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Abstract

This thesis covers the investigation and application oficolwus spatial models for multiple
antenna signal processing. The use of antenna arrays faneed sensing and communi-
cations systems has been facilitated by the rapid increabe icapabilities of digital signal
processing systems. The wireless communications chanletwy across space as differ-
ent signal paths from the same source combine and intefféis.creates a level of spatial
diversity that can be exploited to improve the robustnessaerall capacity of the wire-
less channel. Conventional approaches to using spatiatgiy have centered on smart,
adaptive antennas and spatial beam forming. Recently, tme general theory of multiple
input, multiple output (MIMO) systems has been developaditse the independent spatial
communication modes offered in a scattering environment.

Underlying any multiple antenna system is the basic physietectromagnetic wave propa-
gation. Whilst a MIMO system may present a set of discretatsypnd outputs, each antenna
element must interact with the underlying continuous spégld. Since an electromagnetic
disturbance will propagate through space, the field atrdiffepositions in the space will be
interrelated. In this way, each position in the field canrssiuane an arbitrary independent
value and the nature of wave propagation places a constmitite allowable complexity
of a wave-field over space. To take advantage of this unaeylghysical constraint, it is
necessary to have a model that incorporates the continauserof the spatial wave-field.

This thesis investigates continuous spatial models fonte-field. The wave equation con-
straint is introduced by considering a natural basis exparisr the space of physically valid
wave-fields. This approach demonstrates that a wave-figddabfinite spatial region has an
effective finite dimensionality. The optimal basis for repenting such a field is dependent
on the shape of the region of interest and the angular powgrilaition of the incident field.
By applying the continuous spatial model to the problem oéation of arrival estimation,
it is shown that the spatial region occupied by the receilargs a fundamental limit on the
number and accuracy with which sources can be resolved.ifonis spatial models also
provide a parsimonious representation for modelling tfaigpcommunications channel in-
dependent of specific antenna array configurations. Thentomis spatial model is also
applied to consider limits to the problem of wireless souticection and range localisation.
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Chapter 1
Introduction

Any sufficiently advanced technology is indistinguishéiole magic.
Arthur C. Clarke, 1961.

1.1 History and Background

For most of history, the ability of people to communicateheiit any physical connection
was nothing but a magical fantasy. In 1865, James Clerk Mbypwblished a seminal work
showing that an electromagnetic disturbance in the form of wéeesild propagate through
space [1]. This inspired work by Hertz, Marconi and Tesld tbad to the demonstration of
wireless communication over significant distances at tienda the twentieth century.

The concept of the mobile telephone emerged in 1947, withhoeroial systems becoming
available in the early 1980s and rapid consumer uptake ih988s [2]. Now mobile phones
are ubiquitous and an accepted part of our culture. The dermarnwireless communica-
tions continues to increase, driven by the high data rateecdtivity requirements of mobile
computing and multimedia devices.

A wireless device must be designed to meet the regulatorgsom and bandwidth con-
straints whilst also maximising battery life through lowngr usage. Such constraints moti-
vate the search for ways to improve the efficiency of wiretgsamunications systems — to
send more with less. Understanding the wireless commuaiathannel and how to fully
and efficiently exploit it is an important area of researctl davelopment.

In 1948, Claude Shannon [3] introduced a mathematical yhiewrunderstanding commu-
nications and the field of Information Theory was born. Amatlger things, this work
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established the notion of capacity for a continuous comupatiins channel in the presence
of noise. For a channel with additive white Gaussian noise,capacity is related to the
logarithm of the signal to noise ratip For a channel of bandwidtR, the capacity is given

by
C' = Blog(1+n) (1.1)

in bits per second using a logarithm of base 2. This represantupper bound on the infor-
mation that can be passed through the channel without emtbrséknown as the “Shannon
Limit”.

When multiple transmitters use the same frequency spectharsignal detected by a re-
ceiver will be a combination of all the transmissions. Fds tteason, conventional sys-
tems were developed with each independent broadcastepyingua unique spectral band
or spreading codewithin the range of radio coverage. Cellular systems wesigied to
achieve some level of spectral reuse over large distancéh. this approach, the Shannon
Limitimplies that the only way to increase capacity is torgase the signal to noise ratio, or
increase the signal bandwidth. The noise floor is not easdyced and increasing the trans-
mitted power results only in a logarithmic growth in capgcihcreasing the spectrum usage
is generally not possible due to practical or regulatoryst@ins. For much of the twentieth
century, this was thought to fundamentally limit the capacf the wireless communication
channel.

For mobile wireless communications, the variation of tharctel characteristics over time
and space presents many challenges [4]. There has been eseelnah into ways of mitigat-
ing or dealing with the effects of the fading wireless chdnii@ée variation of the wireless
channel over space is known as spatial diversity Recengisethas been a significant shift
in the research community toward the idea of spatial dit)eess an advantage rather than
a problem for wireless communications. The basic princgaletres around taking advan-
tage of this spatial diversity in the communications chalwyeusing multiple receiver and
transmitter antennas.

Early work by Winters [5] hinted at the possibility of sendimultiple streams of data si-

multaneously using multiple antennas. Further reseanctented the theoretical results [6]
and practical architectures for achieving them [7]. Expents at Bell Labs demonstrated
these techniques in practice [8, 9], creating great ex@terny effectively shattering the sin-
gle channel Shannon Limit for communications spectraliefiicy. The theory and practice

1Spread spectrum systems or code division multiple accesterag utilise different spreading codes to
create signal diversity over the same spectrum.
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suggested a capacity limit of the wireless channel that dvmdrease linearly with the num-
ber of antenna elements used. These events spawned thd e#saavch and development
known as MIMO (multiple input, multiple output) communigats.

MIMO is nhow becoming accepted in practice with the recentBEdandards 802.11n and
802.16e both providing for higher data rates using spatidtiplexing. Despite the exten-
sive research and practical implementations of MIMO systetimere are some important
guestions that do not yet have satisfactory answers. Thelawent of MIMO commu-
nications theory, reviewed in the following section, stenesn strong mathematical results
for a general system with multiple inputs and outputs. Wiiie mathematical results are
well established, there remains open questions regardanggplicability of such results to
practical systems of multiple antennas. A critique of muththe research in this area is
that the assumptions follow mathematical convenienceerdtian arising from a study of
the physical MIMO communications system.

The underlying physical process responsible for wirelessmunications is the propagation
of electromagnetic waves. A suitable model of this must be &brepresent the associated
physical value of the electric and magnetic fields contirsly@across a region of space.
However, by construction, the central ideas in MIMO the@stion the assumption that there
is only a discrete set of input and output signals. The worthif thesis seeks to develop
the ideas central to multiple antenna signal processing tiee underlying perspective of
a continuous spatial field. The development of the contiswspatial models to represent
a wave-field is proposed as a way forward to improve the theateunderstanding and
development of signal processing algorithms.

The use of a continuous spatial model permits the conssraihierent in electromagnetic
radiation to be implicitly embodied in the signal procegdiameworks developed. Research
in this area will help to illuminate the physical processed fundamental limitations critical
to the performance of MIMO communications systems. The ldgweent of a continuous
spatial framework will facilitate the effective represaindn, detection and signal processing
for the physical electromagnetic fields that carry inforiorat The goal is to extend the theory
of MIMO communications systems beyond that of a discret@tetputs and outputs, and
to elegantly incorporate relevant aspects of spatial wavpggation.

This thesis develops a framework for continuous spatialetsoand considers their applica-
tion to several problems in multiple antenna signal praogss he work will consider opti-
mal finite dimensional approximations, intrinsic limitstagfficient statistical signal models
for the continuous spatial field associated with wirelesammuinications. In covering a fairly
broad range of areas, the results vary in depth from obsengand conjectures through to
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(a) Conventional view of wireless communications.(b) MIMO wireless communications. Different spa-
Space is filled by a broadcast as if it were a singlgial paths create spatial diversity at receiver and trans-
dimensional pipe for information. mitter and allow re-use of the spectrum.

Figure 1.1: Conceptual comparison of conventional and MIMO systems.th&extent that each
received signal is a linearly independent combination ef tifansmitted signals, it is possible to
exploit the channel as if it were multiple independent comitations channels. Spectral reuse is
facilitated by the spatial diversity of the transmitter aredeiver antennas, along with the multiple
propagation paths introduced by the scattering envirohmen

well developed frameworks, theorems and proofs. It praaeontribution to communica-
tions theory to better reflect the medium over which the dignlaeing transmitted — in this
case the spatial dimension.

1.2 Multiple Antenna Communications

The fundamental premise of multiple antenna (MIMO) systetikat the physical environ-
ment in which the wireless signal is transmitted provideggrele of diversity through the
existence of independent signal paths. With such spatralsity, and through appropriate
signal processing and detection, itis possible to achleré&ansmission of multiple symbols
using the same time and spectrum resource within a singétess communications cell. To
the extent that the received signal combinations are lin@atependent, the channel can be
utilised as if there were multiple independent channels.oAceptual comparison between
the conventional view, and that adopted in MIMO systemsh@a\s in Figure 1.1.

1.2.1 Multiple Antenna Channel Framework

This section presents the conventional framework for modehnd representation of the
MIMO communications channel Consider a system withtransmitter antennas and;
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receiver antennas. We defisét) = [s1(¢)---sn,(t)]" as the vector of signals transmit-

ted at timet. Assuming a linear system, the received sign@) = [y1(t) - - -y, (t)]" is

constructed by the convolution of the input signal with acfethannel impulse responses,

Ym (t) = Z /OO P (8, 7)8(t — T)dT + W (t) m=1,...,np (1.2)
y(t) = /OO H(t, 7)s(t — 7)dT + w(t), (1.3)

whereH is a matrix of channel impulse responggs, (¢, 7) representing the contribution at
time ¢ of the signal at receive elementfrom transmit element: at timet — 7. The vector
w(t) = [wi(t) - -wn,(t)]" represents an additive noise process.

Depending on the signalling bandwidth, we need only comssdenples of the baseband
signals at an appropriate intervdl, such thaty[n] = y(nT). The other signal vectors
s[n] = s(nT) andw[n] = w(nT) and sampled channel mat¥i[n, k] = H(nT, kT).
Assuming the channel is causal, we obtain a discrete tinreseptation of the channel

yln] = Hin, kls[n — k] + wln]. (1.4)
k=0
In the case of frequency flat fading, or where appropriataksation has been performed to
eliminate inter-symbol interference, we can simplify thedel to consider the transmission
of a single symbol,

y =Hs + w, (1.5)

wheres is the transmitted symbol on the- antennay is the received symbol on theg
antennaH is the instantaneousi x ny channel transfer matrix ana is the noise vector.
This equation represents the effect of each “channel uskisahe general signal framework
adopted in works investigating the multiple antenna comigation link such as [10].

For a given channel realisatid# we can calculate the theoretical channel capacity by con-
sidering the number and strength of independent singlertBioral channels supported by
H. This is dependent on the rank and the eigenvalud$ wfith a value related to the loga-
rithmic determinant of the system matrix [11]. The capauity be

O:Bbwmbw+ﬂﬂﬂﬂ (1.6)

nr

bits per second for a base 2 logarithm, whErg is theny x ng identity matrix, andH*
is the Hermitian or complex transposeldf The signal to noise ratig is interpreted in the
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context of the components &1 having unity expected power. Provided there is sufficient
transmitter diversity, the capacity can scale linearlyhvilie number of antennaz. This
can be compared to the the single antenna case, (1.1), whiallwnly allow a logarithmic
increase in capacity as the addition of receiver antenmasased the effective signal to noise
ratio.

1.2.2 Statistical Model of Channel Matrix

At typical radio frequencies, the presence of multiple algraths and their subtle time varia-
tions will cause random fluctuations in the individual am@wcoupling parameters &f [4].
For such situations, it is expected that the value and statisf the channel capacity will be
of interest in a system design context.

Significant interest in the use of multiple antennas to aghiegher spectral efficiency in the
wireless channel commenced around 1995. The mathemagsedts of Telatar and Foschini
were key to demonstrating the potential for capacity gaihemthe channdl was consid-
ered as a statistical process [6,12—-14]. Some practicabdsimations soon followed that
demonstrated such potential in laboratory environmenrt8][7These activities catalysed an
explosion of research investigating the potential andsable capacities for various classes
of random matrixH. With a relatively simple channel model, (1.5), and armetthwecades
of statistical, matrix, and information theory many capacesults were presented as being
informative of the practical MIMO communications probleib].

Prior to the increased interest in MIMO, the statistics ofregke antenna wireless channel
were well studied. However, the statistics of the channekmble between two antenna
arrays was a challenging and open problem. The applicafi@gmacmmplete physical and

electromagnetic propagation model had been considerezbfoewhat similar problems in

optics [16] and introduced to communications [17]. In theecaf a complex scattering

environment such an approach becomes unwieldy and is hieetl $o1 specific geometrical

investigations [18].

The characteristic behaviour and statistics of the chanmmedel H depends on an array
of physical properties and environmental characteristibe antenna properties, radiation
patterns, array geometry, orientation, scattering enmrent, movement and the overriding
laws of electromagnetic radiation. As depicted in Figuiz the matrix equation conceals
the complexity and often abstracts the spatial aspectseahtiitiple antenna channel.

At the outset of the MIMO developments, it was realised tleaaatenna separation de-
creased, signals would become correlated, impacting reygterformance [19]. This
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Figure 1.2: The compact form of the MIMO matrix equation. The discretdWll matrix equation
represents the effects of a broad range of complex physiopkpties and processes.

prompted work to introduce additional models for correlatbetween the channel com-
ponents ofH [19-25]. There has also been significant interest in comugicheasurement

campaigns to fit empirical distributions to observed da6-gB]. Other efforts have sought
to adopt convenient statistical distributions for analyturposes [30-32]. A further review
of MIMO channel models is presented in Section 1.2.5.

Such models provide a numerical framework to charactenssaa correlation, without ref-
erence to the physical processes that cause it [25, 33—B6E Siese models are not directly
related to the physical propagation, they can be misleadiogexample, the framework per-
mits degenerate “keyhole” channels [22, 37, 38], howev@ractice these are rare [39] and
even difficult to reproduce in artificial situations [40]. §ldevelopment of MIMO theory
around statistical channel distributions became an inu#get research field, and arguably
some results were of little practical significance.

1.2.3 Introducing Space into MIMO Channel Models

Around 2003, there was movement toward incorporating téaonstraint of the MIMO
arrays into the channel modelling. Some results suggediedeadimensionality of a mul-
tipath field over a region of space [41-43] and discuss thaahef this on channel mod-
elling [44]. It was recognised that discrete statisticammel models ignored the fundamental
aspects of wave propagation inherent in the problem [31€]5,

The performance of a MIMO system will be directly relatedhe tlegree of spatial diversity
available. However, for much of the MIMO literature, the spladiversity and correlation of
antenna channels was assumed or approximated. Ironitabyldress this, the concept of
“space” needed to be introduced in to the MIMO framework @8],

This work is a continuation of the development of a spatiabtly intended to model, anal-
yse and design optimal signal processing for multiple amesystems. Rather than being
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specific to a particular antenna configuration, the use ofréirmoous spatial model moves
closer to understanding the underlying dimensionality @mgropriate representation of the
spatial field.

1.2.4 Suggested MIMO Review Articles

Since the explosion in the level of research interest in MIsyStems, there has been numer-
ous publications on the subject. This section presentfijopseme of the more useful review
and summary articles available.

One particular work [49] developed a wider interest in thielfearly on. A review by Gesbert
et al. addresses theoretical and practical aspects of MIi#Ems [50] with explanations
and useful interpretations. Paulraj et al. present an aawsref MIMO as the solution to
meet the needs of high data rate links [51].

Special issues of the Journal of Wireless Communicatiods\wbile Computing [52, 53],
EURASIP Journal on Applied Signal Processing [54], IEEEnEe&xtions on Signal Process-
ing [55] and IEEE Journal on Selected areas in Communicaf{ie®, 57] contain a collec-
tion of relevant articles. Some key books on the subject baea compiled by Durgin [58],
Jankiraman [59], Paulraj et al. [60], Gershman and Sidinbg®[61] and Tsoulos [62].

1.2.5 Review of MIMO Channel Models

A fairly central theme of this work is the representation amatlelling of the MIMO channel
using the continuous spatial fields. Whilst there is somekviotthis area, the majority of
MIMO channel models present a statistical model for the therdte channel matrix specific
to a given antenna configuration. This section presentsiewedf the literature in this area.

The purpose of a channel modelis to provide a way of captangsimulating the behaviour
of the channel matri¥. A good channel model should allow for the development astiiig
of systems to work in real practical situations. The quadityl utility of a model depends
on the intended application of the model and how well the rhoalgtures the parameters of
the channel critical to the application [63]. A comprehgagkeview of the various MIMO
channel models developed can be found in the work by Yu aret€aih [64] and Jensen and
Wallace [65].

The models that have been developed can be grouped into twocai@gories. Statistical
or non-physical models directly model the statistics oféh&ies in the channel matridd
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with statistics based on experimental measurements oo™ probability distributions
[22, 35, 36]. Given a system with transmitters and  receivers, characterising the corre-
lations between the elementsKfrequires(nrnr)? parameters. Various models reduce this
by assuming certain structures of the correlations. Fomgka, the Kronecker model [23]
assumes the overall correlation is separable as a produetefe side and transmitter side
correlation. The virtual channel model [66] assumes a [eowtructure and the Weichsel-
berger model [67] assumes a Kronecker style eigenbasigpl&statistical models, such as
the Kronecker, can provide satisfactory results for smathbers of antenna elements but
will fail with more complex configurations [27, 68, 69]. Stdical models are easy to imple-
ment and can provide adequate modelling for some purpos$eseffects of the propagation
channel and the transmit and receive arrays are coupleth&rga the resultant model.

Geometrical or physical models characterise the spatiglggation aspects of the channel in
terms of the directions of arrival and directions of depar{d0]. Developed from early work
on the nature of the time response of radio channels [71]nibdels incorporate the idea of
distributed scatterers and clusters of scatterers irntegawith the wireless signal. Models
for the distribution and effect of scatterers can be basepgometric models, such as the one-
ring and two-ring and other arrangements [72]. Alternatilg angular characteristics can
be modelled as statistical processes [73]. Distributiocd ®s the Laplacian [74] and Von-
Mises [31] are used to characterise the angular spread @fteesng cluster. Such models
can be fitted to experimental data by identifying scattepatis in array measurement data.
This is typically achieved using subspace techniques fimasing direction of arrival.

For specific physical scenarios, it is possible to use poise¢wnay tracing methods to model
the channel [75]. With sufficient model detail, these havernbshown to provide a good
match to the physical measurements [76]. The experimealiaation of channel models is
an important area of research [29]. Complex models have Beesloped that incorporate
many of the attributes discussed above and play a role inedbhelabment of future wireless
standards [77].

An alternative to direct modelling di or an angular representation is provided by con-
sidering a modal spatial decomposition of the channel [2]44, 48, 78—-81]. The coupling
between the receive and transmit volume is described irstefrmodes related to the essen-
tial dimensionality and degrees of freedom of the spatid fi#t is these classes of models
that are further developed and investigated in Chapter 8pt@hn 4 and Chapter 6. The esti-
mation of direction of arrival is also an important topic fbe development and validation
of MIMO channel models. This is investigated in Chapter 5.
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1.3 Motivation and Scope of Thesis

There is an extensive amount of existing research on argeanthelectromagnetic propaga-
tion. The direct application of such results to the field ofitiple antenna signal processing
can create an onerous and often unnecessary level of coigplé&he statistical models
for MIMO analysis can provide an over simplification and bédgd by mathematical ele-
gance rather than practical correspondence. The motivafithis work is to develop the
idea of continuous spatial model in a signal processingexrih order to introduce a more
appropriate level of complexity and physical corresporéeto the MIMO problem. It is
anticipated that this will be advantageous in the pursuitraferstanding fundamental limits
and achieving optimal system design.

In many practical applications, system design will be basedpproximation or heuristics.
While conventional designs may adopt a half wavelengthreraespacing, it is important
to understand if this is efficient and optimal, or if therea®m for improvement. Further-
more, as the antenna array is extended in three-dimenspaat, a single antenna cannot
completely characterise the array geometry.

The motivation of this thesis is to understand spatial fieldd multipath diversity to better
inform system design, antenna geometries and signal miocessed for multiple antenna
communications systems.

Pioneering work in this area [41,42,44,47,78,79, 82—84] ¢tunsidered the limits of di-
mensionality of a multipath field. The electromagnetic wagaation imposes a structure
and constraint on the permissable wave-fields over a redispaxe. This work further de-
velops the proposal of continuous spatial models to ndyuradorporate this constraint into
the problem formulation. The scope of the topics vary acopgsnal representations, pa-
rameter estimation and statistical modelling in the aremoltiple antenna systems. Since
the work is largely exploratory, the contributions of thegts vary in strength from reviews
and observations through to detailed frameworks and thesre

The structure and main ideas of the thesis are arrangedlaws$o!
e The remainder of this chapter provides some further backgtanaterial related to
electromagnetic fields and multiple antenna communication

e Chapter 2 provides a review of the key results regardingpghéa dimensionality and
the impact it has on the multiple antenna systems. Someaj@weints and conjectures
are provided towards improving the bounds and limits in énes.

10
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e Chapter 3 considers the specific problem of modelling a fietl vestricted direction
of arrival. Formal proof of the relationship between dimenality and angular spread
is provided along with a constructive approximation for tdpdéimal representation.

e Chapter 4 contains a significant technical contributiornefthesis in the formal devel-
opment of the framework required to determine the optimalasentation of a spatial
field. Itis shown clearly how the optimal basis depends oratigular power spectrum
and the shape of the region of interest. Several examplesoared and investigated
numerically.

e Chapter 5 presents a detailed derivation of a fundamentatddor system perfor-
mance of direction of arrival estimation. This is a conttibn in that the bound is
independent of the specific sensor geometry and has beseed&ir multiple sources.
It is shown that the number of sources that can be resolvenlastly related to the
essential dimensionality of the spatial field independéth® algorithm employed.

e Chapter 6 presents a new continuous space statistical eharmdel. This model is
validated against experimental and simulated data andowrsiio provide a more
efficient representation of experimental data than exgstindels. By using the spatial
model, this approach facilitates the prediction and oanon of alternate antenna
array geometries from measurement data.

e Chapter 7 presents an exploratory investigation of theigapbns of the continuous
spatial model in the resolution of source location. Some &ygwoaches are developed
leading to some useful bounds for the problem defined.

e Chapter 8 offers concluding remarks and provides a set af apeas of research and
conjectures that have been identified through this reseeock

Understanding the wave equation and how it constrains gmabksubspace and thus perfor-
mance of an antenna array is not a simple matter. It bearsregstesemblance to the issues
of sampling and understanding the dimensionality of bamitdid functions [85], an issue
which was prevalent for several decades in the middle otkastury. Similar developments
in relation to multiple antennas and spatial fields will laach body of research to guide
engineering developments in the area.

11
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1.4 Space, Waves and Intrinsic Limits

Electromagnetic wireless communication requires theticneand detection of an electro-
magnetic field. By controlling a current distribution acg@sregion of space, the transmitter
is able to generate or excite the field. The strength andtehreof the electromagnetic field
is a physical quantity that varies over space and time, extgrbeyond the region occupied
by the transmitter. The continuous electromagnetic fielined over the constrained re-
gion of the receiver, carries information about the trattadisignal. The interaction of the
electromagnetic field with antenna elements at the recwillegenerate current and voltage
signals.

Complete electromagnetic modelling of a MIMO system is galheprohibitive due to the
scope of the propagation environment. A review by JenseMiidce [86] lists the physical
parameters that are relevant to system performance:

e antenna sensitivity and impedance matching,
e array size and configuration,
¢ element radiation patterns,
e polarisation,
e mutual coupling, and
e multipath propagation.
Modelling such parameters will increase the accuracy apticgbility of the MIMO channel

representation. This will provide a benefit when the inceaascomplexity is justified by a
valuable improvement to matching and prediction of the rhode

The first three of these items relate to the configuration efgénsor array. In practice,
arrays should be designed to maximise their ability to traher receive information from
the region of the electromagnetic field with which they iatgr Jensen and Wallace suggest
that the “average capacity is relatively insensitive t@prronfiguration” [86], which leads
to the concept of considering the intrinsic capacity of aoe@f space.

This section reviews literature covering the aspects aftedenagnetic radiation relevant to
MIMO systems. Some recent ideas and results relating togbengial dimensionality of a
spatial field and resultant intrinsic limits are also reveelv These works represent a foun-
dation and motivation for much of the work in this thesis relgag the study of continuous
spatial models for multiple antenna communication andaigrocessing.

12
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1.4.1 Wave Equation

The physics and associated mathematics of wave propagattbmvave motion is an area
that has received a significant amount of attention [87, 88]ia accepted as a general en-
gineering principle [89]. A similar theory can be appliedass a wide range of physical
waves, such as acoustic waves and electromagnetic radj@p A central relationship is
known as the reduced wave equation, or Helmholtz equatiby [9

Au(z) + Ku(z) = 0, (1.7)

where u(x) is a scalar valued field representing some spatial propdrtyieo medium,
k = 2mx /X is the wave-number related to the wavelength,of waves in that medium
andA is the Laplacian operator equal to the sum of second ordéepderivatives ofu(x)
on a unitary orthogonal co-ordinate system. For three-dgimmal cartesian coordinates

AN=—+—+—. (1.8)

The second order differential equation (1.7) charactetise spatial distribution of a narrow-
band wave-field across a region free of any sources. The tameng physical parameter is
obtained from considering

U(z,t) = Re {u(z)e 7"} (1.9)

whereRe {-} is the real componenj,= v/—1 andw = 27 f is the angular frequency of the
waves.

This equation is widely studied in acoustics where it is\tifrom a linearisation of Eu-
lers’s equation and the equation of continuity for a comgitede medium [91, 92]. The scalar
field, u(x), is related to the velocity potential or localised pressifrne medium.

In considering electromagnetic radiation, we have thetadil complexity of considering
a vector field. The field at a point is fully characterised by @mponents — the electric
field vectorE(x) and the magnetic field vectdd (x). These fields must satisfy the vector
Helmholtz equations,

AE(z) + kK E(x) =0 AH(z) + k*H(z) = 0. (1.10)

Where the region is free of sources, the fields will also berdjence free [91]. The magnetic
field and electric field are not independent; each field candsetl from the other. The

13
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complete constraint on the field can be expressed

AE(x) + k*E(x) =0 V-E(x)=0 Hx)= v X,kE(x) or  (1.11)
7
AH(x)+KH(x)=0 V- -H(x)=0 E(x) = -V ng(;c) (1.12)
7
whereV is the vector differential operator
o. 0. 0
V= e + a—yj + &k (1.13)

for three-dimensional space with orthogonal unit vecigfandk and respective cartesian
coordinatesz, y, z). The divergence and curl operations on the vector flé(a) are then
defined by the scalar or dot product and the cross produet-ak(x) andV x E(x).

The divergence constraint implies that the electric or ne#igrfield has only two degrees
of freedom. From this it is apparent that the complete ebactagnetic field can be charac-
terised by a two-dimensional scalar field satisfying the evaguation. A similar case for
the importance of the wave equation was made in [93] wherast shown that the Green’s
function for radiating waves satisfying Maxwell’s equaisochas two degrees of freedom.

This brief analysis demonstrates why the properties obsdi@lds satisfying the wave equa-
tion (1.7) are central to understanding the limits of wissleommunications. To facilitate
the analysis, we will investigate the single dimensionalacfield. This approach matches
physical implementations that make use of unpolarisednaate to interact with the field.
The issue of polarisation will be discussed further in thet section.

1.4.2 Polarisation

Early work in the field demonstrated that different polaisa modes of the radio chan-
nel could exhibit uncorrelated amplitudes [94]. The cortgkectromagnetic field has six
components, suggesting that six communication modes acgdtically available [95, 96],
however simple antenna designs will generally only exaitdstect three modes [97]. Where
the polarisation modes are independent, the use of pdiansaill offer improved system
performance in the form of a diversity gain [98].

For scatterers in the far-field, the electric and magnetiddiare not independent. The rank
of the far-field array response matrix is only two [84]. In¢tiee, compact trimode antenna
have been proposed [99] and performance approaching tB6gdr four [101] independent
Rayleigh fading channels have been observed. Whilst suemaa offer multiple signals

14
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from one antenna location, the antenna itself must have spaugal extent to couple with
the component modes of the electromagnetic field. It isyikieht such results arising from
the array may also affect the pattern or directional divgfgi02].

In this work we consider scatterers to be a reasonable disfaom the array and thus in the
far-field. It is the far-field excitation and response of ttesmitter and receiver array which
are of interest. In addition to satisfying the wave equatihiese response matrices will
have two degrees of freedom. The use of polarisation couletase the available degrees
of freedom by a factor of 2. In this way, limits of capacity gsgeem performance utilising
polarisation would be increased by a factor between 1 ando2rdbng on the amount of
cross polarisation diversity. This approach has also bekowfed by others to develop a
MIMO spatial channel model incorporating polarisation310

1.4.3 Mutual Coupling

Practical antennas will exhibit coupling between the eletsi@s they are brought close to-
gether. This effect is known as mutual coupling. Initialdsas of this effect [104-107]
suggested a small improvement in system performance sintgahcoupling would intro-
duce antenna pattern diversity, decorrelating the antsigraals. Other works suggested
the coupling would be detrimental [108] with a loss in sigtmhoise ratio degrading ca-
pacity [109]. Practical measurements showed that degoediat radiation efficiency would
outweigh any increase in pattern diversity leading to a loggerformance [110].

Conflicting views in the existing research literature ors tioipic are largely due to different
scopes and underlying assumptions [111]. Careful anaysiws a tradeoff between any di-
versity enhancement and the directional characteristitgeahannel [112]. Itis not possible
to make definite predictions without considering the congplmpedance network model of
the antennas [113] and resultant changes in response aridref§i [114]. A rigourous ap-
proach and framework for investigating the effects of mutoapling was proposed in [115].
With appropriate matching networks it has been shown thatgbssible to decrease corre-
lation without loss in gain [116], however the system barttivis significantly reduced.

Most approaches to mutual coupling consider the main safroeise to be that generated
in the receiver amplifiers. When this is combined with powanstraints based on the ra-
diated power rather than any internal element currents,possible to benefit from “super

directivity” with multiple antennas [117]. However, it isakwn that when circuit elements

are coupled, the thermal noise components generated \ithim generate correlated noise
at the network outputs [118]. This should be considered veimahysing the effects of mutual

coupling [119, 120].
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Whichever approach to mutual coupling is considered, trietiying field incident on the
antenna array must satisfy the wave equation constraing. niitual coupling effects and
antenna impedance matching network can be consideredftoripest processing operation
on the wave-field. This can be well modelled by a linear tramsftion and consequently
cannot increase the information content of the underlypugial field [121]. Thus mutual
coupling is a factor related to the efficiency of a partica@atenna configuration, rather than
having an impact on the fundamental limits for spatial comioation.

1.4.4 Dimensionality

We define a continuous spatial fieldx), to be a scalar function varying over three-dimensional
spacexr = (z,y,z). We are interested in modelling the field over some domaimef i
terestA C R?® which we require be bounded in extent such thay < A implies that

|z — y|| < co. We also require that is not a set of measure zero, and thus contains at least
some open interval. We assume the fieltly), is continuous, bounded and integrable over
this domain. With these assumptions we can define an inndupt@nd induced norm

<u,v):/[\u(w)v(w)dw HuHA:/A|u(a:)|2da: (1.14)

DefineS as the space of fields(x) created from this inner product and norm. The space
S is isomorphic to a separable Hilbert space with countabstsbd-or example, a Fourier
basis of spatial complex sinusoids can be easily constiifotean arbitrary region. Since
the fields are continuous, the dimensionality of the spadelosS over the bounded region

A will be countably infinite.

If the field u(x) is required to satisfy the narrow-band wave equation, (1hr§ implies an
additional second order differential constraint. Defffi@s the space of functions satisfying
the wave equation (1.7) on the bounded reglonThe spaceS’ is a strict subspace of the
spaceS and is again isomorphic to a countably infinite Hilbert space

Consider a finite regioN” € A whose closure lies in the interior &f A similar norm can be
defined on\’ as in (1.14). Any member &’ with unit norm||u||, can be approximated on
the regionA’ with arbitrary precision with a fixed basi, () form = 1,..., M for some
M < oo. Thatis, given an arbitrary; there exists a numbér and set of basis functioris,
such that

<€ Vou(x) : fjull, =1 (1.15)
A/

M
U — Z amﬁm
m=1

min
Qm,
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1.4 Space, Waves and Intrinsic Limits

This result implies that provided a spatial field satisfieswlave equation over some larger
regionA, an arbitrary field over a bounded finite volumeC A is essentially finite dimen-
sional. The combination of the wave equation constraingunided domain of interest, and
a finite precision representation leads to a fixed numbergrieds of freedom. This is inves-
tigated further in Chapter 2 and forms an underlying theméhfis thesis. The notion that a
field is essentially finite dimensional leads to results réiggy the efficient representation of
fields and fundamental limits to system performance.

The idea of dimensionality for the multipath spatial fieldwireless communications was
developed recently [41], leading to a string of results réigy capacity limits [82, 122—

124], modelling [44, 48, 78, 125], extrapolation [126, 1aA{ direction of arrival estimation

[128, 129]. Similar ideas were developed by consideringitalsie basis representation for
the signals observed by a spherical antenna array [43, 84, 13

The idea of dimensionality and degrees of freedom has beestigated for a scattered field
resulting from objects in a finite volume [131-133]. This lplem can be thought of as the
dual of that considered in this work, where we are interestdtie dimensionality of the
electromagnetic field itself in a finite volume.

1.4.5 Intrinsic Limits

In wireless communications systems, transmission is geti®y means of a modulated
narrow-band radio frequency transmission sent from a firatesmitter region and received
in a finite receiver region. It follows then that the concefpthe essential dimensionality of
a wave-field developed in Section 1.4.4 will be related toititensic ability to send infor-
mation between the two regions. In the field of Wireless Comications and Information
Theory there have been several results presented towaddsstanding these limits. This
section presents a brief literature review of that area.

The assumption of independently fading channel coeffisiemist be examined in the con-
text of the wave equation [46]. The intrinsic limit can beated to the properties of a
continuous operator describing the electromagnetic cogigletween the two spatial re-
gions [134, 135]. The laws of electromagnetism will have #ace on the maximum achiev-

able spatial capacity [136, 137].

The interaction with the electromagnetic field through atcwous or distributed sensor,
across the receiver and transmitter spatial region, stig@esintrinsic upper bound on the
capacity of a wireless channel [138, 139]. A similar ressilbbtained by taking the limit
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Chapter 1 Introduction

of a finite element approximation of the spatial channel [14Be essentially finite dimen-
sionality of the spatial field can be used to derive bound#hferscaling of the capacity of a
constrained antenna array [79, 82]. An extensive numengaktigation has been presented
with similar conclusions [121].

A recent detailed work by Jensen and Wallace reviewed thactigpsaturation that results
from considering the laws of electromagnetism [141]. A moeghematical approach based
on the dimensionality of the spatial field is presented ir].[81

Whilst this thesis will consider the application of contorus spatial models to several spe-
cific problems, it does not extend to incorporate the capdiaitits established above. The
review in this section has presented the works that have tdeenotion of the field dimen-
sionality and applied it to the communications capacitybpem. However, since some of
the elements and aspects of the continuous spatial modeimgmoorly established, most
of these results sit on tenuous foundations. The motivaifdhis research and thesis has
been to provide a more systematic development of some ofsipects and applications of
continuous spatial models.

The following chapter leads into this work by a more thorougiew of the dimensionality
results and analysis of their application to two-dimenalonultipath fields.
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Chapter 2

Dimensionality of Multipath Fields

2.1 Introduction

In engineering terms, the dimensionality of a system relti¢he degrees of freedom or the
number of intrinsic variables required to describe theesthia system. In practice, it is only
possible to observe or control a system with a finite dimeradity. Provided such systems
are also bounded in energy, they present a manageable fas@hplexity. We expect this
to be the case for most physical systems over a bounded dariaierest.

When we lend mathematical models to physical quantitiés,pbssible to create a frame-
work that permits unbounded dimensionality and compleXitr example, if we consider a
simple continuous function(t) defined on the real intervale [0, 7], mathematically it can
be bounded in both magnitude and energy and still exhibiuatably infinite complexity:

g(t) = > aye>™T a1 = gt)<1

0 T
el = / g < T. (2.1)
n=—oo 0

A useful signal description requires a finite set of coeffitser,, selected from a countably
infinite possible set. There is generally some additionaktaint or critical parameter that
will constrain the dimensionality. For example, any intti@n with a physical system will
have some constraint on the resolution or scale of observaid control. Intuitively we
expect such a constraint to reduce the system model to afiimtder of terms and thus a
finite dimensionality. For some applications a consereatistimate of this limit is adequate.
However, for telecommunications systems, we are inteddstéhe ability to transmit and
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Chapter 2 Dimensionality of Multipath Fields

capture information. The number of terms and their relagivength are directly related to
the information theoretical limits of the system.

An understanding of the relationship between physicalitaims and system dimensionality
is an important problem. Consider the problem of a signabtramed to a duration df
seconds and a spectral bandwidtiioHz. The dimensionality of such a signal2if/T" time

is an accepted result that underpins much of communicasinddigital signal processing
theory. Yet this result has a rich history and an extensieertttical treatment with the key
result presented by Slepian as the second Shannon Lecti®@&4n85]

The approximate dimension of the set of bandlimited and timiged functions
Is asymptoticall2WT asW or T becomes large.

For most applicationWT > 1 and the asymptotic relationship is appropriate. Whilst
the signal space is still infinite in dimensionality, anyredjconstrained in duration and
bandwidth can be well approximated by a finite dimensionptegentation. The error in
a representation decreases rapidly beyond the criticatmsionality. However, rather than
this being an absolute threshold, it occurs across a spdeairter oflog 2WT [142-145].
Thus for small2WT the required accuracy can have a significant impact on tharesl
number of dimensions.

The recent interest in using multiple antennas for comnatimns has created an active area
of research. Rather than considering a signal over a singiertssion, we must consider a
signal over three possible spatial dimensions in additotinme. Continuous functions are
used to represent the variation of some physical propery thve spatial region of the trans-
mitter and receiver. In this work the physical propertiessidered are the electromagnetic
field values. Therefore they have the additional constiaidiaxwell’'s equations. We are
interested in developing an understanding of the dimeadityror degrees of freedom in a
continuous spatial field over a region of space. Such workhelfundamental to under-
standing the limits and optimal approaches for transngjtiind receiving information from
within a confined spatial region.

There is now a significant amount of literature demonstgatirrelationship between the
degrees of freedom and the spatial extent of an antenna alaes, Kennedy and Ab-
hayapala formalised the concept of dimensionality as dtesl to the wireless multipath
field in 2002 [41, 42] leading to a series of publications rdgey capacity limits [82, 122—
124], modelling [44, 48, 78, 125], extrapolation [126, 12nd direction of arrival estima-
tion [128,129]. Poon, Brodersen and Tse developed sindieas from a signal subspace
approach [43,84,130]. Rather than treating the MIMO pnobées discrete set of antennas,
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2.1 Introduction

the idea of taking a volumetric approach to space has beeziapmd [146] and the notion
of an intrinsic capacity of the electromagnetic channebl1339] has been presented.

Whilst these publications are all relatively recent, theseation of a finite dimensional
signal space based on the physical extent of the array,rrtthie the number of array el-
ements, is not new. The practical approach has been to usenanspacing no less than
half a wavelength. Use of the Bessel expansion and printgpals for small ring arrays
was established in the 1960s [147, 148]. The signals reptiagethe principal components
of variation across the antenna array were known as phasesaod have been applied to
problems of direction of arrival estimation [149-153] andrapolation [154]. The phase
modes can be related to the signal from a virtual linear aft&p]. The number of sig-
nificant phase modes is related to the size of the circulayanot the number of antenna
elements. Familiarity with the dimensionality of a spatield in communications and infor-
mation theory is still at an early stage. The attempts atticrga fundamental limit for the
capacity of a region of space provide apparently confliciindg incomplete results.

This chapter presents an analytical and numerical studgetiimensionality and degrees
of freedom of a continuous spatial field and its significarcthe MIMO communications
channel. It is a collection and extension of several worksipusly published by the author
[156—158]. To provide some background, Section 2.2 revieegramework for discussing
the approximate finite dimensionality of a band-limiteddtion. Section 2.3 extends this
framework to consider a truncated representation of a tweedsional multipath field. A
discrepancy between the published results of Kennedy l5a@d Poon [43] is highlighted
and explained. A numerical investigation of the truncatoder and modelling error of a
multipath field in Section 2.4 is used to demonstrate theiegipility of the finite dimensional
approximation and bounds. Section 2.5 presents new workrigeda tighter bound on the
error and dimensionality of a multipath field, based on a newstructed bound for the
Bessel function. As the bounds are developed under the g@disumof far-field sources,
Section 2.6 presents an analysis and investigation of tpactof near-field sources on the
results.

The contribution of this chapter is to provide context andenstanding of the finite dimen-
sional approximation of a multipath spatial field. It is apgo# that this is a similar problem
to that studied extensively by Slepian [142], however tiseiite are subtly different. Most

importantly, however, with the spatial extent often a caaist of the system, the asymptotic
limit is of less importance than understanding the behavadthe truncated approximation
around the selected representation dimensionality. lotiorg this relates to the problem of
the optimal number of antennas to use in a particular systarfiguration, and highlights

the issue of diminishing returns for spatially constraibdtlO systems.
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Chapter 2 Dimensionality of Multipath Fields

2.2 Dimensionality of a Bandlimited Function

In this section we consider the degrees of freedom or direasty of a bandlimited signal
with finite duration. It is true that no signal can be simuétansly limited in time and band-
width. Thus we must consider signals which are effectivelytained or almost limited, in
some sense, to a given time and bandwidth. Without loss afrgéty, we assume a time
signalg(t¢) with unity energy,

G (2.2)

Adopting the approach set out by Slepian [85] we define a fancis being “limited to a
duration ofT" at levele” to imply that the fraction of the signal’s total energy adsof the
interval[0, 7] is bounded from above by

/ lg(t)]?dt < e. (2.3)
t¢[0,7)

Similarly, we can define a function as being “bandlimited 46/, W] at level ¢” with the
bound

| ewrdr<e 20
lfI>w
where

G(f) = /_Oo e~ 2l (t)dt. (2.5)

Now considelG as the set of all unit energy functions time limited@7’] and bandlimited
to (—W, W) both at level. Define the approximate dimensionalidy(W, T, ¢,¢’) of G at
level <" as the minimumV for which there exists a fixed collection of functiows, ..., Uy
such that for any € G there exists a set of coefficientg such that

/t|sm

The dimensionality theorem is stated as

2

dt < & (2.6)

g(t) — Z Vi (t)

/ /
lim —N(VV’ Te,¢) =2W or lim —N(VV’ Te,e)

lim - lim = = 2T, 2.7)
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2.2 Dimensionality of a Bandlimited Function

The works of Slepian, Pollak and Landau [142—-145] deriveotitamal set of basis functions
¥, related to this problem. In these works they consider twesda of functions — those that
are finite in duration with maximum concentration of spdatreergy in a given interval, and
those that are finite in bandwidth with a maximum concerdaratf energy in a given time
interval. The case of signals concentrated in both a timespadtral interval was covered by
Slepian in [85] and elegantly generalised by Franks [158feSE turn out to be a family of
functions specified by the parame®¥T" and scaled for the appropriate time and frequency
intervals. The differential equation involved in this dation is identical to that which arises
in the separation of the wave equation in prolate spheradatdinates. As a result, these
functions are known as the prolate spheroidal wave funstidnis the properties of these
functions that are used to prove the dimensionality theorem

A comprehensive formal framework representing over a dechdesearch was required to
properly establish the dimensionality theorem for the dimleensional time bandwidth case.
Much of the work for this thesis is related to extending suesuits to the case of multi-
dimensional spatial wave-fields. Despite the complexitgartying the formal results, it is
evident that in the limiting case of a large dimensiondlityT’, the exponential basis func-
tions provide a reasonable approximation. This is consisté&h the intuition and practical
application of signal processing theory.

Taking the infinite basis expansion from (2.1) and defini{@®)

00 o T

G(f) = / e iltg(t)dt = > ay / emimt/ T e=2mift g (2.8)
—o0 n——o00 0

= Te T Z (—1)"aysinc (7(fT —n)) (2.9)

wheresinc(z) = sin(z)/z. From the maximum of 1 af = n/T, |sinc (7 (fT — n))| will
decrease lik¢l /7 (fT — n)| asn — oo. Thus asl’ andWW become larger, it is evident that
the bound (2.4) is approximately satisfied provided that

a,~0 YV |n|>WT (2.10)

which leaveWT + 1 coefficientsy,, to characterise the signal. Whilst the harmonic expo-
nential basis will be suboptimal for small values23¥/ T, it is evident that in the limit this
basis choice is consistent with the theoretical limit. $mideas and results will now be
explored for continuous spatial fields. These can be coreides continuous functions with
a multi-dimensional domain rather than the case of the ameiasional domain function as
reviewed in this section.

23



Chapter 2 Dimensionality of Multipath Fields

2.3 Dimensionality of a Multipath Field

Consider a spatial field represented by a continuous scalae defined over some domain
representing the region of space. To begin with we can censidield defined over a two-
dimensional domaim(x) wherex € R2. Rather than the entire field, we are only interested
in modelling, detecting or exciting the field in a restrictéoimain of interest. A suitable
simple domain is the set of points within a fixed radius of thgio

By, = {z:z R’ |z| < R} (2.11)

where the nornj|-|| is the usual cartesian distance norm. Whilst compact intiootathe
representation of a field agx) for € B% suggests an uncountably infinite set of values,
u(x), and thus does not lend itself to engineering applicationbéfore in (2.1) of Section
2.1, we propose some countable spatial basis functi$iis,), to represent possible fields

o0

u(@) = > anfu(x). (2.12)
Such a representation is only useful provided we can obtaaparopriate basis representa-
tion for the problem of interest. In practice we must deahvditfinite set of signals or basis
functions, and thus limit ourselves to consider the truedapace of fields

{u(a:) cu(x) = Z (), Z la)? < oo} : (2.13)

Our choice of basis functions, () should be constructed such that a truncated space at
any orderN provides an efficient representation of the desired sigmete. The basis will

be optimal when av'" order truncated space represents the maximal variatiomeinmn-
derlying signal over all possible basis of ord€r Without finite truncation of the signal
representation, no sense of optimality exists.

To achieve a particular error in modelling the underlyingnsil, an optimal basis function
set will allow a compact representation of the field through least number of terms in the
expansion (2.12).

As discussed previously, we expect some physical consdraimd considerations for the
engineering application to impose an effective finite disienality. Thus we anticipate
being able to consider only a finite set of the basis functtonspresent, with some level of
approximation error, all of the fields of interest for a giy@oblem. The constraints relevant
to wireless communications are the properties of the elsw@gnetic field, the ability of the
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2.3 Dimensionality of a Multipath Field

antenna elements to excite and detect it, and the boundectrmdtour region of observation.

Here we see a key thread of this thesis:-

Understanding the optimal basis representation and the apmpriate truncation order
for a continuous spatial field related to electromagnetic rdiation is key to understand-
ing the theoretical limits of wireless communication systms utilising spatial diversity.

The termmultipath fieldis used to describe a field that is constructed from manyreifiie
signal arrival paths. It is this multipath diversity thaeates the spatial variation in the com-
munications channel that can be exploited for improvedguerédnce. Recent works on the
multipath field suggest that a field of arbitrary path complegan be well approximated
over a finite domain of interest using a fixed number of sigaaht [41, 84]. Beyond some
critical threshold, the error in such an approximation iafmed and exponentially decreas-
ing with respect to the order of the approximation. Two apphes from these works will
be reviewed and compared.

2.3.1 Representation by Wave Equation Basis Functions

The first approach to be reviewed was presented by Jonesgelgrand Abhayapala [41,
42]. For communications systems, the signalling bandwiglgmall compared to the carrier
frequency and we can typically make the assumption of a wabpand source. In a region
free of any sourceglz|| < R, the field must satisfy the narrow-band wave equation [91]

Au(zx) + k*u(x) = 0. (2.14)

All solutions to this differential equation can be reprasenfrom a set of basis functions.
Given a choice of a circular domain of interest, a naturaloddiasis functions are those
obtained by separating the wave equation in polar coorelinathe radial variation of the
basis functions is characterised by the Bessel functioh thi¢ angular variation being the
harmonic complex exponentials. We can represent an anpgpatial field using this basis,

o0

w@) = S anbu@)  Bul@) = Julk]])e. (2.15)

n=—oo

whereJ, (-) represents the'" order Bessel function ant}, represents the angle of the polar
coordinates for the point.

Given this basis function we are interested in the numbeermhs required to represent an
arbitrary multipath field. Consider a field as a superpositbP far-field sources, with am-
plitudea, and angle,. The coefficientsq,,, for the expansion of this field can be specified
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Chapter 2 Dimensionality of Multipath Fields

and bounded,

P P
Q, = Zapejnep < Z la,| = a. (2.16)
p=1 p=1

If the representation of the field is truncated at orf¥erwe can determine an upper bound
on the representation error across the domain of interelsis drror will be bounded by
the worst case contribution resulting from the terms ddedrin the truncation. Define the
truncation error as

en = [u(@) —un(@)| = | D ay Ju(k|z])e . (2.17)

|n|>N

Using the bound (2.16)

ey <2a Y |alkllz])] (2.18)

n=N+1

The Bessel function can be approximated and bounded fronedb60],

R\ (3R (kr)» 1 ekr\"
Tnlkr) = (?) mzom!f‘(n—i-m+ 0D 2Tm+1) " Vamn (%) (2.19)

using the first term of the alternating series as an upper dama applying the Stirling
approximation for the Gamma functiofi(-). The approximation holds for sméit, whilst
the bound holds for alkr. This bound is monotonically increasing with and for our
domain of interesf|z| < R. The worst case for this error bound eg will occur at the
extremity of the domain of interegtc|| = R. The truncation error from (2.18) is bounded
from above as

2 N+1
en < a < 00 where p = kR <1 (2.20)
(1 —=p)\/27(N +1) 2(N +1)

for all ||z|| < R providedN is sufficiently large. Since the summation will only conwerg
for p < 1, the critical truncation point above which the bound wilistxvill be

N > ekR)/2. (2.21)

The dimensionality of the field is then the number of requitedns2N + 1. A two-
dimensional multipath field in a region with radidshas an upper bound on its effective
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2.3 Dimensionality of a Multipath Field

dimensionality of

Dp =2 Ek}ﬂ 41~ 17TR/A (2.22)

It can also be shown that the error decreases exponentidfiyadditional terms beyond this
truncation point [41]. The approach is robust in that thertabis a true upper bound. The
contribution from all higher order terms is considered aondrmed. A similar result was
presented by Rossi et al. [153]. However, as will be seen ati&e2.4 this bound is rather
conservative for larger regions.

2.3.2 Representation by Antenna Signal Subspace

Rather than considering the underlying field, an altereapproach is to consider the signal
space that would be observed by the antenna array [43, 8}, R&@her than considering
the dimensionality of the field itself, this approach coessdthe degrees of freedom in the
antenna signals. This comes from the assumption that arandwmcular array at the extent
of the two-dimensional region is optimal.

Consider a uniform circular array of radidgand an arbitrary superposition &f far-field
sources, with amplitude, and angle),. The signal received around the circular array will
be

P P 9]
u(f) = Z apejkmos(e_ef’) = Z ape_jnep Z j”Jn(kR)ej”G (2.23)
p=1 p=1 n=—00
using the Jacobi-Anger summation expansion of a plane wai/j [The basis functions
are the harmonic complex exponentials around the circulary aveighted by the Bessel
function. This approach is also known as the phase modelsigm@sentation of a circular
array [151].

The Bessel function of ordet > 0 will be zero at the origin,/,,(0) = 0 for all n > 0.
Furthermore, the derivatives df,(z) atz = 0 will be zero up untilo” J,,(z)/0z" = (1/2)".
Thus as the order is increased, the Bessel function will rersall for a larger interval
from the origin [161]. This is often referred to as the “highsp” nature of the higher order
Bessel functions as they have little contribution aroureddhgin. The assumption made in
the work of Poon et al. [43] is that

Jo(kR) =0 for n>kR. (2.24)
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Chapter 2 Dimensionality of Multipath Fields

Although this is only an approximation, it has been used éone time [149] and tends to

be an accepted result. Since the high order tesms kR are small, we can truncate the
summation to give a finite dimensional subspace approximati the circular array signal

space

P N
u(f) ~ Zape_jnef’ Z G T (kR)ei™. (2.25)
n=—N

p=1

The truncated field representation of ordendf= kR has an associated dimensionality,
Dp =2[kR|+ 1~ 12.5TR/\. (2.26)

This approach does not consider the cumulative sum of timeatad terms nor does it pro-
vide any estimate or bound on the representation error ireidtant truncation.

2.3.3 Comparison of Dimensionality Results

The previous two sections detailed two approaches foriageatfinite dimensional repre-
sentation of the spatial field. Both of the suggested truocairders, (2.22) and (2.26), show
a linear growth with the radius of the regidh Both the approaches suggest that the error
in the representation of an arbitrary multipath field desesarapidly with additional terms
beyond the suggested truncation. However, it is noted tigatiwo results suggest a different
ratio in the limit of R — oo.

A notable difference between the two approaches is that the\equation basis (Section
2.3.1) considers the dimensionality of the complete fieldrdfie entire domain of interest
|z|| < R. The signal subspace approach (Section 2.3.2) considBrshenantenna signals
at the extent of the region on the circular arfgyi| = R. However, in the analysis it was
noted that the maximum error of the expansion (2.15) occeas the edge of the array [41].
Also from Huygen’s principle [91] it is known that the field ihe interior can be completely
characterised from the boundary field conditions. This iegahe edge of the field will have
a similar dimensionality to the entire field across the donodinterest. Therefore this is not
the reason for the differing ratios.

Both approaches are developed from electromagnetic th&hile the first approach di-

rectly considers a basis of the wave equation, the secomdctessignals incident on the
array to plane waves (i.e., far-field sources). Both appgreaeffectively constrain the pos-
sible fields to valid solutions of the wave equation [91]. Bessel function expansion of a
plane wave through the Jacobi-Anger expansion is centtadtio approaches.
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2.3 Dimensionality of a Multipath Field

The most significant difference between the two approachtsat of obtaining a bound in
comparison to an approximation. The approach of Sectiorl 2s3a formal proof, which
considers and bounds all of the truncated terms. The heuaigproach of Section 2.3.2
simply considers the terms to be negligible.

An approximation of/,, (kR) at the critical point. = kR is given by [160, p.366]

T ~ ol/3 1 5 s
w(n) ~ WF(%)W ~ 0.4473n (2.27)
which cautions the assumption (2.24) thiatkR) ~ 0 for n > kR. Note that in the case of
kR = 1thenJ,(kR) ~ 0.4473 which indicates that the second basis function of a region
with R = \/2x has a significant contribution to modelling the field on thegion. For
this reason the expression for dimensionality developei3r2 tends to underestimate the

contribution from the truncated terms and will be inadegudat small regions.

The bound for the Bessel function (2.19) used in SectiorlZ3ggests
Jn(n) < (e/2)"/V2mn (2.28)

which will be much larger than the approximate value (2.Z7)h& ordem increases. Thus
for larger regions withk R > 1 the bound developed in Section 2.3.1 will overestimate the
contribution of the error from the truncated terms and tiedtound on dimensionality will
be conservative.

An intended outcome of the research work in this area wasvelole a better understanding
and formal basis for the dimensionality results. This sgcfiresents the two starting points
for this development: a formal bound that is conservativihenlimit of a large region and
an approximation that is insufficient for the case of a sneglon. The subsequent sections
in this chapter will present further developments from ffomt to investigate the existence
of an alternate bound which can be used for both small and f&gjons.
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Chapter 2 Dimensionality of Multipath Fields

2.4 Numerical Investigation of Dimensionality

This section presents a numerical investigation on theagu@te truncation dimensionality
for a multipath field. In the investigation we consider thkegiants of the error criteria
considered on a circular region. As will be seen, the boundshese three error criteria
exhibit similar characteristics, but vary slightly in maigile.

2.4.1 Bound for Worst Case Error Across Region

First we consider the worst case error possible for a pdatid¢ield. This is the ratio between
the maximum error in the truncated field and the maximum vafule field. This error is
similar to the error and upper bound that was consideredati®®e2.3.1,

N

e1= max Ju(@) —un(@)]  un(@) = > b (2.29)
n=—N

Again, we consider the field constructed from a setPoplane waves, and note that the

maximum field amplitude ii}f’:l la,|. Without loss of generality, we can normalise this

to be unity. Thus from (2.16) we have, | < 1. Provided that the truncation poifX is

sufficiently large,/,,(k ||z||) is monotonically increasing fdfz|| < R thus

e =Y an "kl <2 Y |T(kR)|. (2.30)

In|>N n=N+1

2.4.2 Bound for Mean Error at Edge of Region

Often we are not interested in the error for a particular gigdeeld, but rather the expected
error for representing a field generated from a random psocé¢e consider the class of
fields generated from a large set of plane waves with indegrgnéndom amplitudes and
random directions of arrivals. The incident waves are sidajel //P such that the expected
value of the field power is unity. Given a large enouglthe field mode coefficients,, will
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2.4 Numerical Investigation of Dimensionality

also be independent and unit power:

1 _
W= 5% E{a,a;} = oy
P P P
u(w) = Y a0 plu@ua) ) = Y am = 5 da ~ 1
p=1 p=1 p=1
L P
a, = Z apejnep FE {ama_n} = Z apa—pej(m—n)ﬁp 2 O (2.31)
p=1 p=1

where the Kronecker delta functian,,, = 1 for m = n and zero otherwise. The final
approximation of (2.31) is valid provided that there is aalie large number of incident
waves,P > 1 and P > max(|m/|, |n|). This field has maximum richness or entropy in that
the field coefficients are independent random variablesilpitolg a representation with a
reduced set of variables.

In the limit of P — oo this field is wide sense stationary in that the charactesstind
statistics of the field are independent of the position The coefficientsy,, are an infinite
set of independent random variables of unit variance. Thigies

E{u(w)w} = E{ i B i: Ct_nm}

- Z Z E{amtin} Tk |||]) T (k || 2] ) e (mm0e

m=—00 N=—00
[e.e]

= 3 Blaga} Lk |z]) =1 (2:32)

using some Bessel identities from [162].

In Section 2.3.1 it was shown that beyond a reasonable tioncarder, the bound on the
worst case error is largest at the edge of the regiieh= R. Consider the average error in
the truncated representation around this edge

2

27
ey =E 1/ > Ju(kR)e™| df
0

o
[n|>N
1 2 )

=F G dm (kR)J,(kR)— J(m=n)d 19

> X awmd R GR)S [e

|m|>N |n|>N
< Y E{on@} Jn(kr)Ju(kR) =2 > JX(kR) (2.33)

In|>N n=N+1
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Chapter 2 Dimensionality of Multipath Fields

using the expectation around the circular boundary, clmantiie order of integration and
using the orthogonality of the harmonic exponentials inlasis functions,,.

2.4.3 Bound for Mean Error Across Region

For the third case we consider the expected error acrossitiie domain of interest. This
involves extending the domain of integration to includeadlii» < R. The orthogonality of
the basis functions is still applicable since the integrats performed in polar coordinates.

2

1 R 2w . -
e3=F W/o /o Z ap 7" I (kr)e’™ | dbrdr (2.34)

[n|>N

< % Z E{a,an} /OR J2(kr)rdr = 2 i J2(kR) — Jo_1(kR)J, 1 (kR)

In|>N n=N+1

Figure 2.1 shows the locus of points satisfying the threersys,, ¢, andes, equal to—20dB
and—>50dB. The ratio of the truncation order ka? plotted in Figure 2.1(b) indicates that the
ratio is asymptotically approaching 1 for large regiongyure 2.1(a) demonstrates that the
truncation af k R | approximates a20dB average error in the stochastic case. For radii up to
one wavelength, the truncation [atcr /2] provides a better match to the20dB worst case
error. This observation matches the successful use ofedhe/2] truncation for capacity
results [79, 122].

2.4.4 Discussion

The numerical investigation in this section suggests timgeoture that for large regions the
dimensionality of a multipath field is asymptotically giveg the valueDr = 2kR + 1.
However, for small regions the representation of a fielddated to match this dimensional-
ity will have a considerably larger error. As a result we maestareful with any use of this
expression for the dimensionality of a field when dealindwaitsmall region.

To consider the validity of the conjecture of the ratio asyotipally being unity, we can con-
sider the application of the sampling theorem and Huygemrgple for a large region. The
complete field across the region can be characterised byeldeofa the boundary. This will
have lengti27 R. Since the field is generated from narrow-band sources, eéteevariation
along a one-dimensional path will be strictly bandlimitadd thus can be represented by a
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Figure 2.1: Numerical investigation of the error in truncated field esmmtation at differ-

ent radii.
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Chapter 2 Dimensionality of Multipath Fields

set of samples with the critical sampling period of one hafelength. Thus the number of
samples required is

27T R D—-1
D=——=2 N=——~kR. 2.
N2 kR = 5 kR (2.35)
The use of the sampling theorem for these results highligietsimilarity between the di-
mensionality of a two-dimensional field and the dimensiapalf a bandlimited signal as

considered in Section 2.2.

The current interest in MIMO communications extends to @ering antenna arrays num-
bering perhaps 8 to 16 elements. This corresponds to thendiorality of the two-dimensional
field in a region of the order of one wavelength. The dimeraionbound of Dy = ekR+1

is perhaps a better match for reasonable error contoursrugdtion at this radius.

From this analysis, it is evident that the dimensionalityuteas it applies to small regions
cannot be simply captured by a single number. It is evidattdhly a finite number of terms
will be required to model a multipath field with a desired aexy. This has implications for
the size of the space of detectable signals for a finite sizesserray. The dimensionality
will asymptotically increase linearly with the radius oktdomain of interest. However, for
regions with a small radius, a more conservative estimatesodlimensionality is warranted.
For such small regions the truncated terms will have a gregaificance to the represented
field.

Following on from this investigation, it would be desiraltiéehave a formal derivation of

the asymptotic limit of dimensionality consistent with tisuggested from the numerical
analysis. It was identified in Section 2.3.3 that the exgtiound for the dimensionality

is conservative as the result of a conservative bound usetiédBessel function. The fol-

lowing section is presented as a work towards improving ltbisnd and thus the resultant
dimensionality bound.

2.5 Development of Tighter Bound on Dimensionality

The framework presented in Section 2.3.1 provides an apprtmbounding the error in
a finite dimensional field approximation. However, the bo@2d9) used for the Bessel
function introduces an overestimation of dimensionality.
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2.5 Development of Tighter Bound on Dimensionality

Consider the terms of the expansion

Jn(/w):(@)nz (k)" (k) (2.36)

2 m!l(n+m+1) — 2"T'(n+1)

m=0
The ratio of the magnitude of the term for + 1 to that ofm will be

(kr)?
4(m+1)(n+m+1)

(2.37)

We are interested in bounding the terms for the truncatioereth > kR > kr. The
expression (2.37) suggests that we will need in the ordertefms from the expansion for
an accurate approximation. It can also be seen that the heasgmptotically tight towards
the origin askr — 0.

By using only the first term of the series expansion for thesBEInction as an upper bound,
the bound is quite conservative. For lang¢he bound (2.19) reaches unity/at = n2/e
whilst it is known that the maximum value of the actual Be$settion is upper bounded by

1 and does not occur unfil- > n. In order to improve this result we seek a tighter bound for
Bessel function across< kr < n. All Bessel functions of positive order are monotonically
increasing over this range [163]. We shall name this partieading edge of the Bessel
function as it proceeds the oscillatory wave nature of thesBefunction agr — oc.

2.5.1 New Upper Bound for the Bessel Function

The slope of the leading edge of the Bessel function on adggstale is monotonically
decreasing. The bound (2.19) has a single term in the powessa the argument with
exponent:. Whilst this term is a tight bound for the growth df(z) atz = 0 it diverges
from the Bessel function asincreases.

We can generalise this to have a single term function of thra jz) = A2™. To extend the
bound across the entire leading edge of the Bessel funatierchoose to match the value
and derivative of this approximation to the value and déresof J,(z) atz = n,

f(n)=An™ = J,(n) (2.38)

= mAn™  ~ J (n) = Jo_1(n) — Ju(n). (2.39)
Solving this for the two parameter$ and using the recursion relationship for the Bessel
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Chapter 2 Dimensionality of Multipath Fields

functions and the bound fok,(n) (2.27) we obtain

1/3 1
_ m -1/3,,—m -1/3,,—m
A= J,(n)/n™ < 32/3F(§)n Bp~m < 3" n (2.40)
Jn—1(n) Jni1(n) 9
= —1)=n(1- 73, 2.41
e ( Jn(n) ) ! ( Jn(n) = ( )

With some additional manipulation and approximations efBlessel functions, it is possible
to show thatn will vary in proportion ton??. A comprehensive numerical investigation was
used to verify that this is also an upper bound provided:that1.

Combining the results we conjecture a new single term boanthe Bessel function,

1 2\ n?/?
Ju(z) < =n7 13 (—) n > 1. (2.42)

2 n
This bound can be verified numerically and provides an imgadowatch to the leading edge
of the Bessel function as is shown in Figure 2.2. While thigrizdbremains to be proven
analytically, it is an effective and simple expression favdelling the leading edge of the
Bessel function. A comparison of this bound with the bound42is shown in Figure 2.2.
By approximating the Bessel function.at(n), the new conjectured bound does not diverge
from the leading edge of the true Bessel function as the ordemcreased. However, since
it is a single polynomial term with a power af/? it is not as tight as the previous bound
towards the origin.

2.5.2 Application of New Bound to Dimensionality

The bound (2.42) provides a fairly compact expression thahtds the Bessel function from
above, and is less conservative than the previous bound249- kR approaches. We
can use this new bound to consider the error in the truncatidhe Bessel terms. From
(2.30) the error bound will be

00 2/3

%) n2/3 0 n
kR kR
a<2 y nans 3ot (S1) <y (5

n=N+1 n=N+1 n=N+1

(2.43)

This becomes more problematic than a simple power serigsafiparent that the terms in
the summation will be strictly decreasing provided th& < N. The summation can be
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Figure 2.2: Comparison of bounds for the Bessel Function. The new boumdes a better match
to the leading edge of Bessel function of higher order.

bounded by an integral,

00 n2/3 n2/3 n2/3
Z <k—R) </OO <k—R) dn</OO <@) dn
n=N+1 N N N 0 N
- VT - (2.44)
4 (=log (%))

which exists provided thdtR < N. This suggests a critical dimension/ak beyond which
the error will be bounded and decreasing. However, at titisalrdimensionality, the bound
(2.43), suggests a relatively large error from the contrsuof the truncated terms. The
previous bound (2.19) is much tighter on the Bessel fundboemall argument R < n and
as such predicts a lower contribution of the higher ordensgoeyond the critical threshold.

2.5.3 Discussion

The motivation of this section was to develop a simple tighteind on the Bessel functions
in an effort to improve the dimensionality bound. The cotjeed bound (2.42) provides
a single term expression that is much tighter aroupeh) than the existing bound (2.36).
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Chapter 2 Dimensionality of Multipath Fields

However, when this bound is used to consider the error daritan from the truncated terms
in a field representation, a number of problems arise.

The previous bound (2.36) is known to be asymptoticallyttaghthe origin. The new Bessel
bound has a lower polynomial order?3 < n, and will overestimate the value of higher
order terms on the regiahRk < n. Whilst the bound suggests a tighter truncation threshold
for error convergence, it will lead to a conservative estend the error.

To bound the error we require an expression for the cumelatum of all the terms of
ordern > N. The new termd.5n~'/3(z/n)"*" has a intricate dependence on the order
Obtaining an expression for the summation of such termsaatéw be a challenge. The
assumption that > N simplifies the term, but increases the error bound. A calicuiaf
the expression 2.44 |leads to very large values\for kR.

The work of this section has provided the step of showing eayence in the error term for
N = kR. Itis conjectured that a composite bound for the Besseltionevould be required
to obtain a tighter bound for the error expression, rathan th single term bound. Given
that the efforts to formally bound the dimensionality ofgdendimensional function spanned
over a decade [85, 142], it is to be expected that a similanddor a multidimensional field
would be a challenging endeavour.

2.6 Impact of Near-Field Sources on Dimensionality

The dimensionality results presented and discussed im&&t8 are useful for determining
the number of variables that would be required to represemiaalel an arbitrary multipath
field across a region of space. However, the two approach8gafon 2.3.1 and Section
2.3.2 both make global assumptions about the spatial figlcpalticular, the approach of
Jones et al. [41] assumes the field is a sum of a finite numbelaogpvaves. Similarly,
Kennedy et al. [42] assume a far-field signal model and glbbahd on the field amplitude.
The subspace dimensionality approach [84] rests on a plame wor far-field source model.
The error measures, andes, presented in Section 2.5.2, were related to a stochadtic fie
assumed to be spatially stationary, again a global property

In general, we are interested in the problem of describingutipath field over the finite
region of observation. In terms of the spatial field modet), we are limited to the domain
of interest||x|| < R and desire a framework that is independent of the field ptigseover
the extended domaifiz|| > R. The global assumptions of the field in the frameworks
presented for dimensionality require some constraint anded behaviour on the field for
all z € R2. However, in practice, this will not be the case.
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2.6 Impact of Near-Field Sources on Dimensionality

A practical field must be generated by some distribution afrses. For an ideal point
source, the field will increase without bound in the vicirofythe source. Whilst this is not
the case in general, it still is apparent that the preseneayfeal sources near the domain
of interest will violate the global assumptions on the figdehy source distribution must be
at an effectively infinite distance — this is known as thefiald approximation. Since the
basic assumptions of Section 2.3.1 and Section 2.3.2 wilbaovalid for any sources near
the domain of interest, the question naturally arises:

What effects do near-field sources and scattering objecte ba the dimensionality of the
multipath field?

For a near-field source at positiath, the fundamental solution to the wave equation (2.14)
in two dimensions is [91]

() = Hy(k||lz —a[) = Y HP (k|2 |)e " Ju(k [[])e . (2.45)
The angled, andéd, are the polar co-ordinate angles of the pomtandx’. Since the

field value at the source(x’) = Hél)(o) is not defined, this expansion is convergent for the
region from the origin to the sourcgz|| < ||z’

From this we note that the coefficients of (2.15) for a pointree atx’ will be a, =
HP (k||| with H"(-) = J,(-) + iY,(-) being the Hankel function of the first
kind andY,,(-) the Neumann function. The Bessel and Neumann functions ravek to
have the following asymptotic form far > 2 [160],

1 ez \n 2 sez\""
J.(2) ~ (—> Y (2) | — (-) . 2.46
(2) V2mn \2n (2) ™ \2n ( )
It can be seen that the Neumann function will be at least exapidaly increasing with order
n oncen > ez/2. Thus the terms of the expansion (2.45) multiply a comporieat is
exponentially increasing with one that is exponentiallgaleng. The rate of convergence

of this summation will depend on the relative rates of groank decay of the components
with respect to the summation order

Using the asymptotic forms (2.46), it can be shown that thaseof (2.45) will only decay
like (||| / ||='||)™/7n. Given our domain of interest i8z|| < R this suggests that sources
near the boundaryz’|| ~ R may introduce additional degrees of freedom, or at leassevor
the error in the representation of a multipath field. Notalbly='|| < R the field will have
an unbound dimensionality. However, in this case we havedniced a singularity and thus
a violation of our assumed field constraint within the donadimterest.
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Chapter 2 Dimensionality of Multipath Fields

A sensible way to formulate the problem would be to confine dberces to the region
'] > S whereS = R + A. This raises questions regarding the appropriate separati
A between the observation region and the potential souréerregiow close can a source
be without impacting the essential dimensionality of th&lfie Is this buffering distanca
dependent on the radius of the domain of intere&t

Consider the average field error defined previously (2.349.c@h relax the assumption of
E {|a,|*} = 1 for all n to introduce the effect of near-field sources (2.45). Caersidfield
generated by a source at a radiusSoWith unit average power, the coefficients will have
power related to the squared magnitude of the Hankel fumctibthe source amplitude is
normalised such that the field amplitude at the origin isyuthien

E{Jon|*} =

(1) 2
|Hp )(kS)| (2.47)

|HSD (kS)2

It is easily verified that this ratio is asymptotic to unity&s— oco. This provides a match to
the far-field case considered previously. The average fretst Bow becomes

00 7gl) g )
€3 = znZN:H % (J2(kR) — Jo1(kR) Jni1(kR)) . (2.48)

Figure 2.3 shows the error contoursagffor four different field radii as the source radius
is increased away from the domain of interest. A low trurazagerror is achieved after
sources are separated only a small distance from the dorhaitecest. The separation
required is much less than the radius of the domain of interEsom this investigation
it is demonstrated that only sources very close to the dowfinterest will increase the
dimensionality required to represent the field. Although tbquired truncation order does
grow without bound as the source approaches the edge ofglmntee’| — RT, the effect

is restricted to a region of the order of one wavelength.

The ability of a near-field source to have an impact on the dsimmality decays rapidly as
the distance between the source and the domain boundaeases. This result is analogous
to recent results regarding the extrapolation of a multigesid [126, 127]. Regardless of
the size of the region of observation, the ability to prethet behaviour of a multipath spa-
tial field decays rapidly based on the distance from the baynof the observation domain.
The duality of the problem here is apparent. If the impact sbarce or field singularity
diminishes rapidly outside the domain of interest, theregian observed field, it is diffi-
cult to ascertain the presence or absence of a singulanitlythais large uncertainty, in the
extrapolated field outside the domain of interest.
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Figure 2.3: Error contours for the truncation of a field generated by fieddt sources. For an
observation region of radiuB = 1,2, 3,5\, sources are present from the abscissa raliughe
dimensionality approaches the asymptotic value withinwaeelengthS — R > A. The sensitivity

to near-field sources increases slightly with increasirgeokation radius. The lines corresponding to
the truncation ordeN = kR are shown for reference.

In answer to the question posed for the buffer distance letwlee domain of interest and
any sources, the dimensionality reaches its asymptotieMalr a buffer distance less than
one wavelength. Furthermore, this does not vary signifigastthe region size is increased.

2.7 Summary and Contributions

This chapter has developed the framework and clarified soisérey results regarding the

dimensionality of a multipath field over a finite domain ofargst. It has been shown that this
problem is important in developing a means of modelling aptesentation of a multipath

field as is required to develop fundamental limits regardimegperformance of communica-

tions systems using spatial diversity.

Central to this chapter is the result that the dimensionalitan arbitrary two-dimensional
multipath field is related to the radial extent of the regibolaservation scaled by the wave-

41



Chapter 2 Dimensionality of Multipath Fields

length of the narrow-band field,
D =2[kR] + 1~ 12.57TR/\. (2.49)

While a numerical investigation indicates this is asymiptdly correct for large regions, it

is inappropriate for small regions. While a bound existss itonservative for larger radii.

This motivated an attempt to create a tighter formal bountils%some progress was made,
it remains incomplete and important fundamental diffi@dtwere identified. Through fur-

ther analysis and numerical investigation it was shownttiiede dimensionality results can
be extended to include fields with sources near the domaintefast, with the influence

of sources decaying to insignificance outside a few wavdendistance from the region

boundary.

The following specific contributions were made in this cleapt

1. Provided a comparison of two existing dimensionalityhss

e A dimensionality of2k R + 1, although not rigorously derived, appears to be the
correct asymptotic expression As— oo.

e The bound on the dimensionality e R + 1, valid for all R, is conservative by a
multiplicative factor ofe/2 ~ 1.35 for large R, but tighter at smalR. In practical
MIMO applications, small radii are arguable more relevant.

2. Presented a numerical study to consider the effectivemsmonality of regions over
a wide range of radii. This supported the use of the boundrfalisradii whilst the
asymptotic dimensionality was: R asR — oc.

3. Pursued the path of deriving a bound to obtain a tightertrés the dimensionality
bound ask — oo. This motivated the development of a conjectured bound en th
Bessel function/, (z) in the regionz < n. Several difficulties were highlighted in the
attempt to use this in the development of a tighter dimeradityrbound.

4. Considered the impact of near-field sources on the regjaimaensionality for the
field representation. Analysis and numerical investigatiemonstrated that the influ-
ence of sources need only be considered when within a fewlerayths of the region
boundary.
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Chapter 3

Impact of Direction of Arrival on
Dimensionality

3.1 Introduction

The previous chapter developed the framework for undedstgrdimensionality of the mul-
tipath field. This chapter investigates the effect of reitrg the direction of arrival of the
multipath field.

Often in wireless communications the directions of arriaed constrained in direction or
only span a sector. This restriction on the field can be inm@ted into a model to use a
more appropriate basis function and more compact paraisegien of the field. It has been
noted that the richness, dimensionality or degrees of &neefibr a spatial field decrease as
the angular diversity is reduced [47, 84, 156]. Whilst swieduits suggest the dimensionality
increases linearly with the angular spread, this has nat bhgerously proven for a general
region. A formal expression of this relationship is an intpat tool in better understand-
ing the impact of angular diversity on the upper limits of t@acity of a communications
system operating in a finite domain of interest. Conventiov@ks on the limits of the
capacity of a multiple antenna communications system relgpecifics of the antenna ge-
ometry or spatial correlation models. By capturing the rehédimensionality of the spatial
field, it is possible to show the existence of an upper limtheut reference to any specific
configuration, thus providing a guide and reference forrogtisystem design.

The existing results that relate dimensionality to angdleersity are not rigourous and are
based on simulation and approximations. Our aim is to pewaidight foundation to these
intuitive results. We have seen that the dimensionalityegalinearly with the radius of
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the domain of interesk. We now introduce a second variablg, representing the angular
diversity. This leads to a spatial analogy of the well kna@¥i7T dimensionality of time-
bandwidth constrained signals discussed in Section 2ihidrmvork we consider the problem
of a circular region with the source directions constraiteeasingle contiguous interval. The
effect of different angular distributions is the subjectGifapter 4. The impact of discrete
clusters of scatterers was considered in [93].

The work presented in this chapter provides a formal protfi@finear relationship between
the dimensionality and angular spread. This key result le&s [published by the author
[157].

3.2 Representation by Wave-Field Basis Functions

A representation for a wave-field based on the basis funetdthe wave equation was in-
troduced in Section 2.3.1. Consider a spatial field in twoeadigionsg: € R2. The solutions
to the homogenous wave equation can be represented on ablmuatthogonal basigi,,
as shown previously (2.15),

o0

u(@) = Y anfu(x) with Bu(x) = Ju(k|z])e, (3.1)

n=—oo

with .J,,(-) the Bessel function of order andé,, the angle otc. Over a domain of interest,
B% = {x € R? : |z|| < R}, define the standard integral inner product, and note that,

_ R
(B, Bn) g = / Bn(@)Bm(x)dv = 27T5mn/ Jn(kr)Qrdr (3.2)
B2, 0
whered,,,, = 1if m = n and0 otherwise. Using an integration identity from [164] then
1Ball g = TR? (Ju(kR)* = Jo-1(kR) Jny1(KR)) (3.3)

which is asymptotic t@R/k asR — oc.

3.3 Representation by Herglotz Angular Function
The Herglotz representation of a wave-field is describe®1} &nd was proposed as a gen-
eralised framework for source distributions [165]. The @t is introduced here, specific

to the two-dimensional case, to provide the machinery femtiain result. A standard model
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of a multipath field is to represent it as a superposition ahplwaves. This can be gen-
eralised in two dimensions to a continuous distributionastffeld sources on the interval
St = [, 7),

u(x) = / g(0)e?*=24p (3.4)
with 8 as the unit vector with directioh If the representation of the wave-field) is square
integrable, that ig € L?(S'), this is known as thélerglotz Kerneland (3.4) is theHerglotz
Wave FunctionA plane wave with direction of arrivél has coefficients,, = j7e=7"?. Thus
the coefficients for the overall field will be

1 ™

:% -

g(0)j"e " d (3.5)

Qp

This relationship is an inverse Fourier transform. Theriet&n of g € L*(S') is equiva-
lent to > |a,|* < oo by Parseval’s identity. This slight restriction providée tsignificant
advantage of placing the problem into a Hilbert space. Witk $pace, any bounded field,
including a plane wavg € L'(S'), can be represented to arbitrary precision over a finite
domain of interest [80].

We can now define the class of fields represented by a restdatection of arrival.

Definition 3.1 Multipath field with restricted direction of a rrival.
A restricted direction field is represented by a Herglotz ®Bunctiong, € L*(S'), such
that

gA(0) =0 A<|8 <. (3.6)

In this formulation, the angular range of the multipath fimdentred around a zero mean
without any loss of generality.

The space of Herglotz Wave Functions with restricted anglerval is a linear subspace
of the full set of Herglotz Wave Functions. It is noted thag tiestricted direction of arrival
field g4(0) represents a distribution of far-field sources. A near-fegdrce could be ap-
proximated by a specific far-field distribution, however #ssociated angular representation
would not be strictly restricted in angle. Thus the defimtwe adopt is specific to restricted
direction of arrival far-field wave functions. In practidhjs result is appropriate with all
sources a small distance beyond the domain of interest, agl@maonstrated in Section 2.6.
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3.4 Dimensionality of Multipath Field in a Region

It is known that the modal basis (3.1) is optimal under traiocafor the representation of
a field over a disk of radiugt where the source distribution is unconstrained [80]. The
truncation,

N
uy(@) = Y apfu(m) with B, (x) = Jo(k||z])e’ (3.7)

provides an approximation of the field with exponentiallg@msing error folV > meR/\
[42]. This provides a model of the field withV + 1 parametersy,, forn = —N, ..., N.

The general approach to dimensionality was discussed inoBez.3 where the truncation
point was considered so that the error in representationswticiently small. Here we
present a tighter formal definition. The dimensionalityédided as the point beyond which
an exponential improvement in the approximation error carathieved regardless of the
field.

Definition 3.2 Essential Dimensionality of a space of Multipth fields.
Consider a particular space of fieldé, defined on the domain of intereB,. If for some
valueN,, and choice ofy;}.° , and for anyu € U

No

w= Y (w )| <e<oo (3.8)
=0 B%
and for anyn > N,,
w= Y (u )| < eeo ) (3.9)
=0 B%

for some fixedr > 0, then we say the spaééhas essential dimension f,.

Definition 3.2 is similar in application to the concept of Seatial dimension” in operator
approximations [166]. Although this definition of dimensadity was not formally adopted
in Chapter 2, the bound that was developed in Section 2.34 siatisfy this definition [41].

The following lemmas are presented towards the main result.

46



3.4 Dimensionality of Multipath Field in a Region

Lemma 3.3 Equivalence of Multipath field with Restricted Direction of Arrival and a
Bandlimited sequence.

The modal coefficients,, as determined by (3.5), of a restricted direction field arfgas-
dlimited sequence. Other than the trivial solutiap = 0 V n, the sequence,, will have
infinite support such that given any there existgn| > N such thaiv,, # 0.

Proof of Lemma 3.3From (3.5) we can express the modal coefficients of the field

A

1 [ ,
ga(0)jme™do. (3.10)
A

ap = — gA(Q)j”ejnedé’:/

T o ,,r

By construction, the sequenag will be a bandlimited sequence. A corollary of this is that
it will have infinite support. O

Lemma 3.4 Restricted DOA Field on Finite Domain= Finite Bandlimited Sequence.
A restricted direction field can be approximated over a figibenain,{x : ||z| < R}, by
2N-+1terms from an infinite bandlimited sequence wh€re- [ekR/2]. The error resulting
from the truncation t@N + 1 terms will be bounded and will decrease exponentiallyvas
is increased.

Proof of Lemma 3.4This is immediately apparent from Lemma 3.3 and (3.7) takifigite
truncation of bandlimited sequence. The restricted dwaatf arrival fields are a subspace
of the Herglotz wave-fields. We can use the result from [42flétermine an appropriate
truncation. O

A bandlimited sequence that is also confihtala finite length has dimension approximated
by the product of its length and fractional bandwidth [L6Whilst this result is only true
asymptotically as the length increases [168] it has beed eBectively for small sections
of bandlimited sequences that are not confined in time [1B3, 1A variant of the prolate
spheroidal functions, the Slepian series [171], proviges@imal basis for representing the
2N + 1 length bandlimited sequeneg with a reduced number of coefficients.

IHere confined is in reference to most of the energy being awdan a finite length. Strictly a bandlimited
sequence cannot also be time limited.
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Chapter 3 Impact of Direction of Arrival on Dimensionality

3.5 Slepian Series for Representing Bandlimited Sequence

The Slepian series are a family of discrete series basidifumceeach member of which
provides a set of basis functions for a finite length sequehdefined length. Each member
of the family is specified by a sequence length, and the fractional bandwidti/’. The
fractional bandwidth is related to the bandlimited prodixsg we infer the sequence of
discrete samples are drawn from. If the sequencd’ adfiscrete samples was a section of a
larger periodic sequence with a period/df we could use the standard Fourier transform or
complex harmonic exponentiads™/N wheren is the sample index ana is the index of
the basis functions. A bandlimited periodic signal could&eresented from only the low
orderm terms through to the limiting frequency in the series. Fahsaiperiodic sequence, it
only makes sense to consider discrete steps in the bandefittth entire series. In the more
general case, wher€ samples are drawn from a bandlimited process that is naighierithe
Slepian Series is more appropriate. In this case the baig\id is a continuous parameter.

Definev” (N, W) as the sample index = 0,..., N — 1 of the orderm = 0,..., N —
1 Slepian series basis function of lengthwith an associated scaled bandwidthigf €
[0,1/2]. These series are the ordered solutions of the system ofieqsifl67]

= sin 27W(n —n')
> Vi (N, W) = A (N, W)or (N, W) (3.11)
— w(n —n')

The series is orthonormal in that

=

-1

o™ (N, W)™ (N, W) = S (3.12)

Il
=)

n

thus theN sequencesy = 0,..., N — 1, form a complete basis set for all sequences of
length N. The eigenvalues,, (N, W) are ordered monotonically decreasing betweand

0. They represent the maximum ratio of the energy of the sigithin the N samples to
that of the total energy of a bandlimited extension of thatesgequence. Conversely, if we
know the N samples are drawn from a bounded and infinite length banehseries, the
eigenvalues,,,(N, W) are related to the expected energy in the projection of therelie set

of samples onto each of the basis functions.

Figure 3.1 shows the first six Slepian series of length 20 waithassociated bandwidth of
W = 0.2. Also shown in the figure are the bandlimited extrapolatiohthe basis func-
tions. It can be seen that after the fourth basis functiorethenvalues drop rapidly and the
bandlimited extension becomes increased in magnitude.
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Figure 3.1: Slepian series for lengtlv = 20 andWW = 0.2. The first six basis functions are shown

along with the bandlimited extension. The region of the defiseries is shown with the inner box.

Beyond the critical basis function around = 4 the eigenvalues drop rapidly and the bandlimited
extension increases in magnitude with less of the signabgrveithin the inner series.
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Chapter 3 Impact of Direction of Arrival on Dimensionality

Whilst the extensive works of Slepian [142,167] set out s@asynptotic approximations,
the Slepian series have no simple algebraic expressiont: gifoperties and behaviours can
all be derived from the eigenequation (3.11) from which taey derived. Whilst this may
make them appear as a fairly esoteric function, the sameafrmany other transcendental
functions. It is only that we are more familiar with functesuch as the Bessel functions or
even trigonometric functions that we consider them easiase and apply.

The nature and behaviour of the eigenvalig$/V, W) has been studied in detail [167] and
is key to the result of thelV T result discussed in Section 2.2. From the analysis of Stepia
we note the approximation for the eigenvalues [167, eq (61)]

1
1+exp[—b(2WN —m —1/2)]
2
m

b—
log(8N) + log(sin 27W) + v

Am(N, W) ~

(3.13)

where~ = 0.5772156. .. is the Euler-Mascheroni constant. This leads to the folhgwi
assumption.

Assumption 3.5 Exponential upper bound for Slepian seriesigenvalue.
The eigenvalue,,,(N, W) associated with then™ basis function of the Slepian series of
length N and associated bandwidili is bounded from above by

71'2

~ 1og(8N) + log(sin 27W) + 7

A (N, W) < PCWN=m=1/2) - where b (3.14)

The bound (3.14) is a true upper bound for the approximaBali) of the eigenvalue and is
tight in the limitrn — N — 1 for large N. The assumption that this upper bound also holds
for the true eigenvalue has been validated through an exeeosmputational investigation

up toN ~ 200 for 0 < W < 1/2. Across this range the bound was satisfied and there was
no indication at the boundaries of the test range that thadawuld not hold across a much
larger domain.

A critical review of the current practice in signal procegsreveals that far too often we

apply the theories of complex exponential basis expanslmesigh techniques such as the
Fourier transform, without being aware of the effect of thiearent assumption of period-
icity. This can cause fundamental limitations in the accyraf signal approximation and

negatively impact communications system performance][1B8is section should serve to

highlight some of the theory and encourage the use of thaé®legeries for representing a
finite section of a non-periodic discrete sampled signal.
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3.6 Dimensionality of Restricted Direction of Arrival Feel

3.6 Dimensionality of Restricted Direction of Arrival Field

The preceding sections have demonstrated that a multipathdver a finite domain of
interest with radiugk? can be represented BYW + 1 termsa,, with N = weR/\ [42]. Fur-
thermore, where the direction of arrival is restricted t@aagular sectiom, this sequence is
representative of a bandlimited sequence with bandwidthr. Thus we can use the Slepian
series basis of lengthV + 1 and associated bandwidtii = A/27. Following convention,
the Slepian series are indexed= 0, ..., N — 1 whilst our modal coefficients are indexed
n = —N,...,N. Thus we use the index shifted Slepian setjgs, (2N + 1, A/2m).

Consider an approximation of the,, n = —N, ..., N coefficients using the first/ basis
function from the Slepian series,

M-1
Qn =Y cmtityy (2N + 1, A/27). (3.15)
m=0
The sum is over théd/ terms,M < 2N + 1. We will use the shorter notatiosj;’, 5, from
this point dropping the length and bandwidth specificatibiie Slepian series. The Slepian
series is a complete real orthonormal basis so the coeftscigncan be determined by pro-
jection,

N
Cm = Z Q) - (3.16)
n=—N
In the case of\/ = 2N + 1 the representation is complete afd= «,,.

Definition 3.6 Slepian Approximation for Spatial Field.
The M*™ order Slepian approximation to tAé'" order modal field is given by

N N  M-1
Un(@) = Y @ubu(@) = D Y cmtilynfal@) (3.17)
n=—N n=—N m=0
where
N M—1
Cm = Z QU N and ap = Z CmUnyn (2N +1,A/27) . (3.18)
n=—N m=0
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Chapter 3 Impact of Direction of Arrival on Dimensionality

Lemma 3.7 Approximation of Restricted DOA Field.
Given a field with restricted direction of arrival,

A N
(@) = / g0 =Pdn g I2(SY), (3.19)
—A
the fieldu(x) on the domaiB% = {x € R*: ||| < R} can be approximated by a field
with M < 2N + 1 parameters;,,,

N M-1

Uy(@) = > ) oty Bu(m) (3.20)

n=—N m=0
whereN = [ekR/2] with the error|lu — uy|| , bounded and decreasing exponentially for

M A
> —,
2N+1 " 7w

(3.21)

A brief explanation of this Lemma is warranted. The lower tador the required number
of termsM grows linearly with the ratio of the support of the angulaecpum compared to
that of a full receiveR A /27 = A/7. The maximum number of terms is the same for the full
receiver bein@N + 1.

Proof of Lemma 3.7Given the orthogonality of,, on the domain of interesfz| < R, it
can be seen that

lu = An = llu = unll + lluy = Gnli (3.22)
and using the triangle inequality we can obtain
lu—inllg < llu =l + lux — G5 (3.23)

The first term of the error bounl: — ux||, can be made small by the appropriate selection
of N > meR/\ [42], beyond which this term will decrease exponentiallfisTresults in a
sequence a2N + 1 termsa,,, n = —N, ..., N to represent the spatially limited approxima-
tion of the fielduy ().

The second term of the error bound (3.2B) — un | is the residual field error from the
Slepian expansion of theNV + 1 term bandlimited sequence. The Slepian series are also
orthogonal forn = —oo, ..., 00 with the energy in this infinite extension given by
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3.6 Dimensionality of Restricted Direction of Arrival Feel

where )\, is the eigenvalue associated with thé" Slepian sequence. The energy in the
infinite sequence obtained by extrapolating #1é + 1 terms using the complete Slepian
sequence must have less energy than the originaequence. This provides the inequality

Z lon]* > Z ‘Cm‘g > Z |eml? (3.24)
>\M

n=—oo

since)\,, is strictly decreasing. Given that, || , is approximately bounded &R /%, con-
sider the second term of (3.22) and use the result (3.24)terob

N

R 2R
lun =A% = Y (= @) 1Ball < Icml2
n=—N m=M
< —)\M Z o, |2 (3.25)

Using Assumption 3.5, and making the substitutiohg: 2N + 1 andWW = A/2r gives the
bound

AN +1
Ay < exp {b (g - 1/2)} (3.26)
m
where
2
s
- 3.27
log(16N + 8) + log(sin A) + (3.27)
Thus)\,, < 1 and decreases exponentially for
A 1
m>—02N+1)——. (3.28)
s 2

The Herglotz conditiong € L?(S'), implies that the total energy in the infinite bandlimited
sequence |, |? is finite. This combined with (3.25) and (3.22) completesgheof. [

Theorem 3.8 Dimensionality of a Multipath Field with Restricted Direction of Arrival.

A field generated by far-field sources with direction of aatikestricted to[— A, A, A < ,
with domain of interest constrained B, = {x € R? : ||z|| < R}, has an essential dimen-
sion of

(3.29)

kR A
D =2N"+1 where N’:F -‘

2 7

with the definition of effective dimension as stated in Dedimi3.2.
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Proof of Theorem 3.8Following from Lemmas 3.3,3.4 and 3.7, we have a constrecéyp-
resentation for the field where the error is well behavedifor- A(2N +1)/7 —1/2. Since
a/m < 1 we can simplify this expression in line with the previous kto state the dimen-
sionality as2N’ + 1 where N’ = [ekR/2 A/x]| with [-] the integer ceiling function. This
completes the proof. O

This result builds on the previous dimensionality resudtsan isotropic field. As discussed
in Section 2.3 this bound is not asymptotically tight forgaregions and overestimates the
true dimensionality. We can use the same reasoning of theaBlseries approximation to
a truncated field of ordeN = [kR]. This provides the result for an approximation of the
dimensionality of the multipath field with restricted diten of arrival

D=2 [@w + 1. (3.30)

™

3.7 Numerical Analysis of Multipath Dimensionality

The previous section set out a proof for the central dimevadity result of this chapter. In
this section we compare the bound obtained with numeridalizdions based on the actual
restricted direction of arrival field basis expansion. Idesrto determine the dimensionality
of the space of restricted direction of arrival fields ovenédidomain, we need to determine
the optimal basis for representation of such fields. Thetswido this problem can be posed
as an eigenequation which can be solved numerically. Thpsoagh will be discussed in
greater detail in Chapter 4 Section 4.5 of this thesis.

The wave functions with restricted direction of arrival ttsse most concentrated in the
domainB? satisfy the eigenequation

A S kR [ Ji(zR
M) =15 [ o) [ =@ Oaais = TF [ .01 s @)

= U2
47 2 A

with z = 2sin((¢ — 6)/2). The theory behind this eigenequation is presented in GedtB3
and the specific case of a circular region is analysed in &edt#.

A @ point quadrature rule on the interjal A, A] is used such that
Q

A
/A g(0)df ~ Z w;g(0;). (3.32)
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Eigenvalue (dB)

—}— A=1716
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—>— A=114
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| | I I

10 15 20 25
Eigenvalue Index

Figure 3.2: Plot of the eigenvalues and bounds for a regidr= 2\ with successive restriction on
the directions of arrival. The eigenvalues reflect the nunatbsignificant degrees of freedom of the
field. The dashed line for each case is the bound (3.26). Thedfor the eigenvalues represent a
fairly tight bound on the actual eigenvalues at around -20dBs corroborates the linear relationship
of dimensionality to the angular range of the field.

We can approximate (3.31) with the linear system of equatidrhis provides a numerical
approximation of the firsf) eigenvalues of the eigenequation (3.31) as the eigenvafues
@ x @ matrix. This numerical method for solving such equatiordetailed in Section 4.5.

Figure 3.2 compares the numerically determined eigensdinethe constrained angle of
arrival problem to the bound presented (3.26). This figuosvsithe upper bound and linear
dependence on the effective dimensionality with the dioecdf arrival restriction. For the
figure, atR = 2/\ a truncation pointn. = [kR]| = 13 was selected. The use of =
[keR/2] = 18 presents a generous bound in all cases.
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3.8 Summary and Contributions

Together with the preceding chapter, this chapter has geovan analysis of the dimension-
ality of a two-dimensional multipath field. The dimensiahals dependent on the size of
the region of observation and the angular diversity of tloedent field.

Given a two-dimensional multipath field over a region witlites R and the arrival from
sources restricted to the rangé < A the dimensionality of the field is given by

A 2RA
pa[HA] oy o2 o
™

For large regiong? > A, this dimensionality is consistent with a modelling errorass the

region of —20dB. A representation of a random multipath field with this fuemof terms

would be expected to capture 99% of the energy of the randdd fieor smaller regions
and low dimensionality a more conservative estimate witbran&l error bound would be
2[eRA/N| + 1.

The following specific contributions were made in this cleapt

1. Provided a formal proof of the linear bound between retstigy the direction of arrival
for a multipath field and the associated field dimensionalitiiis result will be the
subject of further analysis in Chapter 4.

2. Constructed an approximation for the optimal basis floncof a restricted direction
of arrival multipath field. A field ovef|z|| < R with direction of arrival constrained
to [—A, A] can be represented by

-1

. k

)= cnfin() M<2N+1, N-= [%W (3.34)
0
N
Z v (B 2] m < M (3.35)

wherev™,  is the(n + N)™ term of them™ order Slepian series of lenggVv + 1
with bandwidthA /27 [167]. The functionsﬁm(m) approximate the optimal basis func-
tions and can be used as an efficient representation for gathlfield with restricted
angular diversity.

3. Detailed the Slepian series and provided an examplecapioin where it can be used
to represent a finite sequence of samples drawn from an eapiriodic bandlimited
process.
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In conclusion, both the size of the domain of interest andetktent of angular diversity
linearly impact the dimensionality of a multipath spatialdi. Removing the integer ceiling
function from the bound we can see in the limit tHat= 2 kR A/m whenkRA/7m > 1.
This is analogous to the bandlimited finite length signalelsionality resul2WT" detailed

in Section 2.2. It is apparent from the investigation tharé¢hare some similarities between
the two bodies of research. However, the spatial domainkaditcular and spherical spatial
regions introduce additional complexity and nuances tpthblem. Generally, the two areas
share several key observations:

e The dimensionality is asymptotic to a simple expressiort bsgomes large.

e Care must be taken when the expression predicts a small giomlity since the
transition from significant to insignificant terms in any ergion is not abrupt.

e Obtaining specific approximations and formal bounds fortthecation error and di-
mensionality is a difficult and tedious task.

As has been the case historically for the bandlimited sgyreabetter understanding of the
dimensionality and the nature of the basis functions wdl iai the development of perfor-
mance bounds and suitable algorithms. This is an esseatiabpthe development and use
of continuous spatial models for signal processing, esfigan the area of spatial MIMO
communications.

The nature of the angular diversity considered in this atraptis a uniform distribution of
sources over a single angular sector. In practice, we oftah with more general source
distributions, or characterisations of random procedsatstescribe the nature of the source
distribution. Also, the domain of interest may be somethotiger than a simple circular
region. In the following chapter we will consider the prosed determining the optimal
basis representation for a spatial field over a general doofanterest and a more general
description of the angular source distribution.
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Chapter 4

Angular Domain Representation of a
Random Multipath Field

4.1 Introduction

Recent interest in the use of multiple antenna communicatsystems (MIMO) stemmed

from key publications [6, 13] that suggested the potentiaéflinear growth in capacity with

the number of antennas utilised. It was soon realised thatletion between the antenna
elements due to the nature of wave propagation and the segtevironment would have

a negative effect on capacity [21, 30].

In a random multipath field there is a direct relationshipaeetn the spectrum of received
power across the incident angular range and the spatialatian of the field [172—-175].
Determining the spatial correlation would require exteasneasurement of the field through-
out a spatial region. Alternately, an estimate of the angpdaver distribution may come
from knowledge of the characteristics and distributiona#tterers in the multipath propa-
gation environment. For this reason it is useful to have méwork to represent and analyse
a multipath random field in the angular domain. Such a framkewdll facilitate the under-
standing and modelling of the spatial aspects of the wisetbsinnel. The set of directions
the multipath is coming from is something that can be diyatiéasured and has direct phys-
ical interpretation.

The use of the angular domain also provides a simplificaticthe problem of modelling
multipath fields. A two-dimensional narrow-band field canréeresented by either the field
amplitude and phase across the two dimensions, or altéyigte far-field distribution over
a single dimension of angle of arrival. The angular domaipliaitly captures the constraint
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of the wave equation by only representing fields that can berg¢ed by propagating waves.
Similarly in three dimensions, a three-dimensional spatve-field is constrained to satisfy
the wave equation, but the angular domain description i twi dimensional (function of
elevation and azimuth).

Various MIMO models based on the angular domain repregentaave been proposed. The
work of Pollock et. al. [47] utilised a truncation of the mbdgpresentation of the field at the

transmitter and receiver. The virtual channel model prefdds/ Sayeed [66] uses a discrete
set of resolvable angular ranges to model the channel.

This chapter is concerned with the most efficient represientaf a random multipath field
in the angular domain. The detailed analysis of the spatilal &t a single end of the channel
provides a framework which can then be extended to condieezamplete MIMO channel.
Recent results have demonstrated that a multipath field hageaessential dimensionality
[41,78,80]. Thus, given an arbitrary power spectrum, itstitoe possible to represent this
random process with a finite number of deterministic functomponents combined with
random weights (random variables). This chapter addratseguestion of determining
the optimal deterministic components (functions in theudaaigdomain) and analysing the
critical attributes of the system that will influence thetgan. This work has been submitted
for publication and is currently under review [176].

The remainder of the chapter is structured as follows. 8eecti2 introduces the angular
domain for representing a random multipath field and settheytroblem of determining the
optimal finite dimensional angular representation. Secli® derives an eigenequation that
determines the optimal basis for representing a multipalth fin the angular domain. This is
the main result of the chapter. Section 4.4 shows that tlenemuation has a simple solution
for the circular isotropic two-dimensional field, but is nicictable for other configurations.
Section 4.5 presents a suitable numerical method to obpecifec solutions. Section 4.6
provides a study of the gross effects and complexity of thesbfunctions as the power
spectrum and region shape are altered. Section 4.7 cosglueeffect of the region and
angular spectrum on the number of significant componentdid®e4.8 provides a summary
and closing remarks.

The contribution of this chapter is the formal developmdrda &ramework for representing
a multipath random field in the angular domain. The formolatiollows classic signal

theory [159] with new material covering the application h@ trandom multipath spatial
field. The new framework and analysis considers more gemegabn shapes beyond the
simple uniform linear array, which has been covered in otharks. The region of interest
for the spatial field shapes the optimal representationHerspatial field. The numerical
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method and examples presented provide some insight intoritineal factors effecting the
basis function for the angular domain representation.

4.2 Problem Formulation

4.2.1 Angular Domain Representation

To address the problem of modelling a random multipath fielel consider a scalar wave-
field u(x) for z € R®. As discussed in Section 1.4, the main interest is in spiials and
the characteristics of wave propagation. We restrict aen#ibn to the case of narrow-band
fields. For a region free of sourceg,x) will satisfy the wave equation, also known as the
Helmholtz equation [91, 177],

Au(z) + k*u(x) = 0, (4.1)

whereA is the Laplacian, anél = 27/ is known as the wave number.

The wave equation constraint implies that the field in a nediee of sources can be com-
pletely determined from the field around a surface enclothagregion. This property is
referred to as Huygen’s principle [91]. Regardless of thbness or complexity of the scat-
tering environment, there will still be a level of corretatibetween two points in a random
field [174]. It is thus apparent that representing a field bycimplete continuous spatial
field valueu(x) is not the most efficient representation. The spatial catiagl can be better
captured by using appropriate basis functions that cheniaetthe expected variation of a
wave field across space.

A standard model of a multipath field is to represent it as @=ugsition of plane waves

u(x) = Zapejkm'ap (4.2)

p

where the plane wave of indexhas complex amplitude, € C and propagates in the
direction of the unit vectoﬁp. The terma:.@p denotes the inner product between the two
vectors inR3.

This representation can be generalised to a continuougbdisbn of sources

w(@) = /S 9(B)45(0) (4.3)
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whereS? denotes the unit sphere(,@) the surface element &8 with unit normal vecto®.
The functiong(g) can be considered as the angular amplitude distributioarefféld sources
that represents the field.

When the functiory(@) is restricted to be a member of the space of square integdiaine
tions, L, (S?), this represents bounded incident energy. This impliei¢ghedwill be reason-
ably behaved in thaimp_.. + |lul|, < oo. In this case the representation is known as a
Herglotz wave function angl(@) is called the Herglotz kernel [91, 165].

4.2.2 Random Multipath Field

The framework introduced in the previous section providearagular domain representation
of a spatial field. We model the random multipath propagagiornironment as a process gen-
erating random fields. Each realisation of the random psoeishave an associated angular
domain representatioﬁ@). We proceed by considering the statistics of these remlisat

A commonly accepted model is that of the Rayleigh fading moa df sight multipath field.
In this case the random nature of the field is completely ¢agtun its second order statistics
[26, 30,63, 66, 67]. This is typical of an environment whdre multipath scenario is created
by a number of independent paths which are fading due to merntand the constructive
and destructive effects of doppler interference.

Another useful assumption is that of uncorrelated scatidfe’8]. We assume an infinite
number of far-field scatterers with independent fading dongiés. Taking the expectations
over the realisations of the random field, the following pdies of the angular representa-

~

tion ¢(0) are defined,

E {g(@)} =0 Zero mean (4.4)
E g(@)@} =0 0 + s Uncorrelated in Angle (4.5)
/ E {g(@)@} ds(g?)) = P(@) Angular Power Spectrum (4.6)
S2

o~ -~

with g(¢) representing the complex conjugate of the function. Thetion P(8) is known
as the angular power spectrum and represents the relativer goming from any direction.
Definitions (4.5) and (4.6) can be stated succinctly as

E{9(0)9(9)} = P(6)5(8 - &) (4.7)
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4.2 Problem Formulation

wheres(8—¢) is the Dirac delta function. While itis often formulated@&) = E {g(@)g(@) }
this is incomplete and hence not strictly true. To represenide sense stationary process,
the angular representatign(@) must become uncorrelated, even for an infinitesimal angular

-~

shift. If (@) was to also have finite power, then note that at the origin

p{u@ui@} = [ [ 2 {s@)6)} as@ris@) ~0 (4.8)

with the integral vanishing sinceé {g(@)g(@)} is finite and will only be non zero on a set

—~

of measure zero. Thus assumiﬁg@) =F {g(@)g(@)} also requires the multiplication or
division by oo where appropriate. This is not consistent with the devekrof a formal
framework.

The associated spatial field will also be zero mean, withrs¢coder statistics

E{Ju(a)l} = 0 (4.9)
E{lu@)’) = B {u@ii@} = [ [ P{o@n@)} =0 bis0)as(3)
- / P(6)ds(). (4.10)

With suitable normalisation, define

/ P(8)ds(6) =1, (4.11)
S2

representing a field with unit variance throughout all spddee spatial correlation function,

-~

plx, @) = E {u(m)u(m’)} - /S 2 P(9)et===)85(9) = p(a’ — x), (4.12)

represents the correlation between any two points in the fiehe function is only dependent
on the vector linking the two points andx’. The statistics of the field are stationary over all
space. For this reason, the model is often referred to asitlees@nse stationary uncorrelated
scatterer model (WSSUS). In practice, the statistics ofiéhe will not be stationary over all
space, however this is a reasonable assumption when thenantegion is small compared
with the geometry of the scattering objects.

-~

For an isotropic field in three dimensionf3(@) = 1/4x. The spatial correlation is

1 : Y] -~
p(w’wl> N /82 e]k(mf:z: )Bds(e)

™

63



Chapter 4 Angular Domain Representation of a Random Multipald

/Z Z J Jnkllw—wll)Y”(H — :II) Y(8)ds(6)

n=0 m=—n

= jo(k |z — 2/||) = sine (k |z — 2|} (4.13)

using the spherical harmonic expansion of a plane wave [Bi¢ functionsY,”(-) are the
spherical harmonic functions with unit vector argumentwyit, Yg(@)ds@) = 470,,6, and
Y"(-) = 1. The zero order spherical Bessel function is equal to the fsinction jo(z) =
sinc(z) = sin(z)/z. Equation (4.13) is a classic result known in electromagrié{ and
acoustic [179] engineering.

The first zero okinc (k || — «’||) is at \/2, though points beyond this are still correlated.
This example demonstrates how the angular domain repegsantmplicitly captures the
wave equation constraint and provides a compact means tdatbasing the scattering en-
vironment. The angular domain provides an intuitive repnéation of the channel and is of
more practical interest than the spatial correlation fiomct

From (4.7) it is noted that the angular representat@,c(@) will have infinite variance for
any direction whereP(0 ) # (. Since the field is stationary over all space, it must have
infinite power. Hence a reallsatlogmg 0) of our random process satisfying (4.7) will not be a
member ofL,(S?). However, when projected onto a square integrable funcfian L,(S?),

the result will have finite power,

E“@JW}=E{/A@R5@@>§ﬂ@<@ (@
/SQ /S 9(0)9(9) f (5)f (¢)ds(8)ds(9)
/82 8)/(6)/(8)ds(8) < cc. (4.14)

Thus in the style of Gallager [11], rather than deal diregtlth the random process, this
work will consider its projection in an appropriate Hilbegace.

4.2.3 Finite Dimensional Representation

The preceding sections have shown the random process tdr&sisg a multipath field can

be represented in the angular domain. Previous works hakalirced the notion of the

essential finite dimensionality of a multipath field. An aréiy multipath field, when con-

sidered over a finite region, can be well approximated by &efidimensional representa-
tion [41, 42, 84]. This section will consider the problem aiding the optimal finite dimen-

sional representation in the angular domain.
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4.3 Optimal Basis for Spatially Constrained Field

Our representation for a particular realisation will talke form
n=0

where the coefficients,, capture the random nature of the field @m@@) are a set of deter-

ministic basis functions. For an optimal representatiba,doefficientsy,, should be uncor-

related and the basis functions selected to minimise theat®d norm of some objective or
error function [159, 180, 181].

Such a representation captures the characteristics ofdmmamultipath field in a practi-

cally useful manner. The random nature is captured throngltoefficients being random
variables, whilst the wave nature of the multipath is cagduthrough the deterministic ba-
sis functions. Use of the optimal set of basis functions alilbw a given accuracy to be
achieved with the minimal set of random variables.

Given the angular domain framework, the following questiare posed and addressed:

e What is the optimal set of basis functions for the angularesentation?

e What aspects of the multipath environment are required terdéne them?

4.3 Optimal Basis for Spatially Constrained Field

This section will derive the optimal basis representatarefspatially constrained field. The
angular framework developed in the previous section is tisaterive some properties of
the desired basis functions. A maximisation problem is idated to determine the optimal
basis set. This leads to an integral equation for which therdunctions provide the desired
basis. We adopt the assumptions of the zero mean Rayleighgfaghcorrelated scatter
model for the remainder of this chapter. In practice, we aterested in representing and
generating realisations of the random field. We draw on tberthof representing a random
process through an orthogonal series expansion [159, 8&(, 1

From the definition of the angular power spectrum (4.7), tbeatation function for the
random process generatig(ﬁ) will be non-stationary, unbounded and discontinuous. As a
result of this, we cannot directly use the classical Karimdbeéve expansion to determine
an appropriate orthogonal expansion of the form (4.15) J18this section develops an
appropriate space, basis, and ordering for the angulagseptation of a random multipath
field with a specific angular power spectrum.
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Chapter 4 Angular Domain Representation of a Random Multipald

4.3.1 Angular Representation of a Spatially Constrained Feld

Definition 4.1 Space of far-field distributions.
Given a particular angular power spectruﬁ(,@), let 7 be the space of square integrable
functions defined on

0 ={0ecS*: PO +#0} (4.16)

with associated inner product

1 ~ T ~
(f ) = / 55 0000® (4.17)
and induced norm
2 _ Y R e TR
ol = (9.9)- = [ (g1 @ @) (4.18)

-~

To ensure a proper formulatioR(6) must be non-zero and continuous on some open inter-
val in §? such that is not a set of measure zero.

We can consider thaf is a linear subspace df,(S?) with an implicit projection obtained
since? C S?. ThusF is a closed and separable Hilbert space [183]. The reasawight-

ing the inner product with the reciprocal of the power spumtr(P(@)) , will become

apparent in Theorem 4.2. 1t is the weighting which connectisogonality on the space
F to independence in the expansion of the random field. Thgnalés restricted to the
region(? for which (P(§)>_

-~

gral asP(6) — 0. For a member of the spage € F, the norm|| f|| - must be defined
and hence wheré’(@) is small, the angular domain representatfcéa) must also be small.

~

In this way, rather than causing any convergence issueglistréution of P(€) serves to

-~

weight the angular representatiofs F towards the regions whete(6) is of a significant
magnitude.

1
is defined. There is a question of convergence of the inte-

We now consider a white noise random process in this spacelstvghch a process will

have infinite energy and does not strictly lie in the spaceve can consider the projection
of this process onto the basis functions of the space. Aicksknown theorem is that

white noise projects isotropically to all dimensions of pa@ble Hilbert space [11].
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4.3 Optimal Basis for Spatially Constrained Field

Theorem 4.2 White Random Process it has Angular Power SpectraP(@).
A white random process where each coefficient to an orthoabbasis inF has unit vari-
ance and is independent has an associated angular specsltrzihﬂitionP(@).

~ A © —~ ) <gm,gn)f = Omn and
g(0) = % ngn(0) where E {ana) = 6,1, (4.19)
implies
E{90)9(9)} = P)5(8 ~ ). (4.20)

Proof of Theorem 4.2Consider a sampling functiof;(@, gAb) defined as

1.(0.) :{ = p-9)<- . (4.21)
0  elsewhere
It can be seen that
lim ; £-(8,¢)ds(0) =1 and (4.22)
lim | 9(0)1.(8,9)ds(8) = 9(9). (4.23)

-~

Assumingg(€) is continuous, (4.23) arises from the mean value theorenis fiovides
an approximation of the angular delta functi@(rﬁ — ¢A>) which remains square integrable
provideds > 0. Thus we can projegfg(g, qAb) into F using the orthonormal basgﬁ(@)

1:0'.8) = > (10, ). 9.(8)) 90 (8. (4.24)

n=0

This is required to formally prove the theorem since styitte distributiorﬂ(@ — gAb) cannot
be projected intoF for gAb € 2 and cannot be used in the inner product.

Now given the representation of the angular distributiccpss (4.19)
E {9(5)9(35)} = E {Zangn(a) > mm@)}
n=0 m=0
=" E{aan} 9.(0)g.(0)

n=0 m=0

= 9u(0)gu(0). (4.25)
n=0
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Chapter 4 Angular Domain Representation of a Random Multipald

Now consider the produd%(ab)fg(@, $) for @ € Q using the expansion (4.24) and assuming

-~

P(0) to be continuous

A~ AN~ A~ > 1 ~ o~ I ~/ ~
P()f.(0.6) =P 1.0, 3)g,(0)ds(8)g.(0 4.26
(3)1.(8,9) <¢>n§%/gp(9)f< $)9,(8)ds(8)g,(8) (4.26)
~ 1 ~ —

_p L 0.(0)a, 0 4.27
(¢)§P(¢)g()g(¢) e (4.27)
:Zgn(é)gn@) sinceP(gE);«éO V e (4.28)

n=0

Equating (4.25) and (4.28) and noting th%(@) =0 andgn(a) = 0forall® ¢ ) and taking
the limit ass — 0 we obtain

~ ~

5{9(0)9(9)} = P($)i(0 - §) = P(8)5(6 - ) (4.29)
which completes the proof. O

For a general random process, an optimal representatidre ddtm (4.15) will have uncor-
related coefficients or, if the process is Gaussian (whiclshea#l assume for simplicity), in-
dependent coefficients [159]. Thus we see that Theorem da2as the link between efficient

representation of the random process for the angularlisiton P(6) and the orthogonality
of the basis functions irF.

Since the random process generay'(@) is white, any realisatiog(@) will not be a member
of the spaceF. Consider

E { / g@@ds(@)} —E { / S ngun(0) Zangn@ds@}
=Y Ef{ont}gallz =D 1— oc. (4.30)

Hence the norm oj;(@) in F is not defined. The realisatiq;(@) is considered through its
projection onto{g,} € F. Theorem 4.2 suggests any orthonormal basis is suitabléaéor
representation. This is a consequence of representingi@nstey random field with infinite
spatial extent. With no specified domain of interest, ali®asts are equally valid. The finite
dimensional representation we are interested in will bémggdtfor representing fields in a
specified bounded domain of interest.

There is a close analogy here with the representation of dorarprocess generating an
infinite sequence of discrete samples and having a knownérery power spectra. Whilst
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4.3 Optimal Basis for Spatially Constrained Field

the power spectrum may constrain the bandwidth, the sequefree to exist over an infinite
time range, thus there is no preferred set of basis functinless we constrain the time range
of interest.

Since||g|| - is not defined, it is meaningless to consider the error in thgukar domain
resulting from the finite dimensional representation— g | . Our goal is to approximate
the spatial field over a finite region of space, so we must denshe error introduced by the
finite dimension representation to the reconstructed adald in this domain of interest.

Definition 4.3 Space of Spatially Constrained Fields.

Consider a bounded domain of interéstc R? with bounded extent such thaty € A
implies that||x — y|| < co. DefineS as the space of square integrable fields over the
domain of interest), with associated inner product

<u,v)S:/Au(a:)'U(w)dw (4.31)

and induced normjul|3 = (u,@)s.

From the definition of the angular domain (4.3), we define agraijpr betweerF andsS.

Definition 4.4 Wave-Field Mapping Operator and its Adjoint.
Define A as an operator mapping an angular representafianf, to a wave-fieldp € S,

AFSS 2 =)= / F(0)ePds(0) x e A (4.32)
Q

with the associated adjoint operathr mapping a spatial field’ € S to an angular repre-
sentationf’ € F,

A*:S—F 2 f(0)=Pr®) / V(x)e 0z B € Q. (4.33)
A

The adjoint is defined such that, A ) = (A*v, f) - foranyv € Sandf € F,

(v, Afs_/ {/f Ye i*=85(9 )}dm

-/ %{ PB) [ o(w)e =i 701050
= (A", f) ;. (4.34)
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Chapter 4 Angular Domain Representation of a Random Multipald

As stated previously, the basis functiog;g@) should be selected such that the finite repre-
sentationgy (6 ) from (4.15) is optimal, however singe¢ F the error functior|g — gn||

is meaningless. From the definition (4.32) we can extend ¢meagh of A to all integrable
functionsZ,(S?). Giveng € L,(S?), we consider the error of the finite angular representa-
tion to the spatial field on the domain of interést

|Ag — Agnlly - (4.35)

This provides a method to order the basis element$ @&fnd determine an optimal rep-
resentation of the field in the domain of interest. Egghwill map to a field with norm
HAgnHZ = (Agn, Agn)s. This represents the contribution of each component tolesaea
tion of the random field over the domain of interest. In congumar to the discrete sequence,
this is analogous to constraining the time period over wiielare interested in the sequence
values. We then are interested in the basis functions thathntlae desired power spectrum
and are confined mostly to the time period of interest.

This approach to constraining the domain of interest andrarg the basis function elements
leads to the following theorem.

Theorem 4.5 Finite Dimension Angular Representation of Spigally Constrained Field.
Given a bounded domain of interest,an optimalN term finite dimensional representation
in the angular domain F, for a random spatial field with WSSUS angular power spectrum
P(6) will be

(PA Z ang(PA (4.36)

whereq,, are unit variance, independent random complex coefficiefite set{g,SP’A)} are
the orthonormal eigenfunctions i, ordered in decreasing eigenvaluéP’A), of

NI (0) = AT Agl™N ()
= P@) [ [ s V@ s @) (4.37)

with the expected error in the field from truncation

2 o
E {HAg — agY| } = 3P (4.38)
n=N

and this truncation error will be optimal over all possiblbaices of basis functions,.
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4.3 Optimal Basis for Spatially Constrained Field

Proof of Theorem 4.5For convenience we suppress the explicit notatiéry .

We consider the problem of finding a unit norm functign € F, ||g.|| » = 1 that when

projected intaS, Ag, € S, achieves the maximum norfAg,||s. We can normalise by

9./l  and use the adjoint operatdr* to state the equivalent problems
(Agn, Agn) s (gn, A*Agn) £

sup HAgnH?g = sup——F"2> = sup

(4.39)
lgnll =1 o (Gn> Gn) 5 o {Gn> Gn)F

The solution for this problem is obtained whgnare the eigenfunctions of the composite
operatorA*A. Using the definitions of the projection operators, Defamité.4, this leads
directly to the eigenequation (4.37). An equation of thisfas known as a Fredholm integral
equation of the second kind and the integrand is often egpdeas the product of a kernel
with the function,

Mon®) = [ KO.8)u(@)5(3)  K0.) = P@) [ @=* Dz, (440
A

The trace of the kernel,

K (6,86) = /QP@)ds(a)/Adm:/Adm, (4.41)

will be bounded for a finite domaif as defined in Definition 4.3. This is equal to the sum of
the eigenvalues [184] and there will be a countable set oti®ols with non-zero eigenvalues
which can be orderefl, > \; > ... )\, > 0[182].

Consider the following integral

0)g,(¢)e’ = O=D gz ds ! (B)gn(P)ds(p
Jo, Jyom @ s O)05() = Ao | o B10n(3)05(3)
1 ©)9.(8)ds(B
n/QP(O gn(0)ds(0)
(4.42)
1 ~TT T o~ _
= (A= An) /Q P@gm(O)gn(e)ds(e): (A= An) (G Gn) s = 0. (4.43)

From this it is noted that the eigenvalues, will be real and that the eigenfunctions for
distinct eigenvalues will be orthogonal jh. With suitable normalisatiory,, is a complete
orthonormal basis faf-.

From Theorem 4.2, it was shown that the coefficients,of the field with associated angular
power spectrurrP(@) are drawn from a set of unit variance, independent randorahias.
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Chapter 4 Angular Domain Representation of a Random Multipald

We definegy from the firstN terms of such a representation,

@)=Y 0@ dn(@) = (Agy)@) = 3 an (Ag) (@), (4.44)

The expected value of the error in the reconstructed field,

00 2
en = E{|Ag - Agnlz} = ES||D_ anAgn (4.45)
n=N S
=Y E{om®} (Agm, Agn)s = > _ M. (4.46)
m=N n=N n=N

The eigenvalues,, are from a self adjoint operator and thus cannot be less @ Zhus

the sequence of erroesy as N is increased forms a non-increasing sequence. Since the
eigenvalues are ordered in decreasing magnitude, the t@xjpaecof the error=y will be
minimal across all possible choices for any orthogonal s&tractionsg,,. Thus the repre-
sentation (4.36) is the optimal finit¥-dimensional representation with respect to the error
of the associated field across the domain of intefest O

This theorem demonstrates that both the angular powerrspeanhd the domain of interest
are required to determine the optimal set of angular basistions for representing the
random field.

For a random multipath field with angular specﬂ(a@), an expansion of the form (4.15) is
a weighted sum of the firsY basis functions. This provides the most efficidhparameter
representation for an instance of the random field. The &time of a random field to thigd/
dimensional representation will introduce an approxioragrror. The expected value of the
mean square error in the field across the domain of intéregll be minimal when using
this optimal set of basis functions.

4.3.2 Comments on Optimal Basis Representation

From the preceding results we see that the way in which theeiBeheasured over space has
a direct bearing on the optimal angular representationeofdhdom field. The eigenequation
sets out the relationship and interaction between the angolwer spectrum and the spatial
region. This affects the number of terms and charactesistiche angular functions that
should be used to represent the random field.
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4.3 Optimal Basis for Spatially Constrained Field

e The random process representing the multipath field in tigetlan domain will have
infinite variance in any single direction and is not a member0<2).

e The random process can be represented by its projectioracsgbof basis functions
in the spaceF. If the basis is orthonormal i and the coefficients of the basis unit
variance random independent variables, then the field &ileran associated angular
power spectrurd(8).

e By considering the domain of interest for representing tk&lfiwe can obtain an
ordered set of basis functiogyém) which are dependent on both the angular power
spectrum and the domain of interest.

e By truncating the representation to the fitsterms, we can obtain aN-dimensional
subspace which will be optimal amongst all possible choofes-dimensional basis
with respect to the mean squared erroron

e The optimal angular representation provides a means torgienesalisations which
appropriately model the random field by weighting flidasis functions with a set of
independent identically distributed complex normal rand@riables.

A useful interpretation for this result is to consider thesetvation of a field over a finite
domain as a filtering operation. The input to this filter hdmite dimensionality and in the
angular domain resembles a “white” process with amplitudigited with respect to angle.
The components of this input which will suffer the least atigtion through the observation
filter are the solutions of the eigenequation. This provi@éssis and representation in the
input space (angular domain) to efficiently model the olbestgom of a multipath field over
the region of space. We refer to this as an angular repragantd a spatially constrained
field.

All the terms of (4.36) in the angular domain spaEere weighted equally. Adding more
terms will continue to increase the power of the field repnéstéon. The serie$gy } is not
convergent since

E{llgy —gnllz} = E{ayay} =1 (4.47)

which is consistent with the infinite point variance]é(@) from (4.7). However the series
of associated field§uy} = {Agn} is convergent ir§ since

E{||Agy — Agn_ills} = AvE{ayan} —0 as N — oo. (4.48)
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Chapter 4 Angular Domain Representation of a Random Multipald

This is a corollary of the diminishing representation erndihe truncation a$v is increased.
The higher order basis functioms become progressively spatially “high passed”, having
less energy in the domain of intere'st

4.3.3 Relationship to Karhunen-Leéve Expansion

Since the correlation function in the angular domain, (4w8s not bounded, it is not pos-
sible to develop a Karhunen-Loéve expansion directly émahgular domain. An alternate
approach is to consider a representation of the random figteki spatial domain [81]. The
spatial correlation functiony(x, ') defined in (4.12), is stationary and continuous thus
allowing the use of a Karhunen-Loéve expansion to reptdberfield as an orthonormal ex-
pansion over a finite domaif. The Karhunen-Loéve expansion optimal provides a unique
optimal expansion (in the MMSE sense) of a random procesgatesl to a bounded do-
main [159],

N-1
u(@) =Y VA, () (4.49)
n=0
where the basis sét.,,} and eigenvalues,, are the eigenfunctions of the integral equation

At (') = / p(x', x)u,(x)de (4.50)
A
with the kernel of this Fredholm equation being the spatatalation function.

Taking a finite set of the terms of (4.49) provides an optinmaididimensional representation
in the sense of the expected mean square error for repregeamy realisation of the random
process. The use of the notatioy, and«,,, equivalent to Theorem (4.5), is deliberate and
justified by the following theorem. The eigenequation dedifrom the spatial Karhunen-
Loéve expansion is equivalent to that obtained from casid the optimal decomposition
in the angular domain.

Theorem 4.6 Equivalence of Angular Representation and Karbinen-Loéve Expan-
sion.

The spatial Karhunen-l&ve expansion provides an equivalent representation todha
tained in Theorem 4.5 in that the eigenequations

Aty () :/Ap(a:',a:)un(a:)dw (4.51)
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and
)\(PA)g(PA) / / ejkﬂ).(%—a)ds(gg)dm’ (4.52)

are equivalent with a one to one correspondence betweenaitmatised associated eigen-
functions

o () = /Q on ()75 (B). (4.53)

Considering the eigenequation for the angular domain, timeadh of interest\ is reflected
in the kernel of the integral equation. For the spatial cdsedomain of interest affects the
domain of integration.

Proof of Theorem 4.6Take the eigenequation (4.37) from Theorem 4.5 and appyéve-
field operatorA from (4.32) to both sides,

LHS = A, / 90(0)e7*005(0) = \,u,(2)
RHS = P(9) / 9n(D) / ¢4 (-0) 12 ds () e’ ™ P ds ()
// eﬂ“(”c —x). eds(O)/gn(a)ejkm'a’ds(a)dw

Q

- [ @) [ @)= Pds@)in = [ ol @y @)da. (4.54)

Since g,,(0) is arbitrary, IS 9n(0)e7*%' 9 represents an arbitrary wave function giving an
equivalent form to the Karhunen Loéve eigenequationQy.5The desired functions,,
are orthonormal o\, and sinceHAgans = \,, we obtain the equivalence relationship
(4.53). O

4.4 Angular Representation for Specific Configurations

4.4.1 Circular Region with Isotropic Field

As an example, we can consider the case of a two-dimensi@haligotropic field with a
circular region. In this case we can represé\nlnd?b as single parameter angles in the
range) = [0,2x] with P(9) = 1/2w. The associated domain of interest= Bl =
{z: |lz| < R}.
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The integral equation (4.37) can be written for the two-disienal case,

Mg (0) = A*Ag, (¢) = /Q 9n(9) {P(@ /A ef"“‘“)dw} do. (4.55)

The kernel of this integral equation is evaluatedfoe B and P(0) = 1/2w
) o R 2r N
_[((07 ¢) — P(e)/ e]km.(¢—9)dm — P(e)/ / ejkm.(qb—e)rdeldr
B2, o Jo

1 R 2r , R
= —/ / e?*zreos@) - qp’ dr :/ Jo(kzr)rdr
m™Jo Jo 0

= k—iJl(sz) (4.56)

with z = 2sin((¢ — 0)/2), J,.(+) is then'™ order Bessel function and using an integral of
Jo from [185]. Since the integration in the kernel is over awiac region, the kernel (4.56)
is periodic in bothy and¢ with period27. Furthermore, the kernel is invariant in a circular
sense under translation in either argument, that(@ + A, ¢) = K(6,¢ — A). Hence, this
eigenequation is equivalent to a circular convolution foreh the eigenfunctions are known
to be the harmonic complex exponentials. Thus the resultambalised eigenfunctions are

gn(e) = 5=

n=—oo,...,00. (4.57)
2m

Using Definition 4.4, the associated spatial field, usingldeobi-Anger expansion [91],

un(x) = (Ag,)(x) = / " o (0)e 00

= o [ S kel e = 5 e 459

m=—0o0

with 6, the associated angle of the polar coordinates of the poifthe associated eigen-
values from (4.55) are the square of the norm on the domaintefast of the transformed
basis functiong,,,

R 2 R
An = / / J2 (K |||))rdodr = 27?/ J2(kr)rdr
0 0 0
=R (J2(kR) — Ju_1(kR) Jui1(kR)) . (4.59)

The eigenvalues can be approximated~ 2R/k for n < kR and ), ~ 0 for n > kR with
a sharp transition around = kR. This property has been discussed in previous works [41,
42, 84] and also Chapter 2 with a similar set of basis funetaerived for the field. The sum
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4.4 Angular Representation for Specific Configurations

of the eigenvalues and trace of the kernel [184] is simplyatie&) -, A, = 7R

A similar result can be obtained for the three-dimensioaakowith the angular basis func-
tions being the spherical harmonics. In this case, the afiguncation is againlV = kR,
however with two angular dimensions the spherical harnsare doubly indexed giving
(N + 1)? terms compared witBN + 1 for the two-dimensional case.

4.4.2 Circular Region with Single Direction of Arrival

If the power spectrum is discrete from a single directibtinen in the limitP(0) = 6(0—¢").
We can evaluate the eigenequation (4.37),

Angn(6) = 66— 6') / / n ()% @0 d e
AJQ
, 2rR
=56~ 0) | gule) o h(k=R)d (4.60)

O z
with z = 2sin((¢ —60)/2) and(gAb - 5) is the vector difference between the two-dimensional
unit vectors corresponding to anglesndé. By inspection, ifA,, # 0 theng, (8) = 0 for all
0 # ¢'. Thus (4.60) permits a single nontrivial solution

2TR

Ji(kzR) = mR? (4.61)

since the integral is zero everywhere excgpt ¢’ at which pointz = 0 and the (4.60) gives
the eigenvalue directly.

It is worth noting here that our spacdgis not formally defined for the case wheR0) =

d(0) or for any case wher@(#) is unbounded. In generalising the above, the eigenequation
(4.37) reduces to a countable set of linear equations whénis only non-zero on a sét

of measure zero. A more detailed proof would be requiredtibéish this formally.

We present the framework here for the general cage(6f being bounded and normalised
Jo P(6)do = 1. The result of (4.61) can be established by considering eowaangular
power spectrum

P<9):{ 1/2A |6 < A (4.62)

0 elsewhere

and noting that

2T R

- J1(kzR) ~ 7R kzR < 1. (4.63)
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Chapter 4 Angular Domain Representation of a Random Multipald

By inspection, we obtain an approximation of the first soln@asA — 0,

1/2A 16 < A
90(0) ~ { /28 10] < \o — TR (4.64)

0 elsewhere

The eigenvalue,, approaches R? from below. Sincéy_> , \, = 7R?, and all eigenvalues
are non-negative, the remainder of the eigenvalues vagsigh-a 0.

This approach can be generalised to an arbitrary region.sifiggilar nature of the power
spectraP(¢) permits only a single solution of (4.60) beigg(#) = (0 — 0’) regardless of
the region shape. This solution represents a plane wavestite regiony,(x) = eikaBz,
Since this has a constant unity magnitude across the régithe eigenvalue, will be the
area of the region.

4.4.3 Circular Region with Restricted Direction of Arrival

The examples presented in the two previous sections deratsgie extremes of an isotropic
and unimodal angular power spectrum. The isotropic cadénawie a number of significant
components of the order @k R whilst the single mode case will have a single term. Intu-
itively, the dimensionality will be related to the spreadtod angular spectrum [82, 84, 157].

Consider the kernel for a restricted direction of arrivatasout in (4.56),

A ™
Mn(®) = [ Sk R)an (0o (4.65)

with z = 2sin((¢ — 6)/2). This kernel applies a smoothing low pass to the funcgigid)
and is structurally similar to a circulainc(-) function. The eigenequation is thus similar to
that obtained when considering bandlimited functions [142

Some further discussion of the dimensionality and basistfons for the restricted direction
of arrival case can be found in Chapter 3.

4.4.4 Uniform Linear Array

Consider the domain or interest associated with the spaggbn of a lineA = {(z,y) :
lz] < W, |y| < R}. For small W,

:B(gAb — 5) ~ y (sin ¢ — sin @) (4.66)
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4.4 Angular Representation for Specific Configurations

and the integral equation kernel from (4.55) becomes

/ jka. q.’) 9 d(Il N/ / jk(sm¢> sin 6) dydl’

_ 2sin(kR(sin¢ —sin0)), (4.67)
k(sin ¢ — sin 0)

This does not lead towards any convenient solutions foritiEnequation. For small angles
around the broadside of the array, we can approximiaté ~ 6. If we normalise by the
effective area of the uniform linear arrajiz1V’, we obtain the eigenequation

Angn(0) = P(0) /an(qﬁ)sinc(kR(Q — ¢))do. (4.68)

This is a kernel that has received much attention assocmtadandlimited functions [85,
142, 159]. For small ranges around the broadside of the areayould expect the number
of significant eigenvalues to increase linearly with thewdagspread.

4.4.5 Other configurations

Whilst there is extensive literature on the problem of figdanalytic solutions of a Fred-
holm integral equation, for this problem such solutionsdgfly exist only for very simple
or construed regions and power spectra. The ability to deter an analytic solution for a
specific practical configuration will be limited. Existingchniques involve solving a related
differential equation, or numerical approximations [18Bor different region shapes, alter-
nate co-ordinate systems could be considered to matchdhereoundary [187]. Since the
wave equation is separable for at least eleven coordinatersg [188] this presents some
possibilities, for example the use of prolate spheroidaldmates [160, 189].
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Chapter 4 Angular Domain Representation of a Random Multipald

4.5 Numerical Solution of the Eigenequation

The eigenequation (4.37) informs the solution for effidigrgpresenting a random multipath
field. Whilst this approach provides a high level of preaisi will often lead to complex
series expansions for the solutions, see example [190]lyAnaolutions are known only
for fairly simple configurations requiring careful geomearrangements of the problem and
thus having limited application. An alternative is to caoyt numerical analysis to reveal the
dominant macroscopic effects and the effects of varyingégeon shape or angular power
spectrum.

There is extensive literature on approaches for solving sutegral equations numerically
[191-193]. The two approaches considered here are thedvystrethod and approximation
by a separable kernel. A more thorough analysis of these thed approaches can be found
in other references [194, 195].

For the case of the two-dimensional field, the domain of thegiral equatio C S' which
is equivalent to the periodic domaif, 27r]. The analysis is tailored to the specific integral
equation

Mg (6) = /Q K0, 0)0(0)d6  K(6,0) = P(6) / @ Dge (4.69)

A

It is shown that the integral equation can be solved numigrigéth a set2[kR]| + 1 linear
equations withR being the radial extent of the domain of interdstThis implies that only
a certain amount of information from the angular spectrixtd)) is relevant.

Whilst some of the principles discussed can be extendedetariular domain associated
with a three-dimensional field, the domaif creates additional complications. The field of
numerical interpolation and integration on the sphere istarnsive topic unto itself [196—
199]. We consider here only the integral equation assatiatth the two-dimensional field.

4.5.1 Nysttom Method

The Nystrom method is a simple approach to reduce the @teguation to a set of linear
equations using a quadrature formula [191,192]. It is applie when the angular power
spectrum is smooth and continuous, resulting in a well datkd integrand. The integral
can be approximated with a set of regular quadrature péjnts27 (¢ — 1)/Q and weights
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4.5 Numerical Solution of the Eigenequation

wy =27/Q,
2T Q
Mon(0) = [ K(0,0),(0)d0 = T3 K (0.60,)3,(0,). (4.70)

Evaluating this equation at the quadrature points givesihieix eigenequation

gn(el) 9 K(eluel) K(elaeQ)
m

: . . (471)
9n(0q) K(0q,01) -+ K(0g,0q)

The solutions obtained fdrg,,(6,)} can be interpolated with the reconstruction formula

Q
90(0) = 5 3" wgK(6,60,)9(6,) (4.72)

n

The main benefit of this approach is its simplicity. It hasrbskown to perform well across
a wide class of problems [192] and is easily implemented][193

To determine the number of quadrature points required,identhe spatial integral

eﬂm'(a_a’)dm:/ T (k||| /™ 0= Jo(k||z|)e "= =9 d
/ Y k) S (ki)

m=—0oQ n=—oo

= > > e [kl el da.

A

m=—00 N=—00

(4.73)

For a region with maximum radiuB, J,,(k ||z||) < J,(kR) ~ 0 for n > kR. With only
kR significant terms, the spatial component of the kernel is astmbandlimited function.
When P(0) is also a smooth bandlimited function, the number of quadegboints required
will of the order2k R+ A, with additional points\ > 1 as required to increase the accuracy.

4.5.2 Modified Nystrtom Method

If P(#) contains any singularities, it is noted that these will feeoted directly in the solu-
tionsg,(#). For such angular power spectrums it is no longer appraptiatlirectly sample
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Chapter 4 Angular Domain Representation of a Random Multipald

the kernel. Consider the related integral equation

A (0) = /S S(0,)P(6)Gu(0)dé  where  S(0,6) = /A @0z (4.74)

which is equivalent to (4.69) with, () = P(0)g,(0). In this caseP(¢) now captures the
only discontinuity in the integral and can be considered @hteng function on the domain.
This leads to a quadrature rule such that

Q
| P08 =Y ,106,). (4.75)

This quadrature rule should be satisfied for the maximalrastighe integrand functiorf (9).
Letting@ = 2M + 1 the following system of equations is obtained to determipe

Q
/ P(0)e7™0d0 = e ™, m=—M,... M. (4.76)
Sl

q=1

For regular spacetl, = 27 (q — 1)/() the weightsu,, will be samples of the finite Fourier
series expansion d?(0),

M 2w
~ ) 1 .
f[Dq — P(eq) — E fymejmeq Whel"e /ym = %\/O' P(Q)e_jmede (4-77)
m=—M

This leads to an alternate set of equations to solve. It cashbe/n that this approach is
equivalent to using the smoothed version of the angular p«swectrumﬁ(e) directly in
(4.71). The modified kernel samples

K(6,,0,) = P(6,)5(6,,0,) = P(6,) / ek 0a=0) gz (4.78)
A

are used in (4.71), whilst the actual ker#e{d, ¢,) is used for interpolation in (4.72).

Improvements and variations of the Nystrom method can beentfarough the selection of
the quadrature rule. For a three-dimensional field, the doBtgresents a greater complex-
ity, however the area of integration on a sphere is well stidiith many available quadrature
rules [196, 198, 200, 201]. The smoothing of the three-dsi@ral angular power spectrum

~

P(6) can be obtained by a truncation of the spherical harmoniarsipn ofP on S?.
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4.5 Numerical Solution of the Eigenequation

4.5.3 Separable Kernel using Harmonic Exponentials

Equation (4.73) demonstrates a linear decomposition oketgenequation using a set of
complex harmonic exponential functions. From this it isaygt that there exists a separable
approximation of the kernel with a finite number of terms. Taege of the kernel and the
solutions of the integral equation will span the same lirsedaspace [195].

Writing the solutions and the angular power spectrum asitinembinations of the harmonic
exponentials

WO =PO) S ane ™ PO = 3 ™. (4.79

m=—o0 m=—oo

The integral equation (4.69) becomes

A P(0) i QeI :P(e)/ i i eI T P(p) i ase % de
Sl

m=—oo P=—00 qg=—00 S§=—00
=\, mzzoo Qe im0 = pzzoo qzzoo eijpequ /Sl eJad T:ZOO SZZOO Yy_sase Idg
= A =27 > g D YasOls (4.80)
q=—00 §=—00
where
Ty = / T8 ) Ty k ] -0 dz, (4.81)

From the nature of the Bessel functions, will be negligible for either index greater in
magnitude than beyont¥ = [k R]. Truncating this set of equations at ordérgives

J—M,—M ce J—M,M Yoo o V—2Mm
Ma=JCa J= : S C=| 1 . (4.82)
Im—m o Jum Yem 0
wherea = [a_yy, . .. ,aM]T, C is the Hermitian Toeplitz matrix as shown adds the ma-

trix of terms.J,,,. By solving for the eigenvectois, we can substitute th&\/ 41 coefficients
o, back into (4.79) to form a truncated approximation of theiaksolution.

For a radially symmetric region),, = 0 for p # ¢ andJ is diagonal. For circular region
Jpp = 27 [iF J2(kr)rdr. The eigenvalues of (4.82) will be the same as thos&'tfC J/?
which is the correlation matrix for the coefficients of an ampion using the basis for a
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Chapter 4 Angular Domain Representation of a Random Multipald

circular region and isotropic field. Analysis of this matvias proposed in [81] as an algo-
rithm for the numerical calculation of the random field eiggdnes. The numerical approach
presented here encompasses this algorithm as a special case

4.5.4 Validation of Numerical Methods

The preceding sections detailed two numerical methodslemgy the integral equation re-
lated to the angular domain representation of a multipalth fileresent here are two examples
to validate the proposed numerical methods. Both appreasinggest the use of a relatively
small linear system of equations wi2ik R| + 1 unknowns. Higher accuracy can be easily
achieved by using slightly more points than this criticaeghold.

The first example presented is that of a circular region with wavelength radius and an-
gular power spectrum constrainedtar /4 = +45°. For this regionkR ~ 6.3 suggesting
the use of a truncation order 8f = 7 and15 quadrature point8, = 2rq/(2M + 1) for
n=—M,..., M. There will be around 4 significant eigenvalues for this qgunation.

The second example is a more complex configuration with @ptiell region with major
axis2\ and minor axis\/2. The angular power spectrum used was bimodal with Laplacian
distributions centred & and45°. With a radial extent of this configuration again suggests

a truncation order of with 15 sampling points.

A schematic for the geometry of the two examples is shown gufé 4.1. Table 4.1 lists
the first 6 eigenvalues for the configurations along with thpraximations using the two
proposed methods solved with unknowns. Both approximations are reasonably accurate
with the Fourier method providing the best match.

Figures 4.2 and 4.3 show the approximated angular powetrapaed eigenfunctions. It

is evident that the main characteristics of the eigenfonstiare captured by the numerical
methods using only5 sampling points or unknowns in the matrix equation. The Fwour

separation method provides a more accurate solution foeeifenfunctions. Both methods
provide very accurate solutions for the first 4 eigenfuniwith discrepancies only noticed
in the higher order eigenfunctions.
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4.5 Numerical Solution of the Eigenequation

© IMinor A2

Major 2\

(a) Circular regionR = X with uniform angular (b) Elliptical region major axi2\, minor axis
power spectrum A/2 with bimodal Laplacian angular power spec-
trum

Figure 4.1: Schematic showing the geometry of the region shape and angolirce distributions
used in the validation examples.

(a) Circular regionR = X with uniform angular (b) Elliptical region major axi€\, minor axisi/2
power spectrum with bimodal Laplacian angular power spectrum
Term | Exact| Method 1| Method 2 Term | Exact| Method 1| Method 2
Num | Value| Nystrom| Separable Num | Value| Nystrom| Separable
1 1.2222 1.2225 1.2222 1 0.5714 0.5721 0.5719
1.0418 1.0935 1.0417 0.1759 0.1771 0.1766
0.6315 0.5313 0.6314 0.0237 0.0222 0.0241
0.2007 0.2339 0.1994 0.0098 0.0096 0.0098
0.0390 0.1123 0.0366 0.0030 0.0058 0.0031
0.0056 0.0163 0.0043 0.0010 0.0031 0.0011

OO, WN

OOk, WN

Table 4.1: Comparison of the eigenvalues obtained from the two nurmlenieethods for solving

the spatial eigenequation. The eigenvalues are well appet&d using a matrix equation with only
2[kR] + 1 = 15 unknowns. The method using the Fourier separation of theek@rovides greater
accuracy.
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Figure 4.2: Comparison of eigenfunctions obtained from numerical m@shwith R = A and an an-
gular power spectrum restricted [} < 45°. The first panel shows the actual and smoothed sampled
angular power spectrum. The next two panels show eigenfunsch and 6 and the approximations
obtained. The Fourier separation approach provides therkaiproximation.
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Figure 4.3: An elliptical region with major axis oA and minor axis\/2. The angular power
spectrum is bimodal Laplacian distributed. Whilst the Mgst method is inaccurate for thgsh
eigenfunction, it is noted that this component represe&28dB of the random field energy.
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4.5.5 Discussion of Numerical Method

The analysis and example demonstrates that accuratess@ i the integral equation can be
obtained numerically. The order of the system of linear équa used to solve the Fredholm
integral equation is related to the radius of the spatiabregnd thus the domain of interest.
Solving for2[kR| + 1 unknowns using the Fourier separation method providesllerte
results.

~

This work also demonstrates the insensitivity of the optiba@sis functionsy,,(6) to com-
ponents of the power spectruﬁ(@) beyond a threshold resolution. In the two-dimensional
case this was directly related to the Fourier series of theepspectrum. The Nystrom
method was dependent only on terms up to ofder= [kR]| whilst the Fourier separation
method was dependent on terms up to orzief. The Nystom method requires a greater
level of smoothing and thus less information from the angsigectrum. Taking the higher
limit, we assert the following:

Observation 4.7 Significant aspects of angular power speatm for modelling random
multipath field.

Take an arbitrary angular power spectrurR(6), for a two-dimensional random multipath
field. The terms of the Fourier expansionf(f) to order2[k R| define an equivalent power
spectrumﬁ(@) which captures all aspects 6f relevant to the field observed over a region
contained within a disc of radiuB.

2M o
P(,) = g el where 7, = 2—/ P(0)e 4. (4.83)
T Jo
n=—2M

M=[kR)]

Derivation for Observation 4.7Consider the two-dimensional spatial correlation funttio

plaa) = [ PO = 3 (ke o) [ PO s

n=—oo

= > "k ||l — a||)em e (4.84)

n=—oo

Given the bounded domain of intere§ty — «’|| < 2R. Noting the high pass nature of
the Bessel functions/,(k ||z — «'||) = 0 forn > k|l — '|| > 2kR. Given~, are the
Fourier coefficients of the power spectrumid) it is evident that only the firs2k R terms are
significant to the spatial correlation in the region. O

This result is consistent with previous works that have shtivat for small angular distribu-
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tions, itis the spread of angles excited and not the exapesbithe angular power spectrum
that is significant to channel modelling, spatial correlatand capacity [47,174,202, 203].

4.6 Numerical Study of Angular Basis Functions

The eigenequation (4.37) informs the solution for effidgrgpresenting a random multipath
field. Unfortunately it is only easily solved for fairly sitgconfigurations. However, as
shown in the previous section, it is possible to obtain aeusolutions to the eigenequation
using a relatively low order numerical approximation.

This numerical technique allows us to investigate the ihp&earious changes to the region
shape and power spectrum. To facilitate the analysis, wsidena two-dimensional region
and azimuth only source distribution.

4.6.1 Basis Functions with Non-Uniform Angular Power Speectum

Reducing the support of the angular power spectrum causescaitration of the received
energy into the low order terms. The limiting case is that irayle eigenvalue as seen
in Section 4.4.2. The basis functions are constrained toahge of non-zerd®(¢). They
resemble the prolate spheroidal wave functions [142] asathge of the angular spectrum is
decreased. As the order is increased, the discontinuityea¢dge of the angular spectrum
becomes more pronounced. This is illustrated in Figure ®4.eigenvalues are normalised
such that they sum to unity.

For comparison, the effect of a truncated Gaussian powetrspe with the same angular

variance is shown in Figure 4.5. It is evident that the fumtsi and eigenvalues become
consistent with the uniform angular power spectrum for $@wadular variance. Since the

integral kernel is smooth, the solution to the eigenequaoinsensitive to details in the

angular power spectrum finer than a certain resolution. Tigalar spread of the power

spectrum becomes the dominant factor.

4.6.2 Basis Functions for Elliptical Region
The effect of the region shape on the eigenvalues and basisidus is also considered.

A simple perturbation to a circular region is effected byriag the scale along one axis
resulting in an elliptical region. This perturbation wilese a smaller number of eigenvalues
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Chapter 4 Angular Domain Representation of a Random Multipald

to become more dominant compared to the circular region.lifrigng case is similar to a
line array for which the number of significant eigenvalueselated to the array length. The
eigenvalues and basis functions for an elliptical regi@swown in Fig 4.6. It is evident that
the eigenfunctions for this configuration are nontriviaidtions.

4.7 Dimensionality of Optimal Representation

In Chapter 3 and Chapter 4 we considered the dimensionalityhe representation of a
multipath field in a circular region. The field was considebedh with a uniform angular
power spectrum and a restricted range of angles. For thesotcase the basis functions
are the complex exponentials. For the restricted angutagesathe basis functions can be
approximated by the prolate spheroidal wave functionsthearperturbations were shown
to introduce greater complexity into the basis functionggesting that convenient solutions
for such cases are unlikely.

Of interest in the general case is the essential dimensigra number of significant terms,

that could be utilised if the correct basis was determinedafparticular scenario. This

provides a measure of the sub optimality of using the basadd from the isotropic case.
This is a property of the eigenvalues from (4.37). In patéiguve can consider the number
of terms required for the expected residual error in a firlf@esentation to fall below a set
threshold.

Definition 4.8 Dimensionality of a Multipath Field.
For any set of eigenvalues from (4.37), giver 0 there exists some integéx(¢) such that,

Am
Lomzn < 5} )

S (4.85)

D(&) = arg min {

n

Of general interest is the value 6f = D(0.01) for which our N term finite representation
(4.36) will capture 99% of the multipath energy. The modahgjlerror in using such a rep-
resentation would be equivalent to a 20dB signal to noise.rale use this threshold as
the definition of the essential dimensionality to analyse élgenvalues obtained from the
integral equation.

Strictly, D(e) can only take on integer values. Of particular interest heesituations for
which D(e) will be fairly small such as a communications system with al$mumber of
antenna in a confined spatial region. The impact of chang#setoegion shape and field
angular power distribution will be obscured by the coarsangjgation. To facilitate the
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-90 0 90 -45 0 45 =225 0 22.5

(a) Restricted tat90° (b) Restricted tatk45° (c) Restricted tat22.5°

Figure 4.4: Eigenvalues and first four angular basis functions for autarcregion @ = \) and
uniform restricted angular spectrum. The top plot in eadhroa provides a schematic of the region
and source distribution. The second plot shows the restrie) and eigenvalues with those for the
uniform spectrum x) also plotted for comparison. Restricting the angular ealogvers the number
of significant eigenvalues. The remaining four plots in eeslumn show the basis functions, with
the equivalent prolate spheroidal functions shown as aethlhe. The angular basis functions are
zero beyond the domain shown in the figures.
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(a) Gaussian witlr = 52° (b) Gaussian witly = 26° (c) Gaussian witlr = 13°

Figure 4.5: Eigenvalues and first four angular basis functions for aut@rcregion = \) and a
truncated Gaussian angular source spectrum. The top pézdh column provides a schematic of
the region and source distribution. The second plot shoesahussian spectrum)(eigenvalues
with the uniform spectrumx) eigenvalues also plotted for comparison. The remainimng fdots in
each columns show the basis functions for the Gaussiatibdistm. For comparison, the dashed line
depicts the basis function for a uniform angular spread thighsame angular variance.
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-180 -90 0 90 180 -180 -90 0 90 180 -180 -90 0 90 180

(a) Ellipse Axe22\ and\ (b) Ellipse Axe2\ and)\/2 (c) Uniform Linear Array

Figure 4.6: Eigenvalues and first four angular basis functions for aptalal region with an unre-
stricted uniform angular source distribution. The top toeach column shows a schematic of the
region geometry and source distribution. The second plowstihe eigenvalues for the elliptical re-
gion (o) with the eigenvalues of a circular regior ) shown for comparison. As the region becomes
more elliptical, the eigenvalues converge towards thetilmgicase of a line array which is shown for
comparison in the third column. For the elongated domaimifrést and uniform linear array, the
basis functions are nontrivial.
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Figure 4.7: Essential dimension of a region with restricted uniformwagpower spectrum. Scat-
tered points are obtained from the numerical eigenvalugsiradd from (4.37). Lines are plotted to
show the empirical relationship = 2kRA /7 + 1 which shows an excellent correspondence. This
figure demonstrates that dimensionality varies linearhwie radius and angular range.

analysis, we use an exponential interpolation to obtaiaetifsnal dimensionality. The pro-
cedure is detailed in Appendix A. The fractional definitidressential dimension provides
smooth curves which aid in analysing the impact of configarathanges in the following

examples.

Figure 4.7 show the essential dimension as the radius isd/dor four different angular
power spectra. The power spectra are uniformly distriba@dss|d| < A for A = 180°,
90°, 45° and 22.5°. The values forD(0.01) obtained from the eigenvalues of (4.37) are
shown to be approximated by,

A
D(0.01) ~ 2kR= + 1. (4.86)
m

Whilst the scattered points are obtained from the eigertemueesults, the lines are direct
plots of the simple relationship (4.86) and have not beemynveay fitted to the data. The
general relationship is to be expected, as discussed int€&hap Section 3. The match
between the scatter points and the lines will depend on teetsd threshold value. A lower
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Figure 4.8: Essential dimension of an elliptical region with uniformgafar power spectrum. Scat-
tered points are obtained from the numerical eigenvaluésiredd from (4.37). Lines show the em-
pirical relationship for a circlelp) = 2k R + 1) and uniform linear arrayl) = 2kR /7 + 1). Between
these limits the variation of dimensionality with radiugispendent on the shape of the region.

threshold value would shift all the scatter points towardsgher effective dimensionality.
In this case, the threshold 0f01 provides an excellent match for the simple dimensionality
expression (4.86).

For the isotropic case, an upper bound on the dimensioraligymultipath field asv =
2[ekR/2] + 1 has been rigorously proven [41,42]. From the plots in Figli®it can be
seen that the lower value from (4.86) is a better match fodtheensionality as defined in
Definition 4.8.

The next area of investigation is to study the impact of cleany the region shape. An
elliptical region is selected as a simple perturbation @& tircular region. Keeping the
length of the major axis the same, the region is contracteddayeasing the minor axis.
Figure 4.8 shows the effect of the overall region size and aitmajor to minor axis on the
dimensionality. The field is isotropic from all angles. Thednsionality is decreased as the
region becomes more elliptical. The limiting case of théanm linear array with

1
D(0.01) ~ 2kR— + 1. (4.87)
m
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Figure 4.9: The effect of increasing angular spread on the dimensiynalihe incident field is
constrained t®d| < A whereA is the halfwidth of the uniform angular spread. The regies lvithin

a radius of\ giving a major axis or linear array of lengft\. For the asymmetric regions (elliptical
and line array) the points are shown for the mean directioarndfal being aligned with the end or
broad side of the array. The relative orientation has afigmt impact on the dimensionality.

This is also a lower bound on the dimensionality. The scattents approach this lower
bound as the minor axis becomes insignificant compared Wwéhmavelength< \/20).
For such a region there is little diversity obtained fromwhdth of the region since the field
cannot change significantly over this distance.

Further analysis can introduce both a perturbation to tgeneshape and a restriction to
the directions of arrival. For a circular region, the growtldimensionality with the angular
spread is linear. With an elliptical region, the growth irméinsionality is dependent on
the relative orientation of the region shape and the meagctitin of arrival. Figure 4.9
demonstrates the change in essential dimensionality wéhahgular spread. An increase
in angular spread has more impact on the dimensionality wemean direction of arrival
is to the broad side of the region. The effect is minimised mwtiee direction of arrival is
collinear with the major axis of the region.

Finally consider the effect of a small angular range as it a&v@d around the array. The
contribution to dimensionality will be maximal when aligh&vith the broad side of the
region. The geometry for the region and angular power specis shown in Figure 4.10.
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Figure 4.10: Schematic of the geometries for the regions and offset imthan angle. The three
figures show the three cases for which the data points aregliot Figure 4.11. The angular range is
+12.25° around the varied offset angle. A different offset anglenisven in each of the three figures.

The effect of the shift in mean angle offset on the dimendignaf the field is shown in
Figure 4.11. The angular rangeli3.25° or A = 7 /8 radians.

Consider the kernel, (4.67), for a uniform linear array. ngstrigonometric identities it
follows that

Angn(0) = P(0) /an(qﬁ)sinc (2kRCOS(9 ¢

0'+A

~ P(0) / gn(9)sine (kR cos(0)(0 — ¢)) do (4.88)
0'—A

with ' = (0 + ¢)/2 and for smalld — ¢. This is the much studied bandlimited kernel

with asymptotic dimensionality atkR cos(6')A/x [142]. For a small angular spread and

elongated region, it is proposed that the dimensionalitywary as

Al cos(0)]

™

D(0.01) = 2kR +1. (4.89)

This line is plotted in Figure 4.11 and provides a good matsttltie limiting case of the
uniform linear array.
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Figure 4.11: The effect of relative orientation between the array anddinection of arrival. The
source distribution is restricted to a rangetaf2.25° and offset from the broadside of the elongated
region by the abscissa angle. The dimensionality is magidhighen the source distribution is aligned
with the broad side of the array @t and180°. The variation is more severe as the region becomes
increasingly elliptical. Also shown is the theoretical\eeithat would be expected for a small angular
range incident on a uniform linear array.

4.8 Summary and Contributions

This chapter presented a theoretical framework for theasgmtation of a random multipath
field in the angular domain. The framework leads to an inleggaation whose solutions
are the optimal basis function for such a representationanysing this equation it is
clear that the most efficient representation depends Hirentthe scattering environment,
through the angular power spectruni), and also the way in which the field is measured or
observed, through the defined domain of intereswWhilst the integral equation only leads
to analytical solutions in the simplest cases, it was shdvan it can be accurately solved
numerically, providing a means to obtain the optimal angrdaresentation.
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4.8 Summary and Contributions

The following specific contributions were made in this cleapt

1. Developed a framework for the representation of a randaittipath field in the angu-
lar domain. The angular domain representation implicilptares the wave equation
constraint. In addition, in comparison with a direct repraation of the multipath
field in space, the angular domain has one less dimensionafdp@ar power spec-
tra for a multipath field corresponds with the physical andieg@ering intuition of a
spatial channel model.

2. Derived an integral eigenequation to determine the agts@t of deterministic angular
basis functions for representing a random multipath fielte 3olution of this integral
equation is dependent on both the angular power spectrurthargpatial domain of
interest for the field. How the field is observed or measuredkhdirect bearing on the
optimal representation in the angular domain.

3. Demonstrated that the integral equation in the angudemdwork has a direct corre-
spondence to the Karhunen-Loéve expansion in the spatmhaoh. This result vali-
dated the consistency and optimality of the proposed fraonew

4. Derived the closed form solutions to the eigenequatiorife cases of an isotropic
field and singular direction of arrival with a circular regidnvestigated and concluded
that the eigenequation is not easily soluble in closed fanmngéneral configurations.

5. Detailed two suitable numerical techniques to accwyapproximate the solution of
the integral equation using a discrete matrix equation. @estrated that the size of the
matrix is determined by the extent of the domain of intereg & matrix dimension
of 2[kR] + 1 required for a two-dimensional region with maximum raditiand field
wavenumbek = 27 /.

6. Demonstrated that the high resolution details in the pcspectrum,P(@), beyond a
certain point are largely irrelevant in determining theimatl representation. For the
two-dimensional case it was shown that only the low orderieocoefficients of?(0)
are significant. The critical characteristics of the systentdetermining the optimal
basis set are the physical extent of the region of interastlamlow frequency content
of the angular power spectrum.

7. Presented examples to characterise the way in which Hpesind distribution of the
region and the power spectrum interact and effect the nuwitggnificant solutions
of the eigenequation. This directly relates to the optimahber of terms needed to
represent the random field. These examples demonstratetkitrescopic aspects of
the interaction between the angular power spectrum andaimaih of interest.
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8. Introduced the essential dimensionality as the numbeerofs required to capture

100

99% of the energy of the random multipath field. This represer20dB signal to
truncation error ratio. Analysis of the eigenvalue resdgéimonstrated that this thresh-
old is consistent with previously stated expressions faregisionality. In particular,
a circular region with a uniform restricted angular powescpum has dimensionality
D = 2kR A/m + 1, where the range of incident angles is restricted-td about the
mean angle.



Chapter 5

Spatial Limits to Direction of Arrival
Estimation

5.1 Introduction and Motivation

The previous chapters have addressed the issue of dimahsi@amd effective representation
of a spatial field. A field over a finite region can be well moddlto an arbitrary precision by
a finite set of basis functions. In the presence of noise, aarobd field cannot be arbitrarily
complex. Although space is continuous, the nature of wawpamyation restricts the possible
variation of the spatial field across the observation voluiitas result will have important
practical implications when considering the ability toak® or estimate parameters from
the incident field.

The implications of the dimensionality result for the capaof a multiple antenna system
have recently been highlighted [122] with the notion of atrimsic capacity of a region
of [138, 146]. These works suggest capacity bounds anditigigerformance for multiple
antenna communication systems. In this chapter we extesditik to a different but related
problem, that of estimating a source’s direction of arrival

The question that will be posed and addressed in this chepter
Is there a spatial limit to the ability to resolve directioharrival?

Direction of arrival (DOA) estimation is an area of reseditdt has achieved much attention
over the last few decades. The problem of DOA estimation ieegely approached with
algorithms, estimates and bounds tied to specific sensay gegometries. An alternative
approach is to consider the fundamental limits imposed bydtmensionality or degrees of
freedom of the spatial field being observed.
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

In Chapter 2 results were presented regarding the effefitite dimensionality of a wave-
field over a bounded region of space. Chapter 4 demonstriagéédhte number and func-
tional form of the basis functions representing these aegoé freedom was dependent on
the angular power spectrum and the shape and size of thenrefjinterest. The effective
dimensionality and nature of the basis functions will caasistthe number of independent
sources that can be resolved and resolution with which thesction can be estimated. In
this chapter we consider the impact of the region size on #émfopnance of direction of
arrival estimation. The work represents an extension ofesarmrk which was previously
published [129] and has been submitted for publication 204

Section 5.2 of this chapter provides a review and classificaif some of the key literature
in this area. In Section 5.3 we provide a numerical invetibgebased on a finite element
uniform circular array that supports the intuition of funaiental limits to DOA performance.
Section 5.4 presents a new continuous sensor model and@ea appropriate noise model
that is consistent with the conventional sensor noise modek limit of a large number of
sensors. Using this framework, Section 5.5 presents theadien of the Cramér-Rao bound
for DOA estimation of one and two sources given a finite olketgon region. These bounds
are verified through further numerical analysis in Sectidh 5

The main contribution of this chapter is the developmentaf@tinuous sensor noise model
and its application to determine the fundamental limitsexfgrmance for direction of arrival
estimation. The numerical analysis provides support afidatéon of the theoretical results
presented. From these results it is apparent that the nuphlseurces that can be resolved,
given a finite observation region, are directly related #® #lssential dimensionality of the
multipath field.

The dimensionality of the field will be related to the size aymheral shape of the region
of interest. In this chapter we focus on the limits resultirgm the region size. Further
discussion of the impact of the region shape can be found apt@&h 4.
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5.2 Review of Direction of Arrival Literature

5.2 Review of Direction of Arrival Literature

Direction of arrival (DOA) estimation is an important prebt in signal processing with di-
rect applications in radar, imaging, and wireless commatioas. Conventional approaches
to examining the performance limitations of DOA estimatwage focussed on deriving res-
olution bounds based on sensor array geometry (size, shdpaianber of sensors).

A recent publication dedicated to the topic demonstratesctntinued and active interest
in the area [205]. The topic is directly related to the madglland understanding of the
spatial channel in MIMO systems. A preliminary treatise antdmann et al. [206] provides
an intuitive discussion of how the resolution and limits akdtion of arrival estimation is
related to MIMO channel sounding and modelling.

In this section we present a review of the key literature mdhea, particularly that which
provides a context for the research presented in this chapte

5.2.1 Direction of Arrival Estimation

The problem of general direction of arrival estimation beeaof significant interest around
the time of the Second World War. Whilst early practical eyst employed physical means
of direction finding, the theoretical analysis and potdrtasignal processing advances in
the area was realised early on. Significant advances in #zeaincided with the advance
of electronics and signal processing over the last threadésc[207].

The Bartlett beamformer [208] was proposed in the 1950ss &pproach utilised a Fourier
analysis of the antenna array signals to resolve the daredti arrival. Enhanced techniques
of spectral analysis, such as the Capon beamformer [209 then applied to increase res-
olution [210]. The development of signal subspace appregth resolving multiple source
directions of arrival created significant interest in theaar The MUSIC algorithm [211]
and general subspace techniques [212] offered compuddlifaaffective approaches to the
problem. Further advances such as Root-MUSIC [213] and ESBRorithm [214] soon
followed. Maximum likelihood [215-217] and spatio-temabparametric models have also
been developed [218].

The nature of the signal model, particularly for the uniféimear array, is the same as that for
detecting complex sinusoids in noise [210]. As a resultaades, analysis and results in the
two fields have proceeded largely in parallel. Maximum likebd techniques are generally
superior [216, 219] but computationally complex requinmglti-dimensional maximisation.
The signal subspace approaches are popular since they mputionally less intensive
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and facilitate practical implementation. The MUSIC algfom requires a one-dimensional
search whilstthe ESPRIT algorithm is centred on a sing@arerdecomposition [207]. With
appropriate weighting it has been shown the subspace tpedshave the same asymptotic
properties as the maximum likelihood estimates [212] amtheimple MUSIC is known to
be asymptotically efficient [220].

The general approach to direction of arrival estimation isitegrate the sensor outputs over
time to estimate the covariance. This approach suffers emdagon with non stationary (in
direction of arrival) sources [221]. An alternate appro&cto consider the temporal evo-
lution of directions of arrival and make use of tracking altfons to improve performance.
Simple recursive tracking algorithms were proposed [223tling to the development of a
Kalman filter framework [223]. This allowed the estimatidindarection and angular veloc-
ity [224] with state models for modelling target dynamic%2 The problem of tracking
and dynamic sources is not considered in this work.

5.2.2 Uncertainty in Direction of Arrival Estimates

In conjunction with the development of algorithms for esttmg direction of arrival, many

works are concerned with understanding the theoreticaldiof performance. The achiev-
able accuracy of an unbiased estimate of an unknown paramédteunded by the Cramér-
Rao bound (CRB) [226]. In[219, 227], the Cramér-Rao boBER) is derived for an array

with a known geometry and white noise. This result has sieenlextended to a variety of
other, more complicated, noise models [228, 229]. In sushltg, the CRB is given in ma-
trix form with a strong dependence on the geometry of thewearsay. A review of the area
( [230] and refs therein) presents some simplified exprassibut largely for the uniform

linear array. With more general geometries, it is difficoltiivestigate more fundamental
limitations on DOA performance.

There have been attempts to simplify and interpret the CRRB][2nd its derivation [232].

Results are presented for the case of multiple sourcesentioh a uniform linear array
[233]. The CRB expressions can be simplified making someasstdimptions [234]. Asymp-
totic expressions of the CRB for one and two sources for soumifinear array have been
derived [235].

Whilst the CRB is a local measure of uncertainty [230], thisran additional problem of
ambiguities in the array manifold [236]. Linear combinagoof the array from several
directions can be degenerate, creating problems in regptlirection of arrival.
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5.2.3 Number of Sources that can be Resolved

Another related area of research is concerned with the nuafioescrete sources that can be
resolved by an array. The problem relates to the uniqueri¢iss data generated by multiple
sources [237]. It has been suggested that the number ofesotlvat can be resolved is related
to the co-array of sensor locations or the level of redungamthe array [238-240]. Such
approaches provide a theoretical analysis based on nuahenueness [241, 242] and do
not reflect the uncertainty introduced by noise. A numerstatly showed the accuracy of
resolving direction of arrival degrades rapidly as the sesbecome closer than the beam-
width of the array [243].

In MIMO systems the presence of correlated scattered ssureated additional compli-
cations [244]. For multiple reflections of a single sourees ipossible to use some of the
structure of the signal to enhance the resolution [245].

There is a need for clearer practical limits to the numberoafrees that can be resolved
by an array. An engineering intuition would suggest thatliimét is dependent on some
macroscopic property of the array such as the spatial eatehgeneral shape rather than on
the numerical nuances of the sensor geometry.

5.2.4 Impact of Sensor Array Geometry

The uncertainty for direction of arrival estimation is tteld to the geometry of the sensor
array. Much of the work in this area has been concerned wittoum linear arrays and
appropriate element spacings [246]. Greater resolutionbeaobtained with non-uniform
linear arrays and maximum non-redundancy [238]. Such desige usually concerned with
minimising the number of sensors, optimising the effecliperture [247] and reducing array
ambiguities [248]. Such arrays are under-sampled and wiksfrom some ambiguities for
multiple sources [236], and although this does not alwagslpde resolving the sources
[249] it creates problems for signal subspace approaches.

Arecent analysis provides a method of antenna array degigarsidering the impact of the
array geometry on the CRB [250]. The work considers planayarwith relatively simple
geometries. Optimal and isotropic sensor geometries fection of arrival estimation were
considered in [251]. A comprehensive study for three-disi@mmal arrays was carried out
[252] establishing a simple geometric relationship betwsensor placement and the CRB.
This relationship was shown to correspond to the sensoy arcement of inertia [251, 253].
This approach provides more general expressions for the foRHBiscrete sensor based
measurements.
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For this work we consider the use of unpolarised sensorbeanalysis of a scalar field. The
use of vector sensors for field measurements offers adwestaghe estimation of direction
of arrival [254, 255].

5.2.5 Review and Discussion

The review of the literature shows an extensive amount @&aeh in the area. The results
presented are generally specific to array configurationsoftleth constrained to linear ar-
rays or simple geometries. The most relevant result to gssarch is the link between the
Cramér-Rao bound and the sensor moments of inertia.

Often in practice, all that is certain is the physical extewgr which the array can interact
with the spatial field. Antennas do not simply sample the fetlch point. Multi-mode
sensors [102], mutual coupling [256] and other array uadeties and interactions [257]
must be considered in addition to the sensor geometry.

In this chapter we present an alternate framework for cemsid the limiting performance
of a DOA estimator based on a continuous measurement ovarea gegion. With this
approach we consider how the performance of DOA is fundaafigrimited by the spatial
extent of the array without the need to consider the spe@beoretry of the sensor placement.
Previous work [128, 258] considered the spatial limits ofA@rough simulations. In this
chapter we expand on this result and provide a more det&igentetical investigation leading
to general results for the performance of direction of afrastimation.

5.3 Numerical Investigation of Limits to DOA Estimation

To confirm the intuition of a spatial limit to the resolutiohdirection of arrival we can per-
form some numerical simulations. A popular algorithm fdireating the direction of arrival

of sources from data is the MUSIC algorithm [211]. The MUSIGoaithm offers compu-

tational advantages over a maximum likelihood approadaiyirimg only a one-dimensional
search for multiple sources. For large signal to noise satics statistically efficient with

performance approaching that of the maximum likelihoodhestor [227]. For these rea-
sons we use it to provide a preliminary investigation of thatsl limiting performance to
direction of arrival estimation.
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5.3.1 MUSIC Algorithm

The music algorithm uses a signal subspace formulationtimate the directions of arrival
for multiple sources. Assumg sources with narrow-band signal sampkds) for time
samples: = 1, ..., N. We assume the following signal model {Qr> P sensors,

y(n) = A(6)s(n) + w(n) A(G):[a(el) ... a(6p) (5.1)

where A(0) is the @ x P array response steering matrix with a column for each source
direction. Assume the source sigséh) is zero mean with variand® ; and the noise vector
w(n) is white in space and time with varianeg . The covariance of the signal vectgiis

R=FE{yy"} = AORA"(0) + oL (5.2)

The first term of the covariance will have maximum rankfaf Thus the) — P smallest
eigenvalues oR. will match the noise variance’,. Construct an estimate of the covariance
matrix from the data

N
~ 1 o
R=— 2; y(n)y" (n) (5.3)
and consider the ordered eigenvaluesﬁoaséq, forg = 1,...,Q. We estimate the noise

subspace from th@ — P smallest eigenvalues, and use the associated eigenvas@isasis,

A~

En - /éP—f—l €p+2 e /éQ . (54)

This is then used to search over our direction parantetising the inverse of the projection
of the array steering vector onto the noise subspace. Thel®Isg&ectrum is defined as

a’(0)a(0)
a(0)E,EHa(0)

Swusic(0) = (5.5)
The area of subspace based parameter estimation has teomivdh attention in the last
few decades. There are many techniques for enhancing tfiermpance of the MUSIC
algorithm for specific array geometries and noise condst{@37]. The MUSIC algorithm is
known to be asymptotically efficient [220]. We present siatiains using the basic MUSIC
algorithm to gain a qualitative understanding of the linmfghe array size on direction of
arrival estimation. This will throw light on the factors themit the performance of direction
of arrival estimation and inform the theoretical investiga of fundamental limits.
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5.3.2 MUSIC Spectra for Multiple Sources

Consider a 15 element uniform circular array with a numbegf uncorrelated unity power
sources distributed uniformly in direction. This sourcafoguration provides the least bias
and interaction between the estimated direction of arpaabhmeters. We are interested in
the minimum size of the region required to correctly restiee” sources. Figure 5.1 shows
the MUSIC spectra foP = 4,8 and12 sources. This simulation clearly demonstrates that
the minimum radius at which the sources are resolved inesaagh the number of sources.
The radius for resolving the sources is approximatedy, 0.6\ and0.9)\ respectively.

The previous simulation was for a specific array geometrin A sensors. If the limiting
factor for the resolution of direction of arrival is the spaextent of the array, we would
expect changing the number of sensors to have little efféigure 5.2 shows the MUSIC
spectra forP = 12 incident sources witlf) = 15,30 and45 sensors. Whilst the larger
number of sensors creates a smoother MUSIC spectra, thstimarpoint beyond which the
sources are successfully resolved remains at approxiyragl independent of the number
of sensors.

As discussed in Chapter 2, an increase in the signal to naisewill have some effect on
the significant number of dimensions of the observed fielguig 5.3 shows a simulation of
the 45 element uniform circular array with 12 sources as tfeete/e signal to noise ratio
is increased. A significant increase in the signal power bakya small secondary effect on
the critical radius for resolving the sources.

From these simulations, it is apparent that the spatialnéxdéa sensor array creates an
intrinsic limit to the number of sources that can be resalva@ will now investigate this
further analytically.

5.4 Continuous Sensor Framework

The previous section provided an investigation of the gbdf a uniform circular array to

resolve source direction. The focus of this chapter is testigate the fundamental limits
of direction of arrival estimation without reference to atgalar sensor array configuration.
The concept of the continuous spatial field was introduce@hapter 2 and it was shown
that fields constrained by the wave equation have a finite mimaality. In this section we

develop a signal model for the spatial field utilising thetommous spatial modes.
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Figure 5.1: Simulation of the estimation of multiple source directiohaorival using the MUSIC

algorithm with an 15 element UCA. As the number of sourcesdsgased, the minimum radius at
which all of the sources are resolved also increases. Tligyabiresolve is related to the effective
dimensionality of the field in the sensor region. The vetigoas in the 3D plot represents the MUSIC

spectrum value in dB.
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Figure 5.2: With P = 12 sources, the number of elements in the uniform circulalydsrincreased.

The radius at which all of the sources can be resolved ig/faiviariant as the number of sensors is
increased. Intuitively, the number of sources that can belved is intrinsically related to the extent
of the sensor array and not the sensor geometry. The veatitsain the 3D plot represents the MUSIC

spectrum value in dB.
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Figure 5.3: With P = 12 sources and § = 45 sensor uniform circular array, the effective signal to
noise ratio is varied. While the resolving radius is deaedasith increasing signal to noise ratio, a
100 fold increase in the signal power only reduces the radam 0.9\ to approximatel0.7\. The

resolution threshold is largely independent of the sigoaldise ratio. The vertical axis in the 3D plot
represents the MUSIC spectrum value in dB.
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5.4.1 Continuous Field Model

Letu(x, n) represent the field over the sensor array redi@t time sample.. The field will
be continuous and satisfy the wave equation, allowing sspr&tion through a countable
basis. The series expansion for the field’owill be convergent in the mean, thus

o0

u(@,n) = Y ap(n)in(w), (5.6)

m=—00

in the sense that

lim
M—o0

=0 (5.7)
A

u(@.n) = @ (n)fu(@)

with the basis functiong,, orthogonal over\. This equation characterises the synthesis of
the field from a set of coefficients,,(n). Chapter 4 dealt with the determination of such a
basis. The basis will span the space of possible solutiottsetavave equation, and in this
sense is complete.

Given the field over the region, we can perform an analysis to determine the continuous
mode coefficients. This is the normalised inner product

(1) = || Bl (ul@, n), B (@), = HﬁmHXQ/AU(w,n)ﬁm(w)dw, (5.8)

where||3,. ||z, = Jo, |Bm () ?dr is the usual norm. This framework captures the idea of a
continuous sensor across the measurement volume to rebeverode coefficients. These
coefficients contain all the information about the field andsequently can be used in the
direction of arrival estimation framework. As we have see€@hapter 2, only a finite number
of modal coefficients will be required to accurately represke field over a finite region.

5.4.2 Noise Model

In practice, any system will be limited by noise. Our abilityrecover and use the modal
coefficients from the analysis (5.8) will be constrained bise. To analyse these limits, we
need to develop a suitable noise model in the continuous whorfia provide a context for
any results, we desire a noise model that is in some way densiwith the conventional
sensor noise model.
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5.4 Continuous Sensor Framework

Consider a set af) sensors located at positioms, ¢ = 1, ..., (). The sensor outputg, can
be viewed as discrete time spatial samples of the underfigity

ys(n) =u(xy,n) +wy(n) n=1,...,N. (5.9)

The conventional model assumes spatially and temporahlfevGaussian noievith vari-
anceF {wm(n)wm/(n’)} = S Ot 02

Consider a large number of sensors placed evenly througheuneasurement regioh
Since the field is continuous and bounded we can write

lim % Zu(wq,n)ﬁm(wq) = /Au(a:,n)ﬁm(a:)dr x, €A (5.10)

where|A| = [, dx represents the volume of the region. Using this in the aisbguation
(5.8) gives an estimate of the modal coefficient

A Q
Gm(n) = [|Bullx 52 n) B (y)

Q
=+ 52 Z 1) B (@q)- (5.11)

The second term is a linear combination of the sensor noid&as variance

L Y T Z 7))
T 1 1Bnls @2 0a(1) () 2 e (1)

q=1

P Ly __ar 5 19
"B 2 P @dnl@n) = 15t o (5-12)

The noise in estimating the modal coefficient is scaled bytileme of the measurement
region, divided by the number of sensors and the squared obtime basis function on
the region. This at first may seem counterintuitive, sin@ertbise decreases with a larger
number of sensors. This is a result of the model assumingardient noise on each sensor.
As more sensors are added, each detects the field with aneindept noise term which
can be averaged out. More measurements increases thaveffeignal to noise ratio in
estimating the modal coefficients, thus the modal noisecdesers.

IWhere the noise is not white, it can be whitened with an apatplinear transformation based on the
noise covariance structure.
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.4.3 Continuous Sensor Model

Consider a signal transformation to whiten the noise on thdams,

zn(n) = V/Crnain(n) + @pn(n)  where Cr = [|Bml3 Q/IA- (5.13)

The scaling factor”,, is a function of the region, number of sensors and basis. oisen
w,(n), has unit variance and is independent in time and for eaclemod

The continuous sensor signals(n), provide a countable set of outputs. If the basis func-
tions, 3,,, are normalised over some region enclosin@ll but a finite set of| 3,, || will be
negligible [80]. The scaling of the modal coefficient estiesacaptures the inherent dimen-
sionality of the spatial field.

This model is consistent with the standard sensor modehfgel). For smalk), the samples
Bm(r,) Will not be orthogonal. This will mean that the model of (5.1@Il not be valid.
The noise term in the modes,,(n) will not be unit variance with the overall noise power
across the observed modes increasing. If the space is uahgried with less) samples
than the number of observed modes, the noise tefms) will also become correlated. In
this sense, the continuous signal model developed pro@desind of the performance of
a system with a finite number of sensors. It assumes the mmiaahievable noise power
and noise correlation in the estimation of the modal signkispractice, finite sensor and
sampling issues will further limit system performance [83]

5.4.4 Signal Model

For the direction of arrival problem, we consider a setFogources with directionf =
61, .. .,0p] with associated narrow-band signals)) = [s;(n), ..., sp(n)]". The narrow-
band assumption ensures the signalling bandwidth is serftigi small that the delayed signal
acrosg is constant [259, p. 34] This approximation permits the signal model

2(n) = A(0)s(n) +w(n) A(6) = [a(6))...a(00)] (5.14)

whereA (6) is the response matrix with an infinite column for each of three directions
8,. This gives us a similar framework to that used in discretsseDOA problems, however
the signal space is the scaled coefficients of the field sgrgtegjuation (5.6). This signal

2This can be achieved through narrow-band signalling, or@pjate signal sub-banding. For example,
the 802.11 standard uses OFDM with 64 subcarriers occumyiBMHz band. This creates a 312.5 kHz
bandwidth for signalling on each subcarrier. Thus narramebassumption is valid faR < 960m.
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5.5 Bounds on the Performance of DOA Estimation

space represents the complete information that could bainaat from the measurement
regionA subject to the constraint of the noise model. We use this teraene the limiting
performance of direction of arrival estimation.

5.5 Bounds on the Performance of DOA Estimation

5.5.1 Continuous Circular Array

We apply the framework developed in the previous sectiondwaalar region. As set out
in Chapter 4, Section 4.4.1, a suitable basis which is odghabfor any radially symmetric
region is

w(@) = Y b with B, =" T (k [|z]])e’™, (5.15)

whereJ,,(-) is the Bessel function of orden, k = 27 /X is the wave number ang, is the
angle in polar coordinates af. The coefficientsy,, in this expansion for a plane wave with
incident directiord area,,, = e~/ [91].

The case of a uniform circular array corresponds to the sendaced at the edge of the
region with radiusk. The scaling factor (5.13) for this case is

B Q 21 ) _ )
Cn=57% i |Om()|” RdO = QJ, (kR). (5.16)

The columns of the array steering matAxfor this basis will be

a(f) = [...,ﬂejme,...,@ejmg,...}T. (5.17)
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.5.2 The Craner-Rao Lower Bound

The achievable accuracy of an unbiased estimate of an unkpavameter is bounded by
the Cramér-Rao bound (CRB) [226]. We are interested in Hreamce of an estimate of
the directions of arrivah. Since the signalss(n), are also unknown, they must be ac-
counted for in the estimation. Two estimation frameworks @pically presented [128].
The deterministic or conditional signal model formulatestimates the actual signals [227],
whilst the stochastic or unconditional formulation prasdan estimate of the signal covari-
ance [232, 260]. The deterministic CRB is lower than thelsastic [260] and is often used
as a good estimator of performance for large number of sefjg6L]. To approach the de-
terministic CRB an estimator must determine the actualagyfrom each direction. This
becomes infeasible with a low signal to noise ratio [259]262

Generally, the noise power is also an unknown parameteh#sato be estimated. The form
of the CRB remains unchanged if the noise leveis a known or estimated parameter [263].

Since we are interested in the limiting case of many sensatseasonable signal to noise
ratio, the deterministic CRB will be used in this work as aem lower bound.

2 —1
_ 9 Hpy . TH HA\ L AH T
CRB= - {Re[(D"D - D"A (A"A) 'A"D) 0 R} . (5.18)
where
L0 0
D= |:—801a(01),...,—60Pa,(ep):| . (519)

The matrixR ; is the sample covariance matrix for the sigra#nd® represents the elemen-
twise Schur-Hadamard product of the matrices. The matrix A(0) is dependent on the
source directions. Whilst the matrices are infinite, it ipéonoted that’,, ~ 0 for m > kR.
Previous work [41] models this effect as a truncation. Iis framework the dimensionality
is introduced through the scalingC,, in (5.13) which lowers the effective signal to noise
ratio in the higher order terms. As will be shown, we can abtmalytical results without
truncating the equations.
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5.5 Bounds on the Performance of DOA Estimation

5.5.3 Cramér-Rao Bound for Circular Array with Single Source

The case for a single sourc® (= 1) provides the ultimate lower bound for any direction
estimation. The continuous representation allows conside simplifications using addition

and recurrence relations for integer order Bessel funsiip62]. From (5.18) the three main
terms to be computed a®e” A, D¥D andD?A.

ATA= D" Cn=Q Z J2(kR) = Q (5.20)
o 2 D2

D'D= Y m’C,=Q Z m2J? (kR) QkZR (5.21)

DYA= )" —mC, =0 (5.22)

More detailed workings are provided in Appendix B, SectioB.BAssuming a source of unit
powerR, = 1, the following closed form expression for the CRB is obtdine
o? 2 o 1

RBp_, = — = . 2
CRBp- 2N Qk*R? QN k2R? (-23)

The first factor represents the impact of noise. Since theerisindependent the noise power
is scaled by the product of the number of sensors and numlmdasefvations@/N). We can
consider this term the reciprocal of the effective arrayaldo noise rati@) N/o>.

The second factor represents the effect of the spatial eat¢ine array. A common measure
of resolving ability is the Rayleigh resolution limit, edua A\ /2R [230]. It is reasonable to
expect the variance to scale with the square of this termespanding to the / R? factor.
The result obtained here is also consistent with the CRBioelship with the sensor moment
of inertia [251, 253].
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.5.4 Crameér-Rao Bound for Circular Array with Two Sources

To consider the ability to resolve independent sources, vadyae the case of two uncorre-
lated sources separated by some adgle The source correlation will be the identity matrix,
R, = I, thus from (5.18) we see that only the diagonal entries obthend calculation are

required. Complete workings are provided in Appendix B,t®acB.4 and summarised

here:

APA =Q [ ! ﬁ] (5.24)
J
QkQRQ ..
D"D = [ 2 R ] (5.25)
L OB
D7A =Q [ 0w ] (5.26)
v 0

Since we assume uncorrelated sourfes= I, the off diagonal terms dD“ D do not effect
the bound as a result of the elementwise product in (5.18).

= . A
= Z M2 (KR) = Ty <2k:Rsm 7)

= Jo(kRAG) + O ((A0)") (5.27)
- Jjm 2 _ . . A
V= mz_oo —mel™2 J2 (kR) = —jkR cos (A0) J (ZkR sin 7)
= —jkRJ;(kRAB) + O ((A6)?). (5.28)

The approximations are valid for smalp. Substituting these results into 5.18, the diagonal
term for the Cramér-Rao bound for two uncorrelated sources

2 k2 R2 2 -1
CRBr-2 = 35 ( ! Vug)

QN \ 2 11—
2 2J2(kRA !
~ 2 P (fR %) (5.29)
ON k2R? 1 — J2(kRAG)

The form is similar to (5.23) with the addition of a secondretJsing the summation iden-
tity Jg(z)+2> 07 J(z) = 1[160, 9.1.76 p.363] it is evident that the bracketed exfoass
is bounded by 0 and 1. As expected, the variance can onlyaser@ue to the presence of the
second source. The result is asymptotically equal to thglessource case for largeRA6.
With a large aperture, or sufficiently spaced sources, thamvee of estimating direction of
arrival is not influenced by the presence of a second source.
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5.5 Bounds on the Performance of DOA Estimation

5.5.5 Discussion of Two Source Result

The result presented for the Cramér-Rao for two sourcewalén investigation of the ability
to resolve source directions of arrival. By consideringgbmt at which the variance is equal
to the source separation we can determine the limiting uéisol [264].

o2 1 2J2(kRAG) \
RBp_y ~ —— JE——_— = (A§)?
CRBr~ ON PR < 1— Jg(kRAQ)) (29)
QN 1 2J2(kRAG) \ '
— SNR = 1— ) 5.30
o OB (kRAG)? 1 — J§(kRAD) ©=0

The right hand side of this is a function only of the produBtA#. This reveals some insights
about the limits to resolving the direction of arrival.

For a fixed signal to noise ratio, the minimum source separatiat can be resolved is
inversely proportional to the radius. This result is a moeeagal case of previous results
that relate resolution to the length or number of elementswiiform linear array [230].

The relationship also reveals how the ability to resolversesiwill change with the signal
to noise ratio. Consider the case of small values:fer\g,

__1 1 — J2(kRAO) — 2J2(kRAG)\
e (kRAG)? ( 1 — J2(kRAO) )
_ 1 (2212 J{f(km@))1 1 (Jg(kRAe))—l
 (kRAOY \X20L 2(KRAG) ) (kRAO)* \ JR(kRAY)
N 1 (kRAG)* /64 16
"~ (kRAG)? ( (k:RA@)2/4) L= (kRAD) kRAO <1 (5.31)

using small argument approximations of the Bessel fundtié0].

The relationship and approximation is shown in Figure 5.4e Tesolution angle for two
sources is shown to decrease with the fourth root of the bigmaise ratio. Specifically,

2 1
Al ~ @SNR‘R (5.32)
This result is consistent, up to a proportionality constanth that reported previously for
the case of the uniform linear array [233, 264]. The resule efor a general shaped region
that lies in the interior of the circular domain. The derigatpresented here offers a closed
form expression for the Cramér-Rao bound without reqgianseries expansion. This is
useful for exposing the structure of the problem and detaingithe relationship between

signal to noise ratio and resolution.
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Figure 5.4: Relationship between the signal to noise ratio and the mimmesolvable direction of

arrival angle. The full expression is given by (5.30). It isllapproximated by SNR 16(kRAH)~*
for small arguments and large effective SNR.
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Figure 5.5: Factor for the increased variance of estimating sourcetitire of arrival with a second
source present. The factor decreases to unity Ag&rRA0) = 0 atkRAO ~ 3.8.

From (5.29) it is evident that whe# (kRA6) = 0 the variance of the estimate for each
source direction is not affected by the second source. @enslie increased variance factor,

-1
CRBp_y <1 ~ 2c08? (A) J? (2kRsm%)> N (1  2J3(kRAY)

-1
, (5.33
CRBp-, 1— J¢ (2kRsin 42%) 1— Jg(kRAe)) (5:33)

it becomes unity at this point and remains close to unityghter as shown in Figure 5.5.
For the case of a set &f uncorrelated sources spread around the obsekdes; 27/ P. For
performance to match that of the sources in isolatii\d > 3.8 > 7w which corresponds to
an upper bound oP < 2k R sources. This is consistent with the dimensionality resutim
Chapter 2 Section 2.3, and will be demonstrated throughdugimulations in this chapter.
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Chapter 5 Spatial Limits to Direction of Arrival Estimation

5.6 Numerical Analysis

5.6.1 Analysis of Continuous Array Spatial Cranér-Rao Bound

In this section we examine the effect of varying region s&& number of sources on the
spatial CRB. In calculating the bound from (5.18), the inématrices had to be truncated.
The numerical analysis presented uses a truncationsize kR introducing a negligible
error.

We restrict our attention to the case of reasonably highasigm noise ratios where the
performance of an estimator will approach the CRB [265]. r&Bults are presented for
an effective array signal to noise ratio of 20dBX/0? = 100). This would generally be

expected to be above the threshold regime.

Firstly we consider the spatial CRB for a number of equal ppwqually spaced and un-
correlated source®R(; = I). By virtue of symmetry, this configuration has the lowesialq
variance for the position of each source [128] and we need @sider one term of the
CRB matrix. Figure 5.6 shows the effect of increasing the Ineinof sources. The square
root of the CRB, which represents the standard deviatioh@gstimate, is plotted in units
of degrees.

The single source case has the form (5.23). With multiplecesy the performance in es-
timation approaches the single source case beyond a thdesttbus. Below this critical
threshold the performance diverges rapidly. This is cdastswvith the notion of the dimen-
sionality of a spatial region [41, 84] — we would expect poerfprmance when the number
of sources exceeds the approximate dimensionality of tagadfield. The points at which
the effective dimensionality and number of sources areld@é# + 1 = P) are shown on
the figure. At this point the multi-source CRB is within a faicof two of the single source
case. The notion of dimensionality provides an alternatvisensor-based” identifiability
constraints set out in [266] and [237].

It has been suggested that the number of sources that casdieect is related to the co-
array formed from all the unique inter element spacings efsénsor array [239, 240]. Such
approaches provide a theoretical analysis based on nuahenueness [241, 242] and do
not reflect the uncertainty introduced by noise. The res@ltpresent here encapsulates
the limitations placed in practice due to the spatial exterd inherent noise of the array.
Exceeding these limits becomes exceedingly difficult dusa¢oexponential decrease in the
power of the modal expansion terms beyond the critical dsioerality (see Chapter 2 for
discussion).
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5.6 Numerical Analysis

5.6.2 Comparison with Discrete Sensor Crarar-Rao Bound

We provide for comparison results from a discrete sensdoumicircular array (UCA). The
signal space for & sensor UCA can be expressed as in (5.14), with the steeniag ar

a(f) = [e @) mikRma(6))" (5.34)

wherer,(f) = cos (0 —2m(¢ —1)/Q)forg=1,...,Q.

The CRB is obtained from (5.18). For the single source cAgeA = (), and forQ > 3,

Q
DD = I?R?*Y sin? (WQQ_ 1)) = Qk;RQ (5.35)
q=1
Q
D"A = )" jkRsin <%) =0 (5.36)
qg=-—1

giving the same result as that obtained for the continuouB (BR23). The expression for
two or more sources is not easily simplified.

Figure 5.7 compares the continuous CRB to that obtained s sensor UCA. Below a
threshold radius, the performance of the UCA matches thigitigicase for the continuous
sensor model. The threshold remains fairly constant asuh@er of sources is changed.
This threshold is related to the essential dimensionalya radius of R = 1.1\, the di-
mensionality ik R + 1 ~ 15. The performance of a 15 sensor array degrades beyond this
point since insufficient sensors are present to uniquelfucaphe degrees of freedom of the
spatial field. The continuous CRB provides a lower boundlier/CA performance. The
single source CRB provides an overall bound.

It should be noted that the CRB is a measure of the localisedrtainty in an estimate and
does not consider aliasing artifacts and array [230]. Asiln@ber of sensors falls below
the degrees of freedom of the array, it becomes increasiikgly that the array will suffer
from ambiguities. The condition for ambiguities in linearays has been studied [267, 268],
however the case for circular arrays is more complex [26@hé&Bzally it is accepted that the
sensors should be placed no more tha apart. This corresponds @ > 27 R2/\ = 2kR
[151]. The results presented here are consistent with this.

The numerical analysis presented demonstrates that tsersemay CRB is lower bounded
by the spatial CRB. This is quite a powerful result. It shoWwattthe performance of an
array based DOA estimator will be bounded by the maximaliapaktent of the array,
independent of the number of sensors. In the limit of a largalver of sensors in the region,
the performance converges to the spatial CRB.
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Figure 5.6: Impact of region size on Cramér-Rao bound{RB degrees) for direction estimation
given a number of equal power distributed sources. Variahtlkee DOA estimation withP sources
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5.7 Comparison of Circle and Disc Array

5.7 Comparison of Circle and Disc Array

The previous numerical analysis was carried out for the o&secircular array at the edge
of the region. A similar analysis can be performed for theeaafsa set of sensors spread
homogenously throughout the entire circular region. Werrtd this configuration as a disc
array.

The complete workings for this case are presented in AppeBdiections B.5 and B.6. The
expressions obtained are somewhat more complex with

Crn = Q (J2(KR) = Jyp_1(kR) Jyn 1 (KR)) (5.37)
22
CRBp_, = S—NW—R? (5.38)
0 2 [ (L(kRAO) + J5(kRAG)® )
CRBr2~ ON R (1 1— (Jo (kRAG) + Jo (k:RAG))2> (5:39)

Firstly consider the noise scaling coeffici€ny . In the limit for largek R [160, 9.2.1 p. 364]

2 2 1
Jn(bR) = || cos <k:R _ %) (5.40)

from which we can see that,, ~ 2/7kR, unlike the circular array for which the signal in
some modes will vanish whetg,(kR) ~ 0. The continuous sensor over the disc does not
have the problem of degenerate modes, however the CRB warianncreased by a factor
of two. Since the total signal energy is the same in both ¢ases,, = @, the circular array
will have a larger range af’,, terms of significant value. This is shown in Figure 5.8.

Fig. 5.9 shows a plot comparing the CRB for the circular amay the disc array. The
results are plotted for an effective array signal to noig®maof 20dB (QN/c? = 100).
The array spread across the disc will perform worse thanfaumicircular array with equal
radius. This seems at first counterintuitive — addition&imation about the field through
the interior should improve performance. The paradox islvesl by recalling the signal
model used — the sensors each add additional noise and th&ybmwevenly distributed
through the entire volume.

The largest signal phase change with respect to directiours@t the perpendicular extrem-
ities of the region. For this reason, if the noise is generatethe sensor, it is optimal to

place all sensors as far apart as possible and therefore atiye of the circular region. This
result is consistent with that presented for a discretefssmsors [251]. The circular array
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Figure 5.8: Comparison of the signal mode scaling coefficients for autarcand disc array. The
circular mode scaling becomes degenerate at or near zefrties Bessel function whilst the disc is
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5.8 Summary and Contributions

provides more signal in the higher order modes which alloitebeesolution of the direction
of arrival.

The expression (5.39) for the two source Cramér-Rao bawiddes some additional terms
compared with the circular array two source CRB (5.29). Hmwein the limit of closely
spaced sources, this expression has the same relatiorsipdn resolvable angle and signal
to noise ratio. The variance for the disc array is a factonaf karger than the circular array,
however the variance scaling as the two sources move clogethter is quite similar. This is
shown in Figure 5.10. It is evident that the two expressianglthe same asymptotic form
for small angular separations.

5.8 Summary and Contributions

A review of the existing literature demonstrates that tie®tbtical performance of direction
of arrival estimation is generally linked to specific senaoray geometries or problem sce-
narios. The continuous framework presented provides antgeh for analysing the impact
of the spatial extent of an array on direction of arrival perfance without concern for the
specific array geometry. The framework can be used to desumjgle form for the Cramér-
Rao bound for the cases of a single source and two uncowledateces. These expressions
show how the extent of the array creates a fundamental limthe ability to resolve and
estimate the direction of arrival of sources.

The size of the region also has a direct impact on the numtsaotes that can be resolved.
From numerical analysis, it is apparent tliasources can be resolved once a critical radius
is reached such thakR + 1 > P. The CRB for a discrete uniform circular array is lower
and converges to the continuous case rapidly once the nuofilsensors) > 2kR + 1.
Thus we present a simple bound for the performance of a umiforcular array with/N
measurements taken froghsensors for” sources,

o 1

— P<2kER+1 541
T < +1<Q ( )

o9 >

3

This result stems from the consideration of the effectiveatisionality of the measurement
region. A sufficient number of sensors are required to mdterdegrees of freedom which
the spatial field can exhibit. When the number of sourcesetisthe degrees of freedom of
the spatial field, estimation of direction of arrival becanmecreasingly difficult.

The following specific contributions were made in this cleapt
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Figure 5.10: Comparison of the variance factor with two sources for theutar and disc arrays. The

variance factor is quite similar and has the same asymgtoticask RA# becomes small. Equivalent
performance to a single source is achieved at the same pEani/(k RA0) = 0.
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5.8 Summary and Contributions

Developed a continuous field framework for analysing theation of arrival problem.
This allows for a generalised measurement volume to be deresd in the performance
analysis.

Developed a noise model that is consistent with the conweatmodel of sensor noise
in the limit of a large number of sensors. This noise modevedl us to consider the
limiting performance of direction of arrival estimationtime continuous framework.

Derived a simple expression for the Cramér-Rao lower bdanthe case of a single
source.

Derived the Cramér-Rao lower bound for the case of two uetated sources sepa-
rated in angle.

Analysed the CRB for two sources and derived a relationstiphie limiting resolu-
tion of the array as a function of array size and signal toencatio. This result was
presented and shown to be consistent with similar resuttshio case of a uniform
linear array.

Demonstrated, through numerical analysis, the relatiprisétween the essential di-
mensionality of the spatial field in the measurement regiahthe number of sensors
required and number of discrete sources that can be resolved

Analysed the bounds developed and presented a comparisesuits for a conven-

tional sensor array. The results presented in this chapgesh@wn to be consistent with
previous results in the literature. The general spatiahéaork developed provides a
more general approach and therefore more general resulth ate not specific to a

particular array geometry.

The direction of arrival problem is generally posed with #ssumption of the sources being
discrete and in the far-field. Whilst this structure faeiiés the signal processing, it may
not be valid in practice. From the analysis in this chaptes also evident that there are
fundamental limits to the number of sources that can be atelyresolved. One approach to
characterising the spatial wireless channel has been tanisana arrays to resolve discrete
paths or propagation, employing direction of arrival tegaes. In the following chapter an
alternative approach will be presented that is more suddte natural dimensionality and
information limits of the spatial field when observed oveméid volume.
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Chapter 6

Stochastic MIMO Model Utilising
Dimensionality and Modes

6.1 Introduction

6.1.1 Background and Motivation

The previous chapters have investigated the dimensigraaid representation of a spatial
multipath field. Chapter 2 reviewed the approximation of atisp field using a finite set of
spatial modes. Chapter 4 investigated the properties séthdes. Chapter 5 demonstrated
that the dimensionality creates a limit for the ability t@aobse the direction of arrival of a
source.

Wireless communications systems achieve the transmisgiofiormation through the ex-
citation and detection of electromagnetic fields. Whilgtsth fields exist continuously over
space and time, they are constrained in complexity by vofube wave equation described
in Chapter 1. A means of characterising the complexity oeidiky of possible spatial fields
over a finite volume is to consider the dimensionality or éegrof freedom. This was the
subject of Chapter 2. Where there is only a single degreeetitsm, it will only be possible
to achieve one channel or independent path of communichgbmeen the sender and re-
ceiver. Additional degrees of freedom or dimensionalitgualadditional independent paths
which can be used to achieve a higher power or spectral effigien a communications
system.

The degrees of freedom of a spatial field is directly relatedhe size and shape of the
region of interest. This has a bearing on the accuracy andiainud information that can
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be obtained from the spatial field. In this chapter we are eored with effect of the region

size on an appropriate channel model. The additional implaitte region shape could be
incorporated using some of the results from Chapter 4. Tipter presents a framework
for modelling the spatial channel incorporating the effecspatial dimensionality.

The development and use of spatial channel models is an tengaarea of research for
multiple antenna (MIMO) communication systems. In prastithe capacity that can be
achieved will be limited by the extent to which the spatialiemnment supports parallel
independent data paths. Models for the spatial propagatiannel are therefore important
for the design, development and testing of system designgoodl channel model will be
simple and provide a channel simulation that is consistétht nveasured data. The channel
model must capture the important characteristics of theigaychannel.

There are two categories of stochastic channel models. &onor double directional
models [70] describe the statistics of physical multipaimponent parameters (directions
of arrival and departure, delay and amplitude). Analyticdels approximate the complete
statistics of the antenna transfer parameters [63] andge@/simple means for generating
random channel matrices representative of a measurecanwent.

The geometric channel models require a large number of pessto describe the general
characteristics and distributions of the paths. Parametetude the number of discrete
paths, the distributions of path direction, the angulaeagrof each path and correlations
between paths. As we have shown, it is only possible to resihle directions of a fixed
number of paths given the receive region size, therefoeetyipe of geometric model tends
to have redundancy in the parameters.

Analytic models provide a simple alternative. Howeverhabie spatial aspects of the chan-
nel and the characteristics of the antenna arrays are eaptuthe model. In this way, any
simulation is restricted to the specific arrays used for teasanrement.

In this chapter we address the following question:-
Is there an alternative approach to creating a model of thatisphchannel without reference
to specific directional paths ?

This work is an extended version of a paper that was presantbe \Vehicular Technology
Conference, May 2006 [125].
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6.1 Introduction

6.1.2 Review of MIMO Channel Models

Consider a MIMO system witlV, transmit elements and¥; receive elements. The trans-
mitted signalss and received signalg are related by

y=Hs+w (6.1)

whereH is the Ny x Ny matrix of complex channel coefficients amdis the noise vector
at the receiver.

The statistical models considered [30, 66,67, 270] assheehannel to be well modelled
by second order statistics. This is generally true of noa dihsight MIMO channels such as
those expected in indoor environments. In this case theszienofH are zero mean [26, 63].
The correlation matrix for the channel coefficieri®y; is obtained,

(6.2)

——H
RH:E{HH }

where-? is the Hermitian operation, and is the vector operation which stacks the columns
of a matrix. Expectation& {-} are taken over all channel matrix realisations. The matrix
Ry is anNy Ny x Ny N complex positive definite Hermitian matrix witivy Nz)? degrees

of freedom. It is possible to approximdRy; with fewer parameters. Specific examples are
the Kronecker model wittVZ + N7 parameters [30], the virtual channel model with N
parameters [66] and the recent Weichselberger model Mgth- N7 + Ny Nz — Ny — Ng
parameters [270].

A review of these models [63] demonstrated that the Weitdlesger model provided the best
match to measured data. It also has the largest parametas. Séilst the virtual channel
separates the propagation channel from the array geoniteivgls shown to overestimate
channel diversity and capacity.

In this chapter, we present a MIMO channel model with theofeihg properties:

¢ A simple analytic framework for generating channels.
¢ Ability to match measured channel data.
e The minimum number of internal parameters.

e Separability of antenna array and spatial channel.

The proposed model quantifies the relationship betweenzbeo§the array and number of
internal modelling parameters. Further, modelling accyii@an be adjusted with a single
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parameter. It applies to two-dimensional environmentsh wiraight forward extension to
three dimensions.

Section 6.2 presents a new model framework to satisfy quregivsed above. This is fol-
lowed by a discussion in Section 6.3 highlighting the adages of the proposed model.
Section 6.4 demonstrates the properties of the proposeelticdugh simulation and ap-
plication to real MIMO data sets.

Whilst many MIMO channel models assume separability of dueiver and transmitter cor-
relations, this approach has come under scrutiny [68, 68¢eRt work by Lamahewa et al.
provides a parametric extension to the Kronecker style itodatroduce joint correlations
between the angle of departure from the transmitter andryle @f arrival [271-273]. The
main contribution of this chapter is the development of @lsastic model that captures the
joint distribution of the receiver and transmitter cortelas from experimental data.

6.2 New Framework using Continuous Spatial Model

Chapter 2 reviewed the framework demonstrating that theasgubspace or wave-field ob-
served by a receiver with finite volume has limited dimenaliiy or degrees of freedom.
The spatial region containing the antennas controls theaspkegrees of freedom, not the
number of antennas [44]. This has been shown from the pdigp@t the wave equation
constraint [41, 80] and an antenna signal subspace perspg].

We can express an arbitrary received or transmitted walgifieterms of a set of basis

functions suited to the problem. These can be interpretéaeasiost concentrated solutions
to the wave equation [80], for example through a truncatiotihe Jacobi-Anger expansion
of a plane wave [91] t@M + 1 terms, which is accurate over a finite volume,

M

e N [kl ] o, ©3)

m=—M

Whereg?) IS a unit vector with directiow. Drawing from previous work [44], with transmitter
antennas located at,, and receiver antennas @}, the modal decomposition of a channel
matrix is

H=J;HJ ", (6.4)
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6.2 New Framework using Continuous Spatial Model

where theN; x My and Ny x Mp configuration matricied and Jg, respectively, are
defined as

[Jr]nm = jmJM(kHwn’Dejmemn
I rlnm = 5" T (K ||y,, )™, (6.5)

where[-],.., is the matrix element in rown and columm, and the antenna positions and
y,, have been expressed in the polar coordindtes ||, 0,) and(||y,||, 0y ), Jn(:) is the
m'™ order Bessel function and= 27/ is the wave number.

The configuration matrices depend only on the geometry areddfithe transmitter and re-
ceiver antenna arrays. Configuration matrices may addillipimclude the effects of antenna
directionality and mutual coupling, either through moutejlor calibration of array elements.

The coupling matri¥ s with dimension2Mg+1) x (2Mr+1) captures the spatial coupling
between regions independent of the artifacts of antennagey. Dimensions\/z and My
are proportional to the aperture size of each antenna atmwas discussed in Chapter 2,
the truncation ordeM = [kR| whereR is antenna aperture radius.

For a rich scattering environment, the elementslgfwill be independent, whereas the ele-
ments ofH will be correlated due to antenna proximity. The modal deggosition provides

a natural framework for representing the diversity of thatisphchannel. We note that similar
observations have been used in [66].

Consider the correlation matrix féi g,

—>—>H}

Ry, = B {HSHS (6.6)

A common assumption for the non line of sight channel in stigal models is that the
channel is well modelled by its second order statistiRg., provides a full parametrisation
of the MIMO channel in this case witl2 M r+1)?(2Mpr+1)* degrees of freedom. For dense
antenna array@Mr+1 < Ny and2Mpz+1 < Np thus providing a smaller parameter space
thanRy as evaluated in (6.2).

The elements oHg are a set of correlated random variables. We seek a modeh&raje
instances oHg and thudH from independent random variables. Consider the appbicati
unitary matricesA andB, toHg,

Hy = A"HsB. (6.7)
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This transformation preserves the energHip and can be selected to de-correlate the ele-
ments ofH;. The correlation matrix for the rotated matiik; can be expressed

H
Ru, = E {AHHSBAHHSB }
= (B @ A")Ru, (B” @ A")" (6.8)

using definition (6.7), the matrix Kronecker product and identitym = (CT® A)E)
[274]. The elements d will be independent witfRy,, diagonal if and only if the eigen-
vectors ofRy, are Kronecker separable. This assumption is restrictivéas been shown
to match real world data fdRy [270]. Since the modal decomposition is linear, this result
also applies tR ..

If the correlation matriRy, is diagonal then the receive side correlatiofil s H " } will
also be diagonal,

E {H’SH’SH} — A= E{A"HsBB"Hs"B} = E {A"HsH" A}
AAAY = E{HgH"}, (6.9)

with A a diagonal matrix. Thusg\ is the eigenvector matrix of the receiver side modal
correlation matrix. A similar result holds f@8. This is equivalent to the result presented by
Weichselberger for the antenna channel [270].

The elements oH'; will be independent but not identically distributed. Thésmodelled
by the element-wise product of a weighting mat¥& with an independent and identically
distributed random matri&. Given a set ofV data matrice$l,, we can estimate the appro-
priate parameters and obtain the complete model as set dabia 6.1.

The framework applies a Weichselberger style statistieadehto the resultant modal chan-
nel matrix. The proposed model preserves the simplicityraflyic models and, if the
measurement and target arrays are co-incid€pt= Jr andJ; = Jg, the model will
match the performance of the Weichselberger approach. dfwgedarrays, it offers a more
efficient parametrisation and the ability to decouple thatigpand array geometry aspects
of the channel.

6.3 Discussion of the New Model Framework

The number of parameters to represent the madlelR andW) are directly related to the
modal truncation order. For densely packed arrays, thersignificantly less than theéVg x
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6.3 Discussion of the New Model Framework

New Model Framework:
A MIMO channel model can be generated from a statistical rhbdsed on a mods

the transmitter array?,, the modal order required for the transmittetMg 2> [kRr|.
Similarly, for a receiver with maximum radial exteitz, the modal order required
Mg 2 [kRRg].

andNJ. x 2Mr + 1 configuration matrixJ’. given by (6.5). The simulated receiver ar
geometry will haveVy, receive elements with';, x 2M7 + 1 configuration matrixJ’.

The channel model is generated from the equation:

Hooan = I A (W0 G) B 377, (6.10)

receiver and transmitter correlations,

N
1
AAR A" = = H,Hg," 6.11
R N; sntlsn™, ( )
1 N
BA;Bf = — Hg,"Hg, 6.12
T N; s Sns ( )

W is a weighting matrix,

1
(Wil =5 D |A"Hs, B/’ (6.13)
andG isa2Mpr + 1 x 2Mr + 1 matrix of unit variance, independent normally distriby

variables.

The modal space matricé&ks,, and thus channel statistics are generated fNomeasure
mentsH,, H,, . .., Hy of the channel matrix using:

Hg, = J,'H, I, (6.14)

where Jr is the2Mr + 1 x Np configuration matrix for the measurement array \
Nr > 2My + 1 transmit elements, anfiy is the2Mpr + 1 x Ny configuration matrix fo
the measurement array wiftiz > 2My + 1 receiver elements.

=

representation of the field across the transmitter arrayigen@he maximum radius of

The channel is generated for a simulated target array gepmih V7. transmit elements
ray

is

with ® the Schur product, and the matricAsand B the eigenvector matrices of the

ted

vith
!

Table 6.1: Algorithmic representation of the proposed statisticahroiel model utilising spatial
modes. The equations show the generation of the MIMO modethi® desired target array con-

figuration, and the analysis of the measured MIMO data ta@ekthe statistical parameters.
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Figure 6.1. Schematic of data path for models comparing the conventamaroach with the pro-
posed framework.

Nr)? parameters of the correlation matiRg;. The correlation matrix of the mixing matrix
Ry combines the characteristics of the spatial channel witkelof the array geometries.
The full statistical model contain redundant parametenelvivill manifest as transmission
paths with negligible connection strengths.

The modal framework eliminates redundant parameters hyirgiting antenna excitation or
receive modes that do not couple well with real spatial fiel@ikis yields the correlation
matrix of the modal mixing matriRg,. The modal decomposition is ideally suited to the
physical nature of the problem and provides an efficientrpatasation of the channel [44].
The model makes the further assumption that the eigenweotdty . can be represented as
a Kronecker product following the approach of Weichselbefg70].

The proposed framework provides the ability to investighéecharacteristics of the MIMO
spatial channel for alternate array configurations. By gianthe truncation order, the
number of parameters can be adjusted to meet the desirddofen®del accuracy. The
modal projection (6.14) provides a linear transformatiorséparate the antenna geometry
from the spatial propagation model. It is computationaffjcent and provides a simple
path to creating a channel model from measured data as eéicFigure 6.1.

In contrast, the array geometry can be abstracted with a gemmapproach. This approach
involves fitting a parameterised set of multipath composiemthe observed data using tech-
niques such as SAGE [275, 276]. Such an approach is intuliiveis computationally ex-
pensive and subsequent models of scatterer angle statiaide complex. Characterisation
of scatterer cluster shapes, distributions and correglataseate a nonlinear and non-unique
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6.4 Simulation and Validation of New Model

parameterisations of the channel statistics. Generakyah models, as the channel is de-
composed into a set of independent spatial paths, it is as$timat the variation of the gain
along these paths will be independent and uncorrelated 28] new proposed model does
not assume that spatial paths are independent, rathersinmpson of independence is based
on a more flexible eigenvector representation of the chariels it would be expected that
the new approach would be better able to capture a channedwliserete spatial paths show
some level of correlation.

It is a requirement that the measurement arrays have suffigiements to ensure the config-
uration matriced z,J in (6.5) are well conditioned. This requirement is satishgdypical
channel sounding experiments [275-277] with element st or below\ /2.

The model also has application when one array is under-ganfflinvestigating the spatial
channel at a mobile receiver given a fixed sparse base stat@ay) the modal decomposition
can be applied to one side. Essentially we replace (6.14) Mit, = J'H,, and (6.10)
with

Hmodel = J;-Z A (W © G) BH (615)

The modal framework provides a general method to transpusenel data for an alternate
sensor configuration by providing a suitable basis with Whdcinterpolate,

H =J,J; B3 3" (6.16)

Provided the target (simulated) array is within the confiokthe original volume sampled,
there are no restrictions to the geometry that can be matislth the framework. The modal
decomposition provides an efficient basis to model the uyiderphysical wave-field over
the entire antenna array volume.

The modal basis can also be used to extrapolate, howeverrtradue to uncertainty in field
prediction increases rapidly beyond the extent of the palgarray [126].

6.4 Simulation and Validation of New Model

6.4.1 Approach for Model Comparison

In order to validate the proposed model, a set of simulatiasseen carried out. To compare
the performance of the model with existing models, it is ssaey to have some metric or
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characteristic of model accuracy. We follow a similar ag@toto that proposed by Ozcelik,
Czink and Bonek [63]. Three different aspects of the modebaralysed.

For comparison of models, we use a Monte-Carlo simulatigorageh. First we consider
the mean mutual information from a set of data obtained fio@mtodel to the set of original
data

I=E {log2 det (INR n iHHH) } , (6.17)
Nr

wherel y, denotes théVy x Ng identity matrix,p is the average signal to noise ratio and the

expectation is over the snapshots of channel data. Thisdqe®a measure of the achievable

capacity of the spatial channel, and is an important prggerbe preserved by the model.

The channel mean mutual information provides no indicatibtihe correct structure of the
channel with regards to the number of significant spatialmomcation modes. To compare
this aspect of the channel model we use a measure of diversity

2
NrxN
trace{Ru}\’ <Zm1§ T)‘m>
D= TR ) = N (6.18)
IRl 2t A

The diversity provides a measure of the spread of the eiygewaf the channel. A higher
diversity corresponds to a channel that has many signat pdtkimilar strength. A lower
diversity corresponds to a channel with only a few strongnaligpaths. Higher diversity
generally corresponds to a higher rate of capacity incre@tbarespect to the signal to noise
ratio.

To consider the ability of the model to capture the finer defdhe channel structure, we can
analyse the effective double directional angular powecspem. This is the joint distribution
of the angles of departure and angles of arrival for the tratsr and receiver. A good
channel model should be able to capture the finer detail iddlbdle directional spectrum.

To consider the effects of the model on the spatial struaitiiee channel, we can use beam-
forming analysis to view the double directional spectrurtheforiginal channel and compare
this with the spectrum obtained from the various channel eteodIf the full correlation
matrix is available, the Capon beam former provides an eséiof the signal power coming
from each direction to the extent that it can be resolved leyatray [63,207,209]. By
evaluating the Capon beam former over the range of trarsmd#parture angle%; and
receiver incident angle%; we can obtain the double directional spectrum. The Capombea
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former is evaluated as

1 ~
o P a=ar(0r) ® ar(Or). (6.19)
a Rya

ScAPON =
The steering vectoti(6) represents the set of antenna gains at the transmitterdhat c
sponds to a beam in directigk. Similarly the vectolay(0r) is the receive array steering
matrix at the angle of arrivdly.

For simulations, the data was normalised at each positioariceffective 20dB signal to
noise ratio. This matches with [270], and also is a range efaifon experienced in many
wireless systems [50].

6.4.2 Description and Validation of Experimental Data

To assess the performance of the proposed model, we usefegpeamental data obtained
from indoor MIMO channel measurements. This data was recbad Brigham Young Uni-
versity [278] using a wide band MIMO channel sounder withheiglement)\ /2 spaced
circular arrays. A sample of the matrices across time arguércy were collated for each
location. From the full data, 48 sets each having 640 chamagfices was extracted to
represent the channel at different locations.

A requirement of the model framework set out in Section 6iRas$ the data is characterised
by its second order statistics. We first validate this forekperimental data which will be
used to test the model. This also serves to provide a badelirtbe performance of the
model — we would not expect any model based on the second statestics to outperform
the use of the complete correlation matiy;.

Figures 6.2 and 6.3 provide an analysis of the three meastireedel performance for a

complete second order model using the Rl; correlation matrix. It can be seen that the
data is well modelled by the second order statistics. Thissgrve as a baseline for the
evaluation of the performance of the new model.
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tion that experimental data is well modelled by second osthlistics. This comparison serves as a
baseline for best performance of any second order based.mode
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(a) Original Data Spectrum
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(b) Model Data Spectrum
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Figure 6.3: Comparison of angular spectra for the original and secoddrastatistically modelled
data. The spectra are normalised to unity maximum with thesucecale in dB.
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6.4.3 Comparison of Performance of New Model

Using the approach set out in Section 6.4.1 we can comparpettiermance of the new
model framework to that of some other channel models. Fereaete we will use the We-
ichselberger model [270] and the older Kronecker Model [B@)r the simulations, 8 terms
of the modal expansion were used requiring 176 coefficientepresent the model. The
Weichselberger model also required 176 coefficients, wthksKronecker model employed
128 coefficients.

The comparison is shown in Figures 6.4 and 6.5. ProximithefNlutual Information and
Diversity points to thet5° line indicates the accuracy of the model. Given the sintjari
of the models, it is not surprising that the modal frameworddel has a similar level of
performance to the Weichselberger model. The double dareaitangular power spectra for
the two models are different, but display a similar level efadl in comparison to the original
spectrum. The Kronecker model has fewer parameters, arabkdselen observed in previous
works shows an underestimate of capacity and an overestiohaliversity [63]. All of the
models tend to overestimate the diversity.

From this simulation and validation, it is shown that the newdel framework provides
a good model for the data with only 481 parameters comparéd tive 4096 parameters
that would be required for the full correlation matrix. Thedal framework performance
is comparable with the Weichselberger model which would1&& parameters. However,
the framework offers the additional advantage of being &blonsider the performance of
the identified spatial channel with different array geomestr This is considered further in
Section 6.4.5.
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Figure 6.4: Comparison of the new spatial model framework with conweratl statistical MIMO
channel models. The Mean Mutual Information and Diversigy@mpared for the original and mod-
elled data. The proposed approach has a comparable penfoertathe Weichselberger model whilst
providing the significant advantage of modelling the chaimdependent of the array geometry.
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Figure 6.5: Comparison of the error in the angular spectra for propogediad model with two
conventional channel models. The spectra are normaliséctiné colour scale in dB.
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6.4.4 Performance of New Model with Dense Antenna Arrays

A significant advantage of the new model framework is offdmrdiense antenna arrays. In
this case, the effective degrees of freedom is constraiggtidospatial extent of the array
and not by the number of antennas. To analyse the perfornwdribe new model in such
situations we make use of some synthetic data.

To generate synthetic data, an implementation of the chanogel developed by the Third

Generation Partnership Project (3GPP) Spatial Channekhamtthoc working group was

used [77]. Several scenarios were available for this madaling from a suburban environ-
ment through to a pico-cell environment. The experimerdgh dised in the previous section
was best matched by the pico-cell environment.

Figure 6.6 compares a sample of the experimental data tg¢natrated by the 3GPP Spatial
Channel Model pico cell environment. Both plots represeaivolution of the channel over

2 seconds as the mobile station is moved through a distarg® 5¢m. The data is plotted

for 8 received antennas from a single transmit antennantitisd that there is a similar level

of fades, fade duration and antenna correlation in the twe sits.

To simulate a dense antenna array, a 16 element uniformairatray was simulated with
the antenna elements placed one quarter wavelength apasmparison of the experimental
and synthesised antenna arrays is shown in Figure 6.9. Ubke afodal framework allows
for a significant reduction in the number of parameters otleeromodels.

The 16 element array radius w@$5\ suggesting a truncation order of between 4 and 6 (See
Chapter 2 for discussion). A comparison of the performarfade new model at various
truncation orders is shown in Figures 6.7 and 6.8. The pmdoce of the new model is
comparable to that of the Weichselberger model at the hgjgpgested truncation order. The
required accuracy can be traded against the number of ptaemequired by adjusting the
truncation order. For the truncation at ordér= 4 the modal model has half the parameters
of the Kronecker model, yet still provides a better matchhef nean mutual information.
The joint angular spectra show the gradual degradatioreimgfpresentation accuracy of the
spatial channel model as the truncation order is decreased.
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(b) Synthetic Data

Figure 6.6: Comparison of the experimental and synthetic data from 36p&ial Channel model
for a pico-cell environment. Since the simulation is onlgresentative, the data cannot be directly
compared. The experimental and synthetic data exhibilainevels of fading and correlation.
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Figure 6.7: Performance of the new model with synthetic data for a dentenaa array. The model
allows a significant reduction in the number of parametesetdaon the essential dimensionality of
the measurement region.
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(a) Original data spectrum
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New Model withM = 6

Angle of Departure
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Figure 6.8: Comparison of the error in the angular spectra for differeatiel order. The error in the
model is increased as the truncation order is decreased.
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Figure 6.9: Array geometries used for investigation of the use of modelpfediction of MIMO
channel. Positions show actua) @nd predictedX) sensor locations.

6.4.5 Use of New Model to Model Alternate Array Configuration

The framework presented in Table 6.1 used the explicit fwtaif J, Jr andJ/., J/; to
represent the measurement sensor array configuratiorcesafind modelled array configu-
ration matrices. This gives the framework the ability to siate the use of alternate array
configurations, using the same set of spatial modal stisaptured from the measured
array. To investigate this, we analyse two configurations:-

1. Using the experimental data [278], simulate the perforweaof a 2 element array,
spaced approximately one wavelength, at the mobile statitmthe full 8 element
uniform circular array at the base station.

2. Using the simulated data, simulate the performance ofeawavelength, 4 element
uniform linear array at both the base station and mobiléostat

To provide a comparison for the alternate array configunatith the experimental data, two
pair of antenna from the array with the same spacing andtatien were used. With the
synthetic data, it was possible to simulate the alternateyaronfiguration using the same
spatial channel configuration. The location of the initiatlalternate sensor locations are
shown in Figure 6.9.

The ability of the model to predict the characteristics & #patial channel for the alternate
array configurations is shown in Figure 6.10. It can be seatttie model is able to predict
the mean mutual information with an accuracy better than.10B& error is slightly larger
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for the experimental data, which is to be expected sincetiegterformance at the simulated
sensor locations is only estimated from an similarly oeerget of actual sensors.

6.4.6 Use of New Model to Optimise Antenna Configuration

As a final example we demonstrate the use of the new model teeasevorld data in the
analysis of an antenna configuration optimisation probldime experimental data is used
to create a model that captures the spatial aspects of tnmeharhis model can then be
used to investigate the effect of antenna separation at tiie@rstation on the mean mutual
information.

Fig. 6.11 shows the mean mutual information from a model &tran, as a function of the
receiver element separation. There is a noticeable vamiati the shape of the curves due
to differing spatial channel characteristics captured sy model for each instance (posi-
tion) represented in the data. Since the stochastic modeinngputationally efficient, more
complicated array geometries could also be investigated.

For this data set, it is apparent that the optimal antennaragpn would be around.3\.
Beyond this separation there is little gain in the mean mutdarmation, and in some cases
a considerable drop. Whilst it would be arduous to perforim élxperiment in practice, the
proposed model framework provides a means to capture thialsgfzannel and perform the
configuration optimisation using the model.
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Figure 6.10: Prediction of performance of an alternate array configomatData from the uniform
circular array is used to create a model and simulate theimeaihce of a uniform linear array within
the measurement region. The array geometries are showguners.9.
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Figure 6.11: Use of the model for configuration optimisation. Predictmperformance versus
antenna separation for 8x2 system. Individual traces septethe effect of the spatial channel char-
acteristics, captured by the model, on the optimal anteaparation.
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6.5 Summary and Contributions

The new model proposed creates a framework where the spatié® channel is repre-
sented by coupling between spatial modes of the field at teiver and transmitter. The
mechanism for moving between the antenna and modal sigmadids is provided by the
antenna configuration matrix. This abstraction allows tha&racteristics of the antenna ge-
ometry to be removed from the model.

A stochastic framework was used to model the internal patenmien the modal space. This
then also allows generation of MIMO channel data for any raméeconfiguration within a
finite volume. The model represents an efficient paraméiisaf the spatial characteristics
of a MIMO channel.

The following specific contributions were made in this cleapt

e Proposed an alternative to multipath parameter estim&siorapturing the character-
istics of a physical propagation environment. The propdissedework avoids making
any assumption on the number and nature of independent thathsreate the spatial
channel.

¢ Validated the proposed model through simulation using es@lerimental data and
data generated from the comprehensive 3GPP Spatial Chistoaiel. The proposed
model was shown to perform at least as well as other compgambtlels, but offers
the significant advantage of abstracting the antenna agamgtry.

e Demonstrated the advantage of a reduced parameter spaneusing the modal ap-
proach to model a channel in which the number of antenna®dgdbe spatial dimen-
sionality of the measurement regions.

e Analysed several example scenarios to demonstrate how daelnsan be used to
simulate the performance of alternate antenna array coafigus.

The proposed model and analysis of this chapter suggestthéhenodal framework is a vi-
able alternative to double directional discrete path ceanmrodels. Since the modal frame-
work efficiently represents the spatial field, the problerhsewer-parametrisation inherent
in any discrete scatterer path model are avoided. The moalaleivork captures the spa-
tial characteristics that can be accurately measured iarttenna regions, and the statistical
framework adopted from the Weichselberger model providsigificant reduction in the
parameter space for the model.
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Chapter 7

Resolution of Spatial Location from
within a Constrained Region

7.1 Introduction

The previous chapters have had a common theme of invesiigtte use of continuous
spatial models for signal representation and analysingjriiies of signal processing. The
areas covered have included the questions of finite dimeakapproximations and optimal
representation, along with the application areas of dwacif arrival estimation and MIMO
channel modelling. This chapter is a continuation of thesttle addressing another problem
application area. The work serves to demonstrate how ustcaogtinuous spatial model for
a sensor based problem can lead to a greater understandimg @foblem of resolving the
spatial location of a wireless source when the observaggion is a constrained region of
space.

The problem considered is that of localisation. We condiaerbility of a single receiver to
determine the location of a source. Localisation is intdaldy related to the receiver’s ability
to distinguish sources from different regions in space.e@ithat a receiver can detect the
field over a bounded region of space, we are interested iyistyithe ability of the receiver
to use measurements or observations within this constagdtimate a source position.

This is a divergence from the more commonly studied locapiblem where location is
achieved by a set of co-operating receivers distributeghaics. Objects are located within
the convex hull of the receivers using information regagdime time of arrival or power of
the signals at the receivers. In this work, we consider ifit problem — that of the ability
of a single receiver to determine the location of transngtibbjects outside of the receiver
volume. In a sense, this is an extension of the directionrofadproblem.
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The field of direction of arrival or beam-forming is well elsiahed and there are many
results covering the performance of sensor arrays forvegphngle. Chapter 5 presented
some theoretical work on the ability of a sensor array codfinspace to determine direction
of arrival. We consider in this chapter a theoretical appho analysing the ability of a
sensor array to resolve both the angle and distance of aesourc

The approach taken is to first consider a simple problem gdhea. We consider the case
where only the intensity of the source can be detected ovaita fiolume. Section 7.2 sets
out the problem formulation to address the questions poSedhe numerical analysis and
investigations are detailed in Section 7.3 to gain an unadedsng of the problem. Section
7.4 develops some continuous sensor models to determimelbdor the number of distinct
localisation regions. Section 7.5 considers the probleeresthe complete field information,
intensity and phase, is used for localisation. A discussiaihe results and comparison to
some other results in the literature is provided in Sectién 7

The main contribution of this work is to introduce an altdiveaapproach to considering
the problem of source localisation. The number of distiloctree regions for a receiver is
fundamental to the world view and efficient representatiosoairce location that should be
adopted by that receiver. Itis related to the measure ofnimétion that can be obtained from
the observed field regarding the source location. The inttthdn of continuous spatial field
models to this problem will help to overcome distractions tuspecific sensor arrangements
and geometries. The problem considered is to bound the nuoidloistinct locations that
can be assigned to a source.
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7.2 Problem Formulation

A set of Q sensors are located at positions € R* for ¢ = 1,...,Q within a radiusR
such that|z,|| < R. The sensors produce the measurement vectery,, ..., yo|" , where
Yy, € R, y, > 0is a measure of the signal strength or intensity of the sofiete at the
locationz,,.

For an arbitrary uncooperative source, there may be nonrdton regarding the power

level transmitted. Assume that the intensity of the sigaaéived is normalised such that it
is unity at the origin. In this sense the problem relates &ahility to detect the location

of a source given that a reasonable signal level is presdheateceiver. In practice, the
ability to detect source movement would decrease with teadistrength and consequently
the source distance.

Given a source at positian, the normalised intensity received by each sensor will be
(7.1)

where||-|| represents the length of the vector argument. This matalvesarmalisation and
encapsulates the radial decay of intensity that would beaepl in three-dimensional space.
Designate this multidimensional function as a vector

y=f@=|u ... w| (72)

Due to noise, or some other constraint, the receiver is dolly 0 distinguish sets of sig-
nals that differ by a certain threshold. That is the measerggy andy’ are considered
indistinguishable if

Q
2 1 2
ly — /|15 = @Z}yq—y;\ <€ (7.3)
q=1

The scaling byl /@ is incorporated into this norm to normalise for the numbeserfisors
present. The norrj-|| , represents the root mean squared difference for the semagr a
Given this arrangement, we are interested in studying thiyatb determine the location of

the source from such measurements. Specifically the quedtidoe addressed are:-

e Is there some limit to the number of distinct locations traat be resolved or identified
outside the observation region ?
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e What can we say about the shape of the source regions thaeadisderned ?

e How does this depend on the number and arrangement of therséhs

7.3 Numerical Investigation of Distinct Localities

7.3.1 Proposed Tiling Algorithm

A first observation is that the number of distinct localitiedl be infinite if the source is
allowed arbitrarily close to the sensor array. This is ndtech (7.1) that|| f(x)| , — o
asx — x,. With this unbound normalised measurement there will benfiniie number of
distinct zones around each sensor.

Consider the problem of the source and sensors lying in time savo-dimensional plane.
The sensors are located within a disc of radiuDefineS as a region excluding the sensor
array being points of norrf or greater,

S={zeR: ||lz]|>5>R}. (7.4)

We perform a tiling of the spac® by constructing a set of poinissuch that any point i
is not more than a certain measurement thresholdom a member oP. Formally,

VeeS 3 peP suchthat |f(x)— f(p)lgz <e. (7.5)

Since we are interested in determining the number of distegions, we are looking for the
smallest seP that satisfies this property. We can determine a reasonaidyl,shough not
optimal, sef® by commencing with the empty sé,= {()} and progressively adding points
from S. As points are added to the tiling, we keep track of the regibich is withine of
any point inP,

P=U " 1f@) ~ f@)p <<} (7.6)
xcP
This is shown for a single point in Figure 7.1. We can then adokleer point from the
set obtained whef® is subtracted fron& which is written asS \ P. This process can be
continued untilS \ P = {(0}. At this point we conjecture that this can be achieved with a
finite number of points i?. This conjecture is proven in Section 7.4.1.
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.

S\ P

Figure 7.1: Schematic showing the set definitions for the tiling aldoritused in the numerical
investigations. The sensors are confined to the centramegth radiusk. A single pointP = {x} is
selected in the regiofi where||z|| > S. Around this point, the s€? = {x' : || f(2') — f(x)||z < €}
is removed or tiled from the s&t.

Whilst the process for selecting the next pointSn\ P to add tolP can be arbitrary, a
systematic approach can be obtained by selecting the pamtwinimum radius,

P=PU i . 7.7
arg min ||| (7.7)

In this way, the algorithm starts by selecting points on tiveer radiusS, and proceeding
outwards. This procedure creates a set of points that is@psiaimlc covering of the sef,
however we can be sure that (7.5) will be satisfied.

This process is shown over a small regionSoin Figure 7.2(a) with the addition to the set
P shown for each of the four points iA for this tiling. The second part, Figure 7.2(b),
shows the boundaries of the regions for a sensor measureiealf that used in the tiling
algorithm. These regions do not overlap and in some case®jush. This is a consequence
of the fact that the norm used for determining a unique locat{7.3), is a valid norm and
satisfies the triangle inequality.

Thus it can be seen that while the gets a suboptimal covering of at levele, it is an
insufficient set of points to covet at levels /2. If we calculate the number of points required
for a tiling at levele, this will represent the number of regions for some optiniislg at a
smaller level between/2 ande.

Formally, defingV. as the minimum integer for which there exists a set Witrelements that
is a covering ofS at levele. The number of elements in the tilifigwill be an upper bound
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(b) Regions for half of the sensor error.

Figure 7.2: Demonstration of the tiling algorithm used to partition #pace into resolvable locations.
The simulation uses 8 sensors with unity radius and a minimagius forS of 1.5. The threshold for
the distinguishable locations was= 0.2. The first figure shows the tiling regions witly — v/|| , =

| f(x) — f(z')]| < e for each of the four points added to the tiling. The secondbreghows the
boundary of the region fofry — y'|| ; < €/2.

162



7.3 Numerical Investigation of Distinct Localities

6

Figure 7.3: An example of the distinguishable location regions for andenent uniform circular
array or radiuskR = 1. Points are plotted for radii greater th&h= 1.5. The signal is normalised
to be unity at the origin. The points correspond to a minimynacéng ofs = 0.1 with the contour
shown representing/2. There are 216 distinct localisation regions.

for N, and a lower bound folV, ,. The tiling algorithm is not likely to be the algorithm
used to partition the space for a practical application,dww it serves to provide an upper
bound.

7.3.2 Numerical Examples of Location Tiling

The numerical analysis is carried out using a fine grid of {sdim represent the set member-
ship of P. Whilst this is not an accurate numerical method, it is $lédor investigating
the flavour of the problem. Tracking the exact boundarfPafould be an arduous task. A
suitable level of detail is obtained by making the grid siz&l enough to reveal the smallest
regions near the region boundary with radius

Figure 7.3 shows a plot of such a point set obtained for anr@ehe uniform circular array
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Figure 7.4: Comparison of the discernable region shapes for an 8 ancereak UCA. The regions
are fairly insensitive to the number of sensors, becomingpat identical forR > 2. The regions
close to the array are slightly smaller. A complete tilingttee 16 element configuration would have
228 distinct regions.

with radius of R = 1 with minimum radiusS = 1.5 for a value of: = 0.1. The boundaries
show on the plot represent the region around each point fahwhe level of distinguishable
ly — ||z = €/2. These regions do not overlap since the distance betweetwanyoints
in the tiling is at least, ||y — v'||; > ¢, and the norm as defined in (7.3) is sub-additive.

The regions become densely packed near the sensor arraycanohgize further away from
the array. Beyond the limits shown in the figure, all pointsdiee indistinguishable with
one region covering the entire rangesbeyond the regions shown. Thus the regions shown
represent a complete tiling of the spate

With the same configuration as the previous example, theosge®metry is changed to a
16 element uniform circular array. The shape of the locatisaegions for the two different

array geometries are compared in Figure 7.4. The charsiitsrof the regions are not overly
sensitive to the number of sensors. While there is someti@ria the region size and shape

164



7.3 Numerical Investigation of Distinct Localities
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Figure 7.5: An example of the discernable location regions for an 8 eldrmgay with random sensor
location on the circle with radiug® = 1. The tiling covers points with radius greater théin= 1.5.

The density of the indistinguishable regions varies withdbnsor arrangement, and the total number
is reduced to 161.

closer to the sensor array, any difference becomes nelgligitce the radius exceeds twice
that of the sensor array.

Since the larger number of sensors offers an improved regplalose to the sensor array,
the total number of distinguishable regions is increasexal.tlie 16 element UCA the tiling
has 228 points compared with 216 points for the 8 element UCA.

If a more random distribution of sensor locations is congdethe distortion in the region
shapes becomes more apparent as shown in Figure 7.5. Rexgisrae smaller closer to the
clustered sensors and become larger for the orientatioesavthe sensors are further apart.
While the region shapes have changed, the total number tifiglisshable regions has not
changed significantly. For the example presented, thegtidonsists of 161 points compared
with 216 for the 8 element uniform circular array.
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Figure 7.6: Comparison of the discernable location regions for twoediht detection norms. The
threshold was selected so the regions are approximatelathe size. The maximum sensor differ-
ence norm regions show abrupt corners and grow faster witeasing radius than the RMS norm.

The uniform circular array has desirable properties of sytnynand maximal minimum
inter-element spacings. It is reasonable to expect thatilihg for the uniform circular
array would provide an upper bound for the number of pointstiting of an arbitrary array
geometry confined to the same radius.

The previous examples used a measure of unique locationtidete(7.3), being the root
mean squared (RMS) of the difference in the intensity at émsars. If the sensor measure-
ments were in some way quantised, the indistinguishablemegould be that for which the
largest change in any sensor value was less than some tliteshis gives the norm

ly — |l 5 ImgX\yq—y;\ <€ (7.8)

Figure 7.6 compares the region shapes of this norm to thequeworm (7.3). The general
characteristics of the regions are similar, after appetprscaling. For the example pre-
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sented, a value of = 2¢ create regions of a similar size. The new norm creates region
smaller than the RMS norm close to the sensor array whererthenuty to one sensor
will dominate. Further away, the new regions are largeresthe contribution from multiple
sensors is not considered in the norm. The region shapeldaingle sensor show abrupt
corners where there is a change in the sensor dominatingthe n

Although the problem has been formulated with discrete @snshe examples show that
beyond some limit the number of sensors is not significartieability to resolve the source
location. A field across the measurement region is desciiggd.1). This constrains the
variation of the field across space in a similar way to the veapeation constraint previously
studied in this thesis. The following sections will invgstie this further by adopting a
continuous spatial model of the signal space to addressuhgtiqns posed in Section 7.2.

7.4 Intrinsic Limits of Resolving Spatial Location

The previous numerical examples demonstrated that disshgble region size increased
with the source distance. As the source is moved away, tle@sity measured by each
sensor, (7.1), will approach unity. This suggests a “harizmeyond which it is not possible

to resolve the location of a source with any certainty un@de3)(

7.4.1 Localisation Horizon

Consider the general case @fsensors within a region of radiuds, and the measurement
condition (7.3). A sufficient condition for all sources loed at a distancé/ or greater to be
indistinguishable at level will be

Q 2 2
2 1 H B R
||1—yHR—@q§:;<1—yq>2s<1—ﬂ) - (5%5) <2
HER(H%) (7.9)
"

where the measurement veciphas elementg = f(x) = [vy1 ... o

The previous examples whefée= 1 ande = 0.1 will have a horizon with radius less than
11. Thisis a strict upper bound for the horizon based on a waist geometry. If the sensors
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are spread evenly with radiusthen

1 [ H 2 1 [ Rcosf 1\’
1— N — l—-——F7>—— ) df = — — ) df
It =yl 27T/0 < H—RCOSQ) 27?/0 <H—RCOS€)
E
2

1 2 2 2
< (RCOSQ) o = (i < ¢ (7.10)

_ﬁo

which can be simplified to yield the result

1
H>R (1 + ﬁ) . (7.12)
This provides a superior approximation to (7.9) when thessemare evenly spaced on the
edge of the region. Figure 7.7 demonstrates the bound andxapyation for a uniform and
skewed distribution of sensors. For the uniform array, tttaa horizon is approximately
units whilst the approximation &and the bound i$1 units. For the skewed distribution the
actual horizon is seen to approach the bound in some directio

7.4.2 Number of Distinct Localities

The numerical examples from Section 7.3 demonstrated thait@ number of points tiled
the spaces external to the sensor array. Since the regions are of fizikeasid need only fill
the space from radius,, to the horizonH < oo, it should be possible to bound the number
of distinct localities. This provides useful informatidor example the amount of storage or
bits required to specify the source location as determiyatiéd receiver.

A first approximation for this bound can be obtained from thace of measured signals.
From (7.1) the sensor values are bounded, with the extrenasomiong for a source with
radiuss,

<y <=2 =1,...,Q. 7.12
STRSWSg R Vioy, ¢=1,...,Q (7.12)

Thus we can consider th@-dimensional vectoy = f(x) =[vy1 ... yg ]T as lying in the
@-dimensional hypercube,

S s 19

A grid of hypercubes covering this space with stride 2¢/+/Q will ensure every measure-
ment lies withine of a cube centre. The number of regions,is bounded by the number of
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(a) Horizon, bounds and approximation for UCA.
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(b) Horizon for skewed array.
Figure 7.7: Comparison of the actual horizon with the bound and appration for array withR =

1, @ = 8 ande = 0.1. The bound (7.9) holds for all sensor geometries. The apmation (7.11)
assumes a regular sensor geometry and approximates tbenueifcular array (UCA) horizon.
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Chapter 7 Resolution of Spatial Location from within a Coaisted Region

@-dimensional cubes to tile the space,

S S \1\¢ SR VO\*
N < - -] = -— . 7.14
((Zr-70)i) ~(7om%) Z2
Whilst this shows a finite bound, it is extremely consenativFor the examplé? = 1,
S =1.5,Q = 8 andes = 0.1, the bound isV < 7 x 10°. From the numerical investigation
(Figure 7.4), we know thaVv < 228. The bound (7.14) grows with the number of sensors,

however Figure 7.4 showed the regions are fairly indepeindethe number of sensors
beyond some point. The bound is not particularly useful.

Since the bound is based on the sensor values being indefeihdees not take into account
the constraint of the continuous field across the region.fie cannot vary arbitrarily and
must satisfy the (7.1). Only a small subset of the space iBj&tan represent valid source
locations. The problem is to find the number of points foe @overing of this subset.

As an alternate approach, noting that the region sizes grithvimcreasing radius, & the
smallest region can be found from assuming a worst case sé¢adlors closest to the source,

Q 2
o 1 ' S S +dS )
— = — < — < .
ly — v Q;f% %)_(R_S 7o g5, =€ (7.15)

for two locations with radiu$ and.S + dS. This leads to the bound

e(S — R)?

_ 2| = < -\ v
= wHC”—R—dS—m

(7.16)

For the example withk = 1, S = 1.5, ande = 0.1 this corresponds to a radius of ap-
proximately0.03 consistent with the plots in Figure 7.4. The number of regiofithis size
covering the region frons to H will be

R - %) R(1+17-5 RL(R-e(S-R)

N — —
7dS? 2GR ST 2(5—R)
e (5- R
R4
S 7.17
< HA(5—R) (7.17)

This provides a bound on the number of distinct regions thatdependent of the number
or orientation of the sensors. For the previous examplehthiad isN < 1.6 x 10°. Whilst
this is a lower bound than (7.14) it is still very conservatsince the growth in the region
size with radius is not taken into consideration.
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7.4 Intrinsic Limits of Resolving Spatial Location

7.4.3 Application of Continuous Spatial Model

Following the approach used previously for continuousiapatodels, we can derive a nat-
ural set of basis functions to represent the field in the nteasent region. Whilst the exam-
ples presented have considered two-dimensional spaceevetop the continuous frame-
work for the three-dimensional localisation problem. Fasoarce at positior: and the
sensor located at,, the fundamental solution of the Helmholtz equation canxpaeded
([91] Theorem 2.10)

eikllz—aq|l
EEE — kYD S Ok )Y @)k TR (7.18)

n=0 m=—n

whereY™(-) are the spherical harmonics defined on a unit vector argymgn} is then'®
order spherical Bessel function of the first kind, dnd-) is then'" order spherical Hankel
function of the first kind. The wave numbkr= 27/ is related to the rate of change of the
wave phase across space.

For the problem being considered, the sensors are onlytisertsi the intensity of the field.
This can be achieved by considering the limit of the fundamadesolution ag: — 0. We can
then consider small argument approximations for the spaBessel and Hankel functions,

ZTZ

In(2) = 777 @D (1+0(z%) z—0 (7.19)
D (z) = L3 Mﬁ? —b (1+0(2%)) =z—0. (7.20)

Substituting these into (7.18) and adding the normalisgfiol) we obtain
el e
= ym 7.21
U= e Z Z Q,H G @ el V@), (7.21)

We are interested in the case where the source is some mindistamce from the receiver,
||| > S > R. The signal observed by the receiver is constrainged < R. Using this
we can write

[e.o]

— AmR" m m mis o\ qu”nT
=2 G T Z V@O @) @) = V@) (1:22)

Since the sensor region is constrained, the basis functigngill be bounded. The coeffi-
cients decrease exponentially at a rate related to the aatize receiver and source radius
(R/ ||z||)™. An expansion of the form (7.22) will be essentially finitenginsional.
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Chapter 7 Resolution of Spatial Location from within a Coaisted Region

From the problem definition in Section 7.2, we know the probleas only two degrees of
freedom. The field generated by a source is uniquely spedifi¢de source position, which
for the two-dimensional problem studied has two degreeseafdom. The problem lies in
finding a representation of the field which reflects this disiemality and also allows us to
easily determine the number of distinguishable fields.

Consider the summation identity for the spherical harmer(i¢91] Theorem 2.8)

3 Yﬁ%i)Kr(%Q::27L:1FQQDSQ) (7.23)

m=—n

where P, is the Legendre function anlis the angle between the directionsmfandx,.
Using this in equation (7.21) we obtain,

T n

REEEA

Since| P, (cos 8)| < 1[279], the terms contributing tg, will decrease exponentially at least
as fast agR/S)". This expansion is not a basis function expansion sincertherent of
P,(cos 6) is dependent on both the source and receiver position.

7.4.4 Reflection in the Circle

Consider another approach to the problem where the sens@s\are normalised

Q
1
HM@ZQE yr =1 (7.25)
q=1

and the distance between two measurements is calculatbe asat mean squared sensor
value 7.3). This normalisation is equivalent to having & amerage signal intensity across
the array independent of the source distance.

If the sensor is confined to the cirdle:, || = R, then for each position outside of the sensor
array, there is an equivalent position inside. This can Is=oted by considering the geom-
etry of the problem as shown in Figure 7.8. It is evident thase two points will lie on the
same line extending from the origin of the circular arrayorfrthe radial source function
(7.1) and normalisation (7.25) it can be seen that the measents for pointg: andx’ will

be equivalent when

o _f&@)
ly yHR_HHf(m)HR 1/ (@) |z 1l 5

= 0. (7.26)
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7.4 Intrinsic Limits of Resolving Spatial Location

Figure 7.8: Geometry for the reflection of the location regions insidedhiform circular array.

Since each measuremeptscales with the reciprocal of the distance between the saurd
sensor, this implies that the distances between the lowati@andx’ and any two points on
the circle must be in the same ratio. We select two points bemngg the intersection of the
line extending from the origin through andx’, and the other at an arbitrary angleUsing
the law of cosines for the associated triangles,

[A -] _ [|A—=]

IB-2| [IB-=z|
J— / J—
- - r R . (7.27)
VR2 4+ 12? —2Rx'cosf VR2+ 22— 2Rxcosl
This gives the quadratic equation to solve for the radius the pointz’ as
%z cosf + 2 (3:2 cos — R?*cos O + Rz) — R?zcosf —zR* =0 (7.28)

for which it can be shown that = R?/z.

Thus each pointin the regighis mapped into the finite region bounded by the circular array
with radiusR. This is convenient since the unbounded regtomaps to a simple bounded
region.

Figure 7.9 shows the regions of distinct localisation fa tlase of a uniform circular array
with R =1, Q = 8, S = 1.5 ande = 0.05. For each distinct region in the spaSehere
is a corresponding region within the array. Furthermore,dbrresponding regions within
the circular array are all approximately the same size. prosides a bounded region with
two degrees of freedom across which the distance betweemnsegf indistinguishability is
relatively constant.

To determine the smallest region size, consider a regiaddrike circle at the reflection of

173
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x
| | |

35 4 4.5 5

Figure 7.9: Reflection of the space of distinct localities for the unifiotircular array. For each point
outside the array, there is a corresponding point, reguitithe same measurement vector, located
inside the array.

radiusS. For two points at radius andx’, the detected signal difference will be

2
Q 1 o 1
|| B /||2 N Zq:l (\/12+R22chos9q \/x’2+R22Rx’coseq) (7 29)
y y R ™ ZQ 1 '
q=1 x24+R?—2Rx cos b,

where the approximation arises from the normalisations)7/b2ing applied equally to both
observations. This is valid for small perturbatians: =’. By numerical inspection, for the
case ofR = 1,.S = 1.5 ande = 0.05, the minimum region size is approximatély15. This
is consistent with Figure 7.9.

The reflected regions inside the circle will fill the regioorfr the origin to a radius of/S.
This is a finite area for which we can place a bound on the numireflected regions with
the smallest region size. This is independent of the numbeeiasors. For the example
given this bound isV < 2000.
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The simulations for the uniform circular array with signaiensity normalisation in Figure
7.9 consisted of 453 points in the tiling. This bound obtdibg considering the reflected
regions is within an order of magnitude of this result.

Whilst this approach leads to the best matching bound, fiesi§ic to the case of a uniform
circular array with the intensity normalisation. As can leers from the figures, the size
and number of distinct regions is comparable, thus this da@ives some indication of the
number of localities for the original problem.

7.5 Localisation with Phase Coherent Receiver

The problem considered initially was the ability to localia source given a receiver was
only able to detect the field amplitude or intensity. Thigesponds to the practical situation
of processing a set of received signals without coherenseligtection across the array
region. It was anticipated that this would be a simpler pgobthan considering the complete
field information. However, the work to determine an appiaiercontinuous basis function

expansion for the field observed in the sensor region wasurcessful.

Consider a configuration where the receiver has access theldeamplitude and phase
across the sensor region. The phase information will imptbe ability to resolve the di-
rection of arrival and distance through the direction and/iature of the wavefront passing
through the sensor region.

Assuming the amplitude and phase of the source is normaligée origin, the signal model
will be

||| e72mll—al

Figure 7.10 shows the distinguishable region tiling fore¢hse of a circular array witR = 1,

Q = 8,5 = 15ande = 0.2. This can be compared to Figure 7.3 which considered the
same configuration without phase information. In Figuréle space is more segmented
in angle and the radial extent is comparable even thoughetextion threshold has been
doubled.

For a distant source, the normalised field amplitude actussénsor region will be unity.
For a continuous uniform circular array, the signal differe introduced by two distinct
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Chapter 7 Resolution of Spatial Location from within a Coaisted Region

Figure 7.10: Distinguishable location regions using amplitude and phaformation for a UCA
R=1,Q =8,5 = 1.5ande = 0.2. Compared to Figure 7.3 the ability to resolve angle and
distance is significantly improved.

directions of arrival separated by an anglwill be

2
1 |ejk)RC089 . eijcos(Gftﬁ) ‘2 do < 82. (731)

21 Jo
For the value ok = 0.2 in Figure 7.10, the value af that achieves the bound (7.31) is
approximately2.5°. This corresponds to 144 distinct angular regions. Thisisistent with
the results presented from the numerical tiling in the figure

The natural basis expansion for the three-dimensionabwalband field was presented pre-
viously (7.18). With the sources at a distarfte> R this expansion can be truncated to a
finite dimensional representation withV + 1)? terms whereV =~ kR. This result has been

presented in other works [80] and is a generalisation ofwltedimensional case discussed
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7.5 Localisation with Phase Coherent Receiver

in Chapter 2. The sensor signals can be written

T . T~ N
e Hw”—!: [ Z Z o'y () B = dn(k [leg )Y, (2). (7.32)
d n=0 m=—n

For this example there will béN + 1)? = 49 degrees of freedom. However, the valid
coefficients for a normalised point source will be constdiio

m o __
n =

ikamhy) (k |=|)Y,™(®)
e (k |||))

By definition this is a two-dimensional manifold. The unigletermination of locations will
be related to a weighted distance between the vectarg afoefficients. Thus the problem
of determining the number of unique localisation regionsiMde related to determining
the area of this manifold in an appropriately scaled space.

(7.33)

In general, the ability to resolve the distance of a sourgergmeasurements over a finite
region is rather limited. As could be seen in Figure 7.10,ahgular resolution provides a
more numerous division of the space than the range resolutio

1The problem formulation was for a two-dimensional obseovategion with the sources lying in the same
plane. However, the fundamental solution for three dimarsivas used, (7.1), with the field intensity varying
with the reciprocal of the radius. The wave equation in twaehsions permits a fundamental solution where
the field intensity varies with the square root of the souackus. Whilst this is not a problem when considering
general multipath fields and far-field source distributiassin the previous chapters, it is significant in the
determination of the distinct localisation regions in thenity of the sensor array.
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7.6 Discussion and Further Ideas

The distance from source to sensor can be approximated by

& — || = \/le!2 +llzgll = 2 ||zl [J| cos 0

2
4]

sin? ¢ (7.34)
2 |||

~ ||| = [l cos 0 +
wheref = 0, — 0, is the angle between the source and sensor directions. Foioam lin-
ear array, this equation is quadratic in the sensor elemenber and is sometimes referred
to as the Fresnel approximation. For sources in the Fresgeln where (7.34) is a reason-
able assumption, this can be used to simplify the signal in@dkurther simplification can
be made to neglect the signal intensity. If the receivedaiggnormalised, the signal model
becomes

Yo = €||mq|\cost9+||:z:q||gsin2 9/2H:z:|| (735)

This approach has been used to create an algorithm for passialisation of near field
sources [280].

It is a common assumption that sources beyond a certaimdes&ppear as far-field sources
with a planar wave front across the sensor array [281, 288js iB a similar concept to
the localisation horizon introduced in Section 7.4.1. Fam#orm linear array of length
2R and a maximum phase variancemf8 radians over the array, the far-field distance is
8R%/\. This distance will increase with increasing frequencyhefiarrow-band signal. This
contrasts the intensity only horizon (7.9) which was fregpyendependent. This implies that
as the wavelength decreases, the signal phase dominasezdla@d shape of the localisation
regions. This is consistent with the assumptiorkof> 0 for the field intensity expansion
(7.21). For the example presented in Figure 7.10 the efledtr-field distance would be
around8 which is consistent with the numerical analysis.

The size of a sensor array for which the phase informatiohdwiininate localisation can be
determined by considering (7.9)

8R? 1 A 1
—>R(1+- = R>—-(1+-). (7.36)
A € 8 €

For the case considered in the examples, this corresporadsattius of around.4\. Thus
in the example there is still some contribution from the msigy information. Figure 7.11
compares the distinguishable regions for the case of phalyeand phase and intensity
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10

0.4
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Figure 7.11: Comparison of localisation with phase only and completel fielormation. Analysis
foraUCAR =1,Q =8, 5 = 1.5 ande = 0.2. The regions with intensity information are slightly
smaller. The regions beyond a radiusSadre open ended.

measurements. The regions with both phase and intensislightly smaller. It can also be
seen that the regions at a radius bey8rade extended to cover all radii beyond this.

The Cramér-Rao bound for passive range estimation is [283]

o V10 A 1
> /2 .
2l =\ o (4R2) SNR (7.37)

which suggests that the regions of uncertainty will growedirly with the radius of the source.
This is consistent with the partitioning of the reciprogaése introduced in Section 7.4.4.

The problem of distinct localisation regions is particularthe way in which a receiver
will view the electromagnetic environment in which it ressd Given a finite measurement
resolution, it is apparent that there will be a fixed and fimitanber of distinct locations
to which a source could be associated. Beyond some distarimecomes impossible to
determine the source range accurately.
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Chapter 7 Resolution of Spatial Location from within a Coaisted Region

7.7 Summary and Contributions

This work has detailed an attempt to analyse the number @hdigegions for a source
that can be identified by a sensor array constrained to a fioiteme. In essence, this
problem is one of mapping the world, as viewed by the sensayato a set of discrete
observable regions. The problem was addressed in the ¢afit@xalysing only the intensity
information obtained from the field, with the incident fieldnsidered to have unit power at
the sensor origin.

The following specific contributions were made in this cleapt

e Demonstrated, through numerical analysis, that thereogidl finite number of distinct
location regions extending from outside the sensor arrap @rbitrarily large distance.

e Presented an analysis of the sensor signal space and atedtauformal proof of the
existence of a horizon radius beyond which all source looatiwill appear indistin-
guishable. This horizon is dependent on the radius of thesemray and the detection
threshold.

¢ Developed an analytic bound for the number of distinct locet that can be resolved.
Since the field will be correlated over the sensor array,giaim argument related to
the number of distinct measurements without referenceggitinal model produces a
conservative bound for the number of distinct regions.

e Derived a tighter bound for the specific case of a uniformuarcarray based on a
geometrical reflection argument and the regular tiling ohadispace. This bound is
within an order of magnitude of the results obtained fromthmerical investigations.

¢ Demonstrated that the addition of phase information prewial significant advantage
in the ability to resolve both the direction of arrival andtdince of a source.

Generally angular resolution is superior to range resmtutlf intensity information is only
available, beyond some radius, all sources will appear tlodegted in the same region of
uncertainty. Where intensity and phase information islalée, at a similar distance, range
measurement becomes uncertain whilst the direction ofedmésolution remains effective.

The solutions and investigation of the problems posed waktéed by considering a con-
tinuous model of the spatial field rather than by considettiegsignal vectors from a specific
sensor array configuration.
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Chapter 8

Conclusions and Further Research

8.1 Overview of Contributions

The contribution of this thesis is to provide the developtreerd application of continuous
spatial models to specific signal processing problems fdtipheiantenna systems. Conven-
tional MIMO signal processing would model the system as avork with a discrete set of
inputs and outputs. However, in practice, the antenna nesgde in a physical space. The
antennas interact with and detect a continuous electroeti@gield across the volume of the
arrays. A level of correlation is to be expected due to theieht nature of electromagnetic
wave propagation.

A continuous model for the spatial field provides a way to mpooate the constraints of the
wave equation into the signal processing framework of a camaoation system. This leads
to improvements in the understanding and performance o$itheal processing required.
For example, the degrees of freedom of a spatial field doegnowt with the volume of
antenna region, but rather with the surface area of the lmyndh two dimensions this is
a linear growth with the region radius, while in three dimens the growth is quadratic.
This is one order lower than the potential growth of the vaurand thus the number of
antennas that could be placed in the region. Chapter 2 md\adyreater understanding of
the effective dimensionality of a spatial field, which isateld to the point of diminishing
returns for system performance as the number of antennasresaised. Chapter 3 presented
some specific results related to the representation andndiorglity of a multipath field
with restricted angles of arrival.

Given the continuous spatial model and its effective dinmradity, it is useful to understand
the optimal basis for representing fields across that redgro@hapter 4, an angular domain
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representation was introduced as an efficient way of cheniastg a random multipath field.
Analysis of this representation provided a means to detexrthe optimal representation.
Although this is informative, the basis functions obtaiaee nontrivial, transcendental, and
useful only for the specific problem configuration. In preetiit is likely that the use of the
general basis for a circular or spherical region would sas/an adequate approximation of
the optimal basis.

The idea of a continuous spatial model is also useful in deteng fundamental limits to
system performance. A receiver will usually operate wittmme spatial constraint. Given
this, there is a limit to the ability of a receiver to resolte direction of arrival of a source.
This problem was studied in Chapter 5. Additionally, a reeecan determine the direction
and distance of a source. This problem was studied in Ch@pt€pnsidering the continu-
ous spatial field, rather than discrete sensor measurentkist¢eads to some performance
bounds for such position estimations.

Continuous spatial models incorporating the wave equat@rstraint provide a parsimo-
nious representation of the wireless communications atlai@hapter 6 provided an appli-
cation of the modal framework to the MIMO wireless channehisTwas used to simulate
measured channel data and the performance of the new madglaced favourably with

existing models whilst using a lower order parameterisatio

The research work contained in the thesis is a contribubamatds developing ways to in-
corporate the physical constraints of space and wave pabipagnto models for multiple
antenna systems. Some of the areas investigated in thesoofuifsis thesis were not boun-
tiful. It is apparent that a simple approach to considerimg discrete port system with
arbitrary statistics can be quite robust, and the compledtied by considering the contin-
uous spatial models is not justified in practice. The assiomif sSimple antenna sampling
and radiation is also challenged by the complexities oftpralcantenna. However, the study
of the continuous spatial field is useful for determining soowerall limits and bounds on
performance.

As systems use higher numbers and smaller antennas, tlseafieantinuous sampling and
interaction with the spatial field becomes more importartisThesis is a contribution to-
wards the treatment of space as a structured medium thanhavedfer unlimited diversity
as more signal paths are introduced. Compact MIMO systenst oansider the spatial
constraints imposed on the receiver and transmitter tom@te and achieve optimal perfor-
mance levels.
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8.2 Open Problems and Further Research

In this section some ideas for further work and developmardgresented. These are the
open problems and conjectures that have been identifiedgiiime course of developing this
thesis.

8.2.1 Relaxation of Narrow-band Assumption

In the representation of the multipath field, this work a@olpthe narrow-band source as-
sumption, and therefore the results relate to a narrow-fieftd The time evolution of the
field u(x) will be u(x)e’“t for the narrow-band frequenay = 27 f. This narrow-band
assumption conveniently removes both time and frequermy four analysis allowing the
investigation of the spatial aspect of the signal dimeredion

To consider the dimensionality of a signals over space, &intefrequency, we can assume
independence of the results and scale the results of thik oW T, as was suggested
by [84]. However, the correct approach is to consider thepteta wave equation

A 1 0

u(x, t) — g@u(w,t) =0 (8.1)

which links time, space and implicitly frequency. A formawdlopment of the dimension-
ality of a signal observed over a finite duration across a Hedrdomain and concentrated
in some finite bandwidth remains an open problem.

It is conjectured that for the case 2T > 1 and2kR > 1 the product of the spatial and
bandlimited dimensionality is appropriate and asympédtyctight as4dk RW'T — oo. Fur-
ther study of this problem would have application to aclmgunaximum spectral efficiency
in a spatial wireless communications system.

8.2.2 Impact of Using Suboptimal Spatial Basis Functions

Starting with the problem definition of detecting or exaitia multipath field, we typically
know the antenna geometry or shape of the region over whicltameinteract with the
field. In some cases there will be additional a priori infotimia regarding the scattering
environment and thus the expected angular power spectra. friimework developed in
Chapter 4 set out the procedure to determine the optimad hasctions to allow truncation
of the infinite dimensional multipath field to a finite dimemsal representation. However, in
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a practical signal processing context, we may choose totaawputilise the standard basis
set for a circular or spherical region and uniform power sj@ec

A subject that would warrant further investigation is thepamt of adopting the standard
basis set over the optimal representation. Given the codtpland transcendental nature
of the functions for an arbitrary region, it is worth congidg the cost of adopting the

simpler expression consisting of the Bessel functions arthbnic exponentials. If the

internal signal processing is based on the generic basitiduns, to achieve the same error in
truncation, a larger number of terms will be required. Thil$ gause an increase in storage,
computational load and processing etréfowever, the ability to utilise efficient algorithms
based on the structure of the generic basis set may offsatdkt. For example, itis possible
to use a similar approach to the fast Fourier transforms faiching and convolution on the

sphere [199].

To put this idea in context we return to the example of banitkichfunctions presented in
Section 2.2 and the Slepian series introduced in SectianFdbany bandlimited non peri-
odic function, the optimal basis functions are related égtiolate spheroidal wave functions.
This has been developed for both the continuous [142, 159 d&strete case [167]. How-
ever, in practice these are rarely used. The general agpeéa consider a segment of the
signal, window it to avoid edge artifacts and use the harmerponentials of the standard
Fourier transform. Whilst this approach is not optimal, inghengineering applications it
is sufficient and facilitated by a larger set of resourceswaiger familiarity amongst practi-
tioners. The cost in most cases is a small drop in performarasly compensated for by a
slight increase in sampling rate or signal to noise ratiosdme applications this is not the
case and system performance can be fundamentally limitédi$pversight [169].

The Fourier basis becomes asymptotically efficient as imedsionality of the signal space
increases. Thus it is conjectured that the use of a prioormétion to shape the basis func-
tions becomes more important in the case of a low dimenstgnhl small mobile devices,
at 2.5 Ghz the dimensionality of the covered field is of the order od 46. It follows that
understanding and use of the optimal basis functions widddeantageous in such systems.

Part of this thesis has considered the existence, constnycharacterisation and use of the
optimal basis set for the spatial multipath field. An openbpem is to determine the trade
off between the benefits gained from using a priori inform@and the optimal basis against
the added system complexity.

1For example, in any digital implementation, a fixed word lérfgr representing values will lead to round-
ing errors. A larger number of parameters and dimensiorisieilease the required number of computations
for any given result and thus increase the processing neist |
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8.2.3 Parametric Spatial Basis Functions and Approximatias

Following on from the previous section, a valuable goal fiddional research would be to

determine some parametric families of functions that candeel to approximate the optimal
basis set. In Chapter 3 an approximation for the basis fanstior a uniform angular dis-

tribution over a restricted sector was developed. Siméaults should be possible for other
configurations of practical importance. In this way, if treewf the optimal basis function

is advantageous, a constructive approximation can be gweblcather than resorting to a
numerical solution of the associated eigenequation.

It is also possible that there exists some simple closed fmatytic solutions for the an-
gular domain representation of the multipath field for speangular spectraP(@), or
region shapes\. In developing this thesis, some time was spent in this emmigaunfortu-
nately with no compelling results. As a motivation, it stebbke noted that the trigonometric
functionssin(-) and cos(-) also naturally arise from the solution of a similar eigersequ
tion. Furthermore, the Bessel functions have an impregsdigree and extensive develop-
ment [163].

With the prevalence of powerful computers, it is easy to nfoma analytic investigations in
favour of numerical studies. However, for the intrepid neatlatical explorer, there is a rich
history in Fredholm equations and Laplace equations ancham®us set of results which
could be applied to this problem.

8.2.4 Bessel Function Bound and Dimensionality

The work of Section 2.5 conjectured the bound for the Besswgltfon

1 > n2/3
Ju(z) < =n~ 13 <—> n>1. (8.2)
2 n
Bessel functions have applications in a wide range of agphathematics, and thus such
bounds are an area of current and ongoing interest [284].uéls & would be valuable to
further investigate and seek a proof of this or another éghound.

There is still room for an improved bound on the dimensidpaésult which would be suit-
able for small regions and still asymptotically tightias— oo. The difficulties in developing
such a bound were discussed in Section 2.5.3. This is an@réarther development.
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8.2.5 Impact of Antenna Geometry

Much of the work of this thesis has developed the concept oficoous spatial models and
their application to wireless communications systems. 8ysalering the dimensionality
and representation of the underlying field it is possible @ové fundamental limits and
bounds on the diversity of a multipath field over a boundedbredrhe placement of antenna
and their interaction with the multipath field represents@cpss of spatial sampling. It is
not possible for arbitrary performance gditisrough this process [121]. However, there is
the possibility of a significant loss of dimensionality thgh poor placement, coupling and
interaction of the antenna.

There has been some reference to this issue in the exigngtlire with regard to antenna
coupling [104, 115] and electromagnetic propagation issuiéhin the array [39]. An inter-
esting open problem is the impact of the specific antennapiaat and loss of information
through the implicit spatial sampling.

Ultimately we are interested in the underlying spatial fieddd hence the problem is re-
lated to the approximation and estimation of the contindaanstion given a set of discrete
samples [285]. The optimisation of multi-dimensional séingppoints to achieve efficient
function approximation, interpolation and integratiorais area that has achieved much at-
tention for the sphere [196] and also for more general reg|@86]. Even in the case of
a truly finite dimensional multipath field, giveN basis functions on the sphere, it is not
generally possible to create a set/@fsampling points that will uniformly capture the in-
formation that exists in such a continuous field. In the cdsbesphere, the quality of the
field approximation is critically dependent on the choicesaimpling points [287]. Itis a
significant result in this field that when moving from two dinséons to three dimensions,
efficient sampling on the sphere is no longer possible for more than 16 sens@$ [2

The problem of finding a regular or optimal point set on theegptior sampling and interpo-
lation is surprisingly rich in theory. Whilst it is triviabtfind a regular set of points spanning
the circle,S' = [0, 2n], for the spheres? and beyonds™, n > 2 this is a problem presently
only soluble through computational methods [196, 289]. fdselts that emerge from such
work are rather remarkable with subtle structure and iateigatterns. This is surprising

2t should be noted that the general consistency betweenptitéasand antenna noise models is still an
open problem. As such, the effective gain and noise flooreétitennas in an array will have an impact on the
system performance. However, this is related to a shiftéstmsitivity or relevant truncation error and not the
underlying essential dimensionality.

3The definition of efficient sampling is related to extremahpsets and will not be introduced at this point.
Briefly, if all sensors were to contribute an independent&vhbise, efficient sampling would permit all of the
basis functions to be estimated with equal noise varianicgyube same number of sensors as there are basis
functions.
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(a) Maximal determinant point set (b) Minimum energy point set

Figure 8.1: Distribution of maximal point sets on the sphere of order= 50. Each set consists of

2601 points distributed on the surface of the sphere along withszociated weighting coefficient for
integration cubature. The first set is optimised to maxintigedeterminant of the sampling matrix
and thus minimise the conditioning number for signal retoiction. The second set is optimised to
minimise the energy of a system of repulsive charges on therep Both sets display a significant
range in the weighting coefficients with interesting angssimg structures.

Images reproduced from online resource [289] created by R&Womersley.

given the goal and intuition would suggest large scale umiity. To illustrate the point, two
figures are adopted from [289] and shown in Figure 8.1. It gaagnt that structures exists
with a wide range of scale and complexity.

An area for further research would be to study the impact agmifecance of the specific
antenna geometry, both theoretically and practically,ignad processing performance. The
sampling locations may be important, however it is conjextithat an overall system per-
formance may not be overly sensitive to the arrangementh&unore, an antenna will tend
to return a signal representing an average of the field owepltysical volume of the an-
tennd. In practice, the physical size of each antenna element faag ponstraints and even
uniquely determine the possible arrangement of an array.

Similar problems have been addressed for the case of acongtiophone arrays. In this
area, the arrangement of the microphones does have an impé#oe sensitivity and noise
gain of the array [290]. Each input signal in a communicaisgstem incurs an imple-
mentation cost. Thus an important goal is to understand =oid 2he arrangements that
create degenerate or redundant antenna outputs, or ezptlyainnecessarily lower system
performance.

“Practical reasons prohibit the antenna from being vangghismall. Much of the structure and details
in Figure 8.1 arise from the construct of infinitesimal saimgpl Spatial averaging at each sample point may
eliminate such nuance and detail and reduce the signifiazfrtbe exact geometry.
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Chapter 8 Conclusions and Further Research

Chapter 4 set out the framework to determine the optimakldasictions for specific region
shapes and angular spectra. The optimal antenna samplnriguwation will be depen-
dent on the optimal basis functions. For three dimensiorlddj determining the optimal
sampling configuration becomes a nontrivial problem. Tlnesd is significant scope for
continued research and investigation in this area.

8.2.6 Development of Consistent Noise Models

The work of Chapter 5 demonstrated that the continuousapatdel could be used to
derive an intrinsic bound on system performance indepdraféhe antenna geometry used.
However, as was discussed in Section 5.4.3, this approgmnds on having a signal or
noise model that is consistent between the expected searsar and the noise defined in a
spatial sense.

Understanding the correspondence between spatial anorsemse is a difficult issue, com-
plicated by the potential for the theoretical discrete seqdacement on an uncountably
infinite domairt. One approach to this problem is to consider sampling aneéseptation of
the field over finite volumetric blocks [146]. This impligitimposes a finite upper bound on
the model dimensionality, but can be useful when this limgufficiently higher than the ex-
pected field and system dimensionality. Interestinglyhsaygproaches tend to adopt a finite
division of space on the order af 10 which corresponds to a radius such thaR ~ 1.

Intuitively a noise model should be matched to the physioat@sses that generate the noise.
Practically, the value of a noise model depends on its seitpland ability to predict obser-
vations. It is evident that the independent sensor noiseeifatls by predicting the ability
for infinite precision if sensors are packed in a small voluidixed correlation matrix for
the noise tends to imply a fixed sensor arrangement or systefigaration. The develop-
ment of a position dependent noise correlation functionchred the noise being modelled
on the spatial basis functions. However, this leads to a&esysignal to noise ratio that is
dependent on the number of sensors and observation volsmskpan in (5.13).

In practice, noise sources include interfering electramedig fields, thermal electromagnetic
radiative noise, antenna thermal noise, antenna noisdiogupntenna connection noise,
amplification noise and processing noise. This can be fasipprehensively modelled by
two components — field or antenna noise and sensor or ampigise. The influence of
these components will behave differently as more antemesadaled to a system. The effect
of antenna noise and noise coupling was investigated in][2Bkie impedance matching,

5If we allow the spatial coordinates to be a real valued patama white noise field must then have infinite
power to become uncorrelated over an infinitesimal distance

188



8.2 Open Problems and Further Research

efficiency and coupling of antennas will also impact the ratf a suitable noise model
[115].

8.2.7 Associated Spatial Dimensionality of a Single Anteran

In considering the consistence of noise models, an impogaestion to be addressed is if
it is possible to infer a limit to spatial wireless capacityeoa region given a single antenna
signal to noise ratio measurement. It is conjectured that awcorrespondence is not possible
without some additional parameter for the antenna. Thigrpater will reflect the volumetric
footprint or theoretical region of interaction of the amarwith the continuous spatial field.
This may or may not be related to the actual physical dimensfathe antenna. Such a
parameter will allow us to infer that the noise observed lat #imtenna represents the sum
of the corruption of a set of spatial functions, whose nunrthatches the dimensionality
related to the volumetric footprint. Furthermore, the @egof coupling and correlation
between antenna should be related to this volumetric foutpr

There is a direct analogy of this idea and conjecture to theréie observation of a continu-
ous time signal, as occurs when an oscilloscope or probéaishetd to an electronic circuit.
Whilst the the underlying noise process may be white, a seqmiples of the voltage across
the circuit show a finite variance. The spectral noise poweit§ of WHz 1) is the average

of the observed signal poweP (= E {V?/Rj,.q}) across the assumed sensor bandwidth. In
assuming the noise to be white, we must simultaneously aticaipour ability to observe it

is bandlimited.

For the spatial case, we could assume that there is an umdgrhite spatial noise that
corrupts the continuous signal space. It follows that we tntlusn average the observed
antenna signal to noise ratio across the “spatial bandiwtich is related to the volumetric
footprint and associated dimensionality of the antenna.

Two samples in time will become correlated as the separatitegval approaches the recip-
rocal of the sensor bandwidth. Similarly, the output of twwbeganas in space should become
correlated as the separation approaches a distance reddtezleffective spatial dimension-
ality of the antenna. Rather than being a point sample, aagemteract with the field over
a region of space. From the results in this thesis, we cantabse such a region has an
associated essential dimensionality. This value will ltecat to developing a consistent and
practically useful noise model to match discrete sensoispatial noise models.

SAlternatively we can assume a perfect sensor with a banthrioise process. Either way there is some
limit, and we cannot ever completely observe in practice d@enfoise process — to do so would be to face the
infinite. One need only review the plight of Cantor to undamstthe folly of attempting this.
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Chapter 8 Conclusions and Further Research

Further work in this area would be required to formally deyethis conjecture. However,
from the preceding discussion, it should be apparent thitowt a spatial bandwidth for
the antenna, it is meaningless to relate a single antennalgmnoise to an intrinsic spatial
information limit.
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8.3 Closing Remarks

Much of the literature related to MIMO systems deals witlctk$e signals and their statisti-
cal properties. This thesis has been an explorative irgegsdin to develop a framework for
signal processing which inherently incorporates spacetlamadature of wave propagation.
Rather than adding statistical and correlation models ttcimabservation, this work has
sought to develop appropriate models and signal repragamdrom fundamental princi-

ples.

The issue of the dimensionality of a signal space is notgeesblved, particularly in the case
of a small dimensionality. In a sense, part of the problerhésdesire to assert and bound a
sudden threshold or transition where in practice it doe€rist. The dimensionality results
certainly indicate a point of diminishing returns. For a @#mited function, the width of
the transition from significant to insignificant basis fuoos varies with the logarithm of
2WT [142]. A similar result is conjectured for the dimensiohabf a bounded region of a
multipath field. Hence, the transition region will be sigesiint for small regions.

Collectively the work in this thesis presents a broad rarfgesults, from explorative de-
velopment and conjectures through to some formal framesydHeorems and proofs. As
with the case of the dimensionality of the bandlimited fumctthe research in this area has
opened up a rich array of mathematical detail and the peaidioti continued investigation
over a much longer period. However, some of the results cam sdvious in that they are
are consistent with implemented pragmatic engineeringagmbes. In reflection, the nature
of conventional wireless communications is rather fomgvivith the typical scattering en-
vironment offering a rich field diversity, the nominal wagegith of operation fairly small
relative to the array size, and current practical limits bb@ €conomical number of signal
processing channels. System performance is far more likddg impacted by the choice of
low noise radio frequency amplifiers than by the antennangeaent.

It is evident that sensors and signal processing are begamane affordable and ubiquitous.

This is true both in the domain of wireless communications aliso related domains such
as acoustical signal processing. A developed understgmditne nature of wave-fields and

the implications to signal processing is increasingly imégat to understand the fundamental
possibilities and limitations for effective system desagmd implementation.
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Appendix A

Interpolation of Dimensionality

By definition, the dimensionality of a space of functions cemy take on integer values.
However, the figures and numerical analysis of Chapter 4 wened at investigating the
impact of the problem geometry on the effective dimensibnalTowards this goal, the
number of function terms required to achieve a fixed truncadirror was considered. With
this number restricted to integer values, the trends in theds were not easily apparent.
To overcome this, the following approach was developedftr mfractional dimensionality.
This was based on the assumption of an exponential decre#se truncation error around
the truncation point as was shown in Chapter 2 and Chapter 3.

The truncation error is related to the trailing sum of theeaiglues of the eigenequation
developed in Section 4.3. The equation, (4.37), is repdatesl

Angn(0) = A*Ag, (@) = / / 9n(P)e* (@0 q5(B)da. (A1)

Since the kernel of this integral equation is compact, anditiye of the factors discussed
in Chapter 2, the set of eigenvalugs . .., )\, can be ordered in descending value and will
have an accumulation point at zero [184]. We restate Deadimiti.8 for dimensionality,

Definition A.1 Dimensionality of Multipath Field.
For any set of eigenvalues from (4.37), giver 0 there exists some integél(=) such that

D(e) = argmin { Zi””‘; < 5} . (A.2)

The general measure of dimensionality adopted for the nigal@nalysis work in Chapter 4
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Figure A.1: Repeat of Figure 4.7 with the integer ceiling quantisationthe dimensionality. The
trend is obscured by the coarse quantisation, especiddwatimensionality. The matching empirical
lines approximate a lower bound for the dimensionality.

wasD(0.01). This is the point at which the cumulative sum of the eigemealexceed$9%
of the total sum of all eigenvalues.

The numerical analysis in Chapter 4 aims to illuminate how éssential dimension of a
region varies with changes to incident wave-field and theregize, shape and orientation.
For the examples given, the essential dimension has realgosmmall values € 20). At
this scale, the coarse integer quantised value®fobtained from (A.2) obscure the under-
lying trend of dimensionality. For example, we can consigigure 4.7 without fractional
interpolation of the dimensionality. This is shown in Figu.1.

Given the eigenvalues obtained from (A.1) we can obtain dication of the fractional
dimension by considering a continuous interpolation ofdigenvalues and considering the
point at which the selected dimensionality threshold isseal. Consider the function

_ ZmZn )\m

The eigenvalues are numbered from index O, thits = 1. Given the desired threshotd
at some poinff(N) > e and f(N + 1) < e. Providedkt is suitably small, around this point,

f(n) (A.3)
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the functionf (n) will be exponentially decreasing. Consider the interpaddtinction

f(z) = Ae™". (A.4)
Solving at the two data point§ N) and f(N + 1) gives

b=1log(f(N)) —log (f(N +1)) (A.5)
A= f(N)e"™. (A.6)

Solving for f(z) = €, we obtain

log (f(NV)) — log(e)
log (f(N)) —log (f(N + 1))

This can then be used to determine the fractional dimenkipfram the set of eigenvalues.

z=N+ (A.7)

To illustrate this method, we present two examples from tgerwalue sets of Figure A.1.

At the radius of\ the integer dimensionality for the90° and+45° angular spread is 8 and 5
respectively. Figure A.2 shows the residual energy astaatia the terms past the truncation
point, f(n) as calculated in (A.3). The exponential curve shown is fittethe two points

around the threshold value 6f01. This is used to calculate the fractional dimensionality

of 4.18 and7.5 respectively. The plots in Figure A.1 also clearly show thatdecrease in
residual error is exponential beyond the critical threghol
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O.l T T T
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(b) Logarithmic scale
Figure A.2: Error for truncation of two sets of solutions to the eigersn (A.1). An exponential fit

to the sequence is made around the threshold0df This fit is then used to determine the fractional
dimensionality of the solution.
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Appendix B

Derivation of the Crameér-Rao Bound

This appendix presents the derivation of the Cramér-RamB¢CRB) for the estimation of
direction of arrival using the continuous sensor framewawkeloped in Chapter 5.

B.1 Key Bessel Identities

The derivations make extensive use of some identities ®Bissel functions. These are
stated and reformulated here for use in the following prodfse Bessel recurrence relation-
ship [160, 9.1.27],

ndo(2) = = Jur(2) + §Jn+1(z). (B.1)

2

Sum of second order Bessel terms, from Neumann’s additeorém [160, 9.1.75 p. 363]

Y Az =1 > Ju(@) Jusk(z) =0, k#0 . (B.2)

n=—oo n=—oo

Variants of Graf’s addition theorem with some basic trigodric manipulation [160, 9.1.79],

Z J2(2)el™ = J, <z sin g) (B.3)
S nb _ O\ op
Z Jn(2) i1 (2)e?™ = 44 zsing e (B.4)
= jné : 0 —j60
Z Jn(2)Jpio(2)e’™ = —Jy | zsin )¢ (B.5)
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Chapter B Derivation of the Cramér-Rao Bound

o A 0 A
Z Jn(2) is(2)e?™ = —jJy (z sin 5) e7I30/2, (B.6)

n=—oo

B.2 Derivation Overview

We are interested in the Cramér-Rao bound for a deterraisistirce model, as this will pro-
vide a lower bound for the variance of any unbiased estintatan [260], the deterministic
CRBis

0.2

CRB~ - {Re|(D”D — DA (A”A)™ A"D) o R,” | }_1 , (B.7)

whereo? is the noise variancey is the number of data samples,

As[a@) .. a@p) | (B.8)
D2 [%a(&l), e %a(ep)} (B.9)

with a(#) the sensor array steering vector for directtoriThe matrixR; is the sample co-
variance matrix for the signalsand® represents the elementwise Schur-Hadamard product
of the matrices.

The matricesA = A(6) andD = D(0) are dependent on the source directions.

Three main terms are required to compute the Cramér-Randbfsam (B.7). These are
A A, DYD andD A. To evaluate these, we will use the continuous sensor matiéh
for a circularly symmetric region has the form

a(f) = [...,\/C’i_rnejmg,...,\/CT,Le_jme,...}T (B.10)

with C,,, = ||3..]|x @Q/|A| being a normalisation constant dependent on the regioresfize
details of the continuous model framework can be found irtiGe&.4.3.

From this we can derive the Cramér-Rao bound for the casecotalar and disc shaped
region with one and two uncorrelated sources.
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B.3 Circular Array, One Source

The signal scaling.,,, for the circular array from Section 5.5 equation (5.16)

Q [
A /O 1Bu()? Rd9 = QI2(kR). (B.11)

For the circular array with a single source, the array stgematrix and derivative will be
the vectors

. T
A = [a(0)] = [ VO e\ JC,ein ] (B.12)
. . T
D= {%a(@)} = [ o/ O™ —ny/Che ™ ] : (B.13)
The termA A is related to the signal energy. Using identity (B.2) we obta
A"TA= )" C.=Q ) J(kR) =Q. (B.14)

The termD*'D is evaluated using the recurrence relationship (B.1) t@aegghe two terms
nJ,(kR) followed by the use of identity (B.2),

DD = i n?C, = Q i n?J*(kR)

n=—oo n=—oo

0y < Jo 1(kR) + kanH(kR)y

n=—oo
o0

k2R2
_Q Z (KR) + Jy (KR i1 (KR) + J2,, (KR)

B Qk2R2

==

(B.15)

The termD* A is evaluated using the recurrence relationship (B.1)nfér(kR). Noting
that no Bessel terms of equal index are in the infinite sunmguds.2) the result is zero.

DYA = i —nC, = Q i —nJ2(kR)

n=—oo n=—oo

0y - (— w1(kR) + kQRJnH(k:R)) Ju(kR)

n=—oo
o0

= @ > Jui(kR)Ju(kR) + Joir (kR)J,(KR) = 0. (B.16)

n=—oo
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Using the results from (B.14), (B.15) and (B.16) in the boergression (B.7)

CRBp—; = % {Re[(DHD —~ DA (AA)” AHD> o RST} }1

o [ [ QKR 1 -
o (L))

o2 1

T QN K2R?

(B.17)

B.4 Circular Array, Two Sources

The signal scaling for the circular arrayd$, = QJ2(kR). For two sources located with
directionst; andd,, the array response matrix and derivative are

, , B.18
VT [Tt (B.18)

oo /O —ny/Che i ’
n/C_,e?™2 . —n\/C,e " .

A:[a(eﬂ a,(@g)]:[::: VO e \CheTinh ]T

(B.19)

The self adjoint product of the array response matrix is
o C, 0 C, Jn(01—02)
AHA — Zn:foo' anfoo € (BZO)
Z:LO:—OO C”ejn(egiel) Z;Z.O:—OO On
. 7
) [ K (B.21)
w1

where the diagonal entries follow directly from (B.14). Défig Af = 6, — 6, and using the
identity (B.4) the off diagonal entries are

= i C,el"A0 = i Jg(k:R)ej”M

=Jy <2kRsin %)
= Jo (kRAO) + O ((A6)*) (B.22)

where the final approximation can be obtained by notingAg/2) = A0/2 + O((A6)?)
and using a linear approximation fdg(k RAS).

200



B.4 Circular Array, Two Sources

For the two uncorrelated sourcRg = I and from the elementwise product in (B.7), the off
diagonal entries i D are not required for the final result. Using the result fromil
for the diagonal entries, we obtain

NP I DR A D e
= Zzo:,oo nQCnejn(02—61) Z;LOO:?OO n2C,
[ QK2R2
—= 2 Qk}2R2 ] (823)
L 2
Using the result (B.16) for the diagonal entries of the fieaht, we obtain
DHA — Yoo o —nC, S —nC, eIn®1—62)
E 2ot el ) Y ome oo —NCy
0
:Q[u g] (B.24)

The off diagonal entries can be evaluated and simplifiedguie recurrence identitys.1
for nJ,(kR), followed by some manipulation and the application of treniity (B.4),

V= Z —nC,ed"A? = Z —nJ2(kR)e"A?
kR

=_—— (Jo1(kR) 4 Joi1(kR)) J,(kR)eI™A?

n=—oo
o0

kR < - kR -
== Y Tt (kR (RR)A — 22 N Ty (kR) Ty (k)™

n=—oo n=—oo

kR . > . kR & .
— _TReJM > Jn(kR)JnH(kR)eJ”M—7R > Ju(kR) Ty (kR)e™

n=—oo n=—oo

; A ) A
— —@ (eJM/2 + e_JM/Q) Ji (Qk:Rsin 79)

A A
= —jkRcos (79) J1 (ZkRsin 79)

= —jkRJ; (kRAO) + O ((A9)%) (B.25)

where the final approximation is based on small argumatsvherecos(Ad/2) ~ 1 and
sin(A0/2) ~ Af/2.
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Chapter B Derivation of the Cramér-Rao Bound

To evaluate the CRB from (B.7), first consider the term ushegresults from (B.24) and
(B.21)

DHA(AHA)—lAHD:Qlo 1/]1 1 [1 —u]Q[o ,,]

v 0| Ql—p2 —n 1 —v 0
—Qv* |1 p
e . (B.26)
K1

Substituting (B.26) and (B.23) into (B.7) we obtain

0,2

CRBp_, = {Re[(DHD _DHA (AHA)*l AHD> ® RST}}

{5 s DLy

0'2

= SAr 2 P2 +
2N —Qk2R 1—,u2 W 1
o2 1 22 \ 10

- 1 . B.27
QNk?R?( +1—u2) [o 1] (B8:27)

Using the expressions for (B.22) andv (B.25)

-1

QKk2R2
2

2

2 in A0 2 (a0Y\
CRBP:2 == QNL (1 o 2J1 (Zk'RSIH B} )COS ( ))

k2 R? 1— J¢ (2kRsin 42)
o 1 2J2 (kRAG) \ '
~ 0L 2 (kRAY) (8.28)
QN k2R 1 — J2 (kRAG)

where the approximation uses the approximations/f@nd » previously stated for small
angular separation&d.
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B.5 Filled Disc Array, One Source

The derivation for the filled disc array is similar with thgsal scaling,

C, = % /R /0% J2(kr)rdfdr = Q (J3(kR) — Ju_1(kR)Jni1(kR)) (B.29)

For a single source, the array response vector and deevat& source at are

A = [a(0)] = [ Ve /e ]T (B.30)
D= {%a(@)} = [ ny/C_pe™ .. —ny/Che im0 ]T (B.31)

Using the identities from (B.2) the self adjoint of the respe vector is unchanged,

ATA= S ComQ S PR - hys(kR) s (k) = Q. (8.32)

n=—oo n=—oo

The additional term in (B.29) reduces the valuddfD. Using the result from (B.15), some
basic manipulations, and the identities from (B.2)

o0

D'D= )" n’C,=Q Z (J2(kR) — Jp1(kR) Jni1(kR))

2 P2 o0 - 00
— Qk‘2R —Q Y (0 =1) St (kR) o1 — Q@ Y Juoa(kR)Jia
2 P2 o]
= L0 - DIk R) 0+ 1)
kQRQ szQ [ee)
- ¢ 2 B ¢ 4 nzzoo (Jn—2(kR) + Ju(kR)) (Jo(kR) + Jui2(kR))
B QkiRQ' (B.33)

The third term remains unchanged.

DA = i —nC, = Q i —n (J2(kR) — Jy_1(kR) Jy41(kR))

n=—oo n=—oo

=0+@Q i (n = 1)Jn-1(kR)Jns1(kR) + Q i Jn-1(kR) Jni1(kR)

n=—oo n=—oo

_ R S (ualkB) + Ju(kR)) Jya(R) = 0. (B.34)

n=—oo
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Substituting the results from (B.32), (B.33) and (B.34bpitlte bound expression (B.7)

CRBp—; = % {Re[(DHD —~ DA (AA)” AHD> o RST} }1

o [ [ QKR 1 -
o (L) o)

_ o 2
" QN k2R?

(B.35)

B.6 Filled Disc Array, Two Sources

The signal scaling for the disc arrayd$, = Q(J?(kR) — J,_1(kR)J,+1(kR)). For two
sources located with directiofig andd,, the array response matrix and derivative are

VO e JChe im0

T
) ) o B.36
VO e \JC, e im0 . ] ( )

A= [ a(f1) a(b:) ] B [
ny/C et —ny/Cre it ]T.

— 0 o . c.
D= |: 8_9101(01) 8_6201(02) i| _ [ n /CfnejnHQ . —=n /Cne_j”62 )
(B.37)
The self adjoint product of the array response matrix is
o0 o0 jn(61—62)
AHA = Zn:—oo On Zn:—oo Cne
Dot oo Ol 020 2 =0 Cn
1
=@ [ : (B.38)
po1

where the diagonal entries follow directly from (B.32) ahe off diagonal entries can be
evaluated using the previous result (B.22) and the ide(ity)

[e.9]

W= G =3 (Ji(kR) = Juoa(ER)Jua (KR)) €2

n=—oo n=—oo

=p— > Joa(kR)Jyia (kR)em

n=—oo

=p— &% Y Ju(kR) Jsa(kR)e

n=—oo
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B.6 Filled Disc Array, Two Sources

. Ab .
= p+ B0, <2kR sin 7) e IR0

A6 A6
=Jy <2kR sin 7) + Jo (Qk:R sin 7)

~ Jo (kRAG) + Jo (kRAO)

(B.39)

where the final approximation is for small angular sepanetivd.

As before, the off diagonal entries B D are not required
for the diagonal entries,

. Using the previous result (B.33

DD = Z;L’O:ioo n?C, Z;’;’Zioo n2C, ein(1-02)
- S0 nPC,eintft) X p2c,
| Qk2R2 o ..
= 1 e ] : (B.40)
L I
The diagonal entries of the final ted” A are obtained from (B.34)
sl TE G X nGen)
- S —nCeint=0) % —nC,
0 v _
_ [ / g ] using (B.24) (B.41)
1%

A lengthy manipulation and the use of identities (B.4) andb}Bprovides an expression for

the off diagonal terms,

[e.9] o0

= Z —nC,einAl — Z —n (J2(kR) — Jy—1(kR)Jni1 (kR)) RN,

n=—oo n=—oo

=v+ Y nJy1(kR)Jypa(kR)e™

1 & ' 1 & )
=v+ > (n+ 1) o1 (kR) Ty (kR)E™ 4 3 > (n= 1) Ty (kR) Ty (ER)e™

FR & nao | RS n
=v+—- D a0 () + Jnsa() €40 + e D o)+ Ju() T (1)l

L KR T (kR) Ty (kR)e™E + 180T, (kR) T (KR)e™™ +

=V — . . .

4 = A0 ] (kR)J,i5(kR)emA0 4 Ju(kR) Jpi1(kR)eImA0

jkR [ €89J; (2kRsin £2) e=129/2 eI J5 (2kRsin &%) e77346/2 4
=V _—

(

—eI2R0 ], (ZkR sin %) e I3R0/2 4

)
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Chapter B Derivation of the Cramér-Rao Bound

kR A A/ . Al
-y — ‘77 cos (7) (J1 (Qk:Rsm 7) —J3 (ZkR sin 7))
= —@ cos <%) <J1 <2kR sin %) + Js (Qk:R sin %))

—@J1 (kRAG) — @Jg (kRAO) (B.42)

Q

where the final approximation is for small angular sepanetivd.

Using the matrix result previously computed (B.26) and stishg (B.40) into (B.7)

2

—1
CRBr—: = ;- {Re[ (DD~ DA (A”A) ' A"D) 0 R." |}
~oN k2R2 _
2N R L= L—p? | w1 0 1
o 2 w? N0
-7 14— . B.43
QNk2R2<+1—u’2) [o 1] (8:43)

Finally, substituting the expressions {@r(B.39) and.’ (B.42)

o2 2 COS ( ) (J1 (ZkR sin £¢ ) + J3 (ZkR sin £2 ))2 !
CRBp_; = 1-—
QN K?R? 1— (Jo (2kRsin £2) + J, (2kR sin &7 ))

_ot 2 (L (Li(kRAG) + T, (kRAG)? \
~ ONPR? 1 — (Jo (kRAG) + Jy (kRAG))’

(B.44)

with the approximation valid for small angular separatidts
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