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Abstract

In many instances arising prominently, but not exclusively, in imaging problems, it is

important to condense the salient information so as to obtain a low-dimensional approx-

imant of the data. This thesis is concerned with two basic situations which call for such

a dimension reduction. The first of these is the statistical recovery of smooth edges in

regression and density surfaces. The edges are understood to be contiguous curves, al-

though they are allowed to meander almost arbitrarily through the plane, and may even

split at a finite number of points to yield an edge graph. A novel locally-parametric

nonparametric method is proposed which enjoys the benefit of being relatively easy to

implement via a ‘tracking’ approach. These topics are discussed in Chapters 2 and 3, with

pertaining background material being given in the Appendix. In Chapter 4 we construct

concomitant confidence bands for this estimator, which have asymptotically correct cov-

erage probability. The construction can be likened to only a few existing approaches,

and may thus be considered as our main contribution.

Chapter 5 discusses numerical issues pertaining to the edge and confidence band estima-

tors of Chapters 2–4. Connections are drawn to popular topics which originated in the

fields of computer vision and signal processing, and which surround edge detection. These

connections are exploited so as to obtain greater robustness of the likelihood estimator,

such as with the presence of sharp corners.

Chapter 6 addresses a dimension reduction problem for spatial data where the ultimate

objective of the analysis is the discrimination of these data into one of a few pre-specified

groups. In the dimension reduction step, an instrumental role is played by the recently

developed methodology of functional data analysis. Relatively standard non-linear im-

age processing techniques, as well as wavelet shrinkage, are used prior to this step. A

case study for remotely-sensed navigation radar data exemplifies the methodology of

Chapter 6.
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