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Abstract

This study investigates the fusion and scattering of nuclei at energies spanning
the Coulomb barrier. The coupling of the relative motion of the nuclei to internal
degrees of freedom can be thought to give rise to a distribution of potential barriers.

Two new methods to extract representations of these potential barrier distribu-
tions are suggested using the eigen-channel model. The new techniques are based on
measurements of quasi-elastic and elastic backscattering excitation functions, from
which the representations are extracted by differentiation. A third method utiliz-
ing transfer excitation functions is introduced using qualitative arguments. The
techniques are investigated experimentally for the reactions 60 + 92Zr, 1441545
188W and 2%8Pb. The results are compared with barrier distribution representations
obtained from fusion data. The methods are further explored using the systems
“0Ca + %9%Zr and 32§ + 208Pb, for which scattering and fusion excitation functions
have been measured. The new barrier distribution representations are consistent
with the one from fusion. They are direct evidence of the effects of the internal
degrees of freedom on channels other than the fusion channel.

The new representations are, however, less sensitive to the barrier distribu-
tion compared to their fusion counterpart. This observation is investigated using
coupled-channels calculations. They suggest that residual weak reaction channels,
which are not included in the coupling matrix, are responsible for the reduction in
sensitivity. In the case of quasi-elastic scattering a distortion of the barrier struc-
ture above the average barrier is observed. This effect appears to be due to the
de-phasing of the scattering amplitudes contributing to each eigen-channel. Using
the heaviest system, 3*S + 2%Pb, it is demonstrated that there is no improvement
in sensitivity to the barrier distribution for systems with large Sommerfeld param-
eters. This suggests that diffraction effects are not likely to be the cause of the
sensitivity reduction.

The new techniques may be employed successfully in systems with pronounced



barrier structure below the average barrier. This is the case for the reactions *Ca
+ 9%%7Zr. It is shown that for these systems the quasi-elastic scattering and the
fusion representations of the barrier distribution contain the same information. The
extracted barrier distributions for the two reactions are distinctively different. They
are compared to assess the relative importance of collective excitations and neutron
transfer in fusion. Exact coupled-channels calculations show that the distribution
for **Ca + Zr arises from coupling of the relative motion to double phonon exci-
tations of *Zr. Further calculations suggest that the reaction **Ca + %Zr involves
additional coupling to sequential neutron transfer, which is proposed to be a pre-
cursor of neutron-neck formation.

Double phonon excitations are also seen to be important in the system 32§ +
208Pb, for which the barrier distribution representations show in addition signatures

of one and two neutron transfer.
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A Work Justified by Curiosity

A project as elaborate as that described in this thesis requires a motivation and
in these days, which are ruled by the shortage of both time and money, it is also
expected to have a justification. Unfortunately, the argument that science is the
educated expression of our curiosity about the world surrounding us, does not al-
ways find recognition anymore. Increasingly, the term wealth creation is used in
connection with research as an allegedly new aspect of it. The advocates of this
fashionable slogan seem to forget that the overwhelming part of the materialistic
wealth in modern society is based on one or another scientific work of the past®.

It appears necessary to recall that most of the revolutionary discoveries were not
the result of a clever interplay between financial investment and application-oriented
technology development. On the contrary, they arose often from an uncoordinated
research community of little-recognised individuals, who were motivated by enthu-
siasm and curiosity. The lack of recognition and interest by the majority of their
contemporaries was not necessarily a disadvantage, since it provided these few with
the freedom to explore aspects of nature which were often obscure to nearly every-
one else at the time?. A second, no less important reason for their success was the
free exchange of ideas within the research community which was rarely hindered by
economical or military interests.

Confining modern scientists to a few research tracks chosen by the political
process and transferring those to industry puts in jeopardy both intellectual freedom
and the unrestricted exchange of ideas. This will eventually harm the scientific and
technological advancement and as a consequence may even lead to the opposite of
wealth creation, namely wealth reduction.

The work presented in this thesis is a contribution to our advancement in un-

'Physics and Industry, Proc. Acad. Sess., XXI Ge. Ass. IUPAP, ed. E. Maruyama, H.
Watanabe, Lec. Not. Phys. 435, Springer (1993).

2U. Wengenroth, Historische Aspekte des Forschungs- und Innovationsprozesses, in Von der
Hypothese zum Produkt, Stifterverband fiir die Deutsche Wissenschaft (1994).



derstanding nature and in particular the atomic nucleus and its constituents. It
was driven by enthusiasm and curiosity and explores new grounds which have never
been sighted before. This is its sole justification. The project brings together two
aspects of nuclear physics which have often been pursued as two different lines of
thought: nuclear structure and nuclear reactions.

The experimental results demonstrate that nuclear reactions at Coulomb bar-
rier energies sensitively depend on the internal structure of the participating nuclei.
These reactions manifest an important special case of the generalized barrier prob-
lem, which attempts to describe the motion of a particle coupled to a many-particle
environment over a potential barrier. The coupling can hinder or assist this motion
depending on the properties of the environment. Nuclear reactions are unique in
nature in enabling a comparison of the effects on the barrier problem of different
environmental couplings within the same physical system. Thus their study ben-
efits our general understanding of the barrier problem, which is of fundamental

importance in nature.

The larger part of the experiments were carried out in collaboration with Dr. J.R.
Leigh, Dr. D.J. Hinde, Dr. M. Dasgupta, Prof. J.O. Newton, Dr. C.R. Morton,
Mr. J.C. Mein and Dr. R.C. Lemmon at the Nuclear Physics Department of the
Research School of Physical Sciences and Engineering of the Australian National
University in Canberra. The nuclear reactions **Ca + 9%7r were studied in collab-
oration with Prof. A.M. Stefanini, Dr. L. Corradi, Dr. D. Ackermann, Dr. S. Beghini,
Dr. J.H. He, Dr. G. Montagnoli, Dr. F. Scarlassara and Dr. G.F. Segato at the Leg-
naro Laboratories of the National Italian Nuclear Physics Institute in Padua, Italy.
The experiments were set up using existing and modified equipment. The author
contributed to the construction of the fission fragment spectrometer which was em-
ployed in the measurement of the fusion excitation function for 32S + 2°%Pb. Some
theoretical aspects of this thesis have been developed together with Dr. N. Rowley
of the University of Manchester, England.

The work presented in this thesis has been or will be published in the following

papers:

o Probing Fusion Barrier Distributions with Quasi-Elastic Scattering,
H. Timmers, M. Dasgupta, D.J. Hinde, J.R. Leigh, R.C. Lemmon, J.C. Mein,
C.R. Morton, J.O. Newton, N. Rowley, Nuclear Physics A 584 (1994) 190.
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o Nuclear Multi-Particle Systems in Changing Environments,
H. Timmers, Australian & New Zealand Physicist 32, No. 3 (1995) 39.

e Barrier Distributions from Elastic Scattering,
N. Rowley, H. Timmers, J.R. Leigh, M. Dasgupta, D.J. Hinde, J.C. Mein,
C.R. Morton, J.O. Newton, Physics Letters B 373 (1996) 23.

e Strong Transfer Couplings in the Fusion of 4°Ca + °%Zr,
H. Timmers, L. Corradi, A.M. Stefanini, N. Rowley, D. Ackermann, S. Begh-
ini, J.H. He, G. Montagnoli, F. Scarlassara, G.F. Segato, to be submitted to
Physics Letters B.

o A Case Study of Collectivity, Transfer and Fusion Enhancement,
H. Timmers, L. Corradi, A.M. Stefanini, N. Rowley, D. Ackermann, S. Begh-
ini, J.H. He, G. Montagnoli, F. Scarlassara, G.F. Segato, to be submitted to
Nuclear Physics A.

The author has received the Award for Fzcellence in Postgraduate Research 1994 by
the New South Wales branch of the Australian Institute of Physics following a
lecture about this project at the University of Sydney.

The results of this work have also been reported in seminars at

the Congress of the Association of Asia Pacific Physical Societies, Brisbane,
the Gesellschaft fiir Schwerionenforschung, Darmstadt,

the Legnaro National Laboratories, Padua,

the Nuclear Science Centre, New Delhi,

the National Superconducting Cyclotron Laboratory, East Lansing,

the Argonne National Laboratory, Chicago

and the Nuclear Physics Laboratory of the University of Washington, Seattle.

The contents of this thesis are the original work of the author. No part of this thesis

has been submitted for a degree to another university.
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The thesis is structured as follows:

In Chapter 1, Introduction, the generalized barrier problem is presented. This is
followed by a description of the fusion and scattering of the nuclear binary system at
Coulomb barrier energies. At the end of the chapter the objectives of this work are
stated. Chapter 2, Ezperimental Methods, illustrates the experimental techniques
which have been applied. In Chapter 3, Probing Barrier Distributions with Quasi-
Elastic Scattering, a new method to extract information about the distribution of
potential barriers from quasi-elastic scattering is introduced and tested. An alter-
native approach based on elastic scattering is derived and discussed in Chapter 4,
Barrier Distributions from Elastic Scattering. In Chapter 5, Collectivity, Transfer
and Fusion Enhancement, the relative importance of collective excitations and of
neutron transfer for fusion is investigated for the reactions *°Ca + °%%Zr. This
investigation includes the search for signatures of neutron-flow. Chapter 6, The
Fusion of %35 + #%%Pb, discusses the importance of double phonon excitations and
one and two neutron transfer reactions for the fusion of this system. Finally, the

results of this work are summarized in Chapter 7, Summary and Conclusions.

Canberra, 15. June 1996
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