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1.1 Idealization and Environments

Sometime between 1592 and 1610, when he taught and experimented in Padua,
Galileo Galilei brought about a revolution in our understanding of nature. It was the
transition from what may be described as common sense to an abstract, empirical
interpretation of the world through mathematics, which we call physics.

To a casual observer various bodies fall according to their weight, an interpre-
tation which is fully within the Aristotelian view of the world and was common in
the 16th century. On the same observation, an empirical scientist - like Galilei -
would point out that in vacuum all bodies fall with the same acceleration, an ex-
perimentally proven fact. This might appear like a circumvention of the problem,
since in daily life bodies almost never fall in vacuum. However, this tricky approach
to the problem turned out to yield a better description of the phenomenon than
Aristotle’s view.

The success of Galilei’s concept results from the fact that it isolates the dominant
process, the fall, from the multitude of minor perturbations which are caused by
collisions with air molecules and dust particles. This enables a mathematical treat-
ment of the problem which can be tested through experiments. Since Galilei’s days
the skill to make, for given circumstances, idealized approximations to a physical
process has become the daily bread of physicists and was essential to the quantita-
tive development of physics.

While idealizations form a sound base, an advanced description of nature needs
to take into account the multitude of less important, often diverse phenomena
surrounding the process of interest. Such effects cannot be treated individually.
One can only imagine the impossible task of solving the equation of motion for
each air molecule which collides with a falling stone. The multitude of residual
degrees of freedom of a phenomenon can be combined as an environment, thus
allowing their inclusion in the description. The environment may be modelled with
macroscopic properties such as temperature, pressure, magnetic field strength, or
viscous drag in the case of a falling object.

The understanding of a process is generally improved by evaluating its inter-
actions with the surrounding environment. In many cases, like the slow fall of a
feather in air, this evaluation is absolutely essential to obtain a correct description.
Furthermore, only the inclusion of possible environmental degrees of freedom into

the scientific model yields a holistic description of nature.



1.2 The Barrier Problem

The problem of overcoming a potential barrier is of importance in many different
fields of the natural sciences. While sometimes it is an isolated phenomenon, in
general, it occurs within many-particle systems and the motion across the barrier
is coupled to an environment of additional degrees of freedom. Some important

examples are listed in Table 1.1. The theory of the barrier problem has received

Phenomena involving potential barriers

Environment | Impact

inversion Hund? tunnelling between atomic
of NHj 1927 two wells motion no
a-decay Gamow® tunnelling through internal
1928 the Coulomb barrier nucleons no
chemical | Kramers? surmounting the 10%
reactions 1938 activation barrier molecules yes
SQUIDS | Josephson® | tunnelling between two | electrons in
1962 states of magnetic flux junction yes
impurities | several® tunnelling coupling
in solids 1969 between sites to phonons yes

Table 1.1: A selection of phenomena which are caused by the tunnelling or surmounting of
potential barriers. The second column lists the names of researchers who are associated with the
phenomenon and the year of discovery. The presence of environments of additional degrees of

freedom and if they have an impact on the process are indicated in the last two columns.

contributions from fields as diverse as atomic and nuclear physics, chemical kinetics,
diffusion in solids, electric transport theory and macroscopic quantum theory. It is

of interest in both classical and quantum physics?.

1.2.1 Surmounting and Tunnelling

The physical forces acting on a particle are either conservative or dissipative. Con-

servative forces do not depend on time or velocity and can be expressed as the

'P. Hanggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62 (1990) 251.
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negative gradient of an energy potential. Since the kinetic energy is always positive
or zero, energy conservation requires that the total energy of the particle, which
is the sum of potential and kinetic energy, is never smaller than the potential en-
ergy. In classical physics, regions where this would be the case are forbidden. Thus
classically for a particle with a certain total energy a local maximum of the en-
ergy potential which exceeds the particle’s total energy constitutes a barrier which
separates regions accessible to that particle.

An important example of this concept is our understanding of chemical reactions,
where the potential barrier is referred to as the activation barrier. A reaction be-
tween two molecules takes place after the activation barrier has been surmounted.
The rapidity of the chemical reaction between two substances is therefore deter-
mined by the barrier height and the temperature of the solution representing the
kinetic energy of the molecules?.

Classically a particle can only overcome a potential barrier when its total energy
exceeds the barrier height. As a consequence of quantum mechanics, however, en-
ergy conservation can momentarily be violated, so that with a finite, usually small,
probability the particle may tunnel through the potential barrier. This tunnelling
effect was first recognized in the 1920’s in various fields of physics. In 1927 it was
demonstrated? that quantum mechanical tunnelling is responsible for the structural
rearrangements in pyramidal molecules such as NH3. Tunnelling became well known
shortly afterwards, when the ionization of atoms in intense electric fields* and the
electric field emission of electrons from cold metals could be described using the
tunnelling mechanism®. In the same year the a-decay of nuclei was explained as a
tunnelling effect®”. Since then, quantum mechanical tunnelling has been success-
fully invoked to describe phenomena in a multitude of fields®® in biology, chemistry
and physics. Tunnelling is at the base of applications like the scanning tunnelling
microscope, Zener-diodes, Josephson-junctions and superconducting quantum inter-

ference devices (SQUIDS). The fast transfer of electrons and protons in biological

’H.A. Kramers, Physica, The Hague, 7 (1940) 184.

3F. Hund, Z. Phys. 43 (1927) 805.

*J.R. Oppenheimer, Phys. Rev. 31 (1928) 80.

SR.H. Fowler, L. Nordheim, Proc. R. Soc., London, A 119 (1928) 173.

®G. Gamow, Z. Phys. 51 (1928) 204.

"R.W. Gurney, E.U. Condon, Nature, London, 122 (1928) 439.

8 Tunneling, ed. J. Jortner, B. Pullman, Reidel, Boston (1986).

® Tunneling in biological systems, ed. B. Chance et al., Academic Press, N.Y. (1979).



macro-molecules, optimised by evolution, proceeds entirely by tunnelling, making
it one of the most fundamental processes in nature.

In physics, the barrier problem has never ceased to be of interest. Presently
research concentrates on the interplay of dynamical fields with tunnelling, which
has been dubbed driven tunnelling'®, the onset of chaos at the transition between
the quantum mechanical and the classical description of the barrier problem!*~14,

and the coupling of the barrier problem to environmental degrees of freedom®.

1.2.2 Coupling to Environments

A particle, or a particular degree of freedom of a system may overcome a potential
barrier either classically or quantum mechanically. In either case, if it belongs to
a many-particle system, its motion can be strongly effected by the environment
formed by the other particles. This coupling to other degrees of freedom of a many-
particle system can both aid and hinder the motion across the barrier.

Figure 1.1 illustrates this generalized barrier problem. A particle of mass m
which is coupled to an environmental many-particle system moves towards a po-
tential barrier. The particle has the position coordinate r, carries the momentum
p and confronts a barrier of the potential V(r). The classical Hamiltonian of the

system is then given by

2 n n
H=2— V() + Y hi(os, IL) + 3 v (r, o) (1.1)

2m i=0 i=0
The environmental degrees of freedom, which may be infinite (n — ©0), are repre-
sented by the Hamiltonians h;. They depend on the generalized coordinates and

momenta (o, II;). The coupling between the environment and the particle is ex-

pressed by the coupling potentials v{"*"(r, a;). For simplicity the Hamiltonian is
given for the one-dimensional barrier problem. The extension of the problem to
higher dimensions imposes no general restriction.

The expansion in the Hamiltonian 1.1 has three limits, which are illustrated in

Figure 1.2. The first case is the trivial limit. It occurs when the coupling is weak.

19F. Gromann et al., Phys. Rev. Lett. 67 (1991) 516.

Y'R. Utermann et al., Phys. Rev. E 49 (1994) 273.

12M. Latka et al, Phys. Rev. A 50 (1994) 1071.

13C.H. Dasso et al., Nucl. Phys. A 549 (1992) 265.

14C.H. Dasso et al., Nucl. Phys. A 587 (1995) 339.

15 Quantum Tunnelling ... , ed. Y. Kagan, North-Holland, Amsterdam (1992).
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Figure 1.1: In the generalized barrier problem the motion of a particle over or through a potential
barrier of height By at the position Ry is coupled to a many-particle environment. The inner and
outer turning points of the barrier are indicated by r; and r,, respectively.

Then the environment may be neglected entirely. The second case is valid when
the number of environmental degrees of freedom is large, their coupling similar and
the individual coupling strength is weak. Using statistical theory, the microscopic
Hamiltonian can then be transformed to yield a macroscopic description. A third
case occurs, when the number of environmental degrees of freedom is limited or
some of them are dominant with respect to the remainder. In this case, the infinite
expansion in the Hamiltonian 1.1 may be truncated to include only the strong

couplings.

1.2.3 The Uncoupled Barrier Problem

For a classical system in the trivial case of no coupling the transmission probability
over the barrier switches from 0 to 1 when the particle’s energy E equals the barrier
height By. For energies below B, the transmission probability is 0, for energies
above By it is 1. In quantum mechanics this step-function is smoothed because

of tunnelling. The smoothed transmission function can be calculated using the
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Figure 1.2: The three limits of environmental coupling.
Wentzel-Kramers-Brillouin method'®!?, With the integral
T [2m
K(E) == [/ T3V (r) - Eldr (1.2)

where & is Planck’s constant divided by 27 and r; and r, refer to the inner and

outer turning points of the barrier, the barrier transmission function is given by
T(E) = (1 + exp[2K(E)])™ (1.3)

The minus and plus signs in front of the integral in Equation 1.2 correspond to
energies I/ above or below By, respectively.
A barrier shape which is of interest because of its mathematical simplicity is

that of an inverted parabola. It may be expressed as

2
mwg

2

V(r)= By — (r — Ry)? (1.4)

18E.C. Kemble, Phys. Rev. 48 (1936) 549.
17N. Froman, P.O. Froman, JWKB Approzimation, North-Holland, Amsterdam (1965).
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where R, is the barrier position and wg = 1/—V"/m is the eigen-frequency of the
harmonic oscillator with the potential V(r). The transmission function for this

special case is given by'®

27

T(E) = (1 +exp [ (Bo — E)D—l (1.5)

th

When the energy equals the barrier height By, the transmission is only 0.5, whereas
at energies below By it can be considerably larger than zero. 7(E) increases from
0.1 to 0.9 as the energy increases from By — 1.1hwg to By + 1.1kwo.

While the isolated and uncoupled barrier problem is almost always an idealiza-

19--21 22

tion, the radioactive a-decay and the field ionization of atoms*? are important

examples, where this idealization can be justified.

1.2.4 Macroscopic Description

In the case where many, maybe an infinite number of environmental degrees of
freedom couple to the motion across the barrier, the exact microscopic Hamiltonian
is generally not known. Thus the modelling of the many-particle environment has
to rely on appropriate assumptions about the nature of the couplings. Often the
schematic model of a heat-bath is employed.

The most general realization of a heat-bath is the independent oscillator model,
in which the particle overcoming the barrier is coupled to an infinite number of
heat-bath particles, each attached by a spring. The corresponding Hamiltonians
are

sz 1 2.2

h,»(a,—, H,) = -+ ~2—m,’wi oy (16)

2m;
where the m; and w, are the masses of the heat-bath particles and the eigen-
frequencies of the springs, respectively, and 7 = 0, 1, ...c0.

The coupling potentials are given by
22

vf:oup(T, ai) = rlo; -+ rt_ (17)

7 2
2mt‘wi

where the ); are coupling constants.

®D.L. Hill, J.A. Wheeler, Phys. Rev. 89 (1953) 1102.

19S. Biwas, Phys. Rev. 75 (1949) 530.

20D F. Jackson, M. Rhoades-Brown, Ann. Phys. 105 (1977) 151.
21E. Roeckl, Nucl. Phys. A 400 (1983) 131c.

22] .R. Oppenheimer, Proc. Nat. Acad. Sci., U.S.A. 14 (1928) 363.
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With the expressions 1.6 and 1.7 the Hamiltonian 1.1 becomes cumbersome.
This ansatz, however, leads to the macroscopic models of transport theory which
are based on differential equations such as the Fokker-Planck and Langevin equa-
tions*»?*. It has been shown®® that this relationship between the independent oscil-
lator model and the macroscopic differential equations is also valid in the quantum
mechanical case, if the classical quantities are replaced by operators in the conven-
tional way.

With additional assumptions the Langevin equation may be expressed as

5=~ () + €0 AT (1)
The assumptions include that the spectrum of oscillation frequencies is quadratic,
that the frequency integration is to infinity and that the heat-bath is in thermal
equilibrium. In Equation 1.8 the second term represents a dissipative friction force
which is proportional to the particle velocity 7 with a friction form factor v(r). The
third term is a fluctuating force, whereby £(t) is a stochastic function of time, k
the Boltzmann constant and 7' is the temperature of the heat-bath. Thus in the
macroscopic limit the couplings can be related to fluctuations and energy dissipation
in the many-particle environment, which can be quantified using the macroscopic
- environmental properties of temperature and friction.

Based on the concepts which have just been described, macroscopic transport
theory has been a successful approach to barrier problems with large environments
of additional degrees of freedom?®. When the heat-bath is of a quantum mechanical
nature the classical approach can be extended®”:?8, This case is of particular interest
in the discussion about quantum mechanics and realism at the macroscopic level?®
which is based on SQUIDS. In such devices, transitions between two discrete values
of the magnetic flux are interpreted as collective or macroscopic tunnelling between
two potential wells. In the absence of dissipation these systems would be essen-
tially equivalent to the hypothetical cat of Erwin Schrodinger’s famous gedanken

experiment and they would allow the observation of coherent superpositions of two

*3D.H.E. Gross, Lec. Not. Phys. 117 (1980) 81.

24P, Frobrich, Springer Proc. Phys. 58, Springer, Berlin (1991) 93.

*G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. A 37 (1988) 4419.

?6p. Hanggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62 (1990) 251.

*’R.P. Feynman, F.L. Vernon, Ann. Phys., N.Y., 24 (1963) 118.

38R.P. Feynman, A.R. Hibbs, Quantum mechanics and ... , McGraw Hill, N.Y. (1965).
29A.J. Leggett, Prog. Theo. Phys. Suppl. 69 (1980) 80; Contemp. Phys. 25 (1984) 583.



1.2. THE BARRIER PROBLEM 11

macroscopic quantum states. This would be an experimental test of the quantum
mechanical measurement problem. However, despite their operation at tempera-
tures near absolute zero, SQUIDS show residual dissipation because of the thermal
motion of electrons®®. Progress in these experiments will depend critically on the
understanding of the coupling between the tunnelling and the environment of ther-

mal electrons.

1.2.5 Truncation

Sometimes it may be physically sensible to limit the environmental degrees of free-
dom 7 to a discrete, possibly small number n with = 0,1, ..,n. Then the classical
Hamiltonian 1.1 leads to a coupled system of differential equations which describe
the particle’s motion over the barrier.

In the quantum mechanical picture, a discrete number of environmental degrees
of freedom may be represented as a complete and orthonormal system of eigen-
functions x;(cy) with

/X;(aj)Xi(ai)dai = &ji (1.9)
where 6;; is the Kronecker symbol and the asterisk indicates complex conjugation.
For simplicity it is assumed that the environmental degrees of freedom do not de-
pend on their generalized momenta II;. This enables the wave function ¥ of the

generalized barrier problem to be expanded in terms of the eigen-functions x;(e;)

U(r, g, .., iy ooy Ot ) = iqx(r)x,'(ai) (1.10)

1=0
In this expansion, the coeflicients ¢; depend only on the coordinate r of the parti-
cle. Inserting the wave function ¥ and the quantum mechanical equivalent of the

Hamiltonian 1.1 into the Schrodinger equation

[H—-E]¥ =0 (1.11)
yields the equation
n h2 dz
Z e+ V(r) + {7 (r, ;) — E + €| di(r)x:(c;) =0 (1.12)

| 2mdr?

where the €; are the energy eigen-values of the environmental degrees of freedom
with
(hi — €] xi(e) = 0 (1.13)

30A.0. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46 (1981) 211; Ann. Phys. 149 (1983) 374.
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If Equation 1.12 is multiplied from the left with X;(@;) and integrated over
for all 7, the orthogonality property (1.9) of the eigen-functions can be applied. One

obtains the following system of coupled equations with 7 = 0,1,..,n

g TV - E} $i(r) = — };‘6 Mi(r)i(r) (1.14)
The Mj;(r) are the elements of the coupling matriz, with

M;i(r) = /X§(aj)vpr(r, oy )xi( s )dag + €6 (1.15)

The integration is over the environmental degrees of freedom «;, consequently the
matrix elements remain a function of the position coordinate r. Assuming time
reversal invariance it follows that M;; = M;;. Furthermore it is My; = €. The
coupled equations (1.14) can be solved numerically when the matrix elements M;(r)
are known. Then the wave function ¥ and the barrier transmission function 7(E)
can be calculated.

Truncation of the Hamiltonian as a limit of environmental coupling has its natu-
ral application in solid state physics, chemistry and biophysics. It is applied to pro-
cesses like the tunnelling of defects in crystals®, diffusion of interstitials in metals®?,

the tunnelling of electrons in insulators3?

35

, chemical reactions®* and the rearrange-
ments of biomolecules In all these cases, the tunnelling couples to elastic and
inelastic modes, e.g. phonons, of the surrounding atoms or molecules. While in
general macroscopic systems consist of the order of 10?® atoms, only the closest
neighbours have a decisive influence on the tunnelling motion. This limits the
environmental degrees of freedom considerably and justifies the truncation of the

Hamiltonian.

1.3 Environmental Coupling in Nuclei

Environmental coupling can have a considerable impact on the ubiquitous and fun-
damental barrier crossing problem. A study of this impact as a function of the

nature and the strength of the coupling should therefore yield a better and more

31V. Narayanamurti, R.O. Pohl, Rev. Mod. Phys. 42 (1970) 201.
32C.P. Flynn, A.M. Stoneham, Phys. Rev. B 1 (1970) 3966.

33T. Holstein, Ann. Phys., N.Y. 8 (1959) 343.

34T.F. George, W. H. Miller, J. Chem. Phys. 56 (1972) 5722.
35].3. Hopfield, Proc. Nat. Acad. Sci., U.S.A. 71 (1974) 3640.
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comprehensive understanding of this problem. Such a study requires a physical
system which accommodates the three limits which have been presented in the pre-
ceding sections. Furthermore, the system should enable the coupling strength to be
varied in a controlled manner.

While various kinds of environments with different coupling strengths are re-
alized among the many manifestations of the barrier problem, the environmental
properties are usually fixed and cannot be altered. There exists, however, a unique
system, which enables a large amount of environmental tuning. This system is the

atomic nucleus.

1.3.1 The Nuclear Many-Particle System

Atomic nuclei can consist of only a few or several hundred nucleons. The nucleons
are independent particles and interact with each other through nuclear and electro-
magnetic forces. The forces between two nucleons are well known from scattering
experiments and one may feel encouraged to deduce nuclear properties directly from
these two-body interactions. Calculating several hundred wave functions is however
cumbersome and the individual degrees of freedom of the protons and neutrons in-
side the nucleus may instead rather be considered to form an environment for the
dominant nuclear processes such as scattering, fusion, fission or decay.

The nuclear environment is internal in character, in contrast to our usual per-
ception of environments as ezternal entities. The nucleons are confined by the at-
tractive nuclear force into a small volume with a well defined boundary and which
1s isolated in space. The distance from the nuclear surface to the closest electron is
typically more than a thousand times the nuclear diameter. The number of internal
degrees of freedom increases as 34, where A is the nuclear mass number. When the
excitation energy of the nucleus is large, the nucleus behaves almost like a classical
many-particle system. This makes possible the gradual change of the size of the
environment by going from light to heavy nuclei. Considering that the nucleons are
fermions with spin +3, the total number of internal degrees of freedom for a heavy
nucleus like 2®Pb is of the order of 103,

At low excitation energies the independent-particle character of the system is
modified by the properties of the nuclear mean-field which arises from the super-

36

position of the inter-nucleon forces®®. The mean-field imposes a structure on the

nucleus, which confines its inner core into stable shells of neutrons or protons. This

36A. Bohr, B. Mottelson, Nuclear Structure, Vol. I, Benjamin, Reading (1969).
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Figure 1.3: Contour map of the experimental excitation energies of the lowest 2+ state for

even-even nuclei in the region 70 < A < 110 as a function of proton and neutron number.

stabilization leaves only the valence nucleons outside the closed shells to be excited.
As a consequence, there exist closed shell nuclei like *°Ca in which internal degrees
of freedom are difficult to excite. Successive addition of nucleons or nucleon holes
to these inert configurations softens the nucleus and leads quickly to a large number
of low energy states.

Particularly strong degrees of freedom arise when the valence nucleons combine
their motion collectively as rotations or vibrations3’. These collective states dom-
inate the excitation spectrum at low energies and can successfully be described in
terms of a quantum mechanical vibrator or rotor. The spectrum of the collective
states and their coupling strength can change dramatically. This is illustrated®®
for even-even nuclei with 70 < A < 110 in Figure 1.3, which shows a contour plot
of the experimental excitation energies of the lowest energy 2% state. The energy
maxima occur for 3%ty and 357, corresponding to the N = 50 closed shell and

the N = 56 closed ds/, subshell, respectively. In both nuclei the 2% state is only

S7A. Bohr, B. Mottelson, Nuclear Structure, Vol. II, Benjamin, Reading (1975).
38]. Ragnarsson, S.G. Nilsson, R.K. Sheline, Phys. Rep. 45 (1978) 1.
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moderately collective. The successive addition or subtraction of nucleons, however,
strongly reduces the excitation energy of the lowest 2+ state, which is an indication
of an increase in collectivity.

By selecting the size, nuclear structure and excitation energy of the nuclear
many-particle system appropriately, a broad range of environmental conditions can

be investigated.

1.3.2 The Coulomb Barrier

Besides diverse environments, a study of their coupling to the barrier problem
requires a well defined potential barrier. Such a barrier arises in the nuclear binary
problem, when two nuclei combine in nuclear fusion, as the Coulomb barrier, or when
a single nucleus fissions into two fragments, as the fission barrier. The positive
charges of the protons induce a long range and repulsive electrostatic Coulomb
force. At inter-nuclear separations of the order of the nuclear diameter, this force
1s superimposed with the short-range, attractive nuclear force, which is the residual
of the unsaturated hadronic forces stabilizing the nucleons.

As in the Kepler problem, in the nuclear binary problem the two partners are
of comparable mass, so that the system is more easily described in terms of their
relative motion in the centre-of-mass system. Assuming the standard laboratory
situation of a fixed target which is bombarded with a beam of projectile nuclei, the
relation between the kinetic energy Ej,;, as measured in the laboratory system and

the kinetic energy E., in the centre-of-mass system is given by

Ay

Eop = —-—FE, 1.16
A5 A, Dt (1.16)

where A, and A; represent the mass numbers of the projectile and target nuclei,
respectively. Electron masses and differences in binding energy per nucleon may be
ignored to good approximation.

The motion of the centre-of-mass is fully determined by the kinematics of the
reaction and can be calculated from the bombarding energy and the nuclear masses.
The possibly complicated dynamics of the reaction is entirely reflected in the relative
motion of the nuclel in the centre-of-mass system. The binary problem therefore

reduces to a one-body problem for the relative coordinate r and the reduced mass

A A,

e i 1.17
Ry W (1.17)
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where my is the nucleon mass. At centre-of-mass energies of the order of the
Coulomb barrier height the relative velocities of the nuclei are typically less than
10% of the velocity of light, so that the relative motion can be treated non-
relativistically.

Quantum-mechanically the nuclear binary system may be represented by the
wave-function ¥(r). Using the centre-of-mass parametrization, the combined effect
of the Coulomb and the nuclear force between the two nuclei can be expressed as

the interaction potential
V(r) = Ve(r) + Va(r) (1.18)

where V¢ is the Coulomb and V, the nuclear potential. The motion of the binary
system is then described by the Schrédinger equation

———t V(r) - E| ¥(r) =0 (1.19)

At large distances 7, the Coulomb potential V¢ has the form of the electrostatic
potential for two point-charges. At close approach, when the charge distributions
overlap, the point-charge idealization has to be modified. This is often realized by
replacing one of the point-charges with a homogeneously charged sphere of radius
R¢, so that

1/r for r > He
Vo(r) = Z,Z,e* (1.20)

(-g— — 5’}1%)/1%0 for r < Re

where Z, and Z; represent the nuclear charge numbers of the projectile and target
nuclei, respectively.

Since during the collision there occur a large number of interactions between
the projectile and target nucleons, it has not been possible to determine the nuclear
potential V, from the known two-body forces between nucleons. It is therefore
common to make a simple parametrization, approximating the nuclear potential
with a function which resembles the nuclear mass distribution. This leads to the

Woods-Saxon potential

14+ exp(’"R")

ao

Va(r)

where V; refers to the potential depth and ay is the diffuseness of the potential.

(1.21)

The radius R, of the nuclear potential is given by

Ry = ro(AY + AY) (1.22)
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Figure 1.4: The interaction potential V(r) (solid) for ***Sm + ‘60 in a head-on collision. The
potential is the sum of the Coulomb potential Vo and the nuclear potential V, (long-dashed
curves). At its vertex, the potential barrier may be approximated with an inverted parabola
(dot-dashed). The point-charge approximation of the Coulomb potential is shown as short-dashed
curve. The radial distances R,, Rc and Ry are defined in the text. The approximate relative

dimensions and separations of the nuclei outside and inside the barrier are depicted by the circles.

where r¢ is the radius parameter. The potential parameters Vg, ag and ro are not
unique. They are usually adjusted to fit experimental data.

Figure 1.4 shows the interaction potential V(r) and its components V¢ and V,
for the system '**Sm + '°0. The competition between the electrostatic and the
nuclear forces gives rise to a potential barrier at the distance R,. At its vertex the
shape of the barrier may be approximated by an inverted parabola®. Since this is
generally a good approximation at energies close to the barrier height, the exact
potential is often replaced by this function.

When two nuclei overcome the Coulomb barrier and reach the potential pocket
they can form a composite system and fuse. In the opposite direction, a single

nucleus can overcome the analogous but different fission barrier to scission into two

39T.D. Thomas, Phys. Rev. 116 (1959) 703.
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unbound fragments in the process of fission?®. The motion over the barrier can

couple to the internal degrees of freedom of the nuclei, which include excitations
and mass transfer. The effects of this coupling are observed both in fusion and
fission. However, by selecting different projectile-target combinations different en-
vironmental conditions can be well chosen for fusion, whereas this is not so easy
for fission. Thus fusion is the preferred process to investigate the environmental

coupling of the nuclear barrier problem.

1.4 Nuclear Fusion

The fusion of two nuclei*t—46

may be defined as the confinement of the binary
system inside the potential barrier and the formation of a compound nucleus with
charge Z. = Z, + Z, and mass 4. = A, + A,. The term compound nucleus is
used to indicate Niels Bohr’s hypothesis*” that the newly formed nucleus quickly
loses memory of its formation. This implies equilibration of all internal degrees of
freedom.

In general the compound nucleus is initially in a highly excited state which de-
cays via particle emission*® or fission*® and subsequent y-ray emission, as illustrated
in Figure 1.5. The high density of states at these energies enables a description of
this decay within the statistical model®®. In lighter nuclei, with Z. < 70, the prob-
ability of fission is typically so small that essentially all decays proceed via particle
emission. Within the terminology of the statistical model, particle emission is often
referred to as particle evaporation. The evaporated particles are dominantly neu-
trons, but also protons and a-particles. This decay mode results in nuclei close in
mass to the compound nucleus, dubbed evaporation residues. In the decay of heavier

compound nuclei with Z. 2 70, fission competes successfully with particle evapo-

D, Hilscher, H. Rossner, Ann. Phys. 17 (1992) 471.

! Fusion Reactions ..., Lec. Not. Phys. 219, ed. S.G. Steadman, Springer (1985) 351.
425.G. Steadman, M.J. Rhoades-Brown, Ann. Rev. Nucl. Part. Sci. 36 (1986) 649.
*3W. Reisdorf, Inst. Phys. Conf. Ser. No. 86, Int. Nucl. Phys. Conf. (1986) 205.
#M. Beckerman, Rep. Prog. Phys. 51 (1988) 1047.

*W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20 (1994) 1297.

46 Heavy Ion Fusion, Conf. Proc., ed. A.M. Stefanini, World Scientific, Singapore (1994).
“TN. Bohr, Nature 137 (1936) 344.

48V. Weisskopf, Phys. Rev. 52 (1937) 295.

“°N. Bohr, J.A. Wheeler, Phys. Rev. 56 (1939) 426.

80V.L. Weisskopf, J.M. Blatt, Theoretical Physics, Wiley, N.Y. (1952).
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Figure 1.5: Formation and decay of the compound nucleus (CN).

ration and dominates for large Z, even at energies below the barrier height® 53
For heavy compound nuclei, where fission is important, it is not necessarily
straight-forward to establish experimentally that an equilibrated compound nucleus
has been formed. The fission barrier may be located inside the fusion barrier, so
that a gquasi-fission process of the unequilibrated composite system is observed in

3,55 Furthermore, because

addition to fission after compound nucleus formation
of the large overlap, deep-inelastic reactions with a massive loss of energy and an
exchange of many nucleons occur for heavy systems resulting in reaction products
which may be similar to fission fragments. While deep-inelastic reaction have to be
rejected both the evaporation residue cross section and the fission cross section have
to be measured in order to establish the fusion cross section. It has been argued®®
that in investigations of the fusion barrier problem the fission cross section must

include quasi-fission reactions, since for quasi-fission to occur the system has to

51J.R. Leigh et al., Phys. Rev. Lett. 48 (1982) 527.
2D.J. Hinde et al., Nucl. Phys. A 385 (1982) 109.
53F. Plasil et al., Phys. Rev. C 29 (1984) 1145.
54B. Borderie et al., Z. Phys. A 299 (1981) 263.
55B.B. Back, Phys. Rev. C 31 (1985) 2104.

56D.J. Hinde et al., Nucl. Phys. A 592 (1995) 271.
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overcome the fusion barrier.

1.4.1 Fusion Excitation Functions

By extending the theoretical description to three spatial dimensions, it has to be
taken into account that the interaction potential Vj(r) depends on the orbital an-

gular momentum £ A with
‘/’((7') = V(T) + V::ent('r;e) (123)

where V(r) is given by Equation 1.18 and V,en(r, £) is the centrifugal term with

2

2ur?

Vrcent('r; e) =

Le+1) (1.24)

As illustrated in Figure 1.6, the centrifugal potential increases the barrier height and
shifts the barrier position to smaller radii with rising orbital angular momentum.
For large £ it eventually fills in the attractive pocket and thus restricts fusion to the
small angular momenta.

For an angular momentum dependent potential the transmission function be-
comes also angular momentum dependent with 7(E) = T,(E) and for each £ the

fusion probability can be expressed as the differential cross section
of“(E) = 7X*(2£ + 1)T,(E) (1.25)

where X = h/p is the reduced de Broglie wavelength associated with the relative
motion. By summing over all angular momenta, the total fusion cross section is

obtained as -
o (E) =) of*(E) (1.26)
40

This energy dependent function is generally referred to as the fusion ezcitation

function.

1.4.2 The One-Dimensional Model

The transmission probability 7;( E) over the barrier can be calculated by numerically
solving the Schrddinger equation (1.19) with the boundary conditions that for large
distances the incoming wave function of the binary system is a plane-wave and the

outgoing wave function is a radial-wave, thus

U(r) =% N [exp(ikz) + f(G)%exp(ikr) (1.27)
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Figure 1.6: The interaction potentials Vy(r) for **Sm + 60 as a function of angular momen-
tum £. Hy indicates the position of the barrier for £ = 0.

where the factor N normalizes the wave function to unity, & = 1/X is the wave
number, z is the coordinate in the beam direction, and f(6) is the scattering ampli-
tude. Absorption into the fusion channel is simulated by requiring that inside the
barrier the amplitude of the wave function vanishes. The latter can be achieved by
introducing an absorptive imaginary term®” W(r) in the potential, so that V,(r) is
replaced by U, (r) with

Ur) = Vdr) + W(r) (1.28)

The imaginary part may have the Woods-Saxon form

L —iW
1 exp(The)

W(r) (1.29)
where Wy, a,, and R, are the potential parameters and 7 is the imaginary unit.
In order to confine W(r) to distances inside the barrier, the parameters are often
chosen so that R, < R, < R, and a,, & ag. The potential depth W, has to be large

57M.J. Rhoades-Brown, P. Braun-Munzinger, Phys. Lett. B 136 (1984) 19.
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enough to ensure complete absorption. Because of this feature, which is similar
to the absorption of light by a black sphere, the description has been dubbed the
optical model. Alternatively, absorption can be simulated using an in-going wave
boundary condition®®5¢,

For a parabolic barrier shape the transmission functions 7;( E) can be calculated

analytically using Equation 1.5, so that

T,(E) = (1 } exp [%(B, - E)DN1 (1.30)

where By is the barrier for angular momentum £ i, When the width and position
of the parabola are chosen so that it fits the vertex of the barrier of the exact
potential, there is good agreement between this approximation and the numerical
optical-model calculation.

Applying the additional assumptions that the barrier position R, and the barrier
curvature hwy do not change with angular momentum, and replacing the sum in
Equation 1.26 by an integral, yields the following analytical expression for the fusion
excitation function®

2
Ufua(E') — Mln (1 + exp [.hz_?_r..

- (E-BO)D (1.31)

o

where By, Ry, fiwg are the barrier height, position and curvature for £ = 0, respec-
tively. At energies E > By, Equation 1.31 simplifies to the classical formula for the

capture of a charged particle by a nucleus®
o/ (E) = 7R%(1 — Bo/E) (1.32)

Because of the approximate treatment of the angular momentum dependence, Equa-
tions 1.31 and 1.32 generally overpredict the fusion cross section at energies E > B.

Expanding the logarithm in Equation 1.31 leads for E < By to the approximation

2
. hwoRg
L

fusE
o"(E) ~ =+

exp [ " (B - Bo)] (1.33)

th

In the description of nuclear fusion as presented above the potential Vi(r) de-

pends apart from the angular momentum £ A, which is a constant of motion, only

%8G.H. Rawitscher, Nucl. Phys. A 85 (1966) 337.

%9S. Landowne, S.C. Pieper, Phys. Rev. C 29 (1984) 1352.
5°C.Y. Wong, Phys. Rev. Lett. 31 (1973) 766.

61V, Weisskopf, Phys. Rev. 52 (1937) 295.
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on the radial distance r. Thus the description is essentially based on a single pa-
rameter and it is equivalent to the trivial limit of the generalized barrier problem
discussed in Section 1.2.3. This description is therefore often referred to as the
one-dimensional model picturing fusion as follows: During the reaction the projec-
tile and target nuclei are inert spheres. However, trajectories which reach inside
the barrier are assumed to irreversibly lead to fusion because of the onset of strong
dissipation as a result of the inter-nucleon forces induced by the geometric overlap.

There have been attempts to empirically derive a set of potential parameters
which yield a global fit to fusion excitation functions within the one-dimensional
model. Christensen and Winther® derived such a potential from elastic scatter-
ing data. Bass obtained a global potential by fitting fusion cross sections above
the barrier within a classical model of fusion®%%. In both cases the fits included
data for systems with 50 < Z,Z, < 850. The two global potentials deduced from
these two independent analyses are surprisingly similar, despite the methodical
differences in their derivations. For light systems with 25 < Z,Z, < 100 fusion
excitation functions calculated in the one-dimensional model using these empirical
potentials are in good agreement with the experimental data. For systems with
100 S Z,2Z, < 1500 the model is reliable for centre-of-mass energies E., 2 1.1B,
with only few exceptions.

The one-dimensional, empirical approach fails, however, for systems with
ZyZy 2 100 at energies E,, < 1.1B,, and for heavy systems with ZpZy 2 1500
at all energies. Enhancements of the fusion cross sections of up to several orders of
magnitude compared to the predictions of the one-dimensional model are observed
at energies £ < By. This effect has been named sub-barrier fusion enhancement. In
addition, for Z,Z;, 2 1500 the experimentally derived fusion barriers By are much
higher than predicted by the empirical potentials. This phenomenon has been
dubbed fusion hindrance.

1.4.3 Sub-Barrier Fusion Enhancement

The sub-barrier enhancement of fusion excitation functions is demonstrated in Fig-
ure 1.7 for the systems 60 + 1441481545y  The excitation functions of the three

reactions have been normalized to each other by dividing the energies by the re-

62p R. Christensen, A. Winther, Phys. Lett. B 65 (1976) 19.
®3R. Bass, Phys. Rev. Lett. 39 (1977) 265.
64R. Bass, Lec. Not. Phys. 117, Springer, Berlin (1980) 281.
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Figure 1.7: The fusion excitation functions for 180 -+ 1441481545 The dot-dashed curve is the
prediction of the classical model of Bass for 'O + '**Sm. The dashed curves are one-dimensional
model fits to the low and high energy data for 10 + 1%4Sm, respectively. They include tunnelling
and define the asymptotic barrier shift D,,, which is shown here in units of By. [The data are
from J.R. Leigh et al., Phys. Rev. C 52 (1995) 3151.]

spective fusion barriers B, as obtained from fits to the high energy data using the
one-dimensional model. This removes energy shifts caused by the different sizes of
the samarium nuclei. The three excitation functions merge at energies above By,
where they are well reproduced by the prediction of the classical model of Bass,
and where they can be fitted with a one-dimensional model calculation. At energies
below By all three excitation functions show fusion cross sections greater than zero,
as would be expected to arise from tunnelling. However, the cross sections exceed
by far the prediction of the one-dimensional model calculation even when tunnelling
1s included.

For the lightest system, 0 + *4Sm, it is possible®® to obtain reasonable agree-
ment between theory and experiment over the whole energy range by varying the

potential parameters, though this reduces the quality of the fit at the higher ener-

85D. Abriola et al., Phys. Rev. C 39 (1989) 546.
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gies. The large sub-barrier enhancements for the other two systems can, however,
not be reproduced in a one-dimensional model calculation for any set of potential
parameters.

It is observed, as predicted by Equation 1.33, that asymptotically, at energies
well below By the excitation functions fall approximately linearly in the logarithmic
representation. Thus the sub-barrier enhancement can be parametrized, as shown
in Figure 1.7, in terms of the energy shift D, between the linear tails of one-
dimensional model calculations, which fit the high and the low energy cross sections,
respectively. Such energy shifts have been extracted for many reactions and they
are shown in Figure 1.8 for a selection of systems as a function of Z,Z,. Whereas
light systems show no or small shifts, with increasing Z,Z, the shifts become larger
and reach values D,, > 20 MeV for the heaviest systems.

It has been established®7 that the observed sub-barrier fusion enhancements
relative to the one-dimensional model predictions are not caused by the use of in-
correct sets of potential parameters in the calculations. This possibility arises, since

larger fusion cross sections could be calculated, when the barriers are narrower than

6A.B. Balantekin, S.E. Koonin, J.W. Negele, Phys. Rev. C 28 (1983) 1565.
87M. Inui, S.E. Koonin, Phys. Rev. C 30 (1984) 175.
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assumed. Using an inversion procedure®® the barrier shape can be deduced from the
experimental fusion cross sections assuming that there exists an energy-independent
potential barrier of height By. For systems with Z,Z, < 100 the extracted barrier
shapes differ only slightly from those resulting from the global potentials. In con-
trast, for the heavier systems (Z,Z; 2 100) the extracted barrier shapes are very
different from the ones predicted and in many cases they are not single-valued and
thus unphysical. This shows that the measured sub-barrier fusion enhancement
cannot be explained by a different parametrization of the potential, but involves
more complicated physics than included in the one-dimensional model.

The excitation functions in Figure 1.7 illustrate that there can be considerable
variations of the sub-barrier fusion enhancement among a series of systems where
one nucleus is combined with different isotopes of another element. In the case of
180 4 141481549 the enhancement rises with increasing neutron number of the
samarium isotopes®® 70, This effect has also been observed”™ for the same series of
even-even samarium isotopes when fused with *°Ar, which clearly assigns the cause
of the variations in enhancement to the properties of the samarium nuclei. These
findings contrast sharply with results for the sequence of tin isotopes 11%116:1225y
where no isotopic variations are observed” " when they are combined with both 60O
and *°Ar. The variations in sub-barrier fusion enhancement with nuclear charge-
and mass-number are reflected in the asymptotic barrier shifts displayed in Fig-
ure 1.8. The apparently irregular dependence on charge and mass in addition to its
rise with Z,Z, suggests that the enhancement is a nuclear structure effect. The fact
that nuclei with strong rotational and vibrational states, like the samarium isotopes,
show large sub-barrier fusion enhancements, identifies such collective excitations as
a possible cause for the phenomenon.

The comparison of experimental excitation functions for symmetric systems re-
veals a second possible origin of the sub-barrier fusion enhancements™. To un-
derstand this, it may be assumed that the enhancement is entirely caused by the

nuclear structure of the fusing nuclei. If this is presumed to occur in a way that

8M. Beckerman, Phys. Rep. 129 (1985) 145.

%9R.G. Stokstad et al., Phys. Rev. C 21 (1980) 2427.

"°D.E. DiGregorio et al., Phys. Lett. B 176 (1986) 322.

"'W. Reisdorf et al., Phys. Rev. Lett. 49 (1982) 1811.

2p. Jacobs et al., Phys. Lett. B 175 (1986) 271.

"3W. Reisdorf et al., Nucl. Phys. A 438 (1985) 212.

"4W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20 (1994) 1297.
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the contributions to the enhancement of the two nuclei are independent from each
other, the excitation function for the system A + B should be an average of the
excitation functions for the symmetric systems A + A and B + B, where A and B
represent two nuclei. This has been tested” ™ for the isotopes *®Ni and ®*Ni. All
three possible combinations of these two isotopes show sub-barrier fusion enhance-
ment. However, the excitation function for the asymmetric system has not been
found to be an average of the two excitation functions for the symmetric system, but
in fact exceeds both symmetric systems in enhancement. This result has recently
been confirmed”, although it should be noted that there are discrepancies between
the newly measured excitation functions and the earlier experimental data.

The comparison of the three nickel reactions shows that a mechanism is re-
sponsible for at least part of the sub-barrier fusion enhancement, in which the two
reaction partners are not independent but interact with each other. Since the asym-
metry in neutron-to-proton ratio for *8Ni + ®4Ni favours the transfer of neutrons
from the heavier to the lighter isotope, it is highly suggestive, that neutron transfer,
or particle transfer in general, provides such a mechanism.

Thus, from the experimental data alone, it is clear that nuclear fusion is in
general not a one-dimensional problem representative of the trivial limit of the
generalized barrier problem discussed in Section 1.2.3, but that it involves other
degrees of freedom which couple to the relative motion across the barrier. The data
suggest that the important channels among these additional degrees of freedom are
associated with rotational and vibrational excitations of the nuclei and particle-

transfer between the reactants.

1.4.4 Fusion Hindrance

For systems with Z,Z, < 1500 the classical model of Bass™ reproduces the height
of the fusion barrier B, as extracted from fits to the experimental above-barrier
cross sections using the one-dimensional model, generally within 1%. In contrast,
for heavier systems with Z,Z, 2 1500 the barriers extracted from the experimen-
tal data are found to be higher than the ones predicted by the Bass model. The

difference in barrier height, dubbed ‘extra push’, can be used to parametrize this

"SM. Beckerman et al., Phys. Rev. Lett. 45 (1980) 1472.

T6M. Beckerman et al., Phys. Rev. C 23 (1981) 1581; Phys. Rev. C 25 (1982) 837.
""D. Ackermann, Ph.D.-thesis, Technische Hochschule Darmstadt, Germany (1994).
"8R. Bass, Phys. Rev. Lett. 39 (1977) 265.
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Figure 1.9: The ‘extra push’ (Bo — Bpass) for a selection of systems as a function of Z,7;.
Experimental uncertainties which are of the order of a few MeV are not indicated. [The data have
been adopted from A.B. Quint et al., Z. Phys. A 346 (1993) 119.]

phenomenon of apparent fusion hindrance. The ‘extra push’ is shown in Figure 1.9
for a selection of reactions as a function of Z,Z,. It should be noted that the exper-
imental data presented in this figure for the systems with ZyZy 2 1500 have been
deduced from evaporation residue measurements alone. Since for these reactions the
compound nucleus decays dominantly via fission, the data rely on statistical model
calculations. The limitations of this method have been discussed elsewhere?:80.
However, the data can certainly be expected to show the correct trends.

In a manner similar to the asymptotic barrier shift Do, the ‘extra push’ in-
creases with the product Z,Z;. It is therefore roughly a function of the size of
the system. With increasing size the number of internal degrees of freedom of the
system rises dramatically. In particular the number of transfer channels increases.
Thus fusion may be preceded by the massive exchange of nucleons. This would
have several consequences. Firstly, the potential energy is affected because of the
redistribution of nucleons between projectile and target nucleus, e.g. more sym-
metric charge distributions result in higher fusion barriers. Secondly, the potential
energy of the system is also modified by the presence of nuclear matter between the

reactants, which is often referred to as a meck-formation. Thirdly, the system has

"K.H. Schmidt, W. Morawek, Rep. Prog. Phys. 54 (1991) 949.
80A.B. Quint et al,, Z. Phys. A 346 (1993) 119.
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to dissipate kinetic energy to open the various, mostly negative Q-value channels.
The observation of fusion hindrance has been interpreted as a signature of these
effects and models have been developed which treat fusion on a multi-dimensional
potential energy surface as a function of distance, mass-asymmetry, neck-formation

and energy dissipation®"82,

1.5 Multi-Dimensional Models of Fusion

The apparent failure of the one-dimensional model to give a global description
of fusion demands a multi-dimensional treatment of the problem. This has been
attempted phenomenologically and with models which are based on the truncation
and the macroscopic limit of the generalized barrier problem. This section gives an

overview of the various approaches which are of relevance in this study.

1.5.1 Geometrical Model

In a large class of nuclei the low-lying states are dominated by collective excitations
of rotational character. For these nuclei the coupling of the relative motion to the
rotational states may be described in the corresponding classical limit, namely as
the fusion of two rigid rotors®34. Compared to the time scale of the relative motion
the classical rotation associated with the excitations is slow and the nuclei may be
assumed to be frozen in shape and orientation during the interaction. Thus the

fusion cross section depends on the mutual orientation of the nuclei with

oT(E) = —

- / o4 (B, 91, 9,)d0dS, (1.34)

where of**( E|9,,9,) is the differential cross section for a particular mutual orienta-
tion, defined by the angles ¥4; and ¥J,, and the df); are the solid angle elements. The
of¥(E,¥9,,9,) are calculated by expanding the nuclear shapes in terms of spherical
harmonics which yields a specific fusion radius for every orientation. For example
for two prolate nuclei the fusion radius is larger when they are oriented tip-to-tip

and smaller when they are oriented side-to-side. Thus the barrier is lower when

81W.J. Swiatecki, Phys. Scripta 24 (1981) 113.

82].P. Blocki, H. Feldmeier, W.J. Swiatecki, Nucl. Phys. A 459 (1986) 145,
83J.0. Rasmussen, K. Sugawara-Tanabe, Nucl. Phys. A 171 (1971) 497.
84C.Y. Wong, Phys. Rev. Lett. 31 (1973) 766.
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the tips face each other during the collision as compared to the situation where the
sides face each other.

The geometrical model has been applied® to the fusion of 1®0 with the series
of even-A samarium isotopes *4~'**Sm. These samarium isotopes undergo a shape
transition with increasing neutron number from spherical to prolate deformed. This
is reflected in the fusion excitation functions as an increase in sub-barrier fusion
enhancement, as it is shown in Figure 1.7. While the geometrical model explains
the trend of this isotopic change in fusion enhancement correctly, it overestimates
the cross sections. This is presumably due to the neglect of the excitation energies®.

Recently, the geometrical model has been used in the interpretation of the com-
petition between fusion-fission and quasi-fission in *0 + #**U. Because of the larger
angular momenta involved, collisions of the ®0 projectile with the tip of the prolate
deformed ?*U target nucleus are suggested to lead to quasi-fission, while the more
compact configuration, which occurs when the projectile collides with the side of
28U, may favour fusion-fission. Such orientation effects in fusion are of particular

interest in the search for new ‘super-heavy’ elements®7:88.

1.5.2 Barrier Distributions

The geometrical model predicts that for reactions involving rotational nuclei the
one-dimensional Coulomb barrier is replaced by a continuous distribution of fusion
barriers which correspond to the different mutual orientations of projectile and
target nucleus. This concept can be extended® by assuming that the coupling to
internal degrees of freedom of the binary system generally gives rise to a multitude
of fusion channels which correspond to a distribution of fusion barriers D(B). The
fusion excitation function is then given by

ofu(E) = /w D(B)o?*(E, B)dB (1.35)

0

where o/**(E, B) is the fusion excitation function for the barrier B. The distribution

D(B) is a weighing function with

/Ow D(B)dB = 1 (1.36)

%R.G. Stokstad, E.E. Gross, Phys. Rev. C 23 (1981) 281.
86P.M. Jacobs, U. Smilansky, Phys. Lett. B 127 (1983) 313.
87D.J. Hinde et al., Phys. Rev. Lett. 74 (1995) 1295.

88A. Iwamoto et al., Nucl. Phys. A 596 (1996) 329.

89P.H. Stelson, Phys. Lett. B 205 (1988) 190.
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This concept has been explored for many reactions assuming continuous and sym-

metric distributions of rectangular or Gaussian shapes®:°!,

1.5.3 Channel Coupling

For reactions with Z,Z, < 1500 the coupling between the relative motion of the
binary system and its internal degrees of freedom has been most successfully de-
scribed assuming that the system represents the truncation limit of the generalized
barrier problem. Thus, it is presumed that the internal degrees of freedom of the bi-
nary system, which are dominated by collective excitations and one or two nucleon
transfer reactions, are few and strong. Each internal degree of freedom is associated
with a particular reaction channel j = 0,1,..,n with =0 being the elastic scatter-
ing channel. Following Equation 1.14, the coupled equations for the radial wave

functions ¢;(r) of the three-dimensional system may then be written as®%

[T+ V(1) + Veent(7, £5) — E] $5(r) = — Z Mi(r)éi(r) (1.37)

where T is the kinetic energy operator, V(r) is the interaction potential given by
Equation 1.18 and V,en:(r, ;) is the centrifugal potential given by Equation 1.24.
The Mj;(r) are the elements of the coupling matrix given by Equation 1.15 and ¢,

is the angular momentum quantum number for channel j.

Exact Numerical Solution of the Coupled Equations

As in the one-dimensional model, in the coupled-channels model the fusion cross
section corresponds to the in-coming flux which overcomes the barrier. However,
the wave-function is modified by the coupling interactions and the reflected flux
is distributed over all the reaction channels which are associated with the internal
degrees of freedom. Depending on the nature of the couplings the matrix elements
Mi(r) may be calculated using the collective model or using a suitable model of

4

transfer reactions®. The solutions of the coupled equations (1.37) may then be

obtained numerically® by simulating loss of flux to fusion and the residual reaction

90H.J. Krappe et al., Z. Phys. A 314 (1983) 23.

91A.K. Mohanty, S.K. Kataria, Pramana 43 No. 4 (1994) 319.

92N. Austern, Direct Nuclear Reaction Theories, Wiley, New York (1970).

93G.R. Satchler, Direct Reactions, Oxford University Press, Oxford (1983).

941.J. Thompson, Coupled Reaction Channels ..., Comp. Phys. Rep. 7 (1988) 169.

95M.S. Melkanoff et al., Methods in Computational Physics 6, Academic, New York (1966).
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channels not included in the coupling matrix with an imaginary volume potential
W(r). For large distances the wave-function has to be matched to an incident plane
wave of unit norm in the entrance channel and to out-going radial waves in all exit

96,97

channels®™?®’. The coefficients of the out-going waves then determine the various

reaction cross sections 07°*(E) and conservation of flux enables the fusion cross

section to be obtained from

of**(E) = ¢"(E) — i o7 (E) (1.38)

3=1

t

where o is the total reaction cross section. With Equation 1.26 this can be

expressed®® in terms of the elements SJ‘- of the scattering matrix

of*(E) = X i(zz + 1)Ty(E) = X2 i(ze +1) (1 - i fsjlz) (1.39)

£=0 £=0 7=1

The complicated numerical calculations have been computerised. In this work the

code ECIS* has been employed to carry out such calculations.

Simplified Solutions of the Coupled Equations

The exact coupled-channels model can be simplified'® by introducing approxima-
tions to the treatment of the channel dependent angular momenta ;. In the iso-
centrifugal approximation the centrifugal potentials V,en(r, £;) for all channels with
the same total angular momentum J A are replaced by

2

h
‘/cent("') J) o 'é*/;;.](.] -+ 1) (140)

This can be justified because the interactions at the barrier typically involve changes
in angular momentum of only a few % which compares with orbital angular momenta
which can be several tens of i. The iso-centrifugal approximation which is also often
referred to as no-Coriolis or orbital-sudden approximation is employed in a code!®
which has been used in this work to predict fusion excitation functions. For even-

even nuclei, J may be replaced by the orbital angular momentum in the elastic

96B. Buck, P.E. Hodgson, Phil. Mag. 8 (1963) 1805.

7T. Tamura, Rev. Mod. Phys. 37 (1965) 679.

%8G.R. Satchler, Introduction to Nuclear Reactions, Macmillan Press, London (1980).
9]. Raynal, in Computing as a Language of Physics, I.A.E.A Vienna (1972) 281.
190A.V. Andres, N. Rowley, M.A. Nagarajan, Nucl. Phys. A 481 (1988) 600.

10IN. Rowley, A. Kruppa, to be published.
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channel £. Calculations based on the iso-centrifugal approximation are particularly
suited for fusion, since the fusion cross section is not affected by this approximation.
For scattering the approximations have two important consequences. The angular
momentum couplings are ignored and the orbital angular momentum of the inelastic
scattering and transfer channels for a certain detection angle is assumed to be equal
to the angular momentum of elastic scattering at this angle. Consequently, all
scattering is assumed to be quasi-elastic.

It is also reasonable to presume that the nuclear structure of the colliding nuclei
1s not disturbed until fusion occurs inside the barrier. In this case!®?~1% the coupling
potentials factorize with v;"*(r,a;) = fi(r)gi(es). The form factors f;(r) depend
only on the inter-nuclear distance and the functions g;(c;) depend exclusively on

the internal coordinates. Thus, the matrix elements (1.15) become

My(r) = [ x5(as)filr)oi(os)xi(e)des + i (L41)

The coupled equations (1.37) can then be de-coupled for two cases, which are
known as constant coupling and sudden approximations. In the case of constant
coupling the form factor is assumed to be constant with r, e.g. fi(r) = fo for
all 4, whereas in the sudden approximation the excitation energies of the internal
degrees of freedom are ignored, e.g. ¢, = 0 for all . In both approximations the
analytical diagonalization of the matrix M;(r) and the exact de-coupling of the
coupled equations (1.37) is possible.

In order to achieve the de-coupling, the radial wave functions may be expressed

as
QS]'('I") = UjkYk(T‘) (142)
where Uy, is a unitary transformation matrix. In Equation 1.42 and in the following

matrix equations Einstein’s convention is applied, that summation occurs over all

double indices. Inserting Equation 1.42 into Equation 1.37 yields
[T+ V(") + Viewa(r, 0) = BJUGYi(r) = Mu(rUaYi(r)  (143)
This is equivalent to

[T+ V(r) + Viens(r, ) — E]Yalr) = U, Mi(r)Ua¥i(r) (1.44)

102C.H. Dasso, S. Landowne, A. Winther, Nucl. Phys. A 405 (1983) 381.

103C.H. Dasso, S. Landowne, A. Winther, Nucl. Phys. A 407 (1983) 221.

194R.A. Broglia et al., Phys. Rev. C 27 (1983) 2433; Phys. Lett. B 133 (1983) 34.
105p M. Jacobs, U. Smilansky, Phys. Lett. B 127 (1983) 313.

108R. Lindsay, N. Rowley, J. Phys. G: Nucl. Part. Phys. 10 (1984) 805.
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where the dagger indicates Hermitean conjugation. The unitary transformation U

may be chosen, so that it diagonalizes the coupling matrix M;;(r) and
U,LM]‘,'('I‘)U,‘I e bk5k1 (145)

where the b; are the eigen-values. Then, the coupled equations (1.37) de-couple to

yield a system of uncoupled Schrddinger equations for the wave functions Yi(r)
T+ V(r) + Veene(r,£) — E + b Yi(r) = 0 (1.46)

The constant coupling approximation can be relaxed by introducing!®” a radial
dependence for the eigen-values b; and expanding V(r) + bi(r) in the region around
By. This improves the accuracy of the model considerably.

The de-coupled equations (1.46) may be solved with the eigen-functions Yj(r)
which correspond to the eigen-channels £k = 0,1,..,n. The eigen-functions have
to fulfil the boundary condition (1.27) that for large distances there is an in-going
plane wave of unit norm in the entrance-channel and that there are out-going radial
waves in all exit-channels. In order to comply with the same boundary conditions
for the radial wave-functions ¢;(r) of the actual reaction channels, the functions
Yi(r) in the expansion 1.42 have to be chosen as Yi(r) = UocYi(r). Then the radial

wave functions are given by
$i(r) = UpnUok Yi(r) (1.47)

Consequently, the elements of the scattering matrix for the physical reaction chan-
nels (7 =1,..,n;j # 0) are
5% = Uy Un Sk (1.48)

where the Sf are the elements of the scattering matrix for the eigen-channels. With
Equation 1.39 it follows that
ol (B) = mx* 3 (20 +1) (1 - Up U SEURUSSE) (1.49)
4,5k,
Using the relation
UppUj = UII'Ujk = but (1.50)
Equation 1.49 reduces to

oT“(B) = nX* Y Wi(26 +1)(1 — |5{P) = S Wia ™™ (B, V(r) + b)  (1.51)
Lk k

107C.H. Dasso, S. Landowne, Phys. Lett. B 183 (1987) 141.
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where the Wy = |Uq,|* are the weights with which the various eigen-channels con-
tribute to the fusion cross section. This requires that 7_, Wi = 1. Each eigen-
channel can be associated with a potential V(r) + by which forms a potential barrier
of height By = V(Ry) + b at the inter-nuclear distance R,. This interpretation is
referred to as the eigen-channel model.

Thus, the channel coupling replaces the one-dimensional Coulomb barrier By =
V(R,) with a spectrum of n + 1 potential barriers which are weighted with the
factors Wy. This distribution of potential barriers is given by

D(E,Bk) = Wk5(E — B),,) for k= 0, 1, ey T (152)

It can be shown, that there is always at least one negative eigen-value by resulting
in a barrier which is lower than the one-dimensional Coulomb barrier. It follows,
that it is fusion over the low energy barriers which is responsible for the sub-barrier
fusion enhancement.

The simplified solution of the coupled-channels equations described in the pre-
ceding paragraphs is the basis of the computer code CCMOD'®®. CCMOD is a modified
version of the code CCDEF'?''!® and performs the diagonalization of the coupling
matrix Mj;(r) numerically at each value of the inter-nuclear distance r. It does,
however, not include the full dynamical effects of the finite excitation energies. In
CCMOD the coupling to vibrational or rotational excitations is estimated from the

collective model expression, so that the matrix elements are

dV(r) = 3Z,Ze* R
dr (2)\]‘,’ -+ 1) pAiitl

Mji(r) = By

Ve

where 8;; is the deformation parameter associated with the transition from channel

~R, - Q;6;; (1.53)

7 to channel 2 and Aj; is its multipolarity. The radius of the excited nucleus is R,
and the Q); = —e¢; are the Q-values.

Coupling to transfer reactions can be included approximately*!?

with the matrix

elements

M;i(r) =

g (p) (t) _
\;i.;?exp [Ra + Ra 7'] - Qj&j,‘ (1.54)

where R{P*) are the nuclear radii, Fj; is the coupling strength, which is often referred

Ay

to as Fy, a4 is a suitable diffuseness parameter and @, is the transfer Q-value. The

108M. Dasgupta et al., Nucl. Phys. A 539 (1992) 351.

199C.H. Dasso, S. Landowne, Comp. Phys. Comm. 46 (1987) 187.

1103, Fernandez Niello, C.H. Dasso, S. Landowne, Comp. Phys. Comm. 54 (1989) 409.
11R.A. Broglia et al., Phys. Lett. B 133 (1992) 34.



36

quantities Fj; and a4, can vary considerably depending on the transferred angular
momentum and the nucleon orbitals involved in the transfer process!?.

Because of its great simplicity, the code CCMOD is a valuable tool for analyzing
fusion excitation functions, provided one keeps its limitations in mind. The code is

particularly useful for judging the relative importance of different couplings.

Experimental Determination of the Barrier Distribution

When it is assumed that the contribution to the fusion cross section from each
barrier By is given by the classical formula 1.32 and that each barrier is located at
the same inter-nuclear separation Ry, the transmission coefficient can be recovered

from the fusion excitation function*?

1 d

T(E) = wR2 dE

|Eo?(E)] (1.55)
Consequently further differentiation with respect to energy yields the barrier dis-
tribution (1.52), since®**

1 d?
wR2dE?

[Eof(E)] = 3%2'5 [g_j Wi(E — Bk)} = Wi8(E — By) = D(E, By)

(1.56)
This is illustrated in Figure 1.10 for two barriers with weights 0.4 and 0.6, respec-
tively. In the classical approximation the function Eo/**(E) is a superposition of
two straight lines and there is no fusion at energies below the lowest barrier. Conse-
quently, the first differential with respect to energy of Eac/**(E) is a step-function.
The second differential with respect to energy then yields §-functions at the energies
By, which are weighed with (7R3 x Wy). The second differential is thus equivalent
to the barrier distribution D(E, By).
When tunnelling is included, the fusion cross sections for a single barrier B
are approximately given by Equation 1.31. Double differentiation of Eof**(E) with
respect to energy then yields

where z = (27 /hwo)(E — By) and G™*(E, By,) is a peaked function. It follows that

the second differential of the fusion excitation function for a distribution of barriers

112G. Pollarolo, R.A. Broglia, A. Winther, Nucl. Phys. A 406 (1983) 369.
1134 B. Balantekin, P.E. Reimer, Phys. Rev. C 33 (1986) 379.
114N. Rowley, G.R. Satchler, P.H. Stelson, Phys. Lett. B 254 (1991) 25.
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Figure 1.10: Experimentally, the structure of the barrier distribution D(E, By) can be extracted
from the excitation function by double differentiation of Eaf%*(E). This is demonstrated for two
barriers with weights 0.4 and 0.6, respectively. The solid curves are the classical limit, while the
points, which have been calculated including tunnelling, represent a hypothetical data-set with
relative uncertainties of 1%. (a) The fusion excitation function. (b) The function Ecf**(E). (c)
The first differential of Eo/“® with respect to energy, which is proportional to the transmission
function T(E). (d) The representation Df“*(E) of the barrier distribution. The energy scales
have been divided by an arbitrary Bg.

By, is given by

d2 n
1o [Eo?™(E, By)| = nR2Y. WiG'™(E, B) = D™*(E) (1.58)
k=0
Comparison with Equation 1.56 shows that the distribution Df**(E) is a represen-
tation of the barrier distribution D(E, By).
The functions G**(E, By) satisfy [ G**(z)dz = 1 and they become §-functions

in the limit Awy — 0. The full width at half maximum of G**(E, By) is

AEFWHM == 056hw0 ~2-—3 MeV (159)
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Thus, for barrier distributions where the differences in barrier height are compa-
rable to 2—3 MeV, Df*(E) resolves the individual barriers. However, even when
the differences in barrier height are smaller, the function Df**(E) contains some
information about the barrier distribution it represents.

The extraction of the barrier distribution representation Df“*(E) is illustrated
in Figure 1.10 for a hypothetical excitation function. The excitation function has
been obtained by summing the excitation functions of two barriers calculated with
Equation 1.31 using the weights 0.4 and 0.6, respectively. In Figure 1.10(a) in
contrast to its classical limit, this excitation function is, as a result of tunnelling,
greater than zero at the lowest energies. In Figure 1.10(c) the tunnelling smoothes
the discrete steps of the classical limit. As a consequence, the distribution Df**(E)
in Figure 1.10(d) features two peaks with finite width. The positions and integrals
of these peaks are representative of the barrier heights By and weights Wy, respec-
tively. The decreasing slope and the negative curvature of Eof**(E) at the highest
energies are a consequence of the decrease in barrier radius with increasing angular
momentum.

In order to simulate an experimental data-set, the more realistic excitation func-
tion in Figure 1.10 is shown in discrete steps with error bars corresponding to a
hypothetical relative uncertainty of 1%. In the case of experimental data the deriva-
tives cannot be obtained analytically, but they have to be approximated with point-
difference formulae. For the second differential with respect to energy of Eof“!(E)

the point-difference formula is given by

_ Ed?(E + AE) - 2Eo*(E) + Eo!*(E — AE)

D (B) ATy

(1.60)

where AFE is the energy step length. Obviously, a small energy step AFE approxi-
mates the analytical derivative better than a large one and increases the sensitivity
to the barrier structure. However, for a fixed relative experimental uncertainty
of the cross sections, the absolute experimental uncertainty of Df“*( E) is approxi-

mately
Eogfus

(AE)

Thus, AD** increases with energy and cross section, as seen in Figure 1.10(d).

AD** ~ §\/6 (1.61)

Increasing the step length AE reduces AD** and improves the precision of the
data. It follows that a compromise has to be found between sensitivity and precision.

The optimum information about the barrier distribution can be gained from the
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Figure 1.11: The barrier distribution D(E, By) for the fusion of a spherical with a deformed
nucleus compared with its representations Df “(E) as extracted from calculations which assume
a constant radius for all barriers and angular momenta (dashed) and include the changes in radius
with barrier and angular momentum (solid), respectively. D(E, B:) is shown as vertical bars,
whose heights represent the weights Wy. The energy scale has been divided by By.

experimental data when Df*(E) is extracted for different values of AFE ranging
from the smallest possible to large energy steps of the order of the width of the
barrier distribution itself.

The formalism presented above is only strictly valid in the eigen-channel model
of fusion which results from simplified solutions of the coupled-channels equations.
This approach ignores that different fusion barriers can have different fusion radii.
It might therefore be argued that the barrier structure may not be present in true
excitation functions. However, it has been found that this argument is not justi-
fied. Representations Df**(E) extracted from true excitation function retain the
barrier structure predicted by the eigen-channel model. This is demonstrated in
Figure 1.11. A reaction involving a spherical and a deformed nucleus with ten
discrete barriers is considered. Classically the curvature of Eof** yields a set of

6-functions. Whilst the position of a §-function represents the height of a barrier,
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its integral corresponds to the barrier weight. In Figure 1.11 the é-functions are
shown as vertical lines and the weights of the barriers are represented by the heights
of the lines. When quantum mechanical penetration of the barriers is included the
curvature becomes a continuous function of energy, as shown by the dashed curve
in Figure 1.11. If the barrier distribution is assumed to result from deformation,
then the barrier radius is different for each barrier. It is also angular momentum
dependent. Including these effects results in a more realistic calculation of Df*“*(E)
which is shown as solid curve in Figure 1.11. It is apparent that this calculation of
D¥*(E) is an excellent representation of the barrier structure and that the varia-
tions in barrier radius have only a small effect on this representation.

The advantages of displaying fusion excitation functions as D/**( E) are shown
in Figure 1.12. Independent of its physical origin, the result of channel coupling
is always an enhancement of the fusion cross section at low energies. From the
excitation function it can hardly be distinguished, whether the effect is caused by
a positive )-value transfer channel, a negative @)-value vibrational excitation or
by coupling to a band of rotational states. In contrast, the distributions Df“*(E)
display clear signatures of the different coupling schemes and, if determined to high
precision, enable an unambiguous identification of those.

Barrier distribution representations Df“*( E) have been extracted from precisely
measured fusion excitation functions for several systems***~11° Figure 1.13 shows
three cases of channel coupling which have been distinguished using experimental
representations of the barrier distribution. The coupling schemes can be identified
by comparison with Figure 1.12. In the reaction *0 + *4Sm, the elastic channel
couples to vibrational excitations of the lowest 2 and 3~ states of **Sm with the
octupole state being dominant. The reaction *°Ca + *°Ca is a textbook example of
the trivial limit of the barrier problem, i.e. coupling of the elastic channel to others
is negligible. This is a consequence of the double shell closure in *°Ca. For 0 +
1%4Sm the representation Df**(E) identifies couplings of the relative motion to the
ground state rotational band of the prolate deformed **Sm.

The representation of fusion excitation functions as Df“*(E) has yielded some

surprising evidence for the importance of multi-phonon excitations in fusion. For

115] X.Wei et al., Phys. Rev. Lett. 67 (1991) 3368.
119R.C. Lemmon et al., Phys. Lett. B 316 (1993) 32.
1177 R. Leigh et al., Phys. Rev. C 47 (1993) R437.
18C.R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074.
19].R. Leigh et al., Phys. Rev. C 52 (1995) 3151.
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Figure 1.12: Calculated excitation functions o/“*(E) and barrier distribution representations
Df%s(E) for different coupling schemes. The dashed curves are predictions of the one-dimensional
model. The solid curves are coupled-channels calculations using CCMOD. The three coupling schemes
shown are (a,b) coupling to a negative Q-value channel, (c,d) coupling to a positive Q-value
channel, and (e,f) coupling to a series of rotational states of a prolate deformed nucleus with the
deformation parameter 8, > 0, respectively. The energy scales have been normalized by By. The
coupling schemes can be distinguished more easily by comparing the distributions Df%*(E) rather
than the excitation functions.

the systems 10, 28Si + 28Pb the experimental distributions D#%*(E) cannot be
explained with coupling schemes which include only single phonon coupling of vibra-

tional states. It has been shown!?%:1%

with simplified coupled-channels calculations
that the inclusion of additional coupling to an octupole double phonon state of
298Pb in the calculation improves the agreement with the data considerably. This is

consistent with recent spectroscopic evidence?? for such an octupole double phonon

120C.R. Morton et al., Phys. Rev. C 52 (1995) 243,
121D.J. Hinde et al., Nucl. Phys. A 592 (1995) 271.
122M. Yeh et al., Phys. Rev. Lett. 76 (1996) 1208.
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Figure 1.13: Barrier distribution representations Df“*(E) extracted from precisely measured
fusion excitation functions display signatures of the coupling schemes involved. This is shown, (a)
for the system 6O + **Sm, where coupling to the lowest vibrational octupole state is important,
(b) for *°Ca + *°Ca, where apparently no coupling occurs, and (c) for *°0 + ***Sm , where the

relative motion couples to the ground state rotational band of ***Sm. The energy scales have been
normalized by Bg.

state in 2°®Pb. Furthermore, for the reaction *Ni + ®Ni it has been found'®® that
in the interpretation of Df**(E), in addition to the individual double phonon ex-
citations of the lowest energy quadrupole phonons in both nuclei, also the mutual
excitations of the double phonon states have to be taken into account. In this case
there is only limited spectroscopic evidence for the existence of such states. Another
encouraging result of the new technique has been the unambiguous identification of
the coupling to transfer channels in the fusion of some systems'?*12®,

The potential of representing fusion data as Df**(E) has as yet not been fully
exploited. It can be hoped, that this approach to fusion will reveal even more

details, when it is applied to increasingly more reactions and a complete picture

cemerges.

1235 M. Stefanini et al. Phys. Rev. Lett. 74 (1995) 864.
124C.R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074.
125 A M. Stefanini et al. Phys. Rev. C 52 (1995) R1727.



1.5. MULTI-DIMENSIONAL MODELS OF FUSION 43

1.5.4 Neutron-Flow and Neck-Formation

It has been proposed*?®'?7 in a schematic model that the flow of neutrons between
the colliding nuclei may precede and initiate fusion. This effect could result in a
flat barrier distribution where the lowest barrier corresponds to the lowest centre-
of-mass energy for which the distance of closest approach allows neutrons to flow
between the potential wells of the two nuclei?®,

These speculations have encouraged the development of the neck-formation

modell 29,130

which is intermediate between the truncation and the macroscopic limit
of the generalized barrier problem. In this model the nuclei are treated as macro-
scopic spheroids on a potential energy surface which depends on the inter-nuclear
separation and the deformation of the nuclei. It is assumed that the deformation
in the direction of the relative motion, which eventually leads to the formation of a
neck! between the reactants, is the most important degree of freedom of the nu-
clear binary system apart from the relative motion itself. Thus the coupling between
these two degrees of freedom is considered explicitly. In contrast to the coupled-
channels model, which is based on solutions of the stationary Schrodinger equation,
the neck-formation model involves the solution of the time-dependent Schrodinger
equation. Consequently this model has the attractive feature of providing a history
of the in-coming wave-packet as it moves over the potential energy surface.

It has been found for the system %8Ni + 8Ni that the fusion excitation function
can be well reproduced with the neck-formation model. The important result is
that the transmitted flux corresponds predominantly to trajectories which involve
large deformations of the nuclei in the direction of relative motion and thus neck-
formation. Since the calculations are extensive, a generalization of the model to
asymmetric systems is beyond the capacity of present electronic computing power.
In any case the large isotopic variations of the fusion enhancement will be difficult
to address with this model, since it includes only one additional degree of freedom

which is expected to vary smoothly with system size.

126p H. Stelson, Phys. Lett. B 205 (1988) 190.

12Tp.H. Stelson et al., Phys. Rev. C 41 (1990) 1584.
128W. von Oertzen et al., Z. Phys. A 326 (1987) 463.
1297 Schneider, H.H. Wolter, Z. Phys. A 339 (1991) 177.
130C.E. Aguiar et al, Nucl. Phys. A 500 (1989) 195.
131H.J. Krappe et al., Z. Phys. A 314 (1983) 23.
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1.5.5 Dissipation during Fusion

The increase in fusion hindrance with rising Z,Z,, as it is shown in Figure 1.9,
suggests that among other effects large energy dissipation may occur in the fusion
of heavy systems (Z,Z, X 1500). This would be the consequence of weak couplings
to many internal degrees of freedom such as the large number of transfer channels
which are available in these heavy systems. Among other theories!3?, the surface
friction model'**~'%  which corresponds to the macroscopic limit of the generalized
barrier problem, has been employed to describe the fusion of heavy systems. The
surface friction model is based on Monte Carlo calculations using the Langevin
equation (1.8). By sampling trajectories a distribution function is created from
which the fusion cross sections o} **(E) can be obtained.

The surface friction model reproduces well the average trend of the ‘extra push’
energies with increasing system size. Individual deviations from the data may be
attributed to nuclear structure effects which are not included in the model. The
quality of the agreement is demonstrated in Figure 1.14. In this figure the ‘extra

push’ energies are plotted as a function of the effective fissility!®

 4Z,7,]1 - 1.7826(1 — 22./A.)?]

(1.62)
50.883[A4;° A;* (A3 + AP

which is a more accurate quantification of the heaviness of the binary system than
ZpZs. The symbols Z. and A, represent the charge and mass numbers of the com-

bined system, respectively.

1.6 Reflection at the Barrier

The residual of the in-going flux, which is not transmitted through a potential
barrier, is reflected. This reflected flux can be quantified in terms of the differ-
ential scattering cross section do?(E) which is determined from the boundary
condition (1.27) of the wave function ¥(r). The index ‘gel’ refers to quasi-elastic
scattering which comprises elastic and inelastic scattering and reactions involving

the transfer of a few nucleons between the surfaces of the reactants.

132].P. Blocki, H. Feldmeier, W.J. Swiatecki, Nucl. Phys. A 459 (1986) 145.
133D.H.E Gross, L. Satpathy, Phys. Lett. B 110 (1982) 31.

134P. Frobrich, Phys. Rep. 116 (1984) 337.

133]. Marten, P. Frobrich, Nucl. Phys. A 545 (1992) 854.

1385, Bjornholm, W.J. Swiatecki, Nucl. Phys. A 391 (1982) 471.
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Figure 1.14: Measured ‘extra push’ energies (filled triangles and circles) compared with predic-
tions of the surface friction model (open diamonds) as a function of the effective fissility z,. The

triangles and circles represent two different series of experiments. The experimental uncertainties
of the circles are a few MeV. [The figure has been adopted from P. Frébrich, New Trends in
Nuclear Collective Dynamics, Conf. Proc., to be published in Lecture Notes in Physics.]

1.6.1 Quasi-Elastic Scattering

Quasi-elastic scattering reactions®®’

are assumed to follow approximately the elastic
scattering trajectories. Thus changes in kinetic energy and angular momentum
during the interaction are ignored. The differential quasi-elastic scattering cross

section at the scattering angle 6 is given by

gael n
O (B,0) = do™(5,0) = /(5,0 = S IH(E.0F (163

7==0

where f*!(E, ) is the quasi-elastic scattering amplitude and the fi(E,8) are the
scattering amplitudes in each scattering channel with =0 indicating the elastic
channel. It should be noted that limiting the reflected flux to quasi-elastic scatter-
ing is a restriction of the general situation. For the purpose of this study, which
concentrates on centre-of-mass energies of the order of the Coulomb barrier energy,
this 1s a sensible approximation.

The scattering amplitudes f;(E, ) can be de-composed into contributions cor-

137K.E. Rehm, Ann. Rev. Nucl. Part. Sci. 41 (1991) 429.
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responding to the angular momenta £, so that!38:139

fi(E,8) = Z(% + 1) Py(cos 8)850 + Z(Z[ + 1) Py(cos G)exp[Zw (E)]St( )
£=0
(1.64)

where 7 is the complex unit, X is the reduced de Broglie wave length, and the
Py(cos §) are Legendre polynomials. The first term in this equation contributes
only in the elastic channel. The information about the interactions is contained in
the complex scattering matrix elements S¥(E) and in the Coulomb phases ai(E).
For elastic scattering (j=0), in the absence of any other reaction channels, one

obtains the Rutherford scattering amplitude
fE(E,8) Z 20 + 1)Py(cos 8 {1 - exp{QzaQ(E)}} (1.65)

and the corresponding Rutherford scattering cross section

232
do®(E, §) = ”4}‘ csc? (g-) (1.66)

In this equation n is the Sommerfeld parameter with

aZpZt

n =
v/c

(1.67)

where a is the fine structure constant and v/c is the relative velocity of the nuclei
for 7 — +oco divided by the velocity of light.

At energies well below the Coulomb barrier the reactants do not come close
enough to reach the interaction zone, so that they are neither affected by the short-
range nuclear interactions nor by strong electro-static forces. Thus the differential
scattering cross section is purely elastic and do%!(E, 6) is identical to do®*(E, ).
Since do®(E, §) can be calculated exactly using Equation 1.66, it is common to use
it as a normalization for nuclear scattering. Nuclear scattering occurs when the two
nuclei enter the interaction zone.

The transition from Rutherford scattering to nuclear scattering takes place
within a narrow region at the edge of the interaction zone. Inside this zone,
which extends not far beyond the radius of the nuclear potential R,, the nuclear

forces dominate and most of the in-going flux is removed from the elastic channel.

138N F. Mott, H.S. Massey, The Theory of Atomic Collisions, Clarendon Press, Oxford (1949).
139R. Bass, Nuclear Reactions with Heavy Ions, Springer, Berlin (1980).
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The strong absorption in the interaction zone is the justification for the optical
model of nuclear reactions which has been presented in Section 1.4.2. As in optics,
for de Broglie wave lengths X ~ R,,, the strong absorption results in diffraction

effectsl‘m' 141

. These effects are observed in the excitation functions and the angular
distributions of elastic and quasi-elastic scattering.

If n <1 and E., > By, the effect of the Coulomb repulsion between projectile
and target nucleus is small. The in-going waves remain approximately plane waves
until they reach the interaction zone. The absorption in the interaction zone then
merely “cuts a circular piece out of the wave”. This results in a diffraction pattern
which is known as Fraunhofer diffraction. In Fresnel diffraction, which occurs when
n > 1 and E,, is close to By, the effect of the Coulomb repulsion is strong and the
in-going waves diverge before they reach the interaction zone. Fresnel diffraction
results in a sharp fall of the excitation function at a certain bombarding energy
which can be related to the height of the potential barrier. For bombarding ener-
gies lower than this energy, the excitation function oscillates about the cross section
predicted by Rutherford’s formula (1.66). For inelastic scattering and transfer re-
actions similar diffraction effects are observed.

The importance of diffraction effects for the quasi-elastic scattering of a partic-
ular binary system can be assessed from the phenomenological diffraction diagram
shown in Figure 1.15. The occurrence of diffraction and its properties depend on
the Sommerfeld parameter n and the relative energy E.,. For low energies no
absorption occurs, so that diffraction is not observed and the nuclei follow clas-
sical trajectories. For energies larger than the one-dimensional barrier By and a
Sommerfeld parameter n > 1 absorption from the elastic channel causes Fresnel
diffraction. The non-diffractive and the diffractive regimes are separated in the
figure by the thick dashed curve. This curve corresponds to a grazing angular mo-
mentum £g,h = 10Ah. The term ‘grazing’ refers to the situation where the nuclei
just touch.

For large values of the pattern parameter

2n

=TT (1.68)

p

the de Broglie wave length is very much smaller than the dimensions of the in-

teraction zone. This is equivalent to the limiting case of geometrical optics where

140W E. Frahn, Treatise on Heavy Ion Science, Vol. 1, Plenum Press, NY (1984) 135.
141W.E. Frahn, Diffractive Processes in Nuclear Physics, Clarendon, Oxford (1985).
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Figure 1.15: Diffraction properties of nuclear reactions as a function of Sommerfeld parameter

n and energy E.,,. The diffraction properties of the reactions studied in this work are indicated
by the connected symbols.

diffraction effects are negligible. Consequently, for very large n and large p the
nuclei follow almost classical trajectories.

1.6.2 Unification of Fusion and Scattering Theory

The understanding of sub-barrier fusion enhancement as a phenomenon which
depends on the internal degrees of freedom of the binary system challenges the
traditional approach to nuclear reactions, which describes quasi-elastic scattering
and fusion with two unrelated formalisms. Traditionally quasi-elastic scattering is
treated as a ‘microscopic’ process'*? within the frame-work of the Distorted-Wave-

Born-Approximation and coupled-channels theories, whereas fusion is considered a

142

see e.g. Treatise on Heavy Ion Science, Vol. 1, Plenum Press, NY (1984).
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143 which does not depend on the nuclear structure, but only

‘macroscopic’ process
on the mass, charge and the shape of the reactants. It is now obvious from the ex-
perimental data, that the dynamics of quasi-elastic scattering and fusion are closely
related. There are several indications of correlations between nuclear structure ef-

fects in fusion and quasi-elastic scattering!44.

These correlations are particularly
obvious for quasi-elastic transfer reactions, such as one neutron transfer. It has
been found'*5:1*¢ that similar to fusion the total one neutron transfer cross sections
at energies well above the Coulomb barrier do not depend on the nuclear structure
of the reactants but only on the transfer Q-value and neutron binding energies.
However, as for fusion, at energies of the order of the Coulomb barrier energy a
strong nuclear structure dependence is observed**’.

In addition, it has been found that the isotopic variations of the one neutron
transfer cross sections correlate with the variations in sub-barrier fusion enhance-
ment. Among the three possible combinations of *¥Ni and ®Ni, for which the
sub-barrier fusion enhancement has been discussed in Section 1.4.3, the system
*®Ni + ®4Ni with the largest sub-barrier fusion enhancement shows also the largest
one neutron transfer cross sections'*®. The same correlation is observed'*® for 4°Ca
+ 49*Ca and for the reactions of 0 and *®Ni with various tin isotopes*®°.

The experimental evidence for correlations between fusion and quasi-elastic re-
actions demands a unified model of nuclear reactions which treats the reflected
and the transmitted flux on the same footing. Such a unified model, based on the

Hamiltonian 1.1, is now gradually emerging.

1.7 Objectives of this Study

It has been illustrated in the previous sections, that reactions of the nuclear binary
system at energies of the order of the Coulomb barrier energy depend sensitively on

the internal structure of the system. There is evidence that fusion and quasi-elastic

1435ee e.g. U. Mosel, Treatise on Heavy Ion Science, Vol. 2, Plenum Press, NY (1984) 3.

144K .E. Rehm, Proc. of XII Workshop on Nucl. Phys., Argentina, World Scientific (1990) 212.
15A.M. van den Berg et al., Phys. Lett. B 194 (1987) 334.

146F.L.H. Wolfs et al., Phys. Rev. C 45 (1992) 2283.

147W. Reisdorf et al., Z. Phys. A 342 (1992) 411.

148]. Wiggins et al., Phys. Rev. C 31 (1985) 1315.

149H.A. Aljuwair et al., Phys. Rev. C 30 (1984) 1223.

150W. Henning et al., Phys. Rev. Lett. 58 (1987) 318.
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scattering are correlated in this dependence.

The internal degrees of freedom of the system couple to the relative motion
when the nuclei approach each other. In the eigen-channel model the couplings
can be thought to generate a distribution of potential barriers which replace the
one-dimensional Coulomb barrier. The understanding of the couplings has been
improved recently through the realization that this barrier distribution determines
the transmitted flux. A technique has been developed to extract representations of
the barrier distribution from precisely measured fusion excitation functions. These
representations are direct evidence for the occurrence of channel-coupling in fusion.

Inspired by the quest for a unified approach to the nuclear binary problem, it is
an objective of this thesis to extend the technique of extracting barrier distribution
representations to experimental data for quasi-elastic scattering, which dominates
the reflected flux in nuclear collisions at barrier energies. The aim is to establish
experimentally direct evidence of the influence of barrier distributions on quasi-
elastic channels, such as elastic and inelastic scattering and transfer reactions. It
is intended to achieve this by extracting representations of the barrier distribution
from quasi-elastic scattering excitation functions. Such representations should be
complementary to that obtainable from fusion data. It is aimed to test the validity of
the quasi-elastic scattering representations of the barrier distribution experimentally
over a wide range of projectile and target combinations including 0, 32S and “°Ca
as projectile and 092967 144154Gr, 186y and 298P as target nuclei.

With the inclusion of quasi-elastic scattering the novel technique to extract
barrier distribution representations from experimental data should allow the inves-
tigation of the nuclear barrier problem in a complete fashion before invoking any
theoretical calculations. It is intended to use quasi-elastic scattering and fusion rep-
resentations of the barrier distribution to explore couplings to the dominant internal
degrees of freedom of the nuclear binary system, which are collective excitations and
nucleon transfer. Among the collective excitations, double phonon excitations have
been discovered to be of particular importance in some system. Since there is some
evidence'! for double phonon states in °»%Zr, and the barrier distributions of 160,
?8Si + 2°8Pb appear to be affected'®*'% by such excitations in 208PY, this work
aims to explore these findings further by studying the systems “°Ca + °%%7r and
32g 4 208p},.

1*1G. Molnér, et al., Nucl. Phys. A 500, (1989) 43.
152C.R. Morton et al., Phys. Rev. C 52 (1995) 243.
'53D.J. Hinde et al., Nucl. Phys. A 592 (1995) 271.
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It is also planned to investigate the relative importance of collective excita-
tions and of nucleon transfer for the fusion of the nuclear binary system. The
effect of one and two neutron transfer on fusion has been demonstrated for some
reactions'®*1%. However, in these systems the effect is rather smaller than expected
from the strong phenomenological correlations discussed in Section 1.6.2, which are
observed between fusion and transfer reactions in other systems. The comparison
of the two reactions *°Ca + **Zr should be particularly well suited to isolate the
effects of neutron transfer. The projectile *°Ca is a closed shell nucleus, so that
its influence on the fusion process may be negligible. Then the fusion dynamics
should be dominated by the properties of the two target nuclei. As pointed out in
Section 1.3.1, among the even-even zirconium isotopes *Zr is the one which is most
similar to the neutron-magic %°Zr. Both are spherical with similar shell structures.
In both cases the lowest quadrupole and octupole states are moderately collective
and may be expected to play a similar role in the fusion dynamics. The two reac-
tions differ, however, distinctively in their neutron transfer Q-values. In the heavier
system up to 8 neutrons can be transferred with positive Q-values from *6Zr to *°Ca.
In contrast, the @-values for the respective channels in the lighter system are all
negative. It has been proposed'®® that the flow of neutrons between the reactants
may initiate fusion at large inter-nuclear separations. As has been pointed out in
Section 1.5.4, neutron-flow is expected to correspond to a flat barrier distribution
with the left hand edge of the distribution being the lowest energy for which the
distance of closest approach allows neutrons to transfer between the two potential
wells'®”. If neutron-flow occurs, the system *°Ca + %Zr is an ideal candidate for it
and the effect should be reflected in the barrier distribution.

The observation of neutron-flow would establish the missing link between the
two main theoretical approaches to the fusion of the nuclear binary system, which
are based on the truncation and the macroscopic limit of the generalized barrier
problem, respectively. Whereas coupling to strong collective excitations appears
to dominate in lighter systems, which can be described in the truncation limit,
massive nucleon transfer and dissipation are observed for heavy systems demanding
a description within the macroscopic limit. The understanding of the transition

between the truncation and the macroscopic limit in the nuclear binary system

154C.R. Morton et al., Phys. Rev. Lett. 72 (1994) 4074.
155 A.M. Stefanini et al. Phys. Rev. C 52 (1995) R1727.
155p.H. Stelson, Phys. Lett. B 205 (1988) 190.

157W. von Oertzen et al. Z. Phys. A 326 (1987) 463.
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would be beneficial for the further exploitation of this system as a micro-laboratory

of the generalized barrier problem.



