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Abstract

In this thesis we investigate advanced techniques for the readout and control of various
interferometers. In particular, we present experimental investigations of interferometer
configurations and control techniques to be used in second generation interferometric
gravitational wave detectors. We also present a new technique, tilt locking, for the read-
out and control of optical interferometers.

We report the first experimental demonstration of a Sagnac interferometer with res-
onant sideband extraction (RSE). We measure the frequency response to modulation of
the length of the arms and demonstrate an increase in signal bandwidth of by a factor of
6.5 compared to the Sagnac with arm cavities only. We compare Sagnac interferometers
based on optical cavities with cavity-based Michelson interferometers and find that the
Sagnac configuration has little overall advantage in a cavity-based system.

A system for the control and signal extraction of a power recycled Michelson interfer-
ometer with RSE is presented. This control system employs a frontal modulation scheme
requiring a phase modulated carrier field and a phase modulated subcarrier field. The
system is capable of locking all 5 length degrees of freedom and allows the signal cav-
ity to be detuned over the entire range of possibilities, in principle, whilst maintaining
lock. We analytically investigate the modulation/demodulation techniques used to ob-
tain these error signals, presenting an introductory explanation of single sideband mod-
ulation/demodulation and double demodulation.

This control system is implemented on a benchtop prototype interferometer. We dis-
cuss technical problems associated with production of the input beam modulation com-
ponents and present several solutions. Operation of the interferometer is demonstrated
for a wide range of detunings. The frequency response of the interferometer is measured
for various detuned points and we observe good agreement with theoretical predictions.
The ability of the control system to maintain lock as the interferometer is detuned is ex-
perimentally demonstrated.

Tilt locking, a new technique to obtain an error signal to lock a laser to an optical
cavity, is presented. This technique produces an error signal by efficient measurement of
the interference between the TEM00 and TEM10 modes. We perform experimental and
theoretical comparisons with the widely used Pound-Drever-Hall (PDH) technique. We
derive the quantum noise limit to the sensitivity of a measurement of the beam position,
and using this result calculate the shot noise limited sensitivity of tilt locking. We show
that tilt locking has a quantum efficiency of 80%, compared to 82% for the PDH tech-
nique. We present experimental demonstrations of tilt locking in several applications
including frequency stabilisation, continuous-wave second harmonic generation, and in-
jection locking of a Nd:YAG slab laser. In each of these cases, we demonstrate that the
performance of tilt locking is not the limiting factor of the lock stability, and show that it
achieves similar performance to the PDH based system.

Finally, we discuss how tilt locking can be effectively applied to two beam interferom-
eters. We show experimentally how a two beam interferometer typically gives excellent
isolation against errors arising from changes in the photodetector position, and exper-
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imentally demonstrate the use of tilt locking as a signal readout system for a Sagnac
interferometer.
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Chapter 1

Introduction

The opening decade of the new millennium should see the first direct detection of grav-
itational waves. The construction of long base-line interferometric gravitational wave
detectors began several years ago and most detectors are expected to begin taking data
in the next few years. Although it is hoped that these original detectors will produce the
first direct detection of gravitational waves, it is expected that signals will be detected
with insufficient regularity and signal to noise ratio to learn much about the sources of
these waves.

Even before the first waves have been detected, there are plans to upgrade these in-
terferometers to give vastly improved sensitivities. It is the development of techniques
for these second generation detectors which is the focus of this thesis.

1.1 Overview of thesis structure

The work presented here falls into two general areas. The first is gravitational wave inter-
ferometer configurations. We report on various experimental investigations of different
interferometric configurations performed at the ANU over the last few years. The sec-
ond topic is a new technique for the readout and control of optical interferometers. This
technique, tilt locking, was discovered due to the researchers exposure to frequency lock-
ing and autoalignment techniques used in gravitational wave detectors. Although useful
for some purposes in gravitational wave detectors, tilt locking can be used in a range of
applications outside this field.

This thesis is divided into three parts as shown in figure 1.1. Each part begins with
a literature review and a motivation for the work presented. The first part of the thesis
(chapters 2-4) is intended to equip the reader with the background knowledge required
for the remainder of the thesis.

In chapter 2 we provide an overview of the field of gravitational wave detection. This
chapter is intended to provide a basic understanding of gravitational wave detection and
give the reader an impression of the current state of gravitational wave research. A more
technical discussion of interferometer configuration is reserved for chapter 5.

Chapter 3 is concerned with quantum noise and its implications. We provide a cal-
culation of the phase noise of an electric field based on a few simple assumptions. We
present an experimentally relevant model of a single mode and multimode coherent state
and use this to calculate the quantum fluctuations in the beam position.

Chapter 4 presents an introduction to modulation and demodulation schemes and
their application to interferometer control. We introduce single sideband modulation and
demodulation, and double demodulation, as methods for controlling interferometers.
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Figure 1.1: Thesis structure.

The second part of the thesis (chapters 5-7) gives an overview of interferometer con-
figurations and presents the interferometer prototype experiments.

Chapter 5 provides a review of interferometric configurations. This discussion is mo-
tivated by energy storage and storage time considerations. The chapter includes a deriva-
tion of the frequency response of resonant sideband extraction.

In chapter 6 we present an investigation of Sagnac interferometers for gravitational
wave detectors. In particular, we report the first demonstration of resonant sideband
extraction in a Sagnac interferometer.

Chapter 7 contains the main work of this thesis. The first part of this chapter presents
a control system for a power recycled Michelson interferometer with resonant sideband
extraction. This control system is implemented in a benchtop prototype interferometer
and its performance and features assessed in the latter part of the chapter.

The final part of this thesis (chapters 8-11) presents tilt locking, a technique used for
obtaining an error signal for an interferometer.

In chapter 8 we provide a brief introduction to other frequency locking techniques
before an introduction to tilt locking.

In chapter 9, using the results of chapter 3, we derive the shot noise limited perfor-
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mance of tilt locking. For comparison the same derivation is carried out for the PDH
technique.

Chapter 10 presents three experimental demonstrations of tilt locking in three ap-
plications: for laser frequency stabilisation, second harmonic generation, and injection
locking of a medium power laser.

In chapter 11 we explain how tilt locking can be applied to two beam interferometers.
We present experimental demonstrations of tilt locking in a Mach-Zehnder and a Sagnac
interferometer.

Chapter 12 presents the conclusions of this thesis. Possible directions for further work
are also discussed.

1.2 Publications

Much of the work presented here appears in international journals or conference pro-
ceedings. Below is a list of publications resulting from work in this thesis.

D. A. Shaddock, M. B. Gray, and D. E. McClelland, Experimental demonstration of resonant
sideband extraction in a Sagnac Interferometer, Applied Optics 37, 7995 (1998).

M. B. Gray, D. A. Shaddock, C. C. Harb, and H.-A. Bachor, Photodetector designs for low
noise, high power and broad band applications, Rev. Sci. Instrum. 69, 3755 (1998).

D. A. Shaddock, M. B. Gray, and D. E. McClelland, Frequency locking a laser to an optical
cavity by use of spatial mode interference, Opt. Lett. 24, 1499, (1999).

B. B. Buchler, D. A. Shaddock, T. C. Ralph, M. B. Gray, and D. E. McClelland, Suppression
of classic and quantum radiation pressure noise by electro-optic feedback, Opt. Lett. 24, 259
(1999).

M. B. Gray, D. A. Shaddock, and D. E. McClelland, A power-recycled Michelson interfer-
ometer with resonant sideband extraction, in Gravitational Waves: proceedings of the Third
Edoardo Amaldi Conference 1999, Pasadena ed. S. Meshkov, 193 (2000).

D. E. McClelland et. al., Status of the Australian Consortium for Interferometric Gravitational
Astronomy, in Gravitational Waves: proceedings of the Third Edoardo Amaldi Conference
1999, Pasadena ed. S. Meshkov, 140 (2000).

D. A. Shaddock, B. C. Buchler, W. C. Bowen, M. B. Gray, and P. K. Lam Modulation-free
control of a continuous-wave second harmonic generator, J. Opt. A: Pure & Appl. Opt. 2, 400
(2000).

K. G. Baigent, D. A. Shaddock, M. B. Gray, and D. E. McClelland, Laser intensity and
frequency stabilisation for a measurement of thermal noise, General Relativity and Gravitation
32, 399 (2000).

D. A. Shaddock and M. B. Gray, Frequency locking a laser to an optical cavity, International
Provisional Patent, Australian National University, June (2000).
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D.E. McClelland, D.A. Shaddock and M.B. Gray, RSE vs a power recycled, FP Michelson
with injected squeezed vacuum, in Gravitational Wave Detection II, Proc. of the Second
TAMA Conference, ed. S. Kawamura and N. Mio, Universal Academic Press, 355 (2000).

D. Ottoway, M. B. Gray, D. A. Shaddock, C. Hollitt, P. J. Veitch, J. Munch and D. E. Mc-
Clelland, Stabilization of injection-locked lasers using spatial mode interference, to appear in
IEEE J. Quant. Electr. (2001).
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Chapter 2

Gravitational waves and their
detection

It was nearly a century ago that Einstein published his general theory of relativity [1].
One of the predictions of this theory was the existence of gravitational waves [2]. These
waves propagate at the speed of light as perturbations in the curvature of space-time.
Although many other predictions of general relativity have since been experimentally
verified there has as yet been no direct detection of gravitational waves.

2.1 What are gravitational waves?

Gravitational waves can be understood by analogy to electro-magnetic waves [3]. Just as
radio waves are produced due to the motion of a particle with an electric charge, so too
are gravitational waves emitted due to the motion of a mass. Both are transverse waves
that propagate at the speed of light. One important difference is that both positive and
negative charges exist for electro-magnetic interactions, whereas the mass of a particle
is always positive. As a consequence, the lowest mode of oscillation for a gravitational
wave is quadrupole in nature [4] (compared to the dipole nature of electro-magnetic ra-
diation).

(a) (b) (c)

Figure 2.1: Effect of a gravitational wave on a ring of test particles, (a) before interaction, (b)
during the first half of the gravitational wave period and (c) during the second half of the gravi-
tational wave period.

To gain an understanding of gravitational waves it is instructive to consider the ef-
fects of a gravitational wave on the distance between objects. Consider a ring of particles
floating in space as shown in figure 2.1(a). As a gravitational wave passes through these

7
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particles it will perturb the distance between them. Due to its transverse nature, a gravita-
tional wave propagating into the page will perturb the distances in the plane of the page.
For the first half of the gravitational wave period the particles will be stretched apart
in one axis (chosen here for convenience the vertical), and be brought closer together in
the perpendicular (horizontal) axis, as shown in figure 2.1(b). During the second half of
the gravitational wave period the distance between the test particles will contract in the
vertical axis and expand in the horizontal direction, as illustrated in fig 2.1(c). This is an
example of one polarisation of gravitational waves, normally referred to as (+) or h+ po-
larisation. An orthogonally polarised wave, denoted by (×) or h×, would have the axes
of the distortions rotated by 45o.

The strength of a gravitational wave is measured by its strain, h, which gives an indi-
cation of the fractional length change induced by the wave.

∆L
L
=

h
2

(2.1)

The amount of distortion shown in figure 2.1 is grossly exaggerated. Gravitational
waves which produce a fractional length change of the order of 10−21 to 10−22 are pre-
dicted to occur at the rate of only several events per year. If such a wave was to pass
between the earth and the sun, their separation would change by less than the radius of
a hydrogen atom. To detect the presence of a gravitational wave passing between two
objects, we must be able to measure the changes in their separation with unprecedented
accuracy.

There is already significant indirect evidence for the existence of gravitational radi-
ation [5]. The Hulse-Taylor Binary Pulsar, PSR1913+16 [6], is a system of two neutron
stars in an eccentric orbit. The two stars lose their energy by emitting gravitational wave
radiation, which results in a gradual shrinking of the orbit, and a corresponding decrease
in their orbital period. The timing of the pulsar can be used to determine the orbital pa-
rameters of the system including the masses of the stars. Based on these parameters, the
orbital shrinking is predicted by the quadrupole formula of general relativity [3]. These
predictions were compared with experimental observations made over several years, and
were found to agree to within the experimental uncertainty [7–9].

2.2 Why detect gravitational waves?

The motivation for the direct detection of gravitational waves is two-fold. Initially, direct
detection of gravitational waves will provide verification of the predictions of general
relativity. It is expected that gravitational radiation will become an important theoretical
tool for the understanding of relativistic systems. In addition, detailed measurements of
gravitational waves may show a weak scalar component of gravity, which is predicted
by various kinds of unified field theories [10].

The prime motivation for detecting gravitational waves is to perform gravitational
wave astronomy. If signals can be detected with sufficient signal to noise ratio then care-
ful analysis of the wave form can provide information about the sources of the waves. In
many cases this information is not accessible by other forms of astronomy. For example,
gravitational waves may provide the only direct observations of black holes. All other in-
formation about black holes is indirect, coming from their effects on gas and other objects
in their immediate environments. Measurements of the polarisation of the gravitational
waves should reveal more information about their sources, such as the orientation of the
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orbit of a binary system relative to line of sight.
The difficulty of detection of gravitational waves is a consequence of their weak in-

teraction with matter. One benefit of the faintness of this interaction is that they are not
attenuated or scattered on their way to the detector. This means that they can reveal in-
formation about areas or processes that are ordinarily obscured, such as the interior of a
supernova explosion.

Gravitational wave detection should complement existing forms of astronomy.
Through accurate timing of the arrival of gravitational waves at different detectors
around the Earth, the position of sources can be determined. Once the position is known,
this information can be used to more closely examine the same region of space with tra-
ditional forms of astronomy. As both electro-magnetic and gravitational waves are ex-
pected to travel at the same speed, this should allow complementary observations of the
same processes.

As the vast majority of our contact with the rest of the universe is through electro-
magnetic radiation, it is difficult to predict everything that this new form of astronomy
will deliver to us. Gravitational waves are emitted by the bulk motions of their sources
and not by individual motions of atoms or electrons, thus they can be expected to carry
a different kind of information about their sources. One thing that can be learnt from
experiences with other “new” astronomies, such as x-ray astronomy and radio astron-
omy, is that gravitational wave astronomy may one day begin to discover entirely new
and unexpected sources. This alone is perhaps the most compelling reason to pursue the
detection of gravitational waves.

2.3 Detection of gravitational waves

The direct detection of gravitational waves remains one of the most challenging areas of
experimental physics [11]. To achieve the target sensitivity requires pushing the limits of
physics and engineering in a number of diverse areas such as seismic isolation, high Q
suspensions, continuous-wave lasers, interferometry and materials science.

Efforts to detect gravitational waves were initiated by Joseph Weber in the 1960s [12].
This original type of detector consisted of a massive cylinder or “bar” of aluminium sus-
pended around its circumference in a vacuum chamber. A bar detector’s interaction with
a gravitational wave is similar to that of two masses joined by a spring. The passing of
a gravitational wave induces vibrations which are measured by some form of transducer
on the bar. These detectors exploit the narrow mechanical resonance of the bar to achieve
high sensitivities over a bandwidth of a few hertz around the mechanical resonance (typ-
ically several hundred hertz). The field of bar detectors remains an active area of research
with narrow band strain sensitivities approaching 10−19 [13].

2.3.1 Laser interferometric gravitational wave detectors

In the 1970s and 1980s, laser and mirror technologies were reaching the point where
gravitational wave detectors based on laser interferometers were becoming a viable al-
ternative to the bar detectors. By the early 1980s three prototype interferometers were
operating in Glasgow, Garching, and at MIT, followed shortly after by a prototype at
Caltech.

All currently planned long base-line interferometric gravitational wave detectors are
based around a Michelson interferometer. A diagram of a Michelson interferometer is
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shown in figure 2.2. The beamsplitter divides the incident light into two beams which
each propagate down the arms of the interferometer where they are retro-reflected by
the test masses. These end mirrors serve the same purpose as the test particles in fig-
ure 2.1. The beams are recombined at the same beamsplitter, where the interference is
determined by the relative optical phase of the two beams. As the interference is only
sensitive to differential changes in the length of the arms the Michelson interferometer is
particularly suited to measure the quadrupole motion induced by a gravitational wave.
If a gravitational wave of the correct polarisation passes through the Michelson interfer-
ometer, one arm of the Michelson will contract and the other arm will expand, resulting
in a phase difference of the two beams when they are recombined at the beamsplitter.
The Michelson interferometer is operated so that in the absence of a gravitational wave
signal, the light from the two arms interferes destructively (produces a “dark fringe”) at
the photodetector. When a gravitational wave perturbs the interference, some fraction of
the light will be directed towards the photodetector. The sensitive measurement of this
light will yield the gravitational wave signal.

laser beamsplitter

test mass

test mass

photodetector

Figure 2.2: Basic layout of a Michelson interferometer.

2.4 Factors affecting sensitivity

The ultimate sensitivity of a gravitational wave detector is determined by the ratio of
signal to noise in the final output, thus there are two avenues available to increase the
sensitivity of a device. The first is to increase the size of the signal in the final output.
A gravitational wave induces a fractional length change (see equation 2.1), however the
the phase change is proportional to the absolute length change ∆L. Thus the amount of
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phase change at the beamsplitter for a given gravitational wave strength can be increased
by making the interferometer arms very long. For this reason, gravitational wave detec-
tors will use kilometre scale arms.

The size of the signal can also be increased by increasing the total power of the light
in the interferometer arms. A given strength of gravitational wave couples some fraction
of the light to the photodetector, so increasing the power in the arms will also increase the
power at the dark fringe and consequently the signal. Increasing the signal in this way
also increases the contribution of displacement noises, such as thermal noise or seismic
noise (discussed below), to the final output by the same amount, and thus no advantage
is achieved if these are the limiting noise sources. However one source of noise, shot
noise, increases at a slower rate than the signal as the power is increased and thus a net
increase in sensitivity can be achieved by increasing the power where this is the limiting
noise source.

The sensitivity of a detector can also be improved by decreasing the noise in the final
output. The final noise floor of a gravitational wave detector will originate from several
different sources, each dominating the noise over different frequency ranges.

2.4.1 Shot noise

Shot noise is expected to be the dominant noise source at frequencies above a few hun-
dred hertz. This noise is quantum mechanical in origin and is a consequence of the intrin-
sic randomness of light. Shot noise at the interferometer output arises from the fluctua-
tions in phase of the beams in the interferometer arms. As described above, a Michelson
responds to phase difference in the interferometer arms. If these beams have (uncorre-
lated) fluctuations in phase, they will pass through to the photodetector in the same way
as the phase fluctuations induced by the gravitational waves. In chapter 3 we will pro-
vide a detailed calculation of the quantum mechanical phase fluctuations, showing that
the level of these fluctuations is inversely proportional to the power. As a consequence,
the shot noise limited sensitivity of a gravitational wave detector can be improved by
increasing the optical power in the arms.

The effect of this noise source on the overall sensitivity of the device can be manip-
ulated by the optical configuration of the detector. In chapter 5, we will discuss the use
of optical cavities and recycling techniques to increase the power in the arms as well as
manipulate the signal response.

2.4.2 Radiation pressure noise

In 1619 Johannes Kepler proposed that it was the pressure of sunlight that caused a
comet’s tail to always point away from the sun [14]. The pressure of light, or radiation
pressure, is important in setting the limits of a gravitational wave detector. Radiation
pressure refers to the force exerted on an object by light striking or reflecting from it. A
photon carries a momentum of h/λ, where h is Planck’s constant, and as this light is re-
flected it imparts a certain amount of momentum to the reflector. If the reflection is at
normal incidence each photon will give the object a momentum kick of 2h/λ (the fac-
tor of two is present as the photon’s direction is reversed). In a typical laser beam there
are many billions of billions of photons and the combined force on a mirror can become
considerable.

Radiation pressure in this form does not, in principle, introduce noise to the output
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of a gravitational wave detector as the average power in each arm is equal and thus the
radiation pressure is correlated. Radiation pressure noise arises from the uncorrelated
fluctuations of the power of each arm. These fluctuations in power are also quantum
mechanical in nature and originate from the random partitioning of photons into each
arm of the detector by the beamsplitter.

Radiation pressure noise is expected to be too small to limit the sensitivity of first
generation detectors. The intensity fluctuations, and thus the absolute force fluctuations
on the mirror, increase with the power until eventually a limit will be reached where
the interferometer will be equally sensitive to fluctuations of the photon number and
fluctuations of the phase of the beam. This is known as the standard quantum limit
[15, 16].

It is important to note that neither shot noise nor radiation pressure noise is effected
by the phase or intensity noise of the input laser in an ideal interferometer. This is because
these noise sources are proportional to the uncorrelated part of the fluctuations in the
arms, and all phase and intensity fluctuations coming from the laser will be completely
correlated.

2.4.3 Thermal Noise

Thermal noise [17] is expected to dominate the noise floor between a few tens of hertz
and a few hundred hertz in first generation detectors. Thermal noise refers to the motion
of the mirror due to thermal energy. It originates from three main areas: the pendu-
lum modes of the suspension, the violin modes of the suspension wires, and the inter-
nal modes of the test mass. Each of these will exhibit resonances in different frequency
ranges. Unlike bar detectors, interferometers will measure at frequencies away from me-
chanical resonances. For example, the pendulum modes are typically below and the
internal mirror modes typically above the detection bandwidth. Only the violin modes
lie inside the range of observational frequencies. Each mode of oscillation has a thermal
energy of kBT at a temperature T , where this energy is distributed across a range of fre-
quencies. To reduce the thermal noise within the measurement band, typically a very
high quality factor Q is desired. By increasing the Q of the suspension system all of the
thermal energy is condensed into a narrow region around the resonance, and thus the
influence of the thermal noise outside this region is reduced. For an excellent review of
this area see ref. [11].

2.4.4 Seismic noise

The motion of the mirrors due to seismic noise must be reduced to below the level in-
duced by gravitational waves. The typical seismic noise in reasonably quiet areas is
around 10−7/f2 m/

√
Hz at frequencies above approximately 1 Hz. In order to achieve

target strain sensitivities, seismic motion of the mirrors must be reduced by approxi-
mately 9 orders of magnitude, and even more at low frequencies. By suspending the
mirrors on pendula, the vibrations are attenuated by a factor of f2/f2

0 , for frequencies
above the resonant frequency f0. This alone does not provide the necessary isolation and
it must be used with a combination of other techniques (both active and passive) to re-
duce the noise to the desired value. This noise will be the limiting noise source of first
generation detectors at low frequencies.
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2.4.5 Gravity gradient noise

Even if seismic noise could be completely removed there would still exist a lower fre-
quency cut-off of the bandwidth of ground based detectors. This arises from gravity
gradient noise, which is the direct gravitational coupling of the test masses to their out-
side environment. Gravity gradient noise on Earth is much larger than the amplitude of
any expected waves from astronomical sources at frequencies below about 1 Hz [10].

2.5 Current status

Today there are many detectors nearing completion around the world. These include
LIGO [18], which consists of a 4 km and 2 km detector in Hanford, Washington and a
second 4 km detector in Livingstone, Louisiana in the United States, VIRGO [19], a 3 km
detector situated near Pisa, Italy, GEO600 [20], a 600 m detector outside of Hannover,
Germany and TAMA300 [21], a 300 m detector in Tokyo, Japan. All of these detectors are
due to become operational in the next few years, with target strain sensitivities of 10−22

to 10−23.

In addition to these detectors, research and development continues for a future Aus-
tralian gravitational wave detector [22]. The Australian Consortium for Interferometric
Gravitational Astronomy (ACIGA) [23] is involved in several areas of research related
to long base-line interferometers, including high power laser development, suspensions
and isolation systems, data analysis and advanced interferometric techniques. Construc-
tion of an 80 m test facility near Perth in Western Australia began in 1998 and work is
progressing well. This facility has the potential to be extended to a 4 km gravitational
wave detector which would provide the global network of detectors with its first south-
ern hemisphere component.

2.6 Space-based detectors

Looking further to the future, space-based gravitational wave detectors are essential for
the full potential of gravitational wave astronomy to be realised. Gravity gradient noise
will ultimately limit the minimum frequency at which gravitational waves can be mea-
sured on Earth. This noise source, however, is inversely proportional to the cube of the
distance from Earth and so by moving the detector into space the noise can be substan-
tially reduced. There are plans for a laser interferometer space antenna (LISA) [24] which
will consist of three spacecraft each separated by 5× 106 km, orbiting the sun. LISA will
allow measurements of gravitational waves in the frequency band of 0.1 mHz to 0.1 Hz.
Operating in the low frequency band, LISA’s sensitivity will be complementary to the
ground based detectors. LISA promises to provide signal to noise ratios of up to 103 for
events such as the coalescence of massive black hole binaries [25]. Moreover, due to the
much lower frequency range, these massive black hole binaries will be visible for many
months before coalescence. The LISA project is currently being studied by both ESA and
NASA with a view toward a collaborative mission around 2010.
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2.7 Summary

The expected sensitivity of the first generation detectors is such that the first direct de-
tection of gravitational waves may be achieved. However, to extend the detection of
gravitational waves into a useful form of astronomy will require further improvements
in the sensitivities and frequency responses of these devices. As we approach the end of
the construction phase of the first generation detectors, research and development focus
is shifting to meet the demands of second generation detectors. It is hoped that these
second generation detectors, with their improved sensitivity and source detection rates,
will herald the beginning of the new field of gravitational wave astronomy. These de-
tectors will require significant improvements in almost every area, including suspension
systems, mirrors, lasers and the interferometer configuration. It is this second generation
of interferometers which is the main focus of the work presented here.



Chapter 3

Quantum noise

Throughout this thesis we will be concerned with the fluctuations or noise of particular
parameters, such as laser intensity, laser phase or beam position. In practice, fluctuations
can be reduced or suppressed by the use of feedback systems. However, there exists a
fundamental limit to the final noise level. This limit is set by quantum mechanics.

In this chapter we introduce some of the methods used to calculate the quantum noise
level and perform a few key calculations, the results of which will be used in subsequent
chapters. In the next section we discuss the Heisenberg Uncertainty Principle and its con-
sequences. In section 3.2 we derive the quantum phase noise for a Poissonian distribu-
tion using classical techniques with a few basic assumptions. Section 3.3 introduces the
linearised operator approach to calculating quantum noise. This approach is extended
in section 3.6 to deal with multi-spatial modes to calculate the quantum limit of beam
position noise.

3.1 The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle states that it is impossible to obtain simultaneous
precise knowledge of two noncommuting variables. If two observables are related to
each other via the commutator relation,

[Ô+, Ô−] = ε (3.1)

then the following uncertainty relation exists between the standard deviations of these
observables,

∆Ô−∆Ô+ ≥ 1
2
|ε| (3.2)

The best known form of the uncertainty principle is the position-momentum uncer-
tainty relation. In this thesis we will be most concerned with the photon number-phase
uncertainty relation for light,

∆n∆φ ≥ 1
2

(3.3)

3.2 Classical calculations of quantum noise

In this section we will derive the level of quantum phase noise of a coherent state based
on 2 assumptions: (i) the variance of the photon number of a coherent state is equal to the
photon number and (ii) the fluctuations in the electric field are the same in all directions.
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Consider a measurement of the number of photons, n, recorded over a detection in-
terval of time τ . We can build up a probability distribution by plotting a histogram of n
over many such detection intervals. For a coherent state this photon number distribution
is well approximated by a Poissonian distribution. The distribution has the characteristic
that the variance, (∆n)2, is equal to the average photon number n̄. Thus for a coherent
state we have a standard deviation of∆n =

√
n̄.

We now calculate the equivalent electric field standard deviation due to the photon
number fluctuations. Given that E∗E = P = hνn, we can write,

|E| =
√
hνn (3.4)

Using the relation,

∆|E| = d|E|
dn
∆n

=
1
2

√
hν

n
∆n

=
√
hν

2
(3.5)

This is an interesting result as it shows that the variation in the magnitude of the electric
field is a constant and thus independent of the photon number. In fact, even if the pho-
ton number were zero the fluctuations in the electric field would remain1. This intrinsic
variance is referred to as the vacuum fluctuations and is an important concept which will
be dealt with later in this chapter.

∆φ

E

Re(E )

Im
(E

)

φ

∆|E |

Figure 3.1: Ball-on-stick picture showing the coherent amplitude as the stick with quantum noise
represented by the outline of the circle or “ball”. The shaded region represents the probability
distribution of E where the circle is the standard deviation of this distribution.

Consider the ball-on-stick picture of figure 3.1. The stick represents the average value

1Although this simple proof is not strictly valid for small photon numbers, the result still holds.
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of the electric field and the ball represents the statistical deviation around this point. For
a coherent state the ball is perfectly round, indicating that the fluctuations are isotropic.
We can use this property to calculate the phase noise ∆φ directly from ∆|E|.

∆φ =
√
hν

2
.
1√
hνn̄

=
1
2
√
n̄

(3.6)

Note that together∆n =
√
n̄ and equation 3.6 obey the uncertainty principle,

∆n∆φ =
√
n̄
1
2
√
n̄
=
1
2

(3.7)

The significance of the equality is that the variances are the minimum permitted by the
uncertainty principle and such a state is a minimum uncertainty state.

3.3 Quantum mechanical calculations

If the fluctuations of an electromagnetic field are small compared to its steady state am-
plitude, we can represent the annihilation operator [26] by,

â(t) = α + δâ(t) (3.8)

where all of the fluctuations are contained in the operator δâ(t), and α is a complex num-
ber representing the classical steady state component. With reference to figure 3.1, δâ(t)
is analogous to the ball and α represents the stick (we assume that α is real for the calcu-
lations below). The fluctuating term has an average of zero, that is 〈δâ(t)〉 = 0. We will
refer to the annihilation operator as a function of time simply as â and as a function of
frequency as ˜̂a (the Fourier transform of â).

The photon number operator, n̂ is given by â†â (the operator analogue of P = E∗E),

â†â = (α+ δâ†)(α+ δâ) (3.9)

= α2 + α(δâ+ δâ†) + δâ†δâ (3.10)

In the linearised formalism [27, 28], |δâ| � |α|, and we can neglect terms containing
higher order products of the quantum fluctuations, δâ. Equation 3.10 becomes,

n̂ ≈ α2 + α(δâ+ δâ†) (3.11)

The average photon number can be found by taking the expectation value of equation
3.11. The second term in this equation contains terms that have a zero average, thus the
expectation value of the photon number operator is equal to,

〈n̂〉 = α2 (3.12)

The variance of the photon number is given by,

(∆n̂)2 = 〈n̂2〉 − 〈n̂〉2 (3.13)

= 〈(â†â)2〉 − 〈â†â〉2 (3.14)
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= α2(δâ+ δâ†)2 (3.15)

= α2δX̂+
a

2
(3.16)

where δX̂+
a = (δâ + δâ†) is the amplitude quadrature fluctuations of the field. For a

coherent state δX̂+
a = 1, and the fluctuations in the photon number are characterised by,

(∆n̂)2 = α2 (3.17)

= 〈n̂〉 (3.18)

This indicates that, for a coherent state, the variance of the photon number operator is
equal to its expectation value. This is in agreement with the classical expression for the
noise, ∆n =

√
n̄ given in section 3.2.

The vacuum state is a special case of the coherent state which contains fluctuations
but no coherent amplitude. As we will see in section 3.4 and 3.6, vacuum states can be
used to model loss in an optical system. The annihilation operator for the vacuum, v̂, can
be represented by,

v̂ = δv̂ (3.19)

However the amplitude quadrature fluctuations of the vacuum are the same as all coher-
ent states.

δX̂+
v = (δv̂ + δv̂†) = 1 (3.20)

3.4 Model for a coherent state

The quantum state most closely resembling a laser is the coherent state [29]. A coherent
state can be expressed as an infinite sum of Fock states or number states. This expres-
sion may be somewhat unsatisfying for the experimentalist. When can it be assumed
that a laser is a coherent state? How can a coherent state be produced experimentally?
Figure 3.2 shows one possible scheme for production using a modecleaner cavity. The
modecleaner is assumed to be perfect, in the sense that is has an infinite free spectral
range (FSR), infinitesimal bandwidth, with 100% transmission exactly on resonance and
0% everywhere else.

Consider the linearised form of the input field annihilation operator,

˜̂a(ω) = αδ(0) + δ˜̂a(ω) (3.21)

where δ(0) is a delta function at ω = 0. If we assume that the input field is on resonance
with the modecleaner cavity then the only component of the input field which will make
it to the output is α, and all of the fluctuations will be reflected off. The output field at
all other frequencies will be that made up of the field incident on the empty port of the
cavity, in this case the vacuum fluctuations. The output field annihilation operator will
be given by,

˜̂
b(ω) = αδ(0) + δ˜̂v(ω) (3.22)

This field has all the characteristics of a coherent state and will be used as a working
model of a coherent state for subsequent discussions and calculations.
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input
beam

perfect
modecleaner

cavity
mode

vacuum
input

reflected
noise

coherent state
output

α+δv̂

v = δvˆ ˆ

α+δâ

δâ 

Figure 3.2: Method for producing a coherent state with a perfect mode cleaner.

3.5 Hermite-Gauss modes

A large part of this thesis is concerned with measuring the interference between different
spatial modes. The aim of this section is to introduce the mathematical formalism used
to describe these modes and their properties.

We choose the Hermite-Gauss modes [30, 31] as a basis for describing the transverse
spatial beam profile. The Hermite-Gauss modes are made up of the Hermite polynomials
multiplied by a Gaussian function. The first few Hermite polynomials are listed below.

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2
H3(x) = 8x3 − 12x (3.23)

Subsequent Hermite polynomials can be found using the recurrence relation,

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (3.24)

One important property of the Hermite polynomials is the orthogonality relation,
∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
√
π2nn!δn,m (3.25)

where δn,m is the discrete delta function. Note that the integral only results in zero when
the factor of e−x2

is included in the integrand.
The Hermite-Gauss modes are obtained by multiplying the Hermite polynomials

(with an argument
√
2x instead of x) by a Gaussian function. We denote the nth Hermite-
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Gauss mode by un(x).
un(x) = Hn(

√
2x)e−x2

(3.26)

The orthogonality of the Hermite-Gauss modes follows directly from the orthogonal-
ity relation for the Hermite polynomials (equation (3.25)

∫ ∞

−∞
un(x)um(x)dx =

∫ ∞

−∞
Hn(

√
2x)e−x2

Hm(
√
2x)e−x2

dx

=
∫ ∞

−∞
Hn(

√
2x)Hm(

√
2x)e−2x2

dx (3.27)

we now make the substitution x′ =
√
2x (and dx′ =

√
2dx) and so equation (3.27) be-

comes, ∫ ∞

−∞
un(x)um(x)dx =

1√
2

∫ ∞

−∞
Hn(x′)Hm(x′)e−x′2dx′

=
√
π√
2
2nn!δn,m (3.28)

For convenience we choose to use the normalised versions of the Hermite-Gauss
modes, which satisfy the orthonormality condition of equation (3.29).

∫ ∞

−∞
un(x)um(x)dx = δn,m (3.29)

In general the transverse electric field distribution is a two dimensional function of
x and y. Different spatial modes can be present in each dimension and so the two di-
mensional electric field will be represented by umn(x, y)where m and n denote the mode
number in the x and y directions respectively. We will be primarily concerned with the
first two Hermite-Gauss modes u00(x, y) and u10(x, y). If we assume that the entire beam
is detected in the y direction we can use the one dimensional version of the modes u0(x)
and u1(x) without loss of generality. These modes are related to the two dimensional
version by,

u0(x) =
∫ ∞

−∞
u0m(x, y)dy (3.30)

u1(x) =
∫ ∞

−∞
u1n(x, y)dy (3.31)

Although this is true for all m and n, unless otherwise mentioned it should be assumed
that m = n = 0 in equations 3.30 and 3.31.

The electric fields of the first two Hermite-Gauss modes, the TEM00 and TEM10 modes
are displayed below.

u0(x) =
(
2
π

)1
4

(
1
w

) 1
2

e
−
(

x2

w2

)
(3.32)

u1(x) =
(
2
π

)1
4

(
1
w

) 3
2

2xe
−
(

x2

w2

)
(3.33)

The beam radius, w, has been included in the expressions. The electric fields from equa-
tions 3.32 and 3.33 are plotted in figure 3.3.
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Figure 3.3: (a) TEM00 and (b) TEM10 as a function of x/w.

3.6 Quantum limit of beam position noise

In this section we show how the quantum noise of the higher order Hermite-Gauss modes
leads to fluctuations of the beam position. A knowledge of this noise floor will be re-
quired to calculate the signal to noise ratio of tilt locking in chapter 9. In particular, we
are interested in the difference in power measured by each element of a two element pho-
todiode. First we need to expand our definition of a coherent state to incorporate spatial
modes.

Consider the mode cleaner of figure 3.4. We again assume this to be a “perfect” mode
cleaner, that is, it has a transmission of unity for the TEM00 mode (on resonance) and
is completely reflective for all other frequencies and higher order spatial modes. The
operator for the u0(x)mode at the input will once again be given by,

˜̂a(ω) = αδ(0) + δ˜̂a(ω) (3.34)

This field at the input will contain other higher order spatial modes. However, these
higher order modes are reflected from the cavity at the input, and thus they must neces-
sarily have vacuum mode inputs at the output coupler. The annihilation operator for the
field at the output of this modecleaner will be,

b̂ = αu0(x) +
∞∑
i=0

δv̂iui(x) (3.35)

We now consider the power detected on a two element split photodetector. We are
interested in the difference nD between the photon numbers on the left and right halves
of the detector, nL and nR respectively.

nD = nL − nR

=
∫ 0

−∞
b̂†b̂dx−

∫ ∞

0
b̂†b̂dx

=
∫ 0

−∞
α2u2

0(x) +
∞∑
i=1

(αδv̂i + δv̂†iα)u0(x)ui(x) +
∞∑
i=1

∞∑
j=1

δv̂†i δv̂jui(x)uj(x)dx

−
∫ ∞

0
α2u2

0(x) +
∞∑
i=1

(αδv̂i + δv̂†iα)u0(x)ui(x) +
∞∑
i=1

∞∑
i=j

δv̂†i δv̂jui(x)uj(x)dx
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Figure 3.4: Production of a coherent state where higher order Hermite-Gauss modes are included.

(3.36)

Equation (3.36) shows the photon number on each side of the detector has three contri-
butions. The first is the standard power term and is equal on both sides of the detector
(due to the symmetry of the u0(x) mode) and thus will be cancelled by the subtraction.
The second term is an interference term between the u0(x) input mode and the higher
order modes. The third term arises from the powers of the vacuum modes and their in-
terference. This term is of second order and can be neglected, which leaves us with the
slightly simpler equation,

nD =
∫ 0

−∞

∞∑
i=1

(αδv̂i + δv̂†iα)u0(x)ui(x)dx

−
∫ ∞

0

∞∑
i=1

(αδv̂i + δv̂†iα)u0(x)ui(x)dx (3.37)

To aid the analysis we introduce a new mode2, which we refer to as the flipped mode,
denoted by uf(x) and defined as,

uf (x) = u0(x) for x ≤ 0
= −u0(x) for x ≥ 0 (3.38)

The flipped mode is just u0(x)with a phase flip at x = 0 and is pictured in figure 3.5.
Substituting uf (x) for u0(x) in equation (3.37) allows us to combine the two integrals

into a single integral from −∞ to ∞. This is important as the orthogonality relationship

2Actually, uf (x) is an infinite sum of the odd modes.
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Figure 3.5: The electric field of the flipped mode is equal to the fundamental (gaussian) mode
with a phase flip at x = 0.

only holds for an integral over all space.

nD =
∫ ∞

−∞

∞∑
i=1

(αδv̂i + δv̂†iα)uf(x)ui0(x)dx (3.39)

We now decompose uf (x) into a sum of the orthonormal Hermite-Gauss modes,

uf(x) =
∞∑
i=1

ciui(x) (3.40)

where ci is the coefficient of the ui(x)mode and can be determined in the usual way,

ci =
∫ ∞

−∞
uf(x)ui(x)dx (3.41)

Making the substitution and bringing the operators outside of the integral gives,

nD =
∞∑
i=1

ci(αδv̂i + δv̂†iα)
∫ ∞

−∞
u2
i (x)dx (3.42)

= α
∞∑
i=1

ci(δv̂i + δv̂†i ) (3.43)

The result of the integration is unity due to the normalised Hermite-Gauss basis. In
addition, (δv̂i+δv̂

†
i ) = δX̂+

vi
from equation 3.20, and therefore the difference in the photon

number on each side of the photodiode becomes,

nD = α
∞∑
i=1

ciδX̂
+
vi

(3.44)
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The variance of the photon number difference, (∆nD)2 is determined by the standard
variance equation:

(∆nD)2 = 〈n2
D〉 − 〈nD〉2

= 〈n2
D〉

= α2
∞∑
i=1

c2i 〈(δX̂+
vi)

2〉+ α2
∞∑
i=1

∑
j �=i

cicj〈δX̂+
viδX̂

+
vj〉 (3.45)

The second term contains the expectation value of the product of two uncorrelated vacu-
ums, and so will yield zero. The first term contains the expectation value of the square of
vacuum mode amplitude quadrature fluctuations which is equal to unity for each of the
i vacuum modes.

(∆nD)2 = α2
∞∑
i=1

c2i (3.46)

To determine the sum of the coefficients, c2i , we note that,

∫ ∞

−∞

∞∑
i=1

(ciui(x))2dx =
∫ ∞

−∞
u2
f (x)dx =

∫ ∞

−∞
u2

0(x)dx

∞∑
i=1

c2i

∫ ∞

−∞
u2
i (x)dx = 1

=⇒
∞∑
i=1

c2i = 1 (3.47)

Using this result and recalling that α2 = n̄ (where n̄ is the total number of photons de-
tected on both sides of the detector) gives the variance of the difference in the photon
number measured on each half of the photodetector of,

(∆nD)2 = n̄ (3.48)

which gives a standard deviation,∆nD of,

∆nD =
√
n̄ (3.49)

This result is in agreement with the working assumption that shot noise is proportional
to the square root of the power on the photodetector. Although the calculation performed
here assumes that the only coherent amplitude is in the TEM00 mode, we state here with-
out proof that this relationship holds for any one of the spatial modes, and thus any
combination of spatial modes, whose individual fluctuations can be expressed as uncor-
related vacuum modes.

In chapter 9, we will require the standard deviation of the power fluctuations due to
quantum noise. To convert from photon number to power we can make the substitutions3

∆nD = ∆PD/hν, and
√
n̄ =

√
P̄ /hν , so equation 3.49 becomes

∆PD =
√
P̄ hν (3.50)

3Where we define the measurement interval τ to be 1 second.
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where P̄ is the total power on the detector.

3.7 Summary

Based on the assumption that the electric field fluctuations are isotropic, we have demon-
strated that the presence of fluctuations in the photon number of ∆n =

√
n̄ implies a

phase fluctuation of ∆φ = 1/(2
√
n̄) radians. Thus as the power is increased the level

of phase fluctuations is decreased. This has important consequences for a gravitational
wave detector. Recall from section 2.4.1 that the phase noise of the beams in the arms is
responsible for shot noise at the dark fringe. The larger the phase noise is the larger the
phase shift due to the gravitational wave must be in order to be observed. Increasing the
power of the laser will result in lower random phase fluctuations and the ability to mea-
sure a smaller gravitationally induced phase shift. This issue will be further discussed in
chapter 5.

We have presented an experimentally based “definition” of a coherent state for single-
spatial mode and multi-spatial mode beams. Using the linearised operator formalism we
have shown that the standard deviation of the difference in photon numbers on each half
of a beam is equal to the square root of the total photon number. This result will be used
in chapter 8 for the calculation of the shot noise limited sensitivity of tilt locking.
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Chapter 4

Modulation, demodulation and
interferometer control

Most types of interferometers require constant monitoring and feedback to maintain var-
ious parameters at their correct operating points. The first step towards achieving this
is to obtain an error signal. An error signal is a signal which is proportional to the er-
ror between the current operating condition and the desired operating condition. This
error signal can then be used in some form of feedback loop to actively control or lock
a particular parameter to that desired value. Typical gravitational wave detectors will
require many parameters to be locked simultaneously, including longitudinal and align-
ment degrees of freedom. In this thesis we will concentrate only on error signals for lon-
gitudinal degrees of freedom. To produce such an error signal we use techniques which
require some form of optical modulation. This modulation is normally imposed on the
field before it enters the interferometer (as modulator crystals inside the interferometer
degrade performance by introducing extra losses and distortion). The light exiting the
interferometer is detected and demodulated and the difference between the modulation
imposed on the light and the modulation after interaction with the interferometer can be
used to determine the interferometers operating condition in the form of an error signal.
This chapter gives a basic introduction to modulation and demodulation and explains
how they can be used to obtain an error signal for various types of interferometers.

4.1 Phase and amplitude modulation

Phase modulation can be produced by modulating the length of a beam’s optical path.
This is often as simple as varying the position of a mirror, however for high speed modu-
lation the electro-optic effect of certain crystals (for example lithium niobate, LiNBO3) is
often utilised. Regardless of the method of production, the desired result is a time vary-
ing change in the phase of the field. Figure 4.1(a) shows a phasor diagram of a phase
modulated laser beam with a modulation depth of δ [radians] and an angular frequency
of ωm [radians/second]. The dotted line represents the phase of the unmodulated field.

Mathematically, the phase modulated beam can be represented by,

E0ei(ωt+δ sin(ωmt)) (4.1)

where E0eiωt is the electric field prior to modulation. As shown in figure 4.1(b), for small
modulation depth (δ � 1) the field can be decomposed into the sum of two vectors, the
original field before modulation (which is referred to as the carrier field), and a vector
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Figure 4.1: (a) Phasor diagram of phase modulation of light, and (b) the decomposition into a
carrier and sidebands (assuming small modulation depth).

at 90◦ to the carrier with a magnitude oscillating at ωm. This oscillating vector can be
further decomposed into two single sidebands of constant magnitude each offset from
the carrier in frequency by an amount ±ωm.

E0eiωt(1 + iδ sin(ωmt)) = E0eiωt
(
1 +

δ

2
eiωmt − δ

2
e−iωmt

)
(4.2)

We have retained the assumption that δ � 1. Equation 4.2 gives some useful physical
insight into phase modulation, showing that three frequencies are present. Indeed if the
phase modulated light were measured with an optical spectrum analyser, three peaks
would be present, the carrier and two sidebands.

Equation 4.2 was derived assuming sinusoidal modulation. If the same analysis is
carried out for cosine modulation the relative phase of the sidebands is different,

E0eiωt
(
1 + i

δ

2
eiωmt + i

δ

2
e−iωmt

)
(4.3)

Now each sideband has a π/2 phase shift with respect to the carrier. The vector pic-
tures representing different types of modulation are shown in figure 4.2. The top section
shows the vector diagrams for sine and cosine phase modulation. The longest vector
represents the carrier, the two shorter ones the sidebands and the straight line is the fre-
quency axis. The vector diagrams represent a snapshot in time. As the field evolves in
time the sidebands spin around the axis at a frequency of ωm relative to the carrier. The
higher frequency sideband would rotate in one direction due to its accumulation of extra
phase and the lower frequency sideband would rotate at the same rate, but in the other
direction, due to its relative phase lag. Thus the cosine PM and sine PM differ only by
a quarter of the modulation period of time evolution. This is expected as the definition
of the type of signal applied to the phase is rather arbitrary, and depends on when we
define t = 0.

Above we have assumed that the modulation depth δ is small. If this was not the case
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Figure 4.2: Vector diagrams representing sine and cosine phase and amplitude modulation.

then the modulation will introduce higher order sidebands at harmonics of ωm given by,

E = E0eiωt(J0(δ) +
∞∑
l=1

ilJl(δ)
(
eilωmt + e−ilωmt

)
(4.4)

Here Jl(δ) are the Bessel functions of the first kind. For simplicity we will neglect these
higher order sidebands for the remainder of this discussion.

The bottom section of figure 4.2 depicts the two types of amplitude modulation. Am-
plitude modulation of a field is similar to (small) phase modulation in that the same
sidebands are present, however these sidebands have a different phase relationship with
the carrier. The equivalent expression to equation 4.2 for sine amplitude modulation is,

E0eiωt(1 + δ sin(ωmt)) = E0eiωt
(
1− i

δ

2
eiωmt + i

δ

2
e−iωmt

)
(4.5)

and for cosine amplitude modulation,

E0eiωt(1 + δ cos(ωmt)) = E0eiωt
(
1 +

δ

2
eiωmt +

δ

2
e−iωmt

)
(4.6)

4.2 Interaction with an optical system

Let us now consider what happens to phase modulation as it passes through an optical
system (for example, an interferometer). For the following examples we will use sine PM
unless explicitly mentioned otherwise. Firstly we consider a system which introduces a
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∆φ

original PM in-phase AMphase shifted
sidebands

Figure 4.3: Vector diagram representing conversion of PM to in-phase AM by a phase shift.

phase shift, ∆φ to each of the sidebands but not to the carrier.

E0eiωt
(
1 +

δ

2
ei(ωmt+∆φ) − δ

2
e−i(ωmt−∆φ)

)
(4.7)

= E0eiωt
(
1 + ei∆φiδ sin(ωmt)

)
(4.8)

= E0eiωt (1 + (cos∆φ+ i sin∆φ)iδ sin(ωmt)) (4.9)

= E0eiωt (1 + iδ sin(ωmt) cos∆φ− δ sin(ωmt) sin∆φ) (4.10)

Equation 4.10 contains three terms, the carrier field, a term containing sin(ωmt) at 90◦

(perpendicular) to the carrier, and a sin(ωmt) out of phase with (but parallel to) the car-
rier. By comparison with equation 4.2 we can see that the first sine term has phase mod-
ulation symmetry with respect to the carrier. The second sine term has the same phase
relationship as equation 4.5 (apart from a sign change) and so represents a component of
amplitude modulation. As the AM and the original PM are both sine waves we refer to
this as the in-phase component of AM. This process of producing AM from PM sidebands
is described vectorially in figure 4.3. This result depends only on there being a relative
phase shift between the carrier and sidebands thus in-phase AM is also produced when
the carrier alone acquires a phase shift. The amplitude modulation component contains
information about both the magnitude of the phase shift, and its direction. In some sense,
we have managed to “encode” information about our signal,∆φ, onto the high frequency
sidebands.

We will now consider what happens as the phase modulation passes through an op-
tical system where the sidebands are differentially attenuated. If the positive sideband
magnitude is increased by a factor (1 + α) and the negative sideband is decreased by a
factor of (1− α) then the field becomes,

E0eiωt
(
1 +

δ

2
(1 + α)eiωmt − δ

2
(1− α)e−iωmt

)
(4.11)

= E0eiωt
(
1 +

δ

2
eiωmt − δ

2
e−iωmt + α

[
δ

2
eiωmt +

δ

2
e−iωmt

])
(4.12)

= E0eiωt (1 + iδ sin(ωmt) + α cos(ωmt)) (4.13)

Once again the result is the introduction of some component of amplitude modulation.
In this case however, the modulation appears in the quadrature component (i.e., the PM
was a sine wave and the AM is a cosine wave). Once again, the AM contains information
about the magnitude and sign of the signal, in this case α. The vector picture for this
process is given in figure 4.4.
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Figure 4.4: Vector diagram representing conversion of PM to quadrature AM by a differential
change in the magnitude of the sidebands.

In both cases, the introduction of phase modulation has allowed us to impose infor-
mation about the phase and amplitude response of an optical system onto the light. In
the next section we discuss how to recover this information.

4.3 Demodulation

We have seen how phase modulation allows information about the phase and amplitude
response of a system to be encoded on an optical beam. Demodulation represents the
complementary decoding process where this information at high frequencies is mixed
down to baseband. In this section we discuss several aspects of the recovery of the signal
including the detection of the light, the electronic demodulation of the detected signal,
and the filtering of the demodulated output.

4.3.1 Photodetection

Photodetection is the process of converting light into electric current. It can be described
by the photoelectric effect, that is, the process whereby electrons are liberated from mate-
rials under the action of radiant energy. In our case, the material is an InGaAs photodiode
specially designed for the purpose of photodetection. The number of liberated electrons
is proportional to the number of photons in the beam detected. As a result, the photocur-
rent is a measure of the optical power of the detected beam. The photocurrent, IPD will
be given by,

IPD = ηQEe
P

hν
(4.14)

where e is the electronic charge, h is Planck’s constant, ν [Hz] the optical frequency and P

[Watts] the optical power. The symbol ηQE denotes the quantum efficiency of the photo-
diode and represents the fraction of photons which result in an electron in the photocur-
rent. Throughout this thesis we will neglect the intricacies of photodetection and assume
that photocurrent is a measure of the optical power, ignoring quantum efficiency unless
otherwise stated. The optical power is related to the electric field by,

P = E∗E (4.15)

where E∗ denotes the complex conjugate of E . By this definition, the power is always
real and positive. Throughout this thesis we will assume that the units of electric field
are

√
Watts and so the constants normally associated with the Volts/metre definition of

electric field are not required.
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Consider a photodetection of a modulated field. For sinusoidal phase modulation,
the electric field is defined by equation 4.1, and the detected power will be,

P = E∗E

= E∗
0e

−i(ωt+δ sin(ωmt))E0ei(ωt+δ sin(ωmt))

= E∗
0E0

= P0 (4.16)

This result shows that a measurement of the power does not give an indication of the
instantaneous phase of the field. The situation is very different for the case of amplitude
modulation (see equation 4.5), and photodetection yields,

P = E∗E

= E∗
0e

−iωt(1 + δ sin(ωmt))E0eiωt(1 + δ sin(ωmt))

= P0(1 + 2δ sin(ωmt) + δ2 sin2(ωmt)) (4.17)

In this case the average power is the same as in the unmodulated case however a modu-
lation at ωm and 2ωm is present. The 2ωm component is smaller than the ωm component
and can be neglected if δ � 1.

Detection of the fields containing sidebands with both AM and PM components will
yield similar results. For example the measured power of the field in equation 4.10, pro-
duced by a relative phase shift between the carrier and sidebands will be,

P = P0[1− 2δ sin(ωmt) sin∆φ+ δ2 sin2(ωmt) cos2∆φ

+δ2 sin2(ωmt) sin2∆φ] (4.18)

The terms in δ2 have been included for algebraic clarity only and we have previously
assumed that δ � 1. With this condition equation 4.18 simplifies to give,

P = P0[1− 2δ sin(ωmt) sin∆φ] (4.19)

Similarly, for the case where the phase modulation has been altered by a differential
attenuation of the sidebands (see equation 4.13) the power is given by,

P = P0[1 + 2α cos(ωmt) + δ2 sin2(ωmt) + α2 cos2(ωmt)] (4.20)

= P0[1 + 2α cos(ωmt)] (as δ � 1, α� 1) (4.21)

In both cases the signals of interest, α and ∆φ, appear at the modulation frequency. The
terms that have been neglected due to small α and δ in equations 4.21 and 4.19 arise from
beats among the sidebands themselves and so consist of a term at zero frequency (the
power of each sideband) and a term at 2ωm (the upper sideband beating with the lower
sideband). As we will see in the next section, this small modulation depth assumption is
not necessary, as only signals at ωm are mixed down to zero frequency, thus the terms at
DC and 2ωm will not be present in the final filtered output.

4.3.2 The mixer

To recover the signal from high frequencies the photocurrent is multiplied by an elec-
tronic local oscillator. By the convolution theorem [32], a multiplication in the time do-



§4.4 Error signals for interferometers 33

main is equivalent to a convolution in the frequency domain. For multiplication by a
sine or cosine function oscillating at ωm, this results in shifting all frequency components
up and down by ωm. As we are only interested in signals near baseband in the final
output we need only consider the power fluctuations near ±ωm. Demodulation of the
photocurrent given in equation 4.19 (ignoring terms not at ±ωm) can be represented by,

IPC = −2P0δ sin(ωmt) sin∆φ × sin(ωmt) (4.22)

= −2P0δ sin∆φ
(
1
2
− cos(2ωmt)

2

)
(4.23)

A low pass filter with a cut off frequency less than ωm is then used to remove higher
frequency terms, giving a demodulated final output of,

IPC = −P0δ sin∆φ (4.24)

≈ −P0δ∆φ (for small ∆φ) (4.25)

The phase of the local oscillator determines which component of AM is present in the
final output. In the example above we used a sine wave to demodulate the photocurrent
as the signal of interest was embedded in a sine component of the photocurrent (thus the
label IPC for in-phase component was used). Had we used a cosine wave, there would
have been no DC component in the final output due to the orthogonality of sine and
cosine.

Demodulating, equation 4.21 with a cosine local oscillator is represented by,

QC = 2P0α cos(ωmt)× cos(ωmt) (4.26)

= 2P0α

(
1
2
+
cos(2ωmt)

2

)
(4.27)

where QC denotes that the quadrature component is present at the output. This gives a
final demodulated output after filtering,

QC = P0α (4.28)

Equations 4.25 and 4.28 show that we have achieved our original goal of obtaining an
output proportional to the original signals injected. As these signals contain information
about the magnitude and direction of the signal they can be used to provide an error
signal for controlling these parameters.

4.4 Error signals for interferometers

Throughout this thesis we will be discussing many different types of interferometers. All
of these interferometers fall into one of two categories, multiple beam interferometers
and two beam interferometers.

4.4.1 Multiple beam interferometers

The simplest form of multiple beam interferometer is the optical cavity, shown in figure
4.5. The fields of the optical cavity can be derived by using an infinite sum approach
[14] or by solving a series of self consistent equations [31]. The circulating field Ecirc, the
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Figure 4.5: Diagram of an optical cavity showing the incident field, Einc, the circulating field,
Ecirc, the reflected field, Eref , and the transmitted field, Etran. r1: amplitude reflectivity of input
mirror, t1: amplitude transmissivity of input mirror, r2: amplitude reflectivity of output mirror,
t2: amplitude transmissivity of output mirror.

reflected field Eref and the transmitted field Etran are related to the input field, Einc and
the single pass phase shift of the cavity, φsp, by the following expressions.

Ecirc

Einc
=

it1
1− r1r2ei2φsp

(4.29)

Eref

Einc
=

r1 − (r2
1 + t21)r2e

i2φsp

1− r1r2ei2φsp
(4.30)

Etran

Einc
=

−t1t2eiφsp

1− r1r2ei2φsp
(4.31)

The variables r1, t1, r2 and t2 represent the amplitude reflectivity and transmissivity of
the input mirror and output mirror respectively. We have used the phase convention that
there is no phase shift on reflection from a mirror and there is a π/2 phase shift on trans-
mission. This will be the case throughout this thesis unless explicitly stated otherwise.

For the most part, we will be obtaining error signals from the field reflected from
the cavity. The optical cavity can be thought of as a mirror with a frequency dependent,
complex reflectivity rcav(φsp) = Eref/Einc. Figure 4.6 shows (a) the magnitude and (b)
the phase of the rcav as a function of the single pass phase, φsp. The cavity here is lossless
and each mirror has a power reflectivity of 90%.

The real and imaginary components of the cavity reflectivity are plotted in figure
4.6(c) and (d). These are related to the magnitude, |rcav(φsp)|, and the phase shift,∆φcav =
� rcav(φsp), of the cavity reflectivity by,

Re[rcav(φsp)] = |rcav(φsp)| cos∆φcav (4.32)

Im[rcav(φsp)] = |rcav(φsp)| sin∆φcav (4.33)

In many situations it is required that a cavity be held exactly on resonance. This occurs
when the total round trip optical path is an integer number of wavelengths (2φsp = n ×
2π). One way to obtain an error signal for locking the cavity on resonance is to phase
modulate the input light. We will consider the case where the PM sidebands are well
away from the resonance of the cavity (for this demonstration we have chosen them to be
a quarter of a free spectral range away from the carrier). This means that the sidebands
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Figure 4.6: Complex reflectivity of a cavity as a function of single pass phase shift showing (a)
magnitude, (b) phase, (c) real and (d) imaginary components. Parameters used: r1 = r2 =

√
0.9,

t1 = t2 =
√
0.1

receive essentially no phase shift upon reflection from the cavity when the carrier field is
near resonance. If the cavity is exactly on resonance it reflects off the cavity with no phase
shift. When the cavity resonance drifts in one direction the carrier will acquire a phase
shift,∆φcav, while the phase of the sidebands remains unchanged. If the cavity resonance
drifts in the other direction then the sign of the phase shift is different. The phase shift
on reflection, ∆φcav , is equivalent to the phase shift introduced in section 4.2 (although
in this case it corresponds to a phase shift of the carrier and not the sidebands). This
phase shift affects the sideband symmetry in a similar manner to that depicted in figure
4.3 and thus produces the in-phase component of amplitude modulation. This amplitude
modulation is demodulated by the original electronic signal to produce an error signal.
Note that in equation 4.24 the signal is actually proportional to sin∆φ rather than just
∆φ. This means that the error signal should closely approximate the imaginary part of
the cavity reflectivity (see equation 4.33) rather than the phase of the cavity reflectivity.

We now calculate the error signal (i.e., the low pass filtered mixer output) as the cav-
ity’s single pass phase is varied from −π/2 to π/2. This can be accomplished either by
substituting the cavity phase shift for∆φ in equation 4.24 or equivalently by substituting
the imaginary part of the cavity reflectivity for sin∆φ in the same equation. The error
signal obtained when this is performed is shown in figure 4.7 with the imaginary part of
the cavity reflectivity shown for comparison (the error signal has been scaled by a factor
of 2). Around the cavity resonance the error signal is almost a perfect copy of the imagi-
nary component of the cavity reflectivity. The difference away from φ = 0 arises from the
sidebands approaching resonance and acquiring their own phase shift, thus introducing
an extra source of AM. This signal provides an excellent error signal for the control of the
cavity resonance position.

The technique described above for obtaining an error signal is known as Pound-
Drever-Hall (PDH) locking [33]. Over the last two decades it has become the standard
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technique for high performance sensing and control of interferometers.

4.4.2 Two beam interferometers

The other class of interferometers considered in this thesis is the group of two beam
interferometers. This includes the Michelson, the Sagnac and the Mach-Zehnder interfer-
ometers (see figure 4.8). These interferometers will be considered alone and coupled to
optical cavities to build more sensitive or flexible interferometer configurations.

Einc

Etran Etran
Eref

Einc

Eref

Etran

Einc

Michelson Sagnac Mach-Zehnder(a) (b) (c)

Figure 4.8: Examples of two beam interferometers: (a) Michelson interferometer, (b) Sagnac inter-
ferometer and (c) Mach-Zehnder interferometer.

Calculating the fields reflected and transmitted through a Michelson interferometer
is simpler than for an optical cavity as the two beam interferometers are single pass de-
vices, involving no optical feedback. In this thesis we will use the convention that the
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Michelson arm lengths are L−∆L and L+∆L. The transmitted field is given by,

Etran

Einc
= itbsrbs(ei

2ω(L−∆L)
c + ei(

2ω(L+∆L)
c

+π)) (4.34)

= 2tbsrbs sin(2ω∆L/c)ei2ωL/c (4.35)

where Einc is the field incident on the interferometer and rbs and tbs are the amplitude
reflectivity and transmissivity of the beamsplitter. In equation 4.35 we have assumed that
the end mirrors reflect 100% of the light and have added a π phase shift to the beam in
the longer arm so that the beams interfere destructively for ω = 0. We can choose the
carrier field to be at ω = 0 so that ω represents the frequency offset of sidebands from
the carrier. The electric fields in each arm can exactly cancel at the dark fringe regardless
of the beamsplitter ratio, as each beam experiences one transmission and one reflection.
The transfer function of equation 4.35 contains an exponential term which is a phase
delay due to propagation over a distance 2L, the average distance travelled through the
device. Ignoring this propagation delay, the transmitted electric field has no imaginary
component. Thus the in-phase component of detected photocurrent cannot be used to
obtain an error signal for locking the Michelson interferometer.

The standard method for producing an error signal to lock a Michelson interferom-
eter is Schnupp modulation [34]. It is to be used for all planned gravitational wave de-
tectors. This technique uses phase modulation on the incident beam with detection and
demodulation of either the reflected or transmitted beam. In this case we will consider
the detection of the transmitted beam.

Figure 4.9 details the transfer of PM sidebands from the input field (a) to the dark
fringe port (c) on the interferometer. We have used ∆L = 1 for this demonstration. For
maximum efficiency of transfer the modulation sidebands should be at the turning points
of the electric field, fm = c/(8∆L) = 37.5MHz, however this is not essential. When the
carrier is locked at a dark fringe the upper sideband is transmitted unchanged however
the lower sideband is transmitted with a 180o phase change. If the interferometer drifts,
the sine wave in (b) will shift sideways and introduce a small amount of carrier field,
depicted by the dashed vector in (c). This carrier has AM symmetry with respect to the
sidebands and thus will produce a signal at fm in the photocurrent, which can be demod-
ulated to produce the error signal. The further the interferometer drifts the more carrier
present at the dark fringe and the larger the beat in the photocurrent. In addition the
phase of the beat is proportional to the phase of the carrier, which changes by 180o across
the desired lock point. As a consequence, the demodulated output contains information
about both the size and direction of the interferometer offset from the dark fringe.

4.5 Advanced modulation and demodulation

For the central work of this thesis, it was necessary to employ more complicated, or at
least, less common types of modulation and demodulation. These are briefly described
in this section to prepare the reader for the control system presented in chapter 7. In
particular we will discuss single sideband modulation and demodulation and double
demodulation, highlighting the importance of demodulation phase in these systems.
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Figure 4.9: Vector diagram of Schnupp modulation showing (a) PM incident on the interferome-
ter, (b) transfer function of the sidebands to the dark fringe and (c) fields present at the dark fringe
port.

4.5.1 Single sideband modulation/demodulation

Single sideband modulation as the name suggests, has only one sideband, as opposed to
the positive and negative sidebands that are present with standard phase or amplitude
modulation. This single sideband, also referred to as a subcarrier, can be produced in
several ways including using an acousto-optic modulator, a combination of amplitude
and phase modulation, or by coherently combining two lasers operating at different fre-
quencies. The principle of deriving an error signal for an optical cavity is similar to the
PDH system, with the beat between the single sideband and the carrier used to map out
the imaginary component of the electric field.

For this explanation we will consider a simple cavity, and we reserve the discussion
of applying this technique to more complicated interferometers for chapter 7. Consider
the electric field incident on a cavity consisting of a carrier and a lower power (electric
field strength of γE0) single sideband, offset in frequency by ωsc,

Einc = E0eiωt(1 + γeiωsct) (4.36)

A measurement of the power will result in a photocurrent proportional to,

Pinc = P0(1 + γeiωsct + γe−iωsct + γ2) (4.37)

= P0(1 + γ2 + 2γ cos(ωsct)) (4.38)
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The main difference for single sideband locking is that there is no optical cancellation of
one sideband-carrier beat by the other sideband-carrier beat as is the case for pure phase
modulation. As a result there is always a signal present in the photocurrent at ωsc.

After reflection from an optical cavity, with complex reflectivity rc and rsc for the
carrier and sidebands respectively (see equation 4.30), the electric field will be given by,

Eref = E0eiωt
(
rc + rscγeiωsct

)
(4.39)

= E0eiωt
(
|rc|eiφc + |rsc|γei(ωsct+φsc)

)
(4.40)

= E0eiωteiφc

(
|rc|+ |rsc|γei(ωsct+∆φ)

)
(4.41)

Where φc and φsc are the phases of the cavity reflectivity for the carrier and subcarrier
respectively1 and∆φ = φsc − φc. The detected power then becomes,

Pref = P0

(
|rc|2 + |rc||rsc|γ(ei(ωsct+∆φ) + e−i(ωsct+∆φ)) + |rsc|2γ2

)
(4.42)

= P0

(
|rc|2 + |rsc|2γ2 + 2|rc||rsc|γ cos(ωsct+∆φ)

)
(4.43)

Comparing equations 4.38 and 4.43 it is apparent that a change in relative phase of the
carrier and sidebands, ∆φ results in a change in phase of the beatnote. The problem
of finding an error signal for the cavity resonance has been reduced to determining the
phase of the beatnote. Once again we turn to demodulation by an electronic local oscil-
lator. Our definition of in-phase and quadrature demodulation is relative to the phase
of the original PM imposed on the beam. When only a single sideband is present this
definition is no longer applicable. For single sideband demodulation we define the in-
phase and quadrature demodulation relative to the beat between the single sideband
and the carrier. From equation 4.38 it is clear that the beat note is a cosine wave, thus de-
modulation by cosine gives the in-phase component and demodulation by sine gives the
quadrature component. The demodulation process to extract the quadrature component
is described mathematically below, where only the term at ωsc is considered.

QC = 2P0|rc||rsc|γ cos(ωsct+∆φ)× sin(ωsct) (4.44)

= P0|rc||rsc|γ (sin(2ωsct+∆φ)− sin∆φ) (4.45)

After appropriate low pass filtering we obtain a signal at the mixer output of,

QC = −P0|rc||rsc|γ sin(∆φ) (4.46)

In essence this demodulation process compares the phase of the local oscillator to the
phase of the beatnote. Figure 4.10(a) shows the mixer output for the sine demodulation
as a function of the single pass phase shift of the cavity. If the sideband is well away from
the cavity resonance then rsc = 1 and equation 4.46 becomes,

QC = P0γ|rc| sinφc (4.47)

= P0γIm[rc] (4.48)

As is the case for PDH locking, our error signal is proportional to the imaginary compo-

1That is the angle of rc and rsc, not to be confused with the round trip phase shift of the cavity.
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Figure 4.10: Mixer outputs for (a) sine and (b) cosine demodulation of the reflected field with
single sideband demodulation. Carrier is resonant atφ = 0 and subcarrier is resonant at φ = 2π/3.
Parameters used: r1 =

√
0.95, r2 =

√
0.85, t1 =

√
0.05.

A demodulation of the in-phase component (assuming rsc = 1) will give,

IPC = 2P0γ|rc| cos(ωsct+∆φ)× cos(ωsct) (4.49)

= P0γ|rc| (cos(2ωsct+∆φ) + cos∆φ) (4.50)

After low pass filtering of the second harmonic the signal at the mixer output is,

IPC = P0γ|rc| cos(∆φ) (4.51)

= P0γRe[rc] (4.52)

That is, the in-phase component is proportional to the real part of the cavity reflectivity.
The real part of the cavity reflectivity on resonance is positive for an undercoupled cavity,
negative for an overcoupled cavity and zero for an impedance matched cavity. Figure
4.10(b) shows the in-phase component for an undercoupled cavity.

The correct demodulation phase can be set by scanning the cavity and adjusting the
demodulation phase until either the error signal is symmetric or the error signal far from
resonance goes to zero. If the demodulation phase is set incorrectly by an amount ψerr
(i.e., the electronic local oscillator goes as sin(ωsct + ψerr) instead of sin(ωsct)) then the
in-phase component of the signal will be coupled into the measurement. When locking
cavities using the PDH technique this is not a problem as the other component contains
no signal, and the end result is merely a change in the slope of the error signal by a factor
of cosψerr. When using single sideband demodulation, errors in the demodulation phase
are more detrimental as the in-phase component may be non zero.

To determine more quantitatively how an error in the phase of the local oscillator,
ψerr will corrupt the error signal, consider a demodulation of the reflected power by
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sin(ωsct+ ψerr)

QC(ψerr) = 2P0γ|rc| cos(ωsct− φc)× sin(ωsct+ ψerr)

= P0γ|rc|(sin(2ωsct− φsc + ψerr) + sin(φsc − ψerr)) (4.53)

After filtering of the second harmonic term this becomes,

QC(ψerr) = P0γ|rc| sin(φc − ψerr) (4.54)

= P0γ (Im[rc] cos(ψerr)− Re[rc] sin(ψerr)) (4.55)

It is clear that any error in the demodulation phase can seriously influence the final er-
ror signal. The error ψerr directly couples into the error signal in the same way as the
cavity reflectivity phase φc, making the two indistinguishable. As mentioned earlier, the
demodulation process compares the phase of the local oscillator to the phase of the beat-
note, and so it seems reasonable that a change in the phase of the local oscillator would
give the same result as a change in phase of the beatnote.

By impedance matching the cavity, the sensitivity to demodulation phase errors can
be overcome. When the cavity is impedance matched the real part of the cavity reflec-
tivity is zero near resonance, and it is clear from equation 4.55 that the cross coupling
is eliminated. In the example of figure 4.10, the cavity is not impedance matched and
thus the in-phase component contains a strong beat, even in the absence of a signal. By
using an impedance matched cavity, the in-phase error signal goes to zero on resonance,
as shown in figure 4.11.
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Figure 4.11: Mixer outputs for (a) sine and (b) cosine demodulation of the reflected field with
single sideband demodulation. Carrier is resonant at φ = 0 and subcarrier is resonant atφ = 2π/3.
The cavity is impedance matched with r1 = r2 =

√
0.9, t1 =

√
0.1.

In summary, single sideband modulation/demodulation can be used to provide an
error signal to lock an optical cavity to resonance. This error signal is proportional to the
imaginary component of the cavity reflectivity. The single sideband modulation scheme
is not as robust as the double sideband (PDH) scheme in the presence of errors in the
demodulation phase. The sensitivity to demodulation phase error is dependent on the
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impedance matching of the optical cavity. In the ideal case, where the system is per-
fectly impedance matched, an error in the demodulation phase produces a reduction in
gain but introduces no offset. This is equivalent to the PDH system demodulation phase
dependence.

4.5.2 Double demodulation

Double demodulation can be employed to obtain information which is carried by the beat
between different sets of sidebands. In this instance, we will use the interference between
phase modulation sidebands on the carrier and a subcarrier to provide an error signal for
locking a Michelson interferometer to a dark fringe. Whereas Schnupp modulation uses
the sidebands to sense the carrier presence at the dark fringe, this double demodulation
scheme uses a subcarrier to sense the sidebands presence at the dark fringe.

Consider the electric field incident on the interferometer containing a carrier, (small)
PM sidebands at ω1, and a subcarrier offset from the carrier by ωsc.

Einc = E0eiωt(1 + iδ sin(ω1t) + γeiωsct) (4.56)

= E0eiωt
(
1 +

δ

2
eiω1t − δ

2
e−iω1t + γeiωsct

)
(4.57)

In our system, we will have the PM sidebands at the point where they are completely
reflected (f1 = ∆L/4) and the subcarrier near the point of maximum transmission. The
positions of the sidebands relative to the Michelson transfer function (equation 4.35) is
shown in figure 4.12.
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Figure 4.12: Double demodulation system showing (a) field incident on the interferometer, (b)
transfer function from the incident field to the transmitted field and (c) field present at the dark
fringe port.

To simplify the notation, we will assume that each sideband is transmitted with an
efficiency of β, and the carrier with an efficiency of −β. Thus the aim of this exercise is
to extract an error signal proportional to β. The subcarrier is near a turning point and we
assume that it transmits to the dark fringe with an efficiency of 1. The field incident on
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the photodetector at the transmitted port can be written as,

Etran = E0eiωt
(
−β + βδ

2
eiω1t − βδ

2
e−iω1t + γeiωsct

)
(4.58)

The detected power, given by E∗
tranEtran, will consist of many terms. We will only con-

sider those at ±ωsc ± ω1, as these represent the interference between the sidebands and
subcarrier. The components of the photocurrent at these frequencies will be proportional
to,

Ptran = P0
βγδ

2

(
eiωscte−iω1t − eiωscteiω1t + e−iωscteiω1t − e−iωscte−iω1t

)
(4.59)

= P0
βγδ

2
(cos((ωsc − ω1)t)− cos((ωsc + ω1)t)) (4.60)

Thus the photocurrent will contain information about β at the frequencies, ωsc + ω1, and
ωsc − ω1. To recover this information we can demodulate at each of these frequencies, in
parallel, and then add (or subtract) the result. A mathematically equivalent approach is
to demodulate twice in series, first at ωsc and then at ω1. This is simply a statement of the
trigonometric identities,

sin(ωsc) sin(ω1) =
1
2
[cos(ωsc − ω1)− cos(ωsc + ω1)] (4.61)

sin(ωsc) cos(ω1) =
1
2
[sin(ωsc + ω1) + sin(ωsc − ω1)] (4.62)

cos(ωsc) sin(ω1) =
1
2
[sin(ωsc + ω1)− sin(ωsc − ω1)] (4.63)

cos(ωsc) cos(ω1) =
1
2
[cos(ωsc + ω1) + cos(ωsc − ω1)] (4.64)

These identities represent a basis for the possible demodulation phase combinations. Ex-
perimentally it is often easier to perform the demodulation in series, as the demodulation
frequencies are more readily available. By comparing the right hand sides of equations
4.61-4.64 with equation 4.60, it is apparent that a sine-cosine or cosine-sine demodulation
will have no DC component.

Cosine-cosine demodulation produces a signal at the mixer output given by,

CC = P0
βγδ

4

(
cos2((ωsc − ω1)t)− cos2((ωsc + ω1)t) + cross terms

)
(4.65)

= P0
βγδ

4

(
1
2
− 1
2
+ high frequency terms

)
(4.66)

(4.67)

which after low pass filtering gives zero. However, demodulating by sine-sine will yield,

SS = P0
βγδ

4

(
cos2((ωsc − ω1)t) + cos2((ωsc + ω1)t) + cross terms

)
(4.68)

= P0
βγδ

4

(
1
2
+
1
2
+ high frequency terms

)
(4.69)
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which after low pass filtering will give,

SS = P0
βγδ

4
(4.70)

Thus a series demodulation of the photocurrent by sin(ωsct) and sin(ω1t) will give a sig-
nal proportional to the transmission of the sidebands, β, allowing the interferometer to
be locked to a dark fringe. Furthermore, this technique has limited dependence on the
demodulation phase as the other quadratures are all zero.

4.6 Summary

We have discussed how phase modulation can be used to determine certain properties
of an interferometer. In particular we have shown how a change in the relative phase
of the carrier and PM sidebands will result in a signal in one quadrature, while a dif-
ferential attenuation will result in a signal in the other quadrature of the demodulated
photocurrent.

In addition, we have analysed two techniques for controlling interferometers. We
have shown how single sideband modulation can be used to obtain an error signal for
an optical cavity. We have also introduced a technique, referred to here as double de-
modulation, which uses the beat between PM sidebands on the carrier and a subcarrier
to lock a Michelson to a dark fringe. Both the single sideband technique and the double
demodulation technique will be used in the control system introduced in chapter 7.
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Chapter 5

Gravitational wave detector
configurations

This chapter gives a brief overview of the development of gravitational wave interferom-
etry and, in particular, techniques collectively known as recycling [35]. These techniques
include power recycling, signal recycling and resonant sideband extraction. The effects
of storage time and power storage of the light are discussed as motivation for these tech-
niques. Detailed quantitative comparisons of all of the configurations discussed here
have been performed by Mizuno [36, 37] and will not be repeated here. Instead the aim is
to give the reader a basic understanding of the advantages of the various configurations.

In the following discussion we will assume that shot noise is the dominant noise
source. Of course, this is not true for all frequencies, but it is only in the frequency range
where the interferometer is limited by optical noise sources that the type of configuration
will influence the performance.

5.1 Frequency response and the storage time limit

To maximise the phase shift of the light due to interaction with a gravitational wave the
interaction time must be optimised. The optimum interaction time is equal to τg/2where
τg is the period of the gravitational wave. If the interaction time is longer than this time,
then the length perturbation changes sign and begins to undo the phase shift imparted
during the first half of the period. For a gravitational wave of frequency 500 Hz, the
ideal interaction time is 1 ms. In 1 ms light travels a distance of 300 km, thus we would
ideally like an arm length of around 150 km (after allowing for the return trip). This is
much longer than is feasible for a ground based gravitational wave detector for practical
reasons, and we must use other means to increase the storage time of the light.

One method to increase the effective arm length is to fold the interferometer arms [4].
Using delay lines with N bounces, the effective arm length becomes (N + 1)L, where L
is the actual length of the interferometer arm. This results in a storage time increase of a
factor of (N + 1)/2 compared to the single bounce (N = 1) case. One way to implement
this in a long base-line interferometer is to use a Herriott delay line, where all of the
reflections occur on two curved mirrors (one with a hole in it for the entrance and exit
beams). One of the problems with using delay lines in a long base-line interferometer
is that it is difficult to achieve the optimum number of bounces without the laser spots
overlapping on the end mirrors. Any overlap can lead to scattering of light from one
bounce interfering with the light from the next. Thus beams need to be kept sufficiently
spatially separated on the end mirrors. A storage time of 1 ms with an interferometer
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length of 3 km would require 50 spots on each mirror. Given the limits on beam sizes
set by diffraction and the currently envisaged mirror sizes, it is difficult to achieve the
required storage time using delay lines. For a detailed discussion of these issues see ref.
[38].

5.2 Arm cavities

The standard way to achieve the required storage time is to use Fabry-Perot cavities in
the arms of the interferometer, as shown in figure 5.1. Fabry-Perot cavities will produce
diffraction-limited spot sizes on the mirrors, which minimises the size of the mirrors
that can be used. In addition, the storage time of the arm cavity can be matched to the
optimum storage time by adjusting the reflectivity of the input mirror. The bandwidth
of such a device is now determined by the bandwidth of the arm cavities. Thus arm
cavities improve the sensitivity but at the expense of a reduced detector bandwidth. As
the carrier is resonant with the arm cavities the frequency response is centred around
zero frequency.

laser

arm
cavities

Figure 5.1: A Michelson interferometer with Fabry-Perot cavities in the arms.

Adding resonant cavities gives the optimum storage time although at the expense of
considerable complexity. The interferometer now has three length degrees of freedom
which must be controlled; the two arm cavities which must be held on resonance, and
the Michelson interferometer which must be maintained at a dark fringe as before. As
mentioned in chapter 2, the dark fringe only responds to the difference in the phase of
the two beams in the arms and so only the differential part of the arm cavity error signals
appear at the dark fringe. The bright fringe responds to changes in the average phase of
the two beams in the arms and thus the common part of the arm cavity error signal is
obtained here. The individual arm cavity resonances are controlled using this common
and differential mode system.

5.3 Energy storage

The other major factor influencing shot noise limited sensitivity is the power in the in-
terferometer arms. In chapter 3 we stated the standard deviation of the photon number



§5.4 Power recycling 49

is equal to the square root of the average photon number. This gives rise to a standard
deviation of the power given in equation 3.50.

∆PD =
√
P̄ hν (5.1)

In chapter 4, we derived the signal for different interferometers with various kinds of
modulation based signal extraction schemes. In all of these examples the final signal at
the demodulated output was proportional to P0, the power incident on the interferome-
ter. Combining these two observations we can see that the signal to noise ratio of such a
measurement will scale with the square root of the power.

S/N ∝ P/
√
P̄ (5.2)

∝
√
P (5.3)

Thus, one way to improve the shot noise limited sensitivity of an instrument is to increase
the optical power sensing the mirror test masses or equivalently the energy stored in each
arm [39]. For this reason gravitational wave detectors will use the highest power lasers
possible1.

5.4 Power recycling

One method to achieve this power increase is to employ power recycling [40, 41]. As a
Michelson interferometer is operated on a dark fringe, much of the incident power is re-
flected back towards the laser and is lost from the device. By placing a mirror between
the laser and the interferometer this light can be reflected back into the interferometer.
The light is effectively recycled and so this technique is referred to as power recycling
with the mirror often called the power recycling mirror. This forms an optical cavity be-
tween the power recycling mirror and the Michelson interferometer as shown in figure
5.2. By choosing the reflectivity of this mirror so that the transmission is equal to the
power recycling cavity’s total round trip loss, the interferometer is impedance matched
and the circulating power is maximised. The power hitting the main beamsplitter can be
increased by factors of several hundred, with the increase proportional to the inverse of
the total losses.

Power recycling was first reported by Maischberger et al. in 1987 [42], and shortly
after, higher recycling powers were achieved by Man et al. [43]. In 1997, Schnier et al. [44]
reported on a power enhancement of approximately 300 in the suspended 30 m proto-
type at Garching. Currently, the highest reported power increase due to power recycling
has been achieved in the LIGO Phase Noise Interferometer situated at MIT where a recy-
cling gain of approximately 450 was observed, corresponding to a power of 60 W at the
beamsplitter [45].

Power recycling adds an extra length degree of freedom with the position of the
power recycling mirror now requiring control to ensure that the power build up for the
carrier is maximised. This extra complexity is justified in light of the improvement of
the shot noise limited sensitivity of the device without a reduction in the instrument’s
bandwidth. Power recycling is to be used in all planned gravitational wave detectors.

1There are of course other stringent requirements which will influence the choice of laser, such as, the
laser’s frequency and intensity noise, spatial quality and wavelength.



50 Gravitational wave detector configurations
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Figure 5.2: A power recycled Michelson interferometer. The thickness of the line gives an indica-
tion of the beam’s power.

5.5 A power recycled arm cavity Michelson interferometer

By combining arm cavities with power recycling, both the storage time and the energy
storage can be optimised. This is the configuration that will be used for LIGO, VIRGO
and TAMA300. This interferometer requires the control of 4 degrees of freedom; the arm
cavity common mode, arm cavity differential mode, the Michelson (differential) mode
and the power cavity (or Michelson common mode).

This configuration was first experimentally demonstrated by Fritschel et al. in 1992
[46] using external modulation based signal extraction scheme. In 1995, Regehr et al.
[47] experimentally demonstrated a control system with frontal modulation only. This
scheme subsequently became the reference design for the LIGO control system. It used
a single modulation frequency to obtain the four error signals by demodulation of the
photocurrents at the transmitted port, the reflected port, and a tap off inside the power
cavity. Regehr, demonstrated [48] that despite the power cavity degree of freedom not be-
ing dominant in any one output, stable operation of the interferometer could be obtained
by the use of a gain hierarchy approach.

Since this time, a large amount of work has been performed by various groups [49–54]
to improve the control system. This research has focussed on achieving better separation
of the arm cavity common mode and power cavity error signals [50–53], and improving
the stability of the modulation sidebands in the power cavity in the presence of thermal
lensing [54].

5.6 Signal recycling

Power recycling does not effect the storage time of an interferometer because the gravi-
tationally induced sidebands exit through the dark fringe port of the beamsplitter. These
sidebands can also be recycled to optimise the bandwidth of the detector. This technique
was developed by Meers in the late 1980s [41, 55] and is known as signal recycling. The sig-
nal recycling mirror is placed at the signal port and reflects the signal sidebands back into
the interferometer as shown in figure 5.3. The typical signal recycling configuration has
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no Fabry-Perot cavities in the arms, instead relying on the signal recycling mirror to op-
timise the storage time of the gravitationally induced signal sidebands. Signal recycling
is also compatible with power recycling as the signal mirror and power mirror indepen-
dently change the signal storage and the power storage respectively. The combination of
signal and power recycling is referred to as dual recycling.

laser

power
recycling

mirror

signal
recycling

mirror

Figure 5.3: A signal recycled Michelson interferometer. The configuration is known as dual recy-
cling when the optional power mirror is present.

One advantage of dual recycling over the power recycled arm cavity device is its abil-
ity to alter the frequency of its peak signal response. In broadband operation the signal
cavity resonance is centred on the signal sidebands close to the carrier, corresponding to
a maximum sensitivity to a gravitational wave with a frequency around zero hertz. How-
ever, if the signal mirror position is changed by a fraction of a wavelength, the resonant
frequency of the signal cavity (and thus the peak signal frequency) is altered. The sen-
sitivity theorem [36] states that the shot noise limited sensitivity of a detector is propor-
tional to the square root of the energy stored divided by the bandwidth. Dual recycling
allows a detector to be constructed which has a high sensitivity, narrow frequency re-
sponse whose peak frequency can be adjusted to any desired value. By reducing the sig-
nal bandwidth it can achieve the same sensitivity as longer base-line detectors. GEO600
will be the only first generation detector capable of altering its peak signal frequency.

Dual recycling was first experimentally demonstrated in 1991 by Strain and Meers
[56]. Since this time there have been several experimental investigations including a
detailed measurement of the broadband and detuned frequency response [57] (signal
recycling only) and an impressive demonstration of dual recycling in the suspended pro-
totype in Garching by Heinzel et al. [58]. The control system from the Garching prototype
will form the basis for the control system of GEO600.

5.7 Resonant sideband extraction

One problem with power recycling is that very large powers are transmitted through
substrates such as the beamsplitter and the arm cavities’ input couplers. Techniques
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for thermally modelling interferometers [59] have shown that this can ultimately lead
to a degradation of the sensitivity due to processes such as thermal lensing [60, 61] and
thermally induced birefringence [62] .

Resonant sideband extraction (RSE) is a technique which reduces these problems by
allowing more optical power to be stored in the arm cavities. In addition to reducing
thermal problems in the beamsplitter, this technique is in principle capable of yielding
higher stored energy due to the lower loss of the arm cavities2. Ordinarily, very high
finesse arm cavities cannot be used due to the storage time limit discussed in section 5.1.
Using resonant sideband extraction this storage time limit can be avoided.

Resonant sideband extraction was first proposed by Mizuno et al. [63] in 1993. The
basic experimental layout of RSE is shown in figure 5.4. The principal of RSE is closely
related to that of signal recycling in that a mirror placed at the signal port, referred to as
the signal extraction mirror (SEM), can be used to manipulate the bandwidth and sensitiv-
ity of the interferometer. In contrast to signal recycling, the SEM is used to increase the
signal bandwidth of an instrument. This is achieved by decreasing the storage time of
the signal sidebands in the arm cavities.

laser

power
recycling

mirror

signal
extraction

mirror

arm
cavities

Figure 5.4: A Michelson interferometer with resonant sideband extraction. The power recycling
mirror is optional.

In an ideal instrument, the carrier never reaches the dark fringe port and so the SEM
has no effect on the stored power in the arm cavities. The signal sidebands, however,
exit through the dark fringe port and so are influenced by the SEM. The SEM completes
a coupled cavity system made up of the arm cavity and the signal extraction cavity with
the inboard mirror common to both. A coupled cavity system is equivalent to a single
cavity with a variable reflectivity or compound mirror (the signal extraction cavity). The
reflectivity of this compound mirror can be changed by adjusting the SEM position by
a fraction of a wavelength [64]. By tuning the signal extraction cavity to resonance, the
effective reflectivity of the compound mirror is minimised. In this manner, the finesse

2The arm cavity contains only two surfaces, whereas the power cavity has at least 4 surfaces and the
beamsplitter substrate.
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of the coupled cavity, and thus the storage time of the signal sidebands, can be reduced
thereby increasing the bandwidth of the instrument. Moreover, by detuning the signal
extraction cavity from resonance, the signal bandwidth and peak signal frequency can be
altered to obtain the desired frequency response.

Resonant sideband extraction was first experimentally demonstrated in a Michelson
interferometer by Heinzel et al. [65]. Resonant sideband extraction in a Michelson inter-
ferometer has at least 4 degrees of freedom; the arm cavity common mode, arm cavity
differential mode, Michelson differential mode and the signal cavity detuning. If power
recycling is present then the power recycling mirror position must also be controlled.
The original experimental demonstration [65] did not include power recycling and used
a control system which was not suitable for a gravitational wave detector. For several
years researchers at the Australian National University [66], Caltech [67] and the Univer-
sity of Florida [68] have been developing control systems for a power recycled Michelson
interferometer with RSE. This year (2000), all three bench top experiments successfully
demonstrated power recycled Michelson interferometers with resonant sideband extrac-
tion using different control systems. Now the focus of the experimental RSE work will
move to the Glasgow prototype where power recycled RSE will be implemented in a
suspended prototype [69].

As resonant sideband extraction is the main focus of this thesis, we now consider the
signal response of this system.

5.8 Frequency response of a Michelson interferometer with RSE

In this section we derive the frequency response of a Michelson interferometer with reso-
nant sideband extraction in the presence of phase modulation in the arms. This response
[36, 63] is quite complicated and we will attempt to simplify the derivation by decompos-
ing the total transfer function into the product of three simpler transfer functions:

•A(ωs), is the transfer function from the phase modulation inside the cavity to the field
reflected from the front mirror of the arm cavity. It is normalised to the carrier field
incident on the arm cavity.

•M(ωs), incorporates the response of the Michelson interferometer to antisymmetric
sidebands. When multiplied by A(ωs), it will give the frequency response of an arm
cavity Michelson interferometer.

•E(ωs), gives the enhancement of the signal sidebands due to the addition of a signal
extraction mirror.

We begin by considering the production of signal sidebands in a single arm cavity.
The fields associated with the cavity are shown in figure 5.5. Assuming that the carrier is
on resonance with the arm cavity we will obtain a circulating field given by,

Ecirc(0)
Einc(0)

=
it1

1− r1r2
(5.4)
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Figure 5.5: Illustration of the arm cavity and electric fields for the carrier and the signal sidebands.

where r1 and t1 are the electric field reflectivity and transmissivity of the input coupler,
r2 is the electric field reflectivity of the end mirror, Ecirc(0) represents the circulating field
at the carrier frequency, ωs = 0, and Einc(0) is the carrier field incident on the cavity.
Phase modulation of the light inside the cavity will result in sidebands at a frequency ωs,
given by Epm(ωs) = iJ1(δ)Ecirc(0). Note that for the small signals considered here we
have δ � 1. The circulating signal field inside the cavity can be determined by adding
Epm(ωs) to the circulating signal field from the previous round trip,

Ecirc(ωs) = iJ1(δ)Ecirc(0) + r1r2ei2ωsLac/cEcirc(ωs) (5.5)

=
iJ1(δ)

1− r1r2ei2ωsLac/c
Ecirc(0) (5.6)

where Lac is the length of the arm cavity and c is the speed of light. The field reflected
from the arm cavity is given by,

Eref (ωs) = it1r2ei2ωLac/cEcirc(ωs) (5.7)

=
−t1r2ei2ωLac/cJ1(δ)
1− r1r2ei2ωsLac/c

Ecirc(0) (5.8)

Combining equations 5.4 and 5.8 gives us the transfer function, A(ωs), from the car-
rier field incident on the cavity, Einc(0), to the sideband field reflected from the cavity,
Eref (ωs), due to the intra-cavity modulation.

A(ωs) =
−it21r2ei2ωLac/cJ1(δ)

(1− r1r2)(1− r1r2ei2ωsLac/c)
(5.9)

We now consider the fields incident on the beamsplitter after reflection from the arm
cavities. The fields associated with the arm cavity Michelson interferometer are shown in
figure 5.6. For simplicity, we will assume the distances between the arm cavities and the
beamsplitter are zero. Consider the fields in the in-line arm, Ei(ωs), and perpendicular
arm, Ep(ωs), after reflection from the cavity with intra-cavity phase modulation. These
fields are related to the carrier electric field incident on the Michelson interferometer,
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Figure 5.6: An arm cavity Michelson interferometer showing the electric fields required to calcu-
late the signal response.

E0(0), by the expressions,

Ei(ωs) = itbsE0(0)A(ωs) (5.10)

Ep(ωs) = rbsE0(0)A(ωs) (5.11)

Ordinarily, one of these fields would be positive and the other negative due to the dif-
ferential modulation of the gravitational wave. In this case, the sign change has been
cancelled as one Michelson arm is shorter by λ/2 in order to hold the interferometer on a
dark fringe for the carrier. At the beamsplitter the sidebands will interfere constructively
towards the dark fringe. The field just after the beamsplitter at the dark fringe port is the
response of an arm cavity Michelson, Eacm, and is equal to,

Eacm(ωs) = rbsEi(ωs) + itbsEp(ωs) (5.12)

= 2itbsrbsA(ωs)E0(0) (5.13)

= M(ωs)A(ωs)E0(0) (5.14)

where M(ωs) is the Michelson response and is equal to,

M(ωs) = 2itbsrbs (5.15)

Here M(ωs) is actually independent of the signal frequency due to our simplifying as-
sumption that the Michelson arms are of length zero.

If we add a signal extraction mirror at the dark fringe, then Eacm(ωs) will be the
field injected into the signal cavity due to the gravitational wave. There will also be
a contribution to the signal extraction cavity field from the previous round trip of the
signal extraction cavity. The fields associated with the RSE Michelson interferometer are
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shown in figure 5.7. The field inside the signal extraction cavity, Esec(ωs), will now be
given by,

Esec(ωs) = Eacm(ωs) + Esec(ωs)rs(r2
bs + t2bs)rcav(ωs)e

i(2ωsLs/c+φs) (5.16)

Esec(ωs) =
1

1− rs(r2
bs + t2bs)rcav(ωs)ei(2ωsLs/c+φs)

Eacm(ωs) (5.17)

where Ls is the length of the signal extraction cavity, rs and ts are the amplitude re-
flectivity and transmissivity of the signal mirror, and rcav(ωs) is the complex amplitude
reflectivity of the arm cavity at the signal frequency (see for example equation 4.30). The
variable φs represents the detuning of the signal cavity.

signal
extraction

mirror

arm
cavities

Esec(ω)

Etran(ω)

rs , ts

E0(0)
rcav(ω)

Ls

Figure 5.7: Michelson interferometer with resonant sideband extraction showing the field inside
the signal extraction cavity

The signal at the dark fringe is related to the field inside the signal extraction cavity
by Etran = Esecitsei(ωsLs/c+φs/2).

Etran(ωs) =
itsei(ωsLs/c+φs/2)

1− rs(r2
bs + t2bs)rcav(ωs)ei(2ωsLs/c+φs)

Eacm(ωs) (5.18)

Substituting from equation 5.14 we obtain an expression for the total transfer function of
the Michelson with resonant sideband extraction shown in equation 5.19.

Etran(ωs)
E0(0)

= E(ωs)M(ωs)A(ωs) (5.19)

We have defined a new transfer function, E , which is the signal enhancement due to the
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signal extraction cavity. It is defined as,

E(ωs) =
itsei(ωsLs/c+φs/2)

1− rs(r2
bs + t2bs)rcav(ωs)ei(2ωsLs/c+φs)

(5.20)

The frequency response of a Michelson interferometer with resonant sideband extrac-
tion is measured experimentally in chapter 7.

5.9 Autoalignment

The control systems discussed so far have been for the length degrees of freedom. In
addition to these, suspended interferometers also require active control of the alignment
degrees of freedom for optimum performance. Over the past decade, techniques have
been developed based on the interference of the Hermite-Gauss modes [70, 71] to obtain
a sensitive measure of the tilt and offset of a beam relative to an interferometer. Variants
of the Ward technique [71] now form the basis for most interferometric alignment sensing
systems. This technique, measures the interference between the TEM00 modes and the
TEM10 and TEM01 modes using the modulation sidebands of PDH locking. Analysis and
demonstrations of these technique applied to complicated coupled interferometers have
since been performed by various groups [72–77]. An alignment sensing system is yet to
be demonstrated for the resonant sideband extraction configuration. This thesis is only
concerned with the length sensing degrees of freedom and the issue of alignment sensing
in RSE systems is not considered here.

5.10 Summary

We have discussed the two main factors determining the shot noise limited sensitivity
of a gravitational wave detector, energy storage and storage time. We have detailed the
principle of operation of several configurations of gravitational wave detectors including
arm cavity, dual recycled and RSE Michelson interferometers. We have also presented a
simple derivation of the frequency response of RSE in a Michelson interferometer using
a transfer function approach. In the next chapter we will examine yet another potential
configuration for a gravitational wave detector, the Sagnac interferometer.
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Chapter 6

Sagnac interferometers for
gravitational wave detection

In recent years there has been renewed interest in Sagnac interferometers [78] for use
in gravitational wave detectors. Experimental investigations carried out on delay line
systems [79–83] have found the Sagnac interferometer offers comparable sensitivity to the
Michelson interferometer with several potential advantages. These advantages include a
simplified control system, insensitivity to reflectivity imbalance in the arms and perhaps
most importantly, insensitivity to laser frequency noise.

This chapter describes a brief experimental investigation of the Sagnac interferometer
in various configurations. The purpose of this work was to determine experimentally if
the Sagnac interferometer’s advantages in a delay line system transfer to more compli-
cated, cavity based, topologies. The chapter begins with a basic introduction to Sagnac
interferometers before presenting an experimental demonstration of a delay line Sagnac
in section 6.2. In this system we measure the frequency response of the interferometer
using the polarisation signal extraction scheme developed by Sun et al. [80]. Section 6.3
presents the first experimental demonstration of a Sagnac interferometer with resonant
sideband extraction. This experiment was performed to illuminate any practical diffi-
culties or advantages associated with the configuration and should not be considered a
thorough investigation of control or signal extraction issues.

6.1 Sagnac interferometer basics

In a Sagnac, the light is split into two beams which counter propagate through the in-
strument and interfere when recombined at the beam splitter. The optical paths of these
beams are identical at zero frequency but differences can arise on time scales comparable
to the travel time of the light. As a consequence, the control of a Sagnac is in general
simpler than a Michelson. The common path length of the counter propagating beams
ensures that the signal port of the Sagnac is always on a dark fringe. Losses due to ab-
sorption are also common to both beams and have no effect on the fringe visibility of the
instrument. An unequal beamsplitter ratio however, can significantly degrade the fringe
visibility and thus reduce instrument sensitivity. One beam experiences two reflections
from the beamsplitter while the beam travelling in the opposite direction experiences
two transmissions before detection at the signal port. Recently, the main beamsplitter
has been replaced by a polarising beam splitter [82], which alleviates this problem by
allowing each beam to once again experience one reflection and one transmission. Re-
search into this type of polarisation Sagnac looks promising, and this configuration is

59
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emerging as a viable alternative to the Michelson interferometer for future detectors [83].
Another potential disadvantage of the Sagnac interferometer is that mode distortions,
due to imperfect mirror curvature within the interferometer, can have a greater effect in
the Sagnac than in the Michelson system [84].

Historically, Sagnac interferometers have been used as rotation sensors. For a gravi-
tational wave detector this sensitivity to rotation is undesirable, introducing an offset or
noise source to the final output. By ensuring the Sagnac interferometer encloses a total
area of zero this sensitivity to rotation can be eliminated. A zero area Sagnac is con-
structed by enclosing equal amounts of positive and negative area as shown in figure 6.1.
Positive and negative areas are those enclosed by a beam travelling in a clockwise and an-
ticlockwise direction respectively. For the benchtop Sagnac experiments discussed here
we did not use zero area devices as the sensitivity to rotation for such a small interfer-
ometer was minimal, in addition to occurring at frequencies which are small compared
to the signal bandwidth.

BS

laser

positive
area

negative
area

Figure 6.1: Sagnac interferometer enclosing a net area of zero, achieved by cancellation of positive
and negative areas.

6.2 Delay line Sagnac interferometer

As discussed in chapter 5, a delay line can be used to increase the storage time of the
signal sidebands. The result is a decrease in the bandwidth of a device. In this section,
we measure the frequency response of a 9.3 m delay line Sagnac interferometer.

Figure 6.2 shows the experimental layout of the 9.3 m delay line Sagnac interferome-
ter. Broadband phase modulators (Gsänger PM 25) were contained in the each arm of the
interferometer, immediately after the beam splitter. These modulators were driven out of
phase to simulate the gravitational wave signal and map out the frequency response of
the instrument.

As a Sagnac interferometer contains no arm length mismatch, we cannot use frontal
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Figure 6.2: Delay line Sagnac interferometer using polarisation based readout system. EOM:
electro-optic modulator, pbs: polarising beamsplitter, λ/2: half wave plate, λ/4: quarter wave
plate, PD: photodetector.

modulation techniques such as Schnupp modulation [34] to provide a local oscillator
at the dark fringe. One innovative solution [80] is to make use of the polarisation de-
pendence of the beam splitter ratio to couple a fraction of the orthogonal polarisation
(horizontal say) to the dark fringe. This horizontal polarisation can be used as a local os-
cillator for the vertically polarised signal. Analysis of the polarisation state of the output
can provide a shot noise limited readout of the vibrations of the mirrors. In addition, the
amount of local oscillator can be conveniently adjusted with a waveplate at the interfer-
ometer input. By using the subtraction of two detectors the intensity noise of the local
oscillator can be removed. This technique can be thought of as the two beam interferom-
eter equivalent of Hänsch-Couillaud locking [85] of optical cavities (see chapter 8) in the
same way that Schnupp modulation can be thought of as the two beam equivalent of the
Pound-Drever-Hall technique.

Figure 6.3 shows the measured broadband frequency response of the system when the
phase modulators are driven out of phase. Notice that the response of the Sagnac drops to
zero at DC and at multiples of c/Lc, where c is the speed of light and Lc, the characteristic
length of the Sagnac, is the distance between the modulators. The signal null at DC is an
inevitable consequence of the common optical paths of the interfering beams. The nulls
at higher frequencies occur when the travel time of the light between the modulators is
exactly equal to the signal period (or an integer number of signal periods). The maximum
signal occurs at a frequency of c/(2Lc), when each beam experiences exactly the opposite
phase shift in each modulator, maximising the relative phase shift between the beams.

6.2.1 Summary

A 9.3 m delay line Sagnac was constructed and the signal response measured using a
homodyne polarisation technique. One of the main draw backs of such a delay line for
a gravitational wave detector is that it is very hard to achieve the optimum storage time.
The number of bounces required leads to a large overlap of spots on the mirrors sur-
face which can cause problems with scattered light. In the next section we move our
investigation to arm cavity based Sagnac interferometers to overcome the storage time
problems.
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Figure 6.3: Experimentally measured frequency response of a 9.2 m delay line Sagnac interferom-
eter.

6.3 RSE in a Sagnac Interferometer

Theoretical comparisons [37] of the frequency response of Sagnac and Michelson based
systems have been carried out for several configurations. There has, however, been little
experimental work performed on cavity based Sagnacs. One of the aims of the work
presented in this section was to determine experimentally if the Sagnac’s advantages
over the Michelson in delay line systems transfer to cavity based configurations. In this
section we will discuss an experimental investigation of a Sagnac interferometer with
ring cavities in the arms and a Sagnac with resonant sideband extraction (RSE).

The RSE Sagnac interferometer is similar in principal to an RSE Michelson with sev-
eral practical differences. Firstly, due to the ring nature of the Sagnac we require ring
cavities instead of linear cavities in the interferometer arms. Note that the light passes
through both cavities before returning to the beamsplitter ensuring counter propagating
beams experience a common path. Another important difference is that the RSE Sagnac
requires more optical components than an RSE Michelson interferometer and will there-
fore have a greater total optical loss (for both carrier power and signal). The basic layout
for resonant sideband extraction in a Sagnac interferometer is shown in figure 6.4.

The Sagnac itself is made up of three mirrors and a beamsplitter. Two of these mir-
rors are the input couplers to the arm cavities. The third mirror can be used for Sagnac
alignment and to extract error signals for control purposes. The Sagnac pictured here is
not a zero area instrument and thus is sensitive to rotation. For a small benchtop device
the effects of rotation are negligible due to the high frequency range of interest. For large
scale instruments where rotation sensitivity is a concern, the RSE Sagnac can be made to
encompass zero area in a similar way to that shown in figure 6.1.
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Detection

SEM

Laser

Figure 6.4: Basic layout for resonant sideband extraction in a Sagnac interferometer. Ring cavities
are used to increase the stored power while the signal extraction mirror (SEM) optimises the
storage time of the signal sidebands. BS: main beamsplitter

6.3.1 RSE Sagnac interferometer frequency response

To calculate the frequency response of an RSE Sagnac interferometer we will use the
transfer function approach introduced in section 5.8. Experimentally, the gravitational
wave signal is simulated with phase modulators in the arm cavities. A phase modula-
tor inside an arm cavity produces sidebands on the reflected field at ±ωs each with an
amplitude (normalised to the electric field incident on the cavity) given by,

A(ωs) =
−t21r2r3eiωsp/cJ1(δ)

(1− r1r2r3)(1− r1r2r3eiωsp/c)
(6.1)

where ωs is the modulation (or signal) frequency (rad/sec), r1, r2 and r3 are the electric
field reflectivities of the cavity mirrors, t1 the input coupler transmissivity, p is the cavity
round trip distance and c is the speed of light. The sideband amplitude is proportional
to the first order Bessel function of the first kind, J1(δ) where δ is the modulation depth
in radians. Note that for the small signals considered here we have δ � 1. Equation 6.1,
contains the product of three terms, the carrier field inside the cavity (on resonance), the
efficiency of coupling from carrier to sidebands J1(δ), and the leakage of these sidebands
out of the cavity.

For an arm cavity Sagnac, the fields propagating in each direction (E+ and E−) after
reflection from both arm cavities can be written as,
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Es+(ωs) = E0rbs(A(ωs)rcav(ωs)eiωsLc/c −A(ωs)rcav(0)) (6.2)

Es−(ωs) = E0itbs(−A(ωs)rcav (ωs )eiωsLc/c +A(ωs)rcav(0)) (6.3)

where rcav(ωs) is the reflectivity of the arm cavities at the sideband frequency ωs, rcav(0)
is the carrier reflectivity, rbs and tbs are the reflectivity and transmissivity of the beam-
splitter, and E0 is the electric field incident on the main beamsplitter. The distance Lc is
the separation of the arm cavities and produces a relative phase shift for the signal side-
bands produced in each cavity. The modulators are driven out of phase to simulate the
quadrupole moment of a gravitational wave, which results in the subtraction between
the two terms in each equation. In addition the beams experience the modulators in a
different order which accounts for the sign reversal from equation 6.2 to equation 6.3. Af-
ter recombination at the beamsplitter the field at the signal port of the arm cavity Sagnac
is given by,

Eacs(ωs) = E0A(ωs)(r2
bs + t2bs)[rcav(ωs)e

iωsLc/c − rcav(0)] (6.4)

which can be rewritten as,

Eacs(ωs) = E0A(ωs)S(ωs) (6.5)

where S(ωs) incorporates the response of the Sagnac to antisymmetric phase modulation
and is given by,

S(ωs) = (r2
bs + t2bs)[rcav(ωs)e

iωsLc/c − rcav(0)] (6.6)

Note that S(ωs) approaches zero as ωs → 0. This is markedly different from the Michel-
son response which has a maximum at zero frequency.

Once the response of the arm cavity Sagnac is obtained the RSE response can be deter-
mined by solving a self consistent equation for propagation in the signal extraction cavity
similar to equation 5.16. From this we arrive at the signal enhancement factor, E(ωs), due
to the addition of the signal extraction mirror.

E(ωs) =
its

1− 2irbstbsrsrcav(ωs)2e(iωsps/c+φs)
(6.7)

where rs and ts are the reflectivity and transmission of the signal extraction mirror, ps is
the round trip optical path of the signal extraction cavity and φs is the signal extraction
cavity detuning. Finally, the total frequency response, T (ωs), of the RSE Sagnac is given
by,

T (ωs) = E0A(ωs)S(ωs)E(ωs) (6.8)
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Figure 6.5: Optical and electronic configuration for RSE Sagnac interferometer. EOM: electro-
optic modulator, PD: photodetector, BS: beamsplitter, SEM: signal extraction mirror.

6.4 Experimental Setup

It should be noted that due to the smaller scale and reduced finesse of this instrument the
signal bandwidth stretches to several megahertz. For a large scale gravity wave detector
the intended bandwidth would be approximately 40 Hz to 1 kHz.

The experimental setup is shown in figure 6.5. We use a 700 mW Nd:YAG non pla-
nar ring oscillator (NPRO) laser (Lightwave Electronics 126) operating in a single mode.
Each arm cavity had a round trip of 4.0 m. The gravitational wave signal was simulated
by broadband low loss modulators (Gsänger PM 25) within the arm cavities. Losses in
these modulators restricted the arm cavity finesse to approximately 110. In order to max-
imise the circulating power, and thus the sensitivity, the arm cavities should be approx-
imately impedance matched. In this experiment the cavities were slightly overcoupled
with approximately 20 % of the incident power reflected on resonance.

The arm cavities were locked to the laser frequency using Pound-Drever-Hall reflec-
tion locking [33] using an 8 MHz phase modulation produced by directly modulating
the laser crystal PZT. The locking signals were coupled out of the Sagnac through the
mirror Mc, a 98% reflective coupling mirror between the arm cavities and fed back to
PZTs on the end mirrors of the arm cavities. This produces two orthogonal error signals
(in the absence of an RSE mirror) allowing the arm cavities to be independently locked.
For identical cavities such as those used here, it is necessary that the beam waist is posi-
tioned at the centre of the Sagnac for symmetry reasons. The main beamsplitter power
reflectivity was 54% which yielded a dark fringe of 7 mW with the arm cavities locked
on resonance for an input power of 350 mW.
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The signal extraction cavity had a round trip of approximately 1.9 m including the
round trip of the Sagnac (0.57 m). The signal cavity was controlled with the error signal
obtained from PD3 using a technique analogous to transmission locking. For this control
system we utilise the imperfect beamsplitter ratio to couple some of the 8 Mhz modula-
tion sidebands through to the signal port. The finesse of the signal cavity was extremely
low due to the low reflectivities of the near impedance matched arm cavities. This means
that the 8 Mhz sidebands are well inside the bandwidth of the signal extraction cavity
and can be transmitted through to the signal port only slightly attenuated. In order to
lock the signal cavity the arm cavities must be locked first with relatively high gain. This
control system was not flexible enough to allow us to detune the signal extraction cav-
ity. The results presented here for detuned points were obtained by manually tuning
the SEM. This was made possible by the low finesse signal extraction cavity and was
adequate for demonstration of the system’s frequency response. Equations 6.9-6.11 sum-
marise the origins of the 3 error signals, where Φac1 and Φac2 are the degrees of freedom
of the arm cavities on the top right and bottom left of figure 6.5 respectively and φs is the
signal cavity degree of freedom.

Φac1 = demodulate PD1@8MHz (6.9)

Φac2 = demodulate PD2@8MHz (6.10)

φs = demodulate PD3@8MHz (6.11)

The signal was obtained by recombining the light from the dark fringe of the inter-
ferometer with a 100 mW local oscillator derived from a tap off of the incident beam
effectively forming a Mach-Zehnder interferometer. The combined beam was detected
on a single high power detector, PD3 with a 3 dB bandwidth of approximately 65 MHz
[86]. At the time of the experiment a second high power detector, PD4, was not avail-
able. A second detector would allow the subtraction of classical intensity noise of the
local oscillator from the signal. The local oscillator was phase modulated at 75 MHz by
an electro-optic modulator. This was for control purposes only and not for signal ex-
traction. The relative phase of the local oscillator was controlled by feeding back to the
PZT mounted on mirror Mp. For the RSE system, the optimum local oscillator phase is
a function of SEM detuning and signal frequency. The Mach-Zehnder could be locked
using either the 1st or 2nd harmonic. In principle, any arbitrary locking point can be
obtained by using a linear combination of these two error signals. For the experimental
data shown here the Mach-Zehnder phase was tuned manually.

The broadband modulators were driven with a swept frequency signal from a track-
ing generator, with the detected response recorded on a spectrum analyser (Hewlett-
Packard 3589A). Frequency responses for the arm cavity Sagnac and RSE Sagnac with
SEM power reflectivities of 50%, 70% and 90% were obtained.

6.5 Experimental Results

Figure 6.6 shows the measured and calculated frequency response of the arm cavity
Sagnac interferometer. The theoretical curve was calculated from equation 6.5 using an
independent calibration of all of the parameters including arm cavity response, modula-
tion depths and detector efficiency and has been neither fitted nor scaled to the data.

The peaks at low frequency are due to the resonances of the phase modulators. As can
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Figure 6.6: Measured and calculated signal response for a Sagnac interferometer with arm cavi-
ties.

be seen from equation 6.5 the frequency response is the product of the Sagnac frequency
response with the arm cavities’ response. The drop in signal to the left of the graph is due
to the insensitivity of the Sagnac at low frequencies. The roll off at high frequencies is due
to the response of the arm cavities. The same measurement was taken for the Sagnac for
an SEM with a power reflectivity of 70% and is shown in figure 6.7.

The theoretical curve for the RSE case is based on equation 6.8. With the addition
of the SEM mirror the signal bandwidth of the instrument was increased by a factor of
6.5 compared to the arm cavity Sagnac. Experimental results for 50% and 90% power
reflectivity SEMs were also obtained and the results are shown in figure 6.8.

For this particular experiment the optimum SEM for high frequency signals is the
70% power reflectivity SEM. The 50% mirror increases the bandwidth of the instrument
by a factor of 3.3. The 90% SEM has a lower signal response than the 70% SEM Sagnac
at all frequencies. This is because the loss on reflection from the arm cavities dominates
the total loss of the signal cavity when the signal mirror has low transmissivity. For the
90% SEM the circulating power in the arm cavities was observed to drop substantially as
the signal extraction cavity was brought close to resonance. Possible causes of this power
drop are discussed in section 6.6.

Figure 6.9 demonstrates the tuning capabilities of the Sagnac with RSE. Three fre-
quency responses taken as the signal extraction mirror was tuned manually from reso-
nance to antiresonance are shown. The calculated frequency responses, which are not
shown here for clarity, can be fitted to show good agreement with the experimental
curves by adjusting the signal extraction cavity detuning and Mach Zehnder phase.
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Figure 6.7: A comparison of the frequency responses of (a) arm cavity Sagnac (calculated and
measured) to (b) RSE Sagnac (calculated and measured) with an SEM power reflectivity 70%.
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Figure 6.8: Frequency response of; (a) arm cavity Sagnac (no SEM), (b) RSE Sagnac with
SEM=50%, (c) RSE Sagnac with SEM=70% (d) RSE Sagnac with SEM=90%.
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Figure 6.9: Frequency response of RSE Sagnac for SEM detuning (SEM reflectivity=50%). (a)
signal recycling, (b) detuned point, and (c) resonant sideband extraction

6.6 Discussion

It can be seen from figures 6.6 and 6.7 that we have excellent agreement between the
calculated and observed frequency responses. All parameters used in producing the the-
oretical curves were measured independently. For example, the properties of the arm
cavities were measured by applying a scanning amplitude modulation to the input light
and measuring the fraction of this amplitude modulation transmitted through the cavity
as a function of frequency.

The main experimental difficulty encountered with this setup was the use of modula-
tors in the arm cavities. With the arm cavities locked several watts of optical power were
transmitted through the modulators. This caused distortions in the modulators leading
to a slight misalignment of the cavities and consequently a misalignment of the entire
system. This effect was more significant in the resonant sideband extraction case than
the arm cavity case as the RSE system is more sensitive to alignment. For the purposes
of this experiment, however, the modulators were necessary in order to obtain the broad
frequency response of the system. In the following sections we will compare the features
of the Sagnac and Michelson interferometers in three areas; energy storage, dependence
on beamsplitter reflectivity and ease of control.

6.6.1 Energy Storage

The sensitivity theorem [36] relates the shot noise limited sensitivity to the stored optical
energy. For large scale interferometers the stored optical energy will be limited by mirror
loss. A three mirror ring cavity has an intrinsically higher loss than a linear cavity due
to the extra mirror surface. As a consequence, an arm cavity Michelson device can attain
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greater energy storage than an equivalent Sagnac. In addition, a loss dominated Sagnac is
further disadvantaged due to the increased number of optical surfaces within the Sagnac
itself. In an RSE device, the signal extraction cavity of a Sagnac has two more optical
surfaces than the Michelson. As a consequence, the signal loss for an RSE Sagnac is
greater than for its Michelson counterpart. Both power loss and signal loss translate
directly into a reduction of the instrument sensitivity.

6.6.2 Beamsplitter Issues

As mentioned in section 6.1, the fringe visibility is dependent upon the beamsplitter ra-
tio and is at a maximum for a 50:50 splitting ratio. For a Sagnac with resonant sideband
extraction, the dependence on the beamsplitter ratio is increased. An imbalanced beam-
splitter in an RSE Sagnac allows some of the carrier to be coupled into the signal extrac-
tion cavity. In this case, the signal mirror can decrease the storage time of the carrier in
the same way that it does for the signal. This can result in a large drop in circulating
power in the arm cavities which is detrimental to the total sensitivity of the instrument.
This effect increases with SEM reflectivity.

A Sagnac’s sensitivity to the main beamsplitter ratio is analogous to a Michelson’s
sensitivity to mismatched losses in the arms. The two problems both manifest themselves
as a degradation of the fringe visibility. Conversely, the Sagnac is immune to imbalanced
reflectivity in the arms and the Michelson is immune to beamsplitter ratio imbalance. It
remains to be seen which will be the most significant factor in the fabrication of large
scale optics for future detectors.

In order to obtain a control signal for the SEM using frontal modulation we used
a marginally imbalanced beamsplitter with a power splitting ratio of 54:46. In the arm
cavity Sagnac a slight increase in the dark fringe power was observed. In the RSE systems
a significant drop in arm cavity circulating power was observed, which was particularly
debilitating with the 90% SEM.

6.6.3 Control

The RSE Sagnac has fewer locking systems than the Michelson analogue. In a Michelson
RSE system 4 separate locking signals are required: Michelson differential mode, signal
extraction cavity and two arm cavities. In a Sagnac, we no longer have the need for a dif-
ferential interferometer locking signal due to the internal common path length. A Sagnac
RSE system requires no control of the inboard cavity mirror positions. On the negative
side, modulation sidebands cannot be injected into the signal cavity using the standard
technique of introducing an arm length mismatch. Other more complex methods must be
employed to lock the signal extraction cavity such as using a beam injected into the sig-
nal cavity via the SEM [56] or using the orthogonally polarised light with a polarisation
dependent beamsplitter.

Without the SEM in place the error signals for the arm cavities are completely inde-
pendent. Once the signal mirror is added this is no longer true as each locking detector
measures light reflected from both cavities. This effect is more pronounced for higher
SEM reflectivities, a greater beamsplitter imbalance and when the signal extraction cav-
ity is held close to resonance.

The system employed for control of the SEM is not intended for use in a high finesse
instrument. The signal extraction cavity was locked using a technique similar to trans-
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mission locking. The modulation sidebands pass into the signal cavity due to a combina-
tion of residual mode mismatch and a non 50/50 beamsplitter ratio. This system allowed
the signal extraction cavity to be locked to the RSE position but was fairly inflexible for
tuning the SEM position. To allow locking of the SEM to an arbitrary position a more
versatile control system is required.

6.7 Conclusion

We have presented the first experimental demonstration of resonant sideband extraction
in a Sagnac interferometer. The frequency response of the system was measured and
found to be in excellent agreement with theoretical predictions.

The delay line Sagnac has many advantages over the delay line Michelson system.
Common path lengths in the arms can be an enormous advantage if utilised properly.
However, once the system is complicated with optical cavities many of the benefits of a
Sagnac are lost. In general, the control systems for an RSE Sagnac are no simpler than its
Michelson counterpart. The advantage of insensitivity to asymmetric losses in the arms
is offset by the dependence on the beamsplitter ratio. The reduced ability of a resonant
Sagnac device to store optical energy, due to intrinsically higher losses, ensures that the
shot noise limited sensitivity of a Michelson interferometer will always be superior. For
the purposes of our research, we are interested in an interferometric configuration which
has a tunable signal bandwidth. For this application we believe that the Sagnac holds no
advantage over the Michelson analogue.
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Chapter 7

Power Recycled Michelson
interferometer with resonant
sideband extraction

A power recycled Michelson interferometer with resonant sideband extraction has been
chosen as the reference design for LIGO II [87], the first planned upgrade to LIGO due to
take place in the middle of this decade. In this chapter we introduce a control system for
the length degrees of freedom of such an interferometer. We report on an experimental
implementation of this control system in a bench top prototype and present broadband
measurements of the prototype’s frequency responses for a range of signal cavity detun-
ings.

7.1 Control System

This configuration of interferometer poses a difficult control problem. There are in total
five degrees of freedom which must be controlled: the arm cavity common mode phase,
Φ+, arm cavity differential mode phase, Φ−, the Michelson common mode phase,1 φ+,
the Michelson differential mode phase, φ−, and the signal cavity phase, φs. Our goal was
to develop a flexible control system which could provide quasi-continuous detuning of
the signal cavity as required, without the need for macroscopic changes of the interfer-
ometer parameters. To achieve this the first four degrees of freedom must be locked to
a fixed position whilst the final degree of freedom is detuned to an arbitrary point. Ide-
ally detuning should be performed without the interferometer dropping lock, thereby
avoiding the need for lock reacquisition. The final criterion is that the system is able to
be implemented in a long base-line interferometer. For this reason we have restricted the
control system to frontal modulation only.

The requirement of tunability makes the control problem much more difficult. Two
strategies can be employed to ensure the control signals for the other degrees of free-
dom are not influenced by the detuning of the signal cavity. The first is to calculate the
offsets added due to the detuning of the signal mirror on all other control signals and
then subtract these offsets to produce the error signals. This technique has the advantage
that a relatively simple modulation scheme can be used; however, it relies on extremely
accurate knowledge of interferometer parameters and may be difficult to implement for

1The Michelson common mode degree of freedom, φ+, is also referred to as the power cavity degree of
freedom.
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arbitrary signal cavity detunings. The second approach is to use a modulation scheme
which gives the maximum isolation against the signal cavity for all other degrees of free-
dom. This can be achieved by careful selection of interferometer lengths and modulation
frequencies. For example, a modulation frequency that is completely reflected by the
Michelson is immune to changes in the signal cavity as it never senses the signal mir-
ror. One disadvantage is that this technique may require more modulation frequencies
leading to a complex input beam preparation problem. We have chosen such a system,
sacrificing a small amount of optical and modulation simplicity in return for flexibility of
the detuning of the signal cavity and maximum orthogonality between error signals.

RP PCP

TP

La
cp

LaciLm+∆L

Lm
-∆

L

L s

Lp

Figure 7.1: Diagram of the power recycled Michelson with RSE showing length definitions and
photodetector positions. RP: reflected port, PCP: power cavity port, TP: transmission port.

Figure 7.1 shows the lengths used to describe the interferometer. The symbols Lp
and Ls denote the distance from the beamsplitter to the power mirror and signal mirror
respectively. The average Michelson arm length (distance from the beamsplitter to the
arm cavities) is Lm with the difference between the two Michelson arms given by 2∆L.

The control system was designed and modelled with MATLAB using the two m-files
RSEcontrol.m and RSEinterf.m contained in appendix C. The first program calculates the
6 phase shifts experienced by a field (e.g. a sideband) in different parts of the interferom-
eter (the power cavity, Michelson in-line arm, Michelson perpendicular arm, arm cavity
in-line, arm cavity perpendicular and signal cavity). These phases are calculated from the
6 lengths (Lp, Lm +∆L, Lm −∆L, Laci, Lacp and Ls) and the frequency offset of the field
from the carrier. These phases are passed to a second m-file RSEinterf.m which uses these
phases as an input to the equations for the fields at the reflected port (RP), power cavity
port (PCP) and transmitted port (TP) (see figure 7.1). These complex fields are passed
back to the main m-file, RSEcontrol.m. This process is repeated for each field present
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in the interferometer. These fields are then demodulated and the results are plotted for
examination. Typically we would like to know the demodulated output as a function of
one of the interferometer degrees of freedom, in which case one or more of the six phases
becomes a vector, and the program RSEinterf.m returns a vector for each of the fields.
The demodulated outputs are calculated from these vectors and plotted as a function of
the varied parameter.

The control system was designed around two initial ideas. The first was to use mod-
ulation sidebands which were completely reflected by the Michelson. This should ensure
that any error signals obtained from these sidebands beating with the carrier are insensi-
tive to the detuning of the signal mirror. The second idea was to use a subcarrier with a
frequency tunable offset. It was hoped that if the signal cavity was locked to this subcar-
rier field then the instrument could be detuned by changing the offset frequency of the
subcarrier.

Carrier

Sub-carrier

ω1
ω2

ωsc

PM sidebands
on carrier

PM sidebands
on subcarrier

Figure 7.2: Modulation sidebands required on the input field for the power recycled RSE Michel-
son control system.

Our solution relies on the use of a subcarrier or single sideband offset from the carrier
by a radial frequency of ωsc. In addition to the subcarrier we have two modulation fre-
quencies, one for phase modulation of the carrier (radial frequency ω1), and the second
for modulation of the subcarrier (radial frequency ω2). These are shown diagrammat-
ically in figure 7.2. When the interferometer is at the correct operating point only the
carrier field is resonant in the arm cavities. The phase modulation sidebands at ω1 are
resonant in the power cavity, and are completely reflected by the Michelson interferome-
ter. The single sideband is almost2 completely transmitted by the Michelson interferom-
eter and is resonant in the cavity formed by the signal mirror and the power mirror. The
sidebands at ω2 are nonresonant everywhere and are totally reflected at the power mirror.
The relationships between the modulation frequencies and these lengths are summarised
in table 7.1.

All error signals are derived by demodulation of the outputs of the three photodetec-
tors at the RP, TP and PCP. In the following sections we discuss the details of the error

2As the single sideband frequency changes it is not always exactly at the point of maximum transmission.
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Length Relationship to modulation frequencies
∆L c/(4ν1) & ≈ (n+ 1

2 )c/(4νsc)
Lp + Lm n× c/(2ν1)
Laci free variable
Lacp free variable
Ls free variable (usually ≈ Lp)

Table 7.1: Relationships between interferometer lengths and modulation frequencies (n repre-
sents an integer).

signals for each degree of freedom.

7.1.1 Arm cavity common mode

The arm cavities are the highest finesse cavities and thus will dominate many of the
error signals which involve the carrier field. This important error signal is obtained from
demodulation of the detected photocurrent at the power cavity port. As the ω1 sidebands
are nonresonant in the arm cavity, this is essentially the PDH technique applied to the arm
cavity common mode.

In order to isolate the error signal from changes due to the detuning of the signal mir-
ror, we set the Michelson arm length mismatch so that the interferometer is completely
reflective at this frequency. The electric field transmissivity of a simple Michelson (held
on a dark fringe for the carrier) is proportional to sin(2ω1∆L/c) (see equation 4.35). For
zero transmission to the signal mirror a Michelson arm length mismatch of∆L = c/(4ν1)
is required. Using 75 MHz modulation a Michelson arm length mismatch of ≈ ±1 m
ensures any error signals derived from demodulating at 75 MHz are well isolated against
detuning of the signal cavity.

7.1.2 Michelson common (Power cavity) mode

This error signal is obtained using the same sidebands at ω1 except from demodulation
of the photocurrent at the reflected port. The carrier and both sidebands are resonant in
the power cavity. For a simple cavity with both the carrier and sidebands resonant the
complex reflectivity of the cavity is the same for all three fields thus phase modulation
symmetry is maintained. It follows that demodulation of the reflected port photocur-
rent will give no error signal. In the coupled interferometer considered here the carrier
experiences a lower finesse power cavity than the sidebands due to the loss of the arm
cavities. In this situation the carrier will receive less phase shift than the sidebands on
reflection from the power cavity. This differential phase shift is responsible for producing
the error signal as demonstrated in chapter 4 (see equation 4.25). This is similar to the
system developed by Regehr et. al. [47], except that in our system the transmission of the
sidebands to the dark fringe is zero.

This error signal responds to both the arm cavity common mode and the Michelson
differential mode degrees of freedom. The error signal used for the arm cavity common
mode also responds to both these degrees of freedom. The arm cavity common mode
dominates both error signals because of its higher finesse. The demodulated outputs at
the reflected port and power cavity port are shown in figure 7.3 as a function of Φ+ and
φ+. The slope of the each error signal due to motion of the arm cavities is positive, whilst
the error signal slope due to changes in φ+ is positive at the reflected port and negative at
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the power cavity port. This sign change facilitates the extraction of the power cavity error
signal. This can be achieved either with a hierarchical locking structure or by electronic
processing of the error signals from both ports. For simplicity we chose a hierarchical
locking arrangement.
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Figure 7.3: Error signals for the arm cavity common mode taken from (a) reflected port, (b) power
cavity port and error signal for the power cavity from (c) reflected port and (d) power cavity port.
[a.u.]=arbitrary units.

This error signal also has excellent isolation from the detuning of the signal cavity for
the same reasons as the Φ+ degree of freedom.

7.1.3 Michelson differential mode

The Michelson differential mode is the most difficult error signal to isolate from the effects
of tuning the signal mirror. This is because in order to obtain an error signal for the
Michelson we need some component of the field to be partially transmitted through the
beamsplitter, hence we cannot use the isolation technique from the Φ+ and φ+ signals.

This error signal is obtained at the transmitted port using the double demodulation
scheme, described in section 4.5.2. It uses the subcarrier to detect the presence of the ω1

sidebands at the dark fringe by demodulating the photocurrent at the beat frequencies
ωsc ± ω1. When the Michelson is at a dark fringe the sidebands are completely reflected
and there is no beat present in the transmitted port photocurrent. As the Michelson lock
point changes, some of these sidebands are transmitted to the dark fringe. In addition,
the phase of the ω1 sidebands depends on the direction of the change in the lock point.
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Although an error signal can be obtained by looking at just one of the beat frequencies
(either ωsc + ω1 or ωsc − ω1), it is important to use the beat between the subcarrier and
both sidebands, that is, the photocurrent at ωsc ± ω1. If only one sideband is used this
error signal will cross zero when the sideband transmission drops to zero, but this will
only correspond to the desired lock point if ω1 has been exactly matched to the arm length
mismatch of the Michelson. When both beat frequencies are demodulated and the signals
combined, any offsets (due to an error in the modulation frequency) will cancel and the
desired lock point can be recovered.

We chose to use a double demodulation to produce this error signal (by first demod-
ulating at ωsc then at ω1). This is mathematically equivalent to demodulating at ωsc + ω1

and at ωsc − ω1 and then combining the two signals. Experimentally it was more conve-
nient as the demodulation frequencies were already present, and frequency adding and
subtracting was not necessary.

This error signal is “well behaved” as the signal cavity is detuned, because the subcar-
rier is automatically held on resonance (and thus maximum transmission) by the signal
cavity locking servo. In addition, we obtain excellent immunity to theΦ+ andΦ− degrees
of freedom by using the beat between fields that are not resonant in the arm cavities.

7.1.4 Signal Cavity

An error signal for the signal cavity degree of freedom is produced by demodulating
the reflected port at ω2 (15 MHz). This measures the beat between the subcarrier and its
own PM sidebands. As the Michelson is almost completely transmissive at the subcar-
rier frequency, the subcarrier effectively experiences a two mirror cavity made up of the
power mirror and signal mirror. The ω2 sidebands are non-resonant everywhere, and so
are completely reflected by the power mirror. This error signal is equivalent to standard
Pound-Drever-Hall locking of this combined power-signal cavity.

The signal cavity is detuned by changing the offset frequency of the subcarrier. Feed-
back to the signal mirror changes the combined power-signal cavity resonance to track
the subcarrier and keep it on resonance. The subcarrier is transmitted to the dark fringe
with maximum efficiency as the signal cavity is detuned. This is important as the subcar-
rier acts as a local oscillator for the extraction of the Φ− degree of freedom (the gravita-
tional wave signal). As we are using the beat between the subcarrier and its own 15 MHz
sidebands, the optimum demodulation phase does not change as the signal cavity is de-
tuned.

To determine the subcarrier offset frequency required for a particular detuning we
constructed a look-up table using the program RSEcontrol.m. The values of the subcar-
rier offset frequency ωsc, for a given signal cavity detuning are shown in table 7.2. We
define the detuning angle to be 0o for (broadband) RSE and 900 for (narrowband) or dual
recycled system. We have specified the subcarrier offset frequency to the nearest 10 kHz,
however the precision required for this frequency will be determined by the required pre-
cision of the signal cavity detuning. If this frequency is set incorrectly, the signal cavity
will simply be detuned to a different point, but the other control loops will experience no
adverse effects.

The sub-carrier is close to anti-resonant in the arm cavities making this error signal
immune to the arm cavity common and differential modes.
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Detuning angle ωsc/(2π)
5o (≈RSE) 188.20 MHz
15o 186.45 MHz
30o 184.32 MHz
45o 182.50 MHz
60o 180.81 MHz
75o 179.12 MHz

88o (≈DR) 177.04 MHz

Table 7.2: Look-up table for subcarrier offset frequency required for signal cavity detuning.

7.1.5 Arm Cavity Differential Mode

This control loop relies on the single sideband modulation/demodulation scheme intro-
duced in section 4.5.2. By observing the beat between the carrier and sub-carrier on the
transmission port, a strong error signal for the arm cavity differential mode is obtained.
For locking a simple cavity, there is an increased sensitivity to errors in demodulation
phase for single sideband locking compared to the usual double sideband (PDH) case.
However, in section 4.5.2 we demonstrated that by using an impedance matched cavity
the sensitivity to demodulation phase can be overcome. When single sideband locking
is applied to locking the arm cavity differential mode in a Michelson interferometer, the
fringe visibility of the Michelson interferometer also gives a degree of isolation against
demodulation phase errors. For example, assuming a 100% Michelson fringe visibility,
on resonance there is no carrier at the dark fringe and thus no beat note which ensures
that a demodulation of any phase will not result in a DC offset. This issue will require a
thorough quantitative analysis when considering this scheme for control and readout of
a gravitational wave detector once realistic estimates for demodulation phase error and
fringe visibility are available.

As single sideband demodulation also provides the extraction of the gravitational
wave signal, the shot noise performance of the system must be considered. For the con-
trol system described above, only the single sideband is present on the TP photodetector.
This ensures that there is no extraneous shot noise in the photocurrent due to other side-
bands or the carrier field. Although the signal strength of single sideband modulation is
reduced by a factor of 2 compared to the double sideband scheme (variation of PDH tech-
nique), the shot noise is reduced by a factor

√
3 [67] due to the lack of non-stationary shot

noise in a single sideband system. The net result is a signal to noise ratio of
√
3/2 ≈ 87%

that of the double sideband case (i.e., a reduction of 13%).
As the single sideband is on resonance with the power-signal cavity, its transmission

efficiency to the dark port is relatively unaffected by the signal mirror detuning. Thus
the gain of the Φ− degree of freedom will be minimally affected, apart from the desired
change due to the frequency response of the RSE system to gravitational waves [36].

7.1.6 Control summary

We have designed a control system which is capable of locking the four degrees of free-
dom to a fixed point whilst the signal cavity is detuned to an arbitrary position. This
system requires phase modulation sidebands on the carrier, and phase modulation side-
bands on a frequency shifted subcarrier. Equations 7.1-7.5 summarise the origins of the
five error signals.
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Φ+ = demodulate PCP@ω1 (7.1)

Φ− = demodulateTP@ωsc (7.2)

φ+ = demodulateRP@ω1 (7.3)

φ− = demodulateTP@ωsc&ω1 (7.4)

φs = demodulateRP@ω2 (7.5)

7.2 The experiment

In this experiment we first selected the modulation frequency of ν1 = 75.9 MHz as we
had a resonant phase modulator available at this frequency. This defines a number of
lengths of the interferometer (see table 7.1).

∆L =
c

4ν1
= 0.9875m

Lp + Lm =
c

2ν1
= 1.975m

where Lp + Lm is the effective length of the power cavity. These choices of lengths force
the 75.9 MHz sidebands to be resonant in the power cavity when the carrier is resonant
in the power cavity and the arm cavities. The phase flip of the carrier due to reflection
from an overcoupled arm cavity is cancelled by the phase flip of the sidebands due to the
Michelson reflectivity. Thus ν1 must be an integer number of multiples of the FSR of the
power cavity to be resonant in the power cavity.

The choice of lengths of the other parts of the interferometer is less critical and should
be governed by the desired signal response and operating regime. For this experiment
our choices were partly determined by mirror availability and modematching consider-
ations. We chose the following interferometer parameters.

Ls = Lp = 0.8m

Laci = Lacp = 0.175m

The choice of ν2 = 15MHz was made to utilise a second 15 MHz resonant phase mod-
ulator. These modulation sidebands must be nonresonant everywhere (i.e., they should
be almost completely reflected at the power mirror).

7.2.1 Experimental layout

Figure 7.4 shows the full optical experimental setup used in this experiment. In total
there were 9 photodetectors for locking or monitoring purposes.

In this experiment we used true common and differential mode feedback for the
Michelson degrees of freedom, and there was no feedback to the power mirror position.
The servos used contained a third order elliptic filter [88]. This filter was matched to
the first mechanical resonance of the mirror-PZT, to ensure that maximum suppression
is given at this frequency, whilst maintaining a small phase delay at frequencies down to
an octave away. The circuit diagram is presented in appendix B.
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Figure 7.4: Optical experimental layout for the RSE system. EOM: electro-optic phase modulator,
OFR: optical faraday rotator, pbs: polarising beamsplitter, PM: power mirror, SM: signal mirror,
BS: main Michelson beamsplitter, ACI: arm cavity in-line, ACP: arm cavity perpendicular, RP:
reflected port, PCP: power cavity port, TP: transmitted port.

We used mirrors from a combination of suppliers including Research Electro Optics,
CVI and Rimkevicius and Gintautas. The mirror reflectivities and radii of curvature are
shown in table 7.3. Parameters displayed with uncertainties were experimentally mea-
sured (using either a power meter or photodetectors). Parameters displayed without
uncertainties were inferred from these measured values. For example, the mirror re-
flectivities of the power and signal mirrors were calculated from a measurement of the
transmitted power with a power meter assuming zero loss. The arm cavity mirror val-
ues were inferred from measurements of the arm cavities’ transmissivity, Taci and Tacp,
and reflectivity, Raci and Racp, on resonance. The radii of curvature presented are those
supplied by the manufacturers.

Mirror Power reflectivity Power transmissivity ROC
Power mirror Rp = 0.68 Tp = 0.32± 0.02 1.2 m
Signal mirror Rs = 0.69 Ts = 0.31± 0.02 1.2 m
Beamsplitter Rbs = 0.53± 0.53± 0.02 Tbs = 0.465± 0.02 ∞

AC in-line Raci = 0.255± 0.005 Taci = 0.455± 0.01 N/A
AC perp. Racp = 0.276± 0.005 Tacp = 0.41± 0.01 N/A

AC in-line input coupler Ri1 = 0.9750 Ti1 = 0.0222 ∞
AC in-line rear mirror Ri2 = 0.9955 Ti2 = 0.0045 1.276 m

AC perp. input coupler Rp1 = 0.9750 Tp1 = 0.0220 ∞
AC perp. rear mirror Rp2 = 0.9961 Tp2 = 0.0039 1.276 m

Table 7.3: Measured intensity reflectivities, transmissivities and radii of curvature for the bench-
top prototype mirrors.
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7.2.2 Input field preparation

The lasers used in this experiment were diode pumped Nd:YAG NPRO lasers. For the
carrier we used a 700 mw (Lightwave Electronics 126) and for the subcarrier a lower
power 50 mW (Lightwave Electronics 120) was used.

Figure 7.5 shows a simplified diagram of the input beam preparation. The carrier was
suitably isolated using a Faraday isolator and aligned into the 75.9 MHz resonant phase
modulator (New Focus model 4003). Modulation depth was set to give approximately
10% of the carrier power in each sideband. Likewise the subcarrier was isolated and
modulated at 15 MHz by a second resonant phase modulator (New Focus model 4003).
The lasers were modematched to each other and combined on a 50:50 beamsplitter. The
output of one of the beamsplitter ports was directed towards the main interferometer.
The output of the second port was detected onto a high speed photodetector for the
purpose of offset phase locking.
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Figure 7.5: Diagram of input field generation by offset phase locking low power subcarrier to
high power carrier after each laser is phase modulated.

7.2.3 Offset phase locking

In order to use the interference between the carrier and subcarrier for control and signal
extraction we require a high degree of phase coherence between the two lasers. This can
be achieved by a technique known as phase locking [89]. We will first consider the case
of phase locking two lasers at the same frequency.

When two lasers of the same frequency (assumed to share the same spatial mode
and polarisation) are combined on a 50:50 beamsplitter, interference will determine the



§7.2 The experiment 83

fraction of power at each output port of the beamsplitter. If the powers are equal on these
two ports, then the lasers must be adding 90◦ out of phase. If the phase of one of the lasers
changes then the power will increase at one port and decrease at the other. If the phase
drifts in the other direction the power change will be reversed. By subtracting the outputs
of photodetectors at these ports we can obtain a signal which is proportional to the phase
difference between the two lasers. This signal can be used to feedback to a phase actuator
on one of the lasers to maintain a consistent phase relationship, φ0, between them. For
example, if the field of laser 1 can be represented by,

E1eiωt (7.6)

then when the lasers are phase locked the field of laser two will be given by,

E2ei(ωt+φ0) (7.7)

where E1 and E2 are real.

Offset phase locking is very similar except that the phase relationship between the
lasers has both a DC component, φ0, and a component which is changing linearly with
time, ωsct say. We can see from equation 7.8 that this time varying phase offset, ωsct is
equivalent to a frequency offset by an amount ωsc.

E2ei(ωt+φ0+ωsct) = E2ei((ω+ωsc)t+φ0) (7.8)

A strong phase coherence between the two lasers operating at different frequencies is
essential if the lasers are to be used as a readout system for the interferometer.

To obtain the error signal for offset phase locking we require a detector at only one of
the output ports of the beamsplitter as shown in figure 7.5. In this experiment we require
an offset frequency for the subcarrier, ωsc of around 180 MHz. Offset phase locking is
initiated by first tuning the subcarrier to approximately 180 MHz from the carrier. The
photocurrent will exhibit a large beat note at the difference between the lasers frequency.
To offset phase lock the two lasers, we must measure and control the phase (and in doing
so, control the frequency) of this beat note. The photocurrent is then demodulated at the
desired offset frequency, ωsc, by the electronic local oscillator.

The field incident on the photodetector is given by,

Edet = itbsE1eiωt + rbsE2ei((ω+ωsc)t+∆φ) (7.9)

where∆φ is the error in the phases that we are trying to measure (we have assumed here
that φ0 = 0). The photocurrent is proportional to the detected power,

Pdet = E∗
detEdet (7.10)

= t2bsE
2
1 + r2

bsE
2
2 + tbsrbsE1E2 sin(ωsct+∆φ) (7.11)

Equation 7.11 consists of three terms, the power of laser 1, the power of laser 2, and the
interference between them. It is this high frequency interference term that we must use to
extract the error signal. Demodulating the photocurrent at ωsc gives a signal proportional
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to,

sin(ωsct+∆φ) cos(ωsct) =
1
2
sin(∆φ) +

1
2
sin(2ωsct+∆φ) (7.12)

The second term (an oscillation at 2ωsc) can be removed by a low pass filter. For small
errors in phase, sin(∆φ) ≈ ∆φ and thus we have a signal at the mixer output which is
proportional to error in the phases. The lasers are offset phase locked by using this signal
to feedback to the phase of the subcarrier.

In this experiment the subcarrier phase actuators were the laser crystal temperature
at low frequencies (≤ 0.2 Hz) and to the PZT input of the laser at higher frequencies
(0.2 Hz ≤ f ≤ 80 kHz). The phase locking servo was identical to a frequency locking
servo except with the removal of a pole at high frequencies. To acquire phase lock the
lasers must have approximately the correct frequency, so that the demodulated beat note
lies well within the bandwidth of the phase locking servo. Once lock was acquired the
servo held the offset frequency constant. We chose to feedback to the subcarrier due to
the larger mode-hop-free tuning range of the lower power Lightwave 120 laser. Once the
gains and crossover frequencies were optimised and lock acquired, phase locking lasted
indefinitely (greater than 24 hours).

Figure 7.6 shows a measurement of the input field spectrum with the lasers phase
locked with an offset frequency of 188.2 MHz and both modulations present. Several
confocal cavities were purpose built for this experiment. These cavities were constructed
with invar spacers 100 mm long with a finesse of 200 giving a resolution (FWHM) of 7.5
MHz. For more details on the optical spectrum analysers’ construction, see appendix A.
The 15 MHz sidebands on the subcarrier cannot be easily distinguished in figure 7.6 due
to the combination of low cavity resolution and low sideband power (only 10% the height
of the subcarrier). Resolving the 15 MHz sidebands was not important for the purposes
of lock characterisation.

It was important to acquire phase lock before the modulations were turned on as it
was possible to phase lock to the wrong beat note. The radio frequency spectrum of
the photocurrent of the phase locking detector is shown in figure 7.7. The highest peak
(at 188.2 MHz) was the beat between the carrier and the subcarrier. Notice that there
were also signals at 188.2± 15MHz on either side. These were the beat notes due to the
carrier and 15 Mhz sidebands on the subcarrier. Likewise the signals at 188.2± 30MHz
were due to the interference of the carrier and second order modulation sidebands on the
subcarrier. The same applied for the interference between other frequencies present on
either laser. For example, the signal at approximately 360 MHz was actually due to the
interference between the upper and lower 15 MHz sideband on the subcarrier beating
with the lower and upper second harmonic of the 75 MHz sidebands on the carrier. Note
that there was no beat at either 15 MHz or 75 MHz as phase modulation symmetry was
maintained by these frequency sidebands.

7.2.4 Phase locking excess noise

Figure 7.8 shows a close up of the carrier-subcarrier beatnote at 188.2 MHz. Notice that
the noise floor had quite a lot of structure, most probably due to mechanical resonances
within the laser crystals. In addition, the noise inside the locking bandwidth (approx-
imately 80 kHz on either side of the main peak) was higher than the background noise
level, suggesting that we have insufficient gain in our feedback loop. Ideally, with infinite
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Figure 7.6: Optical spectrum of the input field measured with a 100 mm long scanning confocal
resonator (F = 200).

servo gain we could suppress the frequency noise of the in-loop photocurrent down to
zero, and the in-loop photocurrent spectrum would be that of a perfect sinusoid 3 giving
a single narrow spike at 188.2 MHz.

This excess noise on the phase locking photodetector was potentially a large problem
due to the nature of the single sideband interferometric readout system used here. As
mentioned earlier the gravitational wave signal is read out by measuring the phase of the
beat note between these two lasers. If the relative phase of the two lasers is not constant
to begin with, then the gravitational wave signal will be corrupted. For example, assume
that after phase locking, a small amount of residual phase noise, ∆φr, is present on the
beatnote from equation 7.11. The AC component of the photocurrent can be represented
by,

sin(ωsct+∆φr) (7.13)

After passing through the interferometer to the dark fringe the carrier will acquire an
extra phase shift of φs due to a signal in the arm cavity differential mode (for example,
a gravitational wave frequency). The AC component of the photocurrent measured by a
photodetector at the dark fringe will be given by,

sin(ωsct+∆φr + φs) (7.14)

3this is assuming that the local oscillator is a perfect sinusoid. The photocurrent spectrum should actually
converge to that of the electronic local oscillator spectrum.
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Figure 7.7: Radio frequency spectrum of the phase locking detector photocurrent with both mod-
ulation frequencies on and the subcarrier offset phase locked at 188.2 MHz.

This photocurrent is demodulated by multiplying by the electronic local oscillator,

sin(ωsct+∆φr + φs) cos(ωsc) =
1
2
sin(∆φr + φs) (7.15)

where we have neglected the term at 2ωsc. Equation 7.15 shows that the residual phase
locking error directly couples into the signal readout, becoming indistinguishable from a
gravitational wave signal.

One innovative solution, suggested by Guido Mueller [90], is to replace the electronic
local oscillator for the final signal demodulation by the photocurrent of the phase locking
detector, as illustrated in figure 7.9. The final demodulation is now represented by,

sin(ωsct+∆φr + φs) cos(ωsc +∆φr) =
1
2
sin(φs) (7.16)

where we have again neglected the second harmonic term. Notice now that the output is
completely free from any spurious signal related to the residual phase noise in the phase
locking loop. The cancellation of noise on the phase locking was shown to be crucial in
order to lock even a simple arm cavity stably.

Figure 7.10 shows a comparison of the error signals obtained using each of these tech-
niques. The error signals were measured using one arm cavity only, in order to simplify
the experimental demonstration of the noise cancellation principle. The diagram on the
left shows the mixer outputs as the arm cavity was scanned through resonance. The up-
per trace was obtained using the signal generator as the electronic local oscillator. Two
zero crossing points were present; one appeared when the carrier passed through reso-
nance and another as the subcarrier passed through resonance. Notice the large amounts
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Figure 7.8: Radio frequency spectrum of the phase locking detector photocurrent near the
subcarrier-carrier beatnote frequency.

of background noise and the inconsistency in the absolute height of the error signal be-
tween FSRs. The lower trace shows the same measurement when the photocurrent of the
phase locking detector was used (suitably amplified and filtered) for the demodulation.

A more quantitative estimate of the improvement in locking performance can be ob-
tained by locking the cavity and recording the fast Fourier transform (FFT) of the error
signal. Figure 7.10(b) shows the FFT from 0 to 100 kHz measured with a dynamic signal
analyser (Hewlett-Packard model 3561A). The upper trace shows the error signal spec-
trum obtained using the signal generator as a local oscillator while the bottom trace was
obtained using the measured beat as the local oscillator. Note that the beat note technique
produces consistently lower noise by about 30-35 dB across the entire measurement range
an improvement of approximately a factor of 40. These results convinced us that it was
essential to use this technique in our control system.

An alternative approach, suggested by Alain Brillet [91] to improve the phase locking
performance is to injection lock the subcarrier laser with an acousto-optically frequency
shifted tap off of the carrier laser. This would ensure that the frequency noise of the
two lasers was highly correlated over a very large bandwidth, and would substantially
reduce the gain requirements of the phase locking servo.

7.3 Gain optimisation

It was found to be essential to preset the servo gains to approximately the correct levels
for the interferometer to acquire lock, especially in the case of the arm cavity signals Φ+

and Φ−. Initially a trial and error approach was attempted; however, after many days of
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Figure 7.9: Alternative experimental techniques for producing the electronic local oscillator for
the Φ− and φ− degrees of freedom. Either use (a) the signal generator used to phase lock the two
lasers or (b) the beat note measured on the phase locking photodetector.

frustration a procedure was devised to determine and implement the approximate gain
required. Firstly, a simple subconfiguration was locked and the gain optimised. For ex-
ample, the in-line arm cavity was locked using the Φ+ error signal with the power mirror
and signal mirror severely misaligned and a beam dump in front of the other arm cavity.
A network analyser was used to measure the servo gain (from the mixer output to the
high voltage amplifier input) at a frequency of 100 Hz. We then used the matlab program
RSEcontrol.m (see appendix C) to calculate the slope of the error signal for this subcon-
figuration and compare this to the calculated slope for the full RSE system. Finally, while
monitoring with the network analyser, the servo gain was increased or decreased as re-
quired to compensate for the change in slope of the error signal. The advantage of this
method is that it gives a quantitative prediction of the gain without requiring any knowl-
edge of parameters such as laser power, detector efficiency/gain, PZT responsivity etc.
The technique still relies on reasonably accurate knowledge of the interferometer itself
but even this requirement can be alleviated somewhat by making the subconfigurations
gradually more complicated until the full interferometer is constructed. For example,
the calculation could be performed to determine the change in slope when going from
simple arm cavity locking as described above, to predict the gain for a combined power
mirror single arm cavity system. Once the gain is experimentally optimised for this set
up, a second arm cavity could be added and the procedure repeated until the arm cavity
gain for the full RSE system is obtained.

The final intermediate subconfiguration to be locked was a dual recycled Michelson
(no arm cavities). This configuration was useful for final optimisation of a number of
the servo gains, in particular the Michelson differential mode phase, φ−, the signal cavity
phase, φs, and to a lesser extent the Michelson common mode phase, φ+. The dual recy-
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Figure 7.10: Comparison of error signals obtained with different local oscillators. (a) shows the
mixer output as one arm cavity is scanned (upper trace: signal generator LO, lower trace: beat
note LO). (b) shows an FFT of the mixer output when one arm cavity is locked.

cled Michelson was locked so that the 75.9 MHz sidebands were resonant in the power
cavity. The absence of the overcoupled arm cavities meant that the carrier was in fact an-
tiresonant in the power cavity and was almost completely reflected at the power mirror.
Figure 7.11 shows the optical spectra associated with this subconfiguration.

The top trace shows the input field with a subcarrier offset at 188.2 MHz. The middle
trace shows the field at the power cavity port, which was a direct measure of the field cir-
culating inside the power cavity. Notice that the 75.9 MHz sidebands were the dominant
field with the carrier strongly suppressed. The carrier was still present despite it being
exactly antiresonant because of the low finesse of the power cavity (power mirror reflec-
tivity 68.2%, Michelson reflectivity ≈ 100%). The subcarrier experienced an even lower
finesse cavity (power mirror reflectivity 68.2%, signal mirror reflectivity 68.8%) and so its
power enhancement was slightly less.

As neither the φ− nor φs error signals were derived from interference with the carrier,
and the carrier was the only field resonant in the arm cavities, these error signals were
basically identical to those for the full RSE system. In addition, these error signals were
identical for all values of signal mirror detuning. Building a dual recycled Michelson with
no arm cavities was an excellent way to test, debug and optimise these control loops.

The error signal for φ+ was also only slightly altered by the presence of the arm cav-
ities. To understand why, we must examine more closely just how the φ+ error signal
arises in both cases. For the case of dual recycling (with no arm cavities) we had a sys-
tem akin to anti-Pound-Drever-Hall locking, where both 75.9 MHz sidebands are res-
onant and the carrier exactly anti-resonant in the power cavity. In this case, the error
signal arose because the sidebands acquired a phase shift as the power cavity resonance
changed. This altered the symmetry of the modulation, introducing some component of
amplitude modulation (at 75.9 MHz) which was demodulated to produce the error sig-
nal. When the arm cavities were added, the sidebands acquired the same phase shift as
before but now the carrier also received a phase shift as it too was resonant in the power
cavity. The carrier, however, experienced a lower finesse power cavity (due to the loss on
reflection from the arm cavities) and thus received a smaller phase shift. The error signal
was proportional to the difference between the phase shift of the sidebands and the car-
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Figure 7.11: Optical spectra for a dual recycled Michelson (no arm cavities) showing the field at
the input (upper trace), at the power cavity port (middle trace) and at the transmitted port (lower
trace)

rier. The carrier now had some amount of phase shift in common with the sidebands and
thus the error signal was slightly reduced. For our system, the loss of the arm cavities
was very high (mostly due to transmission), and we required an increase in the servo
gain of only 4 dB to compensate for the reduced slope of the error signal when the arm
cavities were added. The polarity of the error signal did not change as the phase shift of
the sidebands is dominant in both cases.

7.4 Optimising demodulation phases

As discussed previously, careful adjustment of the demodulation phase was necessary to
ensure optimum locking performance. In our experiment the demodulation phases were
continuously adjustable with phase shifters (Synergy Microwave Corporation) acting on
the electronic local oscillator. These phase shifters were capable of producing phase shifts
from 0o to 90o at both 75.9 MHz and subcarrier frequencies. Below we describe the pro-
cedures used to optimise each of the demodulation phases.

7.4.1 Arm cavity common mode demodulation phase

The demodulation phase required for the full RSE system was the same as for either one
of the arm cavities alone. We optimised this demodulation phase by blocking one arm of
the Michelson, misaligning the power and signal mirrors and scanning the arm cavity. A
typical PDH error signal was observed at the PCP and could be optimised by adjusting
the phase shifters to maximise the size of the central peak. As this error signal used a
double sideband (PDH) scheme the demodulation phase only affected the gain and did
not produce an offset.
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7.4.2 Michelson common mode demodulation phase

As the arm cavity common mode signal appeared in the same quadrature and on the
same output as the Michelson common mode output, optimising the phase for the arm
cavity common mode signal automatically optimised the phase for the Michelson com-
mon mode signal. We set this demodulation phase at the RP using the procedure de-
scribed in section 7.4.1.

7.4.3 Signal cavity demodulation phase

The demodulation phase was optimised by scanning the signal mirror with one arm of
the Michelson blocked, with the power and signal mirrors properly aligned. Again, this
system used a double sideband scheme and thus demodulation phase was not as impor-
tant as it was for Φ−.

7.4.4 Michelson differential mode phase

The Michelson differential mode phase was optimised, with the power and signal mirrors
misaligned and the arm cavities blocked, by scanning the Michelson differential mode
phase. As this error signal was obtained by a double demodulation it was necessary to
adjust both phases to obtain the correct error signal. This was a relatively simple task as
each phase could be individually adjusted to maximise the final error signal output. This
provided the correct demodulation phases without any need for iterative adjustment.

7.4.5 Arm cavity differential mode phase

This was the most important demodulation phase. It was also potentially difficult to
optimise, as the final error signal could only be observed by scanning both arm cavities
“symmetrically” out of phase with the Michelson locked. If only one cavity was scanned
then the absolute propagation length of the laser changed, which changed the correct
demodulation phase for that cavity.

The method we chose was to block both arm cavities and misalign the signal mirror,
thus forming a simple Michelson with the two input couplers of the arm cavities. By
scanning the Michelson, an error signal appears at the Φ− output. The height of this
error signal was maximised by adjusting the demodulation phase. This was found to
provide the correct demodulation phase for Φ− in the full RSE system.

7.4.6 Demodulation phase as a function of detuning

In principle the demodulation phases do not change as the subcarrier and signal cav-
ity are detuned. In practice this will only be true if the absolute delay of the electronic
local oscillator and the optical modulation from a common point (the signal generator,
say) are closely matched. Commonly, these delays are only matched down to an integer
number of periods of the modulation source. Thus when the subcarrier offset frequency
changes, time delays which were an integral number of the original period will no longer
be integral number of the new period, and thus the demodulation phase changes. As
a consequence, the demodulation phase was readjusted for each detuning point. This
only applied to those error signals that utilised a beat between the subcarrier and either
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the carrier or its sidebands, namely, the arm cavity differential mode and the Michelson
differential mode.

This can, of course, be overcome by carefully matching the absolute delay of the op-
tical modulation and electronic local oscillator, allowing continuous tuning without de-
modulation phase adjustment. This was deemed unnecessary for this benchtop demon-
stration and the demodulation phase was optimised as described above for each detun-
ing point.

7.5 Lock acquisition

Once the gains and polarities were correctly set, lock acquisition was a relatively simple
process. The DC power levels were monitored at the reflected port, the power cavity
port and the transmitted port. In addition, the power transmitted through each arm
cavity was also recorded. Figure 7.12 shows these DC power levels during a typical lock
acquisition. All of the results presented in this section were recorded for a subcarrier
offset frequency ωsc=182.2 MHz. This corresponds to a detuning of the signal cavity of
approximately 5o from broadband RSE.
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Figure 7.12: Power levels during lock acquisition for the power recycled Michelson with RSE. DC
levels shown (from top to bottom): reflected port, power cavity port, transmitted port, AC in-line
transmitted and AC perpendicular transmitted power.

With the arm cavities off resonance the interferometer acquired lock almost instantly
for the other three degrees of freedom (φ+, φ− and φs). The integrators on these servos
were turned on just before the one second mark. For the next 22 seconds one or other of
the arm cavities was drifting towards resonance. When only one arm cavity drifts near
resonance, the mismatch of the losses on reflection from the arm cavity means that the
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Michelson locking loop can no longer maintain a good quality dark fringe. Consequently,
all of the error signals become more strongly coupled. At around the 23 second mark both
arm cavities jump into lock; however, the locking is unstable as the signal mirror PZT
had reached the end of its range and was no longer tracking the subcarrier correctly. This
slightly corrupted the Φ− error signal as evidenced by the variation in the arm cavities
transmitted power. Shortly after the 25 second mark, the signal mirror servo integrator
was turned off and then on again allowing the servo to recapture lock one fringe away
at around the 26 second mark. The interferometer was now operating at the desired lock
point and remained so for the rest of the trace. Both arm cavities seemed to exhibit a near
exponential decay of the transmitted power from the time of lock acquisition to a near
constant level at the end of the trace. This was due to heating effects in the neutral density
filters used in front of the monitor photodetectors and is not related to the interferometer
locking performance.

The power levels shown in figure 7.12 are slightly ambiguous for determining if the
interferometer is operating at the correct lock position. The DC power levels give no
information about the source of this power, and this source is important for lock to be
unequivocally established. For example, the power at the transmitted port was slightly
higher once lock was achieved than it was at the 20 second mark. From figure 7.12 we
had no simple way of telling if this power increase was due to the subcarrier coming on
resonance as expected, or if it was actually the carrier field, present due to some imper-
fection in the Michelson or arm cavity differential mode locking. A measurement of the
optical spectrum of the field at the transmitted port and the power cavity port provided
us with the information to unambiguously determine if the interferometer was at the
desired operating point.
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Figure 7.13: Optical spectra for a power recycled Michelson with RSE showing the field at the
input (upper trace), at the power cavity port (middle trace) and at the transmitted port (lower
trace).
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Figure 7.13 shows the optical spectra for the fields at the input (top trace), power cav-
ity port (middle trace), and transmitted port (bottom trace). The carrier, subcarrier and
75.9 MHz sidebands were all resonant in the power cavity and so all three fields were
present at the power cavity port. The power of each of these fields was enhanced by a
different amount, as each experienced a different version of the power cavity. We ex-
pected the 75.9 MHz sidebands to have the highest power build up as they experienced a
power cavity made up of the power mirror (68% reflectivity) and the Michelson (≈ 100%
reflectivity) giving a power enhancement of just over a factor of 10 compared to the in-
cident field. The subcarrier experienced a cavity formed by the power mirror and the
signal mirror (69% reflectivity) forming a nearly impedance matched cavity with a pre-
dicted power enhancement of approximately 3. The carrier experienced a very under-
coupled cavity made up of the power mirror and the arm cavities (average reflectivity
of 26.5%) giving only a 0.96 power enhancement factor (i.e. a slight attenuation). This
was a consequence of our choice of mirror reflectivities4 only and it is not a restriction of
the control system. Ideally the power mirror would be chosen to impedance match the
interferometer for the carrier.

The optical spectrum of the field at the transmitted port was also important for deter-
mining if the interferometer was correctly locked. The power-signal cavity was almost
impedance matched for the subcarrier, ensuring high transmission to the transmitted
port. Both the carrier and 75.9 MHz sidebands should be absent from this port if the
Michelson is properly held at a dark fringe. The measured spectra in figure 7.13 are in
good agreement with these predictions, indicating that the interferometer was locked to
the correct operating point.

7.6 Locking performance

The interferometer lock was found to be very robust, with the servos maintaining the in-
terferometer at the correct operating point for periods of several hours. Figure 7.14 shows
the DC power levels for a measurement period of 500 seconds (the maximum measure-
ment time of our Yokogawa 4 channel oscilloscope). When the system did drop lock it
was usually because one of the PZTs had reached the end of its range, and lock was often
reacquired automatically. Once again, these results were taken with a subcarrier offset
frequency of ωsc=188.2 MHz corresponding to a signal cavity detuning of approximately
5o from broadband RSE.

7.7 Frequency response measurement

As one of the prime motivations for constructing the RSE Michelson was the ability to
alter the signal response, we went to considerable effort to devise a method to accurately
measure the broadband signal response of our instrument. The peak response of our sys-
tem when operating at the RSE point was expected to be greater than 5 MHz. This was
well outside the linear frequency range of our PZTs (typically only about 20 kHz). Using
methods based on averaging and normalising the broadband response of the PZTs can
still provide a signal response at these frequencies, however the signal to noise ratio is

4The arm cavity mirrors were changed midway through the experiment to give higher transmission how-
ever this degraded the impedance matching of the carrier. The power cavity mirror was not altered.
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Figure 7.14: Measurement of interferometer power levels over a period of 500 seconds at the a)
Power cavity port, b) transmitted port, c) arm cavity in line transmitted port and d) arm cavity
perpendicular transmitted port.

typically quite low. Another method is to use broadband phase modulation at the input
of the interferometer, and then calculate the transfer function between this and a signal
injected into the arm cavities. This is a rather convoluted way to test the signal response
of the interferometer. Injecting a signal with broadband modulators inside the arm cavi-
ties was avoided for reasons of loss and thermal distortions mentioned in chapter 6.

laser

75.9 MHz

PZT
servo

spectrum
analyser

carrier
laser

signal
injectioncavity

Figure 7.15: Experimental layout used to measure the broadband frequency response of an arm
cavity

The method we used to map out the signal response was to inject a third Nd:YAG
laser (Lightwave Electronics 122) through the far mirror of one of the arm cavities. The
advantage of this technique is that its bandwidth is limited only by the photodetec-
tion/demodulation electronics and so can very easily cover the signal frequencies of in-
terest (0-20 MHz). The technique also allows the positive and negative signal frequency
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responses to be independently measured. This was an advantage when measuring the
response of the detuned interferometer. This is not possible using techniques based on
phase modulation (produced either piezo-electrically or electro-optically) without alter-
ing the demodulation frequency.

We first demonstrate how this technique can be applied to a simple cavity using stan-
dard Pound-Drever-Hall locking. Figure 7.15 shows the experimental layout used to
measure the signal response of one of the arm cavities. The cavity was locked and the er-
ror signal observed on a spectrum analyser. In this case the error signal was the 75.9 MHz
demodulated output at the reflected port. The signal injection laser was tuned to have
nearly the same frequency as the carrier laser. We ensured that the difference frequency
was greater than the servo bandwidth so that the lock was not disrupted in any way. A
peak was observed, arising from the interference between the signal injection laser and
the 75.9 MHz sidebands. It is important to note that this was not the beat between the
signal injection laser and the carrier as we are observing the demodulated output.
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Figure 7.16: Spectrum analyser traces illustrating how the frequency response of the system is
measured by the use of a signal injection laser. Lower trace: real time signal (beatnote) after
demodulation. Upper trace: broadband frequency response obtained using MAX HOLD function
on RF spectrum analyser as the frequency of the signal injection laser is manually changed.

As the signal injection laser frequency was manually tuned the frequency of the beat
note changed accordingly. By using the MAX HOLD feature on the spectrum analyser
the signal response of the cavity was mapped out. The spectrum analyser measures only
the RF power of the error signal as a function of frequency and so unfortunately this tech-
nique does not retain any of the phase information of the signal transfer function. Phase
information could be obtained if the signal injection laser was phase locked to the carrier
with an offset determined by the source of a network analyser. This was not performed
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firstly as the amplitude response was adequate to demonstrate successful detuning and
secondly due to the considerable complexity of such a system.

The situation was slightly different when measuring the response of the RSE system
(refer to figure 7.4 for the detailed experimental set up). As we were injecting a sideband
in only one of the arm cavities this effectively added both a common and differential
mode signal in equal amounts. The common mode signal, however, never reached the
detector at the transmitted port and so the signal response was identical to that produced
if we were injecting a truly differential mode signal5. The other difference when mea-
suring the signal response of the entire interferometer is that we observed the frequency
spectrum of the error signal by measuring the Φ− degree of freedom error signal, namely
the transmitted port photocurrent demodulated at ωsc.

Figure 7.17 shows the measured frequency responses of the power recycled RSE
Michelson interferometer for various detunings of the signal cavity. Both positive and
negative signal frequencies are presented, clearly showing the asymmetry of the signal
response for detuned cases. Of course when the signals reached the spectrum analyser
the positive and negative frequencies were indistinguishable. The positive and negative
frequency responses of figure 7.17 were recorded separately and combined during plot-
ting.
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Figure 7.17: Measured frequency response (both positive and negative frequencies) of the signal
transfer from one arm cavity to the Φ− error signal for RSE Michelson system. The signal cavity
detunings are indicated on the responses.

The number in degrees on each of the curves represents the detuning of the signal cav-
ity where 0o is broadband RSE and 90o corresponds to dual recycling. The signal cavity
was detuned by changing the offset frequency to the value corresponding to the desired
detuning in the look-up table (table 7.2). Between each different signal scan the inter-
ferometer locking was stopped (including phase locking), the signal generator frequency
changed to its new value, phase lock of the subcarrier and carrier reacquired and the
demodulation phases reoptimised for the new subcarrier frequency. Our system could

5This is assuming that the arm cavities are identical.
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not be configured to lock the interferometer at exactly the RSE point or the dual recycling
point. When the subcarrier was tuned to the required frequency for these lock points,
intermodulation products of sidebands and their harmonics produced large beat signals
near DC at the mixer outputs. Although these were not strictly within the locking band-
width, their presence made optimisation of the demodulation phase more difficult and
so these regions of detuning were avoided. This is not a fundamental flaw in the control
system but rather a consequence of our choice of modulation frequencies and lengths for
the benchtop interferometer. In particular, our choice of making the signal cavity exactly
the same length as the power cavity ensured that an intermodulation product is mixed
down to DC when the subcarrier frequency is set to 0o detuning (broadband RSE).

Unfortunately, this control system cannot easily be configured to lock the system
without the signal mirror, and so a direct comparison with the frequency response of
a power recycled Michelson with arm cavities was not possible. However, the signal re-
sponse of one of the arm cavities alone, presented in figure 7.16, gives an indication of
the expected bandwidth of the interferometer without a signal mirror.

Figure 7.18(a) shows a subset of the responses of figure 7.17 plotted on a linear scale.
The signal enhancement near the broadband RSE detuning can be clearly seen compared
to the dual recycled response, particularly around 7 MHz. Due to the excessive loss of
the arm cavities the peak of the near dual recycled response was actually slightly lower
than the peak of the 30o response.

The theoretically predicted frequency responses are shown in figure 7.18b. These re-
sponses were calculated using the measured mirror parameters given in tables 7.3. The
only fitted parameter is the scale of the vertical axis which has been scaled to allow easy
comparison with the experimental data. We can see that the qualitative agreement be-
tween theory and experiment is quite good. The peaks of the frequency responses were
as predicted, as were the relative heights of the peaks. The peaks in the experimental re-
sponse were slightly wider than calculated, which may indicate that there is extra loss in
the signal cavity that is not accounted by the mirror reflectivities alone. The most likely
source of this loss is a mode mismatch between the signal cavity and the arm cavity mode,
or a higher than expected loss in the arm cavities.

As a demonstration of the continuous tuning properties of this control system, fig-
ure 7.19 shows the power transmitted through the arm cavities as the interferometer was
detuned from 30o to 15o without dropping lock (apart from two glitches at 200 seconds
and 460 seconds6). This was achieved by slowly changing the subcarrier offset frequency
(from 184.315 MHz to 186.445 MHz) at a rate which allows the signal cavity mirror to
dynamically track the subcarrier frequency to keep it on resonance. The frequency gen-
erator we used changed frequency in discrete steps up to 4 times a second. The largest
step rate which allowed reliable interferometer locking was 1 kHz, providing a tuning
rate of 4 kHz per second. At this rate the arm cavity transmitted power was quite noisy,
but the system remained in lock. The phase locking system could actually handle dis-
crete steps of 10 kHz without dropping lock; however, the transients introduced into the
relative phase of the carrier and subcarrier were detrimental to the main interferometer
lock, causing it to sporadically drop lock over a time scales of a few seconds using these
larger steps. With careful design of the phase locking loop, and genuinely continuous
tuning of the offset frequency, it should be possible to detune from RSE to DR in a matter
of seconds.

6Lock was automatically and almost instantaneously reacquired.
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Figure 7.18: (a) Measured and (b) calculated signal transfer from AC in-line to Φ− error signal
for signal cavity detunings of 5o, 30o and 88o from RSE with a linear vertical scale. Vertical scale
of (b) has been adjusted to roughly correspond to experimental data, measured values have been
used for all other parameters.

As mentioned earlier, in our benchtop system the demodulation phases should be
reset for each subcarrier frequency. Whilst tuning over the range shown in figure 7.19
the demodulation phase shifted by about 5o from the optimum for the Φ− error signal.
However, the interferometer remained locked. This demonstrated that at least the inter-
ferometer locking was stable in the presence of small demodulation phase errors.

7.8 Application to long base-line interferometers

There are a few key differences in the application of this control system to a long base-
line gravitational wave detector. Firstly, on the bench top system the subcarrier could
be tuned continuously over the entire range without coming into contact with an arm
cavity resonance. This was possible due to the small ratio of lengths of the arm cavity to
the signal cavity, Lac/(Ls + Lm) ≈ 0.1. In a long base-line detector this ratio increases to
approximately 200, ensuring that as the subcarrier frequency is detuned it will encounter
each arm cavity resonance approximately every 40 kHz. To avoid these resonances the
subcarrier frequency could be moved in discrete steps of the arm cavity FSR. In this way
the subcarrier could be kept anti-resonant with the arms yet still provide an adequate
number of detuning points for the signal cavity.
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Figure 7.19: Arm cavities’ transmitted powers during detuning of the signal cavity from 30◦

(184.315 MHz subcarrier offset) to 15◦ (186.445 MHz subcarrier offset), at a rate of approximately
4 kHz per second.

Secondly, in a long base-line interferometer the signal cavity will be much longer.
As a consequence, it is possible that the entire range of detuning could be accessed by
changing the subcarrier frequency by 1 MHz or less. In this case the subcarrier offset
frequency could be reduced to approximately half the frequency of the ω1 sidebands as
intermodulation products would be easier to avoid. This frequency (ωsc ≈ 40MHz) will
be more convenient for detection and signal extraction purposes.

Finally, it may be possible to extract the φs degree of freedom using a double demodu-
lation of the beat between ω1 sidebands and the ωsc subcarrier at the reflected port. In this
case the ω2 sidebands on the subcarrier would no longer be needed, simplifying the input
field to a set of PM sidebands on the carrier, and a tunable offset frequency subcarrier.
This possibility is yet to be fully analysed and requires further investigation.

Figure 7.20 shows a comparison of the input fields required to lock the interferometer
to the 5o detuned point and the 88o detuned point. The subcarrier frequency has changed
by about 10 MHz to achieve this. This is equivalent to a fractional offset frequency change
of around 6%. This amount of tunability can be easily dealt with by the electronic systems
such as photodetectors, mixers and even modulators; however, it is a very awkward
frequency shift to deal with in the input optics. In particular, it will be very difficult
to pass all of the optical frequencies through a single mode cleaner of moderate length
(several metres, say).

There are several potential solutions to this problem. The most flexible from a con-
trol point of view, would be to have individual suspended mode cleaners for the carrier
and subcarrier. These two modecleaners could be of fixed (but different) lengths, locked
on resonance to the carrier and subcarrier respectively, and each pass the single pair of
modulation sidebands n free spectral ranges away.

Another solution is to use a very long modecleaner. The subcarrier frequency offset
could be tuned discretely between adjacent FSRs. The number of tuning points of the
signal cavity is proportional to the ratio of the lengths of the modecleaner to the signal
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cavity, thus having a short signal cavity may help as well. This solution could be suitable
for the VIRGO interferometer as it uses a 160 m modecleaner.

To justify the extra complication of the input modecleaners, this control system should
be applied to an interferometer which is required to be detuned either often or quickly.
Such an interferometer may be operated in a reasonably narrow band mode, perhaps to
complement the broadband responses of other detectors. The 2 km LIGO interferometer
is one candidate for reasonably narrow band operation, which could potentially benefit
from such a control system.

If the detuning point of the signal cavity will be basically fixed, much of the flexibility
benefits of this control system are not necessary. However, in this mode of operation,
the subcarrier frequency is also fixed, and thus all fields could be passed through the
same modecleaner, removing one of the biggest obstacles to the simple implementation
of this technique. In addition, if occasional detuning is required, this could be achieved
by a macroscopic movement of the signal mirror, in the mode of operation suggested by
Mason [67].

One of the biggest unknowns in this experiment is the ability of single sideband mod-
ulation to be used as an effective signal extraction technique for the gravitational wave
signal. An investigation of techniques for minimising demodulation phase errors would
be useful, for example, there may be a way to actively stabilise the demodulation phase
to suppress such errors. Detailed analysis of the coupling of demodulation phase error
into the signal output is required as well as realistic estimates of the size of the probable
demodulation phase error.



102 Power Recycled Michelson interferometer with resonant sideband extraction

7.9 Summary

We have designed and implemented a length sensing control system for a power recycled
Michelson interferometer with resonant sideband extraction. This control system relies
on frontal modulation only, and extracts the error signals of the 5 degrees of freedom
from the reflected, transmitted and power cavity ports. We have experimentally oper-
ated a benchtop prototype over almost the entire range of the signal cavity detuning.
In addition we have demonstrated that the interferometer can be continuously detuned
without dropping lock. Finally, the signal response of the interferometer was measured
(for both positive and negative frequencies) at these detuned points and was found to be
in good agreement with theoretical predictions.
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Chapter 8

Tilt locking

So far this thesis has been concerned with precision control and readout of the main inter-
ferometer of a gravitational wave detector. There are many other optical cavities which
must be frequency locked such as the (pre)modecleaner [92], output modecleaner and
injection locking systems [93]. The frequency locking of lasers to optical cavities is also
required for a wide range of other scientific applications including frequency stabilisation
[94], continuous wave second harmonic generation [95] and optical frequency standards
[96]. The remainder of this thesis is devoted to a new technique for the readout and con-
trol of optical interferometers. This technique, tilt locking [97], utilises a high sensitivity
measurement of the interference between two spatial modes of a cavity to produce an
error signal.

8.1 Frequency Locking techniques

Frequency locking involves obtaining an error signal which is proportional to the differ-
ence between the laser frequency and the cavity resonance1. This error signal is usually
utilised in a closed loop feedback system to actuate either the laser frequency or the cav-
ity length to the desired value. The actuator for cavity length control for the experiments
described in this thesis was a PZT attached to one of the cavity mirrors. For the Nd:YAG
lasers used here, the frequency actuators are the laser crystal temperature and a PZT at-
tached to the laser crystal. More recently, feedback to the current of the pump diode lasers
has been found to produce effective frequency stabilisation [98]. This coupling from the
pump intensity to output frequency is due to thermally induced changes in the optical
path length of the laser crystal [99]. Unity gain frequencies of 80 kHz have been demon-
strated with this system with the added benefit that the free running laser intensity noise
is also suppressed.

Several methods for obtaining an error signal have been used over the last sev-
eral decades including fringe side locking [100], transmission locking [101], Hänsch-
Couillaud locking [85] and Pound-Drever-Hall locking [33]. We will give a brief overview
of these techniques, highlighting their advantages and disadvantages.

Fringe side locking

Fringe side locking [100] is a commonly used technique which involves locking the laser
halfway up the side of the cavity resonance. The basic idea is that as the laser frequency

1The condition of proportionality need only be satisfied when the laser is sufficiently close to resonance.
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drifts with respect to the cavity resonance, the fraction of the power transmitted through
the cavity will be changed. If the cavity drifts closer to resonance the transmitted power
will increase, and as it drifts away from resonance the power will decrease. By subtract-
ing an offset from a measurement of the transmitted power a zero crossing error signal
can be obtained. This error signal will not lock the laser to resonance but part way up
the side of the fringe. The technique has the advantage that it is simple to use and it
requires no additional components to be added to the beam path. It is inherently a DC
technique, and thus low speed photodetectors and electronics can be used. In addition
the processing of the photocurrent to produce an error signal is very straightforward.

The main shortcoming of the technique in this simple form is that it is sensitive to am-
plitude noise of the laser. For example, if the power on the transmitted detector increases
it is impossible to distinguish whether this was due to a change in the frequency of the
laser or an increase in the laser intensity. This problem can be overcome by detecting
both the transmitted and reflected beams and subtracting the two photocurrents. As the
intensity noise is correlated on these two detectors it will be removed by the subtraction2.
The photocurrents will be anticorrelated with respect to frequency measurement and so
the subtraction will result in an increase of the signal. To approach the same sensitivity
as other techniques all of the power needs to be detected. This can be a problem if high
powers are involved, or the beam is to be used later in the experiment.

Transmission locking

Transmission locking [101] involves dithering either the laser frequency or the cavity
length and monitoring the transmitted power to obtain an error signal. The photocurrent
is demodulated at the dither frequency typically by a lock in amplifier. The frequency
of the dither must be kept to approximately the cavity bandwidth or lower otherwise no
error signal is obtained. As a consequence, the bandwidth of this system is fairly small
(less than half the dither frequency to prevent aliasing problems). As this technique uses
the transmitted field, it also suffers from a time delay due to passage through the cavity.
This method can be useful to control complicated coupled interferometers as different
components can be dithered at different frequencies to isolate the error signals from cross
coupling.

One of the disadvantages of this technique is that the laser frequency dither will be
present on the output beams which may interfere with subsequent measurements [102].
The alternative of mechanically dithering the cavity may be undesirable or impossible
in high sensitivity applications, for example, a rigid or suspended cavity, potentially in
vacuum.

Hänsch-Couillaud locking

Hänsch-Couillaud locking [85] is a conceptually elegant method to produce an error sig-
nal for birefringent cavities. If the polarisation of the field incident on the birefringent
cavity differs from the polarisation eigenmodes of the cavity (typically s and p polarisa-
tions) the cavity will decompose this into a resonant (s say) polarisation mode and a non
resonant (p say) polarisation mode. When the s mode sweeps through resonance it will
receive a phase shift, which will alter the polarisation state of the light reflected from the

2This is not the case at frequencies large compared to the cavity linewidth where the filtering of the cavity
reduces the transfer of the intensity noise to the dark fringe
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cavity. By analysing this polarisation, an error signal for the cavity resonance position
can be obtained.

A cavity can be made birefringent by inserting a polarising element inside; however,
this will add extra loss, limiting the feasibility of this technique for high finesse cavi-
ties. A ring cavity exhibits birefringence due to different phase shifts obtained by each
polarisation upon reflection from a tilted mirror, and so is a natural candidate for Hänsch-
Couillaud locking. The technique could also be applied to cavities containing non-linear
birefringent materials such as second harmonic generators and optical parametric oscil-
lators.

Hänsch-Couillaud locking exhibits the best shot noise limited sensitivity of all tech-
niques. In fact it is the only technique which is, in principle, capable of measuring a signal
at the quantum noise level. Unfortunately, technical factors often limit the performance
well before this limit. The main disadvantage of the Hänsch-Couillaud technique is the
complexity and stability of the polarisation analysis system. The polarisation analysis
requires the alignment and optimisation of several components including two photode-
tectors, waveplates and a polarising beamsplitter. To reach the shot noise limit, the wave
plates must firstly be optimised to give equal power on the two photodetectors. This is
not sufficient to guarantee maximum sensitivity and the change in power on the detectors
for any given phase shift must be maximised by careful adjustment of the waveplates. A
major drawback for high precision applications is the temperature sensitivity of the po-
larisation optics. This can severely degrade the DC accuracy of this technique.

Pound-Drever-Hall locking

Currently the most widely used method for high performance applications is the Pound-
Drever-Hall (PDH) technique [33]. As discussed earlier, the PDH technique utilises the
beat between the carrier field and non-resonant phase modulation sidebands. The side-
bands provide a reference for the phase of the carrier field reflected from the cavity. As
will be demonstrated in section 9.2, by making a measurement of the phase of the re-
flected field, a high sensitivity, quantum noise limited measurement of the cavity is pos-
sible. Remarkably, this technique can achieve this sensitivity with only a small fraction
of the total power on the photodetector. The PDH technique also has an excellent fre-
quency response as it is a reflection based technique and it is insensitive to low frequency
amplitude noise.

As PDH measures the component of the phase modulation sidebands converted to
amplitude modulation it is sensitive to any excess amplitude noise at the modulation
frequency. To avoid this the modulation frequency is normally chosen to be in a region
where the laser is shot noise limited, typically above 5 to 10 MHz depending on the laser.
A problem arises if the phase modulation is not pure and has some component of ampli-
tude modulation. In practice, electro-optic modulators will produce some component of
AM which is usually temperature dependent. If this is a problem, it can be overcome by
measuring the AM directly, and servoing it to zero [103], although this variation is only
required in ultrahigh performance systems and is seldom used.

Other disadvantages of the PDH technique are its complexity and expense. It typi-
cally requires a signal generator, electro-optic modulator, high speed photodetector and
RF electronics for processing the signal. One other technical problem which is becoming
a concern for gravitational wave detectors, is associated with passing high optical pow-
ers through electro-optic phase modulators. Despite these minor short comings, the PDH
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technique continues to be the preferred system for high performance applications.

8.2 Tilt locking

The technique presented here, tilt locking [97], also utilises interference between the car-
rier field and a directly reflected phase reference. In this case the phase reference is a
non-resonant higher order spatial mode. Instead of electro-optic encoding and electronic
decoding of frequency sidebands, tilt locking uses optical encoding and decoding of spa-
tial modes. The nature of the spatial modes and their interference is crucial to under-
standing tilt locking.

8.2.1 Hermite-Gauss modes

An optical cavity decomposes an input field into a set of spatial transverse electro-
magnetic (TEM) modes, which can be approximated by the Hermite-Gauss functions [31]
(see section 3.5). Higher order Hermite-Gauss modes can be excited by incorrect mode
matching or alignment of the laser to the fundamental Gaussian mode of the cavity. Tilt
locking relies on the fundamental TEM00 mode and the TEM10 mode interference to ob-
tain an error signal. Figure 8.1(a) shows the cross section of the real and imaginary parts
of the fundamental mode electric field. We are only concerned with the electric field dis-
tribution in the x-axis and we assume that all modes considered here have a Gaussian
distribution in the y-axis. Note that the fundamental beam has the same phase across the
entire cross section. Figure 8.1(b) shows the same information for the TEM10 mode. Note
that the electric field has a phase flip of 180◦ at x = 0. For modal interference the phase
difference between the two modes is crucially important. Figure 8.1(c) shows a TEM10

shifted by π/2 radians, that is, ±π/2 out of phase with the carrier field.
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Figure 8.1: (a) Fundamental mode, (b) TEM10 mode (in-phase), (c) TEM10 mode (π/2 phase shift)

We now consider interference of these two modes[104]. If we add the TEM00 field
with a small fraction of the TEM10 (in-phase) mode, the electric fields will add construc-
tively on the right hand side and subtract on the left hand side of the beam. The result,
as shown in figure 8.2(a) is that the beam position will be offset by a small amount to the
right, thus we refer to the in-phase TEM10 mode as the offset mode. If we add a small
fraction of the TEM10 mode with a π/2 phase shift to the TEM00 mode, the beam adds in
quadrature on both sides of the beam. The resultant electric field is shown in figure 8.2(b).
Note that the magnitude of the beam remains approximately unchanged; however, the
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phase now changes nearly linearly with x. This is equivalent to a tilted wave front, and so
we call the π/2 phase shifted TEM10 mode the tilt mode. Conversely, the TEM10 modes
can be excited in an optical cavity by the misaligning the input beam with respect to the
cavity. For example, the TEM10 tilt mode (π/2 out of phase) can be produced at the input
from a TEM00 mode by tilting the input beam with respect to the cavity input mirror.
In general, the amount of tilt and offset will determine the magnitude and phase of the
TEM10 produced.
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Figure 8.2: Effect on the magnitude and phase of the field of adding a small amount of the TEM10

mode to the TEM00 mode (a) in-phase and (b) π/2 out of phase.

Different Hermite-Gauss modes accumulate different phase shifts as they propagate
through space. In an optical cavity, the position and curvature of the mirrors will de-
termine the extra round trip phase shift each mode will receive. This is known as the
Gouy phase shift [31], and it is plotted for the TEM00 and TEM10 modes in figure 8.3.
One consequence of the Gouy phase shift is that the TEM00 and TEM10 modes of the cav-
ity will have a different round trip phase shift and thus a different resonant frequency.
Exceptions to this are the cases on the border of stability for flat-flat or concentric cavity
geometries where the round trip relative phase shift is 0 and 2π respectively. Tilt locking
requires a cavity where the TEM10 mode is non-resonant when the TEM00 mode is near
resonance. This condition is satisfied for most stable cavities of reasonable finesse.

8.2.2 Obtaining an error signal from spatial mode interference

In its standard form, tilt locking uses a nonresonant TEM10 mode as a phase reference for
the resonant TEM00 mode (the carrier). The transverse electric field distribution for the
TEM00 mode and a TEM10 (offset) mode is shown in figure 8.4(a). The detected signal is
proportional to the magnitude of the interference between these two spatial modes, and
is given by the overlap integral [31]. For Hermite-Gauss modes where the entire beam is
detected, no interference can be measured with the overlap integral given by,

I0,1 =
∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞
u∗00(x, y)u10(x, y)dxdy

∣∣∣∣= 0 (8.1)
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where u00(x, y) and u10(x, y) are the electric field distributions for the normalised TEM00

and TEM10 modes respectively. The integral is zero due to the orthogonality of the
Hermite-Gauss modes. No interference is detected and thus no error signal is obtained.
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Figure 8.4: (a) TEM00 and TEM10 transverse electric field amplitude and (b) diagram of intensity
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To measure the interference between the two spatial modes efficiently, we use a
method similar to that used in auto-alignment systems [70, 71]. The reflected beam is
detected on a two element split photodiode, as shown in figure 8.4(b), in such a way that
each lobe of the TEM10 mode falls in a separate half of the photodiode. The error signal
is given by subtraction of the photocurrents from each photodiode half. The interference
measured by this split detection is given by,

I0,1 =
∣∣∣∣
∫ ∞

−∞

∫ 0

−∞
u∗00(x, y)u10(x, y)dxdy

∣∣∣∣−
∣∣∣∣
∫ ∞

−∞

∫ ∞

0
u∗00(x, y)u10(x, y)dxdy

∣∣∣∣ (8.2)
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As the u00(x, y)u10(x, y) product is antisymmetric, breaking the overlap integral at the
origin maximises the error signal.

As mentioned earlier, TEM10 mode arises from two types of misalignment - beam
displacement and beam tilt. For tilt locking, the input beam is aligned and mode matched
to give only the TEM00 mode and a TEM10 mode with a relative phase of ±π/2 at the
plane of the photodetector3. Figure 8.5 shows a simplified electric field vector diagram of
the TEM00 and TEM10 (tilt) modes on the two halves of the photodiode where a single
vector is used to represent the phase and average amplitude of the field on each side.
Figure 8.5(a) shows the interference when there is no phase shift added by the cavity.
This occurs when the TEM00 mode is exactly resonant with the cavity and the TEM10

is non-resonant. On the left half, the TEM10 adds to the TEM00 mode with π/2 phase
while on the right half, the TEM10 adds with −π/2 phase. The power, proportional to
the square of the resultant vector, is equal on each half. Thus the error signal, obtained
by subtracting the photocurrents from the two halves of the photodiode, is zero. As
the carrier drifts slightly away from resonance, the TEM00 mode acquires an equal phase
shift in both photodiode halves while the non-resonant TEM10 mode remains unchanged
as shown in figure 8.5(b). This causes the power in each photodiode half to increase and
decrease respectively. The electronically subtracted photocurrent is no longer zero and
gives an error signal proportional to the imaginary component of the cavity reflectivity
for the carrier.
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Figure 8.5: Vector summation of electric fields on each photodiode half with TEM00 (a) on reso-
nance and (b) slightly off resonance.

An alternative explanation of the process is that a split photodetector performs a mea-
surement of beam position. When the cavity is on resonance, the relative phase of the
TEM10 and TEM00 modes, and thus the tilt symmetry, is preserved. A measurement will
find the beam position unchanged. Reflection from an off-resonant cavity adds a phase
shift between the two modes, converting the TEM10 mode from tilt mode symmetry to
offset mode symmetry. A sensitive measurement will find that the average position of
the beam has been altered.

The vector pictures presented above are instructive; however, they do not give a com-
plete picture of the interference over the entire beam. Figure 8.6 shows the power on the
split photodetector as the carrier phase shift changes from −π/1500 to π/1500. In this
case we have assumed that the cavity is impedance matched. The power clearly shifts
from right to left as the cavity drifts through resonance.

3The relative phase of the TEM00 and TEM10 modes changes depending on the separation of the detector
and cavity. The phase difference is only important at the photodetector where the interference is measured.
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Figure 8.6: Interference between the TEM00 and π/2 phase advanced TEM10 Hermite-Gaussian
modes reflected from an impedance matched resonator for a TEM00 mode with a phase change
of (a) -π/1500, (b) 0, and (c) π/1500 rad in one resonator cycle.

8.2.3 Other spatial mode interference techniques

An earlier system developed by Wieman and Gilbert [105] also uses spatial mode inter-
ference. The beam reflected from the cavity is divided into two on a beamsplitter. An
error signal is obtained with an apertured detector sampling a small section of one of the
reflected beams. Interference between spatial modes will change the amount of power
passing through the aperture and thus give some form of error signal with a large DC
offset. The entire profile of the second beam is measured by a detector with a variable
attenuator to correct for this offset. In addition to being a little more complicated than
tilt locking, this scheme suffers from low efficiency due to inefficient measurement of the
interference and losses introduced by the aperture. It can also be limited by the accuracy
of the offset compensation. Another technique developed by Schnier and Madej [106]
also uses spatial mode interference to control an interferometer. In this case it is to con-
trol the phase of optical feedback for a diode laser but it could also be applied to locking
optical cavities. This system, however, requires a cavity which has close to degenerate
spatial modes as the modal interference is measured on the transmitted beam, again with
the use of apertures. This suffers from the same efficiency problems associated with the
scheme of Wieman and Gilbert in addition to being restricted to cavities with particular
geometries.

Tilt locking has more in common with Hänsch-Couillaud and PDH locking in that it is
a reflection based technique which uses a non-resonant field as a phase reference or local
oscillator for the carrier field. The three techniques utilise three different ways to produce
a non-resonant field: spatial mode non-degeneracy, polarisation mode non-degeneracy
and frequency mode non-degeneracy. As all three techniques are based upon the same
physical principle they all share approximately the same fundamental limits. This will
be examined more thoroughly in Chapter 9.
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8.3 The experiment

In this thesis, we will often compare the performance of tilt locking to that of PDH lock-
ing as this is the current “state of the art”. We wish to demonstrate that tilt locking can
potentially achieve the same performance as PDH locking; however, in a much simpler
manner. Figure 8.7 shows the experimental layout of a standard PDH and tilt locking
experiment. A ring cavity is used for simplicity however tilt locking works equally well
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Figure 8.7: Experimental arrangement for (a) PDH locking and (b) tilt locking.

on a linear cavity. In figure 8.7(a) the beam passes through an electro-optic modulator
and the reflected light is detected on a high speed photodetector. The photocurrent is
then demodulated with the original driving signal to produce an error signal. In the tilt
locking scheme of figure 8.7(b) the beam is aligned onto the cavity and the reflected beam
detected on a two element split photodetector. The signal generator, electro-optic modu-
lator, high speed photodetector and mixer have been replaced by a split photodiode and
a subtraction circuit (not shown here). The split photodetector built for this experiment
uses a commercial quadrant photodiode (EG&G C30843E) with the two quarters of each
side added together (for details of the photodetector see appendix B). This forms a verti-
cally split two element detector requiring a horizontal tilt to extract the error signal. The
photodetector has sum and difference outputs allowing both the power and error signal
to be monitored.

Careful alignment of the laser beam with respect to both the cavity and the tilt detec-
tor is necessary. Initially we align the laser beam to the cavity with no offset or tilt, in the
standard way by scanning the cavity length and minimising the TEM10 mode power. We
then position the split photodetector at the centre of the reflected beam by zeroing the
subtracted output. By introducing a small misalignment with one of the input mirrors
an error signal is generated which is slightly offset from zero. A second input mirror
is adjusted to zero the error signal in a region of the scan far from resonance. Instead
of adjusting the second mirror to zero the error signal it is possible to displace the tilt
detector to recentre the beam. The technique will still work reliably, however the shot
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noise performance of the system will be slightly reduced4. This procedure ensures that
the TEM10 is π/2 out of phase with the carrier field as required. Any offset present in
the final alignment is apparent by the asymmetry of the resulting error signal and can be
readily removed thus ensuring the error signal is zero crossing at cavity line centre.

Figure 8.8 shows experimental results as the cavity length is scanned using a PZT
attached to one of the cavity mirrors. Figure 8.8(a) shows the transmitted power and error
signal obtained using the PDH scheme as the cavity is scanned through a complete free
spectral range (FSR). The error signal was taken at the output of the level 7 mixer and a ×3
amplifier and produced an error signal of approximately 0.5 Vp-p. Figure 8.8(b) shows
the sum (total reflected power) and difference (error signal) outputs of the two element
split detector for the tilt locking system again after ×3 amplification. A large error signal
(5 Vp-p) was obtained even with a small misalignment (TEM10/TEM00 ∼ 1%) due to the
larger front end gain of the tilt locking detector. It should be noted that the size of the tilt
locking error signal in figure 8.8 was deliberately reduced to allow the use of the same
frequency servo designed for PDH locking. Tilt locking error signals of 25 Vp-p could be
readily achieved by increasing the beam tilt or photodetector transimpedance gain. The
size of the error signal for PDH was ultimately limited by the type of mixer used and the
RF power of the local oscillator. A large error signal may be an advantage if the electronic
noise of the servo is close to the shot noise level in the error signal.

In figure 8.8(b) an error signal also appeared (at approximately 8 ms) as the small
TEM10 mode passed through resonance with the fundamental now acting as a phase
reference. As both these error signals resulted fromTEM00-TEM10 interference they were
the same size, even though theTEM10 error signal occured with negligible light inside the
cavity. This was in contrast to the PDH system where the error signals for the sidebands
were smaller than the carrier error signal as only one sideband contributed to the error
signal at a time.

8.3.1 Frequency response and intensity noise immunity

Tilt locking and PDH locking have identical frequency responses as both schemes sample
the optical field reflected from the cavity. Figure 8.9(a) shows the frequency spectrum of
the error signals of both PDH and single pass tilt locking. The noise features present are
typical of our 50 mW Nd:YAG laser (Lightwave Electronics120) and show the mechanical
resonances of the laser crystal. The difference between the two spectra shown here was
due to the 400 kHz roll off of the photodetector because of the R-C time constant of the
quadrant detector and the limited bandwidth of the audio op-amps used5 (AD708). As
noted earlier, the tilt locking error signal was much larger than the PDH error signal and
the tilt locking data in figure 8.9 has been scaled to allow a simple comparison at low
frequencies.

A well known feature of the PDH technique is its immunity to low frequency laser
intensity noise. The intensity noise spectrum of our laser, shown in figure 8.9(b), had a
large single feature at 430 kHz; the laser relaxation oscillation. This feature was absent
from the PDH error signal as expected, and from the tilt locking error signal.

4The in-phase component of the nonresonant TEM10 mode does not contribute to the error signal.
5This particular photodetector was designed for a feedback system with a bandwidth of a few kHz only,

and thus was not optimised for measurements in the MHz range. The quadrant photodiodes can have a
bandwidth of many tens of MHz.
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Figure 8.8: Power and error signal for (a) PDH locking, and (b) tilt locking for a cavity with a
finesse of 200. Note power in (a) is transmitted intensity while (b) is the reflected intensity.

Tilt locking relies on balanced power in the two photodiode halves to obtain this
intensity noise immunity. If the power is perfectly balanced then the intensity noise is
subtracted down to the quantum noise limit. In practice, however, the balancing of the
power on the photodiodes, and thus the intensity noise immunity, will be determined
by the DC gain of the locking servo. For the servo used in this demonstration we expect
approximately 100 dB isolation from laser intensity noise.

8.4 Beam jitter and mechanical vibration

Every locking scheme is sensitive to at least one noise source, if only the fluctuations
in the quantity measured to infer the frequency noise. In the PDH technique, the mea-
sured quantity is the amplitude modulation at the modulation frequency, and thus the
technique will be sensitive to amplitude or intensity noise at this frequency. In Hänsch-
Couillaud locking an analysis of the polarisation of the reflected field is carried out and
thus it is sensitive to fluctuations in the polarisation of the light incident on the cavity.
Tilt locking essentially performs a measurement of the position of the beam reflected by
an interferometer, and so fluctuations of the input beam position will couple into the er-
ror signal, mimicking fluctuations in frequency. This is the primary source of noise in
tilt locking, indeed as we will demonstrate in chapter 9, the quantum mechanical fluc-
tuations in the beam position (derived in section 3.6) are responsible for the shot noise
limit of the tilt locking system. For this reason tilt locking is not ideally suited for use on
suspended cavities.

It is reasonably straightforward to see how beam position fluctuations create a false
error signal. As the beam moves the power on each side of the detector changes and thus
the subtracted output will contain a false signal. In terms of spatial modes, beam position
fluctuations arise from fluctuations in the TEM10 mode. The interference of the TEM00
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Figure 8.9: (a) Error signal frequency spectrum for PDH locking (top trace) and single pass tilt
locking (lower trace) for a cavity with a finesse of 4000. (b) Laser intensity noise over the same
frequency range.

mode with this noisy TEM10 mode induces beam position fluctuations in a manner simi-
lar to that depicted in figure 8.5.

8.4.1 Double pass tilt locking

There are several ways to minimise the effects of beam jitter. Perhaps an obvious solution
to a person familiar with gravitational wave detectors is to use a modecleaner cavity to
spatially filter the beam before it is directed onto the cavity. This solution involves the
control of yet another cavity, a task equal in difficulty to the original problem to be solved.
One elegant method to overcome the extra complexity is a scheme we refer to as double
pass tilt locking, where the light is passed twice through the same cavity. The cavity is
used as a spatial mode cleaner on the first pass and as a frequency reference on the second
pass. Figure 8.10(a) shows the experimental layout of double pass tilt locking, where the
light passes through the cavity once and is then retro-reflected, with a slight tilt, back
through the cavity. It is important to note that the two passes through the cavity do
not interfere as they are propagating in opposite directions6. The beam reflected on the
second pass is used to obtain the error signal. Assuming that the filtering of the cavity

6In a linear cavity the second pass must be made orthogonally polarised to the first pass beam by adding
a λ/4 plate before the retro-reflecting mirror.
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is adequate, the beam jitter as seen by the photodetector only depends on the relative
mechanical stability of the retro-reflecting mirror, optical cavity and the photodetector.
Careful engineering of these components can ensure that the excess beam jitter is kept to
a minimum. For example in section 10.1, the retro-reflecting mirror and photodetector
are contained in a single invar block which is directly bolted to the cavity spacer.
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Figure 8.10: Experimental arrangement for (a) double pass tilt locking and (b) double pass PDH
locking.

Double pass locking is not restricted to tilt locking systems. Figure 8.10(b) shows the
equivalent experimental layout for a PDH locking system. This is similar to the double
pass tilt configuration except note that the phase modulation must be introduced be-
tween the first and second passes. The advantages of using double pass PDH locking are
two fold. Firstly when used in a modecleaner configuration, the two passes through the
cavity give twice the filtering of intensity, frequency and spatial modes as a single pass
through the mode cleaner. The filtering will be equivalent to two identical yet individ-
ual modecleaners in series but is achieved with only one control loop. A second benefit
is in the amount of power that can be safely detected by a photodetector. Consider an
impedance matched, near lossless cavity operating in a standard (single pass) PDH lock-
ing configuration (see figure 8.7(a)). Ideally, the photodetector would be optimised for
the small amount of power reflected when the cavity is on resonance. When the laser
drops lock nearly 100% of the light is incident on the photodiode, which could result
in serious damage or necessitate the use of high speed attenuation. In the double pass
configuration of figure 8.10(b), when the laser is on resonance nearly all of the power is
transmitted through the cavity on the first pass, and then again on the second pass, so
that the power on the photodetector is very small. When the laser drops lock, the amount
of power on the photodetector remains small as the light is totally reflected by the first
pass through the cavity. The maximum amount of power which can strike the photode-
tector is one quarter the input power, and this is only instantaneously as the laser either
acquires or drops lock and the transmission and reflection equals 50%.

Figure 8.11 shows a comparison of the error signals obtained experimentally with
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(single pass) tilt locking and the double pass tilt locking scheme. Note that due to the
mode cleaner action of the first cavity pass, there is no error signal at the TEM10 reso-
nance. In addition, the error signal drops to zero away from resonance somewhat faster
than the single pass case due to the filtering effect of the first cavity pass.
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Figure 8.11: Power and error signal for (a) single pass tilt locking, and (b) double pass tilt locking
for a cavity with a finesse of 200. Note power in (a) is reflected intensity while (b) is the intensity
transmitted through the cavity.

One potential concern with double pass tilt locking is that the error signal is obtained
after a single pass through the cavity, and so the locking loop suffers a delay associated
with the cavity transmission. If this is a problem, a high speed frequency actuator (an
electro-optic modulator, for instance) can be added between the retro-reflector and the
cavity, which will effectively remove the delay for the high frequency component of the
locking loop. The low frequency actuators (typically the laser crystal temperature and
PZT) can still be operated before the first pass and will only be minimally effected by this
delay.

For ultra-high precision experiments the double pass configuration of tilt locking will
provide the best results. However, there are other simple measures that can be taken to
ensure that the effects of beam jitter are minimised. Impedance matching, beam size and
TEM10 mode power are three optical parameters which strongly influence lock stability
for a given mechanical stability of the detector.

8.4.2 Impedance matching

If the cavity is close to impedance matched, very little TEM00 mode power will be re-
flected on resonance. Any jitter on the input light produces a TEM10 mode on reflection
from the cavity. In the absence of TEM00 light, this mode’s power is equally balanced
across the photodiode halves and so does not contribute to the error signal. Similarly, the
result of any mechanical motion of the photodetector is also reduced for an impedance
matched cavity. As the TEM10 has negligible power near the center of the beam, any
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small motion of the photodetector does not change the amount of power on each half
of the photodiode . Thus tilt locking on an impedance matched system is, to first order,
insensitive to mechanical vibrations of the photodetector.

This can be demonstrated mathematically by considering a photodetection of a
TEM10 mode with a transverse electric field distribution given by,

u1(x) =
(
2
π

) 1
4

2xe−x2
(8.3)

where u1(x) is normalised to a total power of

PT =
∫ ∞

−∞
u2

1(x)dx = 1 (8.4)

The power detected by the left side of the photodiode will be given by

PL =
∫ a

−∞
u2

1(x)dx (8.5)

and on the right side by,

PR =
∫ ∞

−a
u2

1(x)dx (8.6)

where a is the position of the centre of the photodetector (a = 0 corresponds to the centre
of the beam).
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Figure 8.12: Difference in power detected on each side of the photodiode as a function of photo-
diode position, a, for the TEM10 mode.

We are interested in how the power difference, PD changes as a function of photode-
tector position a.

PD = PL − PR (8.7)

=
∫ a

−∞
u2

1(x)dx−
∫ ∞

a
u2

1(x)dx (8.8)
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The result is plotted in figure 8.12 as a function of a. The most important feature of
this graph is the point of inflection at a = 0. If the photodetector position was to change
slightly around the centre of the beam, the subtracted output of the photodetector would
be unchanged.
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Figure 8.13: The derivative of the power difference PD with respect to the photodiode position a

indicating the strength of coupling from mechanical motion to error signal as a function of a.

The strength of the coupling from mechanical motion of the photodetector to the dif-
ference in the power will be given by the derivative of equation 8.10, dPD/da. This is
plotted in figure 8.13. Notice that as long as the beam is near the origin there is almost no
transfer of the displacement da to the error signal output PD . This is also true for large a
but here there is no signal as the beam is completely on one side of the photodiode.

8.4.3 TEM10 power and beam size

In situations where mechanical noise is the limiting noise source of the tilt locking system,
the accuracy of the error signal can be increased by coupling more power into the TEM10

mode. By increasing the power of the TEM10 mode relative to the TEM00 mode, the
effective offset of the reflected beam becomes greater for any given phase shift. The extra
power in the TEM10 mode degrades the shot noise performance of the system, but if the
system is limited by mechanical noise this is of no consequence. This is analogous to
increasing the modulation depth in Pound-Drever-Hall locking to overcome electronic
noise.

Another way the lock stability can be increased is to ensure the beam diameter is large
at the detector surface. For a given phase signal, the beam position will move by some
fraction of the beam diameter, so the absolute distance the beam moves is proportional to
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the beam diameter. Thus, maximising the beam diameter at the detector surface reduces
the phase shift required to overcome any displacement noise.

8.5 Tilt locking variations

This method can also be used with other higher order spatial modes with different types
of multi-element photodiodes. For example, TEM11 mode interference can be measured
using a bullseye photodiode to make a measurement of beam size. By making a measure-
ment of beam size, the technique can be made insensitive to laser beam jitter7. This tech-
nique was briefly investigated experimentally; however, we found it was more difficult
to optimise the interference. The technique is also less promising due to the inefficiency
of the interference between the TEM00 and TEM11 modes.

8.6 Summary

We have developed a new technique, tilt locking, which relies on spatial mode interfer-
ence to derive an error signal for an optical cavity. Tilt locking is an inexpensive system
which replaces a signal generator, electro-optic modulator, high speed photodetector and
mixer by a quadrant photodiode and several low frequency op-amps. The total cost of
these items was less than $100. In addition, tilt locking can be used with servos designed
for PDH locking schemes with no modifications other than a reduction in gain. The tech-
nique is immune to intensity noise of the laser, and methods have been developed to
minimise sensitivity to beam jitter. This combination of low cost, simplicity, and high
sensitivity should facilitate the use of tilt locking in a broad range of applications.

7However, this technique is now influenced by changes in the size of the laser mode
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Chapter 9

Shot noise limited sensitivity of tilt
locking

In this chapter we derive the performance limits of tilt locking. The derivation assumes
that the performance is limited by shot noise. Other factors may limit the performance
of tilt locking well before the shot noise limit is reached; however, these noise sources are
usually technical in nature and can, in principle, be overcome by careful engineering of
the experiment.

Section 9.1.1 deals with determining the error signal frequency response and signal to
noise ratio for a measurement of phase modulation sidebands. In section 9.1.2 the quan-
tum efficiency is calculated, allowing transparent comparison with other phase measure-
ment techniques. In section 9.2 the same calculations are carried out for the PDH system.

9.1 Tilt locking sensitivity

Here we derive the sensitivity of the tilt locking discriminator to broadband phase modu-
lation sidebands on the input field. We assume that the carrier is always exactly resonant
with the cavity and that the phase modulation is small. The field incident on the cavity
is given by,

Einc = E0e
iω0teiα cos(ωst) (9.1)

whereE0 is the square root of the input power, ω0 is the carrier angular frequency, and
the carrier has phase modulation sidebands at an angular frequency ωs, and a modulation
depth α radians. As illustrated in the phasor diagram of figure 9.1, for small modulation
depth (α � 1) we can approximate equation 9.1 by,

Einc = E0e
iω0t(1 + iα cos(ωst)) (9.2)

As tilt locking relies on spatial mode interference to obtain an error signal we now
decompose the field into spatial modes which can be approximated by the normalised
Hermite-Gauss modes. We consider only the interference between the TEM00 mode and
TEM10 (with electric fields denoted by u0(x) and u1(x) respectively) as these are the only
modes with appreciable amplitude for small amounts of tilt.

u0(x) =
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)
(9.3)
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Figure 9.1: Graphical representation of the approximation for small sidebands. (a) Phase modu-
lated field as represented in equation 9.1, and (b) the approximation for small sidebands as shown
in equation (9.2). Approximation holds in the regime where α ≈ tanα.
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where w is the beam radius and x is the transverse coordinate. We are using the power
normalised Hermite-Gauss modes, each satisfying the condition,

∫ ∞

−∞
u2
m(x)dx = 1 (9.5)

If the beam incident on the cavity is tilted around the plane of the photodetector, we
add a TEM10 mode with a phase shift of π/2 radians relative to the carrier TEM00 mode.
The input field is now a function of the transverse direction, x and can be represented by,

Einc(x) = E0e
iω0t

(
a0u0(x) + ia1u1(x)

)(
1 + iα cos(ωst)

)
(9.6)

where the coefficients a0 and a1 are real and satisfy a2
0 + a2

1 ≈ 1. The ratio of these co-
efficients determines the degree of tilt at the photodetector. The incident field as written
in equation (9.6) consists of four fields: the TEM00 carrier field, the TEM00 phase mod-
ulation sidebands, the TEM10 carrier field and the TEM10 phase modulation sidebands.
These fields are illustrated vectorially in figure 9.2(a).

Reflection from a cavity multiplies the input field by the complex reflectivity of the
cavity rcav(ωs), where we write rcav(0) ≡ rcav(ωs = 0) explicitly for the reflectivity of the
TEM00 carrier field. This complex reflectivity is given by,

rcav(ωs) =
r1 − (r2

1 + t21)r2e
i2ωsL/c

1− r1r2ei2ωsL/c
(9.7)

At this stage it is necessary to express the u0(x)-cosine product from equation 9.6 as
a sum of positive and negative exponentials as these upper and lower sidebands expe-
rience different reflectivities of rcav(ωs) and rcav(−ωs) = r∗cav(ωs) respectively. We also
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Figure 9.2: (a) The electric fields incident on the cavity consist of four components: the u0(x)mode
and phase noise sidebands, and the u1(x)mode and its corresponding phase noise sidebands. The
same electric fields after reflection from (b) an undercoupled cavity and (c) an overcoupled cavity.
Note the u0(x)mode is attenuated by the cavity loss whilst the u 1(x)mode remains unchanged.

assume that the TEM10 mode reflects off the cavity with no phase change and unity effi-
ciency. This will be a good approximation for a stable cavity with reasonable finesse. The
reflected electric field can thus be written,

Eref(x) = E0e
iω0t

[
a0u0(x)rcav(0) +

a0u0(x)iα
2

(
rcav(ωs)eiωst + r∗cav(ωs)e

−iωst
)

+ia1u1(x)
(
1 + iα cos(ωst)

)]
(9.8)

= E0e
iω0t

[
a0u0(x)

(
rcav(0) + iαRe[rcav(ωs)eiωst]

)

+ia1u1(x)
(
1 + iα cos(ωst)

)]
(9.9)

The vector components of the reflected field are shown in the phasor diagram of figure
9.2(b) and (c) for an undercoupled and overcoupled cavity respectively. The side bands
attenuation and phase shift will depend upon their frequency. In figure 9.2 the vectors are
drawn for sidebands well outside the cavity linewidth (i.e. they receive no attenuation
or phase shift on reflection from the cavity).

To determine the error signal we need to calculate the power reflected from the cavity,
Pref (x), which is obtained by evaluating E∗

ref(x)Eref(x).

Pref(x) = E∗
0E0

[
a2

0u
2
00(x)r

2
cav(0) + a2

0u
2
00(x)α

2Re[rcav(ωs)eiωst]2

+a2
1u

2
10(x) + a2

1u
2
10(x)α

2 cos2(ωst) (9.10)

2a0u0(x)a1u1(x)α
(
Re[rcav(ωs)eiωst]− rcav(0) cos(ωst)

)]
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The first line of equation (9.10) gives the average power on the detector due to the TEM00

mode and its sidebands. The second line gives the power due to the TEM10 which, due to
an artefact of the first order approximation in figure (9.2), now appears as the sum of two
terms. Recalling that this is just a phase modulated field, it is apparent that the actual
power in the TEM10 mode is exactly equal to a2

1u
2
10(x). Equation (9.10) can be further

simplified by noting Re[rcav(ωs)eiωst] = |rcav(ωs)| cos(ωst + φ(ωs)), where φ(ωs) is the
phase shift on reflection from the cavity and is related to rcav(ωs) by,

tanφ(ωs) =
Im[rcav(ωs)]
Re[rcav(ωs)]

(9.11)

After making these substitutions the reflected power becomes,

Pref(x) = P 2
0

[
a2

0u
2
00(x)

(
r2
cav(0) + α2

∣∣∣r2
cav(ωs)

∣∣∣ cos2(ωst+ φ(ωs))
)

+a2
1u

2
10(x) (9.12)

+2a0u0(x)a1u1(x)α
(
|rcav(ωs)| cos(ωst+ φ(ωs))− rcav(0) cos(ωst)

)]

The tilt locking error signal is proportional to the power difference on each half of
the split photodetector. For these calculations we assume that the detector halves extend
from −∞ to zero and from zero to ∞. This approximation is valid provided that the de-
tector is large enough to sample the entire beam and that the gap between the two halves
is negligible compared to the beam radius. The power on the left half of the detector is
given by,

PL =
∫ 0

−∞
Pref (x)dx (9.13)

= P0

[
a2

0

(
r2
cav(0) + α2

∣∣∣r2
cav(ωs)

∣∣∣ cos2(ωst+ φ(ωs))
)∫ 0

−∞
u2

00(x)dx

+a2
1

∫ 0

−∞
u2

10(x)dx (9.14)

+2a0a1α

(
|rcav(ωs)| cos(ωst+ φ(ωs))− rcav(0) cos(ωst)

) ∫ 0

−∞
u0(x)u1(x)dx

]

Due to the symmetry of the Hermite-Gauss modes, it follows from equation (9.5) that the
first two integrals are equal to a half. The integral of the product of the two modes is
equal to −1/

√
2π which gives,

PL = P0

[
1
2
a2

0

(
r2
cav(0) + α2|r2

cav(ωs)| cos2(ωst+ φ(ωs))
)
+
1
2
a2

1

+
√
2
π
a0a1α

(
|rcav(ωs)| cos(ωst+ φ(ωs))− rcav(0) cos(ωst)

)]
(9.15)

and similarly, the power on the right half is given by,

PR =
∫ ∞

0
Pref (x)dx

= P0

[
1
2
a2

0

(
r2
cav(0) + α2|r2

cav(ωs)| cos2(ωst+ φ(ωs))
)
+
1
2
a2

1 (9.16)
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−
√
2
π
a0a1α

(
|rcav(ωs)| cos(ωst+ φ(ωs))− rcav(0) cos(ωst)

)]

Note that the average power is equal in equations (9.15) and (9.16) and the interference
is the same but with a sign flip in the second instance. Differencing the powers on each
side of the photodetector cancels the average component giving a remaining error signal
of,

PL − PR =
∫ 0

−∞
Prefdx−

∫ ∞

0
Prefdx (9.17)

= P0
2
√
2√
π
a0a1α

(
|rcav(ωs)| cos(ωst+ φ(ωs))− rcav(0) cos(ωst)

)

Note that the error signal slope is proportional to P0. In addition, well outside the cavity
bandwidth φ(ωs) → 0 and the error signal is proportional to the difference between the
sideband reflectivity and the carrier reflectivity. Upon closer inspection of equation 9.17
it is apparent that one effect of rcav(0) is to reduce the signal for an undercoupled cavity
(rcav(0) > 0) and enhance it for an overcoupled cavity (rcav(0) < 0).

9.1.1 Tilt locking signal to noise ratio

To get the signal to noise ratio where shot noise is the dominant noise source we divide
equation (9.17) by the power fluctuations due to shot noise, ∆PD given in equation 3.50.

∆PD =
√
(PL + PR)hν

=
√
P0hν

√
a2

0rcav(0)2 + a2
1 (9.18)

where we have ignored the power terms due to the sidebands in equations (9.15) and
(9.16). This gives the signal to noise ratio shown in equation (9.19).

S/NTL =
2
√
2P0a0a1α

(
|rcav(ωs)| cos(ωst+ φ(ωs))− rcav(0) cos(ωst)

)
√
hνπ

√
a2

0rcav(0)2 + a2
1

(9.19)

Upon inspection of equation (9.19) the second effect of rcav(0) is apparent. The rcav(0)
in the denominator contributes to the shot noise. The best signal to noise ratio will be
obtained when the cavity is impedance matched, that is when rcav(0) = 0. Assuming the
cavity is impedance matched and also that a0 ≈ 1 (small amount of tilt), equation (9.19)
reduces to,

S/NTL =
√
2
π

√
P0

hν
2α|rcav(ωs)| cos(ωst+ φ(ωs)) (9.20)

Equation 9.20 shows that the signal to noise ratio of tilt locking is proportional to the
magnitude of the cavity reflectivity for the sidebands. It makes sense that if the sidebands
are attenuated (due to loss or transmission in the cavity) they cannot be as efficiently read
out. It is only the magnitude of the sideband reflectivity which determines the signal level
as any phase shift will be equal and opposite for the positive and negative sidebands.
This ensures that phase modulation symmetry is maintained. The net result is a phase
shift of the measured signal by an amount φ(ωs). One important conclusion is that to
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measure quantum phase noise down to very low frequencies a low corner frequency of
the cavity reflectivity is needed. The corner frequency can be reduced by increasing either
the finesse or the length of the cavity. Conversely, for phase signals at frequencies large
compared to the cavity linewidth, increasing the cavity finesse provides no advantage, as
the shot noise limit has already been reached.

9.1.2 Quantum efficiency

We now consider the signal to noise ratio with which we can measure a signal at the quan-
tum noise noise level, namely quantum phase noise. We will only treat the impedance
matched case here. In section 3.2, we showed that for a coherent state with n photons,
the level of frequency independent phase fluctuations is given by,

∆φQNL =
1
2
√
n

(9.21)

If we make the substitution α cos(ωst) = ∆φQNL into equation 9.1 and repeat the
above analysis equation (9.20) becomes,

S/NTL =
√
2
π

√
P0

hν

1√
n
|rcav(ωs)| (9.22)

where we have ignored the phase shift, φ, as this does not effect the magnitude of the
signal. Realising that P0/hν = n, the signal to noise ratio with which we can measure
quantum phase noise is,

S/NTL =
√
2
π
|rcav(ωs)| (9.23)

Recall that for frequencies large compared to the cavity linewidth rcav(ωs) → 1, and so
in principle, tilt locking is able to measure quantum noise limited signals with a signal to
noise ratio of

√
2/π, or approximately 80%.

Intuitively, we might expect the system to be 100% efficient at measuring quantum
phase noise. The source of inefficiency is the imperfect interference between the TEM00

and TEM10 modes, which introduces the factor of
√
2/π.

∫ ∞

−∞
u2

00(x)u
2
10(x)dx =

2
π

(9.24)

Although the efficiency of the signal is not perfect, the interference of the noise is, as each
spatial mode contains its own noise. In order to increase the efficiency of the interference
we need to use the special flipped mode (see figure 3.5 and equation 3.38), which is a field
that is equal in magnitude to the TEM00 but with a sign flip at x = 0. This mode, or
sum of modes, interferes with the TEM00 mode with unit efficiency as measured by a
split photodiode. Thus the signal to noise ratio is degraded slightly. This flipped mode
is difficult to produce in practice, and difficult to use due to the dispersion of the higher
order modes.
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9.2 Pound-Drever-Hall locking sensitivity

For comparison we perform the same calculation for the Pound-Drever-Hall locking tech-
nique. This derivation is similar to that performed by Day et al. [107] except that we
include nonstationary (or cyclo-stationary) shot noise [108] in the analysis.

Once again we begin with an input field with broadband phase modulation sidebands
(see equation (9.1)). This field passes through a phase modulator which adds modulation
sidebands at frequency ωm [radians/second] with a modulation depth of δ [radians].

Einc = E0e
iω0teiα cos(ωst)eiδ cos(ωmt)

= E0e
iω0t(1 + iα cos(ωst))((1 + iδ cos(ωmt)) (9.25)

We multiply the incident field by the complex reflectivity of the cavity. We assume that
the modulation frequency is much larger than the cavity linewidth which means that
these sidebands reflect off the cavity unchanged.

Eref = E0e
iω0t

(
rcav(0) + iα|rcav(ωs)| cos(ωst+ φ(ωs)) + iδ cos(ωmt)− αδ cos(ωst) cos(ωmt)

)
(9.26)

The total power detected is again given by E∗
refEref . For simplicity, we assume that we

have an impedance matched cavity (rcav(0) = 0).

Pref = P0

[
α2|rcav(ωs)|2 cos2(ωst+ φ(ωs)) + δ2 cos2(ωmt)− α2δ2 cos2(ωst) cos2(ωmt)

+2αδ|rcav(ωs)| cos(ωst+ φ(ωs)) cos(ωmt)
]

(9.27)

The terms in the top line are the power of the individual sidebands. The first and last
terms of this line can be neglected as the phase signal (at ωs) is much smaller than our
imposed modulation at ωm. Thus α � δ and equation (9.27) becomes,

Pref = P0

[
δ2 cos2(ωmt) + 2αδ|rcav(ωs)| cos(ωst+ φ(ωs)) cos(ωmt)

]
(9.28)

The first term is the power of the modulation sidebands and the second term is the inter-
ference containing our signal. The detected power is now mixed down by multiplying
by cos(ωmt). In calculating the signal at the mixer output, S we only consider terms near
ωm as only these will be mixed down to baseband.

S = Pref × cos(ωmt)
= P02αδ|rcav(ωs)|cos(ωst+ φ(ωs)) cos2(ωmt) (9.29)

But cos2(ωmt) = 1/2 + 1/2 cos(2ωmt) so we can rewrite equation (9.29) as,

S = P0δ|rcav(ωs)|α cos(ωst+ φ(ωs)) + higher frequency terms (9.30)

The mixer output is typically low pass filtered to remove the higher frequency terms.
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9.2.1 Pound-Drever-Hall signal to noise ratio

Calculating the true noise floor for the Pound-Drever-Hall system is a little more compli-
cated as the detected power (and thus shot noise) is fluctuating at 2ωm due to beating of
the phase modulation sidebands. This beating is sampled by the demodulation in such a
way that it is over represented at the output of the mixer.

In the absence of a signal (α = 0) the reflected power is,

Pref = P0δ
2 cos2(ωmt) (9.31)

To calculate the shot noise due to this power we will work in terms of noise variances.
The variance of the power (∆P )2 for a coherent state is equal to 〈hνP 〉, thus

(∆Pref )2 = 〈hνP0δ
2 cos2(ωmt)〉 (9.32)

The variance of the mixer output can be determined by,

(∆S)2 = 〈hνP0δ
2 cos2(ωmt)× cos2(ωmt)〉

= 〈hνP0δ
2 cos4(ωmt)〉

= hνP0δ
2
〈(
1
2
+
1
2
cos(2ωmt)

)(
1
2
+
1
2
cos(2ωmt)

)〉

=
hνP0δ

2

4

〈(
1 +

1
2
+ 2 cos(2ωmt) +

1
2
cos(4ωmt)

)〉

=
hνP0δ

2

4

(
3
2
+ 2〈cos(2ωmt)〉+

1
2
〈cos(4ωmt)〉

)

(∆S)2 =
3hνP0δ

2

8
(9.33)

⇒ ∆S =
√
3

2
√
2
δ
√
hνP0 (9.34)

Thus the signal to noise with which our phase signal can be measured is,

S/NPDH =
√
2
3

√
P0

hν
2|rcav(ωs)|α cos(ωst+ φ(ωs)) (9.35)

This should be compared to equation 9.20 for the tilt locking case.

9.2.2 Pound-Drever-Hall quantum efficiency

The quantum efficiency of the Pound-Drever-Hall locking can be calculated by substitut-
ing ∆φQNL (see equation 9.21) for α cos(ωst). After making this substitution, and again
ignoring the phase shift, φ(ωs), we arrive at the signal to noise with which we can mea-
sure shot noise,

S/NPDH =
√
2
3
|rcav(ωs)| (9.36)

The source of the inefficiency here is the nonstationary shot noise. This can be overcome
to some extent by using more complicated modulation; however, doing so is often im-
practical as phase modulators have a finite bandwidth and are often unable to produce
the required higher harmonics.

Comparing equation (9.36) with the same expression for tilt locking in equation (9.23)
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we can see that they are of the same form except that tilt locking is a factor of
√

3
π ≈ 0.98

lower in quantum efficiency than the Pound-Drever-Hall technique corresponding to an
absolute difference of only 2%.

9.3 Summary

We have calculated the shot noise limited sensitivity of tilt locking for a measurement of
broadband phase sidebands. Tilt locking is comparable to PDH in this regard with a dif-
ference in sensitivity between the two techniques of approximately 2%. Both techniques
are able to measure a signal at the quantum noise level with a signal to noise ratio of
approximately 0.8. In the case of the PDH technique this inefficiency arises from nonsta-
tionary shot noise, whereas tilt locking suffers from inefficient interference of the TEM00

and TEM10 modes.
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Chapter 10

Applications of tilt locking

This chapter describes three experiments which investigate the performance of tilt lock-
ing in three different applications: laser frequency stabilisation, control of a continuous-
wave second harmonic generator and control of an injection locked laser.

10.1 Laser frequency stabilisation

Aside from gravitational wave detection, laser frequency stabilisation is required for a
wide range of scientific applications from high-resolution spectroscopy [109] to funda-
mental tests of special relativity [110]. Increasingly, short term frequency stability is im-
portant in commercial applications, for example, in coherent lidar systems [111].

The aim of this experiment was to determine the performance limits of tilt locking
for the purpose of locking a laser to an optical cavity. One approach would be to have
two independent systems (i.e. two lasers stabilised independently to respective optical
cavities), interfere the lasers and measure the stability of the beat note (see for example
Sampas et. al. [112]). The problem with such an approach is that cavity length fluctuations
may limit the stability thus revealing nothing about the performance of tilt locking. With
two independent systems it is difficult to distinguish between beat frequency fluctuations
due to the locking system and frequency fluctuations originating from changes in the
cavity length. For example if one of the cavities changes in length by an amount∆L, the
beat frequency, νB will change by,

∆νB =
∆L
L

ν (10.1)

whereL is the cavity length, and ν is the optical frequency of the laser. If a laser frequency
stability of 10 Hz is required, then we must ensure that the cavity’s fractional length
fluctuations are kept below a level of 3 × 10−14 (assuming λ = 1 µm). This is a very
difficult task, particularly over long time scales even with the use of ultra low expansion
(ULE) glass ceramic or cryogenic sapphire cavities [113, 114]. To maintain this degree
of length stability over shorter times requires placing the cavity in vacuum for acoustic
isolation, and usually some form of vibration isolation.

By locking two lasers to the same cavity [107, 115] the sensitivity to cavity length
variations can be substantially reduced. For example, if we lock two lasers at optical
frequencies ν1 and ν2, any length change ∆L in the cavity will induce a change in the

133
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optical frequencies of

∆ν1 =
∆L
L

ν1 (10.2)

∆ν2 =
∆L
L

ν2 (10.3)

The change in the beat frequency will be given by,

∆νB = ∆ν1 −∆ν2 (10.4)

=
∆L
L

ν1 −
∆L
L

ν2 (10.5)

=
∆L
L

νB (10.6)

Comparing equations 10.1 and 10.6 it is clear that by locking both lasers to the same
cavity the fluctuations in the beat frequency originating from cavity length variations
have been suppressed by a factor of νB/ν. For a beat frequency of 500 MHz this reduces
the requirements on optical cavity length stability down to a fractional length fluctuation
of 2 × 10−8 in order to achieve a beat frequency stability of 10 Hz (an improvement by a
factor of ≈ 106).

In order to simultaneously lock two lasers to one cavity it is necessary to produce two
error signals that are somewhat independent. With modulation techniques this can be
achieved by using a different modulation/demodulation frequency for each laser. One
approach which can be employed with tilt locking is to use a horizontal tilt on the first
laser and a vertical tilt on the second. Using a quadrant photodiode, the TEM01 and
TEM10 interference can be distinguished by observing the horizontally subtracted and
vertically subtracted detector outputs respectively, as illustrated in figure 10.1

As discussed in section 8.4, double pass tilt locking can be employed to minimise
the effects of beam jitter on the locking stability. The basic form of double pass tilt lock-
ing cannot be used to selectively provide horizontal and vertical tilt respectively to the
two lasers as both beams reflect off the same retro-reflector and thus receive the same
tilt. However, just as tilting a TEM00 excites a TEM10 mode, so too does tilting a TEM10

mode excite a TEM00. To distinguish between the error signals we locked one laser to the
TEM10 mode and the other to the TEM01 mode resonance. We aligned the input beams so
that the power in the TEM10 mode was maximised for the first laser and the TEM01 was
maximised for the second. The retro-reflector was tilted in both the vertical and horizon-
tal directions. As seen by one laser, the horizontal tilt excited a small component of the
TEM00, whilst the vertical tilt caused a small amount of the TEM11 mode to be present.
For the second laser the horizontal tilt excited a component of the TEM11 whilst the ver-
tical tilt excited the fundamental TEM00 mode. Neither TEM00 mode was resonant and
so they were reflected from the cavity on the second pass, serving as a local oscillators
for their respective resonant TEM10 or TEM01 modes. There was a small amount of cross
coupling between the error signals1 due to the interference of the resonant modes and
higher order spatial modes, but the effect did not substantially degrade the locking per-
formance. Because we were using a ring cavity, the TEM10 and TEM01 modes were not
degenerate (i.e. did not have different resonant frequencies) which allowed us to lock the

1That is the vertical output contained a small error signal for laser 1 and the horizontal output contained
a small error signal for laser 2.
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A B

C D

TEM10 detection
of laser 1

TEM01 detection
of laser 2

TEM10 +
TEM00

TEM01 +
TEM00

(A+C)-(B+D) (A+B)-(C+D)

quadrant photodiode

Figure 10.1: The quadrant photodiode layout to detect the first higher order modes of the two
lasers. The photodetector has three outputs, a sum output (A+B+C+D), a horizontal error signal
output (A+C)-(B+D) and a vertical error signal output (A+B)-(C+D).

two lasers with a frequency separation of less than the free spectral range. This ensured
that the ratio, νB/ν was kept to a minimum and in doing so gave maximum isolation
against cavity length changes.

The dominant technical noise source associated with tilt locking is thought to be me-
chanical vibrations of the cavity and photodetector. This raises the concern that by lock-
ing the lasers to the same cavity with the same detector the error due to vibrations will
also be correlated. If this is the case then an analysis of the beat note stability will give
an overly optimistic estimate of the stability of the tilt locking system. This is unlikely to
occur in this system as the two error signals are obtained from perpendicular axes and
therefore any mechanical vibrations will be uncorrelated.

10.1.1 The experiment

The experimental set up for the beat note measurement is shown in figure 10.2. Laser 1
had an output power of 400 mW (InnoLight Mephisto 400), and laser 2 had an output
power of 200 mW (Lightwave Electronics 122). Each laser passed through a Faraday
isolator and a waveplate with a polarising beamsplitter to control the power incident on
the cavity. The optical cavity was a ring cavity with a finesse of 4100 for s-polarised light
(200 for p-polarised light). The waveplate in front of the ring cavity was used to control
the input polarisation thereby allowing operation of the experiment with either finesse.
The free spectral range of the cavity was approximately 700 MHz with a difference in
frequency between the TEM10 and TEM01 modes of 356 MHz. The 356 MHz beat note
was detected before the optical cavity on a high speed photodetector [86] at the unused
port of the beamsplitter which combined the two lasers. This beat note was sent to a
frequency counter (Stanford Research Systems 620) connected to a data logging computer



136 Applications of tilt locking
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Figure 10.2: Experimental layout for tilt locking two lasers to one cavity. The beat note is moni-
tored on PD1. Subtraction circuits are not shown for simplicity.

or to an RF spectrum analyser (Hewlett-Packard 8568B).
To minimise the effects of laboratory temperature changes the cavity mirrors were

clamped to a triangular invar spacer. The retro-reflecting mirror and quadrant photodi-
ode were housed in another invar block which was bolted directly to the cavity spacer.
The four quadrants of the photodiode were individually amplified and the horizontally
subtracted and vertically subtracted outputs were obtained for feedback along with the
sum output for monitoring.

10.1.2 Results

Figure 10.3 shows the beat note measured on the spectrum analyser. The 3 dB linewidth
of the beat note was found to be 13 Hz with the spectrum analyser set to its minimum
resolution bandwidth of 10 Hz. If we assume that the RBW filter and the linewidth are
both Gaussian, then we can calculate the actual beatnote linewidth from equation 10.7
[32].

a =
√
b2 − c2 (10.7)

where a is the linewidth of the beatnote, b is the measured beatnote linewidth, and c is
the RBW. This gives a beatnote linewidth of approximately 8.3 Hz. Ignoring the common
mode noise of the two lasers and assuming that both lasers contribute equally to the
linewidth of the beatnote, this gives an individual laser linewidth of 5.9 Hz.

To quantify the frequency stability over longer time scales we use the Allan deviation
[116, 117]. The Allan deviation is a statistical measure of the variation of a parameter,
typically frequency, as a function of the time scale of the fluctuations. It has the advan-
tage that as the measurement time increases the Allan deviation converges whereas the
standard deviation may diverge for many practical oscillators.
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Figure 10.3: The frequency spectrum of the amplitude of the beat note between the two lasers.

Consider a measurement where the frequency of the beat note, f , is recordedM times
at regular intervals of τ0. From this data we can calculate the Allan deviation at times
τ = nτ0 where n is an integer number2 and n ≤ (M −1). This provides us with a discrete
set of frequency measurements, f1, f2, f3 . . . . From this data we can calculate the Allan
deviation, σf(τ), from equation 10.8.

σf (τ) =

√√√√ 1
2(M − 1)

M−1∑
i=1

(fi+1 − fi)2 (10.8)

It is customary for the Allan variance to be dimensionless as it is calculated using the
fractional frequency change. The units of σf in equation 10.8 will be in Hertz as we have
used the absolute frequency change. This was deliberate as we are not interested in the
fractional beat note stability, but in the fractional stability of the tilt locking system. To in-
fer this we need to divide the absolute Allan deviation (in Hertz) by the optical frequency
of the lasers. If instead, we had used the fractional frequency change in equation 10.8, the
factor of νB/ν mentioned earlier would be ignored.

Figure 10.4 shows the results of two separate measurements of the beat note with
τ0 = 2 seconds and τ0 = 100 milliseconds. Sampling times of less than 100 ms were
not possible due to limitations of the data acquisition system. An Allan deviation of less
than 4 Hz was achieved for a time scale of 100 ms. Ignoring common mode changes in
the laser frequencies, this is equivalent to a fractional Allan deviation of approximately
1.3×10−14. The stability of the beat note decreases for longer time scales, to give an Allan

2In practice, n � M to ensure that enough data points are taken for the Allan deviation to converge.
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Figure 10.4: The Allan deviation of the absolute frequency change of the beat note.

deviation of 2× 10−12 over 10000 seconds.
Despite locking both lasers to the same cavity, the cavity length fluctuations still re-

main the dominant source of error. Subsequent measurements of the temperature of the
laboratory confirm thermal expansion of the cavity as the main source of noise over time
scales of a few seconds and longer. We believe that the stability over shorter time scales
is limited by acoustically or mechanically induced length changes. Recall that this ex-
periment was performed in air with no temperature stabilisation or acoustic isolation
whatsoever. In the near future the system will be put into vacuum on a suspension sys-
tem. This should dramatically reduce geometric fluctuations in the cavity and further
increase stability.

10.1.3 Summary

Double pass tilt locking has been used to lock two independent lasers to separate spatial
modes of a ring cavity. The technique was found to produce a beatnote linewidth of
approximately 8 Hz, with an Allan deviation of 3.3 Hz at 100 ms. Ignoring common
mode errors between the lasers, this gives a laser linewidth of less than 6 Hz and an
Allan deviation of 1.3 × 10−14 at 100 ms. Moreover, the frequency stability of the beat
note is limited by the fluctuations in the length of the cavity and not the performance of
tilt locking.

10.2 Second harmonic generator

Second harmonic generation provides powerful coherent radiation at wavelengths other
than those of laser transitions. It relies on the χ(2) nonlinearity of a medium which is in
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general very small, thus very high fundamental intensities are required to obtain reason-
able conversion efficiencies. In continuous-wave second harmonic generation this high
intensity can be obtained by placing the nonlinear medium inside an optical resonator
[118]. In order to successfully control the cavity resonance, an error signal must be pro-
duced which is proportional to the difference between the laser frequency and the cavity
resonance. In this section, we present successful second harmonic generation by the use
of tilt locking and compare the performance with that of the PDH technique. In particular
we investigate the maximum power, stability and spectral purity of the 532 nm second
harmonic of 1064 nm light from a Nd:YAG laser.

10.2.1 The experiment

Our experimental set up is shown in figure 10.5. The second harmonic generator (SHG)
was a hemilithic cavity consisting of a 5 × 7.5 × 2.5 mm MgO:LiNbO3 nonlinear crys-
tal and an output coupler with 94%/4% reflectivity at 1064/532 nm. The back surface
of the crystal had a ROC of 10 mm and was harmonically coated for high reflectance
(R>99.96%) for both wavelengths and the front crystal surface was polished flat and AR
coated at both wavelengths (R<0.1%). The output coupler had a radius of curvature of
25 mm. It was placed 23.1 mm from the front surface of the crystal, forming a 27 µm waist
for the 1064 nm light within the crystal. This nonlinear crystal was pumped with a LZH
continuous-wave Nd:YAG laser with a maximum output power of 700 mW at 1064 nm.
The combination of a half and a quarter wave plate controlled the polarisation of the
fundamental beam and a Faraday isolator prevented retro-reflection back to the laser. A
small fraction of the fundamental power was monitored on a photodetector. The remain-
ing fundamental beam was focussed into the SHG with a combination of two lenses and
aligned with a beam steerer.

λ/2 pbs

λ/4

SHG

PZT
Laser

monitor
PD

isolator

dichroic
beamsplitter

green
monitor PDsplit PD

PDH
detector

Figure 10.5: Experiment layout for external cavity second harmonic generation.

For tilt locking, a small amount of tilt was introduced to the pump beam using the
beam steerer just before the SHG cavity. Note that this does not affect the SHG output
direction as this is determined by the SHG cavity mode only. For the purpose of PDH
locking, we made use of the electro-optic properties of the MgO:LiNbO3 crystal to pro-
duce phase modulated sidebands on the fundamental beam. The transmitted fundamen-
tal beam was detected and demodulated to produce the necessary error signal. Although
this is strictly speaking a transmision locking system, the differences between detecting
the beam on reflection and transmission in this particular set up are unimportant and we
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will refer to the system as PDH locking. In order to obtain an error signal for tilt locking,
a pellicle was used to removed a small amount of the reflected fundamental radiation
which was detected and analysed by the split photodiode. The second harmonic light
was extracted from the reflected beam by a dichroic mirror with high reflection at 532 nm
placed immediately in front of the nonlinear crystal and detected by the green monitor
photodiode.
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Figure 10.6: Power and error signals recorded as the SHG cavity length was scanned, showing (a)
transmitted fundamental power, (b) PDH error signal and (c) tilt locking error signal.

10.2.2 Error signals

Fig. 10.6(a) shows the transmitted intensity of the fundamental beam, (b) the PDH error
signal and (c) the tilt locking error signal as the SHG cavity was scanned using the input
coupler PZT. Note that the error signals were not recorded simultaneously; there was no
modulation during the tilt locking measurement and no deliberate tilt during the PDH
measurement. We note that an extremely small amount (just visible in figure 10.6(a) ) of
the TEM10 mode is sufficient to generate a large error signal and to facilitate tilt locking.
The TEM20 mode, however, is present only due to the imperfect mode-matching of our
frequency doubler. Whilst in PDH locking a useful error signal is only produced from
the TEM00 mode, tilt locking generates large error signals for both the TEM00 and TEM10

modes as well as a smaller error signal for TEM30. We observe that the error signal for
tilt locking is much broader than that for PDH locking. This increases the capture range
of the locking system. Furthermore, the tilt locking error signal is well over an order of
magnitude larger than that obtained using PDH locking. This can be an advantage if
electronic noise in the servo systems is significant.
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Figure 10.7: Second harmonic amplitude spectra from (a) PDH and (b) tilt locking.

10.2.3 Second harmonic output spectra

Figure 10.7 shows the second harmonic amplitude spectra obtained from PDH and tilt
locking. The low frequency features are due to the roll off of the photodetector electronics
and the noise of the pump laser. The >60 dB spike at 30 MHz observable in the PDH
locking spectrum is a direct result of the modulation of the crystal required to obtain an
error signal and is believed to be due to sum frequency generation between the carrier
and the sidebands. The tilt locking spectra exhibits no such noise spikes. Aside from
the noise features associated with the modulation the two spectra are indistinguishable.
Thus tilt locking is preferable for applications that rely on high spectral purity such as
spectroscopy [119–122] and precision interferometry.

10.2.4 System stability

We used several measures to quantify the stability of the PDH and tilt locking techniques
in our system. Table 10.1 gives a comparison of some PDH and tilt locking parameters
for a measurement period of 100 minutes.

The average second harmonic power P̄G and standard deviation σPG
are often the

most critical parameters in many applications. In our set up, we obtained identical av-
erage second harmonic output power for the two techniques, with 420 mW produced
from 650 mW of IR. The standard deviation of the power is also very similar at 1.05%
and 1.06% for PDH and tilt locking, respectively. The majority of the fluctuations can be
directly attributed to the long term fluctuations in the IR pump power (σPIR

= 1.05% and
1.10% for PDH and tilt locking runs respectively), mostly due to a 12 minute cycle of the
laboratory air conditioning. After normalising to the long term drift of the pump power,
the standard deviation of the green power, σPG′ produced using PDH and tilt locking
was inferred to be 0.65% and 0.7%, respectively. Another significant factor contributing
to this fluctuation was the temperature stability of the nonlinear crystal. In our experi-
ment, the crystal oven was controlled at ≈ 108oC (for phase matching) with an accuracy
inferred from a thermistor readout of ±0.002oC. However, this does not guarantee a sim-
ilar temperature stability at the crystal core. Crystal core temperature fluctuations alter
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Parameters PDH-locked Tilt-locked
P̄IR (mW) 650 ± 5 650 ± 5
σPIR

(%) 1.05 ± 0.05 1.10 ± 0.05
P̄G (mW) 420 ± 5 420 ± 5
σPG

(%) 1.05 ± 0.05 1.06 ± 0.05
σPG′ (%) 0.65 ± 0.05 0.70 ± 0.05
ε̄ (%) 0.21 ± 0.02 0.25 ± 0.02
σε (%) 0.74 ± 0.05 0.80 ± 0.05

Locking stability (mrad) 0.61 ± 0.05 0.67 ± 0.05
rcav(PG : ε2) -0.06 ± 0.03 -0.15 ± 0.03

Table 10.1: Stability parameters of the second harmonic generator locked using both PDH and tilt
locking.

the phase matching conditions and this results in corresponding fluctuations in second
harmonic power.

A more direct measure of locking stability can be obtained from the analyses of the
error signals of the two techniques. One error signal is used to lock the SHG cavity
(referred to as the locking error signal) and the other error signal is used to monitor
the performance (referred to as the monitor error signal). If we observe the monitor
error we can determine the difference between the two techniques and also check for
any correlations with the second harmonic power. For the remaining results in table 10.1
measurements are presented for the monitor error signal.

The mean of the unused error signal, ε̄, gives an indication of the relative long term
performance of the two techniques. A value of 100% represents a whole peak-to-peak
error (see Fig. 10.6) corresponding to the cavity full width half maximum (FWHM). The
average error signal is found to be +0.21% and +0.25% of the FWHM for PDH and tilt
locking respectively. This suggests that both techniques agree quite well as to the position
of the cavity resonance. Ideally, we would expect the mean of the PDH to be the negative
of the mean of the tilt locking error signal. The fact that they are the same sign and
approximately the same size suggests that the non-zero mean arises not from the error
signal generation but from an offset in the frequency locking servo.

The standard deviation of the two error signals was found to be 0.74% and 0.80% of
the peak to peak error signal value for PDH and tilt locking, respectively. As the peak
values of the error signal occur at the cavity linewidth, multiplying by the hot cavity
linewidth (≈100 MHz) converts this to an absolute locking stability of 740 kHz for PDH
and 800 kHz for tilt locking. These may appear large, however they are a consequence
of the relatively low finesse (≈37) and large free spectral range (3.80 GHz) of the SHG
cavity. The locking stability in terms of round trip cavity phase was 0.61 mrad and 0.67
mrad, respectively.

The last parameters investigated are the correlation coefficients between the error sig-
nals and the second harmonic output power. Correlation existing between these quanti-
ties would indicate poor locking quality of the scheme under interrogation. For example,
if the system is tilt locked and the PDH error signal shows strong correlations with the
second harmonic output power, then it could be concluded that the PDH error signal
represents a better error measure of the resonance of the SHG cavity.
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Figure 10.8: Green output power fluctuations versus error signals (a) Tilt-locked PDH signal and
(b) PDH-locked Tilt signal.

The cavity transmission peak of the second harmonic output is a Lorentzian which
can be approximated by a quadratic function near resonance. The error signals, however,
are linear near resonance as shown in figure 10.6. Thus we compare the transmitted
second harmonic power PG with the square of the unused error signal, ε2. This results
in a linear correlation between the two quantities, where a small correlation coefficient
implies good locking performance.

The correlation coefficients of the output green power with the square of the error
signal are -0.06 and -0.15, respectively for PDH and tilt locked runs. As expected, the
correlations are negative as the error signals are minimised when the green power is at
a maximum. Although the PDH system shows a slightly smaller correlation than the tilt
locking system, we believe that for most practical applications the difference is negligible.

If the cavity were locked substantially away from resonance there would be a linear
correlation between the monitor error signal, ε, and the second harmonic power fluctu-
ations, ∆PG. Figure 10.8 shows scatter diagrams for fluctuating green power and error
signals. Neither locking scheme exhibits any measurable correlation between the monitor
error signal and the second harmonic output power.

10.2.5 Summary

Tilt locking was shown to provide performance comparable to that of PDH locking for the
control of continuous-wave second harmonic generation. The average second harmonic
power and standard deviation produced by the two techniques were identical to within
the experimental errors. One major advantage of the tilt locking technique is the absence
of the modulation peak in the RF spectrum of the second harmonic output.

10.3 Injection locking

In this section we describe an experiment carried out with researchers at the University
of Adelaide to injection lock a medium power slave laser with the use of tilt locking. In-
jection locking [93, 123] is a commonly used technique to transfer the frequency stability
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of a stable, single mode, low power laser (the master), to a medium or high power laser
(the slave) [124]. By injection locking the slave laser can be made uni-directional, and to
oscillate in a single spatial and longitudinal mode. Injection locking requires the mas-
ter laser to be resonant with the slave laser cavity, which generally involves obtaining a
Pound-Drever-Hall type error signal and feeding back to a length actuator on the slave
laser cavity. In this experiment, we demonstrate the use of tilt locking to lock the slave
laser cavity to the master laser and compare its performance to that achieved with the
PDH technique.

10.3.1 The experiment

master
laser eom isolator

tilt locking
error signal

PDH
error signal

mixer

HV amp servo

locking
error signal

slave laser
output

slave
laser

150MHz
signal generator

monitor
photodiode

Figure 10.9: Experimental layout for injection locking experiment showing apparatus to simulta-
neously obtain both tilt locking and PDH error signals. Either error signal can be used to lock the
slave laser cavity to the master laser.

The experiment was set up so that the tilt locking and PDH error signals could be
produced simultaneously as shown in figure 10.9. The master laser is a LZH model 450
NPRO. The slave laser has a free spectral range of approximately 2 GHz, and is capable
of producing 5 W of diffraction-limited TEM00 output when pumped with a single 20 W
laser diode array. For more details regarding the slave laser see Ottaway et al. [123]. For
this experiment we chose to operate the slave laser at an output power of 3 W. Although
injection locking is used to enforce uni-directional operation of the slave laser, a high
power isolator is still necessary to protect both the electro-optic modulator and the mas-
ter laser from optical damage when the slave laser is free running. The injection locking
system was operated with 100 mW incident on the slave laser cavity. The monitor pho-
todiode senses the power in the reverse direction of the slave laser cavity. This power
drops to zero when the slave laser is injection locked.

The PDH system uses a modulation frequency of 150 MHz with a high speed pho-
todetector at a tap off on the slave laser output. The tilt locking error signal was produced
by slightly tilting the master in the vertical axis due to the lower levels of slave laser beam
jitter exhibited in this axis. A quadrant photodiode situated at a second tap off was used
to produce the tilt locking error signal.
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To provide the most robust servo and minimise noise the zero-crossing of the error
signal should correspond to the center of the injection locking range of the slave laser.
Thus the alignment of the master laser beam, slave laser resonator and detector must be
carefully adjusted. We do this by initially aligning the master laser beam and the beam
from the free running slave laser and then ensuring that the quadrant photodetector is
centred on the output of the injection locked laser. The master laser beam is then tilted
and its position (height) adjusted until the error signal is symmetric.
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Figure 10.10: (a) Tilt locking error signal, (b) PDH error signal and (c) reverse power on the
monitor photodetector.

10.3.2 Results

The shape of the error signals were recorded by slowly scanning the length of the slave
laser cavity with a PZT. Figure 10.10 shows the tilt locking error signal, the PDH error
signal and the reverse power monitor photodetector. Note that the reverse power drops
to zero as the cavity resonance sweeps through the master laser frequency, indicating that
injection locking was temporarily achieved. Again, the tilt locking error signal is much
larger than the PDH error signal due to the larger front end gain of the transimpedance
photodetector.

The closed loop error signals will contain residual fluctuations due to finite band-
width and gain of the servo. If both techniques are properly reading out the resonance
of the slave laser resonance we would expect the residual error signals to be strongly
correlated3. For the experimental results presented below the tilt locking error signal is
used to maintain injection locking and the PDH error signal is used only for monitoring
purposes.

3This is assuming that the residual error is much larger than shot noise. The shot noise on each of the
error signals will be uncorrelated
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Figure 10.11: Simultaneous measurement of (a) the tilt locking error signal and (b) the PDH error
signal whilst the cavity was locked using tilt locking.

Figure 10.11 shows a time domain measurement of the simultaneously recorded error
signals for a duration of 30 ms. It is clear that the error signals are strongly correlated
indicating that the injection locking performance is not limited by the choice of readout
system.
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Figure 10.12: Tilt locking and PDH error signal frequency spectrum from (a) 30 Hz to 800 Hz and
(b) 1 kHz to 13 kHz whilst the cavity was locked using tilt locking. In both plots tilt locking is the
upper spectrum.

Further proof of correlations can be found by comparing the frequency spectra of
the error signals. Figure 10.12 shows the frequency spectra of the tilt locking (upper
trace) and PDH (lower trace) spectra over two different frequency ranges. These spectra,
recorded on a dynamic signal analyser or FFT machine (Hewlett-Packard 3561A), exhibit
excellent correlations even at frequencies where electronic pickup dominates the error
signal, suggesting that the pickup occurs down stream from the error signal production.

One of the potential advantages of using tilt locking over PDH locking is that the
slave laser output is free from modulation sidebands [125]. This may be particularly
important for gravitational wave detectors as these sidebands can interfere with locking
loops further downstream.
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10.3.3 Future work

As discussed in chapter 8, the performance of tilt locking in the presence of mechanical
vibration and beam jitter dramatically improves as the cavity approaches the impedance
matching condition. Unfortunately, it is impossible to reach this point with a standard
injection locking configuration. The slave laser output will always be larger than the
master input and thus there will always be a large TEM00 mode on the photodetector.

One idea yet to be tested experimentally, is to inject the master laser through a differ-
ent mirror of the slave laser cavity (i.e., not the main output coupling mirror). Consider
the diagram of figure 10.13(a). The slave laser’s main output coupler, mirror M2, has the
same value as in the traditional injection locking case (in the traditional case M2 serves
as both the input coupler for the master and the output coupler for the slave). Mirror
M1, however, has a much higher reflectivity than M2 so that in the free running case only
around 100 mW leaks out of this port. In the traditional scheme M1 has zero transmission.
The master laser is incident on M1, and its power adjusted using the half wave plate and
polarising beam splitter to also give 100 mW. By careful adjustment of the master power
it may be possible to impedance match the interferometer by cancelling the slave leakage
field with the reflected master field and thus decrease the amount of TEM00 light on the
quadrant photodetector to an arbitrarily small amount. This should ensure that the tilt
locking error signal is immune to beam jitter and mechanical vibration.
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Figure 10.13: Experimental layout for new injection locking scheme with (a) tilt locking and (b)
PDH locking.

The scheme should be equally applicable to PDH locking as shown in figure 10.13(b).
PDH shares the benefits of impedance matching in that it becomes immune to residual
amplitude modulation as impedance matching is approached. The scheme has other po-
tential benefits such as filtering of master laser amplitude and phase noise at frequencies
which are large compared to the slave cavity linewidth. The injection locking bandwidth
(or alternately power scaling factor) should be maximised as effectively all of the avail-
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able master power enters the slave laser cavity. Further theoretical and experimental
investigations are required to clarify such issues. The technique has several practical ad-
vantages over traditional techniques. For example, a high power isolator is no longer
required to protect the master laser from the reverse circulating field of the free running
laser. The largest power that can leak out of the slave laser cavity back to the master is
approximately equal to the master power and so ordinary Faraday isolators should suf-
fice. Finally, there is no need for any optics in the output of the slave laser which may be
important once very high slave powers are reached.

10.3.4 Summary

We have demonstrated successful control of an injection locked laser by the use of tilt
locking. The error signals obtained using tilt locking and the PDH technique are highly
correlated, indicating that the method used to obtain the error signal is not the limiting
factor in locking performance.

We have also presented a new configuration for injection locking of lasers which could
provide advantages under certain conditions. This system is yet to be fully analysed or
experimentally tested.

10.4 Conclusions

We have reported on the successful use of tilt locking for laser frequency stabilisation,
control of a continuous-wave second harmonic generator, and control of an injection
locked slave laser. In all three cases the sensitivity and stability of tilt locking was ad-
equate to ensure that these systems’ performances were limited by other noise sources,
thus there are no performance advantages to be gained by using a different locking tech-
nique. Practical considerations, however, could make tilt locking more desirable for use
in such a system. Aside from the complexity, cost and size advantages advantages men-
tioned in chapter 8, it produces an output which is free from modulation. This can be
important in many applications.



Chapter 11

Tilt locking and two beam
interferometers

Until now we have discussed tilt locking in the context of a readout system for optical
cavities. However, tilt locking can also be used effectively for the readout and control of
two beam interferometers, such as, Michelson, Mach-Zehnder and Sagnac interferome-
ters. In this chapter we give a brief explanation of tilt locking in a nonresonant system. We
experimentally demonstrate tilt locking’s insensitivity to photodetector displacements in
a Mach-Zehnder interferometer and use tilt locking to measure the frequency response
of a Sagnac interferometer.

11.1 Spatial modes in a nonresonant system

The explanation of tilt locking an optical cavity presented in chapter 8, involved the inter-
ference of resonant and nonresonant spatial modes. Although a two beam interferometer
is a nonresonant system, we will continue to use the Hermite-Gauss modes as a basis for
describing the interference.

In section 8.2.1, we demonstrated that adding a small TEM10 mode π/2 out of phase
with a TEM00 mode results in a TEM00 mode with a tilted phase front (see figure 8.2).
Conversely, if two TEM00 modes, slightly tilted with respect to each other, are subtracted
the result is a TEM10 mode π/2 out of phase with the original beams. In a two beam
interferometer, a subtraction can occur between the electric fields of the two beams when
they are recombined (with opposite phase) at the beam splitter. If the two beams are
slightly tilted before recombination, the field present at the dark fringe will be the TEM10

mode.
This small amount of TEM10 light can be used as a local oscillator for any carrier

or signal sidebands present at the dark fringe. Once again, to measure the interference
efficiently we use a split photodiode. Figure 11.1 shows the vector diagram representing
the electric fields at the dark fringe on the left and right sides of the photodiode. The two
beams interfering at the beamsplitter have been decomposed into a TEM00 component
and a TEM10 component (where the Hermite-Gauss mode basis is defined with respect
to the untilted beam in each arm). Exactly on a dark fringe, the TEM00 modes interfere
destructively and do not appear at the photodiode. The TEM10 modes, however, interfere
constructively as the beams have been tilted in opposite directions in each arm of the
interferometer. The power on each half of the photodiode is equal, and thus the error
signal, again given by subtracting the photocurrents of each half, is zero.

As the interferometer drifts slightly away from the dark fringe, the interference is
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Figure 11.1: Vector diagram for the spatial mode interference of a two beam interferometer at a
dark fringe.

altered as shown in figure 11.2. In a two beam interferometer both the TEM00 carrier and
the TEM10 local oscillator will receive a phase shift, in contrast to an optical cavity where
only the resonant mode receives the phase shift. For small phase shifts, the amount of
TEM10 mode present does not change appreciably (the TEM10 is effectively at a bright
fringe which is a turning point). The carrier field at the dark fringe will be approximately
π/2 out of phase with each of the carriers in the arms and thus will add to the TEM10

field on one side and subtract on the other. The resultant vector, and thus the power,
increases on one side of the photodiode and decreases on the other, resulting in a non-
zero subtraction. This provides an error signal to lock the interferometer to a dark fringe.
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Figure 11.2: Vector diagram for the spatial mode interference of a two beam interferometer with
a φ = 10◦ phase shift in each arm.
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11.2 Tilt locking in a Mach-Zehnder interferometer

We have chosen a Mach-Zehnder interferometer to demonstrate tilt locking as we can
individually misalign the beams in each arm. The amount of tilt required is much less
than the amount required to produce fringes. Typically, tilt locking requires only a few
degrees phase difference across the entire beam. As long as the interferometer is kept
reasonably small, then tilting the mirrors introduces predominantly tilt with very little
offset. If significant offset is produced this can be compensated by adjusting the align-
ment of the beamsplitters. Figure 11.3 shows the basic layout of this experiment.

PZT
laser isolator

x

signal
generator

Mach-Zehnder
interferometer

split
photodiode

bs

bs

M1

M2

Figure 11.3: Experimental layout for tilt locking in a Mach-Zehnder interferometer. Mirrors M1
and M2 are slightly tilted to produce a TEM10 beam at the photodetector in the absence of a
carrier.

The interferometer phase is scanned by driving a PZT mounted to mirror M1. The
sum (total power) and the difference (error signal) outputs of the photodetector are plot-
ted in figure 11.4. As is the case for Schnupp modulation [34], the tilt locking error signal
is a sinusoid which is 90o out of phase with the power. The error signal crosses zero when
the power is minimised.

By feeding back the subtracted output via a servo and HV amp to the PZT on M2,
the interferometer was locked to a dark fringe. A fraction of the light was tapped off
before the split photodetector and measured with a Beamscan. Figure 11.5 shows the two
dimensional intensity distribution of the beam at the dark fringe. The intensity profile
has a double hump in the x direction, as expected for the TEM10 beam. In the y direction
the intensity profile has a roughly Gaussian distribution.

The intensity distribution of the bright fringe was also measured using the Beamscan.
The beam at the bright fringe should closely approximate the mode of the input field,
and show no irregularities due to the tilt introduced by the interferometer. The results of
figure 11.6 show that the output is a clean TEM00 field with no significant higher order
structure.

11.3 Sensitivity to mechanical vibrations

The most promising aspect of tilt locking applied to two beam interferometers is its im-
munity to beam jitter. In section 8.4 we showed that for an impedance matched cavity
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Figure 11.4: (a) Power and (b) error signal as the phase of the Mach-Zehnder is scanned

tilt locking is, to first order, immune to mechanical motion of the photodetector. Unfortu-
nately, in practice it is difficult to approach impedance matching for high finesse cavities
due to the sensitive dependence on the mirror reflectivities and losses. In contrast, two
beam interferometers exhibit very high fringe visibilities, routinely over 99%. In the con-
text of tilt locking, this ensures that the amount of residual TEM00 light at the dark fringe
is kept to a minimum, and the regime described in section 8.4 can be approached.

To examine this experimentally, we scanned the Mach-Zehnder interferometer and
recorded the error signals as the photodiode was moved across the beam. These results
are plotted in figure 11.7. Although the form of the error signal changes as the photo-
diode is moved through the beam, the position of the zero crossing point does not. In
addition, the slope of the error signal is not significantly altered ensuring that the closed
loop performance of such an interferometer is unchanged.

The photodetector position can be calibrated by comparing the sum and difference
outputs when the power on the photodiode is at a maximum. For example, for the high-
est error signal of figure 11.7, the subtracted output is approximately 5 V when the total
power is 12 V. Simple algebra shows that there is 70% of the beam on one side of the
detector and 30% on the other. Assuming the beam is a simple Gaussian at this bright
fringe (see figure 11.6), we calculate that the detector has been moved by 0.23 of the beam
radius. This is in agreement with the theoretical predictions of figure 8.12.

11.4 Sagnac interferometers

Sagnac interferometers have found widespread commercial use for applications such as
fibre optic gyroscopes [126] and more recently in fibre optic current sensors [127]. Due
to the common optical path length experienced by the counter propagating beams the
Sagnac interferometer is naturally on a dark fringe. In traditional gyroscope systems the
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Figure 11.5: Two dimensional intensity distribution of the light on the split photodiode with the
interferometer locked to a dark fringe.

Figure 11.6: Two dimensional intensity distribution of the light at the bright fringe port with the
interferometer locked to a dark fringe via tilt locking.

readout of signals at the dark fringe involves complex internal modulation and signal
extraction algorithms. Tilt locking has the potential to remove much of this complexity,
as it is ideally suited to dark fringe operation.

We have constructed a Sagnac delay line with a round trip length of 19.1 m as shown
in figure 11.8. A tracking generator is used to inject a 15 dBm signal into a single phase
modulator positioned directly after the beam splitter.A split photodiode at the dark fringe
is used to measure the signal. By driving the phase modulator via the tracking generator
of a spectrum analyser we were able map out the frequency response of the system.

We have constructed the Sagnac interferometer so that there is a waist in its center
(mirror M1) and a waist at the output where the split photodiode is situated. In this
situation any tilt introduced by mirror M1 will also appear as tilt on the photodetector. If
it not possible to organise the interferometer in such a way then the TEM10 mode at the
output may have some component of the offset TEM10 mode. This can be corrected by
placing a lens in front of the photodetector. As the beam propagates away from the lens
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Figure 11.7: (a) Power and (b) error signals as the Mach-Zehnder phase is scanned. The different
error signals were obtained for different transverse displacements of the photodetector. Note the
zero crossing point at the dark fringe remains basically unchanged.

the Gouy phase shift will ensure that in some plane the TEM10 is π/2 out of phase with
the carrier. This is the plane where the photodetector should be situated.

Figure 11.9(a) shows the Sagnac interferometer response from DC to 35 MHz (lower
trace) and the frequency response of the photodetector (upper trace). The low frequency
spikes on the Sagnac response are due to resonances of the phase modulator (the same
ones observed in section 6.5). The frequency response of the photodetector was indepen-
dently measured by driving the amplitude modulation input of a diode laser with the
tracking generator and observing the transfer of the signal to the detector photocurrent
[86]. Figure 11.9(b) shows the true Sagnac response recovered by normalising to the pho-
todetector response. A comparison with figure 6.3 shows that the form of the frequency
response is indeed what we expect from a delay line Sagnac interferometer.

11.5 Summary

In this chapter, we have discussed the application of tilt locking to two beam interferom-
eters. We have demonstrated tilt locking as a read out system for both Mach-Zehnder
and Sagnac interferometers. The tilt locking error signal was shown to be well isolated
from changes in the photodetector position due to the high fringe visibilities commonly
achieved with two beam interferometers. The implementation of tilt locking into fibre
optic Sagnac interferometers is currently underway.
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Figure 11.8: Experimental layout for a 19.1 m Sagnac interferometer with a tilt locking signal
readout. Mirror M1 is tilted to introduce a TEM10 mode at the photodetector.
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Figure 11.9: (a)Lower trace: Sagnac interferometer frequency response with a tilt locking readout.
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Chapter 12

Conclusions

12.1 Summary of interferometer configurations work

This thesis presented experimental investigations of interferometer configurations for an
advanced gravitational wave detector.

We have presented the first experimental demonstration of a Sagnac interferometer
with resonant sideband extraction. The frequency response of the system was measured
for a variety of signal mirrors and a range of signal cavity detunings. A brief comparison
of resonant sideband extraction in Sagnac and Michelson based systems has been per-
formed. We found that many of the advantages of a Sagnac over a Michelson in delay
line systems, such as simplicity of control and insensitivity to laser frequency noise, are
lost when the systems are complicated with optical cavities. We have no immediate plans
for the further investigation of cavity based Sagnac interferometers for gravitational wave
detection.

A control system for a power recycled Michelson interferometer with resonant side-
band extraction has been presented. The control system employs a frontal modulation
scheme requiring phase modulation of the carrier field and a phase modulated subcar-
rier field. We have discussed the application of single sideband modulation and demod-
ulation to obtain an error signal for an optical cavity and double demodulation for a
Michelson interferometer. The single sideband signal extraction scheme has a sensitiv-
ity lower than the analogous double sideband technique, however the noise floor is also
slightly reduced due to the absence of nonstationary shot noise. The dependence of the
single sideband modulation scheme on errors in the demodulation phase was analysed.
We found that isolation against changes in the demodulation phase is determined by the
impedance matching and fringe visibility of the instrument.

In principle, this control system is capable of locking the first four length degrees of
freedom (arm cavity common mode, arm cavity differential mode, Michelson common
mode, and Michelson differential mode) to a fixed point with the signal cavity detuned
to an arbitrary point. In addition, the control system permits this detuning to be altered
whilst the interferometer maintains lock.

The subcarrier field was obtained by offset phase locking a low power laser to the
carrier laser. It was found that residual noise in the phase locking is equivalent to errors
in the demodulation phase. We have discussed one technique for avoiding this problem
which involved using the measured beatnote between the lasers as the electronic local
oscillator for all subsequent demodulations. After implementing this revised local os-
cillator scheme we observed an improvement in the noise floor of the error signal by a
factor of 35 dB.

The control system for a power recycled Michelson interferometer with RSE has been
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implemented in a benchtop prototype interferometer. In addition to monitoring the opti-
cal power at various ports, correct operation of the control system was verified by observ-
ing the optical spectra at the input, at the power cavity port and at the transmitted port.
The interferometer exhibited stable, continuous locking for periods of several hours. In
addition, the interferometer could be locked with the signal cavity detuned to an arbi-
trary position.

A system for measuring the frequency response of the system was devised. This sys-
tem relied on a third laser injected through the back of one the arm cavities and was
capable of measuring the frequency response out to very high frequencies with a large
signal to noise ratio. The frequency response was measured for a range of signal cavity
detunings and was found to be in good agreement with theoretical predictions. Finally,
the control system’s ability to detune the interferometer without dropping lock was ex-
perimentally verified.

12.2 Summary of tilt locking work

We presented a new technique for the readout and control of interferometers. This tech-
nique, tilt locking, utilises the interference between the TEM00 and TEM10 modes. Tilt
locking replaces the signal generator, modulator, high speed photodetector and mixer
of conventional PDH locking systems with a quadrant photodiode and several low fre-
quency op-amps.

A calculation of the sensitivity with which the position of a beam can be measured
was performed using the linearised form of the annihilation operator. We demonstrated
how this position uncertainty is responsible for the shot noise limit of tilt locking. Using
this result we performed a detailed calculation of the shot noise limited performance of
tilt locking. We found that tilt locking has an overall quantum efficiency of

√
2/π ≈ 0.80,

that is, tilt locking will have a signal to noise ratio of 80% for a measurement of phase
noise at the quantum noise level. This source of the inefficiency was due to imperfect in-
terference of the TEM10 and TEM00 modes. This is comparable to the

√
2/3 ≈ 0.82 quan-

tum efficiency of PDH locking. We also analytically demonstrated how the impedance
matching of a system can determine the sensitivity of tilt locking to mechanical vibrations
and beam jitter.

Tilt locking was demonstrated in a number of applications including laser frequency
stabilisation, continuous-wave second harmonic generation and laser injection locking.
By locking two lasers to one cavity (situated in an ordinary lab environment) we were
able to obtain a beatnote linewidth of 8 Hz with an Allan deviation of 3.3 Hz at 100 ms.
In the remaining demonstrations we compared the performance of the tilt-locked and
Pound-Drever-Hall-locked systems. In each case, we found that tilt locking offered com-
parable performance to the PDH system.

Finally, we investigated the use of tilt locking in two beam interferometers. Using
a Mach-Zehnder interferometer we experimentally demonstrated how the zero crossing
point of the error signal is well isolated from changes in the photodetector position. In
addition, tilt locking was used to readout the signal of a Sagnac interferometer.

Tilt locking in many systems is capable of achieving the same sensitivity as the PDH
system. Although it is not applicable to the control or readout of a gravitational wave
detector due to its incompatibility with suspended interferometry, it should find use in a
wide range of applications.
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12.3 Further work

Aside from the length sensing control system, many other systems need development
before RSE can be implemented in a long base-line gravitational wave detector. These
systems include auto-alignment control, input optics, and signal extraction or output
optics. Before the control system presented here can be seriously considered for use in a
gravitational wave detector a full analysis of the noise performance is needed. One aspect
which will require particular attention is the sensitivity to the demodulation phase error.
This is particularly important as it influences the gravitational wave signal readout. The
results of such calculations may guide the experimental method of production of the
subcarrier field. If the degree of noise coupling is unacceptably high, other techniques
may need to be employed such as external modulation [43] or offset locking [128].

Similar demonstrations of resonant sideband extraction in a power recycled Michel-
son interferometer have also been demonstrated this year by Mason at Caltech and
Delker at the University of Florida. Now that all three benchtop experiments are com-
pleted the focus of the configurations work will shift to Glasgow where this configuration
is to be implemented in a suspended prototype. It is intended that the Glasgow work will
be a “scientific” prototype of the LIGO II configuration. In a few years, knowledge and
experience gained from this scientific prototype will be used to construct a full “engineer-
ing” prototype of LIGO II in the 40 m interferometer at Caltech.

The detuning of the signal extraction mirror in an RSE interferometer affects both
the signal bandwidth and peak signal frequency of the device. By replacing the fixed
reflectivity signal extraction mirror by a short optical cavity (or a Michelson interferom-
eter) the effective reflectivity of the signal mirror can be altered. This provides a greater
level of flexibility with the ability to independently adjust the signal bandwidth and peak
frequency of the interferometer. This would be of great benefit to a gravitational wave
detector allowing the signal response to be optimised for any given source.

The tilt locking work will receive a high performance test when it is used as the pri-
mary readout and control technique for the thermal noise measurement system under
development at the ANU [129]. This work is to use tilt locking, to frequency stabilise the
laser to a rigid modecleaner suspended in vacuum. The output beam from this mode-
cleaner is then directed onto a test cavity, the subject of the thermal noise measurement.
Tilt locking is again to be used to measure the thermal noise of this test cavity by sensing
the change in resonance frequency. The ability of tilt locking to measure the changes in
length of the cavity is expected to approach the shot noise limit derived in chapter 9, as
the output of the modecleaner is expected to have only minimal beam jitter.

Work on tilt locking in two beam interferometers is to continue with development
already underway to implement tilt locking in a fibre optic Sagnac.
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Appendix A

Construction of optical spectrum
analysers

We designed and constructed several fibre-coupled optical spectrum analysers (OSA’s)
with a variety of values for free spectral range (FSR) and resolution, with an aim to have
these units as self contained, versatile, and robust as possible.

Physically, our OSA’s consist of an invar spaced cavity mounted on a solid block. At
the front of the block there is an optical fibre connection port. Light entering through the
fibre port passes through an angled neutral density filter, then the cavity before reaching
a 25 mm lens and photodetector. All these components are bolted rigidly to a base mak-
ing the apparatus both robust and transportable. Side on and top down schematics are
shown below.

Figure A.1: Top down schematic view of the OSA.

When the OSA’s were designed, emphasis was placed on ease and flexibility of use.
A solid base was used so that all the necessary components could be transported with-
out need for re-alignment. An angled neutral density filter was used to reduce parasitic
etalons between the input fibre port and the front mirror of the cavity. The fibre port
had inadequate AR coating, making this measure necessary. The OSA itself was an invar
spacer cavity with mirrors from Rimkevikius and Gintautas. Invar has an extremely low
coefficient of expansion at 0.9×10−6 per Kelvin, more than an order of magnitude below
most metals and alloys - this means there is minimal temperature based length change.
To allow geometrical length adjustment, the front mirror’s holder had a fine thread which
screwed into the cavity. The holder was held in the right position by a nylon grub screw.
By adjusting the front mirror distance, the cavity could be set quite precisely to confocal-
ity. Scanning of the optical length was by a piezo-mechanical device glued between the
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Figure A.2: Side-on schematic view of the OSA.

rear mirror and the cavity.
At the back of the base a perpendicular plate with a half inch hole was bolted on.

A photodiode, mounted in it’s signal amplification board, was bolted directly onto this
plate, with the diode centred at the beam focus. With the detector board fixed in front of
the 25 mm lens there was no need for either alignment or external components.

The component most important for transportability and versatility were the fibre
ports. By having them fixed on the front of the cavity, any fibre input could be cou-
pled into the cavity without need for re-alignment. Also, having a fibre port as input was
experimentally practical - anywhere a fibre tap-off can be placed, an OSA can be used. In
addition to this, OSA’s could be interchanged at will depending on whether large FSR or
higher resolution was needed.



Appendix B

Circuit Diagrams

In this appendix we present the circuit diagrams for the tilt photodetector, PZT servo and
the laser frequency servo. Details of all other photodetectors used in this work can be
found in [86].

B.1 Split photodiode

The circuit diagram for the split photodiodes is shown below. The pictured circuit utilises
AD829 amplifiers; however, the AD708 can also be used in the same circuit to obtain
higher DC precision at the expense of bandwidth.

Figure B.1: Circuit diagram used with the split photodiode.
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B.2 PZT Servo

The circuit diagram for the PZT servo is shown in figure B.2. The circuit contains a third
order elliptic filter which can be tuned to coincide with the resonance of the PZT. More
details on the the design and implementation of this filter can be found in [88].

B.3 Laser Frequency Servo

The laser frequency servo (see figure B.3) provides feedback to the laser crystal temper-
ature at low frequencies and the laser crystal PZT at high frequencies. The circuit also
contains a third order elliptic filter which can be tuned to coincide the resonance of the
laser crystal PZT.
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Figure B.2: PZT servo circuit diagram
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Figure B.3: Laser frequency servo circuit diagram.



Appendix C

Matlab files to model DC error
signals

The DC error signals and the look-up table for the subcarrier offset frequency required
for a given detuning were calculated using the programs rsecontrol.m and rseinterf.m.

The program rsecontrol defines the mirror reflectivities, interferometer lengths and
modulation frequencies used for the control system. This program is quite repetitious
and for brevity only a subsection is included.

Ps=0.1; % ratio of subcarrier power to carrier power
P2=Ps*0.1; % ratio of each subcarrier sideband to carrier power

sdet=2*pi/180; % signal cavity detuning (radians)

%%% Look up table for signal cavity detuning %%%
% f = 188.2MHz ==> sdet=0.082+/2 (near RSE)
% f = 186.445MHz sdet = 15/180+/2 (15 degrees detuned from RSE)
% f = 184.315MHz sdet = 30/180+/2 (30 degrees detuned from RSE)
% f = 182.493MHz sdet = 45/180+/2 (45 degrees detuned from RSE)
% f = 180.806MHz sdet = 60/180+/2 (60 degrees detuned from RSE)
% f = 179.12MHz sdet = 75/180+/2 (75 degrees detuned from RSE)
% f = 177.035MHz sdet = 2*pi/180 (2 degrees from DR)

%%% Interferometer mirror parameters %%%

rbs=sqrt(0.53); % beamsplitter reflectivity
tbs=sqrt(0.465); % beamsplitter transmitivity
ri1=sqrt(0.975); % in-line AC input coupler reflectivity
ti1=sqrt(0.0222); % in-line AC input coupler transmitivity
ri2=sqrt(0.9955); % in-line AC output coupler reflectivity
ti2=sqrt(1-ri2.ˆ2); % in-line AC output coupler transmitivity
rp1=sqrt(0.975); %perp AC input coupler reflectivity
tp1=sqrt(0.022); % perp AC input coupler transmitivity
rp2=sqrt(0.9961); % perp AC output coupler reflectivity
tp2=sqrt(0.0039); % perp AC output coupler transmitivity
rs=sqrt(0.688); % signal mirror reflectivity
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ts=sqrt(0.312); % signal mirror transmitivity
rp=sqrt(0.682); % power mirror reflectivity
tp=sqrt(0.318); % power mirror transmitivity

%%% Interferometer lengths %%%

Lp=0.8; % power mirror to beamsplitter
Lmi=c/(4*f1)-Lp; % michelson in-line (bs to AC)
Lmp=3/4*c/f1-Lp; % michelson perp (bs to AC)
Ls=Lp; % signal mirror to beamsplitter
Laci=0.175; % AC in-line
Lacp=0.175; % AC perp

Ldelay=(Lp+Ls)+(Lmp+Lmi); % single pass delay for transmit-
ted beam

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

points=501; % number of plotting points
range=0.1; % scanning range in radians
dx=2*range/(points-1); % radians between plotting points
det=linspace(-range,range,points); % detuning vector in radians
freq=linspace(-200e6,200e6,points); % frequency vector in Hz
wscan=2*pi*freq; % frequency vector in radians/sec

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Scanning input frequency %%%

w=wscan; % frequency vector
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c; % arm cavity in-line phase
phiACP=w*Lacp./c; % arm cavity perp phase

[Er,Et,Ep]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

figure(1)
subplot(3,1,1)
plot(freq/1e6,abs(Er).ˆ2)
title(’modulation frequency’)
ylabel(’reflected power’)
xlabel(’frequency’)
axis([-200,200,0,1])
subplot(3,1,2)
plot(freq/1e6,abs(Et).ˆ2)
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ylabel(’transmitted power’)
xlabel(’frequency’)
axis([-200,200,0,1])
subplot(3,1,3)
plot(freq/1e6,abs(Ep).ˆ2)
ylabel(’circulating power’)
xlabel(’frequency’)
axis([-200,200,0,max(abs(Ep).ˆ2)])

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Scanning Arm Cavity (common mode) %%%

w=0; % carrier field
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c+det; % arm cavity in-line phase
phiACP=w*Lacp./c+det; % arm cavity perp phase

[Erc,Etc,Epc]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

w=w1; % upper sideband
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c+det; % arm cavity in-line phase
phiACP=w*Lacp./c+det; % arm cavity perp phase

[Er1,Et1,Ep1]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

w=-w1; % lower sideband
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c+det; % arm cavity in-line phase
phiACP=w*Lacp./c+det; % arm cavity perp phase

[Er_1,Et_1,Ep_1]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

w=ws; % subcarrier
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c+det; % arm cavity in-line phase
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phiACP=w*Lacp./c+det; % arm cavity perp phase

[Ers,Ets,Eps]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

w=ws+w2; % upper subcarrier sideband
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c+det; % arm cavity in-line phase
phiACP=w*Lacp./c+det; % arm cavity perp phase

[Er2,Et2,Ep2]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

w=ws-w2; % lower subcarrier sideband
phiP=pi/2+w*Lp./c; % power cavity phase
phiLI=w*Lmi./c; % michelson in-line phase
phiLP=w*Lmp./c; % michelson perp phase
phiS=w*Ls./c+sdet; % signal cavity phase
phiACI=w*Laci./c+det; % arm cavity in-line phase
phiACP=w*Lacp./c+det; % arm cavity perp phase

[Er_2,Et_2,Ep_2]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

% Calculate total power at each detector %
Pr=(abs(Erc).ˆ2+P1*abs(Er1).ˆ2+P1*abs(Er_1).ˆ2+Ps*abs(Ers).ˆ2+...

P2*abs(Er2).ˆ2+P2*abs(Er_2).ˆ2)./(1+2*P1+Ps+2*P2);
Pp=(abs(Epc).ˆ2+P1*abs(Ep1).ˆ2+P1*abs(Ep_1).ˆ2+Ps*abs(Eps).ˆ2+...

P2*abs(Ep2).ˆ2+P2*abs(Ep_2).ˆ2)./(1+2*P1+Ps+2*P2);
Pt=(abs(Etc).ˆ2+P1*abs(Et1).ˆ2+P1*abs(Et_1).ˆ2+Ps*abs(Ets).ˆ2+...

P2*abs(Et2).ˆ2+P2*abs(Et_2).ˆ2)./(1+2*P1+Ps+2*P2);

%%% demodulation at w1 on power cavity tap off %%%

demod=0; % demodulation phase angle
IPCp=-imag((conj(Epc).*Ep_1-conj(Ep1).*Epc).*exp(i*demod));
% in phase component
QCp=real((conj(Epc).*Ep_1-conj(Ep1).*Epc).*exp(i*demod));
% quadrature component

figure(2)
subplot(3,1,1)
plot(det,Pp)
title(’scanning AC common mode’)
ylabel(’circulating power’)
subplot(3,1,2)
plot(det,IPCp)
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ylabel(’In Phase’)
subplot(3,1,3)
plot(det,QCp)
ylabel(’Quadrature’)
xlabel(’demodulation @ 75.9MHZ’)

% caculating slope %
a=diff(IPCp)./dx;
ACcommslope=a((points+1)./2)

The program rseinterf.m claculates the fields at the three interferometer ports when pro-
vided with the phase shifts. The Matlab code is presented below.

function [Er,Et,Ep]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);

% This m-file describes the amplitude and phase re-
sponse of a power recycled
% michelson interferometer with resonant sideband extraction.
% Usage [Er,Et,Ep]=rseinterf(phiP,phiLI,phiLP,phiS,phiACI,phiACP);
%
% The inputs are:
% phiP, the power recycling cavity phase shift (single pass)
% phiLI,the michelson phase shift in line arm (single pass)
% phiLP,the michelson phase shift perpendicular arm (sin-
gle pass)
% phiS,the signal cavity phase shift (single pass)
% phiACI,the in line arm cavity phase shift (single pass)
% phiACP,the perpendicular arm cavity phase shift (single pass)
%
% The outputs are:
% Er,the field reflected from the power mirror
% Et, the field transmitted through the signal mirror
% Ep, the field measured at the power cavity tap off (di-
rected towards laser)

global rbs tbs ri1 ri2 ti1 ti2 rp1 rp2 tp1 tp2 rs ts rp tp

%%% Arm Cavities %%%
raci=ri1-(ti1.ˆ2.*ri2.*exp(i*2*phiACI))./(1-
ri1.*ri2.*exp(i*2*phiACI)); % AC in-line reflectivity
racp=rp1-(tp1.ˆ2.*rp2.*exp(i*2*phiACP))./(1-
rp1.*rp2.*exp(i*2*phiACP)); % AC perp reflectivity

%%% Michelson %%%
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rm1=rbs.ˆ2.*racp.*exp(i*2*phiLP)+tbs.ˆ2.*raci.*exp(i*2*phiLI);
% mich reflectivity from laser
tm1=i*tbs.*rbs.*racp.*exp(i*2*phiLP)-i*tbs.*rbs.*raci.*exp(i*2*phiLI);
% mich transmission (from laser)
rm2=-rbs.ˆ2.*raci.*exp(i*2*phiLI)-tbs.ˆ2.*racp.*exp(i*2*phiLP);
% mich reflectivity from signal mirror
tm2=tm1; % mich transmission (from sm)
% note: these expressions for the michelson as-
sume that it is locked to a dark fringe for phi=0
% ie, an artificial factor of pi is already included.

%%% Signal Cavity %%%
ri=rm1+(tm1.*tm2.*rs.*exp(i*2*phiS))./(1-rs.*rm2.*exp(i*2*phiS));
% reflectivity of RSE inter (no PM)
ti=i.*ts.*tm1.*exp(i*phiS)./(1-rs.*rm2.*exp(i*2*phiS)); % trans-
mission of RSE inter (no PM)

%%% Full power recycled RSE interferometer %%
Er=rp-(tp.ˆ2.*ri.*exp(i*2*phiP))./(1-ri.*rp.*exp(i*2*phiP));
% reflected port
Et=(i.*tp.*ti.*exp(i.*phiP))./(1-ri.*rp.*exp(i*2*phiP));
% transmitted port
Ep=(i.*tp.*ri.*exp(i*2*phiP))./(1-ri.*rp.*exp(i*2*phiP));
% power cavity port
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