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Abstract

In many engineering applications, including radar, sonar, communications and seismology,
the direction of impinging signal wavefronts can be used to discriminate between competing
sources. Often these source signals cover a wide bandwidth and conventional narrowband
beamforming techniques are ineffective, since spatial resolution varies significantly across
the band. In this thesis we consider the problem of beamforming for broadband signals,
primarily when the spatial response remains constant as a function of frequency. This is
called a frequency invariant beamformer (FIB).

Rather than applying the numerical technique of multi-parameter optimisation to solve
for the beamformer parameters, we attempt to address the fundamental nature of the FIB
problem. The general philosophy is to use a theoretical continuous sensor to derive rela-
tionships between a desired FI beampattern and the required signal processing structure.
Beamforming using an array of discrete sensors can then be formulated as an approxima-
tion problem. This approach reveals a natural structure to the FIB which is otherwise
buried in a numerical optimisation procedure.

Measured results from a microphone array are presented to verify that the simple FIB
structure can be successfully implemented. We then consider imposing broadband pattern
nulls in the FT beampattern, and show that (i) it is possible to impose an exact null which is
present over all frequencies, and (ii) it is possible to calculate a priori how many constraints
are required to achieve a null of a given depth in a FIB. We also show that the FIB can be
applied to the problem of broadband direction of arrival (DOA) estimation and provides
computational advantages over other broadband DOA estimators.

Through the theoretical continuous sensor approach, we show that the FIB theory
can be generalised to the problem of designing a general broadband beamformer (GBB)
which realizes a broadband angle-versus-frequency beampattern specification. Coupled
with a technique for radial beampattern transformation, the GBB can be applied to a
wide class of problems covering both nearfield beamforming (in which the shape of the
impinging wavefront must be considered) and farfield beamforming (which is simplified
by the assumption of planar wavefronts) for a broadband beampattern specified over both

angle and frequency.
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Glossary of Definitions

Notation

C complex plain

R real numbers
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a* complex conjugate of scalar a

al transpose of matrix or vector a
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® Kronecker product: a® b 2 [a1b---ayb], where N is length of a
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d[] Kronecker delta: 6[k] £ 1,k =0, and 6[k] £ 0,k # 0
E{-} expectation operator

F{} Fourier transform operator

Re{-} real part

Im{-} imaginary part

Abbreviations

CFVB Controlled Frequency Variant Beamformer

CSS Coherent Signal Subspace

DOA Direction of Arrival

FI Frequency Invariant

FIB Frequency Invariant Beamformer

GBB General Broadband Beamformer
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Chapter 1
Introduction

ﬁ. RRAY signal processing uses a group of sensors (an array) to extract information
from our environment, specifically from signals propagating as waves [50]. Common

examples of such signals are radio and television transmissions and human speech.

In some cases these signals may be separated through their frequency components
alone. For example, in commercial radio transmission each station is assigned a different
frequency band. Different stations may then be received by tuning to different frequencies.
However, in many situations competing signals have overlapping frequency bands and
cannot be separated by their frequency components alone. Consider the situation in which
you are able to pick out a single voice amongst many in the “cocktail-party” environment in
which several conversations occur simultaneously. These speech signals will largely occupy
the same frequency band (except for slight differences between speakers, for example,
between male and female voices). Despite this, our ears (a two-sensor acoustic array)—
together with the processing done in the brain—are very effective at accurately determining
the direction of sound waves. This allows us to discriminate between several sources based

on their directions of origin.

A beamformer is a processor used in conjunction with an array of sensors to provide
spatial filtering [97]. This means that signals from a given spatial region are passed and
signals from other regions are attenuated, with the usual objective of estimating a desired
signal in the presence of noise and interfering signals. An example beamformer response
is shown in Fig. 1.1. This shows the beamformer output power versus the direction of
arrival of the impinging wavefront. Signals arriving from a direction of 0° will be passed

by the beamformer, whereas signals from other directions are attenuated.

Typical beamforming applications include exploration seismology (in which an array

of geophones receives signals reflected from a region inside the earth with the objective of
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Figure 1.1: Typical response of a beamformer.

detecting minerals), sonar (in which an array of hydrophones is used to passively detect
sources), radar (in which a transmitting array is used to illuminate an area surrounding
the radar site and a receiving array looks for reflections from targets), and medical imaging
(in which arrays are used to form cross-sectional images of objects from either transmitted
or reflected data) [42].

In many cases the signals impinging on the array cover a wide bandwidth. Speech and
sonar signals, for example, typically cover several octaves (approximately 200-3400 Hz
for intelligible speech and 50-1000 Hz for the signals received by a towed sonar array).
When using a beamformer to discriminate between broadband signals, it is desirable to
have constant spatial resolution over the bandwidth of interest. A beamformer which has
a constant spatial response over a specified wide frequency band will be referred to as a
broadband frequency invariant beamformer. The response of an example frequency invari-
ant beamformer design is shown in Fig. 1.2." This figure illustrates the desired constant
spatial response as a function of frequency. Such a beamformer is useful in environments
in which source and noise signals are predominantly broadband in nature. An example
application is speech acquisition with a microphone array, in which several speech sig-
nals may be received by the array—either from different speakers or reverberations from

surrounding objects—but only one should be passed by the beamformer.

!This beamformer was designed using the methods outlined in Chapter 3.
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Figure 1.2: Typical response of a frequency invariant beamformer.

Several methods have been suggested to solve the problem of frequency invariant beam-
forming (these methods are reviewed in Chapter 2). However, most of these methods are
limited in their generality, relying either on specific array geometries (usually uniformly

spaced linear arrays) or specific beampatterns.

Hence, the primary motivation for this thesis is to develop a general theory of frequency
invariant beamforming which is applicable to a wide class of array geometries, allows
arbitrary beam shapes, and can be used over an arbitrarily wide bandwidth. In developing
this theory, we formulate solutions to a wider class of problems. These are specified in
§1.2.

The general philosophy of our approach is that, rather than dealing directly with a
discrete set of sensors, we formulate the broadband beamforming problem in terms of a
continuously distributed sensor. The practical problem of beamforming with a finite sensor
array is then reduced to that of approximating the response of the theoretical continuous
sensor. For the frequency invariant beamformer, this formulation is important from several
perspectives. First, it allows an exact solution to the frequency invariant problem to be
derived—it is impossible to produce an exactly frequency invariant beampattern using a
finite number of discrete sensors. (This is discussed further in Chapter 2 and is illustrated
by Fig. 1.2 which shows the slight frequency variation displayed by a typical frequency
invariant beamformer realization.) Second, it provides insight into the intrinsic structure

of the frequency invariant beamformer, thereby simplifying its implementation. Finally, it
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allows mathematical relationships to be derived between the desired frequency invariant
beampattern and the design parameters, namely the filter coefficients. We consider this

philosophy in further detail in §1.2 when we outline the contributions of the thesis.

The thesis is loosely grouped into two sections: the first part (up to and including
Chapter 4) develops the frequency invariant beamforming theory; the remaining chapters

examine some applications of this theory. A summary of the thesis is as follows.

e The remainder of this chapter reviews background beamforming theory and lists the

contributions of the thesis.
e Chapter 2 presents the theory of frequency invariant beamforming.

e Chapter 3 describes implementation of the frequency invariant beamformer using
discrete-time processing. Experimental results obtained from a microphone array

are also presented.

e Chapter 4 investigates imposing broadband pattern nulls in the frequency invariant

beamformer response.

e Chapter 5 generalises the frequency invariant beamforming theory to the problem
of producing a broadband beampattern which is specified over both angle and fre-
quency. A technique for radially transforming a beampattern is developed which,
when combined with the general broadband beamforming theory, can be used to

design a nearfield broadband beamformer.

e Chapter 6 applies the frequency invariant beamformer to the problem of estimating

the directions of arrival of multiple broadband signals.

e Chapter 7 concludes the thesis and presents some topics for further research.

1.1 Background Beamforming Theory

Having outlined the problem statement in general terms in the previous section, it is now
necessary to give some background beamforming theory. This will set the context for the

contributions of the thesis, which are listed at the end of this chapter.

1.1.1 Beamformer Classification

A beamformer is labelled as either narrowband or broadband, depending on the bandwidth

of the signal environment in which it is designed to operate. In this thesis we consider a
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broadband beamformer to be one in which the signal bandwidth is a significant fraction
(say 0.5) of the mid-band frequency. Although this is a somewhat arbitrary definition,
it serves to exclude some so-called wideband beamformers in the radio antenna literature
which have fractional bandwidths of a few percent of the mid-band frequency. Most of the
beamforming literature is concerned with narrowband beamforming. Dealing with broad-
band beamforming is significantly more complicated, because of the number of variables

involved.?

Beamformers may also be classified as either data independent or statistically optimum.
A data independent beamformer is designed to produce a predetermined response regard-
less of the signal environment, whereas the goal of statistically optimum beamforming is
to optimise the beamformer response based on the statistics of the received array data.
Although the scope of this thesis generally covers broadband data independent beamform-
ing, an attempt has been made to allow for adaptive implementation in the formulations
presented. Hence, the majority of the methods presented may be readily adopted for
adaptive use. By only considering fixed beamforming we attempt to gain a better un-
derstanding of the performance which is actually possible using adaptive algorithms. A

simple example adaptive algorithm is included in Chapter 3 for illustration.

The vast majority of beamformer literature deals only with the situation in which the
impinging wavefronts are planar in nature. This is referred to as the farfield condition.
A wave propagating from a point source radiates spherically outwards from the source
location. Thus, for an array suitably close to the point source, the impinging wave will
have a spherical wavefront. The assumption of planar wavefronts is only valid for an
array located at a significant distance from a point source. A typical rule of thumb is
that farfield operation can be assumed at a distance of 2L2/\, where L is the total array
length and A is the wavelength [61]. Chapter 5 presents a new design methodology for a
broadband beamformer with a desired nearfield beampattern; further mention of nearfield
beamforming is deferred until then. Unless specifically stated, farfield operation should

be assumed in the remainder of the thesis.

1.1.2 Narrowband Beamforming

A block diagram of a conventional narrowband linear beamformer is shown in Fig. 1.3.

The output of the beamformer at time ¢ is given by a linear combination of the weighted

2The broadband beamforming problem is multidimensional, covering the sensor locations, direction of
impinging wavefronts, time, and frequency. Since the operating frequency is fixed in narrowband beam-
forming, the frequency (and often time) dimension can be excluded.
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Figure 1.3: Block diagram of a conventional narrowband linear beamformer.

data at each of the IV sensors, i.e.,

N-1
2(t) = Z Wy, Sn(t),
n=0

where w, is the complex weight applied to the nth sensor, and s,(t) is the signal received at
the nth sensor at time . Assume that the signal impinging on the sensor array is a complex
plane wave with direction of arrival § (measured relative to array broadside, i.e., normal to
the array axis) and frequency f. Also assume that the phase of the received signal is zero
at the zeroth sensor, giving, so(t) = exp(y27ft) and s, (t) = exp[y27f(t + 7,(0))], where
Tn(0) represents the time delay due to plane wave propagation from the zeroth to the nth
sensor. For a farfield point source, 7,(0) = (2, — 2¢)c ™' sin 6, where z,, is the location of

the nth sensor and c is the speed of wave propagation.

The beamformer output is then given by

N-1

2(t) = exp(y2m ft) Z wy, exp[y2m f1,(0)].

n=0

Conventionally, the time dependence is ignored, and we are only concerned with the beam-

former response defined as

N-1
r(0) = Z Wy, exply2w f1,(0)]. (1.1)
n=0

The beampattern is defined as the squared magnitude of the beamformer response, |r(6)|?,

and is usually expressed in decibels.
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To simplify notation, the response is often expressed in vector form as

r(0) = wa(p) (1.2)
where w = [w, ... ,wy_1]" is the N dimensional weight vector, and
a(0) = [exp(s2rf10(0)), ... ,exp(y2m frn_1(0))]" (1.3)

is the N dimensional narrowband array response vector (also referred to as the steering

vector, direction vector, and array manifold vector in the literature).

The beampattern is often expressed as a function of v = sinf. In this case one is
usually only concerned with the response at values of u corresponding to real angles 6,

i.e., u € [—1,1]. This region is referred to as the wisible region [50, p.91].

Narrowband Beam Shaping Techniques

Figure 1.1 shows the features of a typical beampattern. A single main beam (the mainlobe)
pointed in the direction of the desired source passes signals from that direction (broadside
in the figure), while signals arriving from other direction are attenuated by the beamformer.
The smaller beams are referred to as sidelobes. The main beam may be steered to directions
other than broadside by introducing a progressive phase delay across the array. Specifically,
if the main beam is to be pointed to an angle ¢ then a phase delay of 27 fo7,(¢) should

be applied to the nth sensor (where fj is the frequency of operation).

Several classical techniques exist in the antenna literature for shaping the beampattern.
The major methods are briefly outlined below (see [41, 60, 61] for a full review of these
methods).

The simplest beam shaping method is the Fourier transform method [61, p.112]. For
an equally spaced array, (1.1) reduces to a Fourier series, and the sensor weights may be
found by Fourier transforming the desired pattern. This method provides the least mean

square error approximation of the desired pattern.

The method of Schelkunoff [79] again relies on equal spacings, and expresses (1.1) as a

polynomial of degree (N — 1):

N-1
r(0) =Y wy 2", (1.4)
n=0
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where z = exp(j27 fdc~ ! sin#) and d is the inter-sensor spacing. The pattern is shaped by

changing the zero positions of this polynomial.

Based on this identification of the array response as a polynomial, the Dolph-Chebyshev
method [21] equates the array polynomial with a Chebyshev polynomial to produce a

pattern with the narrowest mainlobe width for a given constant sidelobe level.

Taylor [92] noted that the Chebyshev pattern is inefficient in that the requirement for
a constant sidelobe height requires that for large arrays increasingly more of the energy is
in the sidelobes. Instead, Taylor proposed a beampattern function with zeros far from the
mainlobe at locations corresponding to those of a uniformly weighted array, and the zeros
close to the mainlobe chosen similar to those of the Chebyshev pattern. This method was
based on a continuous source function rather than an array, although it was later extended
to arrays by Villeneuve [98]. Several modifications to the basic Taylor pattern have been
made which allow asymmetric sidelobe levels [22], individually specified sidelobe levels

[23], or specified pattern nulls [94].

Woodward pattern synthesis [103, 104] combines a set of orthogonal beams (formed
either from an array or continuous aperture) to produce an arbitrary desired pattern.
These orthogonal beams are linearly independent at a discrete set of points in sin @ space.
That is, at each of these points in sin# space, one of the beams will have a peak and all
other beams will have a zero. For an array of N equally spaced elements, there are N
such beams. The pattern is formed by summing the orthogonal beams, with each beam

weighted according to the value of the desired pattern at its peak location.

The goal of an iterative power pattern synthesis technique due to Orchard et al. [72]
is to best approximate a shaped pattern within a given spatial region, while maintaining
control of the sidelobe level in the remainder of the pattern. This method is based on an

equally spaced array geometry.

As indicated above, the majority of classical beam shaping techniques rely on uniform
sensor spacings. With this assumption the beamformer response (1.1) can be expressed
as a polynomial (1.4), and many methods exploit this property to simplify the beam
shaping problem. Introducing nonuniform sensor spacings significantly complicates the
beam shaping problem. Most methods which are applicable to nonuniform sensor spacings
are either iterative [69, 76, 105] or use some form of numerical optimisation [67]. These tend
to be mechanical computational processes, which provide no insight into the structure of
the problem. A more fundamental approach was taken by Ishimaru [47] who used Poisson’s
summation formula to formulate an analytical solution to the problem of designing a

beamformer with a nonuniformly spaced array geometry. In a similar vein this thesis
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presents an intuitive and more structured method of dealing with nonuniformly spaced
arrays, and all of the techniques presented are applicable to general array geometries (with

mild constraints as described in later chapters).

Narrowband Pattern Nulling

To suppress interference from unwanted sources, nulls can be imposed in the beampattern
at the appropriate directions. Most interference cancelling methods use adaptive tech-
niques (as described in the following section) to automatically place nulls in the directions
of the dominant jammers. Another approach is to design the beamformer such that the
beampattern is close to some desired beampattern, and additionally displays nulls at the
required directions. For the case of M < N interferers (where IV is the number of sensors),
M degrees of freedom are used to cancel the interferers with the remaining N — M degrees
of freedom used to approximate the desired beampattern. The problem can be stated

mathematically as:

min / 2(0) [ra(6) — r(O)] o,

subject to r(6,,) =0, m=1,... M,

where 74(0) is the initial quiescent beampattern with no nulling, 6,,,m = 1... M are the

interference directions, and p(6) is a weighting function.

It has been shown [84] that for the case of a linear equally spaced array (and a uniform
weighting function), the optimum solution for the constrained beampattern is the super-
position of the quiescent beampattern and a set of M weighted (sin Nz/sin z) beams, with

each beam centred exactly at the corresponding pattern null.

Narrowband Adaptive Array Techniques

The conventional narrowband beamformer described above may not provide the amount of
interference suppression required in many situations. Better noise suppression is afforded
through statistically optimum techniques. These techniques attempt to choose the array
weights such that the desired signal is enhanced and the interfering noise sources are
suppressed, based on the statistics (usually second order) of the received array data [63].
Since the statistics of the array data are usually not known, the optimum solution is
estimated from the available data in a time-dependent (or adaptive) fashion. Hence, these
beamformers are referred to as adaptive arrays. In what follows we assume that the second

order statistics of the array data are used.
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Many criteria have been proposed for choosing statistically optimum beamformer weights.
Three of these will be briefly described to give a flavour of the available methods (see
[33, 36,45, 63,97] for a complete review).

To set notation, consider an array of N sensors. Let y be the N vector of received
signals at the array inputs. To simplify notation the time dependence of y is ignored. The
beamformer output is

Z = WHy,

where w is the IV vector of array weights. The average output power of the beamformer

is given by

R, £ E{z2*}

= WHRyW

where R, = E{yy"”} and E{-} denotes expectation. The goal of adaptive arrays is to use

the statistics of the received array data to estimate the desired signal.

1. Reference Signal: If the desired signal were known, then the mean square error
between the actual output z = wy and the desired signal could be minimised. In
practice, enough may be known about the desired signal that it may be represented by a
reference signal z4. For example, if the desired signal is an amplitude modulated signal,
the carrier could be used as the reference signal. This approach was considered by Widrow

et al. [101]. The criterion used is
min E{|zg — wy|*},
W
and the optimum weights are

w = [E{yy™}]" E{yz}.

2. Multiple Sidelobe Canceller: The multiple sidelobe canceller [2] consists of a main,
high gain channel (which may be either a single directive antenna or one of the conventional
beamformers described above) pointed at the desired source and N auxiliary channels
which are beamformed to form a single auxiliary output. This single auxiliary output is
subtracted from the main channel output with the aim of removing the interference in
the main channel. The auxiliary channels receive noise which is correlated to the noise
present in the main channel, and the goal is to choose the auxiliary channel weights to

cancel the main channel interference component. The criterion used is to minimise the
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expected value of the total output power, i.e.,
Hvbin E{|zm — wa'lyal|?},

where z,, is the output of the main channel, and w, and y, denote the weights and data

of the auxiliary channels respectively. The optimum weights are

Wq = [E{YaYaH}] - E{Yaz;}'

Because the total output power is minimised, cancellation of the desired signal may occur
since it also contributes to the total output power. Hence the multiple sidelobe canceller
is only effective in situations where the desired signal is either very weak, or is known
to be absent during certain time periods (within these periods the auxiliary beamformer

weights are adapted).

3. Application of Linear Constraints: A more flexible approach to adaptive beam-
forming is provided by the linear constrained minimum variance (LCMV) beamformer.
The idea here is to constrain the beamformer response so that signals from a desired
direction are passed while the total output power of the system is minimised. This has
the effect of suppressing unwanted noise and interference while passing the desired signal
with specified gain and phase. The constraint is written in general form as CHfw = f. To
constrain the response to have a gain of g in the direction 64, the constraint reduces to
a(0y)"w = g*. Recalling that the expected value of the output power is E{|wy|?}, the
LCMYV criteria is

min WHRyW subject to CHw =T,
W

where R, = E{yy™}. This may be solved using Lagrange multipliers to give
w=R,'C[C'R,~'C]f. (1.5)

The single linear constraint is easily extended to L multiple constraints by making C
an N X L matrix and f an L dimensional vector. For example, if it is desired to pass

signals from direction #; with gain ¢g; and signals from direction 62 with gain g5, then the

(ot~ (2
a(f)" g

There are several different types of constraints which may be applied including point (as in

constraints are written

the above example), derivative [26], and eigenvector [9]. The design of adaptive antennas

which are robust to errors in the assumed model (such as errors in the assumed look
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direction, array weight errors, errors in the assumed signal bandwidth, etc.) is presented
in [1,27].

An alternate formulation of the LCMV problem is provided by Griffiths and Jim [37].
This formulation, the generalised sidelobe canceller, essentially transforms the constrained
LCMYV problem into an unconstrained form, and provides insight and simplifies implemen-

tation.

Second Order Statistics: All of these optimum solutions assume knowledge of the
second order statistics of the array data. In practice this knowledge is rarely available,
but with the assumption of ergodicity it may be estimated from the available data. There
are two basic approaches: (i) estimate the data covariance matrix by time averaging the

array data, i.e.,

R, == yt)y®)",

t=1

Nl =

or (ii) use a recursive technique, such as the well known least mean squares (LMS) algo-
rithm, to adapt the weights such that they converge towards the optimal solution. Refer

to [45, 63] for a description of adaptive beamforming algorithms.

Narrowband Direction of Arrival Estimation

Another important problem in narrowband beamforming is the estimation of the directions
of arrival (DOAs) of multiple source signals. For example, in passive sonar, the received
signals from an array of hydrophones are processed to estimate the direction (and usually

range) of sources.

Consider an array of N sensors, with D < N farfield source signals arriving from
directions © = [#y,... ,0p], where 6, is the direction to the dth source. The N vector of

array outputs at time ¢ is

y(t) = A(©)s(t) +n(t), (1.6)

where A(©) = [a(6y),...,a(fp)] is the N x D source direction matrix, s(¢) is the D
vector of source signals received at the first sensor, and n(¢) is the N vector of additive
white noise terms, assumed to be Gaussian distributed. The problem is to determine the

source directions O from the array data vector y(t).
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Figure 1.4: Beamformer-based spatial spectrum for 3 sources impinging from © =
[—30, 15, 20] with powers of -3 dB, 6 dB, and 6dB respectively.

The simplest technique for determining the source directions is through the beamformer-

based spatial spectrum, defined as
B(6) = a(6) "R, a(6),

where

R, = E{y(t)y(t)"}

is the array data covariance matrix. The estimated source directions are given by the D
values of 6 for which B(0) is maximised. This method has the advantage of computational
efficiency and ease of implementation. However, its main drawback is that the resolution

is completely determined by the array size.

An example spatial spectrum is shown in Fig. 1.4 for three sources impinging on a 15
element narrowband array. This figure clearly shows the poor resolution of this method;
sources closer together than a beamwidth cannot be resolved. The resolution capability of

the beamformer-based method for two closely spaced sources has recently been presented
[110].

To overcome the lack of spatial resolution, the so-called high resolution methods were
developed. These methods are based on exploiting the eigen-structure of the data co-

variance matrix. An example is the multiple signal classification (MUSIC) technique [80]
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Figure 1.5: MUSIC spatial spectrum for 3 sources impinging from © = [—30, 15, 20] with
powers of -3 dB, 6 dB, and 6dB respectively.

which is discussed in detail in Chapter 6. Figure 1.5 shows the corresponding MUSIC
spatial spectrum for the example used in Fig. 1.4. Clearly, MUSIC is able to discrimi-
nate between closely clustered sources. The statistical properties of the MUSIC estimator
have been analysed, including the estimate variance [87], bias [107], and the probability

of resolution of two closely spaced sources [109].

1.1.3 Broadband Beamforming

Narrowband beamforming methods assume the signal bandwidth is sufficiently narrow
that it may be considered to consist of only a single frequency. In practice, all signals
of interest have a non-zero bandwidth, and in many cases the fractional bandwidth is
very wide (a significant fraction of the central frequency). For example, sonar signals
and speech signals both cover several octaves. In these situations, the assumption of a
single frequency produces poor results. For example, Fig. 1.6 shows the response of a
narrowband beamformer designed for operation at 1000 Hz, operated over a bandwidth
of 500-3000 Hz. At frequencies below 1000 Hz the main beam spreads out and spatial
resolution is lost. At frequencies above 1000 Hz the main beam becomes narrower until,
at approximately 1800 Hz grating lobes (i.e., periodic repetitions of the mainlobe) begin
to appear in the beampattern. The appearance of grating lobes is referred to as spatial
aliasing and is caused by undersampling the spatial waveform, in the same way as temporal

aliasing is introduced in time-sampled signals if the sampling rate does not satisfy the
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Figure 1.6: Response of a narrowband beamformer operated over a broad frequency range.

Nyquist criterion. Clearly, the spatial resolution varies significantly with frequency; this

is unacceptable for broadband applications.

In RF applications, a broadband antenna generally contains a self-similar geometry
which allows its pattern and impedance characteristics to be essentially frequency invariant
[13]. Examples of such antennas are the spiral antenna and log-periodic dipole array,

shown in Fig. 1.7. The feature of these antennas is that the size of the effective radiating

(a) (b)
Figure 1.7: Examples of broadband antennas: (a) spiral antenna, and (b) log-periodic
dipole array.

aperture in terms of wavelength does not change. For example, the log-periodic dipole

array consists of dipoles of unequal lengths and nonuniform spacings (with the lengths
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and spacings satisfying a geometric relationship). At the operating frequency the active
part of the array consists mainly of those dipoles whose lengths are approximately a half-
wavelength. Because of the self-similarity of the array geometry, the antenna response will

be approximately frequency independent over a wide frequency band.

Broadband beamforming concerns the problem of providing spatial filtering in an envi-
ronment in which the signals of interest cover a wide frequency band. In such an environ-
ment the narrowband beamformer shown in Fig. 1.3 is not particularly useful, since the
beampattern varies with frequency in an uncontrolled (yet predictable) way, as demon-
strated by Fig. 1.6. It is common in broadband beamforming to replace the sensor weights

in Fig. 1.3 by sensor filters. The broadband beamformer response is given by

N-1

(0, f) = Z Hy,(f) exp[s2m f7,(0)], (L.7)

n=0

where H,(f) is the filter on the nth sensor. In a digital system, the sensor filters are
implemented by L-tap FIR filters as
L-1
H,(f) = Z hn[k] exp[—y2m fTk],
k=0

where T is the sampling period, and hy,[-] are the filter coefficients. Such a structure is

referred to as a tapped delay line beamformer or simply a broadband beamformer.

The response of a broadband beamformer may be written in vector form as
r(6, f) =n"d(9, f),

where

b= [hol0].... hyoal0]. holL — 1],y —1)]

is the N L vector of filter weights,

d(0,f) =e(f)@a(@,f)

is the NL delay vector, ® denotes the Kronecker product,
T
e(f) = [1’6—327rfT’”. ’e—jZWf(L—l)T:|
is the L dimensional Fourier transform vector, and

ald,f) = [eﬂﬂfTo(g)’ o ’6327rf7N_1(9)]T
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is the N dimensional broadband array response vector.

Broadband Beam Shaping Techniques

A significant difference between narrowband and broadband beamformers is in the beam
steering techniques employed. Whereas beam steering can be achieved in a narrowband
beamformer using phase delays, true time delays are required in a broadband beamformer
to implement beam steering. In RF applications this requires switching in added lengths
of transmission line to effect the time delay. Fractional delay FIR filters [56] can be used

in digital beamforming to produce the required time delay.

Most of the techniques described in §1.1.2 for shaping a narrowband beampattern are
not applicable to broadband beamforming with the tapped delay line structure described
above. One approach is to carry out an FFT at each sensor, divide the data into separate
narrow frequency bins, and perform narrowband beamforming (using the structure of
Fig. 1.3) in each narrow frequency band. This is referred to as frequency decomposition.
The major disadvantage with this method as opposed to the tapped delay line beamformer

is the additional computation required by the FFT operation.

It has been noted in [43] that, for the case of an equally spaced array, there is a two
dimensional Fourier transform relationship between the filter coefficients and the beampat-
tern of a broadband beamformer. This provides a simple means of designing the sensor
filters for a desired broadband beampattern. However, as explained in Chapter 2, we
believe it is more appropriate to use a nonuniformly spaced array for broadband beam-

forming, and thus seek a more generally applicable solution.

For a general array geometry, the following Lo optimisation method may be used. Let
rq(0, f) be a desired broadband response. If it is sampled at P > NL points in (6, f)
space, then the following well known over-determined least squares minimisation problem
is obtained:

min [Dh — x|,

where D = [d(61, f1)---d(0p, fp)] and rq = [rq(61, f1) - - - rq(0p, fp)]. The solution to this
problem is
h = DTI‘d

where D is the pseudo-inverse of D. Although this is a reasonably simple procedure,
it provides no insight into the underlying structure of the broadband beamforming pro-
cess. A general broadband beamforming technique which is more insightful and simplifies

implementation is developed in this thesis.
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Broadband Pattern Nulling

In phased arrays, where the beamformer weights are fixed as a function of frequency,
wideband pattern nulling is effected by placing multiple pattern nulls in the vicinity of the
wideband source direction. Because the beampattern scales with frequency, a null trough

of width Au centred at ug (where u = sin @) will provide suppression over a bandwidth of

Af  Au
foug’
where fj is the centre frequency of the band. The number of pattern nulls required within

an angular region to give a desired suppression has been considered by Steyskal [85].

For a broadband beamformer with N L free parameters, M degrees of freedom can be
used to impose the null in the given direction, with the remaining N L — M degrees used to
approximate some desired broadband pattern. An obvious way to formulate the problem

18:

min / / ) [ra(6, ) — (0, ) 8 df,

subject to r(0g, fm) =0, m=1,... M,

where 6y is the direction of the null, and ¢(6) is a weighting function. Based on the work
of Steyskal, the number of constraints required for a frequency invariant beamformer to
provide a given amount of suppression over a given bandwidth is derived in Chapter 4.
With the formulation above it appears that to produce an exact null (i.e., a response which
is zero for all frequencies) in a given direction requires an infinite number of constraints.
However, by reformulating the problem, it is also shown in Chapter 4 that an exact null

can be imposed with a finite number of constraints.

Broadband Adaptive Array Techniques

For a broadband beamformer with N sensors each having a filter with L taps, there are
NL free parameters. The broadband LCMV beamformer applies P < N L constraints (in
space and/or frequency) and uses the remaining degrees of freedom to minimise some cost
function. An example is the Frost beamformer [32] in which L degrees of freedom are
used to maintain a desired frequency response in the look direction, while the remaining

NL — L parameters are used to minimise the output power.

Through the development presented in Chapters 2 and 3, the number of free parame-

ters for the frequency invariant beamformer is significantly reduced. In fact, it is shown
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that the number of parameters requiring adaptation is independent of both the number of
sensors in the array and the bandwidth of operation. This reduces the number of param-
eters requiring adaptation, thus reducing the computational complexity of the adaptation

algorithm. A simple LCMV algorithm for the FIB is given in Chapter 3.

Broadband Direction of Arrival Estimation

Several methods of broadband DOA estimation have been proposed based on the coherent
signal subspace method of Wang and Kaveh [99] (for example [31, 55, 59]). These methods
are based on frequency decomposition. The wideband array data is first separated into
several non-overlapping narrow frequency bins. Focusing matrices are then calculated
which transform the data in each bin into a reference frequency bin. A composite co-
variance matrix is formed from the transformed array data, and conventional eigen-based
DOA methods (such as MUSIC) may then be applied. Again, this frequency decomposi-
tion approach adds a large computational burden to the method. Using the results of the
frequency invariant beamforming theory developed in Chapter 2, an alternative approach

to broadband DOA estimation is presented in Chapter 6.

1.2 Contributions of Thesis

The primary motivation of this thesis is the problem of broadband frequency invariant
(FI) beamforming, or beamforming in which there is little variation of the spatial response
with frequency over an arbitrary defined bandwidth. In solving this problem we formulate

design techniques which are applicable to a wider class of broadband beamformers.

The main theme throughout the thesis is in gaining an understanding of the underly-
ing structure of the beamforming problem, and exploiting this structure to simplify the
beamformer design, rather than blindly applying optimisation procedures to solve for the

required beamformer design parameters.

One important approach we have taken is that properties are derived based on a the-
oretically continuous sensor. By using this continuous sensor, mathematical relationships
between the functional requirements of the broadband beampattern and the beamformer
structure are readily derived—in much of the literature, uniformly spaced arrays are used
for the same reason. However, since we believe it is more appropriate to use nonuniformly
spaced arrays for broadband applications (see Chapter 2), we do not want to be restricted

to uniform array geometries and have instead chosen to formulate the problem in terms
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of the continuous sensor. Using a finite number of discrete sensors (i.e., an array) is then

considered as an approximation to the continuous sensor.

To demonstrate this philosophy, consider the response of a broadband, linear, continu-

ous sensor to plane waves impinging from the direction 6 (measured relative to broadside):
(0.0) = [ pla.f)erte s g, 18)
R

where p(z, f) is the sensor illumination function (or gain of the sensor at a point = for a
frequency f), and c is the speed of wave propagation. As shown in Chapter 5, the sensor

illumination function required to produce a given broadband response is

plz, f) = %/T‘(Q,f) e=r2mfzeTlsing oo 0 dp. (1.9)

This formulation gives the required illumination function to achieve a desired broadband
response, arbitrarily specified over both angle and frequency. A result using the two di-
mensional Fourier transform has been presented in [43] for an equally spaced array, but
a general result for an arbitrary array geometry has not been presented. As shown in
Chapter 2, we can consider a beamformer as an approximation to the theoretical continu-
ous sensor. Thus, realizing the broadband response with a finite array of discrete sensors
reduces to the problem of providing a numerical approximation to the family of integrals
in (1.8).

A block diagram of the topics presented in this thesis is shown in Fig. 1.8. The contri-

butions made for each of these topics is summarised below.

1. Frequency Invariant Beamforming Theory
The theory of a general class of beamformers in which the spatial response is (ap-
proximately) constant over an arbitrarily wide bandwidth is developed in Chapter 2.
A frequency invariant property is first developed for a theoretical continuous sensor,
and beamforming with an array of discrete sensors is then formulated as an ap-
proximation to this continuous sensor. Some simple structural properties implicit in
the frequency invariant beamforming problem are highlighted by this development,
thereby simplifying the implementation and reducing the number of free variables
which have to be chosen in designing the beamformer. The frequency invariant
beamforming theory is then generalised to cover a parameterised class of beamform-
ers in which the frequency dependence of the beampattern can be controlled in a
continuous manner from a classical single frequency design to a frequency invariant

design.



1.2 Contributions of Thesis

21

Broadband - Controlled G |
Direction requt.:ncy Frequency enera
. Invariant . Broadband
of Arrival B formi Variant B formi
Estimation camiorming Beamforming camrorming
Discrete-time
Implementation
Nearfield
Broadband Broadban‘d
. Pattern Beamforming
Experimental Nulling
Microphone
Array

Figure 1.8: Block diagram of topics presented in thesis.

2. Implementation of a Frequency Invariant Beamformer

Discrete-time implementation of the frequency invariant beamformer is considered in
Chapter 3. Using the theory developed in Chapter 2, it is shown that there is a single
set of reference coefficients which defines the FI beampattern over the entire design
band, regardless of the number of sensors in the array or the operating bandwidth.
Furthermore, we show that these coefficients may be obtained directly from the
desired FI beampattern function. Experimental results obtained from a microphone
array are presented to test the validity of the frequency invariant beamforming theory

in a practical setting.

. Broadband Pattern Nulls

The problem of producing a pattern null which covers a wide frequency band is
considered in Chapter 4. Specifically, given a set of coefficients h which produces
some desired broadband response (6, f), the aim is to find the coefficients h which
produce a broadband response #(6, f) which is close in some respect to the original
response 7(6, f), but exhibits a broadband null in a specified direction. Several
formulations of this problem are considered, and two new results are presented.
These are (i) producing an exact null, i.e., a null which is present over all frequencies,
and (ii) determining the number of degrees of freedom which must be used to impose

a null of a given depth in a frequency invariant beampattern.
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. Nearfield Broadband Beamforming

A new method of nearfield broadband beamforming which allows the design of
nearfield beamformers having an arbitrary (in both frequency and angle) broad-
band beampattern is presented in Chapter 5. The method is significantly different
from existing nearfield beamforming methods which use farfield design techniques
and then apply time delays to compensate for the spherical distortion caused by
nearfield sources. Rather, spherical harmonics are used to transform the entire de-
sired nearfield beampattern to an equivalent broadband farfield beampattern, and
a farfield beamformer is then designed to achieve the transformed farfield beampat-
tern. A general method of designing a farfield beamformer (with a nonuniformly
spaced array geometry) having an arbitrary (over both frequency and angle) beam-
pattern is also presented as part of the design methodology. This is referred to
as general broadband beamforming, and is shown to describe a very large class of
beamformers, including the classical single frequency beamformer and the frequency

invariant beamformer developed in Chapter 2.

. Broadband Direction of Arrival Estimation

Chapter 6 presents a new method of high resolution direction of arrival (DOA) esti-
mation for multiple farfield broadband signals. The frequency invariant beamformer
is used to perform beamspace processing, such that (almost) identical source direc-
tion vectors are produced for all frequencies within the design band. This effectively
focuses the beamspace data without requiring the frequency decomposition approach
of most other broadband DOA methods. By avoiding frequency decomposition, the

computational complexity of the DOA estimation process is reduced.



Chapter 2

Theory of Frequency Invariant

Beamforming

N MANY applications it is desirable for a broadband beamformer to have spatial reso-
Ilution which is constant over the entire bandwidth of the source signals. For example,
in speech acquisition with a microphone array the spatial resolution must remain constant
over the entire speech bandwidth, which covers approximately four octaves. Signals with
a bandwidth of several octaves are also encountered in sonar applications. A beamformer
which maintains a constant spatial response over an arbitrarily wide bandwidth will be

referred to as a frequency invariant beamformer or a FIB.!

2.1 Introduction

Several methods of designing a FIB have been proposed. These are briefly reviewed to

motivate the solution proposed in this chapter.

Harmonic Nesting

Harmonic nesting is an approach which has often been used for designing microphone
arrays for speech acquisition [28,35,51]. It is based on the fact that an equally spaced
array with an inter-sensor spacing of d will exhibit the same beampattern at a frequency

f as an equally spaced array with inter-sensor spacing d/2 (and the same array weights)

!The acronym FIB is actually very apt, since it is not possible to obtain a spatial response which is
strictly frequency invariant using a finite number of discrete sensors (except in trivial cases). Claiming we
can design a frequency invariant beamformer is truly something of a fib.

23
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will at a frequency 2f. The beamformer is composed of a set of nested equally spaced
sub-arrays, each of which is a single frequency design. Bandpass filters are used to combine
the sub-array outputs such that the appropriate sub-array is used for each octave. The

idea is to reduce the frequency variation to that which would occur in a single octave.

Constrained Harmonic Nesting

Using the same nested array geometry as harmonic nesting, the sub-array outputs of two
arrays “spaced” an octave apart are combined by two compensation filters, one on each
sub-array output. These compensation filters allow two spatial constraints to be main-
tained over that octave, e.g. a unity constraint at broadside and a half-power constraint on
the main beam width [44, 83].2 Again, bandpass filters can be used to apply this technique

over several octaves [57].

Frequency Sampling Method

Another approach based on the harmonic nesting array geometry is the frequency sampling
method [15]. At each of K frequencies within each octave band, the required sensor weights
are calculated by taking the inverse discrete Fourier transform of the sampled desired
pattern. An FIR filter is then designed for each sensor to realize the sensor weight at each
of the K frequencies. This method has been shown experimentally to achieve very good
results [14]. However, because of the use of the discrete Fourier transform it is restricted

to a uniformly spaced array geometry (within each octave band).

Multiple Beamforming

The main-beam width of a narrowband beamformer decreases as frequency increases. If
several overlapping beams are simultaneously formed, the width of the resulting multi-
beam may be kept constant by increasing the steering angle of the outermost beams as
the beamwidth decreases [34, 95].

Optimisation Methods

The problem of determining the sensor gains and locations may be treated as a multi-

dimensional optimisation problem [7, 81]. These methods do not use frequency dependent

2This method is sometimes referred to as the SHA technique, named after its inventors (Smith, Hixson
and Au).
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sensor gains, but instead attempt to find optimal sensor spacings and (fixed) gains by
minimising the array power spectral density over a given frequency band. Because the
sensor gains are frequency independent, the simple narrowband structure shown in Fig. 1.3
may be used. However, as demonstrated by Fig. 1.6, it is impossible to achieve a broadband
frequency invariant beampattern using fixed sensor gains. In addition, these methods are
very computationally intensive and provide no insight into the inherent structure of the

problem.

Space Tapering

Doles and Benedict [20] have proposed a method in which the beampattern has little
or no frequency dependence. The asymptotic theory of unequally spaced arrays [47, 48]
is used to derive relationships between beampattern properties (such as peak response,
mainlobe width, plateau sidelobe level, and clean sweep width) and beamformer design.
These relationships are then used to translate beampattern requirements into functional
requirements on the sensor spacings and weightings, thereby deriving a broadband design.
This results in a space tapered array with frequency dependent sensor weightings; at each
frequency in the design band the nonzero sensor weights identify a sub-array having total
length and largest spacing which are appropriate to that frequency. Doles and Benedict
minimise the number of sensors by allowing spacings within the active sub-array which
are greater than half a wavelength.? This causes spatial aliasing, which is then controlled
by placing constraints on the aperture distribution. Although this method provides a
frequency invariant beampattern over a specified frequency design band, it is based on a
linear array and a single-sided uniform aperture distribution with flat phase. No insight is
given into the problem of designing double-sided or higher dimensional arrays, or arrays
with arbitrary aperture distributions in both magnitude and phase (and thus arbitrary
beampatterns). However, unlike most other methods it does allow nonuniformly spaced

arrays.

Proposed Method

None of the existing methods suitably solve the general problem of designing a beamformer
with an arbitrary beampattern which is frequency invariant over an arbitrary bandwidth
and which may be applied to linear, planar, or three dimensional array geometries. This

lack of a very general solution is addressed in this chapter. The proposed solution takes the

3 A spacing of \/2 is typically the maximum spacing used. This prevents grating lobes—periodic repe-
titions of the main beam—from appearing.
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space tapering idea of [20] further by developing an FI beampattern property (applicable
to one, two or three dimensional geometries) for a theoretical continuous sensor. The
continuous sensor approach follows from the following observation: to obtain an identical
beampattern at K discrete frequencies requires a compound array of K sub-arrays (having
the self-similarity property as outlined in the harmonic nesting approach). Thus to provide
an identical beampattern over a continuous range of frequencies requires an infinite number

of sub-arrays, or a continuous sensor.

For a continuous sensor, the space tapering approach dictates that if an aperture func-
tion A(x) (where z denotes location) is used at a frequency f1, then an aperture function
A(z fa/ f1) should be used at a frequency fo to obtain an identical response (ignoring gain).
In other words, the aperture function should scale inversely with frequency to maintain a
constant spatial response (ignoring gain). This is well known from antenna theory and is

the basis of the spiral antenna and log-periodic dipole array described in Chapter 1.

The contributions made by this chapter are: (i) formalising the above space tapering
idea for one, two and three dimensional sensors, (ii) relating this to a functional filtering
requirement at any point on the continuous sensor, and (iii) demonstrating that a frequency
invariant beamformer (using a nonuniformly spaced array) can be easily designed as an
approximation to a theoretically continuous sensor having a frequency invariant response.
An important consequence of this development is that there are specific simple structural
properties that are implicit in the FIB. Such structural properties reduce the number of
free variables which have to be chosen in designing the beamformer, thus simplifying the
design process. The chapter concludes by showing that the FIB is a special case of a more
general class of beamformers in which the frequency variation of the beampattern can be

controlled.

2.2 Linear Frequency Invariant Sensor

Consider a one dimensional (linear) continuous sensor. The response of the sensor to plane
waves (i.e., from a farfield point source) impinging from an angle # measured relative to

broadside with propagation speed c is
0.0 = [ pla.g) erie =0, (2.)
R

where p : Rx Rt — C defines the sensor sensitivity distribution, i.e., the gain of the sensor

at a point z for a frequency f. It is assumed that the sensitivity distribution is absolutely
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integrable and that for a practical finite-aperture sensor, the function p(zx, f) has finite

support in z.

Theorem 2.1 (Frequency Invariant Beampattern) Let the sensitivity distribution
of a one dimensional sensor, which is a function of distance = along the sensor and frequency

f, be given by

plz, f) = fG(xf), Vf>0, (2.2)

where G: R — C is an arbitrary absolutely integrable complex function of a single real
variable. Then the farfield response, r(6, f), which is a function of the angle § measured

relative to broadside and frequency f, will be frequency invariant, i.e.,

(0, f) =rp(0) = / eJZWC*lgsinaG(ﬁ) dg.

R

O

Proof: Substituting p(z, f) = f G(zf) into the expression for the sensor response (2.1),

yields
r(6, f) = / e T f G ) da, f >0
R
— / ej27rc*1§sin9G(§) df éTFI(Q)
R
with the change of variables £ = z f. |

This theorem simply expresses the known result that the aperture illumination scales
with wavelength (or inversely with frequency) to maintain the same response (ignoring

gain); the multiplicative f term is used to normalise the response.

Note that the functions G(-) and rg(-) form a Fourier transform pair (modulo the sin §
distortion); this Fourier pair relationship is exploited in Chapter 3 to simplify the imple-
mentation of the FIB. Hence it is straightforward to take any beam response specification
and translate that to a specification on the aperture illumination to achieve a broadband

FI response.

Theorem 2.1 specifies a sufficient condition on the aperture sensitivity distribution to

produce an FI beampattern. The necessary condition is stated by the following theorem.

Theorem 2.2 (Sensitivity Distribution) Let () be an arbitrary continuous square-

integrable frequency invariant farfield response, which is specified for § € (—m/2,7/2).
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Then the sensitivity distribution, p(x, f), of a linear sensor which realizes this response

must satisfy the following conditions:

1. p(z, f) = fG(xf) for some function G.

2. G has a Fourier transform I' satisfying

(a) T(s) = B(s) = rp (sin"'(sc)), s€(—1/c,1/c)
(b) T(s) = A(s), s¢(=1/c,1/c)

where c is the speed of wave propagation, and A(-) is an arbitrary square integrable

function such that

A((=1)"/e) = lim B(s)

s—)—(_l)i
c

for i =0,1.
O

Proof: Assume that a frequency invariant response r(0),0 € (—7/2,7/2) is given.

Rewrite (2.1) as
B@Zép@J%””f%hSHAMU@ (2.3)

with the change of variables s = ¢~!sinf and y = «f.

Since B(s) is frequency invariant, the integrand must also be frequency invariant.
Therefore define G(y) = f~'p(y/f, f), for some function G(-). Equation (2.3) can now be

rewritten as

B@zéawwwwzf%am

where F{-} represents the Fourier transform. G(y) has an inverse Fourier transform, I'(s),

satisfying
B(s), se€(=1/c,1/c)

A(s), otherwise.

L(s) = F H{G(y)} = {

By Plancherel’s Theorem [73, p.2], the function G(-) is uniquely determined from I'(-) if
B(-) and A(-) are both square-integrable functions, and

A ((_l)i) = lim B(s)

¢ S—)—(_l)l
c

for i =0, 1. ]
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It is instructive to consider the following analogy.* Consider a bandlimited function

H(f) specified only for f € (—F, F). This has an inverse Fourier transform of

h(t) = ha(t) + ha(t)

where
_ H(f)a fE(—F,F)
Fim®) = { 0, otherwise
and
0, f€(=FF)

Fha(t)} = { A(f), otherwise

where A(-) is an arbitrary function. Hence, any high frequency perturbation in the function
h(t) will not produce any effect on the function H(f), f € (—F, F).

Thus the only freedom in choosing p(zx, f) for a desired FI beampattern is in the
sufficiently high “spatial frequency” behaviour of G. Apart from that, rg(6) for 6 €
(—m/2,7/2) determines p(z, f) uniquely.

2.3 General Frequency Invariant Sensor

Having developed the necessary and sufficient conditions for an FI linear sensor, a more
general FI theory which is applicable to an arbitrary (physical)® sensor geometry is now

developed.

First, consider a two dimensional (planar) sensor. The response to an impinging plane

wave from direction © = [0, ¢] as defined by Fig. 2.1 is
r(Oe, f) = / p(x, f) exp [)2mc ! f(z1sin 6 + 25 cos O cos @) dx,
R2

where x = [x1,25]” is a point on the sensor. By substitution, it is seen that if p(x, f) =
f2G(x1f,22f), then (0, f) = rp;(0) is an FI response.

“This is not the precise analogy (which would instead consider a finite duration time signal) but is
equally valid, however, due to the duality property of the Fourier transform.

°In the following it is assumed that the sensor dimension D € {1,2,3}. However, it is mathematically
possible to design a beamformer which is frequency invariant in some fractional dimension. Whether a
fractal FIB is useful in practice is questionable, and has not been explored further.
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Figure 2.1: Coordinate system for a plane wave arriving from the direction © = (6, ¢).
Note that this differs from the conventional right-hand coordinate system.

Similarly, the response of a three dimensional sensor to planar waves from a direction

©=1[0,4] is
r(O, f) = / p(x, f) exp [‘727rc*1f(x1 sin 6 + x9 cos f cos ¢ + 3 cos Osin ¢)| dx,
R3

where x = [z1, x9, J:3]T is a point on the sensor. Again, by substitution the response is FI

if ,O(X, f) = f3G($1f,l'2f, $3f)

In summary, the sufficient condition for a general FI sensor is described by the following

theorem.

Theorem 2.3 (General FI Sensor) Let the response of a D dimensional continuous

sensor to planar waves impinging from a direction © be given by
rO.0) = [ pxif)esp [i2me fxT1(O)] dx
RD

where D € {1,2,3}, Y(0) = [sinf,cos f cos ¢, cos Osin ¢|”, x = [x1, 2, 23]T is a point on
the sensor, and p : RP x Rt — C is the sensitivity distribution. The sensor has a frequency

invariant response if

p(x. f) = fPG(xf), Vf>0 (2.4)

where G : RP — C is an arbitrary absolutely integrable complex valued function. O
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Proof: Substituting p(x, f) = fPG(xf) yields the following response,

r(O,f) = /]RD fPG(xf)exp []27T671fXTT(@)] dx
:/RD G(€) exp [12ne 1 €TY ()] de,

with the change of variables £ = xf. ||
As an aid in interpretation, the function G(-) which appears in (2.4) will be expressed
in two equivalent representations:
G(xf) = Af(x) = Hx(f), Vx,Vf>0 (2.5)
where Ay : RP — C defines the aperture distribution at a nominally fixed frequency, f,
and Hy : Rt — C defines the primary filter response at a single point, X, on the sensor.

The total filtering required at any point x on the sensor can now be written

p(Xaf) = fDHX(f)

where the f” component will be referred to as the secondary filter response. Separating
the sensor filtering into primary and secondary filter components has practical significance,

as shown in §2.4.1.

Two important properties of the FI sensor arising as a consequence of (2.5) are sum-

marised by the following theorems.

Theorem 2.4 (Filter Shape) If Hx(f) denotes the frequency response of the primary
filter at point x and Ay(x) denotes the aperture distribution for a given frequency f > 0,

then for a frequency invariant D dimensional sensor,
Hx(f):A”x”(st), XERD, f€R+7 D€{11273}7

where

. X
X=-— . xeRP

=1’

defines a unit vector in the direction of x, and || - || denotes Euclidean distance. O



2.3 General Frequency Invariant Sensor 32

Proof: The proof follows from the following straightforward manipulation:

Hx(f) = G(xf)
= G(f x|

= A (FX).

This result says that the primary filter response required at point x can be obtained
by taking a slice through the aperture distribution from the origin in the direction of x.
The aperture distribution can be determined from the desired FI response and vice versa.

In the one dimensional case the result reduces to

A (f), ifz>0

Ha(1) = { A (=), ifz<0.

Note that the subscript on the aperture function needs to be positive since it denotes the

frequency of interest.

Theorem 2.5 (Filter Dilation) All primary filter responses in a D dimensional fre-

quency invariant sensor for a given X are identical up to a frequency dilation. O

Proof: Let Hx(f) represent the primary filter response at an arbitrary point x on a
frequency invariant sensor. Let H,x(f) be the primary filter response at a point yx,

where v > 0. This point lies on the radial line from the origin through x, and implies

(vx) = %. Then
Hox(f) = G(yxf)
= Hx(fo)a

which is a dilation property. |

In the one dimensional case the result is as follows: if H,(f) is the primary filter
response at a point x > 0 on the sensor, then the primary filter response at a point
v,y > 01is given by H,,(f) = G(yxf) = Hz(vf). For v <0, the primary filter responses

need not be related by frequency dilation; this situation is considered in §2.4.4.
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2.4 Frequency Invariant Array Geometries

Having developed the FI theory for a continuous sensor, it is now necessary to consider
an FI array, where an array is defined as a spatially separated set of identical, discrete,
omni-directional broadband sensors. Without loss of generality, initially only single-sided
linear arrays with the first element located at « = 0 will be considered. Issues relating to

more generalised array geometries are discussed later.

2.4.1 Approximation to a Continuous Sensor

An array of sensors can only approximate the ideal FI continuous sensor. Methods of
approximating a continuous sensor exist in the literature [24, 102], however, these methods
are iterative and are unsuitable for the FI beamforming implementation we seek. Thus it
is necessary to determine a numerical approximation to the following family of integrals

describing an FI response:
r(0) = / fG(xf) exp ()2 fc tzsing) dz, f>0. (2.6)
R

To obtain an approximation, let {xn}fl\];ol denote a finite set of N (possibly nonuniformly
spaced) discrete sensor locations. Further, the frequency range of interest is limited to the

band [fr, fu] where f1, and fy are the lower and upper band edges respectively.

An approximation to the family of integrals in (2.6) can be made by the following

simple class of numerical approximations:

N-1
#0) = af > gnHn(f)exp (22 fc  apsing),  f € [fr, fu), (2.7)
n=0

where Hy,(f) = G(zyf) is the primary filter response of the nth sensor, g, is a spatial
weighting term to account for the possibly nonuniform sensor spacings, and « is a normal-
isation constant (usually chosen such that 7(6yg) = 1 where 6y is the direction of the main

beam).

Defining the response of the FIB as in (2.7) leads to the particularly simple block
diagram shown in Fig. 2.2. This diagram shows a number of important features of the
FIB: (i) the primary filters are simple dilations of a single frequency response, defined in
the figure as H(f) = G(x1f); (ii) implicitly, this primary filter response shape is identical
to the continuous aperture distribution in both magnitude and phase; (iii) the primary

filter outputs can be combined via frequency independent spatial weights g, which depend
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O—— H©) H%)
O Hp @

Figure 2.2: Block diagram of a general linear FIB. H(f) is defined as the primary filter
response at .

only on the sensor locations; and (iv) all sensors share a common secondary filter response

af to generate the final FIB output.

A discrete-time implementation of the FIB is considered in Chapter 3.

2.4.2 Spatial Weighting Terms

Three methods of determining the spatial weights are now presented, and the relative

performance of the methods is qualitatively compared.

I. Trapezoidal Integration

The simplest method of approximating the integral in (2.6) is through the well known
trapezoidal integration method. In this case it is easy to show that the spatial weighting

terms can be expressed as a linear combination of the sensor locations, i.e.,

g = Tx, (2.8)
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where g = [90: 915 - --ngl]Ta x = [zg, 1, . --wal]Ta and

-1 1 O
-1 0 1
T-1 (2.9)
- ,
-1 0 1
O -1 1

II. Poisson’s Summation

Using Poisson’s summation formula,® Ishimaru [47] has shown that the response of a

narrowband array, viz.,

N-1

() = Z wy, exp (127 fe 'a, sin ),
n=0
may be expressed as
0
T(e) = Z Tm(e)a

L
rm(0) = / w(m)j—y exp [j2mmu(z)] exp (s27 fe~ o sinf) dr,
0 Xz

where L is the total aperture size, w(+) is a continuous function defined such that w(zx,) =
Wy, and v(+) is defined such that v(x,) = n. Thus, the response of a narrowband array may
be expressed as an infinite sum of continuous aperture responses, with the mth aperture

distribution given by
dv

dz

An important consequence of this formulation is that the mainlobe is described by 7¢(6),

w(z)— exp [12mrmrv(z)] .

while 7, () for m # 0 describe the grating lobes [16]. Because this is an extremely rapidly
convergent series, a reasonably good approximation to the array response in the visible

region is given by

L
r0(0) :/0 w(m)j—z exp (27 fc 'z sing) dr (2.10)

6Poisson’s summation formula is:

Z f(n) = Z /_OO f()e®™™ du.

n=—00 m=-—o00
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(with 71 () and r_1(0) providing small corrections and the remaining terms having negli-
gible effect). Hence, the above formulation is in essence the transformation of a discrete

array into an equivalent continuous aperture distribution.

Theorem 2.1 shows that the response of an FI aperture may be written as

L
re(0) = f/o G(zf)exp (j27TfC_1$SiIl9) dx.

Comparing this with (2.10) and ignoring the f term outside the integral (since it is included
in the FIB after the summation), we find that

w(x);l—; — Gaf).

Recalling that w, = w(z,), the weight of the nth sensor is
dz
wy, = G(J:f)d—y, T = Ty.

Relating this back to (2.7), we see that the frequency dependent weight of each sensor is
given by sampling the ideal FI aperture distribution and multiplying by a spatial weighting
term defined by

d
() = d—i, for x = zp, v =n. (2.11)

The spacing function (2.19) developed in the following section may be differentiated to
yield

(A /2), for 0 < 2, < P2
Ty log <ﬁ> , for P/\TU < xp < L.

(P) —
n

(2.12)

ITI. Least Squares Optimum
The response of a FIB (2.7) can be expressed as
r(0,f) =g'T(0, ),

where

L0, f) = af [Ho(f)exp (127 f70(0)) ... , Hn-1(f) exp (527 frn—1(0))]",

is an N dimensional vector, and 7,,(6) = z,c ! sin 6.
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Define the following cost functional which measures the weighted Loy distance between

a desired FI response and the actual response over the design bandwidth:

/ / (0, 1) |gTT(0, f) = ra(0, )| d6 df
:gTQg—2g qi + qo. 213)

where r4(0) is the desired FI response, (0, f) is a general weighting function,

fu
= A(0, f)d6 df,
Q /f /gso ) do df
fo r3
:/f /ESO Re{rd( )}Re{F(G,f)*}—Im{rd(e)}lm{r(e,f)*})de df,
fuo r3%
:/fL /%Mf ra(6)* dé df,
and
A6, f) =Re {6, £)TO, )"} . (2.14)

Minimising J with respect to g gives the optimum spatial weights as

g™ =Q 'qu. (2.15)

This method finds the real-valued spatial weights which minimise the frequency varia-

tion of the FIB response, in the weighted least squares sense.

Comparison of Methods

For a simple qualitative comparison of the methods, consider the following example for a
FIB with 9 elements and an aperture size of P = 5 half-wavelengths designed to cover the
bandwidth 1000-2000 Hz (with the filters designed using 8th order Butterworth filters as
described in §2.6.1). The beampattern using each spatial weighting method is shown in
Fig. 2.3, calculated at 11 frequencies within the band. Note that despite the additional
computation required by the least squares method, the results are not a great improvement
over the extremely simple trapezoidal integration method. This is true of all examples we
have tried. It is recommended that the trapezoidal integration method be used to calculate

the spatial weights, since this is by far the simplest method. Unless stated otherwise, we
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Trapezoidal

Poisson

Least Squares
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Figure 2.3: Comparison of spatial weighting methods. The beampattern magnitude is
plotted in dB.

will use the trapezoidal method to calculate the spatial weights in the remainder of the

thesis.

2.4.3 Sensor Locations

In determining the sensor locations for the FIB it is desirable to minimise the number of
sensors required while maintaining performance over the design bandwidth. The criterion
employed is to use as few sensors as possible without introducing spatial aliasing. This is

the same criterion used in [20].7

From the theory of linear uniformly spaced arrays [4, 60] it is well known that grating
lobes (i.e., periodic repetitions of the main beam) are introduced into the array response
if the spacing of array elements approaches the wavelength of operation, A. If delay beam

steering is to be applied to the array the constraint reduces to a maximum spacing of A/2.

“In fact, Doles and Benedict do allow a small amount of controlled spatial aliasing by imposing con-
straints on the aperture distribution function.
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For a nonuniformly spaced array the grating lobes smear out into grating plateaus [16],

but the A/2 maximum spacing criterion still holds.

Since the FI aperture size scales with frequency to maintain the same response, the
aperture size is constant if defined in terms of wavelength. Define the finite aperture size
to be P half-wavelengths at all frequencies in the design band. This intuitively leads to
a space tapered array, i.e., at high frequencies a small array is used, and more elements
are added at lower frequencies to maintain the same aperture size of P half-wavelengths.
Thus, for all frequencies except fr some of the sensors will not be used. When a sensor
is used at a particular frequency it will be referred to as being active at that frequency.
The positions of inactive sensors, despite the potential property that they violate the /2

spacing requirement, are irrelevant.

The finite aperture constraint implies the first sensor positioning constraint:

A
Tp = Pé’, (2.16)

where z,, is the location of the active sensor furthest from the origin, and X\, is the
wavelength corresponding to the bandwidth of the nth primary filter, i.e., the highest

frequency at which the nth sensor remains active.

The spatial aliasing constraint defines a second sensor positioning constraint:

A
Tp = Tp—1+ 7", for n > 0, (2.17)

where all symbols have the same meaning as in (2.16).
Combining (2.16) and (2.17) gives

P

Ty = <ﬁ) Zp—1, forn>0. (2.18)

This constraint must be maintained within the desired frequency range to avoid spatial
aliasing. Since spacings less than A\yy/2 will not cause spatial aliasing at any frequency
within the design band, it follows that the spacing within the densest portion of the array
should be A7/2 to minimise the number of sensors. This densely packed portion of the
array should have a total size of PAyy/2 and will contain a minimum of P + 1 sensors,

where, to simplify notation and without a loss of generality, we restrict P € N. Hence,
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the minimum set of locations to avoid spatial aliasing is summarised as

S

Fn, for 0 <n <P,
n—P
m=q PY¥(55), for P<n<N-1, (2.19)
P/\TL, form=N—1,

where A;, and Ay are the wavelengths corresponding to the lower and upper design fre-
quencies respectively, P is the aperture size measured in half-wavelengths, and N is the
number of array elements. In the sense of producing a linear array geometry which avoids
spatial aliasing, this represents the optimal sensor positioning function for a FIB. Note
that the last element is only used at the lowest frequency and in most cases may be left

out without causing significant degradation to the FIB response.

Using this optimal sensor positioning relation, the minimum number of sensors required

to implement a linear FIB over a desired frequency range is

log (%)
s (2]

where [-] denotes the ceiling (next higher integer) function.

N=(P+1)+ (2.20)

The aperture size, P, is chosen as in the case of a single frequency design, i.e., the

aperture should be sufficiently large to achieve the desired beam resolution properties.

2.4.4 Double Sided Linear Array

In conventional single frequency designs, the location of the origin is as much a matter of
notational convenience as any consideration of implementation complexity. However, for

a FIB the position of the array origin can have a dramatic effect on the implementation.

From Theorem 2.5 it follows immediately that for an asymmetric double sided linear
aperture, two distinct primary filter responses are required.® The complexity of each
of these filters is directly dependent on the position of the array origin. An example
double sided aperture distribution and the corresponding real filter responses are shown
in Fig. 2.4. This aperture produces the same beampattern as the single sided aperture
shown in Fig. 2.5. However, by better positioning of the array origin in the double sided
aperture, the required filter responses have a low pass filter shape which will be easier to

implement.

8Clearly, for a double sided aperture distribution which is symmetric about the origin, the same primary
filter response can be used for sensors located on either side of the origin.
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Ap(x)

7 IZ+ 2
H

Figure 2.4: Double sided linear aperture distribution and corresponding real primary filter
responses.

2.4.5 Two Dimensional Array

Theorem 2.5 gives no guarantee that the primary filter responses for two and three di-
mensional arrays will exhibit a dilation property. This is not a restriction on being able
to build a broadband array, it simply restricts the appearance of self-similarities which
may be exploited to simplify the array design. Thus, generally a two dimensional array
corresponds to approximating a double integral in the spirit of (2.7) for the one dimen-
sional case. However, there are at least two special cases which will produce primary
filters which have the same frequency response at more than one position within the ar-
ray. (These cases are discussed for the two dimensional case and are easily extended to

the three dimensional case.) These special cases are illustrated in Fig. 2.6.

I. Separable Aperture Distributions

If the aperture distribution is separable into the product of two one-dimensional aperture

distributions as shown in Fig. 2.6(a), i.e.,
Af(il,‘l,l‘Q) = Alf(azl)AI;(aa)

then the primary filter responses are also separable, meaning that at any point [x1, 23],
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A/,(X)

0

Figure 2.5: Single sided aperture distribution As(x) and corresponding real primary filter
response Hy(f).

Hence at least two, and at most four, different filter responses are required (depending on
whether the component one dimensional arrays are one or two sided). Note that this class

of aperture sensitivities requires that

G(z1f,z2f) = Gi(x1 f)Ga(af).

I1. Discrete Sensor Radial Pattern

If the array elements are arranged in radial patterns from the origin as shown in Fig. 2.6(b),
then each of these radial lines is equivalent to a linear one dimensional array, and thus
each of the primary filters on the radial line is given by a dilation of the same function.
For an array with IV elements which is arranged into K < N different radial lines, there
will be only K distinct filter responses, as opposed to IN. This is true for any arbitrary two
dimensional aperture distribution. In the sense that this does not restrict the aperture
distribution (and thus the desired beampattern) then this type of sensor location pattern
is recommended for any design. Naturally if the desired aperture distribution further
satisfies a radially symmetric pattern the design is further simplified and only a single

filter shape is required, and the discrete sensors need not be restricted to radial lines.
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Afx)

(a)

A%

(b)

Figure 2.6: Examples of two dimensional apertures which produce primary filters having
the same response at more than one location.

2.5 Controlled Frequency Variant Beamforming

Having developed the theory of frequency invariant beamforming, it is now desirable to
generalise this theory to cover a parameterised class of beamformers in which the frequency
dependence of the beampattern can be controlled in a continuous manner. It will be
shown that both the conventional narrowband beamformer and the frequency invariant
beamformer are special cases of this more general beamformer class, which will be referred

to as a controlled frequency variant beamformer (CEVB).

The frequency variation of the CFVB beampattern is controlled as described by the

following theorem. The coordinate system is as shown in Fig. 2.1.

Theorem 2.6 (Controlled Frequency Variant Sensor) Let the response of a D di-

mensional continuous sensor to planar waves impinging from a direction © be given by
r0.f) = [ olx e [zre L FxTT(O)] dx,
RD

where D € {1,2,3}, Y(0) = [sinf,cos f cos ¢, cos Osin ¢|”, x = [x1, 2, 23]T is a point on

the sensor, and p : RP x Rt — C is the sensitivity distribution. The sensor beampattern
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is a function of =7 if

p(x, f) = fPG(xf"), Vf>0 (2.21)

where n € [0,1] and G : RP — C is an arbitrary absolutely integrable complex valued

function. O
Proof: With the substitution p(x, f) = fP"G(xf"), the response becomes

r(O,f) = /RD fP1G(xfM) exp [j27rc_1fxTT(®)] dx

= | G(&exp [p2rc f171ETY(O)] d
RD

with the change of variables £ = xf". ||

The relationship of the CFVB to both narrowband and frequency invariant beamform-
ers is seen by noting that: (i) for n = 0 the beampattern varies directly with frequency
(corresponding to a conventional single frequency beamformer operated over a range of fre-
quencies), and (ii) for n = 1 the beampattern is frequency invariant. Thus, the frequency
variation of the CFVB beampattern can be controlled in a continuous manner from a
classical narrowband beampattern to a frequency invariant beampattern by changing the

parameter 1 € [0, 1].

The importance of the CFVB is that by allowing controlled frequency variation into
the beampattern, less sensors are required than for a corresponding FIB. For example, in
speech acquisition with a microphone array a bandwidth of several octaves is required.
However, it has been shown that directivity is less important at lower frequencies [52].
Thus, it is common to design the beamformer to be FI only over the top two or three
octaves of the speech band, and allow directivity to be sacrificed at lower frequencies.
The CFVB could be used at the lower frequencies to allow more directivity than could be
obtained by a single frequency design, without the requirement for a prohibitive aperture

size.

2.5.1 Properties

Without loss of generality properties of the CFVB will only be given for a single sided
linear sensor aligned with the z axis. The results could be readily extended to a three

dimensional sensor.
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Array Length

Let L; be the length of the active array at frequency fi, and similarly for Lo and fs. The

ratio of active array lengths is given by

Li_ (f2)
- (1)

Aperture Size

Let the active aperture size be P; half-wavelengths at frequency fi, and similarly for P,

and fs. The ratio of active aperture sizes is given by

n—1
% = (%) . (2.23)

Dilation

Represent G(zf") by Af(z) and H,(f) (as in the case of the FIB). Then Theorem 2.5

becomes

Hoo(f) = Ho (7' ), (2.24)

and a similar relation for the aperture distribution is
Ayp(z) = Ap(y"). (2.25)

Thus the filter responses (and aperture distributions) are related by a dilation property
(as was the case for the FIB), but the dilation is not a linear function of the position of

the sensor when n # 1.

2.5.2 Sensor Locations

The method of approximating a continuous frequency variant sensor is identical to that for
an FI sensor (see §2.4.1); only the spacing function requires further comment. The sensor
positioning function for a CFVB with a single sided aperture and the origin at xg = 0 is

given by

)‘TUn, for0<n< Py

xT =
" (pnpﬁl)l'nfl, for Py <n<N -1,

(2.26)
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where

1-1
n
P, = n1< In ) , (2.27)

Tp—1

and Py is the aperture size at fyy. These equations cannot be solved analytically, so the

following recursive procedure is suggested to determine the sensor locations:

1. Choose fr., fu, n, and Py. Calculate Pp from (2.23).

2. Calculate
Prc

$N71::§fz.

3. Repeat

&
2fn+1’

1

fn=11 <xN‘1) " (2.29)

Tn

Ty = Tpt1 — (2.28)

until
< Pye

T — .
R
4. Divide the remainder of the array into Py equally spaced sections (with spacing of

approximately Ag/2).

2.6 Design Simulations

2.6.1 FIB Example

To demonstrate the FI theory, consider the design of a beamformer with a single sided
uniform aperture and an aperture size of P = 5 half-wavelengths. The beamformer is

intended to have an FI beampattern over a 10:1 frequency range.

From (2.20) it follows that a minimum of N = 17 sensors are required to avoid spatial
aliasing. The sensor location relation (2.19) yields the sensor locations shown in Fig. 2.7.
These sensor locations have been made dimensionless by expressing them in terms of Ay /2.
(Using a bandwidth suitable for speech with f7,=300 Hz, fy=3000 Hz, and ¢ = 342 m/s
results in an array that is approximately 2.7 metres long.) Note that in this case the last
sensor (with a relative sensor location of 25), which is theoretically only active at fr, is
very close to the adjacent one and could be left out without causing severe degradation to

the FI response.
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i
0 5 10 15 20 25
Relative Sensor Location

Figure 2.7: Sensor locations for the example FIB, expressed in terms of Ay /2.

For a uniform aperture distribution, Theorem 2.4 implies the use of primary filters
having ideal lowpass filter characteristics. To demonstrate a practical design, consider the
analog implementation of the primary filters with causal 8th order Butterworth lowpass
filters (possessing both magnitude and phase components). This will result in an aperture

distribution having the same Butterworth shape. The magnitude and phase of the practical
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Figure 2.8: Aperture distribution used in the example FIB (solid) and an ideal uniform
aperture distribution (dashed).

aperture distribution are shown in Fig. 2.8 (solid curves) along with the ideal zero-phase
uniform aperture distribution (dashed curves); the spatial variable is expressed in terms of
half-wavelength. Since a Butterworth lowpass filter is not strictly bandlimited, it follows
from Theorem 2.4 that the resultant aperture distribution will not have strictly finite

support; the significance of this statement is made apparent later.
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The beampattern produced by the given aperture distribution is shown in Fig. 2.9 along

with the pattern that would be produced by an ideal uniform aperture. The effect of the

20

Array Response (dB)

=20 —
-90 —60

=30 0 30 60 90
Angle

Figure 2.9: Beampattern produced by the example FIB (solid) and an ideal uniform
aperture distribution (dashed). The patterns are calculated at fi.

nonzero phase component of the aperture distribution is apparent in this diagram. The
negative slope of the phase is approximately equivalent to delay steering, thus resulting in
the main beam being offset from 6 = 0°; this effect could be reduced by use of appropriate

delays across the array. The asymmetric sidelobes are due to the phase non-linearity.

Applying the trapezoidal approximation method described in §2.4.2 results in the fre-
quency invariant beampattern shown in Fig. 2.10 in which the array spatial response is

displayed as a function of frequency over the entire design frequency band. Frequency
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Figure 2.10: Beampattern of example FIB.

has been expressed as multiples of fr. The beampattern is remarkably close to being
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frequency independent with negligible variation in main beam magnitude or beamwidth.
Slight ripple is evident in the sidelobes. The peaks of the sidelobe ripple correspond to

the cutoff frequencies of the sensors given by

_ Pc
2z,

Jn

The peak response of the beamformer as a function of frequency is shown in Fig. 2.11.

The variation in peak response at frequencies close to f; is due to the primary filters

20

o
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1 2 3 4 5 6 7 8 910
Frequency

Figure 2.11: Peak response of example FIB.

not being strictly bandlimited, and thus not placing a finite support constraint on the
aperture distribution. However, because of the finite size of the array, a portion of the
aperture distribution is not realized. This effect is most pronounced at frequencies close
to fr where a significant portion of the aperture distribution is not realized, resulting in a
slight difference in beampattern in the lowest portion of the design frequency band. There
are several methods which could be used to alleviate this inconsistency in the beampattern

at low frequencies:

1. The primary filters could be made strictly bandlimited, thus producing an aperture

distribution which has finite support. (This is not physically realizable).

2. The cutoff frequencies of the primary filters could be reduced so that a negligible
portion of the aperture distribution was discarded at frequencies close to fr. This

is equivalent to lengthening the array to produce the same result.

3. The secondary filter, which depends only on frequency, could be modified such that
the peak main beam level was equalised. This method attempts to compensate for

the loss of a portion of the aperture distribution at low frequencies by weighting the
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remainder of the aperture more strongly. This demonstrates an important practical
consideration of the proposed design method: a simple filter can be used for each of
the N primary filters, and any ripple on the main beam level can then be removed

by modification of the single secondary filter response.

2.6.2 CFVB Example

To demonstrate the use of the CFVB, a simple design example is presented. The design
is for n = 0.75, covers a frequency range of 10:1, and has an aperture size of Py = 5 half-
wavelengths at the upper design frequency. Again causal 8th order Butterworth filters
are used to approximate an ideal uniform aperture distribution. The beampattern of this

design is shown in Fig. 2.12. This figure should be compared with Fig. 2.10 which shows
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Figure 2.12: Beampattern of example CFVB.

the beam pattern of a FIB (i.e. n = 1) with P = 5, designed for the same frequency range.
The CFVB with n = 0.75 has a total length of 14.1\yy and uses 12 elements, compared
with the FIB (with n = 1) which has a total length of 25)\y; and uses 17 elements.

2.7 Conclusions

The general theory of a broadband beamformer having a frequency invariant beampat-
tern over an arbitrarily wide bandwidth has been presented in this chapter. Rather than
the conventional signal processing approach of formulating a multi-dimensional optimi-

sation problem to solve for the beamforming parameters, the fundamental nature of the
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frequency invariant beamforming operation has been addressed. Taking this approach has
revealed implicit relationships between the functional requirements of the frequency in-
variant beampattern and the beamforming structure; these relationships would otherwise

be needlessly buried within an optimisation problem.

It was shown that the frequency response of the filter applied to the output of each
sensor can be factored into two components: (i) a primary filter response which is related
to a slice of the required aperture distribution function, and (ii) a secondary filter which
is independent of the sensor and depends only on the dimensions of the array geometry.
Furthermore, in the case of a linear array (and for suitable geometries in two and three
dimensional arrays) the primary filters are related to each other by a frequency dilation
property. This property is exploited in the following chapter to simplify the discrete-time
implementation of the FIB.



Chapter 3

Discrete-Time Implementation of

a Frequency Invariant Beamformer

3.1 Introduction

HE general theory of the frequency invariant beamformer was derived in the previous
T chapter. An analog implementation is possible by direct application of the equations.
However, as almost all signal processing algorithms are implemented using digital comput-
ers, further development of the theory is required to allow discrete-time implementation.
Specifically, the implementation of the beamforming filters using discrete-time techniques
is presented in this chapter. To simplify the development, and without loss of generality,

only linear single-sided array geometries are considered.

In conventional broadband beamforming techniques, for a beamformer with N sensors
each feeding an FIR filter with L coefficients, it is necessary to find N L filter coefficients.
These coefficients are usually obtained by solving a multi-dimensional optimisation prob-
lem. Rather than taking this somewhat mechanical approach, a more insightful design

technique is sought in this chapter.

Of prime importance is the dilation property of the primary filters which states that
if Hy(f) is the primary filter response at a point |z| > 0 on the array, then the primary
filter response at a point yz,y > 0, is H,(f) = Hy(vf). As outlined in this chapter, by
exploiting this property all primary filter coefficients may be derived from a single set of
reference coefficients, regardless of the number of sensors in the array or the bandwidth

of operation.

52
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Another way in which the implementation proposed in this chapter differs from conven-
tional broadband beamforming techniques is in the method of steering the beampattern.
Conventionally, time delays are inserted in each channel of a broadband beamformer to
effect beam steering. In a digital beamformer, an additional fractional delay FIR filter [56]
is usually inserted in each channel to produce the required time delay. However, in §3.4 it
is shown that beam steering can be performed implicitly by modification of the single set

of reference coefficients.

Although this chapter primarily presents the straightforward application of standard
signal processing techniques to the design of the FIB, several important design features
are highlighted by this presentation. These include the use of a single underlying set of
filter coefficients for the primary filters, an example of adaptation applied to the FIB, and

the possibility of beam steering without designing additional delay filters for each channel.

To demonstrate that the techniques developed in this chapter may be successfully
applied in practice, measured results from a broadband microphone array are presented
in §3.6.

3.2 Design of Primary Filters

In this section the design of the primary filters of a FIB is considered. Two related methods
are presented: one based on multiple sampling rates and the other on a single sampling

rate.

To establish notation, let Hpef(f) be the primary filter response required at some ref-
erence location x e to produce some desired FI response. By the dilation property of the
primary filters (see Theorem 2.5), the primary filter response required at the nth sensor

location is

Hy(f) = Hyet (v f)
where

Tn

Tn = (3.1)

b
Lyef

is the nth primary filter dilation factor. Note that we assume z,et > 0, ensuring that for

a linear single-sided array geometry, v, > 0,Vn.

Using discrete-time processing, the nth primary filter response can be written as

Hy(f) = hretlk] e 27 mTH, (3.2)
k
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where hyeff-] are the FIR filter coefficients of the reference primary filter and T'= 1/ f is

the sampling period for a sampling rate of f,.

Equation (3.2) demonstrates the existence of a single set of filter coefficients which
defines the response of all primary filters. To highlight the practical significance of this
fact, we now consider two implementations of (3.2). Methods of obtaining the reference

primary filter coefficients are presented in §3.2.4.

3.2.1 Multiple Sampling Rate Method

Let hyet[k] be a set of filter coefficients which produces a desired primary filter response

H,t(f) at some reference location zyf with a sampling period T, i.e.,

Href(f) = Z href[k]efﬂﬂka.
k

The primary filters will have the required dilation property if the nth primary filter re-

sponse is given by

H,(f) = Z href[k]eiﬂwanka (3.3)
k
where

is the sampling period of the nth sensor. The importance of this formulation is it demon-
strates that the same set of filter coefficients may be used for each primary filter, with
only the sampling rate varying across the array. The sampling rate is a function of the

array geometry only.

A common method of multirate sampling is to sample every sensor at the highest
rate and then use decimation to achieve the desired sampling rate [96]. In this case it is
conventional to express the filter response in terms of the discrete-time frequency variable

w = 27 fT. The nth primary filter response can now be written
Hy(w) = hueg[k] e71mF,
k

Using this method, the filtering structure for each primary filter is shown in Fig. 3.1,
in which D, (w) and F,(w) are the nth decimation and interpolation filters respectively;

these filters have ideal lowpass filter characteristics with cutoff frequencies of w = 7 /~,.
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(@ (b) © (d)
Dn(m) \b Tn I—Iref( o /P T FI‘1((D) >

Figure 3.1: Block diagram of the multirate primary filter implementation. Labelled points
correspond to the plots of Fig. 3.2.

The symbol denotes downsampling (or decimation) by a factor of 7 (i.e., only every
~th sample is kept, the rest are discarded), and the symbol denotes upsampling (or
expanding) by a factor of v (i.e., (y—1) zeros are inserted between each sample). Note that
the dilation factors 7, must be integers, requiring modification of the sensor positioning
function (2.19) such that z,,/z.ef € Z. As we will see when we consider the location of Zyef,
this does not have an adverse effect on the array geometry (such as requiring a prohibitive

number of sensors).

The operations performed by this structure are shown in Fig. 3.2. The decimation
factors, decimation filters and interpolation filters are only dependent on the array ge-
ometry; they do not depend on the beampattern in any way. Thus, modification of the
beampattern only requires modification of the reference primary filter coefficients hyef[-].
The beamforming structure constrains the resulting broadband beampattern to be FI over
the design band regardless of the actual reference primary filter coefficients used. This
important property means that in the case of an adaptive FIB only a single set of coef-
ficients require adaptation—all other parts of the FIB structure are non-adaptive. One

simple adaptive FIB algorithm is considered in §3.2.4.

The required sampling rate is now considered. Recall that the aperture length is defined
to be P half-wavelengths at all frequencies within the design band. Thus the nth primary
filter is (ideally) bandlimited, with

Pc
2%,

Hn(f) =0, [f]> (3.5)

Ignoring the zeroth primary filter (which has a constant response), the primary filter with
the widest bandwidth is located at 7 = ¢/(2fr), assuming the sensors are positioned
according to (2.19). By substitution into (3.5) the effective bandwidth of this sensor is

P fy7, requiring a sampling rate of

fs > 2]DfU- (3.6)
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(@)

(b)

(©)

(d

Figure 3.2: Operations performed by the multirate primary filter: (a) the bandlimited
input signal spectrum (with the response of the ideal decimation filter shown dotted), (b)
the decimated signal spectrum (with the response of the reference primary filter shown
dotted), (c) the filtered and upsampled signal spectrum (with the response of the ideal
interpolation filter shown dotted), and (d) the output signal spectrum.

The reference sensor in this case is located at

C

S5 (3.7)

Lyef =

The requirement that z,/z.s € Z means the array geometry is essentially uniformly
spaced with a spacing of ¢/(2fy). For wide bandwidths, the geometry will become thinned

(although still with an underlying uniform spacing) for sensors far from the origin.

Note that for a symmetric double sided array geometry the sampling rate can be reduced
by half, i.e., fs > Pfy.

3.2.2 Single Sampling Rate Method

An alternative method is now presented which utilises the same sampling rate across the

array. As in the multiple sampling rate case, assume there is a set of reference coefficients
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hret[k] having some desired reference primary filter response Hiyee(f) at some reference

location Zyef-

For n > 0, the response of the nth primary filter may be written
Hy(w) =) hy[k]e ",
k

Hence, a different set of coefficients is used for each sensor. However, these coefficients are
a linear combination of the reference coefficients. This is shown as follows. Reconstruct

the continuous-time equivalent of the reference coefficients [70, pp. 87-91]:
hret(t) = href[k] sinc[(t — kT)/T7,
k

where sinc(z) = sin(7z)/(mz). The frequency scaling property of the Fourier transform is
[71, pp. 207-208]:

I 2(t) < X(w)
1
then z(at) P (E> ,
o] \a
where a is a real constant and F denotes the Fourier transform. Hence, by the duality

property of the Fourier transform [71, pp. 208-210],

1 t
H’n(w) = Href(fynw) (L _href <_> s

n n

and,

() = — 5 ] sine (&-wr) ],

B Tn In

where we have dropped the absolute value notation since we assume vy, > 0. Resampling

this frequency scaled impulse response gives

1

halm] = — 3" hreglk] sinc (ﬂ - k) . (3.8)
Tn & Tn

Note that even if hyef[k] is of finite length, there is no requirement that h,[m] is of finite

length. There are three different ranges of 7, which must be considered:

1. For =, > 1, equation (3.8) may be directly applied. The length of the nth primary
filter should be [L~,]|, where L is the length of the reference primary filter. An

example is shown in Fig. 3.3.
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2. For 0 < vy, < 1, temporal aliasing will occur if the reference primary filter has a non-
zero frequency response for |f| > v, fs/2 (or |w| > v,m). To prevent this aliasing,

form a set of modified reference primary filter coefficients
et (K] = hrerlk]  hupe[K],

where hipe[] is a set of lowpass filter coeflicients having a response with a cutoff
frequency of |w| = .7, and x denotes convolution. Equation (3.8) may now be
applied using ilref[k] as the reference primary filter coefficients. In this case the
length of the nth primary filter should be [f)yﬂ, where L is the length of ilref[']. An

example is shown in Fig. 3.3.

3. For v, = 0, the nth primary filter coefficients are simply an impulse,
holm] = 8[m] Y her[K],
k
where J][-] is the Kronecker delta.

In determining where to locate the reference primary filter, there is a fundamental
tradeoff between sampling rate and computational complexity. Recall that the primary
filters are ideally bandlimited with H,,(f) = 0 for | f| > (Pc¢)/(2zy). The reference primary
filter should be located such that its non-zero frequency response lies below the fold-over
frequency of |f| = fs/2 (or |w| = w). Choosing the widest bandwidth possible for the

reference primary filter gives

Pc

Lref = z (3.9)
Assuming the input signals are bandlimited to fy7, the minimum sampling rate is fs = 2y,
resulting in xyer = Pc/(2fy). From the sensor positioning function (2.19) developed in
Chapter 2 it is clear that there will be sensors located closer to the origin than e,
requiring 0 < 7, < 1. As demonstrated above, this will require modification of the
reference primary filter coefficients for these sensors. Alternatively, the location of the
reference primary filter can be set such that there are no sensors in the array for which
0 < vn < 1. This results in @t = ¢/(2fy). But by (3.9) this requires a sampling rate of
fs = 2P fy (as in the multirate method). In summary, the obvious options for the location

of the reference primary filter are

Lyef =

c
T and fs =2Pfy, (3.10)
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Figure 3.3: Example primary filters. (a) Reference primary filter coefficients (L = 11) and
corresponding frequency response. (b) Primary filter coefficients for ~, = 2.5 calculated
from (3.8) and corresponding frequency response (the dotted plot is the desired scaled fre-
quency response). (¢) Modified reference primary filter coefficients for ~, = 0.5 (convolved
with a 21 coefficient Hamming low-pass filter) and corresponding frequency response. (d)
Primary filter coefficients for ~, = 0.5 using the modified reference primary filter coefhi-
cients of (c), and corresponding frequency response (the dotted plot is the desired scaled
frequency response).

which allows the use of the same set of reference primary filter coefficients for all sensors

but requires a higher sampling rate, or

P
Trof = < and fs=2fy, (3.11)
2fu

which uses the minimum sampling rate but requires modification of the reference primary

filter coefficients for some sensors.

Since effectively each of the primary filters is of a different length, there will be a dif-

fering group delay across the array. The effect of this varying group delay is to introduce
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phase distortion which destroys the FI property of the response. To eliminate this dis-
tortion it is necessary to remove the phase component from the reference primary filter
response. Assuming the reference primary filter is a linear phase FIR filter, the phase
component may be removed by centring hf[k] about & = 0. Although this results in non-
causal primary filters when (3.8) is applied, causality can easily be restored by inserting
the appropriate number of zeros to the front of each primary filter such that all primary

filters have the same group delay.

3.2.3 Comparison of Methods

In this section we compare the number of operations (specifically multiplications) required

to implement each of the methods outlined above.

First consider the multirate method. Let the decimation and interpolation filters on
each channel be FIR filters with A coefficients each. Similarly, let Hyef(f) be an FIR filter
of L coefficients. Hence, for each channel there are (24 + L) computations required to
implement this structure. Recall that the primary filter on the zeroth channel is simply
an impulse (requiring one multiplication) and no decimation/interpolation is required on

the first channel (since it is at x,¢). Thus, the total number of operations per sample is

Consider the single rate method with the reference primary filter located at xyet =
¢/(2fu). We will refer to this as SRy (to denote the high sampling rate). In this case no
sensors (apart from the zeroth) are located closer to the origin than the reference sensor,
so no modification of the reference primary filter coefficients is required for any sensor.
The length of the nth filter is [L~, |, (recall v, = zp/Trer). With the sensor spacings as
defined in Chapter 2, we have

n, 0<n<P

’Yn: P n—P

The total number of operations per sample is

P N
NOPsp, =1+L> k+
k=1

il {LP <%)j : (3.13)

k=1

Finally, consider the single rate method with the reference primary filter located at

Tyt = Pc/(2fy). We will refer to this as SRy (to denote the low sampling rate). In
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this case there are sensors located closer to the origin than the reference sensor, requiring
modification of the reference primary filter coefficients as outlined above. We must treat
these channels differently than those located further from the origin than x.e. For 0 <
Tn < Tref, the filter length is [f/yn] where L = L+ A — 1, and A is the length of the
lowpass FIR filter! which is convolved with the original reference filter coefficients to form
the modified reference filter coefficients (see §3.2.2). For x,, > xyer the filter length is
[Lvy,]. It can be shown that the length of the filter on the nth channel is

(

1, n=>0
[(L+ A)n/P], 0<n<P
Ln=9 1, n="P

n—P
[L(%) 1 P<n<N-—1,

\

giving the total number of operations per sample as
N-P-1 k
NOPsg, =1 +Z[L+A W Z [ < 1)} (3.14)

The methods are summarised in Table 3.1. It is difficult to make any general conclusions
about the complexity of each method from the equations derived above. However, a specific
example is considered in §3.5 to compare the number of operations required per second

for each method.

Method Multirate Single Rate (H) Single Rate (L)
Definitions N, no. of sensors N, no. of sensors N, no. of sensors
P, aperture size P, aperture size P, aperture size
L, length of primary filter | L, length of primary filter | L, length of primary filter
A, length of decimation A, length of LPF which
and interpolation filters modifies reference primary
filter
Tref c/(2fv) c/(2fv) Pc/(2fu)
fs 2P fu 2P fu 2 fu
Number of | (3.12) (3.13) (3.14)
operations
per sample
Notes Uses same set of reference | Uses same set of reference | Requires modification of
coefficients for all channels | coefficients for all channels | the reference coefficients
for some channels

Table 3.1: Comparison of methods for implementing a discrete-time FIB.

!For comparison purposes, this is the same length as the decimation and interpolation filters in the
multirate method.
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3.2.4 Reference Filter Coefficients

We now consider three alternate methods of forming the reference primary filter coeffi-

cients.

I. Weighted L, Optimum

First we consider a design criterion based on weighted least squares optimisation. Specif-
ically, our aim is to find the set of reference coefficients which provides the best least

squares fit to a desired FI beampattern over the design frequency band.

Since in both the multiple and single sampling rate methods the nth primary filter

response is a linear combination of the reference filter coefficients, it may be written

Hn(f) = hrefH‘I’n(f)a

where
href = [href[_K]a cee ahref[K]]H
is the L = (2K + 1) vector of non-causal reference primary filter coefficients. For the

multirate method W, (f) is given by

GOR) () = [e*JQWan(*K)"” et (3.15)

n

where, recall, T,, = v, T. For the single rate method where each of the primary filters has

2M + 1 coefficients,

TR (f) = %Sne(f), (3.16)

where
e(f) — |:67JQ7TfT(7M)’ o ’efj27l'fTM T

is the Fourier transform vector,
S, = [Sn(_M)a <. ,Sn(M)]

is an L x (2M + 1) matrix, and

Sn(m) = [Sinc (% - (—K)) ,sinc <% —(-K + 1)) ... sinc <;n—n . K)]T
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The broadband FIB response is then

70, f) = af Zgan(f) o127 /7 (0)

=af Z gnhrefH‘I’n(f) ej27rf7n(0)

= hyet'T(0, f), (3.17)
where the L dimensional vector T'(0, f) is given by
L, f)=p(f)a,f),
a(d, f) is the N dimensional array response vector, and
B(f) =af [g®1(f).-.. . gn TN (f)],

is an L X N matrix.

Define the following cost function which measures the weighted Lo distance between

the desired FI response r4(6) and the actual response over the design frequency band:

fv r%
:/ /_lw(&f)\hreer(e,f)—rd(e)f do df

= et Qhyer — 2hyer q1 + qo,

where (6, f) is a general weighting function and
/ 6.0 do .

Q= /f / T(0, f)ral0)" d6df,

fu 2
w= [ / o0, Dlra(0)” db df.
L 3

Minimising J with respect to hyes gives the optimum reference coefficients as

w3 wlﬂ

W[ wlﬂ

=Q'ai. (3.18)

ref
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It is straightforward to show that for the multirate method, the /th element of I'(©, f)
is
N-1
LO,fi=af Y gne?m@O-Tall=1)],
n=0

and for the single rate method the Ith element of T'(O, f) is

N—1
o, f), =af Z ,gy—nsinc [’yﬁ — (- 1)] I2m flmn (0)=Tm]

n=0 m

In both cases the integrands of Q and q; are well-defined (for a well-defined r4(6)), and
the double integrals may be evaluated explicitly. However, this involves a reasonable
amount of computation. Furthermore, this is a relatively mechanical approach—it provides
no indication of the relationship between the reference coefficients and the desired FI

beampattern.

1I. Beampattern Sampling

Having considered a typical numerical technique above, we now attempt to formulate
a more insightful method of determining the reference primary filter coefficients from a

desired FI response.

From Chapter 2, the FI response of a continuous finite-support aperture is
Tmax .
T‘(Q) :/ fG(fo) ej?ﬂ'f:vc sin dz,
0

where f € [f, fr], and the aperture has finite support for z € [0, Zyax]. Let s = ¢~ !siné
and y = o f, giving

Ymax
r(s) :/ G(y) 72Ty dy. (3.19)
0

which is just the inverse Fourier transform of G(-). Hence

G(y) = /00 r(s) e 729 (s, (3.20)

— o0

Equations (3.19) and (3.20) define the Fourier transform relationship which exists between

the aperture distribution and FI response.
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Recall from Chapter 2 that the function G(xf) can be interpreted as a filter function
H,(f) at a fixed location x. Hence, (3.20) can be written

H,(f)= / r(s) e I2mITs (s,

—0o0

At x = 1 this becomes

Hy(f)

= /oo r(s) e #7Is ds. (3.21)

r=1 — oo

In terms of its impulse response, this filter response is

H(f)

= / - h(t) e~ 7271t dt. (3.22)

=1 — 00

Equating (3.21) and (3.22) it is clear that the impulse response of the primary filter

required at x = 1 is identical to the desired FI response.

Since the simplest method of forming a discrete-time filter from a continuous-time filter
is to simply sample the continuous-time impulse response, the set of coefficients for the
primary filter at * = 1 is given by directly sampling the desired FI response function.
By the scaling property of the Fourier transform, the coefficients of the reference primary

filter are given by

R = —— g <kT> , (3.23)

Tref Tref

where T = 1/f; is the sampling period, and r4(-) is the desired FI response. Typically,
r4(s) is specified only within the visible range s € [—1/¢,1/¢], corresponding to real angles.

Thus, the number of reference coefficients will be limited to

k€ {=lwwet/(Te)]s- ., 2rer/(Te) ]},

where |-| denotes the floor (next lower integer) function.

Note that a real response is only produced by a Hermitian symmetric aperture (in the
same way as a real frequency response is only produced by a Hermitian symmetric impulse
response). Thus, for a single-sided aperture (or any other aperture which is not Hermitian
symmetric) the desired response 74(-) which is sampled in (3.23) must be an appropriate

complex-valued function.

The beampattern sampling technique is a very simple and insightful method of ob-
taining the reference primary filter coefficients from a desired FI response. As shown in

§3.5, the response obtained from the beampattern sampling technique provides a good
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approximation to the desired FI response, and because of its simplicity, is generally to be
preferred over the weighted least squares optimisation method. In the remainder of the
thesis, the beampattern sampling technique has been used exclusively in any simulation

in which the reference primary filter coefficients are obtained from a desired FI response.

III. Linear Constrained Minimum Variance FI Beamforming

As a third example, we consider determining the reference primary filter coeflicients in an
adaptive environment where no desired FI beampattern is available. Specifically, a linear

constrained minimum variance (LCMYV) formulation is considered.

It was shown in (3.17) above that the response of a FIB may be written as

Ifl(ea f) = hrefHﬂ(f)a(ga f)a

where h,er is an L vector of reference primary filter coefficients which define the FI beam-

pattern, B(f) is an L x N matrix, and a(f, f) is the N dimensional array response vector.

Let s(t; f) be the N vector of received signals at the sensor array at time ¢ with frequency

component f. The beamformer output at this time is then

Z(t) = hrefHﬂ(f)S(t; f)

The expected beamformer output power is

E{|=(t)*} = E{hwer B(£)s(t; )s(t: )" B(F) et}
= hrefHﬂ(f)Rs(f)ﬂH(f)hrefa (3'24)
where Ry(f) = E{s(t; f)s(t; )} is the signal covariance matrix for frequency f.
Divide the design frequency band into J sub-bands centred on f;,7 =1,...,J and let
J
D=3 BUH)R()B"(f).

=1

(This frequency decomposition may be performed either via a bank of .J bandpass filters, or

by data segmentation and discrete Fourier transform.) Consider the LCMV beamforming
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problem:

min hyet? D hy, (3.25a)

ref

subject to CHhyef = 1, (3.25b)

where C = T'(y, fo) is a vector which constrains the response to be unity in the source
direction g at some frequency fo € [fr, fu]. Solution of this optimisation problem finds
the reference primary filter coefficients which minimise the beamformer output power
subject to a constraint that the response is unity in a given source direction 6y. Note that
because the beamformer is structurally constrained to be frequency invariant, a broadband
unity response is imposed in the source direction by enforcing a linear response constraint
at a single frequency. The solution of the optimisation problem (3.25) may be found by

the method of Lagrange multipliers as

h. =D 'C[ciD'C]™". (3.26)

This problem is identical to that considered by Frost [32]. Frost developed a least-mean
squares algorithm to minimise the output power of a broadband array while maintaining
a chosen frequency characteristic in the look direction. Applying Frost’s method, the

adaptive algorithm which converges to the optimum solution (3.26) may be written as:

het(0) = q (3.27)
Brer(t +1) = Q [hrer(t) — kD (Dhoer(8)] + a (3.28)

where h,e(f) is the set of reference primary filter coefficients to use at time ¢, p is the

adaptation step size, q is the L vector
q=c[chc] ™,
and Q is the L x L matrix
Q=I-c[c’c] " ch.
The L x L matrix f)(t) is given by
R J
D(t) =Y BUf)s(t: £)s(t: 1) BY (1)), (3.29)
7j=1

where the outer product of s(¢; f) is used as a simple approximation to Rs(f) at the ¢-th

time instant.
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The LCMV-FIB algorithm is summarised in Table 3.2.

LCMV-FIB Algorithm:

(i) Initially set hee(0) = q. (Clearly this satisfies the constraint (3.25b).)

(ii) Store the received signal vector s(t) at time ¢. (This is usually referred to as a
snapshot.)

Perform frequency decomposition on this snapshot to give the narrowband
signal vectors s(t; f;),j =1,...,J.

Calculate f)(t) from (3.29), and update the reference coefficients using (3.28).

(v) Repeat steps (ii) to (iv) for each new snapshot.

Table 3.2: Example linear constrained minimum variance algorithm for the FIB.

Comparison of Methods

A summary of the three different methods for determining the reference primary filter

coefficients is given in Table 3.3

Method | Weighted L, Optimum Beampattern Sampling | LCMV Algorithm

Given Desired FI pattern r4(6) Desired FI pattern, r4(6) Look direction, o
Weighting function, (6, f)

Criterion | Minimise  weighted least | Exploit Fourier transform | Minimise received signal
squares variation from r4(6) | relationships of FIB. power subject to a linear
over design bandwidth. constraint on the look di-

rection response.

Solutions | (3.18) (3.23) (3.27), (3.28)

Notes Requires computation of dou- | Number of filter coeffi- | Requires frequency decom-
ble integrals. cients is limited. position.

Table 3.3: Comparison of methods for designing reference primary filter coefficients.

3.3 Design of Secondary Filter

Because the secondary filter is effectively a differentiator, its design is straightforward.

It should either be a type IIT FIR filter (i.e., odd length with odd symmetric impulse

response) or type IV FIR filter (i.e., even length with odd symmetric impulse response)

[74]. The type III filter is constrained to have zero response at w = 0 and w = 7, whereas
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the type IV filter only constrains the response to be zero at w = 0. Hence, the type IV
filter provides a wider bandwidth than the type III filter. A simple example is presented
to illustrate the use of both types of FIR filter as a secondary filter.

Consider the design of a secondary filter for operation in the frequency range 1-2 kHz
with a sampling rate of f; = 16 kHz. Figure 3.4 shows the response of a type III FIR
filter with L = 7 coefficients and Fig. 3.5 shows the response of a type IV FIR filter with

L = 6 coefficients.

Amplitude
I
< =4
o1
&
L

Sample number

Magnitude

0.5r 4

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Figure 3.4: Response of type III secondary filter. The top plot shows the filter coefficients
(L = 7) and the bottom plot shows the magnitude of the frequency response. The dotted
lines indicate the design frequency band.

3.4 Beam Steering

So far it has been assumed that the peak of the FIB response is at broadside. Conven-
tionally, beam steering in a broadband beamformer is achieved by using appropriate delay
elements on each sensor. In a digital broadband beamformer the required delays are pro-
duced by fractional delay filters [56]. In this section it is demonstrated that beam steering

can be achieved without explicitly requiring additional delay filters on each sensor.
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Figure 3.5: Response of type IV secondary filter. The top plot shows the filter coefficients
(L = 6) and the bottom plot shows the magnitude of the frequency response. The dotted
lines indicate the design frequency band.

When an array is used to approximate the ideal FI aperture (as detailed in Chapter 2),
the resulting response function r(s) becomes periodic? with a period of 2/c, i.e., corre-
sponding to the visible range of s = ¢! sin#. Because of this periodicity, beam steering
results in a circular shift of the response function. Equation (3.23) demonstrated that
one method of obtaining the reference primary filter coefficients is by direct sampling of
the desired response function. It follows that for a discrete set of steering angles, beam
steering can be achieved by circular rotation of the unsteered primary filter coefficients.

This set of angles can be calculated for a given aperture size and sampling rate as follows.

Let 6, denote the steering angle from broadside. Substituting s = ¢! sin y into (3.23),

with zer and fg as given in §3.2, gives

ac o a
- 5
xreffs P

sinf, = (3.30)
where a € Z is the number of coefficients by which the reference primary filter coefficients
have been rotated. This is analogous to the case where steering can be achieved using
integer delay filters (rather than fractional delay filters). However, rather than explicitly
requiring the design of an integer delay filter on each channel, these delay filters are

implicitly included by the circular rotation of the reference primary filter coefficients.

2Strictly speaking, the period of 7(s) is 2/c only for a uniformly spaced array, which only occurs in the
FIB at the upper design frequency.
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Figure 3.6: Desired beampattern for the example FIB.

To steer to angles other than those given by (3.30), the beampattern which is sampled
in (3.23) can be rotated by the appropriate amount (or equivalently, the reference primary
coefficients may be interpolated and shifted). This case corresponds to that of using
fractional delay filters, but again there is no requirement for the explicit design of a

fractional delay filter on each channel—these delay filters are implicitly included.

Beam steering by circular rotation of the reference primary filter coefficients is demon-

strated in the following section.

3.5 Design Simulations

To illustrate the methods developed in this chapter, consider the implementation of a FIB
with an aperture size of P = 6 half-wavelengths, designed to cover the band 1-2 kHz. The
speed of wave propagation is 342 metres/second (i.e., sound waves propagating in air).

The desired beampattern is shown in Fig. 3.6.

The reference primary filter coefficients were found by direct sampling of the desired
beampattern through (3.23). This resulted in the set of L = 13 reference coefficients given
in Table 3.4. The secondary filter had Ly = 6 coefficients.

Three examples were considered. The first was a multirate implementation using an

array of N = 13 sensors with a total array size of 1.105 metres. The sampling rate was
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k -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
hret[k] | 0 0.1-50.02 -0.02 0.1-50.07 -0.14 0.1-50.63 0.9 0.1450.63 -0.14 0.1+3;0.07 -0.02 0.1+50.02 0

Table 3.4: Reference primary filter coefficients used in the example FIB.
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Figure 3.7: Beampattern of the example multirate FIB.

given by (3.6) as fs = 24 kHz and the location of the reference filter was as given by (3.7).
The response of the multirate FIB at 9 frequencies within the design band is shown in
Fig. 3.7.

The second example was a single rate implementation using an array of N = 11 sensors
with a total array size of 1.02 metres. (The array geometry was different to the multirate
implementation since the sensor locations must be quantised for the multirate case; see
§3.2.1 for details.) The sampling rate and reference sensor location were as given by (3.10),
again requiring a sampling rate of f; = 24 kHz. The response of the single rate FIB at
9 frequencies within the design band is shown in Fig. 3.8. The single rate design was
repeated with the sampling rate and reference sensor location as given by (3.11), requiring
a sampling rate of f; = 4 kHz. The results were virtually identical to the other two

designs, and are not shown.

The final example was again a single rate implementation, and demonstrates the beam
steering method outlined in §3.4. The array geometry and sampling rate were as for
Fig. 3.8, but the reference primary filter coefficients were a circularly rotated copy of the
coefficients in Table 3.4, with the coefficients rotated by 2 positions. From (3.30) this will

result in the main beam being steered to 19.5°. The angles to which the main beam could
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Figure 3.8: Beampattern of the example single rate FIB.
be steered by circular rotation of the reference coefficients are
0s = {0,+9.6,+19.5, £30, +41.8, £56.4, £90} .

The response of the FIB at 9 frequencies within the design band is shown in Fig. 3.9 in

which it can be seen that the main beam is steered to the calculated angle.

It is now instructive to calculate the number of operations required by this example

for each of the three methods. These were calculated using (3.12), (3.13) and (3.14). The

results are as follows:

NOPyr = 1031
NOPgg,, = 778
NOPgg, = 256

where SRy is the single rate method with z,ef = ¢/(2fy) and fs = 2P fy, and SRy, is the
single rate method with xyef = Pc/(2fy) and fs = 2fy. Multiplying each of these by the

appropriate sampling rate, we obtain the following number of operations per second for
each method.

NOPSygr = 24.7 x 10°
NOPSgg,, = 18.7 x 10°
NOPSsg, = 1.0 x 10°
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Figure 3.9: Beampattern of the example steered single rate FIB. Steering is achieved by
circular rotation of the reference primary filter coefficients used in Fig. 3.8.

Note that methods MR and SRy are of similar magnitude (because they have the same
high sampling rate), but the lower sampling rate of method SR affords an order of

magnitude less operations per second.

3.6 Microphone Array Test Results

To confirm that the frequency invariant beamformer can be successfully implemented in
practice, experimental results were obtained from a microphone array. Full details of the

microphone array testing system are given in Appendix A.

3.6.1 Beamformer Design

A single rate FIB was designed to have a Chebyshev 25 dB beampattern over the octave
band 1-2 kHz, with an aperture size of P = 8 half-wavelengths and a sampling rate of
fs = 8 kHz. A symmetric double-sided linear array geometry® requiring 15 sensors was

used. The sensor positions (2.19) and spatial weighting terms (2.8) are shown in Fig. 3.10.

The reference primary filter coefficients were obtained by sampling the desired beam-
pattern through (3.23), using zwer = (P/2¢)/(2fr). Filter coefficients for each primary

filter were obtained as outlined in §3.2.2; a 21 coefficient Hamming low pass filter was used

3 Although they are not explicitly covered, double-sided linear array geometries are a straightforward
extension of the single-sided linear array geometry considered in this chapter.
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Figure 3.10: (a) Sensor positions, and (b) spatial weighting terms for the experimental
microphone array.

to modify the reference coefficients when required (see §3.2.2 for details). Because of the
symmetry of the array geometry, only 7 different primary filter response were required.
The primary filter coefficients and resulting filter responses are shown in Figs 3.11 and

3.12 respectively. These figures clearly show the dilation property of the primary filters.

A secondary filter with four coefficients was designed according to §3.3. The secondary

filter coefficients and filter response are shown in Fig. 3.13.

Using computer simulations, the resulting beampattern was calculated at five frequen-
cies uniformly spaced within the design frequency band. A comparison of the simulated
beampatterns with the desired Chebyshev 25 dB beampattern is shown in Fig. 3.14, in
which the solid curve is the desired beampattern and the dotted curves are the simulated
beampatterns. The simulated beampatterns match the desired beampattern closely in the
main beam region. However, the simulated beampatterns do not in general achieve the
desired 25 dB sidelobe suppression. This is consistent with the fact that the reference
filter coefficients were obtained through the simplest method of beampattern sampling
(see §3.2.4).

3.6.2 Experimental Results

The microphone array was horizontally mounted on a rotating shaft 1.2 metres above the
ground. Its output power was measured as it was rotated through 180° in the presence

of a sinusoidal signal emitted from a loudspeaker. The source was located approximately
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15 metres from the array centre to give farfield results.* Since an anechoic chamber
large enough to perform farfield measurements was not available, the experiments were
performed in an open area away from any nearby reflecting objects.> Although these
test conditions were far from ideal, they were considered adequate for the preliminary

experimental verification that was sought.

The beampattern of the experimental microphone array was measured at five frequen-
cies within the design bandwidth. The results are shown in Fig. 3.15, in which the solid
curve is the desired Chebyshev 25 dB beampattern, the dotted curves are the simulated
beampatterns (from Fig. 3.14), and the circles indicate the measured values. Each plot

has been normalised such that the peak is unity.

The results shown in Fig. 3.15 indicate that at each frequency the measured beam-
pattern sufficiently closely matches the desired and simulated beampatterns in the main

beam region. The sidelobes are generally about 5 dB higher than the simulated sidelobes.

There are three factors which contributed to the difference between measured and sim-
ulated beampatterns in Fig. 3.15. First, there was a reasonable amount of background
noise which meant that it was virtually impossible to achieve an output power as low as
-25 dB. Second, the computer simulations assume identical sensors, whereas the micro-
phones used were not. Accurate calibration of the microphones is required to equalise the
gains of the channels. However, because of the non-ideal test conditions, this calibration
could not be accurately performed. The third factor causing pattern degradation was a
consequence of the nature of the data acquisition card used in the testing system. Specif-
ically, the microphone signals were sampled sequentially, rather than simultaneously as
assumed in the computer simulations. For an equally spaced array this would result in
a conventional steered main beam. However, because the array used was nonuniformly
spaced, the staggered sampling also resulted in some beampattern degradation.® Because
of this staggered sampling, the measured beampatterns are steered to approximately —5°.
(In Fig. 3.15, the desired and simulated beampatterns are also steered to —5° to facilitate

comparison with the measured patterns.)

“The general rule-of-thumb is that the farfield approximation becomes valid at a distance of 2L2 /A,
where L is the largest array dimension at the operating wavelength A [61]. For an active aperture size of P
half-wavelengths, this distance can be expressed as P2/\/2. For a 1-2 kHz bandwidth with a propagation
speed of ¢ = 342 m/s, the required farfield distance is 10.94 metres at 1 kHz and 5.47 metres at 2 kHz.

SMultipath signals would no doubt have been received by the array via reflection from the ground.
However, because the tests were performed on a grassed surface, it was assumed that these reflections were
randomly scattered. Thus, no significantly correlated reflections should have been received at the array.

5This degradation could have been removed by inserting appropriate fractional delay filters in each
channel. However, because of the computational constraints imposed by the DSP hardware, this could not
be achieved in real-time.
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To compare the measured beampatterns at different frequencies, the normalised results
are plotted in Figs 3.16(a) and (b) using two different views of the same data. Despite
the non-ideal test conditions, Fig. 3.16 indicates that the response of the experimental mi-
crophone array was approximately frequency invariant over the octave design bandwidth.
This provides a preliminary verification that the frequency invariant beamforming theory
can be successfully applied in practice. More controlled conditions would naturally be

required for a detailed evaluation of the usefulness of the method to specific applications.

3.7 Conclusions

Implementation of the frequency invariant beamformer using discrete-time processing was
considered in this chapter. Two related implementations were presented for determining
the coefficients of the primary filter on each sensor. One was based on multirate processing

and the other on a single sampling rate.

The feature of both methods is that there is an underlying set of reference coefficients
from which all primary filter responses are derived. This set of coefficients defines the
frequency invariant beampattern over the entire design band. The actual number of refer-
ence coefficients is independent of the number of sensors in the array and the bandwidth

of operation.

Three methods of obtaining the reference coefficients were considered. Of these, the
most important (from both a practical and theoretical standpoint) was a beampattern
sampling technique, whereby the reference primary filter coefficients can be obtained im-
mediately from the desired frequency invariant response, without the need to consider the

required aperture distribution or primary filter frequency responses.

Finally, experimental results were obtained from a microphone array which verified that
the frequency invariant beamforming theory could be successfully applied in a practical

setting.
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Figure 3.13: (a) Secondary filter coefficients, and (b) secondary filter response for the
experimental microphone array.
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ted) at five frequencies within the design bandwidth.
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Chapter 4

Frequency Invariant Beamforming
with Broadband Pattern Nulls

4.1 Introduction

HE frequency invariant beamforming (FIB) theory of Chapter 2 was based on ap-
T proximating a theoretical continuous sensor, having a frequency invariant response,
by a finite array of discrete sensors. Because of this approximation, the beampattern of
a FIB will exhibit a small amount of frequency variation especially in the sidelobes and
pattern nulls. To produce a broadband pattern null whose position is frequency invari-
ant over a wide bandwidth requires additional constraints on the FIB. In this chapter we

consider how these constraints may be imposed.

The problem of designing narrowband beamformers with controlled nulls has been
extensively studied in the literature. In general the requirement is to place a pattern
null in the direction of a strong interferer with the aim of reducing the noise due to the
interference source. Several methods of controlling the positions of the nulls have been
employed, including modification of the sensor amplitude and phase [12, 86], modification

of the sensor phase only [86, 89], and sensor position perturbation [49, 68, 93].

In phased arrays, where the beamformer weights are fixed as a function of frequency,
broadband pattern nulling is effected by imposing a null over a wide spatial region cen-
tred on the required broadband null direction. Because the beampattern scales directly
with frequency, a null trough of width Au centred at ug (where u = sin ) will provide

suppression over a bandwidth of
Af  Au

fo (T

83
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where fq is the centre frequency of the band. Methods of producing a null trough over a
wide angular region include imposing multiple pattern nulls in the vicinity of ug [62, 84, 85],
imposing derivative constraints at ug [54, 84, 91], and constraining the average power over

the angular region Au [25, 38].

In this chapter we instead consider the problem of producing a null in a single direc-
tion, and forcing the null to cover some desired bandwidth. We consider a broadband
beamformer with IV sensors, each containing an FIR filter with L coefficients. Thus there
is a maximum of VL free parameters which may be used to impose the broadband null. In
general we will assume that we are given some quiescent broadband beampattern and we
are required to impose a broadband null in a given direction. Hence, we will use M < NL
parameters to impose the broadband null, and the remaining free parameters to approx-
imate the original beampattern. Primarily we are concerned with the case in which the
quiescent broadband beampattern is frequency invariant, although the methods we outline

are suitable for more general broadband beampatterns.

We will consider a number of formulations of the problem and present some new results
concerning both approximate and exact broadband null placement. In considering an exact
broadband null, our aim is to demonstrate that through proper design it is possible to
produce a pattern zero which is present over all frequencies. In the approximate null
formulation our aim is to determine the number of degrees of freedom which must be used
to impose a null of a given depth in a frequency invariant beampattern, regardless of the
specific shape of the original frequency invariant beampattern. The style of this chapter
is to present a collection of design methods, rather than trying to find a single “right”

solution to the broadband pattern nulling problem.

4.2 Problem Statement

Consider a linear array of N omni-directional sensors. Each sensor signal is filtered using
an FIR filter with L coefficients, and the filtered signals combined.! The spatial response
for a plane wave impinging on the array from a direction § measured relative to broadside
is
N
r(u,w) = Z H,(w)exp [gwry(u)], (4.1)

n=1

!Note that in this chapter we are not explicitly considering the FIB structure developed in Chapter 2,
viz., a primary filter on each sensor and a common secondary filter. Instead, we only consider a structure
with a filter on each sensor. For the case of a FIB, the spatial weighting terms and the secondary filter are
implicitly included in each sensor filter.
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where

L—1
Hy(w) =) hnlk] exp (—jwk) (4.2)
k=0

is the frequency response of the nth sensor filter, w = 27 f/ f5 is the discrete-time frequency
variable with a sampling rate of fy, 7,(u) = fsc¢ '(z,, — 1)u is the relative propagation
delay to the nth sensor with a propagation speed of ¢, z,, is the location of the nth sensor,

and 4 = sin 6.

The response may be written in vector form as
r(u,w) = h¥ d(u, w),

where "
h= [hl[o]...hN[O]...hl[L—1]...hN[L—1]

is the N L vector of complex FIR filter coefficients,
d(u,w) = e(w) @ a(u,w),

is the N L delay vector, ® denotes the Kronecker product,

T
e(w) = [1,67‘7‘”,... ,eiW(L*l)}
is the L dimensional Fourier transform vector, and
T
a(u,w) = [ejum(U)’ o ’erTN(u)]

is the NV dimensional array response vector.

The problem considered here may be stated in general terms as follows. Given a set of
coefficients h which produces some desired broadband response r(u,w), find the coefficients
h which produce a broadband response 7(u,w) which has a broadband null in a specified

direction and is close in some respect to the quiescent response r(u,w).

4.3 Problem Formulation

There are several ways in which this problem may be formulated. Assume the coefficients
h are formed by adding a set of perturbing coefficients to h, i.e., h=nh+b. The resulting

response 7(u,w) is equivalent to the quiescent response r(u,w) plus the response of a
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nulling beamformer whose coefficients are b, i.e.,

F(u,w) = ﬁHd(u,w)
=h"d(u,w) + b d(u,w)
= r(u,w) + b d(u,w).

The general broadband nulling problem can be formulated in general terms as

min J(b) (4.3a)

subject to |7 (ug,w)| <€, VYw € [wr,wr], (4.3b)

where J(b) is some suitably defined cost functional which measures the distance between
r(u,w) and 7(u,w), € is the desired null depth in the nulling direction wg, and [wr, wy] is

the bandwidth of interest (i.e., the bandwidth of the source and interfering signals).

4.3.1 Cost Functionals

Several candidate cost functionals will now be considered.

1. L Error

Minimise the maximum distance between the quiescent response and the perturbed re-

sponse over a spatial sector I/ and frequency sector Q:

T (b) = [7(u) = ()
= max ‘bHd(u,w)‘.
ueU ,weN

II. Weighted Ly Error

Minimise the weighted least square distance between the quiescent response and the per-

turbed response over a spatial sector ¢ and frequency sector {2:

JLz(b):// o(u,w) |F(u,w) — r(u,w)|* dudw
Q U

= b7 Qb,
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where

Q= [ [ el dude.
Q u

and (u,w) is a weighting function.

The calculation of Q deserves some comment. The (a,b)th element of d(u,w)d (u,w)
is

Qup = e]w(Tnme)uefjw(kfl)

where a = (k — 1) +n and b= (I — 1) +m.? Without loss of generality let o(u,w) = 1. It

can be shown that

w2 u9
Quy = / / dup dudo
w1 Jup

_ ‘%{Ei[— Jws(tus — )] — Bil—gwi (tus — )]

—Ei[—ng (tu1 — H)] + Ei[_]wl (tul - k)]}a

where t = (1, — 7,), k = (k — 1), and

oo ,—t
Ei(z) = / 67 dt

is the exponential integral. For the specific case of w1 = —7, wo =, uy = —1, us = 1,

this reduces to

Qop = %{Si[ﬂ(t — k)] + Si[n(t + n)]},

where

o
Si(a:):/ smt
0 t

is the sine integral.

III. Nulling Gain

Minimise the gain of the nulling beamformer, i.e., the f5 norm between the quiescent

coefficients and the perturbed coefficients:

Jxa(b) = ||h — hf?
= |Ib|?

2This rather obscure indexing is used for notational simplicity.
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where || - || denotes the vector 2-norm.

IV. Nulling Power
Minimise the output power of the nulling beamformer:

Jur(b) = E{bs(t)s(t)" b}
= bR,b,

where s(t) is the vector of received signals at the sensor array at time ¢, and Ry is the

received signal covariance matrix. Clearly, for white signals Jyp(b) reduces to Jya(b).

The similarity between Jxp(b) and the cost functional considered by Frost [32] should
be noted. Frost considered minimising the array output power subject to a linear con-
straint on the broadband array response at broadside. We consider minimising the output
power of the nulling beamformer subject to a constraint on the combined broadband ar-
ray response. We could therefore use a modified version of Frost’s adaptive algorithm to

control the nulling weights b.

It is also instructive to note the similarity of Jyp(b) with the multiple sidelobe canceller
(MSC) of Applebaum [2]. The MSC consists of a main channel (which may be a single high
gain directive antenna or a fixed beamformer) and several auxiliary channels. Interfering
signals are assumed to be in the sidelobes of the main channel, and are received by the
auxiliary channels. The auxiliary channels are linearly combined via a weighting vector,
and this combined output is subtracted from the main channel output with the goal of
choosing the weighting matrix to cancel the main channel interferences. In our case, the
main channel is the quiescent beamformer r(u,w) and the auxiliary channels correspond
to the nulling beamformer, which in our case must also be constrained to impose the
broadband null.

Of these cost functionals, Jyq(b) is by far the easiest to compute, and it will be used

exclusively in the remainder of this chapter.

4.3.2 Constraints

Having determined a practical cost functional, the practicality of the L, constraint (4.3b)
must be assessed. Using any of the quadratic cost functions results in a mixed Lo-L«

problem, i.e., minimise the Lo error subject to an Ly, constraint. This is a problem which
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exists in the control literature [64]. We have instead chosen to focus on the following more

tractable constraints.

I. Mean-Square Null Depth
Consider the following problem:

min b b (4.4a)

subject to [ | (ug,w)|* dw < . (4.4b)

The constraint in this case corresponds to restricting the average power over the design
band in the null direction to be less than some desired value. Er [25] considered a similar
constraint for synthesising a pattern null which covers a wide spatial region in a phased
array. A similar constraint has also been considered by Guella and Davis [38]. However,
they formulated the problem as an unconstrained minimisation problem by including the

constraint as part of the cost function, i.e.,
wy
HEn be—i—a/ |7 (ug, w)|? dw,

wL

where « is a weighting constant which is used to trade off null depth for beampattern

degradation.

The constraint (4.4b) can be rewritten as
(h+b)7Q(h+b) <e, (4.5)

where
wy

Q= / d(ug,w)d(ug, w)" dw.

L

Using the Lagrange multiplier method, define an augmented cost function as
J' =b"b+a[(h+b)’Qh+Db)—¢,

where o > 0 is the Lagrange multiplier for the inequality constraint (4.5). Taking the
gradient of J' with respect to b gives

VpJ' =2b +2aQ(h + b).
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Equating VyJ' to zero gives

Q
I+th

b=—-a

(4.6)
The Lagrange multiplier is given by the solution of

([I +aQ] ! h)H Q ([I +aQ] ! h) —

A root finding method can be used to solve for a and the result substituted into (4.6), or

a can be incremented from 0 until the constraint (4.5) is satisfied.

An alternative to this Lagrange multiplier solution can be formulated as follows. Since

Q is Hermitian, it can be factored as
Q =TATY,

where

A= diag[Al, . ,)\NL],
A1 > ... > Anp > 0 are the ordered eigenvalues of Q, and
I'= [el,eg,... ,eNL]

isan N L x N L unitary matrix where e;,7 = 1,... , NL are the corresponding eigenvectors.

The constraint (4.5) is equivalent to imposing ng eigenvector constraints of the form
(h+b)e;=0, i=1,...,ng,

where ng is the smallest integer such that the fractional trace of the Q matrix, viz.,

ng NL
i=1 i=1

is greater than or equal to some threshold value. Choosing different values of %trQ is

equivalent to specifying different values of € for the inequality constraint (4.5).

The previous formulation is a reasonably straightforward modification of the method
presented by Er [25]. Rather than further analysing this method, we have instead chosen

to focus our attention on the following alternate problems.
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11. Exact Nulling
Consider the following problem:

ngn bib (4.7a)
subject to #(ug,w) =0, Vw. (4.7b)

At first the requirement to obtain a zero response in the null direction for all frequencies
(i.e., an ezact broadband null) would appear impossible with a finite number of filter
coefficients. However, as shown in §4.4, this corresponds to a constraint on the time-
domain impulse responses of the sensor filters. By proper selection of the sensor positions

and sampling rate a solution may be found.

III. Multiple Frequency Nulling

An alternative to an exact broadband null is to impose multiple zeros in the frequency do-
main response of the beamformer at the null angle. In this case the problem is formulated

as:

ngn bib (4.8a)

subject to #(ug,w) =0, wW=wi,...,wn. (4.8b)

The challenge now is in choosing the set of M frequencies {wy, }M_; at which to impose
the frequency domain zeros, such that the broadband null is below a specified depth for

all frequencies in the design band. This problem is considered in §4.5.

4.4 Time Domain Nulling

In this section we demonstrate that through proper array design it is possible to produce
an exact broadband null, i.e., a pattern zero which is present over all frequencies. However,
we show that stringent requirements are imposed on the array geometry and sampling rate
to achieve this. In §4.4.4 we evaluate the degradation of an exact null which would occur

in a practical setting with sensor location errors.
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4.4.1 Exact Broadband Nulling

An exact broadband null in the direction wug requires

N
r(ug,w) = Z H,(w)e? ™) =0, V. (4.9)

n=1
The response in the null direction may be rewritten using (4.2) as

N L-1

r(ug,w Z Z hnlk]e —gwk ogwn (o)

n=1 k=0

Taking the inverse Fourier transform of e?™(u0) and changing the order of summation

gives

r(ug,w Z (Z hp|k] * sinc[k + Tn(u())]) e Ik,

k=0
where sinc(x) = sin(nz)/(mx), and x denotes convolution. Thus, (4.9) is equivalent to
N

> k] % sinc[k + 7,(ug)] =0,  Vk. (4.10)

n=1

It is not immediately clear how this may be easily enforced. However, if we let
Tn(ug) € Z, Vn, (4.11)

then (4.10) becomes
N

> (k] % 6k + 7 (u0)] = 0, Vk,

n=1

where 0[] is the Kronecker delta. Equivalently this may be written

N
> hnlk + 7a(ug)] = 0, VE. (4.12)

Thus, there are two conditions for an exact null in the direction ug: (i) the sensors
must be located such that the relative propagation delay to the nth sensor is an integer
for all n (4.11)—this will be referred to as the integer delay property; and (ii) the sum of

the delayed filter impulse responses must be exactly zero (4.12).

Note that it is always possible to place a null at ug = 0 because in this case

[s

Tn(ug) = :(.I‘n —x1)ug =0, Vn
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and (4.12) reduces to requiring

N
> " hnlk] =0, VE.
n=1
Using this idea, the condition for an exact null at broadside may be written as
Ciih=0

where
Co=1I,®1y

where Iy, is the L x L identity matrix and 1y is the N vector of ones.

The null constraint (4.12) is illustrated in Fig. 4.1. Specifically, when 7,(ug) € Z,Vn,

h1 } f :/\“
T
= e
B O
h < 7777777777777777 >“/\ |
v LYO) s
0 | |

Figure 4.1: Time domain nulling constraint.

the sum of the delayed filter impulse responses can be made exactly zero. In this case,
if h is a vector of filter coefficients which produces some quiescent response, it is always

possible to find a set of coefficients by which satisfy:

N
bolk] + ) hnlk + 7n(uo)] =0, Vk.
n=1
The by are referred to as the nulling filter coefficients. Obviously, one could simply set
bolk] = — Zi:rzl hnlk + Tn(up)], and add this to the quiescent primary filter coefficients
on the first sensor. This corresponds to putting all the nulling effort into the first sensor
filter. In the next section we will consider how to best spread the by among the N sensors

so that the quiescent pattern suffers the least degradation relative to Jyg(b).
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For any array satisfying the integer delay property, the constraint (4.12) can be written

as

where hy[k] = hp[k + 7 (ug)]. The hy[k] are effectively the filter coefficients which steer
the null direction to broadside, i.e., if the coefficients h,, [k] were used as the beamformer
filter coefficients the resulting response would be steered to —ug and the null would appear
at broadside. This null steering is only exact for 7,(ug) € Z,Vn. The null constraint can

now be written as

clh=o.
Define a linear transformation matrix T, which satisfies h = T,h. The null constraint
now becomes

Clnh =, (4.13)

where C,, = Tff C, is the transformed constraint matrix.
At this point it is instructive to consider what the integer delay property implies for a
practical design. The integer delay property (4.11) requires

Tn(UO) = fscil(xn - Jfl)uo €7, Vn.

Let 1 =0 and x,, > 0,n > 1. The first constraint on the array geometry is

Inez, n>2 (4.14)
)

regardless of the desired null angle. Second, a null at ug requires

mc

B fsu(]’

x9 m € Z. (4.15)

Agsume that the sensors are positioned as described in Chapter 2, i.e., the sensor
spacings are logarithmically increasing, and the part of the array closest to the origin is
used only at the highest frequency, with more and more elements becoming active at lower
frequencies. Assuming we want to use the minimum number of sensors to avoid spatial

aliasing, then
c

To = —),
> 2fy
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where fy is the upper frequency of interest. The directions in which we may form a

broadband null are then

2
Uy = m fU, m € 7.
[s
Clearly, for a minimum sampling rate of f; = 2fy it is only possible to produce an

exact broadband null at ug € {—1,0,1}, or equivalently 6y € {—n/2,0,7/2}. Hence, the
minimum sampling rate required for a null at some angle 6y is

2fu
sin 90 '

fs:

(4.16)

This demonstrates the major disadvantages of time domain nulling: oversampling is
required to produce a null which is away from broadside or endfire, and the sensor locations
must be quantised to multiples of the first sensor spacing. However, time domain nulling
does allow an exact broadband null to be formed in situations where the required null

direction is known and the sensors can be accurately placed.

4.4.2 Producing an Exact Null in a Quiescent Pattern

Having demonstrated that it is possible to form an exact broadband null, we now return
to the original problem of producing a broadband null in a quiescent broadband response
while perturbing that pattern the least with regard to Jyg(b). Specifically, if r(u,w) =

hfd(u,w) is the quiescent beamformer response, find the coefficients b such that
#(u,w) = (b + bH)d(u,w) (4.17)

is close to r(u,w) in some respect, and 7(ug,w) = 0, Vw.
The under-determined constraints to place an exact null can be written as

N
> " Bl + T (uo)] + bulk + 7o (ug)] =0,  VE,

n=1
or, using (4.13), as
Co(h+b)=0.

The optimum b is then found as the solution to the constrained optimisation problem:

min bb (4.18a)
subject to CX(h +b) = 0. (4.18b)
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The solution to this constrained optimisation problem may be found using Lagrange

multipliers as follows. Define an unconstrained cost function
1
H(b) = Ebe +aCH(h+b),

where « is the Lagrange multiplier for the constraint (4.18b). The minimum is found by

setting the derivative of H to zero, giving
bl = —aCH,
The Lagrange multiplier must also satisfy the constraint (4.18b), giving
a=h"c,[cfc,] .
Hence, the optimum weights are

bopt = —C,, [CHC,] ' Ch, (4.19)

4.4.3 Design Example

To illustrate the time domain nulling method, consider the quiescent frequency invariant
beampattern shown in Fig. 4.2(a), calculated at 9 frequencies within the design band. This
was designed using the single rate method of Chapter 3 for an array with 18 sensors and 35
filter taps per sensor to cover the octave band 1-2 kHz, with a sampling rate of 8 kHz. The
total array size was 1.53 metres (for sound waves propagating in air). Nulling coefficients
were designed using (4.19) to produce an exact null at #y = 30°. Figure 4.2(b) shows the
resulting beampattern, calculated at 9 frequencies within the design band. Note that the
beampattern exhibits an exact null at 30°, and the remainder of the pattern approximates

the quiescent beampattern.

4.4.4 Sensor Position Errors

Given that the optimum nulling coefficients have been determined to produce an exact
null in a given direction, we now consider the expected null depth taking into account

sensor positioning errors. We follow the standard method in the array literature [82].

Assume the actual position of the nth sensor is Z, = x, + xn, where z,, is the ideal

sensor location and the x, are independent zero-mean Gaussian random variables with
2

variance oy.
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Figure 4.2: (a) Quiescent beampattern at 9 frequencies within the design band, and (b)
beampattern with an exact broadband null at 30°.

The actual broadband response is

N
To(u,w) = Z H,(w)e ™ (4.20)

n=1

where

Hoy(w) =" (hn[k] + bu[k]) ek,
k=0

h
[y

with the b, [k] calculated from (4.19) assuming ideal sensor locations. The actual propa-

gation delay to the nth sensor is

To(u) = fsc ™ (2n + xn) u = Tn(u) + Ap(u). (4.21)
The actual broadband beampattern is
N N
|7q (1, w)|? = Z Z ﬁn(w)ﬁ;‘n(w)e]w[Tn(U)_Tm(U)}eJUJ[An(U)_Am(U)}.
=1m=1
This can be separated into two parts as

N N R R N R
ol @) = 32 Hy ) H o) el (0= Weaeln)=Bm(w] 1 57 |7, ()
n=1m=1 n=1
n#m

‘ 2
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The expected value of the beampattern is

B{jfa(u,w)| }—ZZH VA () (0=Tm @) | By (u, )2 —|—Z‘H @)

n=1m=1 n=1 (4.22)

n#m

where
Ea(u,w) = B{e?fsc xuy, (4.23)

This is just the characteristic function of the Gaussian random variable x, which is [17,

p.138]
Ea(u,w) = e=02 @hse™ u)?/2, (4.24)

Recall that the ideal beampattern is

ZZH VA (w) el (@ =mm(w +Z‘H ‘2

n=1m=1
n#m

Hence, the actual beampattern can be expressed as
N 2
B{lfa(u @)} = [ (,0)? |Ba(u,0) + 3| Halw)| (1= [Bau,w)?).
n=1

Assuming that the ideal pattern has an exact null at wug, then 7(ug,w) = 0,Vw, and the

expected null direction response is

Bl ) = 3[R (1
n=1

. eam2(wfsc_1u0)2/2‘2> . (425)

An example is now presented to illustrate the result obtained above. The design is
the same as that used in the previous section. Figure 4.3 shows the actual null depth
compared with the expected null depth calculated from (4.25) for 5 different trials with
0z = 1 millimetre (mm). It is clear that the actual null depth is close to the expected null

depth in all cases.

The expected null depth for several different positioning errors is shown in Fig. 4.4. As

expected, the depth of the null decreases as the sensor position errors increase.

Finally, the expected null depth for several different null directions is shown in Fig. 4.5,

with a fixed positioning error of o, = 1 mm. The bottom line is for ug = 0.1 and the top
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Figure 4.3: Actual null depth (dotted) for five trails, and expected null depth (solid) versus
frequency. The standard deviation of the sensor positioning errors was o, = 1 mm.

is for ug = 1, (i.e., endfire) with wug increasing in steps of 0.1. As expected, positioning

errors have the most pronounced effect on the exact null for null angles close to endfire.

4.5 Frequency Domain Nulling

In this section we consider a, perhaps more practical, alternative to exact broadband
nulling. Specifically, we consider the problem of placing multiple zeros in the null direction
frequency response such that a given null depth is achieved over the design band while
minimising the disturbance to the quiescent broadband response. There are a number
of ways in which this problem may be formulated. However, we will only consider one

formulation of the problem which results in a simple analytical solution.

Let r(u,w) = hd(u,w) be the quiescent broadband response. The problem may be

stated as

min bb (4.26a)

subject to d(ug,wr)? (h+b) =0, m=1,...,M. (4.26b)

This problem is identical to (4.18) with C, = [d(ug,w1),-.. ,d(ug,wnr)]. The solution is
again given by (4.19).

It is now necessary to determine the zero locations wy,, m = 1,... , M in order to achieve

the required null depth. As a simplification we will assume the M zeros are equally spaced
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Figure 4.4: Expected null depth for several different values of o.

within the design frequency band, so the problem now is only to choose the number of

Zeros.

4.5.1 Multiple Zeros in Null Direction Frequency Response

Consider the problem of determining the number M of equally spaced zeros to impose in
the null direction frequency response, in order to achieve a given null depth within the
design frequency band Q = [wr,wy]. An analogous problem was considered by Steyskal
[85] in which he determined the number of constraints required for a phased array to
achieve a specified null depth over a spatial sector. Steyskal’s method can be modified as

follows.

The optimisation problem (4.26) may be rewritten as

min (h —h)?” (h — h) (4.27a)
h
subject to dgﬁ =0, m=1,...,M, (4.27b)

where h = (h+b) and d,, = d(ug,wn,). Hence h is orthogonal to the constraint vectors
dp,.

In [84] Steyskal shows that the weights which solve the constrained optimisation are

given by
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Figure 4.5: Expected null depth for several different null directions with o, = 1 mm. The

bottom line is for ug = 0.1 and the top line is for ug = 1, with ug increasing in steps of
0.1.

Equivalently, the optimum response is given by

M
f(uaw) = T(uaw) - Z aQO(uaw)a (428)
m=1
where
gm(u,w) = dEd(u,w). (4.29)

The parameters «,, are obtained by solving the set of M simultaneous equations

r(ug,w1) qi(uo,w1) -+ qu(ug,wr) | | 1
| s o (4.30)
r(ug, war) qi(uo,wnr) -+ qu(uog,wnm)| [om
Define the null depth as
€ = max 7 (ug, w)?, (4.31)

weN
where 7(u,w) is given by (4.28).

Thus, given a quiescent broadband beampattern (or equivalently, the quiescent coef-
ficients h), the null depth achieved for a given M can be calculated. Note that the null

depth is implicitly dependent on the array geometry, number of coefficients, sampling rate,

design bandwidth, and null direction.
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4.5.2 FIB with Multiple Frequency Nulls

In this section our aim is to determine M for the specific case where the quiescent beam-
former is a FIB. In particular, our goal is to determine an approximate relation for the
null depth which is valid for any FI beampattern. This means that if the quiescent FIB
coefficients are found by adaptation, we can determine a prior: the number of frequency

zero constraints required to produce a given null depth.

Consider the following assumptions.

1. The M nulls are equally spaced over the region 2.
2. The quiescent FIB response r(u,w) is real.

3. The quiescent FIB response in the nulling direction is approximately constant over

the nulling frequency band, i.e., r(ug,w) = A,w € Q, where A = r(ug,wr).
4. 7(ug,w) is oscillatory and crosses the w axis at w = wq,... ,wps.

5. 7(up,w) attains its maximum value at wmax = (W1 + wa)/2.

With these assumptions, the null depth can be approximated as

2
er 7 <u0, M) , (4.32)
2
where
M
f(U(],(U) =A- Z amqm(UOaw)ﬂ (433)
m=1

with ¢ (ug,w) given by (4.29), and a,, given by the solution of (4.30) with r(ug,wm) =
Am=1,...,M. Note that (4.32) does not depend on the quiescent coefficients. Hence,
given the array geometry, number of coefficients, sampling rate, design bandwidth, and
null direction, it is possible to determine the expected null depth for any FIB, regardless
of the actual quiescent FIB beampattern. In practice, for a given beamformer all of these
variables will be fixed, and one can a prior: determine the number of frequency constraints
required to achieve a given null depth in a given null direction. Then, even if the FIB
filter coefficients are determined from an adaptive algorithm (such as the linear constrained
minimum variance algorithm proposed in Chapter 3) the null depth in the null direction

will be approximately as determined by (4.32).
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4.5.3 Design Example

In order to illustrate the method derived above, consider the following example. A FIB
was designed to cover the band 1-2 kHz, with an aperture size of P = 5 half-wavelengths
and a sampling rate of f; = 8 kHz. The primary filters were each of length L = 21
coefficients, and the secondary filter had 4 coefficients. The null was to be at 8§ = 30°.

The quiescent beampattern, and the response in the null direction are shown in Fig. 4.6.

Beampattern (dB)
& L
5 3 o

b
S
Null Direction Beampattern (dB)

_50— . . I . 1 1 1 1 _100 . . . . . . . . .
-80 -60 -40 -20 0 20 40 60 80 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Angle (degrees) Frequency (Hz)

(a) (b)

Figure 4.6: (a) Quiescent beampattern at 9 frequencies within the design band, and (b)
quiescent null direction response over the entire design band.

Using the method outlined above, the nulling coefficients b were calculated for various
values of M, and the resulting responses in the nulling direction are shown in Fig. 4.7.
Also shown is the expected null depth calculated from (4.32). In all cases the expected
null depth gives a good approximation to the maximum value of the null direction output

power over the design band.

4.6 Conclusions

The broadband nulling problem considered in this chapter is stated as follows. Given an
N L vector of filter coefficients which produces some desired broadband response r(u,w)
(for a beamformer with N sensors and L filter taps per sensor), find the coefficients which
produce a broadband response 7(u,w) which has a broadband null in a specified direction
and is close in some respect to the original response r(u,w). The problem was formulated
in terms of a constrained minimisation problem, i.e., minimise the distance between r(u, w)

and 7(u,w) subject to the constraint that 7(u,w) exhibits a broadband null in the direction
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u = ug. Several candidate cost functions and constraints were considered. These are

summarised in Table 4.1, with boldface items indicating those that were studied in detail.

Cost Function
Lo error:

Constraint

max_ |7 (u,w) — r(u,w)|
wellwe ' Mean-square null depth:

f:LU |#(uo, w)|dw < €

Weighted L error:
fn fu o(u, w)|#(u, w) — r(u,w)|? dudw

Exact nulling:

Nulling gain: 7(uo,w) =0, Vw

bPb

Multiple frequency nulling:

r =0 = e
Nulling power: lao,w) =0, w=w1,...,wu

b E{s(t)s(t)" }b

Table 4.1: Summary of cost functions and constraints. Boldface items have been consid-
ered in detail in this chapter.

For the exact null constraint, we demonstrated that it was possible to produce a pattern
zero over all frequencies by formulating the constraint as a time domain constraint. This
required oversampling to produce a null at directions other than broadside or endfire, and
placed stringent constraints on the sensor locations. The degradation of the exact null
which would occur in a practical setting with sensor positioning errors was then considered,
and it was shown that a reasonably deep null was still achieved for small sensor position

perturbations.

For the multiple frequency nulling constraint, we derived a relationship for the number
of multiple zeros to impose in the quiescent beampattern to achieve a broadband null of a
given depth over the design bandwidth. Specifically, for a frequency invariant beampattern
we showed that (for a given array geometry, number of filter coeflicients, sampling rate,
design bandwidth and null direction) the number of zeros for a given null depth was
independent of the actual quiescent beampattern. Thus it is possible to determine a
priort the number of frequency zeros required to impose the null, even in the case of an

adaptive beamformer.

Finally, we conclude by noting that there is no single “right” answer to the broadband
nulling problem considered in this chapter. We have attempted to give a brief review of
some possible formulations of the problem, and have obtained some new results concerning
both approximate and exact broadband pattern nulls. These new results are specifically
aimed at the frequency invariant beamformer, although they have wider application to

more general broadband beamformers.
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Figure 4.7: Expected null depth (dashed) and actual null depth (solid) for various values

of M.



Chapter 5

Nearfield Broadband Frequency

Invariant Beamforming

5.1 Introduction

HE vast majority of array literature deals with the case in which the source is as-
Tsumed to be in the farfield of the array. That is, the source is assumed to be at
an infinite distance from the array and hence the received waveform from a single point
source is planar. This significantly simplifies the beamforming problem. In many cases the
approximate distance at which the farfield approximation begins to be valid is r = 2L/,
where r is the distance from an arbitrary array origin, L is the largest array dimension,
and ) is the operating wavelength [61]. However, for complicated beampatterns with ei-
ther low sidelobes or deep nulls, a distance of 10L?/)\ or more may be required [39, 40].
In many practical situations the source is well within this distance, and using the farfield
assumption results in severe degradation in the designed beampattern. Furthermore, when
broadband operation of the beamformer is required the problem becomes more acute: low
frequency components may appear in the nearfield whereas high frequency components

may appear in the farfield of the array.

The problem of designing a broadband beamformer for use in the nearfield is important
in many areas. One such field is speech acquisition using a microphone array, which finds
application in teleconferencing, hands-free telephones, and voice-only data entry. Effective
reception of the speech signal in these situations is traditionally hampered by reverberation

and external noise sources.

106
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Up until now the methods of nearfield broadband beamforming have been relatively
limited in their generality, and based on applying time delays' to compensate for the
differing propagation delays due to spherical propagation (see [52] for example). We will

examine this method in the following section.

In this chapter a new method of nearfield beamforming is proposed in which a de-
sired arbitrary (in both frequency and angle) broadband beampattern may be produced.
Specifically we are concerned with the case in which this beampattern is frequency in-
variant, however the method is applicable to a more general class of nearfield broadband

beampatterns.

The methodology is based on the solution to the wave equation and uses spherical
harmonics to transform the desired nearfield beampattern to an equivalent farfield pat-
tern. The general character of the radial transformation which is important, as far as the
frequency invariant beamforming application is concerned, is that a nearfield frequency
imvariant beampattern can be transformed to a farfield frequency varying beampattern.
Conversely, a farfield frequency invariant beampattern in general transforms to a nearfield
frequency varying beampattern. This latter fact, which is illustrated in this chapter, high-
lights the importance of addressing the nearfield issue in the sense that conventional farfield

design methods fail.

As part of the nearfield design technique, a broadband beamforming method is devel-
oped to realize a general angle-versus-frequency farfield beampattern specification. This
is referred to as the general broadband beamformer (GBB). The development of the GBB
theory is based on the philosophy of the FIB theory, namely, derive relationships based
on a theoretical continuous sensor and then approximate the response of this continuous
sensor using a sensor array. It is shown that the FIB is in fact a special case of the GBB.
Coupled with the radial beampattern transformation technique, the GBB can be applied

to a wide class of beamforming problems, as indicated in this chapter.

The notation used in this chapter differs slightly from that used in the balance of the
thesis. The angle of wave arrival 6 for a linear array is measured relative to endfire (rather
than broadside), r is used to denote radial distance (rather than a beamformer response),

and b is used to denote an aperture response or beamformer response.

Tn the case of narrowband nearfield beamformers only a phase delay is required. However, for broad-
band beamformers a true time delay is required.
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5.2 Nearfield Compensation

In this section the commonly used method for designing nearfield beamformers is outlined,

and the inherent limitations of this method are highlighted.

To illustrate the method, consider a narrowband linear array of N sensors with a
complex weight on each sensor. The response of the array to a signal at a distance r and

angle 6 (measured relative to endfire) to the zeroth sensor is

N—-1

bu(r,0) = > wy 3:2: Z; exp (927 fc dy (1, 0) — do(r,6)]), (5.1)

n=0

where w, is the complex weight on the nth sensor, f is the frequency of operation, c is

the speed of wave propagation,

N

dy(r,0) = [r? + 2r(2;, — 70) cO8 0 + (25, — 0)?] (5.2)

is the distance from the source to the nth sensor, and x,, is the location of the nth sensor.

Compare this with the response to a farfield source at an angle 6:

N—1
br(0) = Z wp, exp (927 fe oy, cos ). (5.3)

n=0

The common method of nearfield beamforming is to apply nearfield compensation, by
which the nearfield response is effectively transformed to the farfield and standard farfield

techniques are used to design the array weights. The compensated nearfield response is

= do(r,6) 1
be(r,0) = Z wn¢nd 0 exp (‘727rfc* [dn(r,0) — do(r, 9)]) ’
n=0 nAT
where ]
Uy = dzg: z:)) exp (j27rfc*1[d0(r, @) — dn(r, P) + xy, coS qﬁ]) ,

is the nth compensation term. It is clear that the compensated nearfield response is iden-
tical to the farfield response only at 8 = ¢, and is approximately equal for angles close
to ¢. To design a nearfield beamformer with a desired response, the weights w,, are ob-
tained using standard narrowband farfield design techniques. The resulting compensated

nearfield response is then approximately equal to the designed farfield response.

An example is shown in Fig. 5.1 to demonstrate a typical compensated nearfield re-

sponse versus an uncompensated response at a radius of 6 half-wavelengths. Clearly
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Figure 5.1: Comparison of compensated and uncompensated nearfield beampatterns.

nearfield compensation provides a vast improvement over an uncompensated array, al-

though the compensated response still does not achieve the desired response.

5.3 Radial Beampattern Transformation

Although the nearfield compensation method is relatively straightforward to implement,
the results achieved are not very satisfying (as demonstrated by Fig. 5.1). With this
is mind, we have sought an alternative broadband nearfield beamforming method. The
nearfield beamforming method proposed here is to transform a desired nearfield pattern
to a physically equivalent farfield pattern, and design a farfield beamformer to realize this
transformed farfield pattern. For a broadband nearfield beamformer we would strictly want
to do this over a continuum of frequencies. However, in the following we will develop a
transformation for any particular frequency. We will first develop a general transformation
using a spherical coordinate system which is applicable to any three dimensional sensor

array and any physically realizable beampattern.

5.3.1 Solution to the Spherical Wave Equation

The beampattern transformation is obtained by solving the physical problem governed by
the wave equation. Let r denote radial distance, ¢ and 6 the azimuth and elevation angles
as shown in Fig. 5.2. Note that this is the conventional right-hand coordinate system and

is different to that used in Chapter 2. Using this coordinate system simplifies notation.
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Figure 5.2: Spherical coordinate system.

A general valid beampattern, b, will satisfy the wave equation expressed in spherical
coordinates:
19 ( ,00b 1 9 b 1 9% 10%
r2or or r2sin 0 90 r2sin” 0 0¢ c2 ot
Note that by considering the spherical wave equation we are assuming that the beampat-
tern is measured on the surface of a sphere. This may be thought of as a restriction but

makes the calculations more tractable. Alternately, a more appropriate coordinate system

may be employed.
One group of solutions has a separation property, and the solution may be written:
b=R(r)©(0) ®(¢) T(t). (5.5)
For notational convenience, in most of the remainder of this chapter the explicit functional
dependence of R,©,®, and T on r, 0, ¢, and t respectively will be dropped.

Although partial solutions to the spherical wave equation may be found in standard
texts (e.g. [5,18]), a complete solution as presented here is lacking. For this reason a full

derivation of the solution is given.
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Synthesis Equation

Substituting the solution (5.5) into the wave equation (5.4) gives

19 /(, OR 1 9 /. 00 1 2% 1 9%b
~ 2 (reert) 4 2 o1 )+~ ReTY . = ~ROZ..
<’" © 87‘) t 2sn0 90 <S‘n O 39) T raze O g T 2%

Dividing through by RO®T gives

1 /0°R 20R 1 9 90 1 ’e _ 1.9°T
r2dsin? 0 042 2T 0%t

(222t —— Z [ging==
R\ or2 ror + 205m6 00 \>

(5.6)

The expression on the left hand side is a function of r, 8, and ¢ only, whereas the function

on the right hand side is a function of ¢ only. Hence, for the equality to hold, both sides

must be equal to a constant. Let this constant be —k2. The right hand side then becomes

N
2T o2 ’
which has a solution
T(t) = M 4 Neket, (5.7)

where M and N are constants. Equating this with a conventional modulation at the

frequency of interest, it follows that

_2nf
k= — (5.8)

which is the wave number. Since we assume that the propagation speed ¢ is fixed, k is
simply a constant multiple of frequency f. For this reason, throughout this chapter we

will often refer to k as “frequency”.

Setting the left hand side of (5.6) to —k? and multiplying through by r?sin® 6 gives

r?sin?6 (0°R 20R sinf 0 00 1 9%°®
O 06

— + - inf— E*r?sin?f = ———..
R ar?  ror S 89) TS D J¢?

(5.9)
The expression on the left hand side is now a function of r and 6 only, and the right hand
side is a function of ¢ only. Again, for the equality to hold, both sides must be equal to a
constant. Let this constant be m?. Hence, the right hand side becomes

10°® 5
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which has a solution
B(p) = C™? 4 De ™9, (5.11)

where C' and D are constants.

Setting the left hand side of (5.9) to m? and rearranging gives

r? (0?R 20R 99 m? 1 0 00
et _ 2 (sing 2 ). 12
R<8r2 +r8r)+k ~ sinZ6 @sin989<8m989) (512)

Again, both sides must be equal to a constant. Let this constant be [?. Therefore

2 /52
Rearranging gives
2R
7"2%—24-2 ‘Z—R+(k2 2~ P’)R=0.

Let R =r~2S. With the substitution 12 = n(n + 1) we have [18, p12]

92sS S 1\2
—8r2 +T_8r + (k r <n+ 2) )S 0.

This is Bessel’s equation, which has a solution
S(r) =A Jn—l—%(kr) + B’ Yn—l—%(kr)’

where .J,,  1(-) is the half integer order Bessel function of the first kind, Y, 1(-) is the half
2 2
integer order Neumann function (or Bessel function of the second kind), and A’ and B’

are constants. This can equivalently be written as

S(r) = A Sy s (br) + 5V, 3 (k) + B (1 (k) = 7Y, 1 (k)
=AHY, (kr)+ BH®, (kr),

1
2

where Hr(ll_z 1 () is the half integer order spherical Hankel function of the first kind, and
2

Hﬁzl (+) is the half integer order spherical Hankel function of the second kind (complex

conjugate of the spherical Hankel function of the first kind). Substituting R = r=38 gives

R(r)=r"2 <AH() (kr) + B H”) (kr)). (5.14)

l\Jlb—‘
(NI
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Returning to (5.12), we have

R P Y (Pl
MY T G020 Osimnb o\ )

or equivalently,

1 0 00 m?
030 <sm 9%> (n(n +1)— o 9) © =0.

This is the generalised Legendre equation [18, p11] which has a solution
©(0) = P (cosb), (5.15)

where P7"(-) is the associated Legendre polynomial (which reduces to the Legendre poly-

nomial for m = 0).

From (5.11), (5.14) and (5.15) the solution (5.5) can now be written as

b=r34 HSJZ; (kr) P™(cos 0) (Ceﬂm + De_]m¢) . (5.16)
Note that the complete solution includes another term containing the spherical Hankel
function of the second kind. However, by excluding this term we are excluding standing
wave terms, i.e., it is sufficient to consider either waves propagating generally away from
the origin or waves propagating generally towards the origin, but not both. This repre-
sentation is therefore valid on a manifold (typically a sphere) that encapsulates but does

not penetrate the physical array.

Summing up all possible terms and rearranging we obtain the complete solution, which

we will refer to as the synthesis equation:

be(0, s k) =1~ é(ZO% ﬁj%(kr) (cos 0) +
5030 H0), (h0) P08 6) (™ 4 3 ™) ). (517
n=1m=1

This is analogous to the Fourier transform synthesis equation in that a beampattern is

completely characterised by the coefficients a,, Gnm and vpp,.
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Analysis Equations

First, consider derivation of a,. Multiplying (5.17) by P,(cos ) sin @ and integrating with

respect to 6 and ¢ gives

2
/ / (0, ¢; k)Py(cos 0) sin @ dOdeo

o
_1
=27r” 2 E anH
n=0

(kr) / P, (cos 6)P,(cos 0)sin6 db,

MI»—‘

where the terms involving f,,, and 7,,, have disappeared since fozﬁ eMPdgp = 0,Ym € N.
Let sinf df = d(cos#). We now make use of the orthogonality property of the Legendre
function [77, p.22]:

1 0, n # v,
/ P, (cos@)P,(cos0)d(cos ) = 1

—1 n+%’ n=wv
Substitution gives
27 1 1
/ / (0, ¢; k) Py (cos 0) sin 6 dodgp = 2w 2 H'") | (kr) —.
n+sy n + 3
Rearranging gives
l 2T
ap = - % / / (0, ¢; k)P, (cos ) sinf db do. (5.18)
2nr~ 2 H +1 (kr)
2

Now consider derivation of 3,,,. Multiply (5.17) through by PJ(cos ) sin fe™74% where
q € N, and integrate with respect to 6 and ¢ to give

2w g
/ / by (0, ¢; k) PI(cos 0) sin fe 79 dOdg
0 0

0 27
— 72 Z anH 1 (kr) / / (cos 0) Pd(cos 0) sin fe =71 dfdg
— 2

n=

0
00 n 2
+r72 S H (k) /0 /0 P11 (c08 0) P (€08 0) (B~ D9+~ 0% ) sin df d.
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5.3 Radial Beampattern Transformation
The term involving «,, disappears since fozﬁ e~19%d¢ = 0,Yq € N. The term involving v,m

disappears since f027r e*J(erq)‘ﬁdqﬁ = 0,VYm, q € N). For the term involving 3,,, we have

2
/ e](m—q)qﬁ d¢ _ 0, m 7é q,
0 2, m=gq.

This gives
2w
/ / b (8, ¢; k)P (cos 0) sin fe= 7™ dfdg
o Jo
= o3 Hiljl(kr)ﬂnm/ P (cos @) P, (cos ) sin @ do.
2

n=1

Let sinf) = d(cos ). The orthogonality property of the associated Legendre function is

[77, pp.103-105]
1 0’ n # /U’
/ P (cos 0) P, (cos §)d(cos 0) = (ntm)! 1
-1 m n+%, n=wo.

Substitution gives
T Ly

/ / br (0, ¢; k) Py (cos 0) sin Ge=m? dp d¢p =2nr—2H "/,

o Jo e

Rearranging gives

2 pm
(n = m): / / b (6, ¢ k) P™ (cos 0) sin fe ™ df dp.
o (5.19)

n +
ﬂnm = 1
27rr_§Hn

Similarly it can be shown that

n_m)| 2T o ‘
. Pm jm¢ )
n+m)!/0 /0 by (0, ¢; k)P (cos @) sin fe df do

(5.20)

n +
'Ynm = 1
2nr— 2 H

i
1
_2 (kr) (

n

M=

We will refer to (5.18), (5.19) and (5.20) as the analysis equations. These equations

are analogous to the Fourier transform analysis equations in that they give the coefficients

which completely characterise a given beampattern.

Complete Solution

The general synthesis and analysis equations are repeated here for convenience.
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Synthesis Equation:

n=0
#3030 A, () P (c050) (™ + 3ume ™)) (520
n=1m=1
Analysis Equations:
n+ 1 2 pm
ap = — (12) / / by (0, ¢; k) Py (cos @) sin @ df do (5.22a)
2nr=2H >/ (kr) Jo Jo
n+ 1 (n—m)! [>[7 g
Bom = 2 / b (8, ¢; k) P™ (cos 0) sin 0e ™7™ df d¢p (5.22b)
2771“7%H7(il(k1") (n+m)! Jo Jo "
2
n+3 (n—m)!/% g . P
Yom = by (0, ¢; k)P (cos0) sin0e? df dp  (5.22¢)
T 2 HY (k) (nEm) o Jo "
2

The utility of the radial beampattern transformation is as follows. Given a beampattern
by, (0, ¢; k) measured at some radius 71, calculate oy, Gpm and vy, from (5.22) with r = 7.

The beampattern can now be reconstructed at any radius ro by using (5.21) with r = ro.

The method we propose to design a nearfield beamformer is outlined below.

1. Calculate the beampattern coefficients for the desired nearfield beampattern
by, (0, ¢; k) using (5.22) with r = ry.

2. Calculate by (6, ¢; k) from (5.21) at r = co.

3. Design a farfield beamformer to realize this beampattern using classical farfield array

design techniques.

4. Using this farfield beamformer in the nearfield at » = r4 will produce the desired
nearfield beampattern b,, (6, ¢; k).

An important feature of this formulation is that the actual array geometry is of only
secondary importance. Any array geometry which can realize the resulting transformed
farfield beampattern may be used. This is important in a practical situation in which
the array is mounted on a complex three dimensional surface, such as a microphone array

mounted on the curved dashboard of a car. The question of whether a specific array can
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realize a specific farfield beampattern is a separate issue and is not addressed here (some

solutions are given in [103, 104]).

5.3.2 Transformation to the Farfield
The requirement to transform to r = co exposes some potential numerical problems; these
are easily resolved as follows.

The half integer order spherical Hankel function of the first kind satisfies the asymptotic
form [5, p.243]

HY (k) ~ () ——exp (3 [br = 20+ 1))
= (=) ——exp(ykr), asr — .

Hence, in the synthesis equation (5.21) there is an attenuation with distance like 71, i.e.,

1

r_l/QHr(l:z (kr)| ~r~"; asr — oo.

1
2

Synthesis at r = oo gives bs (6, ¢; k) = 0 which is clearly unacceptable. This can be easily
compensated for by normalising the magnitude of b,(6, ¢; k) by multiplying by r (this

works because all modes exhibit this attenuation, i.e., it is independent of m and n).

The other problem is what phase to associate with » = co. This is somewhat arbitrary,
but is easily dealt with by setting the phase of the asymptotic half integer order spherical

Hankel function to zero at a nominal frequency kyq.

We thus obtain the following farfield synthesis equation

oo (0, 3 k) ~ \/7 1(k=ko) <Za 7)™ P, (cos 0)

_|_Z Z )" TLP™ (05 0) (Bume™ + Yn ejm¢)), (5.23)

n=1m=1

where b denotes a normalised beampattern.

5.3.3 Linear Array

Consider a linear array aligned with the z axis. In this case the beampattern is rotationally

symmetric with respect to ¢, and the beampattern can be expressed as b,(0,¢; k) =
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by (0; k). The only non-zero components are those for which m = 0, which leads to the

following set of equations:

oo

by (0; k) = ZOO‘"T_I/QH&?%(M) (cos 0) (5.24)
and
n+ g
Qap = %/ b, (0; k) Py (cos 0) sin 6d6. (5.25)
r 2H +1(k7')
2

Applying the normalisations described above we obtain the following farfield synthesis

equation for a linear array aligned with the z axis.

boo (6: k) N\/7 9(k=ko) (Za )P, (cose)) (5.26)

5.3.4 Parseval Relation

The synthesis equation (5.21) requires an infinite number of terms to exactly characterise
the beampattern. In this section we derive a Parseval relation for the radial beampattern
transformation and use it to provide an expression for the error associated with using a
finite number of terms in the synthesis equation. For simplicity, we only consider a linear

array aligned with the z axis.

Rewrite (5.24) and (5.25) as
= Z A, P, (cos ) (5.27)
A, = (n—i— %) / by (0; k) Pp(cos ) sinf do, (5.28)
0

where A, = anr_%Hflli y (kr). Although A, is a function of r and k, we suppress this
2

dependence to simplify notation.

The Parseval relationship is derived as follows. Consider the integral of the beampattern

over all real angles:

m 1
/ |br(9;k)|2sin9d9:/ by (u: 1)
0 -1
1
— [ bbby o

1
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with the change of variable u = cos . Replace b, (u; k)* by its series representation from

(5.27),
b (u; k)" =Y A% Po(u),
n=0

Interchange summation and integration to give
s > 1
/ b, (6; k)|* sin 6 df = ZA;‘;/ by (us k) Py (u) du
0 0 —1

> 1
:ZA;‘;AH—I.
n=0 7’L—|—§

The Parseval relation may now be written as

T o 1
by (0; k)|* sin6 do = A% 5.29
| o) >y M (5.29)

Assume we wish to approximate b, (6; k) by a finite series of the form

N
br(0;k) = Ay Py(cos ). (5.30)
n=0

The integral squared error between b,.(0; k) and b, (6; k) is given by

T
e:/
0
o0
1 ‘ .
:§ A, — A
1 n )
n:0n+§

using the Parseval relation (5.29). Separating the summation into two parts gives

2
‘ sin 0 do

by (05 k) — by (65 k)

2

3

N 9 e} 1

1 i 2
=% I‘An—An + ¥ SVNLS
=02 Sy U
Clearly, to minimise ¢, set A, = A, forn=0,... ,N. The residual error is then given by
=1
€min = Z 1 |An|2 (531)
n=N4+1" 3
:/ 16, (0: 1) sin0dd — 3 —— 4,7, (5.32)
0 n=0 n+ 2

where the A, are given by (5.28).



5.3 Radial Beampattern Transformation 120

Parseval Relation Example

To demonstrate the utility of the Parseval relation, consider a beampattern defined by

M-1
1
br(0: k) = < D emammeost, (5.33)

m=0

In this case it can be shown that

1
/ |b, (0 k)|* sin 6 d6 = %

-1

Relative Beampattern Error
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Figure 5.3: Relative beampattern error calculated from (5.32) for the example beampat-
tern shown in Fig. 5.4.

Figure 5.3 shows the relative beampattern error versus the number of coefficients, cal-
culated from (5.32) for the case of M = 5. The plot has been normalised by 2/M.

Figure 5.4 shows the resulting approximate beampatterns calculated from (5.30) for
several different values of N. Also shown is the desired asymptotic beampattern corre-
sponding to N = co. Figure 5.3 predicts that 15 coefficients should be sufficient to obtain
a good approximation to the asymptotic beampattern. This is confirmed by Fig. 5.4.

5.3.5 Radial Transformation Example

To demonstrate the utility of the radial transformation, consider the beampattern defined
by (5.33) with M =5, at a radius of » = 10\/2. A set of 20 coefficients were calculated
from (5.25). (From Fig. 5.3 we note that 20 coefficients should be sufficient to produce

negligible error from the asymptotic beampattern.) The pattern was transformed to the
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Beampattern
o o o o o
N w S o =2
T T T

o

o
D
\

Figure 5.4: Approximate beampattern calculated from (5.30) for several different values
of N. Also shown is the desired asymptotic beampattern.

farfield using (5.26), and the resulting farfield beampattern is shown dotted in Fig. 5.5(a).
Note that the main beam has moved away from broadside due to the non-zero phase
of the desired nearfield beampattern as defined by (5.33). A farfield beamformer with 11
half-wavelength spaced sensors (centred on the origin) was then designed using a complex-
valued least squares criterion to achieve this desired farfield pattern. The resulting farfield
beamformer response is shown solid in Fig. 5.5(a). This farfield beamformer was then
used in the nearfield at a radius of 7 = 10A/2. The response of this beamformer is shown
solid in Fig. 5.5(b). Also shown is the desired nearfield response (dotted). Since the
farfield beamformer does not provide a good enough approximation to the required farfield
response shown in Fig. 5.5(a), the resulting nearfield response shows some divergence from

the desired nearfield response.

As a second example, consider the same pattern as in the previous example, but now
with zero phase. The resulting transformed farfield pattern is shown dotted in Fig. 5.6(a).
This pattern was then approximated using a farfield beamformer with five half-wavelength
spaced sensors (centred on the origin), resulting in the solid pattern in Fig. 5.6(a). Since
this farfield beamformer provides a good approximation to the desired farfield response,
the corresponding nearfield response is very close to the desired response, as shown by
Fig. 5.6(b).

In comparing Fig. 5.5(b) with Fig. 5.6(b), it is clear that for our nearfield beamforming
method to work effectively it is necessary to provide a good approximation to the trans-
formed farfield pattern. We have found that nearfield patterns with zero phase generally

transform to well-behaved farfield patterns which may be approximated reasonably well.
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Figure 5.5: (a) Transformed farfield response (dotted), and farfield response of designed
beamformer (solid). (b) Resulting nearfield response from designed beamformer (solid),
and desired nearfield response (dotted).

5.4 General Broadband Beamforming

So far we have only considered application of the radial transformation at a single fre-
quency. For a broadband nearfield beamformer, the radial transformation would be ap-
plied over a range of frequencies. Assuming radial symmetry in the ¢ variable (i.e., for
a linear array aligned with the z axis) this would produce a general farfield beampattern
b (0; k) specified over both angle 6 and frequency k. In this section we consider how to
produce a farfield beamformer which realizes a general desired broadband beampattern.
Specifically, the problem is to find the filters to apply to each sensor in an array to achieve
the desired general broadband beampattern. We refer to this as the general broadband

beamformer (GBB) problem.

For a uniformly spaced array it is known that a two dimensional discrete Fourier trans-
form relationship exists between the broadband response and the weights of the sensor
filters [43]. However, we believe it is more appropriate to use nonuniformly spaced ar-
rays for broadband applications (see Chapter 2), and hence desire a more general design
method. As in Chapter 2 we will initially develop the GBB theory in terms of a linear
continuous aperture (in practice, and as illustrated later, we can approximate this by a

linear array of nonuniformly spaced sensors).
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Figure 5.6: (a) Transformed farfield response (dotted), and farfield response of designed
beamformer (solid). (b) Resulting nearfield response from designed beamformer (solid),
and desired nearfield response (dotted).

The response of a continuous linear aperture to planar waves arriving from an angle 6

(measured relative to endfire) is

oo
a(u, k) = / p(z, k)e?™™ da (5.34)
—0o0

where u = cos 8, k = 2r f /c is the wave number (frequency) and p(z, k) is the broadband
aperture illumination (which is a function of both location and frequency). For a finite
aperture size, p(z, k) will have finite support in z. Compare the response of the continuous

linear aperture to that of a linear array

N-1

a(u,k) = wn (k)

n=0

where wy, (k) is the complex weight on the nth sensor at a frequency k. Our aim is to find

the wy (k) such that a(u, k) approximates a(u, k).

Temporarily fix the frequency to some arbitrary value k = kg, and introduce ag(ukg) =

a(u, ko), po(z) = p(x, ko), and y = ukg. Substituting into (5.34) gives

aoly) = [ " o) de = F {polx)}

—Oo0
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where F{-} and F~{-} denote the Fourier transform and its inverse respectively. Hence,

po(a) = F {ao(y)} = = /°° aoly) € " dy.

:% .

In general, the above relation holds for all values of ky. By substitution,

k > —gkzu

plz k) = — a(u, k) e du. (5.35)
2 J_s

Note that p(x, k) has the interpretation of being the filter response (function of frequency)

required at displacement z (relative to a nominal origin) to achieve the desired broadband

beampattern a(u, k).

With regard to implementation, where discrete sensor locations are necessary, a prac-
tical design is readily obtained by approximating (5.34) by a summation in the manner

introduced in Chapter 2, i.e.,

N-1
k
a(u, k) = g—w 3" guHa(k)ekont, (5.36)
n=0

where {z,}N"} is a set of N discrete sensor locations, H,(k) is the filter response on
the nth sensor, g, is a spatial weighting term which is used to account for the (possibly)
nonuniformly spaced sensor locations, and 7 is a normalisation constant. Each of the

channel filters is given by

H,(k) = / h au, k)e Ikt dy, (5.37)
—00
The corresponding filter coefficients may be found by simple inverse Fourier transform of
the resulting filter response.? In comparing (5.37) with (5.35), note that we have taken
out the common k/(27) term in (5.35) and chosen to implement it as a secondary filter
(c.f. Chapter 2). We are thus led to the block diagram shown in Fig. 5.7. Note that the
secondary filter may be perturbed slightly from its ideal differentiator form to normalise

any scaling errors introduced by the approximation of (5.34) by the summation (5.36).

?Note that the beampattern sampling technique for obtaining the filter coefficients (see §3.2.4) cannot
be used unless a(u, k) is frequency invariant.
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Figure 5.7: Block diagram of general broadband beamformer.
5.4.1 Application to Nearfield Beamforming

This formulation can now be directly applied to the problem of implementing the trans-
formed farfield broadband beampattern. Specifically, if 500(9; k) is the normalised broad-
band farfield beampattern resulting from a radial transformation of some desired broad-

band nearfield beampattern through (5.25) and (5.26), then the implementation equations

are
k N-1
7 . v kxy cos 0
boo (05 ) = o nzo gnH, (ke (5.38)
where
Hy (k) = / * Boo (6: )7k <080 i 0. (5.39)

s
2

5.4.2 Relationship to Frequency Invariant Beamforming

As stated in the introduction, the frequency invariant beamforming theory developed in
Chapter 2 is a special case of the general broadband beamforming theory developed here.

To see this, let a(u, k) = a(u), i.e., the response is independent of frequency. Substituting
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into (5.35) gives

That is, to obtain a frequency response the aperture illumination should scale directly

with frequency. This is precisely the result obtained in Chapter 2.

5.4.3 Relationship to Narrowband Beamforming

A conventional narrowband beamformer is also a special case of the general broadband
beamformer. In this case, let a(u,k) = a(uk), i.e., the response varies directly with

frequency. Substituting into (5.34) gives

k o0
— a(uk)e —Ikzu g,
T o —oo
1 o
— Je P dz
" or oo

— G(a),

with the change of variables z = ku. In other words, to obtain a response which varies
directly with frequency, the aperture illumination should remain constant for all frequen-
cies. This is consistent with the observation that the response of a narrowband aperture

(in which the aperture illuminations remains constant) scales directly with frequency.

5.5 Nearfield Frequency Invariant Beamforming

In general, a nearfield frequency invariant pattern transforms to a farfield frequency vary-
ing pattern, i.e., b.(0,¢) = b (0,¢;k),k € [kr,ky], where r is a nearfield radius, and
[kr,ky] is the bandwidth over which the nearfield pattern is frequency invariant.? This

highlights the need for the general broadband beamforming theory developed in §5.4 in

3Tt is interesting to note from (5.21) that if a nearfield pattern consists only of terms with the same
order n, then the half integer order Hankel function of the first kind factors out of the summation. In this
case, the beampattern shape remains constant for all values of r (apart from attenuation with distance).
This means that a nearfield frequency invariant pattern would transform to a farfield frequency invariant
pattern. Although this is an appealing concept, we have found that no “useful” beampattern can be
produced using only associated Legendre functions of the same order n.
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the nearfield frequency invariant beamforming problem. From (5.22) note that for a fre-
quency invariant beampattern, the integrands are independent of frequency, resulting in

some efficiency in the computation of the analysis coefficients.

5.5.1 Design Example

The following example illustrates the proposed broadband nearfield beamforming method.
We wish to design a nearfield frequency invariant beamformer having the response shown

in Fig. 5.8 at a distance of 2 metres from the array phase centre.

15} 4
—20}F 4
o5} 4
-30 ; : . ‘ : : : !

0 20 40 60 80 100 120 140 160 1

80

Figure 5.8: Desired nearfield beampattern.

An array of 13 non-uniformly spaced sensors was designed as described in Chapter 2

to cover the frequency range 500-1000 Hz, with a sampling rate of 2000 Hz.

Figure 5.9: Using a farfield FI design at a radius of 2 metres.
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Fig. 5.9 shows the result of using a farfield frequency invariant beamformer having
the desired response, at a radius of 2 metres and for 9 different frequencies uniformly
distributed in the band. Clearly there is significant variation with frequency, and the

beampattern does not display the same shape as that in Fig. 5.8.

I I I I I I I I
20 40 60 80 100 120 140 160 180

Figure 5.10: Nearfield FI beampattern transformed to farfield.

Using (5.25), a set of 25 analysis coefficients for the desired frequency invariant pattern
of Fig. 5.8 was calculated at a radius of 2 metres for 9 frequencies uniformly distributed in
the band. Applying (5.26), the farfield beampatterns were reconstructed for each of the 9
design frequencies, resulting in the farfield patterns shown in Fig. 5.10. Hence, we see that
the frequency invariant nearfield beampattern is transformed to a frequency dependent

farfield beampattern.

We then designed a general farfield beamformer of the structure shown in Fig. 5.7,
with 32 complex coefficients for each sensor filter, to realize the farfield patterns shown
in Fig. 5.10. The secondary filter has been slightly perturbed as outlined in section 5.4
to normalise small scaling errors introduced by the implementation. Fig. 5.11 shows the
results of using this general farfield beamformer at a radius of 2 metres. Comparing this
response with the desired response of Fig. 5.8 we note that the desired nearfield frequency

invariant response has been achieved.

5.6 Conclusions

A new method of broadband nearfield beamforming has been presented. The methodol-
ogy of the new technique can be partitioned into two steps: (i) a wave-equation based

technique to radially transform an arbitrary nearfield beampattern to a corresponding
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Figure 5.11: General broadband beamformer designed to give the farfield responses shown
in Fig. 5.10, used in the nearfield. Solid lines are for the 9 design frequencies, dotted lines
are for 16 intermediate frequencies.

equivalent farfield beampattern (or beampattern at any other radius); and (ii) a design
method to achieve a desired farfield beamforming response specified over both angle and
frequency. Although we were motivated by the problem of nearfield frequency invariant
beamforming, the solution proposed in this chapter is applicable to a much wider class of
problems. These include: (i) nearfield broadband beamforming with an arbitrary beam-
pattern (specified over both angle and frequency) measured on a spherical manifold; and
(ii) farfield broadband beamforming with an arbitrary beampattern (specified over both
angle and frequency). The broadband frequency invariant beamformer and the narrow-
band beamformer (both nearfield and farfield) may then be considered as special cases of

this more general class of beamformers.



Chapter 6

Broadband DOA Estimation using

Frequency Invariant Beamforming

6.1 Introduction

STIMATING the locations of multiple sources is an important problem in fields
Esuch as radar, sonar, communications and seismology. A plethora of methods for
narrowband direction of arrival (DOA) estimation have been proposed. One of the most
promising! of these is the multiple signal classification (MUSIC) algorithm [80]. However,
in many practical cases the signals of interest are broadband in nature. The basis of most
broadband DOA estimators is to perform some kind of transformation on the received

broadband array data such that narrowband estimators (such as MUSIC) may be used.

In this chapter we apply the frequency invariant beamformer (FIB) to the problem
of broadband DOA estimation. Specifically, our aim is to show that through the use of
the FIB many of the problems associated with other broadband DOA estimators (such as
asymptotic estimate bias, added computational burden of narrowband frequency decom-

position and the requirement for preliminary DOA estimates) can be eliminated.

The chapter is organised as follows. In the following section we establish notation
and formally define the problem. We then give a brief review of the MUSIC algorithm
and its application to the broadband DOA problem; this serves to outline some of the

shortcomings of existing methods. In light of these shortcomings, the new estimator is

Tt is stated in [78] that “in a detailed evaluation based on thousands of simulations, M.I.T.’s Lincoln
Laboratory concluded that, among [the then] currently accepted high-resolution algorithms, MUSIC was
the most promising and a leading candidate for further study and actual hardware implementation.”

130
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then presented. Finally, we provide simulations to compare the proposed method with

one common broadband DOA estimator and draw conclusions.

6.2 Problem Statement

Consider a linear array of N sensors, not necessarily uniformly spaced. Assume D < N
farfield broadband signals arrive from directions © = [0y, ... ,0p] where 6 is the direction
to the dth source measured relative to broadside. The signal observed at the nth sensor

at time ¢ is

D
Yn(t: £) =Y salt + 70 (0a); ) + vn(t; f), (6.1)

d=1

where s4(t; f) is the received signal at the first sensor from the dth source, v, (¢; f) is the

additive noise at the nth sensor,
Ta(0) = (zn — x1)c ' sin (6.2)

is the relative propagation delay to the nth sensor with a propagation speed of ¢, and z,, is
the location of the nth sensor. Note that we have included f as a parameter in the above
data model to denote the dependence of the array data on the frequency of the signals
and noise. Without loss of generality we assume that the source and noise signals have
the same finite bandwidth [fz,, fu].

The array data can be rewritten in vector form as

y(t; f) = A(©, f)s(t; f) + v(t; f), (6.3)

where

are the D x 1 source signal vector and N x 1 additive noise vector respectively, and

A(@,f) = [a(elaf)a' e ’a(eDaf)]
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is the N x D source location matrix. For farfield sources each column of A(©, f) is an

N x 1 location vector of the form

a(0, f) = [ MO, R0 " (6.4)

The problem we consider is determining the source directions © from the observed
broadband array data y(t; f) over a finite time period. We assume that all sources fall

within a spatial sector A#; the reason for this will be made apparent shortly.

6.3 Background

A brief review of the MUSIC estimator (and some of its variants) is now given to set the

context for the proposed broadband DOA estimator in §6.4.

6.3.1 MUSIC

Consider the data model (6.3) for narrowband signals and noise (hence we drop the fre-

quency dependence). The covariance matrix of this narrowband observation vector is
R 2 Bly(t)y(®)"}.
Assuming the signals and noise are uncorrelated, this reduces to
R = A(O)R,A(0) + o’R,,

where Ry = E{s(t)s(t)¥} is the unknown D x D source covariance matrix (assumed
positive definite), o is the (unknown) noise power, and 0?R,, = E{v(t)v(t)"} is the noise
covariance matrix (where R, is assumed known?). Assuming the noise is uncorrelated from

sensor to sensor, R, = L

The eigen-decomposition of R may then be written

Reizkiei, iZl,...,N,

2Knowledge of the second order statistics of the noise is an integral part of eigen-based DOA methods.
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where Ay > Ag--- > Ay are the ordered eigenvalues of R, and ej,... ,ex are the corre-

sponding eigenvectors. Hence

A 0
[A(@)R;A(©) + 0%T][e;---en] = [e1---en],
0 AN
A\ — o2 0
[A(©)R;A(0)"][e; ---en] = [e1---en].
0 Ay — 02 (6.5)

Since A(0) is of rank D (recall, there are D impinging sources), and R is positive definite,

it follows that A (©)RsA(©) is non-negative definite with rank D. For both sides of (6.5)

to have equal rank, it follows that there must be (N — D) eigenvalues satisfying \; = o2.

Furthermore, since A(©)R;A(©)¥ is non-negative definite, they must be the smallest

eigenvalues. Thus we have

2
AD41 = Apg2 = - = Ay =0".

Form a matrix of those eigenvectors corresponding to the D largest eigenvalues E; =
[e1 - --ep], and similarly for the eigenvectors corresponding to the (N — D) smallest eigen-

values E,, = [epy1 - - en]. By definition,
AO)R,AO)E, =0
or
AO)TE, = 0.

The second equality follows from noting that, since A(©)R, (which is an N x D matrix)
has rank D, there exists some D x N matrix A with rank D satisfying AA(©)R; =T1[99].

Thus, for the true source directions we have
a(0,)"E,Efa(9y) =0, d=1,...,D. (6.6)

That is, we may find the source directions by finding the D values of 6, for which (6.6)

holds. These are the MUSIC source direction estimates.
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Figure 6.1: Geometrical interpretation of MUSIC for a three sensor, two source example.
The source location vectors a(f;) and a(f2) define the signal subspace.

The geometric interpretation of MUSIC is as follows. For a fixed array geometry, the
array vectors a(d) € CN comprise the array manifold. This can be viewed as a rope
weaving through CV as 6 ranges over all angles. In the absence of noise, the observed
data vectors y(t) = A(©)s(t) are confined to a D dimensional subspace of CV, called
the signal subspace. This signal subspace is spanned by the D columns of A(©), viz.,
a(fy),d = 1,...,D. (The columns of E4 also span the signal subspace.) Thus, once
we have obtained D independent data vectors, the signal subspace is known, and the
source directions are given by the D points at which the array manifold intersects the
signal subspace. This is shown in Fig. 6.1 for a three sensor, two source example. In
the presence of noise, we have shown above that E, is orthogonal to A(O), i.e., E, is
orthogonal to the signal subspace. For this reason, E,, is referred to as the noise subspace.
The quantity a(d)?E,Efa(g) therefore gives the /5 distance between the array vector

a(f) and the signal subspace.

When only noisy measurements of y(t) = A(6)s(t) + v(t) are available, the signal sub-
space (or alternatively the noise subspace) must be estimated from the measured data. In
this case the data covariance matrix is not known exactly. However, it may be consistently

estimated by taking measurements over several time samples as follows:

= vy, (6.7)

t=1

R =

where T is the number of time samples available. Let f}s and f)n denotes the sorted

eigenvectors of R. Because f)s and f)n now only give estimates of the true signal and
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noise subspaces, it follows that there may be no values of 6 for which (6.6) is satisfied

exactly. Hence, define the MUSIC null spectrum as
®(9) = a(9)"E,E a(0). (6.8)

The MUSIC DOA estimates are given by the D values of 6 for which ®(6) is minimised.
Minimising this quantity finds the array vectors which are closest to the estimated signal
subspace in the least squares sense. This minimisation is usually done by evaluating ®(6)
at points on a fine grid. For the case of an equally spaced array, (6.8) can be written as a
polynomial and the DOAs are then the roots of this polynomial (this is the root-MUSIC
algorithm [6]).

Analytical expressions have been derived for the statistical properties of MUSIC. These
include the estimate standard deviation [87], bias [107], and probability of resolution for

two closely spaced sources [109].

6.3.2 Beamspace MUSIC

Using DOA estimators directly on the sensor data (as in the previous section) is referred to
as elementspace processing. For an array with IV sensors, the eigen-decomposition required
by MUSIC (and other eigen-based high resolution algorithms) is O(N?). Transforming the
elementspace data into a reduced dimension beamspace prior to applying MUSIC reduces
the complexity of the eigen-decomposition to O(.J?), where .J is the number of beamformers
employed. We will refer to this as BS-MUSIC. Several researchers [8, 30, 58, 106] have noted
additional advantages in transforming the elementspace data into a reduced dimension
beamspace prior to applying the high-resolution algorithm. These include “lower SNR
resolution thresholds, reduced sensitivity to sensor perturbations and deviations from the
assumed model, and amenability to parallel implementation” [111]. The narrowband

beamspace transformation is briefly reviewed below.

Let C be an N x J, (D < J < N) beamspace processing matrix. The array data can

be transformed to a reduced dimension beamspace by the transformation

ye(t) = Cy(t)
= A (O)s(t) + v (1),

where A.(©) = CHA(O) is the N x .J beamspace source location matrix, and v.(t) =

CHv(t) is the J x 1 beamspace noise vector.
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The beamspace data covariance matrix can be formed as

R.=C" E{y(t)y(H)"}C
= AC(G)RSAC(G)H + UzRva

where

R, = B{s(t)s(t)"}

is the D x D source covariance matrix, and
o’R, = CHE{v(t)v(t)?}C

is the J x J beamspace noise covariance matrix. The beamspace data covariance matrix
is in a form in which conventional high resolution DOA methods can be applied through
the eigen-decomposition of {R., R, }. However, the dimension of these matrices has been
reduced to J, thus reducing the order of the eigen-decomposition required by the DOA
estimator. It is conventional in narrowband beamspace processing for the columns of C
to be orthonormal. In this case, assuming the noise is uncorrelated from sensor to sensor,

the noise covariance matrix reduces to R, = I.

The beamformers comprising C are designed to cover a selected spatial region in which
the desired sources are assumed to lie. Xu and Buckley [108] define the gain of the

beamforming matrix as
a(9)f’ccta(g
9c(0) = ©) T ©)
a(6)"a(0)
If C is designed to cover a spatial sector A, then g.(0) =~ 1,0 € Af, and g.(6) =~ 0,0 ¢ A#.

This suggests the use of beamformers having uniformly low sidelobes outside the selected

spatial sector, for example the Chebyshev beamformer. Other methods for designing the
beamforming matrix have been proposed for narrowband operation. Forster and Vezzosi
[30] used prolate spheroidal sequences to design a beamforming matrix which maximises
the gain over the sector Af and attenuates out of sector sources in an Ly sense. Lee and
Wengrovitz [58] derived the beamforming matrix which minimises the resolution threshold
for two closely spaced sources. In this chapter we will consider another measure for the

specific case of frequency invariant beamspace processing.

An expression for the BS-MUSIC estimate variance is given in [88]. It is shown that the
variance of BS-MUSIC is always greater than the variance in elementspace, although in
[108] it is shown that it comes close for C carefully chosen (e.g., using prolate spheroidal

sequences [30]).
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An expression for the BS-MUSIC estimate bias is given in [108] in which it is shown
that for carefully chosen C, the bias of BS-MUSIC is less than in elementspace. However,

in general, BS-MUSIC estimates have worse bias and variance than in elementspace.

6.3.3 Coherent Signal Subspace Method

The coherent signal subspace (CSS) method [99] is a broadband DOA estimator. It is
based on decomposing the received broadband array data into several non-overlapping
narrowband frequency bins and finding focusing matrices which transform the data in each
bin to a reference frequency bin. The focused data is then combined to form a composite
covariance matrix. Conventional narrowband estimators (such as MUSIC) may then be
directly applied. This method was proposed as an alternative to incoherent methods
(such as [100]) which find DOA estimates for each frequency bin and then statistically
average these to form a broadband DOA estimate. CSS methods have been found to have
lower SNR resolution and estimate variance than incoherent methods. The CSS method

is applied as follows.

The elementspace data is first decomposed into K narrowband components centred at
fe,k = 1,..., K (either via a bank of K bandpass filters, or by data segmentation and
discrete Fourier transform). As shown in [99] it is possible to find a set of transformation

matrices T which satisfy
TkA(eafk):A(ean)a k:]-a aKa

where fy is some reference frequency. These transformation matrices effectively focus
the DOA matrices of different frequency bins into the single narrowband DOA matrix

corresponding to the reference frequency. They are hence referred to as focusing matrices.

Applying the K focusing matrices to the respective data vectors gives the following

focused array data vectors:

Try(t; fr) = A(O, fo) s(t; fr) + Trv(t; fr)-

The focused data covariance matrix is given by

K
R = Z TeE{y(t fi) y(t; fr) " }TY
=1

= “;(GafO) Rs A(GafO)H +U2Rv7 (69)
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where

K
Ry = > B{s(t; fi)s(t; fr)"'},
k;l
R, = ZTk Rv(fk) Tllcqa
k=1

and 02R, (fr) = E{v(t; fr)v(t; fx)}; it is assumed that R, (fx),k =1,... , K, is known.
The focused data covariance matrix (6.9) is now in a form in which conventional narrow-

band DOA estimators may be applied.

Several methods of forming the focusing matrices have been suggested. For the simple
case where all true source directions are in the neighbourhood of a single angle 3, Wang

and Kaveh [99] originally proposed

Ty, = diag{a1(B, fo)/a1(B, fx), ... san(B, fo)/an(B, fr)},

where a, (0, f) is the nth element of a(@, f). Hung and Kaveh [46] showed that the class of
unitary focusing matrices reduce SNR detection and resolution thresholds, and proposed
the rotational signal subspace focusing matrix which is a member of this class. In both
cases, preliminary estimates of the source directions are required to form the focusing
matrices. It has been shown [90] that if the focusing is not accurate, the DOA estimates are
asymptotically biased. This demonstrates one of the major disadvantages with coherent

signal subspace methods: preliminary DOA estimates are required for effective focusing.

The other main disadvantage of CSS methods is that as source bandwidths increase,
asymptotic peak bias can increase [10]. This may be explained as follows. The key idea
of CSS is that by decomposing the source bandwidth into narrowband frequency bins, the
data in each frequency bin may be modelled as a single frequency. For a single-frequency
source, the source location vector a(d, f) is rank one, i.e, it spans a one dimensional
subspace in the N dimensional observation space. However, any source with non-zero
bandwidth will not be restricted to this one dimensional subspace. This means that for
CSS, the broadband observations must be decomposed into very narrow frequency bins in
order for the focusing to be accurate over the bandwidth of each frequency bin. As the
source bandwidth increases, the number of bins becomes prohibitively large. Noting this
problem with CSS, Buckley and Griffiths [10] proposed the broadband signal subspace
spatial spectrum (BASS-ALE) estimator. Their method uses a low rank (rather than a
rank one) source representation for broadband sources and is based on the eigen-structure

of a broadband spatial/temporal covariance matrix. The BASS-ALE estimator does not
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suffer from the spectral content sensitivity and resulting asymptotic peak bias of CSS.

However, it does require an increase in computation relative to CSS (see [10] for details).

6.3.4 Beamspace Coherent Signal Subspace Processing

One CSS method which removes the requirement for preliminary DOA estimates was
recently proposed by Lee [59] (other methods include [31,55]). Lee’s approach is briefly

reviewed to motivate the method proposed in this chapter.

Single Beamformer

Initially, consider a single set of beamforming coefficients, wq, applied at a frequency fo.

The beamformer response is

r(0, fo) = wi a(, fo).

Lee used least squares optimisation to find the set of beamformer weights, wy,k =
1,..., K, which produce a set of beampatterns (0, fx),k = 1,... , K, which are clos-

est to (0, fo) in the weighted least squares sense, i.e.,

min/ 0(0) |wila(6, fo) —wia(, fi)|* a8, k=1,... K, (6.10)
0

Wik

where ¢(0) is a weighting function. The beamformers obtained by the solution of (6.10)

satisfy a “frequency invariance” property, i.e., wfa(Q, fr) = wila(d, fo),k=1,... K.

Multiple Beamformers

Now, assume J beamformers are formed in each frequency bin according to this least
squares optimisation. Denote the beamforming matrices as Wy = [wgq|---|wgy]. Be-
cause of the frequency invariance property, these beamformers will perform the role of the

focusing matrices in CSS, i.e.,
WHIA@©, fi)~ WHA@®, fo), k=1,... K. (6.11)

Agsume the array data is transformed to a reduced dimension beamspace by applying

these beamformers. The transformed beamspace data is given by

ot fr) = Wil y(t: fi)
= Ay(0, fr)s(t; fr) + vu(t; fr),
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where

Ay(O, fr) = WL A(6, fr),

is the J x D beamspace source direction matrix, and
vi(ts fi) = Wil v(t; fi)
is the J x 1 beamspace noise vector. From (6.11) we have
Ay(O, fr) = Ap(O, fo), k=1,... K.

Hence, the frequency invariant beampatterns collapse the observed broadband data into
the narrowband frequency bin corresponding to fo. The focused beamspace data covari-

ance matrix is given by

K

R =Y W E{y(t /i) y(t; )"} Wi
k=1
= Ab(@, fU) RS Ab(@, fO)H + U2R’U7

where

K
R, = B{s(t; fr) st fx) "},
k=1

K
"Ry =Y W B{v(t; fi) v(t; fi)"} W
k=1
The focused beamspace data covariance matrix is in a form in which conventional narrow-
band DOA estimators may be applied. Furthermore, the dimension of R has been reduced
to J, thus reducing the order of the eigen-decomposition required by high-resolution DOA

estimators.

Although Lee’s method does not require preliminary DOA estimates to form the focus-
ing matrices (assuming all sources fall within the spatial sector covered by the beamform-
ers), it still suffers from the rank one modelling problem outlined in the previous section.
Another disadvantage of Lee’s method is the computation required by the “unstructured”
optimisation of (6.10), i.e, for J beamformers and K frequency bins, Lee’s method requires

solution of JK least squares optimisation problems.
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6.4 Proposed Broadband DOA Estimator

The broadband DOA method proposed in this chapter is motivated by Lee’s approach of
using frequency invariant beamformers to focus the broadband data. However, it differs
in two significant ways. First, rather than solving (6.10) for each of the J beamformers in
each of the K frequency bins, we make use of the simply parameterised multirate beam-
forming structure proposed in Chapter 3. Second, because this beamforming structure
produces beampatterns which are frequency invariant over a continuum of frequencies
(not just at a set of discrete frequencies as in Lee’s method), accurate focusing is achieved
without resorting to the added computational burden of a narrowband frequency decom-
position approach. This allows the method to be used over wide bandwidths without a

corresponding increase in complexity.

Single Frequency Invariant Beamformer

Recall that the response of the frequency invariant beamformer (FIB) proposed in Chap-

ter 2 is
N
r(0,f) = af > gnHn(f)e? ™), (6.12)
n=1

where Hy,(f) is the primary filter response on the nth sensor (total of N sensors), g, is a
spatial weighting term to account for the possibly nonuniform sensor spacings, and « is a

normalisation constant.

An important requirement of the FIB is that the primary filters must satisfy a dilation

property

Hn(f):Href(xn f>,

Tref
where Hef(f) is the required primary filter response at some location x,¢. In Chapter 3
it was shown that this dilation property could be achieved by multirate filtering. In
particular, if hpet[k] is a set of L = (2M + 1) filter coefficients which produces a desired
primary filter response H¢(f) at a reference location e with a sampling period T, then

the response of the nth primary filter is

M
Hoy(f) = Y heetlk]e ™™k =" d,(f), (6.13)
k=—M
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where T,, = Tz, /Trer is the sampling rate of the nth sensor, and

d(f) = [e*jQWan(fM)’ e I2m[Ta(~M+41) ’eijWanM]T

is the L vector of sampling delays. The reference filter has been made non-causal for

notational convenience; causality is easily restored.

To formulate the beamspace DOA estimation problem, let

L(f) = aflgadi(f),... ,gndn(f)] (6.14)

be an L x N matrix. The response of a single FIB (6.12) may now be written

T(ea f) = hHI‘(Q, f)a(ea f)

Multiple Frequency Invariant Beamformers

Assume that J (D < J < N) independent FI beamformers are formed using .J sets of
reference primary filter coefficients. These beamformers are designed to cover a spatial
sector Af in which the sources are assumed to lie. Typically, the J beampatterns are

simply the same beampattern steered to J different angles within A#.3

The responses of these beamformers are

Tl(eaf) h{I
: =1 i |T(al@,f)
TJ(eaf) h?
r(9, f) = H'T(f)a(0, f) (6.15)

where H is the L x J beampattern coefficient matrix.

Let C(f) = T'(f)"H, and denote the .J x 1 vector of stacked beamformer outputs at
time ¢ as y.(¢; f). This will be referred to as the frequency invariant beamspace (FIBS)
data vector. Returning to the original problem stated in §6.2, we consider the beamformer

outputs for D < J farfield signals arriving from directions © = [6y,... ,0p]. We assume

%Recall from §3.4 that coarse beam steering of a FTB can be effected through circular rotation of a
single set of reference primary filter coefficients. This method of beam steering may be applied in forming
the J beamformers.
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that © € A6, i.e., all sources of interest are within the spatial sector covered by the
beamformers, and interfering out-of-sector sources are attenuated by the beamformers

such that they do not contribute to the signal subspace.*

The beamformer outputs are

ye(t: f) = C(H)TA(O, f)s(t; f) + C(f) v (t; f)
- Ac(ea f)S(t; f) + Vc(t; f)a

where

A0, f) = C(f)"A(®, )

is the J x D FIBS source direction matrix, and

ve(t; f) = C(f)"v(t; f)

is the J x 1 FIBS noise vector. Relating this to conventional beamspace processing we
have y.(t; f) = C(f)"y(t; f), where y(t; f) is the N x 1 broadband elementspace data

vector.

Because of the frequency invariant property of the beamformers, the FIBS source di-
rection matrix is approximately constant for all frequencies within the design band, i.e.,
A.(0,f) =~ A.(0),Vf € [fL, fu]. Hence, the broadband source directions are completely
characterised by a single beamspace DOA matrix A.(©). Note that although C(f) is nec-
essarily a function of frequency to impose the frequency invariant beampattern property,
the actual beamforming coefficients H are fixed as a function of frequency; there is no

hidden frequency decomposition in our method.

Assuming the source signals and the noise are uncorrelated, the J x J FIBS data

covariance matrix is
Re(f) = Ac(O)Rs(f)Ac(©)" + 0°Ry(f), (6.16)

where

R,(f) = BE{s(t; f)s(t; )"}

is the D x D source covariance matrix (assumed full rank),

2R, (f) = E{vo(t; f)ve(t; /)T}

4This latter assumption is somewhat idealistic but simplifies the analysis.
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is the J x J FIBS noise covariance matrix, and R, (f) is assumed known Vf € [fr, fu].

A broadband FIBS data covariance matrix can be formed as

fu
R, = R.(f) df = A.(©)R;A.(0)7 + o’R,, (6.17)
fr
where
fu
R; = Ry(f) df, (6.18)
i

is the broadband source covariance matrix, and

Ry~ [ RS . (6.19)
fr

is the broadband FIBS noise covariance matrix.

The broadband FIBS data covariance matrix (6.17) is now in a form in which con-
ventional narrowband MUSIC may be applied. Denote the eigen-decomposition of R,
as

R.E = AR,E,

where A is a diagonal matrix of sorted eigenvalues, E = [E,|E,] are the corresponding
eigenvectors, E; are the eigenvectors corresponding to the largest D eigenvalues, and E,
are the eigenvectors corresponding to the smallest J — D eigenvalues. The ranges of E;
and E,, define the signal and noise subspaces respectively. The source directions are now

given by the D peak positions of the following FIBS-MUSIC spatial spectrum:

a.(0)"a.(0)
a.(0)"E,Efa.(9)

d(0) = (6.20)
where a.(6) are the focused FIBS source location vectors, and the numerator is included

for normalisation.

It is important to note the difference between the processing of our proposed method
and that of [59]. For Lee’s method, elementspace data is collected, split into frequency bins,
and in each frequency bin the data is transformed to beamspace through multiplication by
a beamspace processing matrix. In our proposed method, frequency invariant beamformers

are formed, and the focused data is collected directly in beamspace.
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6.4.1 Practical Considerations
Estimation of the Broadband Covariance Matrices

It is conventional in narrowband (or frequency decomposition) beamspace DOA methods
to choose the beamformers such that the columns of C are orthogonal. In this way,
assuming the noise is uncorrelated from sensor to sensor, the noise covariance matrix is
021, where 02 is the (unknown) noise power. However, this is not possible for FIBS-
MUSIC because a single set of beamforming coefficients define the beamforming matrix
over the entire frequency band.? This is not a problem however, since once the frequency
invariant beamformers have been designed, the broadband noise covariance can be easily
calculated. Specifically, for the case where the noise is spectrally white and uncorrelated

from sensor to sensor, (6.19) becomes
R, = HIAH, (6.21)
where
fu =
A= [Trre @
L

Note from the definition of I'(f) (6.14) that A is fixed for a given frequency band and
array geometry. Hence, it can be calculated off-line and does not add to the computational

complexity of the FIBS method.

The integral for R, (6.17) can be formed in a straightforward fashion as follows. Let

Yc = [yc(1)7 s 7YC(T)]

denote the J x T data observation matrix obtained by collecting FIBS data vectors over
T time samples—the ith row of Y, is the time series obtained at the output of the ith
beamformer. (We have dropped the frequency dependence for notational convenience.)

Form the conventional data covariance matrix (as in narrowband processing),

1 T

. 1
R =~ kz:lyc(t)yc(t)H - fYCYf. (6.22)

Now, R, contains wideband source information covering all frequency components present

in Y.. So long as Y. does not contain frequency components outside the band [fr, frr], R.

®1t is possible to choose the beamformers such that C(fo)” C(fo) = I for a given frequency fo € [fz, fv]
if desired.
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will be focused by the FIBS processing and will contain the source direction information.
Because of the structure of the frequency invariant beamformer, it is straightforward to
include a bandpass filter in the secondary filter of each beamformer, ensuring that Y,

contains no frequency components outside the design band.

Hence, the FIBS data covariance matrix may be formed in the time domain; no fre-
quency decomposition is required. This represents a significant computational advantage

of FIBS over other broadband DOA methods (such as [59, 99]).

FIBS Source Location Vectors

In calculating the FIBS-MUSIC spatial spectrum (6.20), focused FIBS source location vec-
tors a.(#) are required. These location vectors are defined as a.(6) ~ C(f)"a(é, f),Vf €
[fL, fu]. In practice, these location vectors can be computed at any frequency in the design

band. Hence, we define the FIBS source location vectors as

30(9) = C(fO)Ha(eafO)a (623)

for some fy € [fr, fu]. It is important to note that this is not the same as the focusing
frequency used in coherent subspace methods. In CSS, all the source location vectors at
different frequencies are transformed to the focusing frequency and the data covariance
matrix calculated from the focused data. In our method, all FIBS source location vectors
are virtually identical for all frequencies, no explicit focusing calculations are performed
and fy plays a far lesser role.’ Thus, any frequency in the design band may be used as the
frequency at which the FIBS-MUSIC spatial spectrum is calculated. Typically fo would
be chosen to be the mid-band frequency of the design bandwidth.

6.4.2 Summary of Proposed Method
The DOA method proposed in this chapter is outlined below.

1. Design J frequency invariant beamformers (as outlined in Chapter 3) to cover the

spatial region A#f.

2. Calculate the broadband FIBS noise covariance matrix estimate ﬁv (6.21). This can
be done off-line (assuming the noise covariance does not change over the observation

time).

5This is also true of Lee’s method, since the beamspace source location vectors in all frequency bins are
virtually identical by nature of the least squares optimisation procedure employed (see §6.3.4).
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3. Collect data from each of the J beamformers over the observation time period and

calculate the broadband FIBS source covariance matrix estimate f{c (6.22).

4. Find the source locations from ﬁc and f{v using a conventional DOA estimator.
Without loss of generality, we have only considered the MUSIC estimator [80] (an-
other candidate high-resolution estimator is ESPRIT [78]).

6.5 Simulations

We now present results of computer simulations to empirically compare FIBS with CSS,
which is most often used as the “benchmark” broadband DOA estimator. Asymptotic
bias, estimate bias and variance, and the ability to resolve closely spaced sources were

considered.

In each case, a 21 element linear equally-spaced array, with an inter-sensor spacing of
¢/(2fu), was used. Two farfield sources located at © = [9°, 12°] were modelled. The design
frequency band was 150-250 Hz, with a sampling rate of f; = 6 kHz. Each broadband
signal was generated by combining 100 narrowband signals, uniformly distributed across
the bandwidth. For CSS, a filter bank was used to decompose the received data into 21
frequency bins within the design band (giving a frequency bin width of 5 Hz), the focusing

frequency was fy = 200 Hz, and the focusing angle was 10.5°.

6.5.1 Design of FIBS processor

Using an aperture size of P = 12 half-wavelengths, J = 7 Chebyshev 35 dB frequency in-
variant beamformers were designed to cover the spatial region [—30°, 30°], using the beam-
pattern sampling method described in Chapter 3. The resulting beampatterns, calculated
at the centre frequency fo = 200 Hz, are shown in Fig. 6.2. Note that the beampatterns
are close to the desired Chebyshev 35 dB pattern. However, because we employed the
simplest technique for obtaining the reference primary filter coefficients (i.e., beampattern

sampling), the desired 35 dB sidelobes are not achieved exactly.

The most important consideration in FIBS-MUSIC, as far as the beamformer design is
concerned, is for successful beamspace focusing. This means that the frequency variation
of C(f)"a(b, f), f € [fr, fu], must be minimised over the spatial region of interest; if this
is not the case biasing of the DOA estimates will occur. With this in mind, we define

the following normalised focusing error spectrum (similar to that given by Lee [59]) as a
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Figure 6.2: Superposition of the seven beamformers used in the simulations, calculated at
the mid-band frequency fo = 200 Hz.

means of quantifying the frequency variation:

s _ i ra(6) — C() a6, /)] df

(6) EDIGIE ’

(6.24)

where ry(0) is a J x 1 vector of desired FI responses, and || - || denotes the vector 2-norm.
Using the beamformers shown in Fig. 6.2, the normalised focusing error spectrum shown
in Fig. 6.3 was calculated from (6.24). Note the flat valley over [-30°, 30°], which confirms
that effective focusing is performed within the selected spatial region. To further establish
the frequency invariance of the beamformers used in this example, we calculated the
response of the centre beamformer at 50 frequencies over the frequency band. The resulting
beampatterns are shown in Fig. 6.4. Again, this verifies that the designed beamformers

are largely frequency invariant over the entire bandwidth.

6.5.2 Asymptotic Bias

It has been demonstrated in [10], and proven in [90], that CSS is asymptotically biased
if either: (i) the angle of arrival is not aligned with the focusing angle; or (ii) the centre
frequency of the source bandwidth does not equal the focusing frequency. By using the
mean of the true source directions as the focusing angle for CSS, we have ensured virtually
perfect angle focusing. In this section we consider the asymptotic performance—as the
SNR and/or number of snapshots goes to infinity—of CSS and FIBS as the source band-
width is varied. In all cases we assume that the focusing frequency for CSS is unchanged

at fo = 200 Hz. We also use fo = 200 Hz to calculate the FIBS source location vectors
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Figure 6.3: Normalised focusing error spectrum for the example frequency invariant beam-
formers shown in Fig. 6.2.
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Figure 6.4: Beampattern of centre beamformer calculated at 50 frequencies uniformly
distributed across the design band: (a) superposition of all 50 beampatterns, (b) variation
of beampattern with frequency.
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Figure 6.5: Asymptotic spatial spectra from (a) CSS and (b) FIBS, with a fractional
bandwidth of 50 per cent and centre frequencies of 200, 180 and 160 Hz.

(6.23). We consider 50 per cent fractional bandwidths centred on 200, 180 and 160 Hz.
Figure 6.5 compares the asymptotic bias of CSS and FIBS. These results demonstrate the
asymptotic bias exhibited by CSS (as noted in [10, 90]). The results also indicate that the
FIBS estimator is asymptotically unbiased, regardless of the source spectral content. Note
that the low peaks in Fig. 6.5(b) correspond to the case where the centre frequency is 160
Hz (with a bandwidth of 120-200 Hz). In this case the bandwidth barely intersected the
FIBS source location vector frequency (i.e., 200 Hz) used to calculate the FIBS-MUSIC

spatial spectrum.

6.5.3 Mean and Variance of Estimates

Next, we performed Monte Carlo simulations to compare the mean and variance of the
DOA estimates obtained by CSS and FIBS. The sources covered the entire bandwidth
of 150-250 Hz. Thus, according to [90], CSS will be asymptotically unbiased (since the
focusing frequency is the mid-band frequency of the source bandwidth). For each DOA
estimate, 30 time samples were collected and used to calculate the covariance matrices for
each method. The results for 50 independent trials for the source located at 12° are shown
in Fig. 6.6. These results indicate that the accuracy of the FIBS estimator as a function
of SNR is comparable to that of CSS. In comparing the standard deviations of the two

estimators, it is clear that FIBS has greater variance than CSS. This is to be expected,
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Figure 6.6: Comparison of the performance of CSS and FIBS in estimating the 12° source:
(a) estimate bias, and (b) standard deviation for several SNR values.

since FIBS is operating in beamspace and CSS is operating in elementspace: as shown in

[88], beamspace methods exhibit greater estimate variance than elementspace methods.

6.5.4 Resolution Threshold

Finally, the probability of resolving two closely spaced sources was considered using the
same data employed above to compare estimate mean and variance. Results are shown in
Fig. 6.7. The two sources were considered resolved if the values of the MUSIC spectrum
at 01 = 9° and 0, = 12° were both greater than the value at § = 10.5°. Note that CSS
performed about 5 dB better than FIBS which exhibited a resolution threshold of 5 dB.

6.6 Conclusions

In this chapter we have considered the application of frequency invariant beamforming to
the problem of broadband direction of arrival estimation. In particular it was shown that
the frequency invariant beamformer could perform the role of the focusing matrices in the
coherent signal subspace approach, without requiring decomposition of the received data
into narrowband frequency bins. The method proposed in this chapter, referred to as FIBS,
was motivated by Lee’s approach [59]. However, it differs in two significant ways. First,
rather than solving a least-squares optimisation problem for each of the J beamformers in

each of K frequency bins, we made use of the simply parameterised beamforming structure
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Figure 6.7: Comparison of CSS and FIBS in resolving two closely spaced sources for several
SNR values.

developed in Chapter 3. Second, because the beampatterns produced by the frequency
invariant beamformer proposed in Chapter 2 are frequency invariant over a continuum
of frequencies (not just at a set of discrete frequencies as in [59]), accurate focusing is
achieved without resorting to a narrowband frequency decomposition approach. This
allows the method to be used over wide bandwidths without the added computational
complexity of frequency decomposition. Simulation results indicated that the accuracy
of the FIBS estimates were comparable to those of the coherent signal subspace (CSS)
method, although FIBS was not able to resolve closely spaced sources as well as CSS.

However, FIBS was shown to be more robust to source bandwidth modelling errors.

To summarise the performance: (i) compared to CSS, FIBS does not require preliminary
DOA estimates and is not affected by source spectral modelling errors; (ii) compared to
Lee’s method, FIBS offers a far simpler method of designing the beamformers; and (iii)
compared to CSS methods in general (including Lee’s), FIBS has the advantage of avoiding

the computational burden of frequency decomposition.

In closing, it should be noted that we have simply presented the straightforward appli-
cation of the frequency invariant beamformer to the broadband DOA problem. We have
not attempted to optimise the beamformers specifically for the DOA application. It has
previously been shown [11,58,106] that performance can be improved by using carefully
chosen beamformers. Thus, improved performance of FIBS would no doubt be gained

through a more judicious choice of the frequency invariant beamformers.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

HIS thesis has been motivated by the problem of broadband frequency invariant beam-
T forming, that is, broadband spatial filtering in which there is little variation in spatial
response over a wide bandwidth. In general, there are certain intrinsic structural properties
which any frequency invariant beamformer (FIB) should possess. These properties reveal
themselves more readily when one considers a continuously distributed sensor (rather than
an array of spatially separated sensors). Beamforming can then be treated as the problem

of approximating the response of a continuous aperture by a finite sensor array.

This philosophy of using a theoretical continuous sensor as a beamformer design tool
can be readily applied to the more general problem of producing a broadband angle-
versus-frequency beampattern specification. The continuous sensor approach allows sim-
ple relationships to be derived between a broadband beampattern specification and the
beamformer parameters, specifically the beamformer filter bank coefficients. Such insight

is rarely afforded by numerical optimisation techniques which are often used.

This summarises one of the main themes of the thesis: formulating the broadband
beamforming problem in such a way that structural properties are revealed which can
simplify beamformer implementation. We now discuss the specific findings of the thesis

in detail.

The inherent structure of a class of frequency invariant beamformers was derived in
Chapter 2. Specifically, for a linear array this structure consists of: (i) a beam shaping fil-
ter on each sensor (referred to as the primary filter—all primary filter frequency responses

are related by a dilation property); and (ii) all sensors share a common normalisation filter
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(the secondary filter). Similar simple structures exist for certain two and three dimensional
array geometries. In terms of minimising the number of sensors in a linear array while
avoiding spatial aliasing, it was shown that a specific nonuniformly spaced geometry is op-
timal. Finally, the FIB was shown to be a member of a class of parameterised beamformers
whose beampatterns can be controlled in a continuous manner from a conventional single-
frequency design (in which the beampattern varies directly with frequency) to a frequency
invariant design. Although this generalisation is primarily of theoretical interest, it could
be used in a practical setting in which the number of sensors is limited and yet a single

frequency design gives unacceptable results.

The theory of Chapter 2 is directly applicable to continuous-time implementation only.
In considering a discrete-time implementation, Chapter 3 showed that there is a single
set of parameters (the reference coefficients) which defines the FI beam shape over the
entire frequency range; the size of this set is independent of the number of sensors and
the operating bandwidth. The primary filters were shown to derive straight from the
reference coefficients. In turn, it was shown that the reference coefficients could be ob-
tained by sampling the desired FI beampattern function at a specific set of points. Thus,
given a beampattern specification, the primary filter coefficients can be obtained immedi-
ately (without regard for the necessary aperture distribution or primary filter frequency
responses). This provides further evidence of the inherent structure and simplicity of the
FIB. An example adaptive FIB algorithm was developed based on the well-known Frost
beamformer [32]. It was also noted that coarse beam steering can be effected by simply
modifying the reference coefficients—no explicit time delay filter is required on each sensor
(as is the case in conventional delay beam steering). Finally, a microphone array was used

to empirically demonstrate that the FIB theory could be successfully implemented.

Noting that a FIB exhibits a small amount of frequency variation, especially in the side-
lobes and pattern nulls, additional constraints must be imposed to enforce a pattern null
whose position does not vary over the operating bandwidth. Thus, in Chapter 4 we con-
sidered the problem of producing a broadband null in a FIB. Formulating the requirement
for a broadband null as a constraint on the primary filter impulse responses showed that it
is possible to impose an exact broadband null (i.e., a pattern null which is present over all
frequencies, not just within the design band) while simultaneously minimising the effect
on some desired broadband FI beampattern. However, exact broadband nulling requires
strict constraints on the sensor locations and sample rate. In the case of slight positioning
errors (in the order of a fraction of a wavelength), standard analysis [82] revealed that a
reasonably deep null is still produced by the method. Given the structural constraints of
the exact null solution, an alternative formulation was then considered, namely, placing

multiple frequency zeros in the null direction response. This is analogous to the phased
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array method of placing multiple spatial zeros in the region of an interferer [84, 85]. Based
on this formulation we derived an expression for the number of frequency constraints re-
quired to produce a broadband null of a given depth in an FI beampattern. This expression
revealed that the relative null depth is only dependent on “design” parameters (such as
sensor locations, sample rate, design bandwidth and null direction) and does not depend
on the “implementation” parameters, namely the filter coefficients. This means that for
an adaptive FIB it is possible to determine a priori the number of constraints required to

impose a broadband null of a given depth in a given direction.

Chapter 5 dealt with the problem of frequency invariant beamforming for nearfield
point sources—for such sources the non-planar shape of the impinging wavefronts must be
accounted for. There were two major outcomes from this study. First, we formulated a
radial beampattern transformation based on the solution to the spherical wave equation.
This transformation consisted of two equations: (i) the analysis equation which produces
a set of coefficients which completely characterise a given beampattern for a source at
any radial distance (measured relative to some reference point, usually the array centre);
and (ii) the synthesis equation which reconstructs a beampattern at a given radial distance
using the analysis coefficients. The significance of the transformation is that, given a beam-
pattern for a source at a radial distance r1, it is possible to determine the corresponding
beampattern for a source at any radial distance ry (which does not intersect with the phys-
ical array). Of practical importance is the transformation to an infinite radial distance,
since this represents the transformation of a nearfield beampattern (for which no satisfy-
ing broadband design method exists) to an equivalent farfield beampattern (for which a
broadband design is readily derived). In general, a nearfield frequency invariant beampat-
tern will transform to a farfield frequency dependent beampattern, and vice versa. Thus,
implementation of a nearfield FIB requires the design of a farfield beamformer having an
arbitrary broadband beampattern (specified over both angle and frequency). This was
referred to as the general broadband beamformer (GBB). For a uniformly spaced array, it
has been shown [43] that a two dimensional Fourier transform relationship exists between
a GBB response and the sensor filter coefficients. However, a solution for a nonuniformly
spaced array is lacking. This motivated the second part of the chapter. Applying the
philosophy of the FIB theory—using a continuous sensor to formulate a broadband beam-
forming solution—allowed us to formulate an explicit expression for the filter coefficients
of a nonuniformly spaced array to produce a specified GBB response. Coupled with the
radial beampattern transformation, the GBB can be applied to a wide class of beamform-
ing problems including both nearfield and farfield beamforming to achieve an arbitrary

broadband beampattern, specified over both angle and frequency.
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Chapter 6 considered a second application of the FIB theory, this time to the problem
of estimating the directions of arrival (DOAs) of broadband signals. This was motivated
by Lee’s [59] beamspace formulation of the coherent signal subspace (CSS) method [99].
Our proposed method (referred to as the frequency invariant beamspace (FIBS) method)
differs from Lee’s in that: (i) frequency decomposition of the received data is not required;
and (ii) whereas Lee’s method solves a multi-parameter least squares optimisation problem
to form the beamformers, we make use of the simply parameterised frequency invariant
beamformer developed in Chapters 2 and 3. In both respects, FIBS offers computational
advantages. Simulation results indicated that, relative to CSS (which is most often used
as the benchmark broadband DOA estimator), FIBS: (i) provides DOA estimates of com-
parable accuracy; (ii) is less effective at resolving two closely spaced sensors; and (iii)
is asymptotically unbiased when the actual signal bandwidth differs from the modelled
bandwidth.

7.2 Future Research Directions

Some future research projects are now outlined. It should be noted that we have chosen
a representative set of problems, constrained to be close in nature to the material found

in this thesis.

1. Error Bounds. For the theoretical linear continuous sensor considered in Chapter 2,
the resulting spatial response does not vary with frequency. This frequency invariant

(FI) response is:
r(6) = f / G(xf)em Iz sin0 gy (7.1)
R

The response of the frequency invariant beamformer (FIB) which implements this

ideal response is:

N
P(0) = Y gaGlan fleme om0, (7.2)

n=1
However, for a finite number of spatially separated sensors, the implementation
(7.2) can only approximate the ideal FI response (7.1). It is natural to consider er-
ror bounds on this approximation, thereby bounding the frequency variation of the
beampattern. There are two factors upon which the approximation error depends:
one is the choice of spatial weighting terms g,, and the other is the aperture distri-

bution G(-) corresponding to the desired beampattern. Approximation results from
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numerical integration theory [19] should be applicable if the spatial weighting terms

are fixed to correspond to the trapezoidal integration method.

2. Frequency Variation versus Desired Beampattern. From the nature of the ap-
proximation used to implement the frequency invariant beamformer, it is clear that
the amount of frequency variation in the beampattern depends on the extent to
which the corresponding aperture distribution may be accurately approximated over
a wide bandwidth. Consider the trapezoidal integration method. The sensor loca-
tions define the subintervals over which the trapezoidal integration is performed. As
frequency varies, the aperture distribution dilates and the sizes of the subintervals
change. Thus, to minimise the beampattern frequency variation, the aperture dis-
tribution function should be chosen such that it is well approximated by trapezoidal
integration as the sizes of the subintervals vary. This suggests the use of beampat-
terns having smoothly varying aperture functions. A more precise definition of what
constitutes a well-behaved aperture distribution is required. This would allow us
to identify those beampatterns which, when used in the FIB, would produce little

variation over a wide frequency band.

3. Adaptive Frequency Invariant Beamforming. The performance of the FIB in an
adaptive environment deserves further attention. A simple example of a linear con-
strained minimum variance (LCMV) FIB algorithm was presented in Chapter 3.
This was a reasonably straightforward modification of the Frost beamformer [32].
A starting point for the evaluation of the adaptive FIB would be to compare the
LCMV FIB (which is essentially a partially adaptive broadband beamformer) with
the Frost beamformer (which uses all of the available degrees of freedom). This
would rigorously establish the situations in which the FIB is to be preferred to fully

adaptive broadband beamformers.

4. Broadband Nulls. Several questions arising from the development of the broadband

exact null in Chapter 4 are briefly outlined below.

1. What constraints are imposed to form an exact broadband null in the nearfield
(e.g., for spherical wavefronts)? It should be possible to place the sensors such
that they satisfy the integer delay property (see §4.4). However, avoiding spatial
aliasing will further constrain the sensor locations, and it may be that it is only
possible to enforce a broadband null for certain source positions. This also
raises the question of what is the constraint on the sensor locations to avoid

spatial aliasing for nearfield sources?

2. Can an exact null be imposed if fractional delay FIR filters [56] are used to

implement beam steering?
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3. Can interpolation beamforming [75] be used to relax the constraints on the

sensor locations while imposing an exact broadband null?

4. Analyse the effectiveness of the broadband null for slight source location errors,
i.e., if an exact broadband null is formed at angle 6y, how much suppression is

there for a source at 0y + €7

5. Nearfield Beamforming on a General Manifold. The beampattern transforma-

tion developed in Chapter 5 is only applicable to beampatterns measured on the

surface of a sphere. This transformation could be generalised in a number of ways:

1. Other coordinate systems could be considered in which the manifold is a level
surface (such as a cylindrical coordinate system). This is reasonably straightfor-
ward, requiring the solution of the wave equation in the new coordinate system

in a similar manner to that outlined in Chapter 5.

2. The nearfield beampattern could be specified on a non-level surface (such as
on a peanut-shaped surface). This means that the beampattern is specified
for varying radial distance, and the analysis equations would involve a triple
integral (over radial distance, elevation angle and azimuth angle) in the spirit

of the double integral for the analysis equations in Chapter 5.

3. The nearfield beampattern could be specified in a volume rather than on a
surface. This represents a substantial extension of the proposed transformation,

and would have practical use in medical imaging, for example.

6. Broadband Beamformers for DOA Estimation. In formulating the frequency in-

variant beamspace (FIBS) DOA estimation method proposed in Chapter 6, there
was no criterion for choosing the beampatterns of the beamformers other than they
should cover a selected spatial region and attenuate sources outside this region.
However, it has been shown by several authors [11, 58, 106] that the performance of
beamspace DOA methods is dependent on the beampatterns used. The performance
of FIBS could undoubtedly be improved by investigating the relationship between
beampattern properties and DOA estimator performance. A basis for this study is

the narrowband beamspace analysis of [58].



Appendix A

Microphone Array Testing System

HIS appendix contains a copy of a report which describes the design and imple-
mentation of the microphone array testing system used in Chapter 3. The primary
aim of this appendix is to provide a complete engineering report describing the system in

detail.

A.1 Introduction

This report summarises the design and implementation of a microphone array testing sys-
tem (MATS). The primary purpose of MATS is to provide a demonstration and analysis
system for algorithms developed for broadband beamforming, specifically the implemen-

tation of the frequency invariant beamformer developed in Chapter 3.

A microphone array can be used to improve the quality of acquired speech compared to
a single microphone. The array is used to form a directive microphone which can be elec-
tronically steered towards the desired source (usually a single voice). Typical applications
include speech acquisition for teleconferencing, hands-free telephones, and voice-only data
entry. Effective reception of speech signals in these situations is traditionally hampered

by reverberations and external noise sources.

Flexibility has been one of the major concerns in designing the system. A general
broadband beamforming structure is implemented in which each of the input channels is
filtered, all channels are summed, and this summed output is then filtered to provide a
single output. The actual filter coefficients are loaded at run-time. This allows virtually

any fixed broadband beamformer to be implemented. The system hardware could be
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readily applied to adaptive beamforming, however this would require substantial changes

to the system software.

The report is structured as follows. Section 2 describes the system hardware, including
circuit diagrams. An overview of the system software is given in Section 3, with conclusions
and possible extensions to MATS outlined in Section 4. Finally, we give details of (i)
system function calls for the data acquisition and DSP cards, (ii) test results of the system

hardware, and (iii) source code for the system software.

The following people have contributed to the development of this system, and they
are gratefully acknowledged: Robert Edwards and Marshall Shepard for their advice in
the design of the Microphone Pre-amplification/Anti-aliasing Board, Martin Stonebridge
for his help in designing the microphone array support structure, and Martin Buss for

developing much of the system software.

A.2 Hardware

The system hardware consists of a Microphone Pre-amplification/Anti-aliasing Board (de-
signed and built specifically for this project) which provides preamplification and anti-
aliasing filtering for up to 16 microphone channels (referred to as the MPAB), a National
Instruments AT-MIO-16F-5 Multifunction I/O Board which performs data acquisition (re-
ferred to as the NIDAQ), an Ariel DSP-96 Floating-Point Processor Board which performs
the beamforming (referred to as the DSP), and an IBM-compatible PC which controls data
transfer between the data acquisition card and the DSP. The interconnection of the various

components is shown in Fig. A.1.
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Figure A.1: Block diagram of hardware.

A.2.1 Microphone Pre-amplification/Anti-aliasing Board

The MPAB performs three specific tasks. These are:
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1. amplify the microphone signal on each channel by up to 60 dB;

2. low-pass filter the amplified microphone signal on each channel to the Nyquist rate;

and

3. provide reconstruction filtering for the output signal. (This is required since the
National Instruments AT-MIO-16F-5 Multifunction I/O Board does not provide a

reconstruction filter on its analog outputs. See §A.2.2 for more details.)

The operations performed by the MPAB for a single channel are shown in block diagram
form in Fig. A.2, in which the figure numbers refer to the circuit diagrams for each of the

indicated sections.

Microphone || HPF Amplifier LPF [T = ToNIDAQ

Figure A.2: Block diagram of operations performed on a single channel. The figure num-
bers refer to the circuit diagram of the corresponding section.

The MPAB can be divided into five distinct sections: clock, microphone biasing and
amplification, anti-aliasing filters, power supplies, and reconstruction filter. Three separate
boards comprise the MPAB. These are the main board (containing the clock, channel
amplification, anti-aliasing filters and a +5 volt power supply), the reconstruction board
(containing a +12 volt power supply, reconstruction filter, and a jumper header block), and
the microphone power supply board (containing a 2.5 volt supply for the microphones).
All three boards are housed in the MPAB box.

Clock

The clock determines the cutoff frequency of the anti-aliasing filters. Two clock frequencies

are available, 400 kHz and 200 kHz, corresponding to anti-aliasing filter cutoff frequencies
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of 8 kHz and 4 kHz respectively. The desired cutoff frequency is selected with the toggle
switch! on the front of the MPAB box.

The clock circuitry is shown in Fig. A.3. A crystal oscillator is used to produce a 4
MHz square wave, which is then divided by either 10 or 20 depending on the mode line of
the GAL. See Section A.7 for the GAL source code.
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4K7
1 20

Mode

GAL
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To Clock input
of MF6-50

12

[—

Figure A.3: Clock circuitry.

Microphone Biasing and Amplification

Each channel has a two stage amplifier based on a Texas Instruments TL054 Enhanced
JFET Precision Quad Operational Amplifier, i.e., there are two channels per TL054. The
first stage provides fixed amplification of 30 dB, and the second stage has tunable gain of
up to 30 dB. The microphone biasing and amplification circuit (for one channel) is shown
in Fig. A.4. Note that the biasing capacitor and the input resistor of the first amplifier
stage form a high-pass filter with a cutoff frequency of 106 Hz.

Anti-aliasing Filters

The anti-aliasing filters are based on a National Semiconductor MF6-50 Switched Capac-
itor Lowpass Filter which provides a 6th order Butterworth low-pass filter as well as two

general purpose op amps. An external clock is used to set the cutoff of the low-pass filter.

!There is a jumper on the main MPAB board which can be used to set the cutoff frequency by software
rather than by the toggle switch. If the jumper is changed to its other position, the mode line of the GAL
will be connected to the ADIOO line of the NIDAQ, thus allowing the mode to be software selected.
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Figure A.4: Microphone biasing and amplification.

The ratio of the clock frequency to the low-pass cutoff frequency is internally set to 50 to
1. The first internal op amp is configured as an integrater and used to keep the average
DC filter output level at ground (as described in the data sheets). The second op amp is
configured as a two pole Butterworth active low-pass filter and used to remove the clock
signal from the filter output. This active filter was designed according to [53] with a cutoff

frequency of 10 kHz. The entire circuit diagram is shown in Fig. A.5.
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Figure A.5: Circuit diagram for anti-aliasing filter, including offset voltage adjustment
and low-pass filter output stage.
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Power Supplies

Three distinct power supplies are provided on the MPAB. Two +5 volt supplies based on
the National Semiconductor NMH0505 voltage converter are provided on the main board
for the channel amplification and anti-aliasing filters respectively. A £12 volt supply
based on the National Semiconductor NMHO0512 voltage converter is provided on the
reconstruction board for the reconstruction filters. The circuits for these supplies are

straightforward, and can easily be found in the respective data sheets.

A 2.5 volt supply is provided on the microphone power supply board. This is used
to provide the phantom supply required for the condenser microphones, and must be low
noise. It is based on the Analog Devices REF-03 Precision Voltage Supply. The circuit
for this supply is shown in Fig. A.6.
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Figure A.6: Microphone power supply.

An external 5 volt supply is required to provide power for the MPAB. This should be
plugged into the terminal block on the front of the MPAB box.

NOTE: No short circuit or over-voltage protection is provided on the MPAB. Applying

the wrong voltage to the terminal block may destroy the internal voltage converters.
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Reconstruction Filters

Since the NIDAQ only provides a zero order hold on the DAC outputs, a reconstruction
filter is required. This reconstruction filter is a four pole Butterworth active low-pass
filter based on a Texas Instruments TL054 Enhanced JFET Precision Quad Operational
Amplifier.

A 4 kHz low-pass reconstruction filter? (designed according to [53]) is provided on
the NIDAQ DACO_OUT line.? The circuit diagram is shown in Fig. A.7. Currently, the
beamformer output is set to DACO_OUT. This is easily changed by modifying the function
DA _setup in da.c (see §A.3.2 or Section A.T7).

2200pF L0000F
l i

I
i

From NIDAQ 47K 47K 47K 47K

DACO_Out

330pF

I 820pF I

Figure A.7: Reconstruction low-pass filter with a cutoff frequency of 4 kHz.

Header Block

Included on the reconstruction board of the MPAB is a header block with six jumper
positions. A top view of the header block is shown in Fig. A.8, in which the A jumpers
are on the MPAB side and the B jumpers are on the NIDAQ side of the board.

For normal operation, the A jumpers of J1 to J5 should be connected to the corre-

sponding B jumpers.

NOTE: The A and B jumpers of J6 should never be connected.*

2Strictly speaking, the reconstruction should not be a simple low-pass filter, but should compensate for
the frequency response of the zero-order hold. See [70, p.125] for details.

3The reconstruction board provides space for a second reconstruction filter to be attached to the NIDAQ
DAC1_OUT line.

*Originally it was intended that the MPAB should get its power from the NIDAQ. However, since power
is now obtained from an external supply, J6 should not be connected. Connecting J6 may damage the
NIDAQ or PC.
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Figure A.8: Header block on the reconstruction board.

To test channel 1 of the MPAB without requiring the NIDAQ, J1A (channel 1) can be
connected to J2A (output 1). Similarly, J3A can be connected to either J2A (output 1) or
J4A (output 2). These jumper connections feed the corresponding input channels directly

to the output, thus allowing testing of these two channels without requiring the NIDAQ
or PC.

NOTE: No short circuit protection is provided on the MPAB, so the J5 and J6 jumpers
should not be cross-connected. This will short out either the MPAB or the NIDAQ and

may cause permanent damage.

Testing

Each component of the MPAB has been extensively tested. Full test results are given in
Section A.6.

A.2.2 National Instruments AT-MIO-16F-5 Multifunction I/O Board

The National Instruments AT-MIO-16F-5 Multifunction I/O Board (hereafter referred to
as the NIDAQ) performs the tasks of:

1. data acquisition;
2. ADC (analog-to-digital conversion) for the 16 input channels; and
3. DAC (digital-to-analog conversion) for the two output channels. (Note that at

present only one of these output channels is used.)

Full details of the NIDAQ may be found in [65]; a brief overview is given below.
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Overview

The NIDAQ has 16 analog input channels which can be software configured as either 16
single-ended channels (numbered 0 to 15) or eight differential channels (numbered 0 to 7).
These channels are multiplexed through a single programmable gain stage and a 12-bit
ADC. Analog inputs can be software configured as either 0 to 10 volts (unipolar mode)
or -5 to 5 volts (bi-polar mode). ADC operations can be initiated through software or by
an external trigger. The input mode, input range and polarity are selected through a call
to Al_Configure, and the trigger is selected through a call to DAQ_Config. These functions

calls are described in Section A.5.

The NIDAQ can perform either single-channel data acquisition or multiple channel
scanned data acquisitions: we are only concerned with the multiple-channel scanned mode.
In this mode, the board scans a set of analog input channels in a user-defined scan sequence.
An ADC operation is performed once every sample interval. The channels are scanned at
the beginning of a scan interval; by setting the scan interval to 0, the channels are scanned
repeatedly as fast as possible. The channels to be scanned, the scan sequence, and the
individual channel gains are set through a call to SCAN_Setup. The scan timing is set

through a call to SCAN_Start (which also initiates the scanning operation).

By using double-buffered data acquisition, a user-specified circular buffer is continu-
ously filled. (Double-buffered data acquisition is selected through a call to DAQ_DB_Config).
The circular buffer is divided into two half-buffers: data can be transferred out of one half
buffer while the other is being filled with new data. This allows continuous data acqui-

5 The double-buffering is completely

sition to occur without overwriting previous data.
controlled by the NIDAQ. The user is only required to transfer data out of one of the
half-buffers when it is ready (with a call to DAQ_DB_HalfReady to check when the data is
ready, and then a call to DAQ_DB_Transfer to transfer the data). The NIDAQ internally
keeps track of which half-buffer is being filled, and transfers out the appropriate half-buffer
automatically. The array to use for the circular buffer and its size are specified by a call

to SCAN_Start.

Two analog outputs are available on the NIDAQ. Each contains a 12-bit DAC and can
be hardware jumper configured for unipolar or bipolar operation. (The factory setting is
for bipolar operation with two’s compliment being written to the DAC. Refer to [65, p.2-

12] if this is changed.) An on-board voltage reference of 10 volts is currently used (giving

5A common error which occurs when the sample rate is too high is that data is overwritten before it
can be transferred out of the half-buffer.
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an output voltage range of -10 to 10 volts), but an external voltage reference signal may
also be used (refer to [65]).

A.2.3 Ariel DSP-96 Floating-Point Processor Board

The Ariel DSP-96 Floating-Point Processor Board (hereafter referred to as the DSP)
is a general purpose digital signal processing board which performs the actual task of
beamforming. It features one 33.3 MHz DSP96002 processor (capable of 50 Mflops), two
banks of 16 Kwords static memory and 256 Kwords of dynamic memory. See [3] for a full
description of the DSP.

A.3 Software

Several tools are provided by the MATS software. These include full beamforming oper-
ations, calibration of the microphones, and simple data acquisition in which the sampled
input data is dumped to a file for off-line processing. The calibration and data acquisition
routines should be reasonably self-explanatory once the principle beamforming software
is understood. For this reason, only the beamforming software is discussed in detail. Full

source code (containing extensive comments) can be found in Section A.7.

A.3.1 Overview of Beamforming Software

The beamforming software is divided into two separate directories: one for 8 (or less)
channels and the other for 16 (or less) channels. This separation was done to minimise

the amount of software modification required when changing the number of channels.

The operations performed by the beamforming software are shown in Fig. A.9. The 16
input channels are sampled by the NIDAQ, and the sampled data is automatically stored
sequentially in the appropriate half-buffer in the PC. When one of the half-buffers is full,
it is transfered to the DSP for beamforming. The beamformed data is then returned to the
PC and copied to the appropriate output half-buffer where it is automatically transferred
to the NIDAQ for digital-to-analog conversion.

Configuration and Data Files

The actual number of channels to be used and the number of filter coefficients in each

channel filter are stored in a configuration file, “filcof.cfg”. The actual channel filter



A.3 Software 169
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Figure A.9: Block diagram of beamforming software.

coefficients are stored in a data file, “filcof.dat”. These files are read at run-time. Thus,
changes to the filter coefficients only requires modification of these files; the source code

does not need to be recompiled.

An example configuration file is shown in Fig. A.10(a). The first number (top line)
defines the number of channels, N (either 8 or 16). The next N numbers define the
number of coefficients for each of the filters on the N channels. There is no requirement to
have the same number of coefficients on each channel. Note that, because of the structure
of the DSP software, each channel must have at least 2 coefficients, even if the channel has
only zero or one coefficient. The last number in the configuration file defines the number

of filter coefficients in the secondary filter.

An example data file corresponding to this configuration file is shown in Fig. A.10(b).
A blank line has been placed between each set of filter coefficients for clarity only: these
blank lines would not be included in a real data file. Note that there are actually only five
channels included in this beamformer. The last three channels are excluded since they

have zeros as their filter coefficients.

A.3.2 Details of Beamforming Software

Each of the software components is briefly described below. Full descriptions of the system

calls noted in this section may be found in Section A.5.
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adda8.h and addal6.h

These header files define the high level routines to control the data acquisition process.
They contain several important constants, including AD_Buffer_size and AD_halfBuffer_size
(which are used for the input channels), DA_Buffer_size and DA_halfBuffer_size (which are
used for the output channel), and numChans, ADtimebase, WFtimebase, ADsamplelnt and
update_int. It is highly recommended that these constants are mot changed, as this will
also require changes to the corresponding DSP code. This is the main reason that there
is separate (but practically identical) software for 8 and 16 channel operation. The (ap-
proximate)® sample rate is stored in the constant sampleRate. This constant may be safely

modified if required.

ad.c

This file contains the implementation of the input acquisition routines defined in adda8.c
or addal6.c. The routines are briefly summarised below (full details can be found in the

comments of the source code in Section A.7).

AD _setup: Configures the NIDAQ for data acquisition with calls to Get DA _Brds_Info,
Al_Mux_Config, DAQ_Config, DAQ_Trigger_Config and DAQ_DB_Config. Then sets
the channel scanning order” and the channel gains, allocates memory for the buffers,
and finally initialises the NIDAQ with a call to SCAN_Setup.

AD_start: Starts the NIDAQ scanning with a call to SCAN_start.
AD check_ready: Checks if one of the half-buffers is full with a call to DAQ_DB_HalfReady.

AD_get_half: Transfers the data from one of the half-buffers to the DSP with a call to
DAQ_DB_Transfer. This function should be called once AD_check_ready returns true.

AD_stop: Stops the data acquisition with a call to DAQ_Clear and then releases the mem-
ory used by the buffers.

da.c

This file contains the implementation of the D/A operations of the NIDAQ board. Full

details of the routines can be found in the source code (see Section A.7).

5The reason that this is only an approximate sample rate is explained by the fact that the sample rate
is actually determined by the value of ADsamplelnt, which must be an integer. The actual sample rate is
given by 1/(ADsamplelnt x numChans x 200 x 10™?), and is displayed at run-time.

"The scanning order is not sequential due to the hardware implementation of the MPAB
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DA _setup: Initialises the NIDAQ D/A outputs with a call to Init_DA_brds. Then allocates
memory for the data buffers, configures the D/A operation (WFM_DB_Config), sets
up the buffers (WFM_Load), and sets the output rate (WFM_ClockRate).

DA start: Starts the D/A process with a call to WFM_Group_Control.
DA _check_ready: Checks if one of the half-buffers is full with a call to WFM_DB_Halfready.

DA_put_half: Transfers the data from one of the half-buffers to the NIDAQ with a call
to WFM_DB_Transfer. This function should be called once DA _check_ready returns

true.

DA _stop: Stops the D/A operation (WFM_Group_Control) and frees the memory used by
the buffers.

pc8.c and pcl6.c

These are the main programs which control the data acquisition process and transfer data
to and from the DSP (which performs the actual beamforming operation). The files are

practically identical, so only pc8.c is considered in detail.

pc.8 contains several important constants used in the DSP memory map including
adr_addata (the location of the acquired channel data), adr_fil_config_record (the location
of the filter configuration record), fil_config_len (the size of the filter configuration record),
adr_debbuf (the location of a debugging area), adr_filcof (the location of the filter coeffi-
cients), and adr_daoutp (the location of the beamformer output data). These constants

should not be modified as this would require a change to the DSP memory map.

There are several high-level functions defined by pc.8.

merror: Displays a relevant error message if a DSP call returns an error.

DSP_init: Defines the DSP configuration (with a call to GetConfigFile)and resets the DSP

and loads the assembler program (InitializeDsp).

debug_ filcon: Uploads the current filter configuration record to the PC (with UploadDsp-
ToMemory) and displays it.

test_chan: Clears the current filter coefficients, and sets up a single channel for data

acquisition.

load_filcof_cfg: Loads the filter configuration from the configuration file.
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load_filcofs: Loads the filter coefficients from the filter data file, and optionally writes

them to a binary file for inputting next time.

menu_control: Provides a menu of options. This subroutine can be easily modified to
include further functionality. Currently it includes options to test a single channel,

reload the filter coefficients from the data file, and to quit.

A block diagram of the main program is shown in Fig. A.11.

dp.asm

This is the assembler program which performs the actual beamforming operation. There
are several important constants which define the DSP memory map: again, these constants

should not be changed as this would require a major modification to the rest of the code.

The structure of the beamformer implemented by the DSP is shown in Fig. A.12. This
is the required structure for a broadband frequency invariant beamformer. However, it is
a very general structure which can be used for almost any broadband (or narrowband)
beamformer. The design of the filters for a frequency invariant beamformer is described
in Chapter 3. For full details of the DSP software, refer to the commented source code in
Section A.7.

A.4 Conclusions and Possible Extensions

As stated in the introduction, the aim of MATS was to provide a flexible system for
testing beamforming algorithms. Since MATS has already been successfully used to ex-
perimentally verify some beamforming algorithms,® it may be concluded that the system

has proved successful in its aim.

Some possible extensions to MATS are listed below.

e Provide short circuit and over-voltage protection for the MPAB as suggested in
§A.2.1.

e Use both output channels of the NIDAQ to provide a stereo effect such that the
direction to which the beamformer is steered is mirrored by the two channel output.
A simple way to do this is to apply the same data to each output channel, but change

the relative volume of each channel to reflect the beam steering direction.

8See Chapter 3.
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e Implement an adaptive beamforming algorithm. One simple candidate algorithm
would be to form several beams pointed at different directions simultaneously. At
each adaptation step, the beam with the greatest output power is chosen. This

scheme has already been successfully applied in practice [29, 51].

e Allow on-line beam steering. This could be done by storing a set of pre-calculated
filter coefficients which steer the beam to a set of angles, and then loading the

appropriate set at run-time.

A.5 System Function Calls

This Section details the system calls used in the MATS software. For each function call
a brief description of its functionality is given, along with an outline of the parameters
required and the appropriate setting in brackets. Full details of these calls may be found
in [66] for the NIDAQ and [3] for the DSP.

A.5.1 NIDAQ Function Calls

A /D Functions

Al_Configure [66, p.3-5]: Sets up the analog inputs of the NIDAQ. Parameters include
inputMode (=1, i.e. referenced single-ended), inputRange (=0, i.e. -5v to 5v), and
polarity (=0, i.e. bi-polar).

Al_Mux_Config [66, p.3-8]: Configures the number of external multiplexer boards con-
nected to the NIDAQ (zero in our case).

DAQ_Clear [66, p.3-38]: Cancels the current data acquisition operation.

DAQ_Config [66, p.3-38]: Configures the data acquisition operation. Parameters include
startTrig (=0, i.e. generate a software trigger to start the DAQ sequence) and extConv

(=0, i.e. use on-board clocks to control DAQ A/D conversions).

DAQ_DB_Config [66, p.3-40]: Determines whether double buffering is enabled for the data

acquisition operation. Parameters include DBmode (=1, i.e. enable double-buffering).

DAQ_DB_HalfReady [66, p.3-40]: Checks whether the next half buffer of data is ready.
Parameters are halfReady (whether next buffer is ready, 0=not ready, 1=ready) and

daqStopped (not used).
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DAQ_DB_Transfer [66, p.3-42]: Transfers the next half buffer of data to a storage buffer.
Parameters include halfBuffer (the address of the array to which the data is to be
transferred), ptsTfr (number of points transferred, not used), and daqStopped (ig-

nored).

DAQ_Trigger_Config [66, p.3-51]: Configures the pre-triggering mode of data acquisition.
Parameters include stopTrig (=0, i.e. disable pre-triggering) and ptsAfterStopping

(not required).

Get_DA _Brds_Info [66, p.3-79]: Given the Slot number of a board, returns the board code,
i.e., the type of board associated with that particular board number, and other

information. We only use this call to give the board code.

SCAN_Setup [66, p.3-125]: Initialises circuitry for the scanned data acquisition operation.
Parameters include numChans (8 or 16), chanVector (array containing on-board chan-
nel scan sequence — this is not sequential because of the channel setup on the MPAB),
and gainVector (array containing gain setting to be used for each channel — options
are -1 (for a gain of 0.5),1,2,5,10,20,50,100 — the same gain should be used for ev-
ery channel, with individual channel gains normalised using the trim-pots on the
MPAB).

SCAN_Start [66, p.3-126]: Initialises the data acquisition process. Parameters include
buffer (the buffer into which the data should be stored), count (the number of sam-
ples to acquire, i.e., the size of the buffer), sampTimeBase (=-1, use 5MHz clock
as timebase, i.e., 200nsec resolution), samplnterval (sample rate = 1/(samplnterval
x numChans x 200e-9) ), scanTimebase (ignored), and scanlnterval (=0, the scan

sequence is restarted one sample after it has completed, i.e., continuous sampling).

D/A Functions

Init_DA _Brds [66, p.3-85]: Initialises the NIDAQ board to its default state. Used to guar-
antee that the output voltage at DACO is 0.0 volts.

WFM _ClockRate [66, p.3-150]: Configures the output rate. Parameters include whichclock
(=0, i.e. uses the update clock), timebase (=-1, use 5MHz clock as timebase, i.e.,
200nsec resolution), interval (number of timebase units which elapse between updates
of the analog output, interval = numChans x ADsamplelnt), and mode (=0, not

used).

WFM_DB_Config [66, p.3-152]: Configures the D/A for double-buffered operation. Pa-

rameters include numChans (=1), chanVect (=0, i.e. use channel zero), dbMode (=1,
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i.e. enable double-buffering), oldDataStop (=0, i.e. allow regeneration of data), and

partial TransferStop (=0, i.e. allow partial half buffer transfers).

WFM_DB_HalfReady [66, p.3-154]: Checks if the double buffer is ready to receive the next
half buffer of data. Parameters include halfReady (0=not ready, 1=ready).

WFM_DB_Transfer [66, p.3-156]: Transfers an array of data to the output buffer. Param-
eters include buffer (the array of data to transfer) and count (the number of data

points, i.e., the size of the data buffer).

WFM_Group_Control [66, p.3-159]: Control analog output operation. Parameters include

operation (O=terminate operation, 1=start operation).

WFM _Load [66, p.3-161]: Assigns a buffer to a selected analog output. Parameters include
numChans (=1), chanVect (=0), buffer (array of values to output), count (number of
points to output, i.e., size of buffer), iterations (=0, i.e. output continues indefinitely),

and mode (=0, not used).

A.5.2 DSP Function Calls

These are function calls which are used within the C code on the PC. They are used to
set up the DSP and transfer information between the DSP and the PC. The functions are
executed with a call to m96(), which is passed a single parameter which is a pointer to the
parameter block (a storage area that holds the actual parameters). In C, the parameter

block is defined as a structure (see [3, p.163] for a definition of this structure).

DownloadMemoryToDsp [3, p.252]: Transfer data from a data array to the DSP mem-
ory. Used to transfer an array of data acquired from the analog inputs to the
DSP for the beamforming to be applied. Parameters include a transfer format code
(=0xa0000000, i.e., block I/O transfer to the DSP Y-memory), the memory address
(=0x00100000), and a pointer to the data array which is to be downloaded.

GetConfigFile [3, p.243]: Reads the specified file and sets up a DSP configuration struc-
ture. Parameters include a pointer to the configuration storage area and a pointer
to the configuration file name (M96.CFG).

InitializeDsp [3, p.202]: Resets the DSP and boot-loads an assembler programs to the DSP.
Parameters include the object file format (=0, i.e., Motorola load file format) and a

pointer to the file name to boot-load.
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UploadDspToMemory [3, p.253]: Transfer data from DSP memory to a data array. This
is used to transfer the beamformer output to the PC, where it is then sent to the
analog output. Parameters include a transfer format code (=0xa0000000, i.e., block
I/0O transfer from DSP Y-memory), the DSP address (=0x00101800), and a pointer
to the array to which the data is to be uploaded.

A.6 MPAB Test Results

This Section details the testing performed on the MPAB. Full details of the testing pro-

cedures are given for reproducibility.

A.6.1 Input High-pass Filter

The gain of all channels was set to 41.6dB, and a sine wave of 50 mv peak-to-peak (vi,)
was applied to the input of channel 1 with the cutoff frequency of the MF6-50 Switched
Capacitor Lowpass Filter set to 8 kHz (so as not to influence the measurements over the
frequency range used); all other inputs were left open. The output voltage on channel 1

(Vout) was measured over a range of frequencies and the gain calculated as

mn

Gain (dB) = 20logy, <“°‘”> — 416

and compared with the response of an ideal first order Butterworth high-pass filter (see
Fig. A.13). The test was also performed on channel 2 and the results obtained were

practically identical to those obtained for channel 1.

A.6.2 Anti-aliasing Filter
Cutoff Frequency of 4 kHz

The gain of all channels was set to 24.6dB, and a sine wave of 400 mv peak-to-peak (viy,)
was applied to the input of channel 1 with the cutoff frequency of the MF6-50 Switched
Capacitor Lowpass Filter set to 4 kHz (i.e., the clock rate was set to 200 kHz); all other
inputs were left open. The output voltage on channel 1 (voy4) was measured over a range

of frequencies and the gain calculated as

Gain (dB) = 201log, <“°‘”> —24.6

Vin
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and compared with the response of an ideal 6th order Butterworth low-pass filter (see
Fig. A.14). The test was also performed on channel 2 and the results obtained were

practically identical to those obtained for channel 1.

Cutoff Frequency of 8 kHz

The procedure above was followed with the cutoff frequency set to 8 kHz (i.e., the clock
rate was set to 400 kHz). Again the gain was calculated and compared with the response

of an ideal 6th order Butterworth low-pass filter (see Fig. A.15)

A.6.3 Reconstruction Filter

A 10 volt peak-to-peak sine wave was applied to the input of the 4th order Butterworth
reconstruction filter, and the output measured over a range of frequencies. The results
obtained were compared with the response of an ideal 4th order Butterworth response (see
Fig. A.16).

A.7 Source Code

This Section lists the source code for the beamforming software. A description of the

programs is given in §3.2. The programs are:

adda8.h: header file which defines the high level routines used by the data acquisition

process
ad.c: implementation of the input routines defined in adda8.h
da.c: implementation of the output routines defined in adda8.h

pc8.c: main program which controls the data acquisition process and transfers data to
and from the DSP

dp.asm: DSP program which performs the actual beamforming

countl0.src: GAL program to divide the clock signal by either 10 or 20
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44444222
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(a)

-1.0095
-4.2779
4.2779
1.0095

-5.0458
-2.9437
2.9437
5.0458

1.5395
-1.9642
1.9642
-1.5395

1.5866
-2.0242
2.0242
-1.5866

-5.0373
-2.8227
2.8227
5.0373

-0.2004
0.1339
0.3745
0.1339

-0.2004

(b)

Figure A.10: (a) Example configuration file, and (b) corresponding data file.
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Load filter configuration record (load-filcof_cfg)
and allocate memory for filter coefficients
Initialise DSP and NIDAQ (DSP_init, DA_setup, AD_setup)
Process filter configuration and download to DSP (DownloadMemoryToDsp)
Load filter coefficients (load-filcofs) and display
Download filter coefficients to DSP (DownloadMemoryToDsp)
Set up link between the DSP buffers and the NIDAQ buffer
Start D/A and A/D operations (DA_start, AD_start)
while (AD_cnt)) {
if (AD_check-ready) {
AD_get_half
Download AD_halfbuffer to DSP (DownloadMemoryToDsp)
AD_cnt--
}
if (DA_check_ready) {
Upload DSP to DA_halfbuffer (UploadDspToMemory)
DA _put_half
}
if (kbhit) {
Stop D/A and A/D operations (DA_stop, AD_stop)
Get menu option and take appropriate action (menu_control)
Setup D/A and A/D operations (DA_setup, AD_setup)
Download filter coefficients to DSP (DownloadMemoryToDsp)
Start D/A and A/D operations (DA_start, AD_start)
}
}

Stop D/A and A/D operations (DA_stop, AD_stop)

Figure A.11: Block diagram of main program.

Ch1 Hl((x))
Ch2 Hz(u))

H () —
Ch 16

H (©)

Figure A.12: Block diagram of operations performed by the DSP board.
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Figure A.13: Frequency response of Butterworth 1st order high-pass filter stage. Cutoff

frequency is 106.1 Hz (i.e., a 1.5 uF capacitor and a 1 K resistor).
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Figure A.14: Frequency response of Butterworth 6th order anti-aliasing filter stage. Cutoff

frequency is 4kHz.
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Figure A.15: Frequency response of Butterworth 6th order anti-aliasing filter stage. Cutoff
frequency is 8kHz.
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Figure A.16: Frequency response of Butterworth 4th order reconstruction filter stage.
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