Theory and Application of
Broadband Frequency Invariant
Beamforming

Darren Brett Ward
B.E. (Hons), B.App.Sc. (QUT)

A thesis submitted for the degree of Doctor of Philosophy
of the Australian National University

Department of Engineering
Faculty of Engineering and Information Technology
The Australian National University

July 1996




Declaration

The contents of this thesis are the result of original research and have not been submitted

for a higher degree to any other university or institution.

Much of the work presented in this thesis has been published or will be submitted for
publication as journal or conference papers. Following is a list of these papers. In some

cases the conference papers contain material overlapping with the journal papers.

Journal Papers

e D.B. Ward, R.A. Kennedy and R.C. Williamson, “Theory and design of broadband
sensor arrays with frequency invariant far-field beam patterns”, J. Acoustical Society

of America, vol. 97, no. 2, pp. 1023-1034, Feb. 1995.

e D.B. Ward, R.A. Kennedy, and R.C. Williamson, “FIR filter design for frequency
invariant beamformers”, IEEE Signal Processing Letters, vol. 3, no. 3, pp. 69-71,
Mar. 1996.

e D.B. Ward, Z. Ding, and R.A. Kennedy, “Direction of arrival estimation for wide-
band signals using frequency invariant beamspace processing”, IEEE Trans. Signal

Processing, (to be submitted).

e R.A. Kennedy, T. Abhayapala, and D.B. Ward, “Broadband nearfield beamforming
using a radial beampattern transformation”, IEEE Trans. Signal Processing, (to be

submitted).

e P.J. Kootsookos, D.B. Ward and R.C. Williamson, “Imposing pattern nulls in broad-

band array responses”, J. Acoustical Society of America, (to be submitted).



Conference Papers

e D.B. Ward, R.A. Kennedy and R.C. Williamson, “Design of frequency-invariant
broadband far-field sensor arrays”, in 1994 IEEE Antennas and Propagation Society
Int. Symp. Digest, vol. 2, pp. 1274-1277, Seattle, USA, June 1994.

e D.B. Ward, R.A. Kennedy, and R.C. Williamson, “Broadband beamforming with a
single set of filter coefficients”, in Proc. 1995 IEEE Singapore Int. Conf. on Signal

Processing, Circuits and Systems, pp. 88-93, Singapore, July 1995.

e D.B. Ward, Z. Ding, and R.A. Kennedy, “Broadband direction of arrival estimation
using frequency-invariant beam-space processing”, in Proc. IEEE Int. Conf. on
Acoust., Speech, and Signal Processing, (ICASSP’96), pp. 2892-2895, Atlanta, USA,
May 1996.

e R.A. Kennedy, T. Abhayapala, D.B. Ward, and R.C. Williamson, “Near-field broad-
band frequency invariant beamforming”, in Proc. IEEE Int. Conf. on Acoust.,

Speech, and Signal Processing, (ICASSP’96), pp. 905-908, Atlanta, USA, May 1996.

e P.J. Kootsookos, D.B. Ward, and R.C. Williamson, “Frequency invariant beamform-
ing with exact null design”, in Proc. IEEE Workshop on Statistical Signal and Array
Processing, (SSAP’96), pp. 105-108, Corfu, Greece, June 1996.

The research presented in this thesis has been performed jointly with Dr Rodney A.
Kennedy, Dr Robert C. Williamson, Dr Peter J. Kootsookos, Prof. Zhi Ding (Auburn
University, USA) and Mr Thushara Abhayapala. The majority, approximately 70%, of

this work was my own.

Darren Brett Ward

Australian National University
July 1996

ii



Abstract

In many engineering applications, including radar, sonar, communications and seismology,
the direction of impinging signal wavefronts can be used to discriminate between competing
sources. Often these source signals cover a wide bandwidth and conventional narrowband
beamforming techniques are ineffective, since spatial resolution varies significantly across
the band. In this thesis we consider the problem of beamforming for broadband signals,
primarily when the spatial response remains constant as a function of frequency. This is
called a frequency invariant beamformer (FIB).

Rather than applying the numerical technique of multi-parameter optimisation to solve
for the beamformer parameters, we attempt to address the fundamental nature of the FIB
problem. The general philosophy is to use a theoretical continuous sensor to derive rela-
tionships between a desired FI beampattern and the required signal processing structure.
Beamforming using an array of discrete sensors can then be formulated as an approxima-
tion problem. This approach reveals a natural structure to the FIB which is otherwise
buried in a numerical optimisation procedure.

Measured results from a microphone array are presented to verify that the simple FIB
structure can be successfully implemented. We then consider imposing broadband pattern
nulls in the FT beampattern, and show that (i) it is possible to impose an exact null which is
present over all frequencies, and (ii) it is possible to calculate a priori how many constraints
are required to achieve a null of a given depth in a FIB. We also show that the FIB can be
applied to the problem of broadband direction of arrival (DOA) estimation and provides
computational advantages over other broadband DOA estimators.

Through the theoretical continuous sensor approach, we show that the FIB theory
can be generalised to the problem of designing a general broadband beamformer (GBB)
which realizes a broadband angle-versus-frequency beampattern specification. Coupled
with a technique for radial beampattern transformation, the GBB can be applied to a
wide class of problems covering both nearfield beamforming (in which the shape of the
impinging wavefront must be considered) and farfield beamforming (which is simplified
by the assumption of planar wavefronts) for a broadband beampattern specified over both

angle and frequency.
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Glossary of Definitions

Notation

C complex plain

R real numbers

R* non-zero real numbers

Z integers

N natural numbers

a* complex conjugate of scalar a

al transpose of matrix or vector a

afl conjugate transpose of matrix or vector a

Af matrix pseudo-inverse: AT £ [AFA]7TAH

® Kronecker product: a® b 2 [a1b---ayb], where N is length of a
* convolution: if z[k] = z[k] % y[k], then z[k] £ Zf:o z[k — ly[l]
d[] Kronecker delta: 6[k] £ 1,k =0, and 6[k] £ 0,k # 0
E{-} expectation operator

F{} Fourier transform operator

Re{-} real part

Im{-} imaginary part

Abbreviations

CFVB Controlled Frequency Variant Beamformer

CSS Coherent Signal Subspace

DOA Direction of Arrival

FI Frequency Invariant

FIB Frequency Invariant Beamformer

GBB General Broadband Beamformer

LCMV Linear Constrained Minimum Variance



