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Abstract

In this thesis we investigate advanced techniques for the readout and control of various
interferometers. In particular, we present experimental investigations of interferometer
configurations and control techniques to be used in second generation interferometric
gravitational wave detectors. We also present a new technique, tilt locking, for the read-
out and control of optical interferometers.

We report the first experimental demonstration of a Sagnac interferometer with res-
onant sideband extraction (RSE). We measure the frequency response to modulation of
the length of the arms and demonstrate an increase in signal bandwidth of by a factor of
6.5 compared to the Sagnac with arm cavities only. We compare Sagnac interferometers
based on optical cavities with cavity-based Michelson interferometers and find that the
Sagnac configuration has little overall advantage in a cavity-based system.

A system for the control and signal extraction of a power recycled Michelson interfer-
ometer with RSE is presented. This control system employs a frontal modulation scheme
requiring a phase modulated carrier field and a phase modulated subcarrier field. The
system is capable of locking all 5 length degrees of freedom and allows the signal cav-
ity to be detuned over the entire range of possibilities, in principle, whilst maintaining
lock. We analytically investigate the modulation/demodulation techniques used to ob-
tain these error signals, presenting an introductory explanation of single sideband mod-
ulation/demodulation and double demodulation.

This control system is implemented on a benchtop prototype interferometer. We dis-
cuss technical problems associated with production of the input beam modulation com-
ponents and present several solutions. Operation of the interferometer is demonstrated
for a wide range of detunings. The frequency response of the interferometer is measured
for various detuned points and we observe good agreement with theoretical predictions.
The ability of the control system to maintain lock as the interferometer is detuned is ex-
perimentally demonstrated.

Tilt locking, a new technique to obtain an error signal to lock a laser to an optical
cavity, is presented. This technique produces an error signal by efficient measurement of
the interference between the TEMy, and TEM;, modes. We perform experimental and
theoretical comparisons with the widely used Pound-Drever-Hall (PDH) technique. We
derive the quantum noise limit to the sensitivity of a measurement of the beam position,
and using this result calculate the shot noise limited sensitivity of tilt locking. We show
that tilt locking has a quantum efficiency of 80%, compared to 82% for the PDH tech-
nique. We present experimental demonstrations of tilt locking in several applications
including frequency stabilisation, continuous-wave second harmonic generation, and in-
jection locking of a Nd:YAG slab laser. In each of these cases, we demonstrate that the
performance of tilt locking is not the limiting factor of the lock stability, and show that it
achieves similar performance to the PDH based system.

Finally, we discuss how tilt locking can be effectively applied to two beam interferom-
eters. We show experimentally how a two beam interferometer typically gives excellent
isolation against errors arising from changes in the photodetector position, and exper-

ixX



imentally demonstrate the use of tilt locking as a signal readout system for a Sagnac
interferometer.
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