‖R′ = max
q

|yq − y′q| < ε′. (7.8)

Figure 7.6 compares the region shapes of this norm to the previous norm (7.3). The general

characteristics of the regions are similar, after appropriate scaling. For the example pre-

166



7.4 Intrinsic Limits of Resolving Spatial Location

sented, a value ofε′ = 2ε create regions of a similar size. The new norm creates regions

smaller than the RMS norm close to the sensor array where the proximity to one sensor

will dominate. Further away, the new regions are larger since the contribution from multiple

sensors is not considered in the norm. The region shapes for the single sensor show abrupt

corners where there is a change in the sensor dominating the norm.

Although the problem has been formulated with discrete sensors, the examples show that

beyond some limit the number of sensors is not significant to the ability to resolve the source

location. A field across the measurement region is describedby (7.1). This constrains the

variation of the field across space in a similar way to the waveequation constraint previously

studied in this thesis. The following sections will investigate this further by adopting a

continuous spatial model of the signal space to address the questions posed in Section 7.2.

7.4 Intrinsic Limits of Resolving Spatial Location

The previous numerical examples demonstrated that distinguishable region size increased

with the source distance. As the source is moved away, the intensity measured by each

sensor, (7.1), will approach unity. This suggests a “horizon” beyond which it is not possible

to resolve the location of a source with any certainty under (7.3).

7.4.1 Localisation Horizon

Consider the general case ofQ sensors within a region of radiusR, and the measurement

condition (7.3). A sufficient condition for all sources located at a distanceH or greater to be

indistinguishable at levelε will be

‖1 − y‖2
R =

1

Q

Q∑

q=1

(1 − yq)
2 ≤

(
1 − H

H −R

)2

=

(
R

H − R

)2

≤ ε2

H ≥ R

(
1 +

1

ε

)
(7.9)

where the measurement vectory has elementsy = f(x) = [ y1 . . . yQ ]T .

The previous examples whereR = 1 andε = 0.1 will have a horizon with radius less than

11. This is a strict upper bound for the horizon based on a worst case geometry. If the sensors
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are spread evenly with radiusR then

‖1 − y‖R ≈ 1

2π

∫ 2π

0

(
1 − H

H − R cos θ

)2

dθ =
1

2π

∫ 2π

0

(
R cos θ

H −R cos θ

)2

dθ

≤ 1

2π

∫ 2π

0

(
R cos θ

H − R

)2

dθ =
1

2

(
R

H −R

)2

≤ ε2 (7.10)

which can be simplified to yield the result

H ≥ R

(
1 +

1√
2ε

)
. (7.11)

This provides a superior approximation to (7.9) when the sensors are evenly spaced on the

edge of the region. Figure 7.7 demonstrates the bound and approximation for a uniform and

skewed distribution of sensors. For the uniform array, the actual horizon is approximately7

units whilst the approximation is8 and the bound is11 units. For the skewed distribution the

actual horizon is seen to approach the bound in some directions.

7.4.2 Number of Distinct Localities

The numerical examples from Section 7.3 demonstrated that afinite number of points tiled

the spaceS external to the sensor array. Since the regions are of finite size and need only fill

the space from radius,S, to the horizon,H <∞, it should be possible to bound the number

of distinct localities. This provides useful information,for example the amount of storage or

bits required to specify the source location as determined by the receiver.

A first approximation for this bound can be obtained from the space of measured signals.

From (7.1) the sensor values are bounded, with the extremum occurring for a source with

radiusS,

S

S +R
≤ yq ≤

S

S −R
∀ yq q = 1, . . . , Q. (7.12)

Thus we can consider theQ-dimensional vectory = f(x) = [ y1 . . . yQ ]T as lying in the

Q-dimensional hypercube,

y ∈
[

S

S +R
,

S

S −R

]Q

. (7.13)

A grid of hypercubes covering this space with stridea = 2ε/
√
Q will ensure every measure-

ment lies withinε of a cube centre. The number of regions,N , is bounded by the number of
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Figure 7.7: Comparison of the actual horizon with the bound and approximation for array withR =
1, Q = 8 andε = 0.1. The bound (7.9) holds for all sensor geometries. The approximation (7.11)
assumes a regular sensor geometry and approximates the uniform circular array (UCA) horizon.
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Q-dimensional cubes to tile the space,

N ≤
((

S

S − R
− S

S +R

)
1

a

)Q

=

(
SR

S2 −R2

√
Q

2ε

)Q

. (7.14)

Whilst this shows a finite bound, it is extremely conservative. For the exampleR = 1,

S = 1.5, Q = 8 andε = 0.1, the bound isN < 7 × 109. From the numerical investigation

(Figure 7.4), we know thatN < 228. The bound (7.14) grows with the number of sensors,

however Figure 7.4 showed the regions are fairly independent of the number of sensors

beyond some point. The bound is not particularly useful.

Since the bound is based on the sensor values being independent, it does not take into account

the constraint of the continuous field across the region. Thefield cannot vary arbitrarily and

must satisfy the (7.1). Only a small subset of the space in (7.13) can represent valid source

locations. The problem is to find the number of points for anε covering of this subset.

As an alternate approach, noting that the region sizes grow with increasing radius, atS the

smallest region can be found from assuming a worst case of allsensors closest to the source,

‖y − y′‖2
=

1

Q

Q∑

q=1

(yq − y′q)
2 ≤

(
S

R− S
− S + dS

R− S − dS

)2

≤ ε2 (7.15)

for two locations with radiusS andS + dS. This leads to the bound

‖x − x′‖ = dS ≤ ε(S − R)2

R− ε(S − R)
. (7.16)

For the example withR = 1, S = 1.5, andε = 0.1 this corresponds to a radius of ap-

proximately0.03 consistent with the plots in Figure 7.4. The number of regions of this size

covering the region fromS toH will be

N =
π(H2 − S2)

πdS2
=
R2(1 + 1

ε
)2 − S2

ε2(S−R)4

(R−ε(S−R))2

<
R2 1

ε2 (R− ε(S − R))2

ε2(S −R)4

<
R4

ε4(S − R)4
. (7.17)

This provides a bound on the number of distinct regions that is independent of the number

or orientation of the sensors. For the previous example, thebound isN < 1.6 × 105. Whilst

this is a lower bound than (7.14) it is still very conservative since the growth in the region

size with radius is not taken into consideration.
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7.4 Intrinsic Limits of Resolving Spatial Location

7.4.3 Application of Continuous Spatial Model

Following the approach used previously for continuous spatial models, we can derive a nat-

ural set of basis functions to represent the field in the measurement region. Whilst the exam-

ples presented have considered two-dimensional space, we develop the continuous frame-

work for the three-dimensional localisation problem. For asource at positionx and the

sensor located atxq, the fundamental solution of the Helmholtz equation can be expanded

( [91] Theorem 2.10)

eik‖x−xq‖

‖x − xq‖
= ik4π

∞∑

n=0

n∑

m=−n

h(1)
n (k ‖x‖)Y m

n (x̂)jn(k ‖xq‖)Y m
n (x̂q) (7.18)

whereY m
n (·) are the spherical harmonics defined on a unit vector argument, jn(·) is thenth

order spherical Bessel function of the first kind, andhn(·) is thenth order spherical Hankel

function of the first kind. The wave numberk = 2π/λ is related to the rate of change of the

wave phase across space.

For the problem being considered, the sensors are only sensitive to the intensity of the field.

This can be achieved by considering the limit of the fundamental solution ask → 0. We can

then consider small argument approximations for the spherical Bessel and Hankel functions,

jn(z) =
zn

1 · 3 · · · (2n+ 1)

(
1 +O(z2)

)
z → 0 (7.19)

h(1)
n (z) =

1 · 3 · · · (2n− 1)

izn+1

(
1 +O(x2)

)
z → 0. (7.20)

Substituting these into (7.18) and adding the normalisation (7.1) we obtain

yq =
‖x‖

‖x − xq‖
=

∞∑

n=0

n∑

m=−n

4π

(2n+ 1) ‖x‖nY
m
n (x̂) ‖xq‖n Y m

n (x̂q). (7.21)

We are interested in the case where the source is some minimumdistance from the receiver,

‖x‖ > S > R. The signal observed by the receiver is constrained to‖xq‖ ≤ R. Using this

we can write

yq =

∞∑

n=0

4πRn

(2n+ 1) ‖x‖n

n∑

M=−n

Y m
n (x̂)βm

n (x̂q) βm
n (x̂q) =

‖xq‖n

Rn
Y m

n (x̂q). (7.22)

Since the sensor region is constrained, the basis functionsβm
n will be bounded. The coeffi-

cients decrease exponentially at a rate related to the ratioof the receiver and source radius

(R/ ‖x‖)n. An expansion of the form (7.22) will be essentially finite dimensional.
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Chapter 7 Resolution of Spatial Location from within a Constrained Region

From the problem definition in Section 7.2, we know the problem has only two degrees of

freedom. The field generated by a source is uniquely specifiedby the source position, which

for the two-dimensional problem studied has two degrees of freedom. The problem lies in

finding a representation of the field which reflects this dimensionality and also allows us to

easily determine the number of distinguishable fields.

Consider the summation identity for the spherical harmonics, ( [91] Theorem 2.8)

n∑

m=−n

Y m
n (x̂)Y m

n (x̂q) =
2n+ 1

4π
Pn(cos θ) (7.23)

wherePn is the Legendre function andθ is the angle between the directions ofx andxq.

Using this in equation (7.21) we obtain,

yq =
‖x‖

‖x − xq‖
=

∞∑

n=0

Pn(cos θ)
‖xq‖n

‖x‖n . (7.24)

Since|Pn(cos θ)| ≤ 1 [279], the terms contributing toyq will decrease exponentially at least

as fast as(R/S)n. This expansion is not a basis function expansion since the argument of

Pn(cos θ) is dependent on both the source and receiver position.

7.4.4 Reflection in the Circle

Consider another approach to the problem where the sensor values are normalised

‖y‖R =
1

Q

Q∑

q=1

y2
q = 1 (7.25)

and the distance between two measurements is calculated as the root mean squared sensor

value 7.3). This normalisation is equivalent to having a unit average signal intensity across

the array independent of the source distance.

If the sensor is confined to the circle‖xq‖ = R, then for each position outside of the sensor

array, there is an equivalent position inside. This can be observed by considering the geom-

etry of the problem as shown in Figure 7.8. It is evident that these two points will lie on the

same line extending from the origin of the circular array. From the radial source function

(7.1) and normalisation (7.25) it can be seen that the measurements for pointsx andx′ will

be equivalent when

‖y − y′‖R =

∥∥∥∥
f(x)

‖f(x)‖R

− f(x′)

‖f(x′)‖R

∥∥∥∥
R

= 0. (7.26)
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O xx′

Figure 7.8: Geometry for the reflection of the location regions inside the uniform circular array.

Since each measurementyq scales with the reciprocal of the distance between the source and

sensor, this implies that the distances between the locationsx andx′ and any two points on

the circle must be in the same ratio. We select two points, onebeing the intersection of the

line extending from the origin throughx andx′, and the other at an arbitrary angleθ. Using

the law of cosines for the associated triangles,

‖A− x′‖
‖B − x′‖ =

‖A− x‖
‖B − x‖

R− x′√
R2 + x′2 − 2Rx′ cos θ

=
x−R√

R2 + x2 − 2Rx cos θ
. (7.27)

This gives the quadratic equation to solve for the radiusx′ of the pointx′ as

x′2x cos θ + x′
(
x2 cos θ − R2 cos θ +R2

)
−R2x cos θ − xR2 = 0 (7.28)

for which it can be shown thatx′ = R2/x.

Thus each point in the regionS is mapped into the finite region bounded by the circular array

with radiusR. This is convenient since the unbounded regionS maps to a simple bounded

region.

Figure 7.9 shows the regions of distinct localisation for the case of a uniform circular array

with R = 1, Q = 8, S = 1.5 andε = 0.05. For each distinct region in the spaceS there

is a corresponding region within the array. Furthermore, the corresponding regions within

the circular array are all approximately the same size. Thisprovides a bounded region with

two degrees of freedom across which the distance between regions of indistinguishability is

relatively constant.

To determine the smallest region size, consider a region inside the circle at the reflection of
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Figure 7.9: Reflection of the space of distinct localities for the uniform circular array. For each point
outside the array, there is a corresponding point, resulting in the same measurement vector, located
inside the array.

radiusS. For two points at radiusx andx′, the detected signal difference will be

‖y − y′‖2
R ≈

∑Q
q=1

(
1√

x2+R2−2Rx cos θq

− 1√
x′2+R2−2Rx′ cos θq

)2

∑Q
q=1

1
x2+R2−2Rx cos θq

(7.29)

where the approximation arises from the normalisation (7.25) being applied equally to both

observations. This is valid for small perturbationsx ≈ x′. By numerical inspection, for the

case ofR = 1, S = 1.5 andε = 0.05, the minimum region size is approximately0.015. This

is consistent with Figure 7.9.

The reflected regions inside the circle will fill the region from the origin to a radius of1/S.

This is a finite area for which we can place a bound on the numberof reflected regions with

the smallest region size. This is independent of the number of sensors. For the example

given this bound isN < 2000.
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The simulations for the uniform circular array with signal intensity normalisation in Figure

7.9 consisted of 453 points in the tiling. This bound obtained by considering the reflected

regions is within an order of magnitude of this result.

Whilst this approach leads to the best matching bound, it is specific to the case of a uniform

circular array with the intensity normalisation. As can be seen from the figures, the size

and number of distinct regions is comparable, thus this bound gives some indication of the

number of localities for the original problem.

7.5 Localisation with Phase Coherent Receiver

The problem considered initially was the ability to localise a source given a receiver was

only able to detect the field amplitude or intensity. This corresponds to the practical situation

of processing a set of received signals without coherent phase detection across the array

region. It was anticipated that this would be a simpler problem than considering the complete

field information. However, the work to determine an appropriate continuous basis function

expansion for the field observed in the sensor region was not successful.

Consider a configuration where the receiver has access to thefield amplitude and phase

across the sensor region. The phase information will improve the ability to resolve the di-

rection of arrival and distance through the direction and curvature of the wavefront passing

through the sensor region.

Assuming the amplitude and phase of the source is normalisedat the origin, the signal model

will be

yq =
‖x‖ ej2π‖x−xq‖

‖x − xq‖ ej2π‖x‖
. (7.30)

Figure 7.10 shows the distinguishable region tiling for thecase of a circular array withR = 1,

Q = 8, S = 1.5 andε = 0.2. This can be compared to Figure 7.3 which considered the

same configuration without phase information. In Figure 7.10 the space is more segmented

in angle and the radial extent is comparable even though the detection threshold has been

doubled.

For a distant source, the normalised field amplitude across the sensor region will be unity.

For a continuous uniform circular array, the signal difference introduced by two distinct
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Figure 7.10: Distinguishable location regions using amplitude and phase information for a UCA
R = 1, Q = 8, S = 1.5 andε = 0.2. Compared to Figure 7.3 the ability to resolve angle and
distance is significantly improved.

directions of arrival separated by an angleφ will be

1

2π

∫ 2π

0

∣∣ejkR cos θ − ejkR cos(θ−φ)
∣∣2 dθ < ε2. (7.31)

For the value ofε = 0.2 in Figure 7.10, the value ofφ that achieves the bound (7.31) is

approximately2.5◦. This corresponds to 144 distinct angular regions. This is consistent with

the results presented from the numerical tiling in the figure.

The natural basis expansion for the three-dimensional narrow-band field was presented pre-

viously (7.18). With the sources at a distanceS > R this expansion can be truncated to a

finite dimensional representation with(N + 1)2 terms whereN ≈ kR. This result has been

presented in other works [80] and is a generalisation of the two-dimensional case discussed
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in Chapter 21. The sensor signals can be written

yq =
‖x‖

‖x − xq‖
=

∞∑

n=0

n∑

m=−n

αm
n β

m
n (xq) βm

n = jn(k ‖xq‖)Y m
n (x̂q). (7.32)

For this example there will be(N + 1)2 = 49 degrees of freedom. However, the valid

coefficients for a normalised point source will be constrained to

αm
n =

ik4πh
(1)
n (k ‖x‖)Y m

n (x̂)

h
(1)
0 (k ‖x‖)

. (7.33)

By definition this is a two-dimensional manifold. The uniquedetermination of locations will

be related to a weighted distance between the vectors ofαm
n coefficients. Thus the problem

of determining the number of unique localisation regions would be related to determining

the area of this manifold in an appropriately scaled space.

In general, the ability to resolve the distance of a source given measurements over a finite

region is rather limited. As could be seen in Figure 7.10, theangular resolution provides a

more numerous division of the space than the range resolution.

1The problem formulation was for a two-dimensional observation region with the sources lying in the same
plane. However, the fundamental solution for three dimensions was used, (7.1), with the field intensity varying
with the reciprocal of the radius. The wave equation in two dimensions permits a fundamental solution where
the field intensity varies with the square root of the source radius. Whilst this is not a problem when considering
general multipath fields and far-field source distributionsas in the previous chapters, it is significant in the
determination of the distinct localisation regions in the vicinity of the sensor array.
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7.6 Discussion and Further Ideas

The distance from source to sensor can be approximated by

‖x − xq‖ =

√
‖x‖2 + ‖xq‖ − 2 ‖x‖ ‖xq‖ cos θ

≈ ‖x‖ − ‖xq‖ cos θ +
‖xq‖2

2 ‖x‖ sin2 θ (7.34)

whereθ = θx − θxq is the angle between the source and sensor directions. For a uniform lin-

ear array, this equation is quadratic in the sensor element number and is sometimes referred

to as the Fresnel approximation. For sources in the Fresnel region where (7.34) is a reason-

able assumption, this can be used to simplify the signal model. A further simplification can

be made to neglect the signal intensity. If the received signal is normalised, the signal model

becomes

yq = e‖xq‖ cos θ+‖xq‖
2 sin2 θ/2‖x‖. (7.35)

This approach has been used to create an algorithm for passive localisation of near field

sources [280].

It is a common assumption that sources beyond a certain distance appear as far-field sources

with a planar wave front across the sensor array [281, 282]. This is a similar concept to

the localisation horizon introduced in Section 7.4.1. For auniform linear array of length

2R and a maximum phase variance ofπ/8 radians over the array, the far-field distance is

8R2/λ. This distance will increase with increasing frequency of the narrow-band signal. This

contrasts the intensity only horizon (7.9) which was frequency independent. This implies that

as the wavelength decreases, the signal phase dominates thesize and shape of the localisation

regions. This is consistent with the assumption ofk → 0 for the field intensity expansion

(7.21). For the example presented in Figure 7.10 the effective far-field distance would be

around8 which is consistent with the numerical analysis.

The size of a sensor array for which the phase information will dominate localisation can be

determined by considering (7.9)

8R2

λ
> R

(
1 +

1

ε

)
⇒ R >

λ

8

(
1 +

1

ε

)
. (7.36)

For the case considered in the examples, this corresponds toa radius of around1.4λ. Thus

in the example there is still some contribution from the intensity information. Figure 7.11

compares the distinguishable regions for the case of phase only and phase and intensity
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Figure 7.11: Comparison of localisation with phase only and complete field information. Analysis
for a UCAR = 1, Q = 8, S = 1.5 andε = 0.2. The regions with intensity information are slightly
smaller. The regions beyond a radius of8 are open ended.

measurements. The regions with both phase and intensity areslightly smaller. It can also be

seen that the regions at a radius beyond8 are extended to cover all radii beyond this.

The Cramér-Rao bound for passive range estimation is [283]

σ

‖x‖ ≥
(√

10

2π

)(
λ

4R2

)
SNR−1/2 (7.37)

which suggests that the regions of uncertainty will grow linearly with the radius of the source.

This is consistent with the partitioning of the reciprocal space introduced in Section 7.4.4.

The problem of distinct localisation regions is particularto the way in which a receiver

will view the electromagnetic environment in which it resides. Given a finite measurement

resolution, it is apparent that there will be a fixed and finitenumber of distinct locations

to which a source could be associated. Beyond some distance,it becomes impossible to

determine the source range accurately.
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7.7 Summary and Contributions

This work has detailed an attempt to analyse the number of distinct regions for a source

that can be identified by a sensor array constrained to a finitevolume. In essence, this

problem is one of mapping the world, as viewed by the sensor array, to a set of discrete

observable regions. The problem was addressed in the context of analysing only the intensity

information obtained from the field, with the incident field considered to have unit power at

the sensor origin.

The following specific contributions were made in this chapter:

• Demonstrated, through numerical analysis, that there willbe a finite number of distinct

location regions extending from outside the sensor array toan arbitrarily large distance.

• Presented an analysis of the sensor signal space and constructed a formal proof of the

existence of a horizon radius beyond which all source locations will appear indistin-

guishable. This horizon is dependent on the radius of the sensor array and the detection

threshold.

• Developed an analytic bound for the number of distinct locations that can be resolved.

Since the field will be correlated over the sensor array, using an argument related to

the number of distinct measurements without reference to the signal model produces a

conservative bound for the number of distinct regions.

• Derived a tighter bound for the specific case of a uniform circular array based on a

geometrical reflection argument and the regular tiling of a finite space. This bound is

within an order of magnitude of the results obtained from thenumerical investigations.

• Demonstrated that the addition of phase information provides a significant advantage

in the ability to resolve both the direction of arrival and distance of a source.

Generally angular resolution is superior to range resolution. If intensity information is only

available, beyond some radius, all sources will appear to belocated in the same region of

uncertainty. Where intensity and phase information is available, at a similar distance, range

measurement becomes uncertain whilst the direction of arrival resolution remains effective.

The solutions and investigation of the problems posed was facilitated by considering a con-

tinuous model of the spatial field rather than by consideringthe signal vectors from a specific

sensor array configuration.
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Chapter 8

Conclusions and Further Research

8.1 Overview of Contributions

The contribution of this thesis is to provide the development and application of continuous

spatial models to specific signal processing problems for multiple antenna systems. Conven-

tional MIMO signal processing would model the system as a network with a discrete set of

inputs and outputs. However, in practice, the antenna must reside in a physical space. The

antennas interact with and detect a continuous electromagnetic field across the volume of the

arrays. A level of correlation is to be expected due to the inherent nature of electromagnetic

wave propagation.

A continuous model for the spatial field provides a way to incorporate the constraints of the

wave equation into the signal processing framework of a communication system. This leads

to improvements in the understanding and performance of thesignal processing required.

For example, the degrees of freedom of a spatial field does notgrow with the volume of

antenna region, but rather with the surface area of the boundary. In two dimensions this is

a linear growth with the region radius, while in three dimensions the growth is quadratic.

This is one order lower than the potential growth of the volume, and thus the number of

antennas that could be placed in the region. Chapter 2 provided a greater understanding of

the effective dimensionality of a spatial field, which is related to the point of diminishing

returns for system performance as the number of antennas is increased. Chapter 3 presented

some specific results related to the representation and dimensionality of a multipath field

with restricted angles of arrival.

Given the continuous spatial model and its effective dimensionality, it is useful to understand

the optimal basis for representing fields across that region. In Chapter 4, an angular domain
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representation was introduced as an efficient way of characterising a random multipath field.

Analysis of this representation provided a means to determine the optimal representation.

Although this is informative, the basis functions obtainedare nontrivial, transcendental, and

useful only for the specific problem configuration. In practice, it is likely that the use of the

general basis for a circular or spherical region would serveas an adequate approximation of

the optimal basis.

The idea of a continuous spatial model is also useful in determining fundamental limits to

system performance. A receiver will usually operate withinsome spatial constraint. Given

this, there is a limit to the ability of a receiver to resolve the direction of arrival of a source.

This problem was studied in Chapter 5. Additionally, a receiver can determine the direction

and distance of a source. This problem was studied in Chapter7. Considering the continu-

ous spatial field, rather than discrete sensor measurements, this leads to some performance

bounds for such position estimations.

Continuous spatial models incorporating the wave equationconstraint provide a parsimo-

nious representation of the wireless communications channel. Chapter 6 provided an appli-

cation of the modal framework to the MIMO wireless channel. This was used to simulate

measured channel data and the performance of the new model compared favourably with

existing models whilst using a lower order parameterisation.

The research work contained in the thesis is a contribution towards developing ways to in-

corporate the physical constraints of space and wave propagation into models for multiple

antenna systems. Some of the areas investigated in the course of this thesis were not boun-

tiful. It is apparent that a simple approach to considering the discrete port system with

arbitrary statistics can be quite robust, and the complexity added by considering the contin-

uous spatial models is not justified in practice. The assumption of simple antenna sampling

and radiation is also challenged by the complexities of practical antenna. However, the study

of the continuous spatial field is useful for determining some overall limits and bounds on

performance.

As systems use higher numbers and smaller antennas, the ideas of continuous sampling and

interaction with the spatial field becomes more important. This thesis is a contribution to-

wards the treatment of space as a structured medium that doesnot offer unlimited diversity

as more signal paths are introduced. Compact MIMO systems must consider the spatial

constraints imposed on the receiver and transmitter to determine and achieve optimal perfor-

mance levels.
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8.2 Open Problems and Further Research

In this section some ideas for further work and developmentsare presented. These are the

open problems and conjectures that have been identified during the course of developing this

thesis.

8.2.1 Relaxation of Narrow-band Assumption

In the representation of the multipath field, this work adopted the narrow-band source as-

sumption, and therefore the results relate to a narrow-bandfield. The time evolution of the

field u(x) will be u(x)ejωt for the narrow-band frequencyω = 2πf . This narrow-band

assumption conveniently removes both time and frequency from our analysis allowing the

investigation of the spatial aspect of the signal dimensionality.

To consider the dimensionality of a signals over space, timeand frequency, we can assume

independence of the results and scale the results of this work by 2WT , as was suggested

by [84]. However, the correct approach is to consider the complete wave equation

△u(x, t) − 1

c2
∂2

∂t2
u(x, t) = 0 (8.1)

which links time, space and implicitly frequency. A formal development of the dimension-

ality of a signal observed over a finite duration across a bounded domain and concentrated

in some finite bandwidth remains an open problem.

It is conjectured that for the case of2WT ≫ 1 and2kR ≫ 1 the product of the spatial and

bandlimited dimensionality is appropriate and asymptotically tight as4kRWT → ∞. Fur-

ther study of this problem would have application to achieving maximum spectral efficiency

in a spatial wireless communications system.

8.2.2 Impact of Using Suboptimal Spatial Basis Functions

Starting with the problem definition of detecting or exciting a multipath field, we typically

know the antenna geometry or shape of the region over which wecan interact with the

field. In some cases there will be additional a priori information regarding the scattering

environment and thus the expected angular power spectra. The framework developed in

Chapter 4 set out the procedure to determine the optimal basis functions to allow truncation

of the infinite dimensional multipath field to a finite dimensional representation. However, in
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a practical signal processing context, we may choose to adopt and utilise the standard basis

set for a circular or spherical region and uniform power spectra.

A subject that would warrant further investigation is the impact of adopting the standard

basis set over the optimal representation. Given the complexity and transcendental nature

of the functions for an arbitrary region, it is worth considering the cost of adopting the

simpler expression consisting of the Bessel functions and harmonic exponentials. If the

internal signal processing is based on the generic basis functions, to achieve the same error in

truncation, a larger number of terms will be required. This will cause an increase in storage,

computational load and processing error1. However, the ability to utilise efficient algorithms

based on the structure of the generic basis set may offset this cost. For example, it is possible

to use a similar approach to the fast Fourier transforms for matching and convolution on the

sphere [199].

To put this idea in context we return to the example of bandlimited functions presented in

Section 2.2 and the Slepian series introduced in Section 3.5. For any bandlimited non peri-

odic function, the optimal basis functions are related to the prolate spheroidal wave functions.

This has been developed for both the continuous [142, 159] and discrete case [167]. How-

ever, in practice these are rarely used. The general approach is to consider a segment of the

signal, window it to avoid edge artifacts and use the harmonic exponentials of the standard

Fourier transform. Whilst this approach is not optimal, in most engineering applications it

is sufficient and facilitated by a larger set of resources andwider familiarity amongst practi-

tioners. The cost in most cases is a small drop in performance, easily compensated for by a

slight increase in sampling rate or signal to noise ratio. Insome applications this is not the

case and system performance can be fundamentally limited bythis oversight [169].

The Fourier basis becomes asymptotically efficient as the dimensionality of the signal space

increases. Thus it is conjectured that the use of a priori information to shape the basis func-

tions becomes more important in the case of a low dimensionality. In small mobile devices,

at 2.5 Ghz the dimensionality of the covered field is of the order of 4to 16. It follows that

understanding and use of the optimal basis functions will beadvantageous in such systems.

Part of this thesis has considered the existence, construction, characterisation and use of the

optimal basis set for the spatial multipath field. An open problem is to determine the trade

off between the benefits gained from using a priori information and the optimal basis against

the added system complexity.

1For example, in any digital implementation, a fixed word length for representing values will lead to round-
ing errors. A larger number of parameters and dimensions will increase the required number of computations
for any given result and thus increase the processing noise level.
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8.2.3 Parametric Spatial Basis Functions and Approximations

Following on from the previous section, a valuable goal for additional research would be to

determine some parametric families of functions that can beused to approximate the optimal

basis set. In Chapter 3 an approximation for the basis functions for a uniform angular dis-

tribution over a restricted sector was developed. Similar results should be possible for other

configurations of practical importance. In this way, if the use of the optimal basis function

is advantageous, a constructive approximation can be employed rather than resorting to a

numerical solution of the associated eigenequation.

It is also possible that there exists some simple closed formanalytic solutions for the an-

gular domain representation of the multipath field for specific angular spectra,P (θ̂), or

region shapes,Λ. In developing this thesis, some time was spent in this endeavour, unfortu-

nately with no compelling results. As a motivation, it should be noted that the trigonometric

functionssin(·) and cos(·) also naturally arise from the solution of a similar eigenequa-

tion. Furthermore, the Bessel functions have an impressivepedigree and extensive develop-

ment [163].

With the prevalence of powerful computers, it is easy to movefrom analytic investigations in

favour of numerical studies. However, for the intrepid mathematical explorer, there is a rich

history in Fredholm equations and Laplace equations and an enormous set of results which

could be applied to this problem.

8.2.4 Bessel Function Bound and Dimensionality

The work of Section 2.5 conjectured the bound for the Bessel function

Jn(z) <
1

2
n−1/3

(z
n

)n2/3

n ≥ 1. (8.2)

Bessel functions have applications in a wide range of applied mathematics, and thus such

bounds are an area of current and ongoing interest [284]. As such it would be valuable to

further investigate and seek a proof of this or another tighter bound.

There is still room for an improved bound on the dimensionality result which would be suit-

able for small regions and still asymptotically tight asR → ∞. The difficulties in developing

such a bound were discussed in Section 2.5.3. This is an area for further development.
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8.2.5 Impact of Antenna Geometry

Much of the work of this thesis has developed the concept of continuous spatial models and

their application to wireless communications systems. By considering the dimensionality

and representation of the underlying field it is possible to derive fundamental limits and

bounds on the diversity of a multipath field over a bounded region. The placement of antenna

and their interaction with the multipath field represents a process of spatial sampling. It is

not possible for arbitrary performance gains2 through this process [121]. However, there is

the possibility of a significant loss of dimensionality through poor placement, coupling and

interaction of the antenna.

There has been some reference to this issue in the existing literature with regard to antenna

coupling [104, 115] and electromagnetic propagation issues within the array [39]. An inter-

esting open problem is the impact of the specific antenna placement and loss of information

through the implicit spatial sampling.

Ultimately we are interested in the underlying spatial field, and hence the problem is re-

lated to the approximation and estimation of the continuousfunction given a set of discrete

samples [285]. The optimisation of multi-dimensional sampling points to achieve efficient

function approximation, interpolation and integration isan area that has achieved much at-

tention for the sphere [196] and also for more general regions [286]. Even in the case of

a truly finite dimensional multipath field, givenN basis functions on the sphere, it is not

generally possible to create a set ofN sampling points that will uniformly capture the in-

formation that exists in such a continuous field. In the case of the sphere, the quality of the

field approximation is critically dependent on the choice ofsampling points [287]. It is a

significant result in this field that when moving from two dimensions to three dimensions,

efficient sampling3 on the sphere is no longer possible for more than 16 sensors [288].

The problem of finding a regular or optimal point set on the sphere for sampling and interpo-

lation is surprisingly rich in theory. Whilst it is trivial to find a regular set of points spanning

the circle,S1 = [0, 2π], for the sphereS2 and beyondSn, n > 2 this is a problem presently

only soluble through computational methods [196, 289]. Theresults that emerge from such

work are rather remarkable with subtle structure and intricate patterns. This is surprising

2It should be noted that the general consistency between the spatial and antenna noise models is still an
open problem. As such, the effective gain and noise floor of the antennas in an array will have an impact on the
system performance. However, this is related to a shift in the sensitivity or relevant truncation error and not the
underlying essential dimensionality.

3The definition of efficient sampling is related to extremal point sets and will not be introduced at this point.
Briefly, if all sensors were to contribute an independent white noise, efficient sampling would permit all of the
basis functions to be estimated with equal noise variance using the same number of sensors as there are basis
functions.
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(a) Maximal determinant point set (b) Minimum energy point set

Figure 8.1: Distribution of maximal point sets on the sphere of orderN = 50. Each set consists of
2601 points distributed on the surface of the sphere along with anassociated weighting coefficient for
integration cubature. The first set is optimised to maximisethe determinant of the sampling matrix
and thus minimise the conditioning number for signal reconstruction. The second set is optimised to
minimise the energy of a system of repulsive charges on the sphere. Both sets display a significant
range in the weighting coefficients with interesting and surprising structures.
Images reproduced from online resource [289] created by Robert Womersley.

given the goal and intuition would suggest large scale uniformity. To illustrate the point, two

figures are adopted from [289] and shown in Figure 8.1. It is apparent that structures exists

with a wide range of scale and complexity.

An area for further research would be to study the impact and significance of the specific

antenna geometry, both theoretically and practically, on signal processing performance. The

sampling locations may be important, however it is conjectured that an overall system per-

formance may not be overly sensitive to the arrangement. Furthermore, an antenna will tend

to return a signal representing an average of the field over the physical volume of the an-

tenna4. In practice, the physical size of each antenna element may place constraints and even

uniquely determine the possible arrangement of an array.

Similar problems have been addressed for the case of acoustic microphone arrays. In this

area, the arrangement of the microphones does have an impacton the sensitivity and noise

gain of the array [290]. Each input signal in a communications system incurs an imple-

mentation cost. Thus an important goal is to understand and avoid the arrangements that

create degenerate or redundant antenna outputs, or equivalently unnecessarily lower system

performance.

4Practical reasons prohibit the antenna from being vanishingly small. Much of the structure and details
in Figure 8.1 arise from the construct of infinitesimal sampling. Spatial averaging at each sample point may
eliminate such nuance and detail and reduce the significanceof the exact geometry.
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Chapter 4 set out the framework to determine the optimal basis functions for specific region

shapes and angular spectra. The optimal antenna sampling configuration will be depen-

dent on the optimal basis functions. For three dimensional fields, determining the optimal

sampling configuration becomes a nontrivial problem. Thus there is significant scope for

continued research and investigation in this area.

8.2.6 Development of Consistent Noise Models

The work of Chapter 5 demonstrated that the continuous spatial model could be used to

derive an intrinsic bound on system performance independent of the antenna geometry used.

However, as was discussed in Section 5.4.3, this approach depends on having a signal or

noise model that is consistent between the expected sensor noise and the noise defined in a

spatial sense.

Understanding the correspondence between spatial and sensor noise is a difficult issue, com-

plicated by the potential for the theoretical discrete sensor placement on an uncountably

infinite domain5. One approach to this problem is to consider sampling and representation of

the field over finite volumetric blocks [146]. This implicitly imposes a finite upper bound on

the model dimensionality, but can be useful when this limit is sufficiently higher than the ex-

pected field and system dimensionality. Interestingly, such approaches tend to adopt a finite

division of space on the order ofλ/10 which corresponds to a radius such that2kR ≈ 1.

Intuitively a noise model should be matched to the physical processes that generate the noise.

Practically, the value of a noise model depends on its simplicity and ability to predict obser-

vations. It is evident that the independent sensor noise model fails by predicting the ability

for infinite precision if sensors are packed in a small volume. A fixed correlation matrix for

the noise tends to imply a fixed sensor arrangement or system configuration. The develop-

ment of a position dependent noise correlation function matches the noise being modelled

on the spatial basis functions. However, this leads to a system signal to noise ratio that is

dependent on the number of sensors and observation volume, as shown in (5.13).

In practice, noise sources include interfering electromagnetic fields, thermal electromagnetic

radiative noise, antenna thermal noise, antenna noise coupling, antenna connection noise,

amplification noise and processing noise. This can be fairlycomprehensively modelled by

two components – field or antenna noise and sensor or amplifiernoise. The influence of

these components will behave differently as more antennas are added to a system. The effect

of antenna noise and noise coupling was investigated in [291]. The impedance matching,

5If we allow the spatial coordinates to be a real valued parameter, a white noise field must then have infinite
power to become uncorrelated over an infinitesimal distance.
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efficiency and coupling of antennas will also impact the nature of a suitable noise model

[115].

8.2.7 Associated Spatial Dimensionality of a Single Antenna

In considering the consistence of noise models, an important question to be addressed is if

it is possible to infer a limit to spatial wireless capacity over a region given a single antenna

signal to noise ratio measurement. It is conjectured that such a correspondence is not possible

without some additional parameter for the antenna. This parameter will reflect the volumetric

footprint or theoretical region of interaction of the antenna with the continuous spatial field.

This may or may not be related to the actual physical dimension of the antenna. Such a

parameter will allow us to infer that the noise observed by that antenna represents the sum

of the corruption of a set of spatial functions, whose numbermatches the dimensionality

related to the volumetric footprint. Furthermore, the degree of coupling and correlation

between antenna should be related to this volumetric footprint.

There is a direct analogy of this idea and conjecture to the discrete observation of a continu-

ous time signal, as occurs when an oscilloscope or probe is attached to an electronic circuit.

Whilst the the underlying noise process may be white, a set ofsamples of the voltage across

the circuit show a finite variance. The spectral noise power (units of W.Hz−1) is the average

of the observed signal power (P = E {V 2/Rload}) across the assumed sensor bandwidth. In

assuming the noise to be white, we must simultaneously accept that our ability to observe it

is bandlimited6.

For the spatial case, we could assume that there is an underlying white spatial noise that

corrupts the continuous signal space. It follows that we must then average the observed

antenna signal to noise ratio across the “spatial bandwidth” which is related to the volumetric

footprint and associated dimensionality of the antenna.

Two samples in time will become correlated as the separatinginterval approaches the recip-

rocal of the sensor bandwidth. Similarly, the output of two antennas in space should become

correlated as the separation approaches a distance relatedto the effective spatial dimension-

ality of the antenna. Rather than being a point sample, antennas interact with the field over

a region of space. From the results in this thesis, we can assert that such a region has an

associated essential dimensionality. This value will be critical to developing a consistent and

practically useful noise model to match discrete sensor andspatial noise models.

6Alternatively we can assume a perfect sensor with a bandlimited noise process. Either way there is some
limit, and we cannot ever completely observe in practice a white noise process – to do so would be to face the
infinite. One need only review the plight of Cantor to understand the folly of attempting this.
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Further work in this area would be required to formally develop this conjecture. However,

from the preceding discussion, it should be apparent that without a spatial bandwidth for

the antenna, it is meaningless to relate a single antenna signal to noise to an intrinsic spatial

information limit.
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8.3 Closing Remarks

Much of the literature related to MIMO systems deals with discrete signals and their statisti-

cal properties. This thesis has been an explorative investigation to develop a framework for

signal processing which inherently incorporates space andthe nature of wave propagation.

Rather than adding statistical and correlation models to match observation, this work has

sought to develop appropriate models and signal representations from fundamental princi-

ples.

The issue of the dimensionality of a signal space is not easily resolved, particularly in the case

of a small dimensionality. In a sense, part of the problem is the desire to assert and bound a

sudden threshold or transition where in practice it does notexist. The dimensionality results

certainly indicate a point of diminishing returns. For a bandlimited function, the width of

the transition from significant to insignificant basis functions varies with the logarithm of

2WT [142]. A similar result is conjectured for the dimensionality of a bounded region of a

multipath field. Hence, the transition region will be significant for small regions.

Collectively the work in this thesis presents a broad range of results, from explorative de-

velopment and conjectures through to some formal frameworks, theorems and proofs. As

with the case of the dimensionality of the bandlimited function, the research in this area has

opened up a rich array of mathematical detail and the potential for continued investigation

over a much longer period. However, some of the results can seem obvious in that they are

are consistent with implemented pragmatic engineering approaches. In reflection, the nature

of conventional wireless communications is rather forgiving with the typical scattering en-

vironment offering a rich field diversity, the nominal wavelength of operation fairly small

relative to the array size, and current practical limits on the economical number of signal

processing channels. System performance is far more likelyto be impacted by the choice of

low noise radio frequency amplifiers than by the antenna arrangement.

It is evident that sensors and signal processing are becoming more affordable and ubiquitous.

This is true both in the domain of wireless communications and also related domains such

as acoustical signal processing. A developed understanding of the nature of wave-fields and

the implications to signal processing is increasingly important to understand the fundamental

possibilities and limitations for effective system designand implementation.
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Appendix A

Interpolation of Dimensionality

By definition, the dimensionality of a space of functions canonly take on integer values.

However, the figures and numerical analysis of Chapter 4 wereaimed at investigating the

impact of the problem geometry on the effective dimensionality. Towards this goal, the

number of function terms required to achieve a fixed truncation error was considered. With

this number restricted to integer values, the trends in the figures were not easily apparent.

To overcome this, the following approach was developed to infer a fractional dimensionality.

This was based on the assumption of an exponential decrease in the truncation error around

the truncation point as was shown in Chapter 2 and Chapter 3.

The truncation error is related to the trailing sum of the eigenvalues of the eigenequation

developed in Section 4.3. The equation, (4.37), is repeatedhere

λngn(θ̂) = A∗Agn(φ̂) = P (θ̂)

∫

Λ

∫

Ω

gn(φ̂)ejkx.(φ̂−θ̂)ds(φ̂)dx. (A.1)

Since the kernel of this integral equation is compact, and byvirtue of the factors discussed

in Chapter 2, the set of eigenvaluesλ0, . . . , λn can be ordered in descending value and will

have an accumulation point at zero [184]. We restate Definition 4.8 for dimensionality,

Definition A.1 Dimensionality of Multipath Field.

For any set of eigenvalues from (4.37), givenε > 0 there exists some integerD(ε) such that

D(ε) = arg min
n

{∑
m≥n λm∑

m λm

< ε

}
. (A.2)

The general measure of dimensionality adopted for the numerical analysis work in Chapter 4
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Figure A.1: Repeat of Figure 4.7 with the integer ceiling quantisation for the dimensionality. The
trend is obscured by the coarse quantisation, especially atlow dimensionality. The matching empirical
lines approximate a lower bound for the dimensionality.

wasD(0.01). This is the point at which the cumulative sum of the eigenvalues exceeds99%

of the total sum of all eigenvalues.

The numerical analysis in Chapter 4 aims to illuminate how the essential dimension of a

region varies with changes to incident wave-field and the region size, shape and orientation.

For the examples given, the essential dimension has reasonably small values (< 20). At

this scale, the coarse integer quantised values forD obtained from (A.2) obscure the under-

lying trend of dimensionality. For example, we can considerFigure 4.7 without fractional

interpolation of the dimensionality. This is shown in Figure A.1.

Given the eigenvalues obtained from (A.1) we can obtain an indication of the fractional

dimension by considering a continuous interpolation of theeigenvalues and considering the

point at which the selected dimensionality threshold is crossed. Consider the function

f(n) =

∑
m≥n λm∑

m λm
. (A.3)

The eigenvalues are numbered from index 0, thusf(0) = 1. Given the desired thresholdε,

at some pointf(N) > ε andf(N + 1) ≤ ε. Providedε is suitably small, around this point,
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the functionf(n) will be exponentially decreasing. Consider the interpolated function

f̃(z) = Ae−bz. (A.4)

Solving at the two data pointsf(N) andf(N + 1) gives

b = log (f(N)) − log (f(N + 1)) (A.5)

A = f(N)ebN . (A.6)

Solving for f̃(z) = ε, we obtain

z = N +
log (f(N)) − log(ε)

log (f(N)) − log (f(N + 1))
. (A.7)

This can then be used to determine the fractional dimensionality from the set of eigenvalues.

To illustrate this method, we present two examples from the eigenvalue sets of Figure A.1.

At the radius ofλ the integer dimensionality for the±90◦ and±45◦ angular spread is 8 and 5

respectively. Figure A.2 shows the residual energy associated in the terms past the truncation

point, f(n) as calculated in (A.3). The exponential curve shown is fittedto the two points

around the threshold value of0.01. This is used to calculate the fractional dimensionality

of 4.18 and7.5 respectively. The plots in Figure A.1 also clearly show thatthe decrease in

residual error is exponential beyond the critical threshold.
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Figure A.2: Error for truncation of two sets of solutions to the eigenequation (A.1). An exponential fit
to the sequence is made around the threshold of0.01. This fit is then used to determine the fractional
dimensionality of the solution.
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Appendix B

Derivation of the Cramér-Rao Bound

This appendix presents the derivation of the Cramér-Rao Bound (CRB) for the estimation of

direction of arrival using the continuous sensor frameworkdeveloped in Chapter 5.

B.1 Key Bessel Identities

The derivations make extensive use of some identities for the Bessel functions. These are

stated and reformulated here for use in the following proofs. The Bessel recurrence relation-

ship [160, 9.1.27],

nJn(z) =
z

2
Jn−1(z) +

z

2
Jn+1(z). (B.1)

Sum of second order Bessel terms, from Neumann’s addition theorem [160, 9.1.75 p. 363]

∞∑

n=−∞

J2
n(z) = 1

∞∑

n=−∞

Jn(z)Jn+k(z) = 0, k 6= 0 . (B.2)

Variants of Graf’s addition theorem with some basic trigonometric manipulation [160, 9.1.79],

∞∑

n=−∞

J2
n(z)ejnθ = J0

(
z sin

θ

2

)
(B.3)

∞∑

n=−∞

Jn(z)Jn+1(z)e
jnθ = jJ1

(
z sin

θ

2

)
e−jθ/2 (B.4)

∞∑

n=−∞

Jn(z)Jn+2(z)e
jnθ = −J2

(
z sin

θ

2

)
e−jθ (B.5)

197



Chapter B Derivation of the Cramér-Rao Bound

∞∑

n=−∞

Jn(z)Jn+3(z)e
jnθ = −jJ3

(
z sin

θ

2

)
e−j3θ/2. (B.6)

B.2 Derivation Overview

We are interested in the Cramér-Rao bound for a deterministic source model, as this will pro-

vide a lower bound for the variance of any unbiased estimate.From [260], the deterministic

CRB is

CRB =
σ2

2N

{
Re
[(

DHD − DHA
(
AHA

)−1
AHD

)
⊙ Rs

T
]}−1

, (B.7)

whereσ2 is the noise variance,N is the number of data samples,

A ,
[

a(θ1) . . . a(θP )
]

(B.8)

D ,

[
∂

∂θ1
a(θ1), . . . ,

∂

∂θP
a(θP )

]
(B.9)

with a(θ) the sensor array steering vector for directionθ. The matrixRs is the sample co-

variance matrix for the signalss and⊙ represents the elementwise Schur-Hadamard product

of the matrices.

The matricesA ≡ A(θ) andD ≡ D(θ) are dependent on the source directions.

Three main terms are required to compute the Cramér-Rao bound from (B.7). These are

AHA, DHD andDHA. To evaluate these, we will use the continuous sensor model,which

for a circularly symmetric region has the form

a(θ) =
[
. . . ,

√
C−me

jmθ, . . . ,
√
Cme

−jmθ, . . .
]T

(B.10)

withCm = ‖βm‖2
ΛQ/|Λ| being a normalisation constant dependent on the region shape. The

details of the continuous model framework can be found in Section 5.4.3.

From this we can derive the Cramér-Rao bound for the case of acircular and disc shaped

region with one and two uncorrelated sources.
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B.3 Circular Array, One Source

The signal scaling,Cn, for the circular array from Section 5.5 equation (5.16)

Cn =
Q

2πR

∫ 2π

0

|βn(x)|2Rdθ = QJ2
n(kR). (B.11)

For the circular array with a single source, the array steering matrix and derivative will be

the vectors

A = [a(θ)] =
[
. . .
√
C−ne

jnθ . . .
√
Cne

−jnθ . . .
]T

(B.12)

D =

[
∂

∂θ
a(θ)

]
=
[
. . . n

√
C−ne

jnθ . . . − n
√
Cne

−jnθ . . .
]T
. (B.13)

The termAHA is related to the signal energy. Using identity (B.2) we obtain

AHA =

∞∑

n=−∞

Cn = Q

∞∑

n=−∞

J2
n(kR) = Q. (B.14)

The termDHD is evaluated using the recurrence relationship (B.1) to expand the two terms

nJn(kR) followed by the use of identity (B.2),

DHD =

∞∑

n=−∞

n2Cn = Q

∞∑

n=−∞

n2J2
n(kR)

= Q

∞∑

n=−∞

(
kR

2
Jn−1(kR) +

kR

2
Jn+1(kR)

)2

=
Qk2R2

4

∞∑

n=−∞

J2
n−1(kR) + Jn−1(kR)Jn+1(kR) + J2

n+1(kR)

=
Qk2R2

2
. (B.15)

The termDHA is evaluated using the recurrence relationship (B.1) fornJn(kR). Noting

that no Bessel terms of equal index are in the infinite sum, using (B.2) the result is zero.

DHA =
∞∑

n=−∞

−nCn = Q
∞∑

n=−∞

−nJ2
n(kR)

= Q

∞∑

n=−∞

−
(
kR

2
Jn−1(kR) +

kR

2
Jn+1(kR)

)
Jn(kR)

=
QkR

2

∞∑

n=−∞

Jn−1(kR)Jn(kR) + Jn+1(kR)Jn(kR) = 0. (B.16)
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Using the results from (B.14), (B.15) and (B.16) in the boundexpression (B.7)

CRBP=1 =
σ2

2N

{
Re
[(

DHD − DHA
(
AHA

)−1
AHD

)
⊙ Rs

T
]}−1

=
σ2

2N

{(
Qk2R2

2
− 0.

1

Q
.0

)
⊙ 1

}−1

=
σ2

QN

1

k2R2
. (B.17)

B.4 Circular Array, Two Sources

The signal scaling for the circular array isCn = QJ2
n(kR). For two sources located with

directionsθ1 andθ2, the array response matrix and derivative are

A =
[

a(θ1) a(θ2)
]

=

[
. . .

√
C−ne

jnθ1 . . .
√
Cne

−jnθ1 . . .

. . .
√
C−ne

jnθ2 . . .
√
Cne

−jnθ2 . . .

]T

(B.18)

D =
[

∂
∂θ1

a(θ1)
∂

∂θ2

a(θ2)
]

=

[
. . . n

√
C−ne

jnθ1 . . . −n√Cne
−jnθ1 . . .

. . . n
√
C−ne

jnθ2 . . . −n
√
Cne

−jnθ2 . . .

]T

.

(B.19)

The self adjoint product of the array response matrix is

AHA =

[ ∑∞
n=−∞Cn

∑∞
n=−∞Cne

jn(θ1−θ2)

∑∞
n=−∞Cne

jn(θ2−θ1)
∑∞

n=−∞Cn

]
(B.20)

= Q

[
1 µ

µ 1

]
(B.21)

where the diagonal entries follow directly from (B.14). Defining∆θ = θ2 − θ1 and using the

identity (B.4) the off diagonal entries are

µ =

∞∑

n=−∞

Cne
jn∆θ =

∞∑

n=−∞

J2
n(kR)ejn∆θ

= J0

(
2kR sin

∆θ

2

)

= J0 (kR∆θ) +O
(
(∆θ)4) (B.22)

where the final approximation can be obtained by notingsin(∆θ/2) = ∆θ/2 + O((∆θ)3)

and using a linear approximation forJ0(kR∆θ).

200



B.4 Circular Array, Two Sources

For the two uncorrelated sourcesRs = I and from the elementwise product in (B.7), the off

diagonal entries inDHD are not required for the final result. Using the result from (B.15)

for the diagonal entries, we obtain

DHD =

[ ∑∞
n=−∞ n2Cn

∑∞
n=−∞ n2Cne

jn(θ1−θ2)

∑∞
n=−∞ n2Cne

jn(θ2−θ1)
∑∞

n=−∞ n2Cn

]

=

[
Qk2R2

2
. . .

. . . Qk2R2

2

]
. (B.23)

Using the result (B.16) for the diagonal entries of the final term, we obtain

DHA =

[ ∑∞
n=−∞−nCn

∑∞
n=−∞−nCne

jn(θ1−θ2)

∑∞
n=−∞−nCne

jn(θ2−θ1)
∑∞

n=−∞−nCn

]

= Q

[
0 ν

ν 0

]
. (B.24)

The off diagonal entries can be evaluated and simplified using the recurrence identityB.1

for nJn(kR), followed by some manipulation and the application of the identity (B.4),

ν =

∞∑

n=−∞

−nCne
jn∆θ =

∞∑

n=−∞

−nJ2
n(kR)ejn∆θ

= −kR
2

∞∑

n=−∞

(Jn−1(kR) + Jn+1(kR)) Jn(kR)ejn∆θ

= −kR
2

∞∑

n=−∞

Jn−1(kR)Jn(kR)ejn∆θ − kR

2

∞∑

n=−∞

Jn(kR)Jn+1(kR)ejn∆θ

= −kR
2
ej∆θ

∞∑

n=−∞

Jn(kR)Jn+1(kR)ejn∆θ − kR

2

∞∑

n=−∞

Jn(kR)Jn+1(kR)ejn∆θ

= −jkR
2

(
ej∆θ/2 + e−j∆θ/2

)
J1

(
2kR sin

∆θ

2

)

= −jkR cos

(
∆θ

2

)
J1

(
2kR sin

∆θ

2

)

= −jkRJ1 (kR∆θ) +O
(
(∆θ)3) (B.25)

where the final approximation is based on small arguments∆θ wherecos(∆θ/2) ≈ 1 and

sin(∆θ/2) ≈ ∆θ/2.
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Chapter B Derivation of the Cramér-Rao Bound

To evaluate the CRB from (B.7), first consider the term using the results from (B.24) and

(B.21)

DHA(AHA)−1AHD = Q

[
0 ν

−ν 0

]
1

Q

1

1 − µ2

[
1 −µ
−µ 1

]
Q

[
0 ν

−ν 0

]

=
−Qν2

1 − µ2

[
1 µ

µ 1

]
. (B.26)

Substituting (B.26) and (B.23) into (B.7) we obtain

CRBP=2 =
σ2

2N

{
Re
[(

DHD − DHA
(
AHA

)−1
AHD

)
⊙ Rs

T
]}−1

=
σ2

2N

{([
Qk2R2

2
. . .

. . . Qk2R2

2

]
+

Qν2

1 − µ2

[
1 µ

µ 1

])
⊙
[

1 0

0 1

]}−1

=
σ2

QN

1

k2R2

(
1 +

2ν2

1 − µ2

)−1
[

1 0

0 1

]
. (B.27)

Using the expressions forµ (B.22) andν (B.25)

CRBP=2 = QN
1

k2R2

(
1 − 2J2

1

(
2kR sin ∆θ

2

)
cos2

(
∆θ
2

)

1 − J2
0

(
2kR sin ∆θ

2

)
)−1

≈ σ2

QN

1

k2R2

(
1 − 2J2

1 (kR∆θ)

1 − J2
0 (kR∆θ)

)−1

(B.28)

where the approximation uses the approximations forµ andν previously stated for small

angular separations∆θ.
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B.5 Filled Disc Array, One Source

The derivation for the filled disc array is similar with the signal scaling,

Cn =
Q

πR2

∫ R

0

∫ 2π

0

J2
n(kr)rdθdr = Q

(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)
. (B.29)

For a single source, the array response vector and derivative to a source atθ are

A = [a(θ)] =
[
. . .
√
C−ne

jnθ . . .
√
Cne

−jnθ . . .
]T

(B.30)

D =

[
∂

∂θ
a(θ)

]
=
[
. . . n

√
C−ne

jnθ . . . − n
√
Cne

−jnθ . . .
]T
. (B.31)

Using the identities from (B.2) the self adjoint of the response vector is unchanged,

AHA =
∞∑

n=−∞

Cn = Q
∞∑

n=−∞

J2
n(kR) − Jn−1(kR)Jn+1(kR) = Q. (B.32)

The additional term in (B.29) reduces the value ofDHD. Using the result from (B.15), some

basic manipulations, and the identities from (B.2)

DHD =
∞∑

n=−∞

n2Cn = Q
∞∑

n=−∞

n2
(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)

=
Qk2R2

2
−Q

∞∑

n=−∞

(
n2 − 1

)
Jn−1(kR)Jn+1 −Q

∞∑

n=−∞

Jn−1(kR)Jn+1

=
Qk2R2

2
−Q

∞∑

n=−∞

(n− 1)Jn−1(kR)(n + 1)Jn+1

=
Qk2R2

2
− Qk2R2

4

∞∑

n=−∞

(Jn−2(kR) + Jn(kR)) (Jn(kR) + Jn+2(kR))

=
Qk2R2

4
. (B.33)

The third term remains unchanged.

DHA =

∞∑

n=−∞

−nCn = Q

∞∑

n=−∞

−n
(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)

= 0 +Q

∞∑

n=−∞

(n− 1)Jn−1(kR)Jn+1(kR) +Q

∞∑

n=−∞

Jn−1(kR)Jn+1(kR)

=
QkR

2

∞∑

n=−∞

(Jn−2(kR) + Jn(kR)) Jn+1(kR) = 0. (B.34)
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Substituting the results from (B.32), (B.33) and (B.34) into the bound expression (B.7)

CRBP=1 =
σ2

2N

{
Re
[(

DHD − DHA
(
AHA

)−1
AHD

)
⊙ Rs

T
]}−1

=
σ2

2N

{(
Qk2R2

4
− 0.

1

Q
.0

)
⊙ 1

}−1

=
σ2

QN

2

k2R2
. (B.35)

.

B.6 Filled Disc Array, Two Sources

The signal scaling for the disc array isCn = Q(J2
n(kR) − Jn−1(kR)Jn+1(kR)). For two

sources located with directionsθ1 andθ2, the array response matrix and derivative are

A =
[

a(θ1) a(θ2)
]

=

[
. . .

√
C−ne

jnθ1 . . .
√
Cne

−jnθ1 . . .

. . .
√
C−ne

jnθ2 . . .
√
Cne

−jnθ2 . . .

]T

(B.36)

D =
[

∂
∂θ1

a(θ1)
∂

∂θ2

a(θ2)
]

=

[
. . . n

√
C−ne

jnθ1 . . . −n
√
Cne

−jnθ1 . . .

. . . n
√
C−ne

jnθ2 . . . −n
√
Cne

−jnθ2 . . .

]T

.

(B.37)

The self adjoint product of the array response matrix is

AHA =

[ ∑∞
n=−∞Cn

∑∞
n=−∞Cne

jn(θ1−θ2)

∑∞
n=−∞Cne

jn(θ2−θ1)
∑∞

n=−∞Cn

]

= Q

[
1 µ′

µ′ 1

]
(B.38)

where the diagonal entries follow directly from (B.32) and the off diagonal entries can be

evaluated using the previous result (B.22) and the identity(B.5)

µ′ =

∞∑

n=−∞

Cne
jn∆θ =

∞∑

n=−∞

(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)
ejn∆θ

= µ−
∞∑

n=−∞

Jn−1(kR)Jn+1(kR)ejn∆θ

= µ− ej∆θ
∞∑

n=−∞

Jn(kR)Jn+2(kR)ejn∆θ
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= µ+ ej∆θJ2

(
2kR sin

∆θ

2

)
e−j∆θ

= J0

(
2kR sin

∆θ

2

)
+ J2

(
2kR sin

∆θ

2

)

≈ J0 (kR∆θ) + J2 (kR∆θ) (B.39)

where the final approximation is for small angular separations∆θ.

As before, the off diagonal entries ofDHD are not required. Using the previous result (B.33

for the diagonal entries,

DHD =

[ ∑∞
n=−∞ n2Cn

∑∞
n=−∞ n2Cne

jn(θ1−θ2)

∑∞
n=−∞ n2Cne

jn(θ2−θ1)
∑∞

n=−∞ n2Cn

]

=

[
Qk2R2

4
. . .

. . . Qk2R2

4

]
. (B.40)

The diagonal entries of the final termDHA are obtained from (B.34)

DHA =

[ ∑∞
n=−∞−nCn

∑∞
n=−∞−nCne

jn(θ1−θ2)

∑∞
n=−∞−nCne

jn(θ2−θ1)
∑∞

n=−∞−nCn

]

= Q

[
0 ν ′

ν ′ 0

]
using (B.24). (B.41)

A lengthy manipulation and the use of identities (B.4) and (B.6) provides an expression for

the off diagonal terms,

ν ′ =
∞∑

n=−∞

−nCne
jn∆θ =

∞∑

n=−∞

−n
(
J2

n(kR) − Jn−1(kR)Jn+1(kR)
)
ejn∆θ

= ν +

∞∑

n=−∞

nJn−1(kR)Jn+1(kR)ejn∆θ

= ν +
1

2

∞∑

n=−∞

(n+ 1)Jn−1(kR)Jn+1(kR)ejn∆θ +
1

2

∞∑

n=−∞

(n− 1)Jn−1(kR)Jn+1(kR)ejn∆θ

= ν +
kR

4

∞∑

n=−∞

Jn−1(·) (Jn(·) + Jn+2(·)) ejn∆θ +
kR

4

∞∑

n=−∞

(Jn−2(·) + Jn(·))Jn+1(·)ejn∆θ

= ν +
kR

4

∞∑

n=−∞

ej∆θJn(kR)Jn+1(kR)ejn∆θ + ej∆θJn(kR)Jn+3(kR)ejn∆θ +

ej2∆θJn(kR)Jn+3(kR)ejn∆θ + Jn(kR)Jn+1(kR)ejn∆θ

= ν +
jkR

4

(
ej∆θJ1

(
2kR sin ∆θ

2

)
e−j∆θ/2 − ej∆θJ3

(
2kR sin ∆θ

2

)
e−j3∆θ/2 +

−ej2∆θJ3

(
2kR sin ∆θ

2

)
e−j3∆θ/2 + J1

(
2kR sin ∆θ

2

)
e−j∆θ/2

)
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= ν − jkR

2
cos

(
∆θ

2

)(
J1

(
2kR sin

∆θ

2

)
− J3

(
2kR sin

∆θ

2

))

= −jkR
2

cos

(
∆θ

2

)(
J1

(
2kR sin

∆θ

2

)
+ J3

(
2kR sin

∆θ

2

))

≈ −jkR
2
J1 (kR∆θ) − jkR

2
J3 (kR∆θ) (B.42)

where the final approximation is for small angular separations∆θ.

Using the matrix result previously computed (B.26) and substituting (B.40) into (B.7)

CRBP=2 =
σ2

2N

{
Re
[(

DHD − DHA
(
AHA

)−1
AHD

)
⊙ Rs

T
]}−1

=
σ2

2N

{([
Qk2R2

4
. . .

. . . Qk2R2

4

]
+

Qν′2

1 − µ′2

[
1 µ′

µ′ 1

])
⊙
[

1 0

0 1

]}−1

=
σ2

QN

2

k2R2

(
1 +

4ν ′2

1 − µ′2

)−1
[

1 0

0 1

]
. (B.43)

Finally, substituting the expressions forµ′ (B.39) andν ′ (B.42)

CRBP=2 =
σ2

QN

2

k2R2

(
1 − cos2

(
∆θ
2

) (
J1

(
2kR sin ∆θ

2

)
+ J3

(
2kR sin ∆θ

2

))2

1 −
(
J0

(
2kR sin ∆θ

2

)
+ J2

(
2kR sin ∆θ

2

))2

)−1

≈ σ2

QN

2

k2R2

(
1 − (J1 (kR∆θ) + J3 (kR∆θ))2

1 − (J0 (kR∆θ) + J2 (kR∆θ))2

)−1

(B.44)

with the approximation valid for small angular separations∆θ.
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