Chapter 3

Probing Barrier Distributions

with Quasi-Elastic Scattering
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3.1 Derivation of a Barrier Distribution Repre-

sentation

The experimental distributions D**( E) discussed in Section 1.5.3, which are repre-
sentative of the potential barrier distribution encountered in a reaction, are direct
evidence of the coupling of the fusing nuclear binary system to its internal degrees
of freedom. Fusion results from transmission over the barrier and the flux which
is not transmitted is reflected. At barrier energies this reflected flux is dominated
by quasi-elastic scattering, such as elastic and inelastic scattering and transfer re-
actions. Since the sum of the transmitted and the reflected flux is conserved, one
may expect that the coupling terms in the Hamiltonian affect not only fusion but
also the quasi-elastic scattering. Indeed, individual quasi-elastic scattering channels
have been described successfully with coupled-channels calculations for a long time.
In addition, for many systems correlations have been observed between excitation
functions for quasi-elastic scattering channels and for fusion, as has been pointed
out in Section 1.6.2. It may therefore be hoped that the distribution of poten-
tial barriers is evident in the excitation functions measured for the quasi-elastic
scattering reaction channels.

On the basis of the coupled-channels model, it has been suggested''? that some
information about the distribution of potential barriers of a reaction might be con-
tained in the backward angle excitation functions for the combined quasi-elastic
scattering yield of elastic and inelastic scattering and transfer reactions. Follow-
ing this suggestion, this chapter describes the derivation and test of a technique
which allows representations of the barrier distribution to be extracted from precise

measurements of quasi-elastic scattering.

3.1.1 The Case of a Single Barrier

Classically, for a single potential barrier By, and head-on collisions, i.e. the scattering
angle 6§ = 180°, there is a direct relationship between the differential fusion cross
section do/**(E) and the quasi-elastic scattering differential cross section do?*(E).
Since any loss from the elastic channel, which in this idealized case is the only

quasi-elastic channel, contributes directly to fusion, this is a consequence of flux

'A.T. Kruppa et al., Nucl. Phys. A 560 (1993) 845.
*M.V. Andres, N. Rowley, M.A. Nagarajan, Phys. Lett. B 202 (1988) 292.
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conservation as expressed by
T(E)+R(E)=1 (3.1)

where 7(E) and R(E) are the transmission and reflection coefficients, respectively.
Whilst the reflection coeflicient is equal to the ratio of the differential cross sections
for quasi-elastic and Rutherford scattering do?%/do®(E), the transmission coeffi-
cient 7(E) may be written as the first differential of the product of energy and
total fusion cross section Eo/** with respect to energy, as it has been shown in
Section 1.5.3. Thus

daqel
R(B) = (8,60 = 180°) (3.2)
and
T(E) = “%?a% [Eo™(E)| (3.3)

where Ry is the fusion radius. According to Equation 1.56 further differentiation of

Equation 3.3 with respect to energy yields

ar 1 d?
dE wR2 dE?

The function D(E, By) is the barrier distribution of the system which for a single

[Eo**(E)| = §(E — By) = D(E, By) (3.4)

barrier is simply a é-function at the barrier height B. Combining the Equations
3.1, 3.2, 3.3 and 3.4 it follows that

dT dR d [do®
o5, 8T - %4 [

dE = dE dE
Thus, classically for a single barrier the barrier distribution D(E, By) can be ob-
tained by differentiating do®*!/do®(E) at 180° with respect to energy.

(E,6 = 180°) (3.5)

In the quantum mechanical description the effects of tunnelling prevent the
barrier distribution D(E, By) from being recovered from Eof**. However, as derived
in Section 1.5.3, the second differential of Eof* with respect to energy yields the
distribution

42
dE?
which is representative of the barrier distribution D(E, By), because Gf**(E, By)

which is defined in Equation 1.57 is a narrowly peaked function. Since the function

d [do?t
dE | doR

DI“(B) = [Eo’(E)| = nR3G"™(E, B,) (3.6)

D*¥E) = — ——(E,6 = 180° )} = G*!(E, By) (3.7)

is also narrowly peaked (see Section 3.1.3), it defines an alternative representation

of the barrier distribution for the trivial case of a single barrier.
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3.1.2 Extension to Multiple Barriers

It is not immediately apparent that the above derivation can be extended to sit-
uations where several barriers are involved. For a distribution of several barriers
the reflected flux comprises the elastic scattering channel (j = 0) and a series of

quasi-elastic reaction channels (j = 1,2,..,n), so that

doe! *. doj

aom B0 =2 ok

5=0

(E,0) (3.8)

As shown in Section 1.5.3, multi-dimensional barrier penetration may be described
within the simplified coupled-channels model which considers coupling to a finite
number of states but neglects their excitation energies (sudden approximation) and
spins (iso-centrifugal approximation). According to Equation 1.48 the elements
of the scattering matrix Sf for the physical reaction channels are then unitary
transformations of the elements of the scattering matrix Sf for the eigen-channels
(k=0,1,..,n) and

S¢ = U Uy S5 (3.9)

The scattering amplitudes f;(E,6) for the physical reaction channels as given by

Equation 1.64 can then be expressed as

fi(E,8) = %%(22 + 1) Py(cos 6) exp[2iog) U, Uqi Sk (3.10)
where the of are the Coulomb phases in the eigen-channels and X is the reduced
de Broglie wave length. The partial wave sum in Equation 3.10 does not converge
because of the elastic channel and it is common to separate out the Coulomb am-
plitude as expressed in Equation 1.65. It is also possible to use suitable convergence
factors®. In the following such factors may be considered to be implicitly included.
The Equations 3.10 are only strictly valid in the case when the spins of the excited
states are ignored. In reality the coupling of an entrance-channel £ to a final-channel
¢ may change the phase-relations between different scattering amplitudes.

Using Equations 1.63 and 3.10, the quasi-elastic scattering cross section relative

to Rutherford scattering can be expressed as

do? ?

1 oA ) e B

do R (E,0) = doF Z % Z(% + 1) Py(cos §) CXP[zi(Ufc + Uf)]Ug‘kUOkSﬁ gl ozsll
1.k, 1=0 {

(3.11)

3N. Rowley, J. Phys. A: Math. and Gen. 11 (1978) 1545.
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Using the relation 1.50 this simplifies to

n 2
> Wi A > (2¢ 4+ 1)P,(cos 8) exp[2i0f] SF (3.12)
k=0

doR = F |20 4

doet 1
_J;'F(E’ f) =

where the Wi = |Un|? are the weights with which the different eigen-channels k
contribute to the quasi-elastic differential scattering cross section. It follows that

for a particular angle
dO’qd dUk

o (B) = 2 Wi () (3.13)

where doy, is the differential cross section for the eigen-channel k. Thus, in the

eigen-channel model the quasi-elastic differential cross section is a weighted sum
of the eigen-channel differential cross sections. It should be noted that this equa-
tion is equivalent to Equation 1.51 for the fusion cross section. One important
difference is indicated by the phase terms exp[2iof] which do not occur in Equa-
tion 1.51. As a consequence of the iso-centrifugal and sudden approximations the
scattering from each eigen-barrier k proceeds with a well defined phase, although
it contains contributions from all physical scattering channels. In reality, the dif-
ferent angular momenta and energies of these physical channels may lead to some
de-phasing, which could distort the cross sections doy/do®(E) associated with the
eigen-channels.

The differentiation of Equation 3.13 with respect to energy yields the distribu-

tion

. d
D¥(E) = ——= [W(E)] =3 Wirr | =%

k=0

d qel n d 1
7 [d"’“} =Y "WiG*(E,By) (3.14)
k=0

where for 6 close to 180° the G%!(E, B,) are narrowly peaked functions (see Sec-
tion 3.1.3). Consequently, similar to Df*(E), the distribution D%*!(E) is a rep-
resentation of the barrier distribution D(E, B;). The question arises if, as for
Df“(E), the barrier structure is retained in the representation D(E), when the

approximations implicit in its derivation are relaxed.

3.1.3 Application to Calculated Excitation Functions

The validity of the approximations in Sections 3.1.1 and 3.1.2 has been tested by

performing exact coupled-channels calculations with the code ECIS* for an arbitrary

*J. Raynal, Computing as a Language of Physics, LA.E.A Vienna (1972) 281.
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binary system. From the theoretical excitation functions for fusion and quasi-elastic
scattering at 6 = 180° the distributions Df**%!( E) were extracted by differentiation.
The differentiation was approximated for fusion with the point-difference formula
given in Equation 1.60 and for quasi-elastic scattering with the point-difference

formula

mdoqel/ng(E + 0.5AE) — do® /do®(E — 0.5AE)
AE

D E) ~ (3.15)

In both cases an energy step length of AE = 2 MeV was used. The distributions
Dfu(E) were divided by the asymptotic classical fusion cross section 7 R% to facili-
tate the comparison with D (E). The values of 7 R2 were determined by applying
Equation 3.3 at high energies where T(E) — 1.

Initially a reaction featuring a single barrier was considered, which was simulated
by including in the calculations only the elastic channel and an absorptive potential.
The total reaction cross section was taken to be equal to o/**(E). The resulting
distributions D/**(E) and D%*!(E) are compared in Figure 3.1(a). They have very
similar widths and shapes.

A case with two well separated barriers was simulated by coupling the elastic
channel to a quadrupole vibrational state at high excitation energy. The fusion
cross section was taken as the difference between the total reaction and the total
inelastic cross section, while the quasi-elastic differential cross section was taken as
the sum of those for elastic and inelastic scattering. The distributions Df“(E) and
D% (E) extracted from this calculation are shown in Figure 3.1(b). Again they are
in good agreement.

Calculations were also performed for a system where one of the nuclei is de-
formed. They incorporated the first five rotational states of the deformed nucleus
and assumed a positive quadrupole and a negative hexadecapole deformation. The
overall shapes of Df**(E) and D%!(E) are again similar, as it is shown in Fig-
ure 3.1(c). However, the interference of different scattering amplitudes now appears
to distort D!(E) in an oscillatory manner, which is indicative of Fresnel diffraction.
Nonetheless, the structure of the barrier distribution is still apparent.

Experimentally it is difficult to measure scattering excitation functions at a
laboratory angle 1, = 180°. Therefore, the calculations of D ( E) for the deformed
nucleus were also performed at 6, = 150°. In order to compare the shape of
D (E,150°) with that of D9 (E, 180°), the energy scale of the former was reduced
by the centrifugal energy E.,;. Assuming Rutherford orbits, the centrifugal energy
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Figure 3.1: Representations D/%$4*!(E) of the potential barrier distribution from fusion (solid)
and quasi-elastic scattering at 180° (dashed) as calculated with ECIS for (a) a single barrier, (b)
two well separated barriers and (c) for a rotational nucleus with deformation parameters 8; =0.3
and (B4 = —0.05. The two representations are very similar for all three cases. Panel (d) shows
D2*{(E, 6) at ;4 = 180° and 150°. The energy scale of the 150° distribution was shifted by Egen:.
The distributions Df“*(E) have been divided by wR3 to facilitate the comparison.

is given by

cosec(fm /2) — 1
T cosec(fom/2) + 1
where 0., is the detection angle in the centre-of-mass system. As shown in Fig-
ure 3.1(d), the shape of D% E) changes only slightly with angle over this range. An

obvious feature is that the phases of the oscillations change with detection angle,

Ecent =K

(3.16)

supporting the conclusion that they are associated with diffractive effects in scat-
tering. Calculated distributions at intermediate angles lie within the limits of these
two curves. The oscillations have only small amplitudes and do not destroy the bar-
rier structure in D% (E). However, for detection angles @i, < 140° the amplitude
of the oscillations is found to increase rapidly. This suggests that measurements

of the quasi-elastic scattering excitation functions at the most backward angles are
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best suited to extract the distributions D%!(E) with a minimum of distortion due
to diffraction.

In summary, the exact coupled-channels calculations presented in this section
support the idea that a representation of the barrier distribution may be extracted
from quasi-elastic scattering data. The calculated representations Df**(E) and
D*!(E) of the barrier distribution appear to be very similar. There is, however,
an important difference between them. They propagate experimental uncertainties
differently. For a fixed relative experimental uncertainty § of the cross sections,
the uncertainty of D*(E) increases with energy and cross section, as given by
Equation 1.61. This leads to large uncertainties for Df“*(E) at higher energies. In
contrast, from Equation 3.15 it follows that for D% (E) the uncertainty is approxi-
mately given by

AD* ~ (3.17)

dof (B

Consequently, for this representation the uncertainty decreases with energy in the

5f [doq"‘ )}

barrier region, where the quasi-elastic cross section falls rapidly.

The large experimental uncertainties at higher energies are a major problem
in the extraction of the barrier structure from Df**(E). This is demonstrated in
Figure 3.2 for two experimental distributions Df**(E). Even with a precision of the
fusion cross sections corresponding to § = 0.01, the distributions Df**( E) are not
well defined at higher energies. At energies above the average barrier height By the
fusion data cannot be used to distinguish between the two calculations which are
also shown in the figure®. An alternative representation of the barrier distribution
as given by D (E) which is better defined at high energies would therefore be

extremely useful to extract the barrier structure in this energy range.

3.2 The Systems %0 4 %Zr, 1441548 m and W

Although for many systems quasi-elastic angular distributions are well documented
in the literature, excitation functions have only rarely been measured and the ex-
isting data are not precise enough to extract meaningful distributions D*(E). In
order to investigate the technique which has been derived in the previous sections,
precise quasi-elastic scattering excitation functions have therefore been measured in

this work for the systems 60 + 92Zr, 1*4Sm, %*Sm and '®*W. These reactions were

5J.R. Leigh et al., Phys. Rev. C 47 (1993) R437.
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Figure 3.2: Experimental representations D! “(E) of the distribution of potential barriers are
compared with model calculations for (a) 1*0 + **Sm and (b) 60O + % W. The dashed curves
result from calculations which include only the effects of deformation. The solid curves represent
calculations which in addition include weak couplings to vibrational 2t and 3~ states of the target
nuclei. The energies are in units of the average barrier height By.

selected because the experimental distributions Df“*(E) are known®~1 so that a

comparison of Df**(E) and D%!(E) is possible.

?

3.2.1 Excitation Functions

The measurements were carried out with *0 beams from the electrostatic tan-
dem accelerator at the Australian National University, in the energy range Eip =
35 — 85 MeV. The quasi-elastic scattering excitation functions were measured at
backward angles relative to Rutherford scattering as has been described in Sec-
tion 2.4. The detection angles for **0 + %Zr were 6,,, = 143° and 155°, while for

8).X. Wei et al., Phys. Rev. Lett. 67 (1991) 3368.
"R.C. Lemmon et al., Phys. Lett. B 316 (1993) 32.
8C.R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074,
9J.C. Mein et al., to be published.

19].R. Leigh et al., Phys. Rev. C 52 (1995) 3151.
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160 4 48m they were 8, = 143°,155° and 170°. For the systems ¢0 4 %4Sm
and 60 4 8W, the detection angle was 0, = 170°.

The experimental set-up allowed separation of the atomic numbers of the scat-
tered projectile-like nuclei. In addition, for the ®2Zr and **Sm targets, the pure
elastic scattering was clearly resolved from inelastic and transfer scattering in the
spectra. This allowed the elastic scattering differential cross sections to be extracted
for these systems. For the other two reactions the elastic peak was contaminated
by inelastic scattering from low-lying rotational target states. The analysis of the
experimental data yielded excitation functions for inelastic and transfer channels
with Z = 6,7,8 as well as elastic scattering. The quasi-elastic yield was taken as
the sum of all those channels. The measured excitation functions are documented
in the Appendix in Tables A.1—A.7 and they are shown in Figures 3.3 and 3.4.

For all four systems the quasi-elastic excitation functions do?/do®(E) show
a smooth, monotonic decrease with energy. However, the rate of decrease for the
reactions involving the deformed target nuclei '**Sm and W (Figure 3.3) is differ-
ent compared to the reactions with the two lighter, non-deformed target nuclei ®2Zr
and "*Sm (Figure 3.4). While the latter fall from do?/do® = 0.9 to 0.1 within
~ 6 MeV, the excitation functions for the deformed target nuclei fall more slowly
within ~ 10 MeV, as might be expected when a wide range of potential barriers
is present in a reaction. Hence, from this qualitative comparison, the quasi-elastic
excitation functions at backward angles appear to have some sensitivity to the fu-
sion barrier distribution. A similar, but less pronounced dependency of the elastic
scattering excitation function on the shape of the reactants has previously been
observed!! for the reactions of the spherical ®Li and the deformed "Li with 58Ni and

other target nuclei.

3.2.2 Comparison of Quasi-Elastic and Fusion Data

The quasi-elastic scattering excitation functions have been transformed into the
distributions D! (E) using an energy step length AE;,;, = 2 MeV in the point-
difference formula (3.15). For %0 + 92Zr some data points have been derived with
AEy = 1 MeV and 3 MeV. The resulting distributions qul(E) are shown in
Figure 3.5. The energy scales for each angle have been reduced by the centrifugal
energy, as given by Equation 3.16.

The experimental distributions D% (E) show significant differences for the four

'W. Dreves et al., Phys. Lett. B 78 (1978) 36.
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Figure 3.3: The ratio of the measured differential quasi-elastic (qel), elastic (el) and the Z=8,
Z=17, Z=6 scattering and transfer cross sections relative to Rutherford scattering for (a) O +
1%4Sm and (b) 80 + %W at 6,5 = 170°. The excitation function for Z=8 does not include the
elastic scattering. It should be noted that for both systems the excitation function labelled ‘el’
also contains some inelastic scattering from low-lying rotational target states which could not be
resolved. Some of the excitation functions have been divided by 5, 10 or 20, as indicated. The

yield of nuclei with Z = 8 was subtracted by the yield for elastic scattering, as indicated by (~el).

reactions studied, suggesting that they indeed reflect the barrier distribution of
the reaction. The differences for the reactions with the two samarium isotopes are
particularly striking. There is already significant barrier strength at E, ~ 50 MeV
for the deformed '**Sm case and this distribution rises slowly with increasing energy
in contrast to the **Sm distribution which rises steeply starting at a higher energy.

The distributions D(E) of all four reactions are compared with the cor-
responding distributions Df**(E) in Figure 3.6 for the same energy step length
AEy, = 2 MeV. The experimental values for D/**(E) have been divided by the
classical fusion cross section 7 R2 as determined with Equation 3.3 by fitting the

experimental high energy cross sections where the transmission approaches unity.

The values of m R2 determined for %0+ %2Zr, *4Sm, '*4Sm and '8W are 2940 mb,
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Figure 3.6: The distributions D*'(E) and Df**(E) as extracted from experimental data for the
systems indicated in the figure. In (d) D/%“*(E) is also shown at high energies for an 7O projectile
(diamonds). In (a—c) the distributions are consistent with each other. In (d) established structure
at high energy in Df**(E) for the 1**Sm target is not seen in D?*(E). The distributions Df**(E)
have been divided by nR% to facilitate the comparison.
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3480 mb, 3400 mb and 3470 mb, respectively.

For the target nuclei **Sm, %W and °*Zr the distributions Df“(E) and D%,
shown in Figure 3.6(a—c), are consistent with each other. For the deformed target
nuclei ***Sm and '8*W there is an indication at lower energies in D% (E) of the
oscillatory behaviour predicted by the calculations shown in Figure 3.1(c,d).

However, D% (E) is different from Df“*(E) for the *Sm target, as shown in
Figure 3.6(d). For '®0 + '**Sm the distribution D/**(E) shows a distinct peak
about 5 MeV above the main barrier whilst this is absent from D%!(E). This
second, high energy barrier in Df**( E) has also been observed for the system 70
+ 4Sm. For both reactions it has been explained? as arising from couplings to
the inelastic channels associated with the excitations of the lowest energy 2t and
3~ states in the **Sm target nucleus.

The failure of D*(E) to reproduce this established and distinct high energy
barrier in Df**(E) and the similar slow fall of D?!(E) at higher energies in the
other reactions gives reason to question how well D?!( E) represents the distribution
of potential barriers. In an attempt to clarify this uncertainty the data for 60 -+

1440m have been studied in more detail.

3.2.3 Detailed Analysis of 0 + 4Sm

The experimental results for '*0 + **Sm have been analysed more quantitatively
by fitting the distributions Df**(E) and D*(E). A functional form for Df“(E)
can be obtained within the eigen-channel model as discussed in Section 1.5.3. It
may be assumed that the fusion radius R, is constant and that the barrier shape is
parabolic with a curvature hwo, so that with Equations 1.57 and 1.58 Df**(E) can

be expressed as

D'(E) = nR2Y  WiG(E, By) = 723 Wi [( o ) ( < } (3.18)

k=0 k=0 RUJO 1 + 61‘)2

where « = (27 /hwo)(E — By)

As in the qualitative comparison in the last section, in order to achieve a
good compromise between sensitivity and accuracy, those experimental distribu-
tions Df“*#9¢(E) for 0 + 4Sm have been fitted, which are obtained with an
energy step AE,, = 1.8 MeV in the point-difference formulae. The reason for

12C. R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074.
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160 4 144G,
fusion quasi-elastic
k By [ MeV Wi By | MeV Wi
0 60.0 + 0.2 0.80 + 0.03 59.7 +£ 0.2 0.72 4+ 0.06
1 65.3 + 0.3 0.26 4+ 0.09 63.7 + 0.5 0.20 + 0.04
AB | MeV 3.24+0.2 3.8+ 0.3

Table 3.1: The heights B and weights W, of the potential barriers present in the reaction 60
+ Sm as extracted from two-barrier fits to the experimental distributions Dfuseel(E). The
last line gives the width AB of a single peak in the distribution.

this particular selection of data is that this energy step is comparable to the full-
width-at-half-maximum of the function G*(E, B) for *0O + **Sm which with?
hwy = 4.3 MeV and using Equation 1.59 can be calculated to be approximately
2.4 MeV for this system. The width AB of a single peak in the experimental
distribution Df**(E) may then be estimated as

AB =~ /(2.4 MeV)? + (1.8 MeV)? = 3 MeV (3.19)

This is only slightly larger than the width of G/**(E, By), so that the information
loss due to the approximate nature of the differentiation is small. The ECIS cal-
culations in Figure 3.1(a) show that the width of G*/(E, B;) which represents a
single peak in D% (E) can be expected to be practically identical to the width of
G**(E, B). Thus, the choice of AE,, = 1.8 MeV is also sensible for the quasi-
elastic data.

The free parameters of the fits to D/“*9¢!( E) were the number of barriers present
(k = 0,1,..,n), the barrier heights B, and the barrier weights Wy. The barrier
curvature hwo which was assumed to be the same for all barriers, was an additional
free parameter. Whereas Equation 3.18 is a valid analytical expression for Df*( E)
within the limitations of the eigen-channel model, it is not clear to what degree
this functional form reproduces D?*(E). In connection with D E) the fits should
therefore only be seen as approximations.

The best fits are compared with the data in Figure 3.7 and the correspond-
ing parameters are listed in Table 3.1. The experimental distribution D**(E) in
Figure 3.7(a) is best reproduced with two barriers. This corresponds to AB =
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Figure 3.7: Two-barrier fits to (a) D/“*(E) and (b) D% (E) for 180 + %4Sm. The barrier
heights By and weights W}, are indicated by the vertical bars. D{ “$(F) has been divided by = R3.

3.2£0.2 MeV which is in agreement with expectation. When comparing this result
with the equivalent two-barrier fit to D?*!(E) in Figure 3.7(b) the following points
may be noted which confirm and detail the conclusions drawn from the qualitative

comparison in Figure 3.6(d):

(i) In contrast to expectation the width AB is considerably larger for D¥(E)
than for Df**(E).

(ii) The barrier structure extracted from D%*!(E) is similar to the ‘correct’ struc-
ture represented by Df“*(E).

(iii) The two representations of the barrier distribution agree in their prediction

for the height and weight of the lower barrier.

(iv) The two representations disagree in their prediction for the height of the higher
barrier.

.....

the distribution D?*!(E) is a correct representation of the barrier distribution. How-
ever, at higher energies the barrier structure in D*(E) is distorted (iv). This is
presumably due to effects which have not been taken into account in the derivation
of D*!(E) and in the model calculations in Section 3.1.3. In addition, point (i)
indicates that for experimental data the width of the function G (E, By) is larger
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than that for G**(E, By), thus reducing the sensitivity of D! (E) in general, when
compared to Df*(E).

The results of this comparison have been investigated further with the help of
exact coupled-channels calculations using the code ECIS. These calculations were
not intended to fit the data but to explain the disagreement between D/**(E) and
Deel(E). A fusion excitation function was calculated which gives a good representa-
tion of the measured cross sections. This was done by using a real nuclear potential
which fits the high energy fusion data in the one-dimensional model. An absorptive
potential was included to ensure that passage over the barrier resulted in fusion.
The potential parameters Vj, 7o, ao, Wo, 7w, 6., which were used in the calculations
are 162 MeV, 1 fm, 0.9 fm, 30 MeV, 1 fm, 0.4 fm, respectively.

The calculations included vibrational coupling to the lowest 27 and 3~ states of
144Sm at the excitation energies 1.66 MeV and 1.81 MeV. The coupling strengths
were derived from the average deformation parameters G; = 0.113 and B3 = 0.205
which were obtained from established B(E)-values*®* using

4

A= 37

B(EX)/e? (3.20)
with the nuclear radius R, = 1.06A4'Y* fm. Excitation of the projectile was ne-
glected.

The results of the calculations are presented in Figure 3.8. The agreement of
the theoretical and experimental fusion excitation functions and the corresponding
distributions Df**( E) in Figure 3.8(a,b) confirm the previous result’ that the main
features of the data can be reproduced by including only coupling to the lowest 2%
and 3~ states of **Sm in the calculations. In Figure 3.8(c) the prediction of the
calculations for quasi-elastic scattering at 170° is compared with the data. The
calculation follows the measured quasi-elastic scattering excitation function below
E.n ~ 64 MeV but decreases more rapidly at higher energies. The calculated
distribution D*(E), in Figure 3.8(d), shows a second peak similar to Df*(E).
The similarity between the calculated distributions Df“*(E) and D*!(E), as found
previously for the hypothetical coupling schemes discussed in Section 3.1.3, thus

persists for this specific case. However, it is in disagreement with the experimental
data.

13] K. Tuli, Nucl. Data Sheets 56 (1989) 683.
14R. Spear, At. Data Nucl. Data Tables 42 (1989) 55.
15C.R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074.
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Figure 3.8: Measured fusion (a) and 170° quasi-elastic scattering excitation functions for *60O +
144Sm compared with ECIS calculations. The corresponding distributions Diusael( BY are shown
in (b) and (d). The experimental fusion excitation function and D!“*(E) are reproduced by the
calculation. For the quasi-elastic scattering excitation function the calculation drops much faster
than the data at high energies. Whilst the theoretical D?*'(E) shows the high energy barrier at
65 MeV, which is present in the experimental D/“*(E), the experimental distribution D¢l (E)
decreases smoothly.

A possible reason for the failure of ECIS to reproduce the measured D*!(E)
is highlighted in Figure 3.9. In reality, the quasi-elastic yield at high energies is
dominated by channels other than the two included explicitly in the ECIS calcu-
lations. This residual fraction of the observed quasi-elastic cross section increases
with energy from 0 to 0.8 and proceeds mainly through transfer.

The effect of the transfer channels is demonstrated in Figure 3.10. The ECIS cal-
culation reproduces the elastic differential cross section and predicts a sharp rise and
subsequent sharp fall of the combined (2%,37) inelastic cross section as the energy
increases. This is in qualitative agreement with the experimental data. However,
between E,, = 60—65 MeV the calculated (2%,37) inelastic cross section is signifi-
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Figure 3.9: The contributions to the experimental quasi-elastic differential cross section at 170°
by the elastic, the combined (2%,3~ ) and the residual reaction channels as a function of energy.

cantly higher than the data. This presumably occurs because in the calculation all
the reflected flux has to be included in the elastic and inelastic channels whilst ex-
perimentally much of it proceeds via transfer channels. The experimental residual
excitation function, which contains mainly the transfer channels, has a shape which
is much wider than that of the inelastic channels and this is not accounted for by
ECIS coupled-channels calculations.

The individual effects of the three specified contributions to the quasi-elastic
scattering cross section on the distribution D!(E) are shown in Figure 3.10(b).
The ECIS calculation reproduces the elastic contribution to D?( E) which does not
show the high energy peak. The high energy peak in the calculation arises dom-
inantly from the relatively strong 2% and 3~ channels. However, in the measured
data the contribution from the residual component of the quasi-elastic cross sec-
tion is relatively flat at high energies and produces a smooth decrease in D%!(E).
Thus experimentally the high energy peak is not seen. Consequently, the disagree-
ment between the calculated and measured distribution D%!(E) is largely due to
the multitude of residual channels not included in the ECIS calculations, which are
dominantly transfer reactions. These channels should therefore also be responsi-
ble for the distortion of the barrier distribution representation D% (E). This can
be understood, since transfer reactions can involve large changes in energy and

angular momentum during the interaction. The assumption of quasi-elastic scat-
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Figure 3.10: Part (a) shows the pure elastic, the combined (2,3~ ) inelastic and the residual
component of do?% /doR(E). They are compared with ECIS calculations which included the elastic
(solid) and the 2 and 3~ channels (dashed). The calculations reproduce the elastic differential
cross section and predict a sharp rise and fall of the (2*,3™ ) excitation function. Part (b) shows
the corresponding components of DI'(E) and indicates that the over-prediction of the (2+,57)
component gives rise to the second peak at 64 MeV in the ECIS calculation of D‘”I(E). However,
in the experimental data the broad shape of the strong residual contribution to the quasi-elastic
cross section causes a smooth decrease of D*!(E).

tering, which is essential in the derivation of D*!(E), is therefore not good at the
higher energies, where the reflected flux is dominated by the residual channels. In
fact, instead of having a constant phase, the various physical scattering amplitudes
contributing to the eigen-channels have to be expected to experience considerable
de-phasing at the higher bombarding energies. The information about the barrier

structure may then be lost.

3.2.4 Evidence for Coupling Effects in Transfer Channels

The observed distortion of the barrier distribution representation D (E) due to

the effects of transfer reactions raises the question, if this is really caused by the
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de-phasing of the associated scattering amplitudes or if those channels may be not
affected by the barrier distribution of a reaction at all. For some systems it has
been possible’®!” to isolate the effects of particularly strong transfer channels on
the barrier distribution and in principle there should be no difference in the way
transfer channels couple to the relative motion of the binary system. Thus one may
expect to see some experimental evidence for the barrier distribution in transfer
excitation functions.

It is well known that excitation functions for transfer reactions have a bell-like
shape which is roughly centered at the energy corresponding to the height of the
potential barrier. Following the spirit of the previous sections one may therefore

define the peaked function

Gren(B, By = —— 9" (5 B (3.21)
'TH T go(Bi) doR T TE '
where do'™*™ /do®(E, By) is the excitation function of a transfer reaction for a
potential barrier By and

oo datrans

go(By) = /0 = (B, BL)dE (3.22)

is a normalization constant. If it is then assumed that there exists a distribution
D(E, By) of such potential barriers By and that for each barrier the transfer prob-
ability is proportional to the barrier weight Wy, the distribution

1d0.tran.1 L
trans = - — trans 3.23
D (B) = oS (B) = Y WaG (B, By) (3.23)
with ot
oo Jotrans
go = E)dE 3.24
o= [ Z(B) (3.24)

should be a representation of the barrier distribution.

These qualitative arguments have been tested for the systems 0 + 441%45m
188W using the measured excitation functions for scattered nuclei with Z = 8,7 and
6 which are displayed in Figures 3.3 and 3.4 and tabulated in Tables A.3—A.7 in
the Appendix. These excitation functions may be associated with certain transfer
reactions which dominate the measured cross sections. The excitation function for

scattered nuclei with Z = 8 consists, if the elastic events are subtracted, mainly

16C.R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074.
17A.M. Stefanini et al., Phys. Rev. C 52 (1995) R1727.
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of neutron transfer reactions. The excitation function for Z = 7 represents proton
transfer reactions. Finally, the excitation function for Z = 6 comprises two proton
and a-transfer reactions. These three excitation functions have been transformed
according to Equation 3.23 to yield the distributions D**"*( E). The normalization
constant go has been chosen, so that the integral of D#***(E) is unity. The distri-
butions D¥%**(E) are displayed in Figure 3.11 where they are compared with the
barrier distribution representations D/**( E) from fusion.

Despite the gross approximations and the large width of the bell-like function
G'e™(E, By), it is found that in particular at the lower energies the shapes of the
four independent representations of the barrier distribution are correlated. This
may be interpreted as experimental evidence that the barrier distribution affects
the transfer channels. It should be noted that the transfer excitation functions are
manipulated differently to yield the barrier distribution representation D ( E) than
to give D¥***(E). This is a consequence of the different approximations involved

in the derivations of these two representations.

3.3 Preliminary Summary

The results of the experimental test of the suggested technique to extract the barrier
distribution from quasi-elastic scattering excitation functions may be summarized
as follows. In order to avoid distortions due to Fresnel diffraction backward angle
measurements are best suited for this technique. Nevertheless for the reactions 60
+ 1%4Sm and %0 + ¥W oscillations reminiscent of Fresnel diffraction have been
observed even at 6., = 170°. Such oscillations may be avoided for heavier system
with larger Sommerfeld parameters.

The measured quasi-elastic excitation functions decrease smoothly with energy.
The rate of decrease is different for each reaction, reflecting the structure of the
reactants. This enables the extraction of the barrier distribution representations
D*!( E) which are qualitatively similar to the representation Df**( E) obtained from
fusion excitation functions. However, it is found that the width of an individual peak
in the distribution D! (E) is larger than in D/**( E), making the new representation
less sensitive to the barrier structure.

At energies below the average fusion barrier the barrier distribution representa-
tion D% (E) agrees with Df*/(E) in the prediction of the barrier structure. How-

ever, at the higher energies the new representation appears to be distorted. This
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seems to be caused by the many residual channels not included in the coupling
matrix. The residual channels, which are dominantly transfer reactions, dominate
the quasi-elastic scattering cross section at the higher energies. For transfer reac-
tions the sudden and the iso-centrifugal approximations, which are both implicit in
the derivation of D?*!(E), are often not good. Large absolute Q-values and large
changes in angular momentum during the interaction can, however, lead to con-
siderable de-phasing of the corresponding scattering amplitudes. It is then likely
that the information about the barrier structure is lost when these channels are
combined as quasi-elastic cross section.

The distributions D% (E) may be useful in the determination of the barrier dis-
tribution for systems which have pronounced barrier structure below the average
barrier. A system where this might be expected is **Ca + %Zr which has several
strong positive (J-value transfer channels. Such channels can lead to detailed barrier
structure at low energies. Among other interesting questions this expectation mo-
tivated a follow-up experiment to measure the distributions D*!(E) and D/**(E)
for the two reactions *°Ca + 99%Zr. The quasi-elastic scattering results of this
experiment are discussed in Section 3.5.

Two more experiments have been carried out utilizing the reactions of **0 and
28 with 2°®Pb. Both reactions have larger products of charges Z, 7, than the oxygen
reactions discussed in the previous sections. This leads to larger coupling matrix
elements Mj;(r) for collective excitations, as seen from Equation 1.53. Also, the
Sommerfeld parameters for these reactions are larger. Consequently, as illustrated
in Figure 1.15, diffraction effects should be reduced. Due to the larger matrix
elements, potential barriers associated with collective excitations of the reactants
should be further apart in barrier height than in the reactions investigated thus
far. A larger separation of the barriers may enable them to be resolved in D%*!(E)
despite the large peak width and the distortions at higher energies due to transfer
channels. The measurements of the distributions D (E) for these two systems are

discussed in the following section.

3.4 The Systems 90, 328 + 2%pp

The quasi-elastic scattering excitation functions at 6, = 170° for the systems 60
+ ?°®*Pb and **S + *°®Pb were measured using **0 and 3?S beams in the energy
range K = 69 — 90 MeV and Ej,, = 140 — 183 MeV, respectively. The beams
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were provided by the tandem accelerator of the Australian National University. The
targets were 1 mm wide strips of lead, evaporated onto an aluminium backing. In the
'°0 experiment the target thickness was 40 pug/cm?, whereas in the *?S experiment
it was 100 pg/cm® The experimental set-up has been described in Section 2.4.

The experiments yielded excitation functions for quasi-elastic relative to Ru-
therford scattering. The quasi-elastic scattering cross sections comprise all elastic,
inelastic and transfer events. The set-up allowed the atomic numbers of the scat-
tered projectile-like nuclei to be identified. Thus in addition, excitation functions
for scattered nuclei with the atomic numbers Z = 8, 7 and 6 for the %0 reaction
and with the atomic numbers Z = 16, 15 and 14 for the 3?S reaction were measured.
In the energy spectra for the Z = 8 and Z = 16 events, the elastic scattering peaks
could be isolated. This allowed the extraction of elastic scattering excitation func-
tions. In the case of 32§ 4 28PD the elastic peak was, however, contaminated by
events associated with positive @-value neutron transfer channels. The measured
excitation functions are documented in the Appendix in Tables A.8 and A.12 and
they are displayed in Figure 3.12. The figure shows that the relative contributions of
the elastic and the combined inelastic and transfer cross sections to the quasi-elastic
scattering cross section are different for the two systems. For the sulphur reaction
the elastic scattering cross section falls off quickly with increasing energy, so that
inelastic and transfer processes account for a much larger part of the quasi-elastic
cross section, than in the oxygen reaction.

The quasi-elastic scattering excitation functions have been transformed into the
barrier distribution representations D%!(E) using Equation 3.15. The distributions
qu'(E) of the two systems resulting from energy steps AFE,, =2 MeV, 3 MeV
and 4 MeV in Equation 3.15 are shown in Figure 3.13. For both systems the
three distributions D?!(E) are consistent with each other. For *Q + 2°8P} the
distributions D%(E) show a single peak with a tail on the high energy side. For
325 + 298P they are broader with two slight indications of structure at 140 MeV
and 142 MeV.

The distributions D (E) obtained with AEj,, = 2 MeV are compared with
the corresponding distributions D**(E) from fusion data in Figure 3.14. The
fusion data for the oxygen reaction have been taken from other work'®, whereas
the data for the sulphur reaction have been measured in this work, see Chapter 6.

The energies for D% (E) have been reduced by the centrifugal energy as given

18C.R. Morton et al., Phys. Rev. C 52 (1995) 243.
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6iap = 170°. The quasi-elastic scattering events could be separated according to the atomic
number Z of the scattered nuclei. The symbol (-el) indicates that the excitation function does

not include the elastic scattering.

by Equation 3.16. The distributions Df**(E) have been divided by the classical
fusion cross section 7R3, which has been determined from the first differential of
Eo¥** with respect to energy. For the sulphur system the fusion data have been
supplemented at high energies with data points obtained using AE;, = 4 MeV
in the point-difference formula. For both systems the distributions D% (E) and
D#*(E) are qualitatively similar. As before the representations D*l(E) fall off
smoothly at the higher energies.

Of particular interest is the system 325 + 2°°Pb for which Df“*(E) shows pro-
nounced structure. There is a slight, but unambiguous indication of the barrier
structure at the lower energies also in D%'(E). At the higher energies D/**(E) is
not well defined, however, it shows a peak at E_,/B, ~ 1.05 with a width which
would be consistent with that expected for a barrier. As the high energy peak in
the barrier distribution of **0 + 4Sm, this structure is not resolved in D% (E).

It may be summarized that the study of the reactions 60, 32S + 2®Pb confirms
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the earlier results. For both systems the distributions D% (E) and Df*(E) are
qualitatively similar. The featureless, smooth tail of D%!(E) at the higher energies
persists even in these heavier systems, which should be less affected by diffraction
effects. This supports the view that the smooth tail, as suggested above, is due to
the de-phasing of the scattering amplitudes and not caused by diffraction, as could
have been argued. As for the other systems, barrier structure present at energies
below the average barrier By is reflected in D%!(E), although the resolution is not
as good as in D7**(E).

3.5 The Systems *’Ca + 90%Zr

Since the experimental distributions D?!(E) are sensitive to the barrier distribu-
tion of a reaction at energies below the average potential barrier, they should be
particularly useful for systems which show complicated barrier structures at such
energies. This can be the case for systems with rotational nuclei, as the comparison
of the reactions *O + '%*Sm and 0 4 W shows'®. For systems with vibrational
nuclei, however, detailed barrier structure occurs typically at the higher energies.
The system '°0 + **Sm is a textbook example of this situation. In contrast, cou-
pling to positive Q-value channels, such as nucleon transfer reactions, can result in
interesting barrier structure at the lower energies. This is shown in Figure 1.12 for a
single positive @)-value channel. Systems which are dominated by positive Q-value
transfer channels may therefore be studied satisfactorily by extracting the barrier
distribution from its representation D%*!(E).

A reaction which has several strong positive Q-value transfer channels is the
system *°Ca + %Zr. This is shown in Table 3.2, where the Q-values of these channels
are compared with the equivalent ones for the reaction “°Ca + °Zr. Whilst the
two zirconium target nuclei are very similar in their nuclear structure properties, as
illustrated in Figure 1.3, their neutron transfer Q-values differ distinctively when
they are combined with *°Ca. In the heavier system up to 8 neutrons can be
transferred from %Zr to *°Ca with positive Q-values. In contrast, the Q-values for
the corresponding channels in the lighter system are all negative. Thus, these two
reactions appear to be ideally suited for a study based on the barrier distribution
representation D% (E).

However, in order to obtain a complete picture, both fusion and quasi-elastic

°J.R. Leigh et al., Phys. Rev. C 47 (1993) R437.
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@Q-values for simultaneous transfer / MeV

*Ca + zn 07r —zn | %Zr — zn
In —3.611 +0.509
2n —1.445 +5.525
3n —5.861 +5.239
4n —4.170 +9.637
5n —9.658 +8.417
6n —9.038 +11.617
n —14.928 +6.919
8n —15.225 +7.549

Table 3.2: The Q-values for pick-up of = neutrons by the *°Ca projectile from the target nuclei
90Zr and % Zr. The values are for simultaneous transfer between the ground states.

scattering have been measured for these systems. The fusion measurements, the
extracted distributions Df**( E) and their interpretation are discussed in Chapter 5.
This section describes the extraction of the distributions D(E) from the quasi-
elastic scattering data. The distributions D% (E) are compared with the results
for Df**(E). Using both representations the strongest potential barriers are then

determined empirically within the eigen-channel model.

3.5.1 Experimental Data

The quasi-elastic scattering excitation functions do?® /do®( E) for the systems *°Ca
+ 99987r have been measured at a centre-of-mass angle 6.,, = 136° in parallel with
the fusion excitation functions, as described in Section 2.4. The experimental data
are tabulated in the Appendix in Table A.10 and they are shown in Figure 3.15.
In order to remove differences due to the different sizes of the target nuclei, the
excitation function for *°Ca + %Zr in Figure 3.15 has been normalized to the one
for *°Ca 4 *°Zr by multiplying the energies with the ratio of the average barriers
By of the two systems, which is 1.013. The values for By have been extracted from
the fusion excitation functions. This manipulation of the data for *°Ca + %7Zr is
maintained throughout Section 3.5.

The two quasi-elastic scattering excitation functions in Figure 3.15 have been

differentiated with respect to energy using the point-difference formula given in
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Figure 3.15: The excitation functions for quasi-elastic scattering at 8., = 136° relative to
Rutherford scattering. The excitation function for *°Ca + %©Zr has been normalized to the one

for *°Ca + % Zr as described in the text. Only statistical uncertainties are given.

Equation 3.15. The barrier distribution representations D%!(E) for the two sys-
tems for energy step lengths of AE,,, = 1.75 MeV, 2.1 MeV and 2.8 MeV in the
point-difference formula are shown in Figure 3.16. To facilitate a comparison with
Df“’(E), the energy scales have been reduced by the centrifugal energy E.., as
given by Equation 3.16.

For each system the experimental distributions D!(E) for different AE,, are
consistent with each other and show the following features. In the case of “°Ca +
%9Zr two peaks are present at E., ~ 95 MeV and 98 MeV. A third peak may be
at Eon, =~ 103.5 MeV. The distribution for “°Ca + %Zr is broader and flatter than
the one for *°Ca + *Zr. For both systems D?!(E) shows at the higher energies a

smooth tail indicating the reduction in sensitivity discussed in Section 3.2.3.
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Figure 3.16: Representations D?*!(E) of the barrier distributions for *°Ca + % Zr (a—c) and
0Ca + %7r (d—f). The energy steps AE.,, used in the point-difference differentiation are given
in the figure for adjacent panels. The data in panels (a) and (d) are limited to the lower energies

where the excitation functions have been measured in energy steps of 0.5 MeV in the laboratory
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system, whilst at the higher energies the energy step was 1 MeV.
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Figure 3.17: Empirical analysis of the experimental barrier distribution representations
Dfue¢Y( E) within the eigen-channel model. The best fits to the data are shown as solid curves.
The long-dashed curve in panel (c) is a three barrier fit. The extracted fusion barriers are indi-
cated as solid bars. Dashed bars are tentative. The dashed lines illustrate that the heavier system

features at least three additional barriers at the lower energies.

3.5.2 Empirical Interpretation

The experimental results have been analysed empirically within the eigen-channel
model as described in Section 3.2.3. In order to achieve a good compromise between
sensitivity and accuracy, the analysis focused on the experimental barrier distri-
bution representations D%!(E) which result from using an energy step AF., =
1.75 MeV in the point-difference formula given in Equation 3.15. These represen-
tations have been supplemented above E > 100 MeV with data points from the
distributions with AE_, = 2.1 MeV. The distributions D?*!(E) are compared in
Figure 3.17 with the corresponding distributions Df**(E) from fusion, see Chap-
ter 5. The potentials which are used there to reproduce the high energy fusion
data for the two systems suggest a barrier curvature hw, ~ 3.4 MeV, so that the
width of a single peak in Df**9</(E) is of the order 0.56 hwy, ~ 1.9 MeV. With
AE., = 1.75 MeV in the point-difference formula the width AB of a single peak
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00, + 907, 00, 1 %7,

fusion quasi-elastic fusion quasi-elastic
k B, Wi By Wi By Wi By Wi
0 - - - - 89.8 0.05 | 89.1 | 0.08
1 - - - — 92.2 0.15 | (91.5) | (0.10)
2 - - - - 94.2 0.25 | 93.8 | 0.31
3 95.7 0.62 | 94.5 | 0.53 97.0 032 | 96.2 | 0.19
4 99.2 038 | 98.4 | 036 || 1004 | 0.23 | 994 | 0.33
5 | (103.5) | (0.10) | 103.4 | 0.11 | (104.0) | (0.05) | 104.0 | 0.10
AB 2.8 3.2 2.7 3.5

Table 3.3: The heights By and weights W; of the potential barriers for ©°Ca + %% Zr as
extracted from fits to the experimental distributions D/“*9¢!(E). The quantity AB is the width
of a single peak in D/“*1*!(E). Brackets indicate tentative assignments. Energies are given in
MeV. Uncertainties are not indicated for the sake of clarity.

in the experimental distributions Df**9¢!( E) may be estimated to be

/(1.9 MeV)2 4 (1.75 MeV)? ~ 2.6 MeV (3.25)

The distributions Df**%°( E) have been fitted with Equation 3.18 for different
n by varying the heights and weights of the barriers. The best fits are shown in
Figure 3.17 and the extracted barriers are tabulated in Table 3.3. For the system
“Ca + %Zr the distribution Df**(E) can be reproduced below E., = 102 MeV
with the two barriers indicated in Figure 3.17(a) as solid bars and a barrier width
AB ~ 2.8 MeV which is close to the expected value. Above E., = 102 MeV a
sensible fit was impossible because of the large fluctuations. However, it seems
reasonable to assume the presence of a third barrier with a height of 103.5 MeV
and an approximate weight of 0.1. This three-barrier-structure is confirmed by the
fit to D*!(E) for this system which is displayed in Figure 3.17(b). Similar to what
has been found in Section 3.2.3, the width AB of a single peak in D%!(E) is larger
than in D*(E). The weights W, of the three barriers extracted from the fit to
D (E) are very similar to the results from fusion, whereas the heights By tend to
be lower by approximately 1 MeV.

For the system *°Ca + %7Zr a three-barrier-fit of D**(E) over-predicts AB
and does not reproduce the data, as is shown in Figure 3.17(c) by the long-dashed
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curve. It was found that five barriers are necessary to achieve agreement resulting
in AB ~ 2.7 MeV. The extracted barrier structure is indicated in the figure and
given in Table 3.3. The five-barrier-fit of D9!(E) for this system, which is shown in
Figure 3.17(d), extracts a similar barrier structure with AB ~ 3.5 MeV. There are,
however, two differences. Firstly, the second lowest barrier (k = 1) is not confirmed,
instead the fit predicts a 104 MeV barrier (k = 5). Secondly, the barrier with a
height of ~ 97 MeV (k = 3) is not weighted as much as expected from the fusion fit.
Considering the experimental uncertainties the slightly different results for Df“*( E)
and D%*!(E) can best be reconciled by assuming six barriers to be present. These
include the five as extracted by the fit of D*(E) and a sixth barrier at 104 MeV
with an approximate weight of 0.1, as seen in D%*(E). As previously, the peak
width AB is larger for the fits to the experimental distributions D*!(E) than for
the fits to Df**(E).

For both systems a close inspection of Df**(E) and D?%!(E) reveals a systematic
mismatch in energy of about 800 keV. The reason for this is not clear. Since the
energies of the quasi-elastic data have been reduced by the centrifugal energy which
is of the order of 4 MeV, an overestimation of this energy shift could be a possible
cause for the mismatch. Correcting for the mismatch further improves the good
agreement between the barrier structures extracted from Df**(E) and D*!(E).

A comparison of the barrier structures for the two systems as extracted from
the fits and tabulated in Table 3.3 shows that above E_,, ~ 95 MeV the structures
are similar, consisting of three barriers. This is indicated in Figure 3.17 by the
dashed lines. Below E, ~ 95 MeV no other barriers are present in the reaction
4Ca + %Zr, whereas for “°Ca + %Zr three additional barriers exist. This marks
an important difference between the two systems. The two barrier distributions are
discussed further and interpreted with the help of coupled-channels calculations in

Chapter 5.

3.6 Concluding Remarks

The technique presented in this chapter enables the extraction of of a representation
of the barrier distribution from backward angle quasi-elastic scattering excitation
functions. For all systems investigated these barrier distribution representations are
consistent with the representations from fusion, if diffraction effects and distortions

due to the de-phasing of the various scattering amplitudes at energies above the
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average barrier are taken into account. This confirms the view that fusion and quasi-
elastic scattering are two complementary channels of the same physical problem and
should thus be treated within a common model. The representations D (E) can
be successfully applied in studies of barrier distributions in which the important
barrier structures are at energies below the average potential barrier. This has
been demonstrated for the systems *°Ca + *%Zr for which the distribution D*!(E)
contains essentially the same information as Df**(E). In general, the information
contained by D% (E), particularly at the lower energies, is an independent check of
the barrier structure revealed by the distribution Df**(E).



