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Abstract

In many instances arising prominently, but not exclusively, in imaging problems, it is
important to condense the salient information so as to obtain a low-dimensional approx-
imant of the data. This thesis is concerned with two basic situations which call for such
a dimension reduction. The first of these is the statistical recovery of smooth edges in
regression and density surfaces. The edges are understood to be contiguous curves, al-
though they are allowed to meander almost arbitrarily through the plane, and may even
split at a finite number of points to yield an edge graph. A novel locally-parametric
nonparametric method is proposed which enjoys the benefit of being relatively easy to
implement via a ‘tracking’ approach. These topics are discussed in Chapters 2 and 3, with
pertaining background material being given in the Appendix. In Chapter 4 we construct
concomitant confidence bands for this estimator, which have asymptotically correct cov-
erage probability. The construction can be likened to only a few existing approaches,
and may thus be considered as our main contribution.

Chapter 5 discusses numerical issues pertaining to the edge and confidence band estima-
tors of Chapters 2–4. Connections are drawn to popular topics which originated in the
fields of computer vision and signal processing, and which surround edge detection. These
connections are exploited so as to obtain greater robustness of the likelihood estimator,
such as with the presence of sharp corners.

Chapter 6 addresses a dimension reduction problem for spatial data where the ultimate
objective of the analysis is the discrimination of these data into one of a few pre-specified
groups. In the dimension reduction step, an instrumental role is played by the recently
developed methodology of functional data analysis. Relatively standard non-linear im-
age processing techniques, as well as wavelet shrinkage, are used prior to this step. A
case study for remotely-sensed navigation radar data exemplifies the methodology of
Chapter 6.
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Chapter 1

Introduction

1.1 Definitions and Notational Framework

In this section, which can be skipped at first reading and referred to later if necessary,
we collect notational conventions for referencing purposes, as well as some definitions
and facts which will be used in this thesis. Consistency of notation is usually maintained
throughout. Exceptions to this should be clear from the context, if not explicitly stated.
The numbering of theorems, figures et cetera will be according to the chapter in which
they appear, while formula numbers refer to chapter and section. For example, equation
(2.4.3) is the third equation in Section 2.4 of Chapter 2.

For the number sets we use the notations N =
{
1, 2, . . .

}
, N0 = N∪{0}, R+ = [0,∞), and

R
∗
+ = (0,∞). The origin in R

d, for d ≥ 1, is (also) denoted O. For a vector z ∈ R
2, we let

arg(z) denote its argument as a complex number, taken here in the interval [−π/2, 3π/2).
We write ⊂ for strict set-theoretic inclusion, so that A ⊂ B means A ⊆ B and A �= B.
The indicator function of the set or (probabilistic) event A is defined as

IA(x) =

1, x ∈ A ,

0, otherwise.

Sometimes we also write I(x ∈ A) = IA(x). A black-and-white image is the indicator
function of a compact set A ⊂ R

2. For two sets A1, A2 ⊂ R
d (d ∈ N), their symmetric

difference is defined as
A1 � A2 = (A1 \ A2) ∪ (A2 \ A1) .

The two morphological operations of dilation and erosion of a set A by a set B, with
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A, B ⊂ R
d, are defined as the sets

A ⊕ B =
{
a + b : a ∈ A, b ∈ B

}
and

A 
 B =
{
x ∈ R

d : ∀ b ∈ B, x − b ∈ A
}

,

respectively; in particular, A 
 B ⊆ A ⊆ A ⊕ B if O ∈ B. We write −A = {0} 
 A.
Through the identification A ↔ IA, the operators ⊕,
 can also be defined on black-
and-white images. For w ∈ R and λ ∈ R

∗
+, the hard and soft thresholding operators are

respectively defined as

ηHard(w, λ) =

w, |w| > λ ,

0, |w| ≤ λ ,

ηSoft(w, λ) = sgn(w)(|w| − λ)+ ,

where x+ = max(x, 0).

For z ∈ R, we write 〈z〉 for the largest integer less than or equal to z. A real-valued
function f is called Lipschitz continuous on the compact domain G ⊂ R

d (where we are
mainly interested in the case d = 2) if for any x, x′ ∈ G, there exists a constant L1 ∈ R

∗
+

such that |f(x) − f(x′)| ≤ L1‖x − x′‖. If instead

|f(x) − f(x′)| ≤ L1‖x − x′‖β , β ∈ (0, 1) , (1.1.1)

then f is called Hölder continuous with index β and Hölder constant L1. The Hölder
continuous functions with index β ∈ R

∗
+ \ N are defined as those whose kth derivative

f (k) exists, where k = 〈β〉, and satisfies (1.1.1) with f (k) and β − k replacing f and
β, respectively. If β ∈ N0 then Hölder continuity with index β means existence and
continuity of all partial derivatives of order β. The function f : G ⊆ R

d → R is called
upper semicontinuous if for each x ∈ G and sequence {xn} ⊂ G such that xn → x and
xn �= x for all n, the inequality lim supn→∞ f(xn) ≤ f(x) holds. If x = (x1, . . . , xd), y =
(y1, . . . , yd) ∈ R

d, the inequality x ≤ y means that xi ≤ yi for i = 1, . . . , d. The usual
scalar (inner) product of x and y is x · y =

∑d
i=1 xiyi. For vectors as well as matrices,

the prime symbol (·)′ denotes the transpose as usual. Vectors will be regarded as either
rows or columns, whatever is notationally more convenient. For a vector v ∈ R

d, the
Euclidean norm is denoted by ‖v‖, and the area (Lebesgue measure) of a measurable set
A ⊂ R

2 is likewise denoted by ‖A‖ since no confusion is possible. The tensor product of
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two scalar-valued functions fi : Di ⊆ R (i = 1, 2) is defined as

(
f1 ⊗ f2

)
(x(1), x(2)) = f1(x(1)) f2(x(2)) .

The topological interior and closure and boundary of a set A ⊂ R
d are denoted by A◦, Ā

and ∂A respectively. A compact set A ⊂ R
d is called star-shaped if there exists x0 ∈ A

such that for each point y ∈ ∂A, the line segment L(x0, y) =
{
λ x0+(1−λ)y : 0 ≤ λ ≤ 1}

lies entirely in A. In the case that one may take x0 = O, the radial function (commonly
also referred to as the distance function) F : R

2 → R+ is defined by

F (u) = inf
{
τ > 0 : u/τ ∈ A

}
.

The compact set A is called strictly star-shaped if for one (and hence any) x ∈ A◦, the
radial function of A ⊕ (−x) is continuous. For x ∈ R

2 and h > 0, the set

ball(x, h) =
{
y ∈ R

2 : ‖y − x‖ < h
}

is the open disc of radius h, centred at x.

From probability theory we shall frequently use standard tools, such as the Borel-Cantelli
lemma and Markov’s inequality. For brevity, the terms ‘random variable,’ ‘distribution
function’ and ‘independent and identically distributed’ will be written as r.v., d.f. and
i.i.d., respectively. If the d.f.s of two random variables X, Y coincide, this will be denoted
X

d= Y . We write X →P Y (X =⇒ Y ) if X converges in probability (respectively, weakly
or in distribution) to Y , assuming in the former case that X and Y are defined on a
common probability space. A broader notion of weak convergence that will be useful in
this thesis is recapitulated in Section A.3. A family {Xα, α ∈ I} of r.v.s with values in
a metric space is called tight if for every ε > 0, there exists a compact set K such that
P (Xα ∈ K) ≥ 1 − ε for all α, and uniformly integrable if supα E

[
|Xα|I(|Xα| > c)

]
→ 0

for c → ∞. It is convenient to give here a version of an exponential inequality for sums
of r.v.s, which is used in the proof of Theorem 2.1.

Theorem 1.1. Bernstein’s Theorem (Pollard, 1984, p. 193) Let
{
Xi

}
denote a sequence

of independent scalar random variables with E(Xi) = 0 and |Xi| ≤ M < ∞, and let
Sn = n−1

∑n
i=1 Xi and V =

∑n
i=1 var(Xi). Then, for η > 0,

P
{
|Sn| ≥ η

}
≤ 2 exp

{
−1

2 η2/(V + 1
3Mη)

}
.

In this thesis we shall also need a modicum of the theory of point processes. A (planar)
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point process is a map N from some probability space (Ω,F , P ) into the space of locally
finite counting measures on R

2. Then {Ω � ω �→
(
N(ω)

)
(A)} is an a.s. N0-valued r.v.,

with A ranging over all compact sets in R
2. It is usual to denote a point process by the

entirety of points comprising its support, say X = {Xi}, and to write

N(A) =
∑

i

I(Xi ∈ A) = card({i : Xi ∈ A}) .

The arrangement of the Xi s can be deterministic, for example triangular, square or
hexagonal, with the square lattice or regular grid, defined at (1.2.5), being the most
important variant in the analysis of digitised images. In the context relevant to this
thesis, the process X is interpreted as representing the loci of observations on the image.
An image estimator is a function which takes its values in the space of bivariate surfaces
defined over the observation area, and measurable with respect to the σ-algebra generated
jointly by X and the system Y = {Yi}, where Yi ∈ R is interpreted as the available
observation on the surface at location Xi.

Usually a point process has a random nature, and a special role in the analysis of scat-
terplots (e.g. Korostelev and Tsybakov, 1993) is played by the (homogeneous) Poisson

process. A Poisson process on Π is a random point process with the following two prop-
erties:

1. For each subset A ⊆ Π with ‖A‖ < ∞, the r.v. N(A) is Poisson-distributed with
parameter λ‖A‖.

2. For any k ≥ 1 and disjoint sets A1, . . . , Ak ⊂ Π, the r.v.s N(A1), . . . , N(Ak) are
independent.

The parameter λ > 0 is called the intensity of {Xi}. The celebrated properties of the
Poisson process, such as invariance under Euclidean motions and conditional uniformity,
will be used without further comment. Replacing the expression λ‖A‖ in property 1
above by

∫
A λ(x) dx leads to the definition of the general (inhomogeneous) Poisson process

with rate function {λ(x), x ∈ Π}. Occasionally, we shall use the more general notion of
a Poisson cluster process, which is defined as follows. Let X1 = {Xi} be a Poisson
process with rate function λ = nλ1, where λ1 is a non-random continuous function that
is bounded away from zero. Let X2 be any point process with the property that its
expected number of points, µ, is finite. For example, the points in X2 might be randomly
distributed within a fixed region, or placed deterministically at the vertices of a regular
lattice in the region, or some combination of these two possibilities. Conditional on X1,
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let {X2i : i ≥ 1} be a sequence of independent copies of X2; and let Xν be the point
process represented by the union of the points in X2i ⊕Xi (for i ≥ 1). Then the Poisson
cluster process Xν has intensity nλ, where λ = µλ1.

1.2 Introduction

This thesis is primarily concerned with problems emerging in the context of estimating
smooth boundary curves in bivariate surfaces, and with methods for discriminating such
surfaces on the basis of representations that are likewise ‘economical,’ albeit in a sense
that is less directly related to visual perception. In both cases the estimation problem
arises primarily, though not exclusively, through the presence of additive random distor-
tions. The terms fault lines or edges will also be used interchangeably with ‘boundary
curves’ in the sequel. Bivariate surfaces will often be called images, whether sampling
takes place on a grid or is governed by an irregular (random) process. Other than for
brevity, this convention serves to emphasise the strong links of the topics discussed in
this thesis with the field of computer vision. Within the sizeable literature from this
and adjacent areas that continually contribute to the problems discussed in this the-
sis, some salient papers are Marr and Hildreth (1980), Marr (1982), and Huertas and
Medioni (1986). Papers reflecting more recent developments are cited in Hall, Qiu and
Rau (2002), in addition to other papers cited later in this thesis.

At an early interpretation level, computational vision systems frequently analyse images
by detecting and appropriately representing boundary curves of the object(s) present in
the scene. Other information, such as the number and size of such objects, or much more
complex characteristics which are relevant to recognition tasks, may then be extracted
at a higher level of a possibly much more complex scheme of image processing steps.

The philosophy that extracting edges should be the primary task in image processing has
largely been influenced by progress in understanding human and animal vision. Work
by Marr (1982) and his collaborators (Marr and Poggio, 1979; Marr and Hildreth, 1980)
has played a pioneering role in the early development of the field. However, important
differences between the approaches from the computer vision and statistics areas do
exist, and these will be elaborated upon later. In this thesis, we shall use the term edge

detection to subsume the notions, and the approaches relevant to the indicated problem,
from the sides of either computer vision or statistics. Although one of the aims of this
thesis is to suggest how approaches developed from these two views can expeditiously
interact, our most salient contributions exclusively relate to the statistical aspects of edge
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detection.

Though certainly important enough by itself, the preponderance of work dedicated to
edge detection may have obscured the advantages of computing other features from im-
ages. The first of these features, namely the estimation of ridges, will be seen to provide
the framework for the edge estimators proposed in Chapter 3 and 4. A deeper statis-
tical analysis of differential geometric properties of curves in noise-corrupted surfaces is
also enabled by our methods, though it is not a major topic here. Secondly, for the
situation where a whole dataset of images is available, we consider the estimation of
(functional) principal component scores associated with a particular image within the
dataset. In this context, the interpretation of a ‘feature’ is more in a data-analytic than
in a visual-perceptional sense. In spite of this, all three cases of edge and ridge detection,
and principal components analysis, may be regarded as instances of dimension reduction,
which therefore underpins all the results in this thesis. A further link between the two
parts of the thesis consists in our use of the so-called Karhunen-Loève transform in the
simulation of the probability distribution that pertains to perhaps the most important
novel result of this thesis (Theorem 4.2 in Section 4.2), as described in Section A.5.

We proceed with some preliminary remarks on the nature of the problems introduced,
putting the topic with the most extensive material last. As for edges, there is also
evidence of the psychophysical significance of ridges (see Burbeck and Pizer, 1995). Lin-
deberg (1998) noted that ridge features are frequently adequate descriptors in exploratory
settings. The top of a ridge may be used, after projection onto the image plane, as an
estimator of a curve and especially an edge. In addition, the steepness of descent away
from the top of the ridge can be used as an important saliency feature that a curve
estimate alone can not possibly convey. By using data that are somewhat off the edge
curve, the notorious sparseness difficulties in spatial statistics are ameliorated, rendering
the edge estimator more stable. This comes at a price of a higher conceptual complexity,
which arise through the need for a careful definition of the notion of a ridge. Several
definitions of a ridge are plausible (see e.g. Hall, Qian and Titterington, 1992), and in
Section A.2 we review the one which is relevant in this thesis. Estimation of edge curves
by likelihood ridges will be considered in Chapters 3 and 4.

A first illustration of what lies ahead is given in Figure 1.1. Panel (a) depicts a sample
surface in form of an intensity image, obtained from the function g : [0, 1]2 → R with
equation (throughout this thesis, we use superscripts to denote coordinates, i.e. we write
x = (x(1), x(2)) for a generic point in R

2):

g
(
x(1), x(2)

)
= I
{
x(2) ≤ 10(x(1) − 0.1)(x(1) − 0.25)(x(1) − 0.6) + 0.25

}
, (1.2.1)
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Figure 1.1: Illustration of the local likelihood method. Panel (a) shows the noise-
corrupted regression surface, defined by equation (1.2.1). Panels (b)–(d) shows the de-
rived likelihood surfaces, as described in the text.

with superimposed independent and standard Normally distributed noise. Here and in
later displays, darker colour corresponds to higher surface elevation. Throughout the
thesis, the letter Π will denote the subset of R

d, typically (but not necessarily) a square,
from which observations are taken and edge estimators are to be derived. Panels (b)–(d)
show the likelihood surface

{
�(x, θ∗), x ∈ Π

}
, with Π = [0, 1]2 computed by discretisation

to a 40× 40 grid, and for the respective (and in each case fixed) unit vectors θ∗ = (1, 0),
θ∗ = (0, 1), and θ∗ = (1, 1)/

√
2. The (log-)likelihood � will be defined in equation (3.2.1).

From Figure 1.1 it is evident, even with the coarse pixelisation, that the direction of
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θ∗ (horizontal, vertical or diagonal) has significant impact on the strength, or even the
mere presence, of a ridge line. The profiled likelihood surface {m(x) , x ∈ Π}, defined
at (3.2.2), takes all possible directions θ into account, but is expensive to compute over
the whole sample space. This is where the local character of our estimation method
becomes important from a numerical viewpoint.

The second of the three topics mentioned above consists in the discrimination or, syn-
onymously, classification of maritime radar imagery. Generally, with the availability of
high-resolution data acquisition methods, but even the low-resolution devices used to
gather the data studied in this thesis, it is crucial to reduce the size of the input data to
manageable proportions.

Next we explain some of the framework that will be adopted in our analysis in Chap-
ter 6. For simplicity, assume first that each datum is not an image matrix but a vec-
tor,

(
X(t1), . . . , X(tp)

)
say. The points ti with t1 < t2 < . . . < tp are interpreted

as the time instances (epochs) at which the continuous process X =
{
X(t) , t ∈ T

}
,

with T ⊂ R a time interval, is sampled. Thus the primary object of interest is the
stochastic process X, and this is what we refer to as the functional nature of the dis-
crete data

(
X(t1), . . . , X(tp)

)
that is available for inference. Usually, but not always,

∆i = ti+1 − ti = ∆, a constant, and thus the sampling frequency 1/∆ is well-defined. If
the datum X represents an object then ideally, one would like to choose the interval T
or [t1, tp] as short as possible so as to exclude background noise. The analogous notion
for images is the so-called bounding box of the object, that is the minimum rectangle
which encloses the object and is parallel to the image axes. For the dataset in Chapter 6,
the choice of the bounding box was determined automatically but showed considerable
variation. This problem remained, albeit to a lesser degree, if background noise was
subsequently cut out, so as to let the image come closer in size to the bounding box.
Aligning a set of observations in this way leads to a problem known as curve registration

(see e.g. Gasser and Kneip, 1995, and Ramsay and Silverman, 1997, Chapter 5, pp. 67ff).

Returning to the case of time-indexed signals, the next step routinely consists in sub-
jecting X to an orthogonal transform. Several examples of these are given in Ahmed
and Rao (1975); more recently, of course, wavelet transforms have become extremely
popular for this task. Transforming the data serves to decorrelate the coefficients in the
expansion with respect to the basis vectors or, as explained later, basis functions in the
analysis of Chapter 6. The decorrelation makes the representation more economical (see
e.g. Gerbrands, 1981, p. 376).

Central to the analysis in Chapter 6 is the next step of dimension reduction, which
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describes how the output vector from the aforementioned orthogonal transform, say Y =(
Y1, . . . , Yp

)
, is mapped into a vector Z =

(
Z1, . . . , Zm

)
with m � p. (We now use

subscript instead of parentheses notation for the index, as the domain of the transform is
not temporal or spatial.) It is usual to perform dimension reduction by simply deleting
most of the components Yi. However, care should be taken here because the features
that are of potential importance in the subsequent classification step are not necessarily
captured by the components Yi in which most of the ‘energy’ of the observation X is
encoded, which will for most transforms be those with the smallest indices i.

In this thesis, two orthogonal transforms will be used to process the input data: the
discrete wavelet transform in order to reduce the influence of noise, and subsequently the
Karhunen-Loève transform in order to obtain the vector Z used in the classification step.
The Karhunen-Loève transform utilises, at an appreciably higher computational expense
than other orthogonal transforms, the whole set of input observations simultaneously to
obtain a data-driven representation with respect to the overall covariance matrix.

For image data which are the concern of this thesis, both of the dimension reduction
and the registration problems are of course much more acute than for ‘one-dimensional’
signals. Especially the second problem can be expected to be hard; see the pertain-
ing discussion in Subsection 6.2.3. The general methodologies of the linear and spatial
cases, however, do not differ to a great extent. In order to apply an orthogonal trans-
form, the image will generally be mapped into a vector, for example by column scanning
(Gerbrands, 1981, p. 377). The element xkl in the kth row and lth column of the ma-
trix X ∈ R

r×s then appears as the element in position (l − 1)r + k of the (column)
vector Xvec ∈ R

rs, where rs = p in the earlier notation.

In the context of pattern recognition, and also the more recent field of machine learning,
which share important aspects with the statistical classification methods of this thesis,
the vector Z is commonly referred to as a pattern vector which resides in the feature

space, which is a subset of R
m, with m having the same meaning as earlier on. We refer

to Ahmed and Rao (1975, especially pp. 225ff) for the terminology used here. Later
we shall prefer to use terminology from multivariate statistics. The salient features of a
pattern recognition system are displayed in Figure 1.2, which is a slightly altered version
of the diagram shown in Ahmed and Rao (1975, p. 225). The formal definition of a
so-called discriminant rule d(·), to which the notation in Figure 1.2 refers, is given in
Section 6.1.

It is appropriate to point out here that in the analysis of radar data in Chapter 6, each
datum does not have an edge in the previously defined sense, for distinction purposes
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{
X(t) , t ∈ T

}
��

Sampler

X(t1)
X(t2)

...
X(tp)

�� Orthogonal
Transform

Y1

Y2

...
Yp

�� Dimension
Reduction

Z1

Z2

...
Zm

�� Trained
Classifier

Rule
d(·)

�� Estimated
Class Ci

Figure 1.2: A pattern recognition (or classification) system. The output on the right-hand
side is chosen from a set of pre-specified classes

{
C1, . . . , CL

}
.

called a step edge, but rather a discontinuity in the first derivative, or a roof edge, along
the ‘footprint’ which separates the object from its noisy background. (This thesis will only
be concerned with the step edges, hence we will only refer to ‘edges.’) The distinctiveness
of this roof edge generally depends on the distance of the object from the radar. These
considerations recommend the use of the Karhunen-Loève transform over the alternative
of trying to extract the edges, and using these as inputs for the classifier. In order to
determine the bounding box of the object, however, we do use an edge detector, based on
numerical derivatives. Several simpler such detectors are discussed in Section 1.3. In the
analysis of higher-resolution imagery, the more sophisticated edge estimators developed
in this thesis may be substituted in the appropriate place in the image processing scheme
which is illustrated in Figure 6.5 (see Section 6.3).

In Chapter 6 we consider methodologies connected with functional data analysis in the
sense of Ramsay and Silverman (1997), and apply them to the task of classification.
The ‘templates’ for this are provided by the respective estimated mean surfaces for each
class. In order to build the templates, and thus to provide a basis for classification, it is
highly desirable to follow the scheme of Figure 1.2, and to use a low-dimensional vector
as a surrogate for the full image data. The Karhunen-Loève expansion is appealing for
theoretical reasons, due to its mean-square optimality (cf. Ahmed and Rao, 1975, p. 191,
or Subsection A.5.1 of this thesis), as well as practical experience. Another advantage
of the Karhunen-Loève expansion is that it “requires no detailed assumptions about the
probability structure of the problem” (Kittler and Young, 1973, p. 335), which essentially
reduce to the specification of prior probabilities for each class, as at (1.3.5). A pertinent
case study will be the subject of Section 6.3. Our objective is to illustrate the method-
ology especially in those regards in which it extends preceding work of Hall, Poskitt and
Presnell (2001). The classification step uses the well-known method of quadratic discrim-
inant analysis, the definition of which is recalled in Section 6.3. Since the latter generally
performed well (after dimension reduction), and because of its relative computational
simplicity, it shall be our exclusive method of choice.
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We now turn to the third of the above topics that will receive the most extensive treatment
in this thesis (in Chapters 2–5), namely the estimation of edges. As stated earlier, it is
the statistical view of this problem that is of main interest here, and some remarks on the
significance of this stance are in order. The majority of approaches to edge detection that
have been developed in computer vision and statistics have many similarities (sometimes
obscured through deviating terminology), but also important differences. Two of the
most profound of these lie in the very interpretation of the notion of an edge.

The sole question of what comprises an edge in a real-world image has spawned a great
amount of literature in computer vision; see for example Lindeberg (1998) and the refer-
ences cited therein. Humans seem to be sure enough about recognising edges, although
there are famous and remarkably simple examples suggesting that perception can be
confounded. Leaving these psychophysical issues aside, a pixeled image has no natu-
ral notion of smoothness attached to it. Statistical approaches, through modelling the
pixel image as the result of sampling from a regression (or density) surface supported
on a continuously-indexed domain, are not plagued by this problem at such a profound
level: the edge is simply the set of discontinuity points within the surface. Nevertheless,
the notion of scale, as used for example by Lindeberg (1998), will be addressed later in
this introduction, as well as in Section 5.4, for two principal reasons. First, there is a
well known connection between the physical notion of scale, and the statistical notion of
the bandwidth of a nonparametric kernel estimator. The estimators that we propose in
Chapters 2–4 are precisely of this type. Secondly, we thereby address a problem in com-
puter vision that is closely related to the bias problem associated with such estimators:
at a larger scale or bandwidth, the ability to detect the true edge, and in fact the whole
noise-corrupted image, will improve up to a certain point. However, this will almost
invariably be at the expense of localisation, that is the distance between the edge and its
estimator, as measured by some criterion.

Though having received less attention, the second of the aforementioned issues, implicit
in the remarks in Qiu (2002a), is of hardly less relevance. This concerns the question of
whether an edge should be construed as a curve or a point set. Both of these viewpoints
have their relative merits, although the second one has the longer tradition. The studies
by Marr and his co-workers (1979, 1980, 1982) have already been mentioned; another
paper that has remained very important is Canny (1986), who proposed a derivative-
based edge detector that continues to be very frequently used in computer vision. For
most of the theory presented in Chapters 2–4, we will narrow our focus to the problem
of estimating a single smooth curve. Most of the existing literature on this topic assumes
that, as in the example function at (1.1), the surface exhibiting the edge has a local
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representation of the following type:

g(x) = g
(
x(1), x(2)

)
=

g0

(
x(1), x(2)

)
, x(2) < f

(
x(1)
)

g1

(
x(1), x(2)

)
, x(2) ≥ f

(
x(1)
)
,

(1.2.2)

where g0, g1 and g are smooth functions, and g1 − g0 is bounded away from zero in a
neighbourhood of the fault line, which has representation x(2) = f

(
x(1)
)
. In contrast, our

own approach does not depend on a representation as at (1.2.2); rather, the fault line
is allowed to meander almost arbitrarily through the plane. An illustration is given in
Figure 1.3 (p. 13). Panel (a) shows the original data, which is a black-and-white image
as defined in Section 1.1. Panels (b) and (c) show typical realisations corresponding to
σ = 0.5 and σ = 0.75, where σ is the standard deviation of Normally distributed noise. A
more comprehensive account of the model assumptions and notation will be given later in
this section. The regression surface introduced here will be used as an artificial example
in Chapter 5.

Another advantage of the ‘curve’ over the ‘point set’ view is that the description of the
edge is conceptually more concise. By adopting a local approach, as we shall do in Chap-
ters 2–4, a substantial part of the methodology from more conventional curve estimation
problems, where a coordinate system is given a priori, carries over with few modifica-
tions. Considerable difficulties, however, are then encountered in finding an appropriate
distance measure between the true curve and its estimate. What ‘appropriate’ means in
this context is not at all easy to determine. The existence of a ‘universally true’ answer
can, to say the least, be seriously doubted. Traditional Lp norms may fail to capture
visually striking phenomena; see the discussion and references in Section A.8.

Regarding the edge as a point set, as is customary in the literature, circumvents the
technicalities that are associated with the curve representation of an edge. Although
the difficulties with distance measures essentially remain, the point-set interpretation
makes a wide range of post-processing (e.g., morphological) operations available. On
the other hand, in the application of such procedures to curves, care must be taken if
their qualitative properties are to be preserved. For instance, if the true edge curve is
simple (i.e., does not self intersect), the same should hold true for the estimator. This
can often only be achieved by deletion of what are deemed to be spurious edge points.
Moreover, procedures that are applied almost automatically in standard one-dimensional
settings are plagued with ambiguities, especially for closed curves. As a case in point,
consider the common problem of connecting a set of edge points in order to obtain a
contiguous estimate. While the point set approach allows practically any rule for this,
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Figure 1.3: Panel (a) shows the original response surface, and panels (b) and (c) depict
the superposition of Normal N(0, σ2) noise with σ = 0.5 and σ = 0.75, respectively, in the
case of lattice design. The lattice edge width is 1/300 on the square Π = [−0.55, 0.55]2.
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the smoothness requirements imposed by the curve estimation approach suggest that a
Bezier curve or smoothing spline, say of cubic order, be fitted to the data. If the fault
line is closed, it is natural to impose a periodic boundary condition, but the fitted spline
will depend on the choice of the starting and end-points on that curve.

The post-processing techniques available for point sets, which have been popular for a
long time, include morphological operations (e.g. binary dilation/erosion, defined in Sec-
tion 1.1), and thresholding of some sort, either in the spatial, the Fourier or a wavelet
domain. By varying the threshold over a range of values, the differences between edges
that are, in common (and somewhat loose) terminology, ‘strong’ or ‘weak,’ may be ex-
hibited. This is a much harder task for curves, which — as principally infinitely thin
objects — lack such a quantitative descriptor. This problem can be partly overcome by
considering the ridge surface from which the estimators in Chapters 3 and 4 of this thesis
derive, and these issues will be further discussed there.

For practical purposes, where edge detection is used at the front end of an image process-
ing scheme, the differences between the two previously described approaches may be felt
only at a later stage. The most important item of note here is the reconstruction of entire
regression surfaces containing edges and corrupted by noise, or edge-sensitive smooth-

ing. A benefit gained from the curve representation is that edge-sensitive smoothing is
principally a straightforward task: standard smoothing procedures can be used on either
side of the curve estimate, correcting for boundaries within each of the respective surface
patches. Such simplicity does not exist in the point-set approach. If surface reconstruc-
tion is the main goal then it may be preferable to take a shortcut by incorporating the
possibility of a jump in the model employed by the estimator itself. This is the approach
taken in Qiu (2002b).

In spite of the caveats mentioned in the preceding paragraphs, problems in computer
vision are a good setting in which to consider a number of fundamental aspects of edge
estimation. The following basic quality criteria of an edge detector appeared in Canny
(1986):

� Good detection,

� Good localisation,

� Clear response.

Further to our previous remarks, with regard to the first criterion we also recall the
perpetual trade-off between errors of Type I or false positives, and Type II or false
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negatives. By a preliminary surface smoothing, it is possible to simultaneously suppress
both types of error to some extent, but at the cost of poorer localisation. The last point
stipulates that there should be only one response per edge, meaning that a detected edge
should not extend more than a single pixel in the direction vertical to it. This raises the
problem that when a sloped edge passes through a gridded set of pixel points, it may
appear in a ‘staircase’ fashion, a phenomenon known as aliasing. A number of existing
approaches in the engineering sciences strive to take this problem into account. Unknown
orientation of edges poses another important problem. This points to a natural theoretic
invariance requirement which Mokhtarian and Mackworth (1986) phrased as follows:

A reliable representation, suitable for matching, should be essentially invari-
ant with the rotation, scaling, and translation of the curve to make recognition
of the curve possible after arbitrary instances of those transformations. More-
over, it should represent the curve at varying levels of detail rather than at
only one level.

Invariance with respect to rotation is a property that most clearly distinguishes our edge
estimators from the great majority of the currently existing ones. The benefit of analysing
a curve embedded in a surface at various levels of detail will be seen in Section 5.4. Our
edge detectors, in their basic versions, are not applicable to situations where the fault
line is not at least once continuously differentiable. To exclude more complex situations,
we limit our attention to cases where singularities occur at a finite number of points only.

The topic of corner detection and our approach to it, though in itself not novel, illustrate
two points that should be kept in mind with regard to the material presented in this
thesis. The first is that while edges and corners are, in a sense (see Kohlmann, 1996)
‘one-dimensional’ and ‘two-dimensional’ features respectively (note that corners may be
construed as the intersection of two edges), most corner detectors depend either explicitly
or implicitly on the detection of edges (Mokhtarian and Suomela, 1998). Secondly, corner
detection appears to provide an important instance of where there is both a possible
practical and theoretical preference for using one of the longer-known edge detectors,
such as the Canny method. In spite of their shortcomings, several of which have been
unravelled since their invention, the ‘classical’ derivative-based edge detectors are not as
stringent with regard to the assumptions on corners.

In images whose orientation is a priori unknown, edges that are not parallel to either of the
image axes will be the rule rather than the exception. This suggests that beyond the goal
of finding candidate points which are likely to lie on an edge, estimation of local slopes at
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these points is of valuable assistance, notably in the process of obtaining contiguous fault
line stretches from a set of likely boundary points. Unless an edge candidate point is
actually a corner point, a locally-linear form of the edge may be justified. Such short line
segments, which in their entirety define an edge estimator, were called edgels in Nalwa
and Binford (1986).

In this thesis, the estimation of fault lines in both regression and density surfaces will be
studied. We start with a rough outline of the nature of each of these problems.

For regression surfaces, the explanatory data may be given as sites on a rectangular grid.
In computerised images, each design point naturally corresponds to a pixel of the image.
However, this regularity assumption is less appropriate in various other important appli-
cations. A case in point is the modelling of geostatistical data. For example, the locations
of sites where drill cores are taken on the ocean floor are often distributed in a highly
irregular fashion. Then it may often be plausible to assume that the design represents a
realisation of a (usually homogeneous) planar Poisson process. The favourable role of the
Poisson process in modelling design stems from its simplicity, and its compliance with
the invariance requirement from earlier.

The problem of estimating fault lines in density surfaces shares several aspects with
the regression problem. That the literature on the latter topic dates back longer can be
ascribed to the close links that exist between estimating a density surface as a whole, and
estimating only a fault line within it. Perhaps the most important estimation technique
that has been developed is the excess mass approach; see for example Hartigan (1987)
and Polonik (1995). We shall not discuss these approaches further as their methodology is
profoundly different from ours, and merely note that in using the excess mass approach,
a non-trivial problem is how to determine the right threshold which yields the fault
line estimate. It appears only superficially that problems involving support boundary

estimation can be treated as a special case, since the unavailability of data on one side of
the boundary introduces profoundly different aspects. In this thesis, support boundary
estimation will not be considered.

In this and the subsequent paragraphs, we make precise the notion of consistency of
the statistical estimation methods to be developed. Depending on whether a regres-
sion or a density surface is being considered, the sample data are denoted by either
{(X(1)

i , X
(2)
i , Yi) = (Xi, Yi)} ⊂ R

3 or {Xi} ⊂ R
2, where the indices i are taken from some

at most countable index set I. The observation area may naturally be taken as a square
if X ≡ {Xi}, the point process representing the sites of the observations, coincides with
a grid, but in principle any compact set can function in this role. This set will always be
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denoted by Π, and we shall assume throughout that 0 < ‖Π‖ < ∞. We further stipulate
that our point processes are locally finite, and hence card(I) < ∞ a.s. (This assumption
is automatically satisfied for Poisson processes with intensity functions that are bounded
away from infinity.) In the regression case, the underlying model will always take the
following form:

Yi = g
(
X

(1)
i , X

(2)
i

)
+ εi , (1.2.3)

where g(x) = E(Y | X = x) is assumed to be smooth except for the fault line C running
through it, and conditional on the point process X , the errors εi are independent with
mean zero and finite variance σ2 > 0. It is also assumed that all moments of εi exist
(even an exponential moment in Chapters 2 and 3). There seems to be a broadly-shared
view that even the assumption of uniform boundedness of the errors εi, that is when
there exists a constant M > 0 such that |εi| ≤ M , is “quite natural in the context of
image analysis” (Gayraud and Tsybakov, 2002, p. 71). This is indeed true for so-called
salt-and-pepper noise, which occurs when a certain rough proportion of pixels is set to the
minimum or maximum value of attainable pixel values. In the case of eight-bit-coding,
for example, these values range from 0 to 255.

The assumption that σ is known will be maintained throughout Chapters 2–4 of this
thesis, with a single exception made in Remark 4.7. However, it is pertinent to notice
that σ “can be known or estimated with sufficient precision, by using the values [. . .]
in a ‘background’ region of the image, when it is present” (Godtliebsen and Sebastiani,
1994, p. 460). A similar remark applies to the noise statistics that are used for the radar
imagery in Chapter 6, where correlations in the signal as well as in the ‘noise’ (defined
there in somewhat loose and not purely probabilistic terms) play an important role.

Unless otherwise stated, we ask that C be a contiguous and rectifiable curve. Contiguity
means that the set of points on C can be represented in a parametric form, say

C =
{
x(t) =

(
x(1)(t), x(2)(t)

)
: 0 ≤ t ≤ T

}
, T ∈ R

∗
+,

where the x(i)(t) are continuous functions for i = 1, 2. This assumption mainly serves to
ensure that estimators defined by a ‘tracking’ algorithm (to be introduced in Chapter 2)
trace out C in its entirety, and therefore the extension to multiple fault lines, as long
as their number is known in advance, is at least in principle (albeit not necessarily in
practice) straightforward. Rectifiability means that for every 0 = t0 < t1 < . . . < tk = T ,
the elementarily defined length of the inscribed polygon with vertices x(ti) is uniformly
bounded, the (finite) least upper bound then being equal to the length of C. We require
the existence of two bounded derivatives of a parametrisation of C as at (1.2), which in



CHAPTER 1. INTRODUCTION 18

particular implies that C is rectifiable. A single exception from this assumption is made
in Remark 2.9. It is also required that C not be self-intersecting. However, the case that
C is closed is always permitted; the different assumption made in the theoretical analysis
of Section 2.3 (see p. 33) is only made for ease of exposition.

Before we describe the sequence of models at (1.2.3) for both the regression and density
cases, we point out that (1.2.3) can naturally be transferred to higher dimensions. Red-
Green-Blue, or RGB images consist of three superimposed images corresponding to the
primary colours, which may substantially differ, and not reveal the edges in each of the
components. In the analysis of multi-band data in signal processing, the number of
components, say d, may be even larger than three. Model (1.2.3) is then modified to

Y
(k)
i = gk

(
X

(1)
i , X

(2)
i

)
+ ε

(k)
i , k = 1, . . . , d , (1.2.4)

where gk represents the true regression surface in the k th coordinate, in applied contexts
often called band. In many applications it may be perfectly acceptable to analyse the data
band by band, directly using the proposals of this thesis. Alternatively, if correlations in
the errors are deemed to be of enough importance, one could use a k-variate Gaussian
model for the vectors εi = (ε(1)

i , . . . , ε
(k)
i ) in (1.2.4). This leads to a weighting of key

formulae such as (2.2.2) with the inverse of the error covariance matrix. The sparseness
difficulties that are already associated with the case d = 1, evidenced by the numerical
studies presented in Chapter 5, are then of course aggravated. Moreover, a graphical
analysis is also rendered much more difficult. In this thesis, we shall limit ourselves to
the univariate case of equation (1.2.3).

As card(I) < ∞ with probability 1, the design is not dense, and thus exact inference
on the location of the fault or boundary line is principally impossible. The customary
statistical approach of this problem is to derive asymptotic inference results as card(I) →
∞ (Cressie, 1993, p. 350).

As pointed out by Cressie (1993), there are two basic ways in which the sample size
card(I) could tend to infinity:

(a) Ergodic Limit: Expansion of the explanatory area Π such that ‖Π‖ → ∞, thus
allowing more observations to be taken.

(b) Infill Asymptotic Limit: Addition of observations at locations between the existing
ones.

Both the regression and the density fault line problems addressed in this thesis are
naturally considered in the context of the infill asymptotic.
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The following assumptions will be made on the point process X = Xn of design points.

1. In the regression surface case, the set I = In which enumerates the design points is
indexed by the parameter n → ∞, which equals the intensity of the homogeneous
Poisson process on Π. If the design is assumed to coincide with a non-random shift
of a regular grid, the parameter n will be defined such that the edge width of the
mesh is n−1/2. Then the design process may be written as X = G ∩ Π where

G = x0 ⊕
{(

j√
n

,
k√
n

)
, j, k = . . . ,−1, 0, 1, . . .

}
, (1.2.5)

with x0 a fixed point. Note that in this case, the total sample size is deterministic
and asymptotically equal to n‖Π‖.

2. In the density surface case, the index n in the notation In denotes total sample
size. It is again assumed that n → ∞. For intensity surfaces, however, we relax
this assumption so that we only ask for the existence of a positive sequence {cn}
with cn → ∞, and that the (random) effective sample size, Nn = card{Xn ∩ Π}
satisfies Nn/cn →P Z, where Z > 0 almost surely.

The Poisson cluster process from the last paragraph of Section 1.1 is an example of an
intensity surface that can be treated by our methods. Note that the formulation in
the regression surface case does not require that n ∈ N, although that would typically
be the case in image analysis applications (there, in fact, n1/2 ∈ N). If Xn represents a
Poisson process, the increase of the parameter n could represent a sequence of observation
stages, say n = nk → ∞ as k → ∞. At the k th stage, the observations (Xk,i, Yk,i) are
incorporated, where the Xk,is come from a Poisson process of intensity nk+1 − nk > 0
which is independent of the previous stages. The combined data are then used for
inference.

This thesis is organised as follows. Chapter 2 introduces a tracking estimator for a fault
line in a regression surface, which works directly on the raw data. In Chapter 3, we
propose a class of likelihood-based estimators for boundary curves. These estimators are
shown to be capable of dealing with curve estimation problems in the other contexts
that have been mentioned, and also of allowing for the construction of pointwise and
simultaneous confidence bands. Most of Chapter 4 is devoted to the latter topic. Issues
concerning the numerical performance of the edge estimators are studied in Chapter 5. In
Chapter 6, we change the focus to demonstrate the use of the Karhunen-Loève expansion
in the discrimination of a dataset of radar imagery. An exposition of the theory pertaining
to our own contributions from Chapter 2-4 is given in the Appendix.
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1.3 Literature Review

In the introduction we have already pointed to the close connections between the detec-
tion of edges in pixeled images, and the estimation of fault lines in regression surfaces
(for which we retained the term ‘edges’). The need to appreciate the distinctions that
arise in the course of different interpretations of an edge was also noted. For this reason
alone, it is not possible to make a fair comparison of various methods for edge estimation.
In view of the plethora of such methods, our exposition below can hardly give more than
a flavour of a few salient approaches from the areas which relate most directly to this
thesis. We also want to convey the basic philosophy that underlies various edge detectors
or estimators, and hence some elements of image processing will also be recapitulated.
This will be expedient in later chapters, especially Chapter 5.

Direct methods for edge detection generally follow the same basic scheme. First, some
derived image called the edge map (see Jain, 1989) is calculated. The pixel values in
this image correspond to what is often called the jump detection criterion (JDC) for the
corresponding pixel in the original image: the larger the absolute value of the JDC, the
stronger the evidence for the edge passing through that point (as before, this is to be
interpreted modulo the discretisation that comes from finite sampling). In the second
step, a thresholding procedure is applied to the edge map pixels in order to decide which
of these belong to an edge. However, in a post-processing stage of the edge extraction
process, edges that are identified as insignificant may be deleted later. In advance of more
detailed comments shortly, we point out that in many practical situations, this threshold
may be selected by eye, or from previous experience with similar data. This can be an
entirely satisfactory solution, but in the vast majority of cases it underlines the problem
that the theory that supports most existing edge estimators is limited. On the other
hand, theoretical justifications can “help understand . . . [the] strengths and limitations
[of edge detectors] so that they can be further improved” (Qiu, 2002b). Consequently,
a well-developed theory also helps to alleviate the problem of choosing an appropriate
edge detector in a new situation.

The archetype of edge detectors is based on the convolution of an image with a filter of
fixed size, which in this context is typically a 3 × 3 matrix called a mask. Considering
the noise-free case for the moment, the numerical gradient can be expected to behave
in a stable fashion in the smooth regions of the image surface, that is across so-called
texture. An example of a commonly-used filter for enhancement of whole images (not
just edges) is the median filter, and is especially suited to remove salt-and-pepper noise
(see the paragraph below (1.2.3)). For a definition of the median filter, see Jain (1989).
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In the neighbourhood of an edge, at least one of the first numerical derivatives should
reflect the singularity by being large in magnitude.

Methodologically simple edge detectors are based on an approximation of the gradient,
of which the Sobel detector is a prominent example. The jump detection procedure
proposed by Qiu (2002a) may be regarded as a substantial generalisation of the Sobel
edge detector, in that window sizes larger than 3× 3 are allowed, making the discretised
smoothing operator more sophisticated. At the same time, his procedure does not employ
the costly optimisation over the edge direction evinced by (1.3.1) below, and neither do
the procedures proposed in this thesis.

Employing second-order derivatives leads to more sophisticated but also more noise-
prone edge estimators. The (generalised) Laplacian edge detector (Jain, 1989), which is
sometimes also called the Marr-Hildreth edge detector, is the prominent example in this
category. An overview of mask-based edge detectors, along with some further discussion,
can be found in Jain (1989). They are implemented in various software packages, such as
the Image Processing Toolbox of MATLAB�. Even in the presence of mild noise, they
may perform poorly at edges which are not approximately horizontal or vertical within
the image. Such biases only become more pronounced when increasing the size of the
operator mask.

Within the group of derivative-based edge detectors, the more sophisticated ones are
those whose origins date back to the Canny algorithm (Canny, 1986). Its more solid
theoretical foundations, as compared to the simpler derivative-based edge detectors men-
tioned before, and overall reliable practical performance have secured Canny’s method
a place as a building block in many imaging problems. One of these problems is the
detection of corners, which will be discussed in Section 5.4.

An inherent weakness of the mask-based edge detectors, as indicated two paragraphs
earlier, is that they are mostly geared toward detecting edges in the horizontal and
vertical directions. In order to obtain an edge detector that can deal with sloped edges,
the computation of the JDC should involve a maximisation over possible (local) angles.
In other words, the estimation of fault line points and the estimation of the tangent

direction should be effected simultaneously, even though that tangent estimate could be
considered a nuisance parameter. In fact, tangents are highly useful in order to link
edges, identify outliers, and most importantly, to devise efficient algorithms. Nalwa and
Binford (1986) is one of the earliest papers to consider such a procedure. By least-
squares fitting within each local neighbourhood, they obtained a pilot estimate for the
edge tangent. This estimate is then refined through locally fitting a cubic spline. Within
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a small region, the judgement for an edge was based on the fit of a univariate surface
defined by the hyperbolic tangent function as the local model. They defined a univariate
surface to be a surface that was constant along each line parallel to the pilot estimate of
the normal direction. An analysis was conducted on coarsely sampled images (128 × 128
and 256 × 256) to support the claim that the estimator is capable of good performance.
The attempt of these authors to obtain contiguous edge estimates is also an early example
of the ‘curve view’ of edges. Among the drawbacks of their procedure was the number
of successive fits required to obtain a satisfactory result; secondly, the plausible but
arguable assertion that the hyperbolic tangent function provides a viable local model for
edges encountered in practical applications; and thirdly, the tendency of the method to
break up edges in places of high curvature.

As Nalwa and Binford (1986) pointed out (p. 707), their statistical analysis of localisation
error relies on idealised assumptions on the edge, notably that the noise is Gaussian.
At the time of their publication, the development of practical efficiency measures on a
theoretical foundation, and for a more inclusive class of images, had not yet penetrated
the statistical literature. Korostelev (1991) and Korostelev and Tsybakov (1993, 1994)
studied the minimax criterion which, although predominantly qualitative rather than
quantitative, has proved very useful to assess the performance of edge detectors. Based
on minimax theory, several authors have derived convergence rates for diverse spatial
problems such as fault line estimation, and also for analogous problems for subsets of
the real line R, which are referred to as change-point estimation. The approaches that
are developed in Chapters 2–4 of this thesis are practical and ‘nearly’ achieve the known
minimax-optimal rates. As described there, a change-point detection might be used at the
outset of the procedure. A wide range of methods for this purpose, including some papers
on edge detection, is discussed in papers in the conference proceedings edited by Carlstein,
Müller and Siegmund (1994); see especially Eubank and Speckman (pp. 130–144 loc.cit.).
Work of Khmaladze, Mnatsakanov and Toronjadze (2002) should also be mentioned in
this context. These authors developed a unifying approach to obtain minimax-optimal
rates for change-point problems, as well as black-or-white image problems posed in R

d,
for general d ∈ N.

With the advent of higher computing power, edge detection algorithms could be con-
sidered which include the angle fitting as a parameter in the true surface model, rather
than through some pilot procedure. Qiu (1997) defined the rotational difference kernel

estimator (RDKE). Its definition resembles that of our own estimators in important re-
spects, see for example formulae (2.2.2) and (2.4.2) in Chapter 2. The corresponding
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jump detection criterion is given by

JDCRDKE(θ, x(1), x(2)) =
1

n hn pn

n∑
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,
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i − x(2)

pn

)]
, (1.3.1)

where Ki(θ, x) is the version of the kernel Ki(x) rotated by angle θ (for i = 1, 2), the
support sets of K1 and K2 equal [−1/2, 1/2]× [0, 1] and [−1/2, 1/2]× [−1, 0] respectively,
and hn, pn are bandwidths. Qiu (1997) assumed that the design points {Xi} were gridded,
but the estimator could evidently be applied to Poisson-distributed data as well. Special
features of the case where the design variables are on a regular lattice have been addressed
by Hall and Raimondo (1997a, 1997b, 1998).

The distinction observed earlier between the goals of edge detection and surface estima-
tion also draws a line between the parts of the literature that are devoted to either of
these two topics. However, edge estimation was made explicit in some important papers
on surface estimation, including the multistage methods of Müller and Song (1994), Qiu
and Yandell (1997), Qiu (1998) and Wang (1998). By taking the edge curve explicitly into
account, the performance of a kernel smoothed estimate of the regression surface may be
improved. Müller (1992) carried out this programme in the context of a one-dimensional
change-point problem.

The performance of boundary curve estimation procedures may plausibly be measured by
means of (pointwise or simultaneous) confidence envelopes or bands. These bands are a
random set whose shape is solely determined by the available data, and which covers the
true frontier or boundary curve with a given high probability. The bootstrap has proved
to be a viable tool for constructing confidence bands; see for example Hall and Owen
(1993). For the problem of support boundary estimation, Hall, Park and Stern (1998)
and Gijbels, Mammen, Park and Simar (1999) have used arguments with a stronger
geometrical flavour, similar to those used in this thesis. In more recent years, due to
the interest from the application area of econometrics, numerous other papers have dealt
with estimation of support boundaries of point-process intensities or probability densities
(e.g. Deprins, Simar and Tulkens, 1984, Carlstein and Krishnamoorthy, 1992, appearing
in Carlstein, Müller and Siegmund, 1994, Seiford, 1996, Park, Sickles and Simar, 1998,
Kneip, Park and Simar, 1998 and Simar and Wilson, 1998).

However, in the context of fault line estimation and density estimation, which is the
main focus of this thesis, there seems to be a scarcity of estimators which are both
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widely applicable, and for which limit results beyond mere consistency have been derived.
The approaches that have emerged can be grouped into being either local or global in
nature. O’Sullivan and Qian (1994) considered the problem of estimating a simple closed
curve. As pointed out in the Appendix (see Section A.8), this has the advantage that
the estimation problem can be rephrased as pertaining to a connected closed set. The
authors define a contrast statistic, and derive the edge estimator through a non-linear
optimisation over a function space of boundaries, regularised by using penalty constraints.
Our definition of the target function (i.e., the (log-)likelihood; see equation (3.2.1) in
Section 3.2) employs a local version of a contrast statistic. The approach was shown
to perform well for the set of images considered in that paper, but as the authors note,
the need for judicious choice of a starting point for the optimisation requires “some
heuristics” (O’Sullivan and Qian, 1994, p. 565).

Müller and Song (1994) also investigated fault line estimation using set-indexed esti-
mators, and showed that a scaled stochastic process induced by the partitions of the
image they consider, converges to a set-indexed Brownian motion with linear drift. A
more explicit locally-parametric view was adopted in the preceding study by Rudemo
and Stryhn (1994). These authors used techniques that are somewhat similar to ours
to derive limit distributions for likelihood-band estimators of regression fault lines. Not
surprisingly, these limit distributions are likewise related to the Gaussian measures that
will be derived here. To illuminate some of the ideas and problems at hand, we now
present a brief outline of their model and results.

Rudemo and Stryhn (1994) considered fault line estimation in two related regression
models, namely what they called the upper-lower region model with column estima-

tors and the starshaped region model with sector estimators. Both of these models are
amenable to the application of results from change-point analysis, by virtue of an ap-
propriate parametrisation of the edge, and hence we only recapitulate the upper-lower
region model. There it is assumed that Π = I2 = [0, 1]× [0, 1], and that the set of design
points is of pixel form, which is conveniently double-indexed here as

S = {Xjk} =

{(
j − 1

2

m
,
k − 1

2

n

)
, j = 1, . . . , m , k = 1, . . . , n

}
,

where m, n ∈ N. The square I2 is divided into two connected regions R+ and R− by
a continuous path C ⊂ I2 without double points. The observations Yjk on both sides
of C (combined) are independent, and distributed with probability densities ϕ+ and
ϕ− depending on whether the corresponding grid site Xjk falls below or above C (for
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definiteness, let C ⊂ R+). In a similar fashion to (1.2.2), the true curve is represented by

Cg = graph(g) = {(x(1), x(2)) ∈ I2 : x(2) = g(x(1)), 0 ≤ x(1) ≤ 1} , (1.3.2)

where g : [0, 1] → (0, 1) has at most finitely many discontinuity points, at which the
left- and right-hand limits are assumed to exist. There is a one-to-one correspondence
between C and Cg which is established by joining the limits at the discontinuity points
of g by straight vertical lines. If the unit interval [0, 1] is divided into κ ≤ m bins of
length 1/κ, then for a parameter vector θ = (θ1, . . . , θκ) ∈ R

κ, the piecewise constant
regressogram estimator ĝ is defined by

ĝ(x|θ) =
κ∑

k=1

θk I

{
k − 1

κ
≤ x <

k

κ

}
, 0 ≤ x ≤ 1 . (1.3.3)

The parameter vector θ =
(
θ1, . . . , θκ

)
is chosen as a maximiser of the log-likelihood �(·),

which is
�(θ) =

∑
Xjk∈R+(θ)∩S

log ϕ+(Yjk) +
∑

Xjk∈R−(θ)∩S

log ϕ−(Yjk) , (1.3.4)

where R±(θ) corresponds to R± in the same way as described above for C and Cf . The
estimator ĝ is called the column estimator; notice that ĝ ∈ D[0, 1], the Skorokhod space
of right-continuous functions on [0, 1] with left-hand limits. If n, m, κ → ∞ in such a
manner that κ exp(−εnm/κ) → 0 for any ε > 0, then the estimator ĝ is consistent for g

in the Skohorod metric, or the supremum metric if g ∈ C[0, 1], the space of continuous
functions on [0, 1] (Stryhn, 1993, cited in Rudemo and Stryhn, 1994).

The main result of Rudemo and Stryhn (1994) on the boundary estimator in the upper-
lower region model is as follows. Assume that ϕ+(·) = p(· ; ψ0) and ϕ−(·) = p(· ; ψ0 +∆),
where {p(· ; ψ), ψ ∈ Ψ} is a family of probability densities indexed by the parameter
vectors taken from Ψ ⊂ R

d, for some d ∈ N. Assume further that I0 = I(ψ0), the Fisher
information matrix of the model evaluated at ψ0, is positive definite. Let m, n, κ → ∞
and ∆′∆ → 0 in such a manner that

n/m → c ∈ (0,∞) , m/κ ≡ a an integer, or m/κ → ∞ ,

(mn/κ)∆′I0∆ → ∞ , (m/κ)∆′I0∆ → 0 ,

(mn/κ2)∆′I0∆ → β ∈ [0,∞) .

(The condition ∆′∆ → 0, that is the contraction of the jump height, is reviewed in
the context of our own methods in Remark 2.6.) Let the column-wise likelihood �(θk),
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k = 1, . . . , κ, be defined by summing in (1.3.4) only over those Xjks which, in addition
to the conditions under the summation signs there, are such that their first coordinate
lies in the set appearing in the indicator of (1.3.3). Under moment assumptions on
the log-likelihood ratio of a change-point problem which serves as an approximant of
�(θk), Rudemo and Stryhn (1994) proved that if g is continuously differentiable in an
η-neighbourhood of a given point x ∈ (0, 1), for a fixed η > 0, then

(mn/κ)∆′I0∆{ĝ(x) − γ(xk)} =⇒ Fpatr ,

where xk = (〈κx〉 + 1/2) /κ, and Fpatr is the distribution of the location of the maxi-
mum of a two-sided Brownian motion with parabolic-triangular drift. (Thus, the sub-
script ‘patr’ in Fpatr refers to the nature of the drift.) We shall not display the distri-
bution Fpatr here. Distributions defined through Gaussian processes of a similar (albeit
more complicated) nature will be studied, in preparation for our own results, in Sub-
section A.4.2. Rudemo and Stryhn (1994) do point out (Remark 4 loc cit.) that their
regressogram binning may be replaced by kernel smoothing, in which case the above
asymptotic result simplifies. In view of the remarks on aliasing from the introduction,
the use of genuine smoothing methods (rather than binning) seems more efficient.

Although the column estimator (and likewise the estimator for the case of boundaries of
star-shaped objects) is fairly easy to construct, and has the additional appeal of directly
relating to one-dimensional change-point problems, it suffers from further drawbacks, of
which the most important are:

� The approach requires a gridded design, like the ones mentioned previously. How-
ever, it seems that the theory may be extended to Poisson design, at the expense
of a longer proof. Change-point problems with an irregular (random) design have
not received the attention of problems with a regular design. Issues involving the
loss of a natural system of axes would also have to be addressed.

� If the fault line doubles back towards itself, so that a representation with Cg as
at (1.3.2) is not available by any rotation of the graph, it is necessary to treat the
estimation problem in parts. However, due to limited design density, it might be
infeasible to extract the fragments successfully.

In principle, the results of Rudemo and Stryhn (1994) enable the construction of asymp-

totic confidence bands for a fault line, a topic treated extensively in Chapter 4 of this
thesis. The interest in the application of confidence bands to more general image models
has motivated the research for the results presented in this thesis.
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There are also intimate links of the topics of Chapter 4 of this thesis to the problem
studied by Gayraud and Tsybakov (2002) who considered the test of the hypothesis that
the true fault lines belongs to a parametric class, with a non-parametric alternative. Due
to the equivalence of this problem with the construction of confidence sets, a link to the
work presented here may be drawn, in the special case of a gridded design, as pointed
out in Remark 4.4. In Gayraud and Tsybakov (2002), the null family of distributions
was required to comprise only edges with a form of ‘near’ Lipschitz smoothness, or
alternatively that their Vapnik-Červonenkis dimension (see Van der Vaart and Wellner,
1996, pp. 85–86 for a definition) be bounded. This seems a rather high price to pay
for the greater generality of their other conditions, as compared to those in this thesis,
which are formulated in terms of smoothness properties. When used to estimate fault
lines with bounded curvature, the methods of this thesis achieve optimal convergence
rates to within logarithmic factors. This is even so in settings that are far more general
than the locally-linear models (see e.g. formulae (2.2.1) and (2.2.2)) allow. The principle
of combining the flexibility of nonparametric, that is qualitative, specification of the
estimator with the methodological and computational advantages of locally parametric
models has appeared in numerous papers before, for example the approaches to locally
parametric density estimation discussed by Hjort (1994), Copas (1995), Hjort and Jones
(1996), Loader (1996) and Simonoff (1996, pp. 64ff). Generic properties of smoothing
methods such as those in this thesis were studied by Titterington (1985a, 1985b).

As noted earlier, the use of the Karhunen-Loève transform in the context of dimension
reduction for pattern recognition and statistical classification stems from its optimality
properties with regard to mean-square error, and the mildness of the assumptions on
the probability structure of the problem as a whole. Like the Fourier and wavelet trans-
forms, the Karhunen-Loève transform has both a discrete and continuous version. For
the definitions of the two versions, we refer to Mendel and Fu (1970). The continuous
version is also discussed in Subsections A.5.1 and A.5.3 of this thesis. The connection
between the two forms of the Karhunen-Loève expansion can be drawn fairly straightfor-
wardly. Methods for treating multivariate data that can be treated as samples from an
intrinsically continuously-indexed stochastic process are nowadays often put under the
heading of functional data analysis (FDA) in the sense of Ramsay and Silverman (1997).
That monograph is an excellent source for methodologies of FDA, and contains many
references to earlier work in the same direction, such as Rice and Silverman (1991) and
Gasser and Kneip (1995). Further case studies for functional data analysis may be found
in Ramsay and Silverman (2002).

We now turn to aspects of the discrimination problem for dimension-reduced signal pro-
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cessing data that we shall tackle in Chapter 6. A precise formulation of the problem is
given in Definition 6.1 of Section 6.1. For introductory accounts on the topic see, for
example, Ahmed and Rao (1975), Lachenbruch (1975), and Mardia, Kent and Bibby
(1979). In essence, our methodology does not differ much from the parametric variant of
an approach developed in Hall, Poskitt and Presnell (2001), from which most of the ma-
terial in the remaining paragraphs is taken. The dataset in the analysis of these authors
differs from ours in its linear (time-series) type.

From the point of view of decision theory, the most appealing classification method
operates by computing the likelihood of a new observation for each of L (seven in our
case) candidate types, and then assigns the new observation to the signal type with
the highest posterior probability. Strictly speaking this requires specification of prior
probabilities, ωl ≥ 0, l = 1, . . . , L, satisfying

∑
l ωl = 1 for the L different types. Given

density functions f(1), . . . , f(L) for the L different classes, the posterior probability that
an incoming signal x is of class l is then

p(l|x) =
ωlf(l)(x)∑L

j=1 ωjf(j)(x)
. (1.3.5)

In the analysis of Section 6.3 we shall take the prior probabilities to be uniform, i.e.,
ωl = 1/L, l = 1, . . . , L, so that a new observation is assigned to the signal type l for
which the likelihood, f(l)(x) is largest.

In practice we must use training data to estimate the class densities for a finite dimen-
sional representation of x, that is the pattern vector x(m) ∈ R

m in the discussion around
Figure 1.2. (The training and the test data in classification experiments are those whose
true class is known or unknown, respectively.) Thus the true class densities above, f(l)(x),
l = 1, . . . , L, are replaced by estimates f̂(l),m(x(m)). One approach, which was employed
in Hall, Poskitt and Presnell (2001), is to use kernel methods to estimate the densities
of the dimension-reduced training data. Given training data from different signals, they
computed the version f̂(l),m of f̂m for data from the lth type and classified a new datum
x as coming from signal type r if f̂(r),m(x(m)) > f̂(l),m(x(m)) for all l �= r. This is a fully
nonparametric approach that has several advantages, most importantly that it does not
require specification of a particular parametric form for the distribution. However, as
noted in Hall, Poskitt and Presnell (2001), the storage and especially the computational
burden of the kernel approach is a serious drawback, which in fact makes it not nearly
fast enough to perform on-line classification of the dataset considered in this thesis, with
the present state of technology.

To ameliorate these problems, in the analysis of Section 6.3 we fit an m-variate Gaussian
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density N(µ, Σ) to the features derived from the respective training samples. This results
in a procedure that is based on an application of the relatively conventional technique
of quadratic discriminant analysis (QDA), after functional data-analytic methods have
been used to reduce the dimension of the problem. Arguments for favouring QDA over
linear discriminant analysis in the context of the analysis of this thesis, where covari-
ances certainly differ between classes and a substantial deviation from normality is to be
expected, are given in Lachenbruch (1975). We note that the method of Hall, Poskitt
and Presnell (2001) of employing the Karhunen-Loève expansion, by the subtraction of
the overall (inter-class) mean of the data, dates back a long way, at least to Watanabe’s
“Selfic” method (see Kittler and Young, 1973).

Similarly to the conclusions in Hall, Poskitt and Presnell (2001), functional data-analytic
methods provide a basis {ψr}, in the notation of (A.5.2) in Subsection A.5.1, that better
reflects the functional properties of real signals, compared to dimension reduction based
on canonical variates for example. As we shall see in Subsection 6.3.4, and notwithstand-
ing the substantially greater difficulties with this classification problem as compared to
that studied in Hall, Poskitt and Presnell (2001), quadratic discrimination performs quite
well in the current context.



Chapter 2

Tracking of Fault Lines in

Regression Surfaces

2.1 Introduction

In the present chapter we introduce the prototype of the local kernel-based estimator
which will also be the object of study in Chapters 3 and 4. The emphasis in this chapter is
on the algorithmic aspect of the estimator. Specifically, it is designed to follow, or ‘track,’
a fault line once a starting point has been given to the algorithm. With high probability
this method produces an estimator which never strays far from the fault line.

There are two principal advantages in using a local, rather than global, approach to fault
line estimation. The first of these consists in an appreciable computational saving. As
pointed out in Section 1.3, many of the previous approaches, in order to distinguish the
smooth regions from those which contain the edge, examine the whole observation area.
(However, as we also noted, the main thrust of many of these papers is on surface recon-
struction, and because of this more ambitious goal it is then too simplistic to compare
the computational expense directly.) On the other hand, the procedure suggested in this
chapter involves the numerical minimisation of a function that can be computed at a
cost of only O(nh2), where n is the mean number of points per unit area, and h > 0 is
the kernel bandwidth. Another advantage consists in the better adaptability of our local
method to possible erratic behaviour of the fault line. For the purpose of estimating a
single fault line, which is our stipulation, this means that as long as the kernel bandwidth
is sufficiently small (less than the reciprocal of curvature, assuming that this is admissible
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under the conditions formulated in Section 2.3), the method can cope with any smooth
but arbitrarily meandering fault line. This advantage becomes more prominent in the
practically especially relevant situation of multiple or terminating fault lines, or fault
lines that split at certain points to form an edge graph. See Remark 2.9 in Section 2.3.

The salient theoretical result presented in this chapter is the derivation of near minimax-
optimality of the estimator, ‘near’ meaning that the rates are worse than the optimal
rates by a factor that can be made as small as O

{
(log n)2

}
. By Theorem A.8, the

minimax-optimal rate in the case of Poisson-distributed points, when there is no noise
and the fault line has bounded curvature, is equal to O(n−2/3), with a logarithmic factor
in the case of uniform rates. As we have noted in the conclusion of Section A.8, the
estimators constructed in the proof are not really practical, for a variety of reasons.

Section 2.2 describes our tracking method. Theoretical properties are presented in Sec-
tion 2.3, with technical arguments deferred to Section 2.4. The discussion of numerical
aspects will be postponed to Chapter 5, after other variants of the estimator have been
introduced.

2.2 Methodology

Throughout the sequel, we assume that the general assumptions of Section 1.2 (see
pp. 16ff) are satisfied. Suppose the locus of points on C is determined by the func-
tions (x(1)(s), x(2)(s)), where s denotes the distance along C from a point Q at one end of
the curve; and assume that x(1)(·) and x(2)(·) are smooth. No matter whether C is open
or closed we can distinguish left- and right-hand sides of C, with parity determined by
tracing C in the direction of increasing s. By convention, neither the left nor the right
side of C includes any part of C itself. We employ these data generated from realisations
of the model at (1.2.3) to construct a tracking estimator Ĉ of C, as follows.

Assume we have a starting point x̂0 = Q̂ and a starting estimate θ̂ of the orientation of
the curve at Q̂. It may be supposed that all potential estimates of points on C are confined
to a square grid G, and likewise that estimates of the orientation of C are restricted to
a discrete grid G′. (If the process of points Xi was on a lattice then generally G would
be much finer than this. The lattices G,G′ function as sieves in the interpretation of our
definition at (2.2.2) below as that of a sieved M-estimator; see Van der Vaart and Wellner,
1996, p. 321.) Suppose we have constructed Ĉ as far as a point x̂j (j ∈ N0), where our
estimate of the tangent to C, in the direction of travel along C, is a unit vector θ̂j . We
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show how to construct the next point x̂j+1 with tangent estimate in the direction of
another unit vector, θ̂j+1.

Let U(x̂j+1, θj+1) denote the line through x̂j+1 in the direction of the unit vector θj+1.
Locally at x̂j , the model uses the approximating function G, defined by

G(x|y, θ, a, b) =

a , (y − x) · θ⊥ ≥ 0

b , otherwise.
(2.2.1)

For a bandwidth h > 0 and a smooth, radially symmetric bivariate probability density
K whose support is the unit disc, choose (x, θ) = (x̂j+1, θ̂j+1) to minimise

S(x, θ) = inf
c1,c2∈R

∑
i

{Yi − G(Xi|x, θ, c1, c2)}2 K
{
(x̂j − Xi)/h

}
, (2.2.2)

among those four or five of the eight grid neighbours x of x̂j which are such that the unit
vector in the direction of the line from x̂j to x has a nonnegative dot product with ω. In
order to exclude maximisers that could let the estimator stray off the curve C, the search
for θ is restricted to those θ ∈ G′ which satisfy the following

Search Cone Condition: For some τ > 0, the angle θ ∈ G′ satisfies h2 ≤ | arg(θ) −
arg(θprev)| ≤ (1 − τ)h, where θprev denotes the maximiser from the previous step.

Remark 2.1. Noise variance estimation. To estimate σ2 one may take the variance
of residuals corresponding to design points Xi that are near to Ĉ, denoted δ±i in equa-
tions (2.4.1). This simple approach requires few extra computations, but its finite-sample
performance is negatively affected by inherent bias especially in high-curvature parts of C.
Better performance may be achieved by extending the sampling strip further along the
direction of an estimate of the normal at x ∈ C by an amount of size exactly O(hc), for
any c ∈ (1, 2).

Remark 2.2. Robustification. The least-squares criterion that is evinced by the form
of the M -estimator at (2.2.2) yields, as is well known, an efficient estimator only in
the case of Normally distributed errors. Ideas of robust M -estimation can expediently
be applied in case that outliers are present. The proof in Section 2.4 may be adapted
to accommodate outliers which comprise an asymptotically negligible fraction of the
Yi variables. For concepts of robust and efficient estimation, see Huber (1981) and
Rousseeuw and Leroy (1987). Some aspects of robust estimation which especially pertain
to computer vision can be found in Besl, Birch and Watson (1989) and Xu and Zhang
(1996, pp. 93ff). We refer to the latter source for a more comprehensive account of the
condensed discussion to follow. In order to estimate the scale parameter which enters
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the ‘ψ function,’ and similar to Remark 2.1, the bias that arises when using local data
can be reduced by giving less or no weight to data that is close to the currently-estimated
segment of C, defined by the current point x and the angle θ. The scale parameter is
commonly estimated using the median absolute deviation (MAD) (see Rousseuw and
Leroy, 1987, p. 45):

MAD
(
{Z1, . . . , Zm}

)
= median

i

{
|Zi − median

j
Zj

∣∣} , (2.2.3)

for {Z1, . . . , Zm} a sample of independent r.v.s. The scale parameter is estimated as the
ratio MAD/0.6475. Here the factor 1/0.6745 = 1.4826 is a calibration, making the scale
estimator consistent for the standard deviation in the case where the Zis are Normally
distributed. It is pertinent to notice that with the presence of a more substantial number
of outliers, identifiability problems arise. Our theory does not cover the case where the
suspected source of the outliers is incorrect and instead the tails of the error distribution
are heavy.

Our results and their proofs may be generalised to the case of arbitrarily fine grids G,G′,
and even to the continuum. A rather theoretical definition of the estimator, in terms
of infinitesimal quantities, that applies in the continuum is given in the paragraph con-
taining (3.2.5). The method discussed theoretically in Section 2.4 is simplified so that
technical arguments are relatively transparent, and so that the number of steps needed to
traverse the curve is reasonably small without hindering accuracy. Therefore it is applied
to relatively coarse grids G,G′; finer grids produce methods that are closer to being truly
rotationally invariant.

2.3 Theoretical Properties

We assume that C is traced out within a compact rectangle, with its ends at points QL

and QR on the left- and right-hand sides of R, respectively; and that these sides have
no other point with C in common. (Thus, Π =

[
Q

(1)
L , Q

(1)
R

]
× R.) In conjunction with

condition (2.3.3) below, this assumption effectively requires that the fault line continue
beyond the confines of Π, although we are only interested in estimating it within Π.
Even if this is not the case, and in analogy to local linear techniques for curve estimation
(e.g. Fan, 1993), our method of approximation is not significantly affected by the presence
of edge effects. Let Q denote the first point on C that is distant h from the left-hand side
of Π. We start tracing our estimator Ĉ at a point Q̂ distant h from the left-hand side
of Π, representing an approximation to Q, and stop as soon as we get within h of the
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other side of Π. Methods for calculating both Q̂ and a starting orientation are given in
Remark 2.8.

The estimator is the piecewise-linear curve defined by joining successive estimates of
points on the curve. The candidate points x and candidate unit vectors θ are required
to satisfy the regularity conditions

sup
x∈G

inf
x′∈G
x′ 	=x

‖x − x′‖ = O(h2) , sup
θ∈G′

inf
θ′∈G′
θ′ 	=θ

| arg(θ′) − arg(θ)| = O(h) . (2.3.1)

Since the algorithm moves from one grid point in G to its immediate neighbour, this
means that

‖ball
(
x̂j+1, h

)
∩ ball

(
x̂j , h

)
‖

π h2
→ 1 as h = h(n) → 0 . (2.3.2)

Formula (3.2.4) for the content of the intersection lens is relevant in the present context
as well. It should be noted that in the natural case where the grid G is a regular lattice,
the argument to be used in (3.2.4) should be the one corresponding to the points in the
corners, at angles ±π/4 and ±3π/4.

Next we specify conditions (Crs) on the response surface. Let a general point P on the
fault line C be represented by (x(1)(s), x(2)(s)), for 0 ≤ s ≤ �, where � < ∞, QL and QR

are represented by (x(1)(0), x(2)(0)) and (x(1)(�), x(2)(�)) respectively, and s denotes the
distance of P along C from QL. As in the general assumptions of Section 1.2, assume also
that the first two derivatives of x(1)(·) and x(2)(·) are uniformly bounded on [0, �]. We
assume too that g and each of its first derivatives is uniformly bounded in the intersection
ΠL of Π with the left-hand side of C, and also in the intersection ΠR of Π with the right-
hand side; and that if, for x ∈ C, we define

gL(x) = lim
x′→x
x′∈ΠL

g(x′) , gR(x) = lim
x′→x
x′∈ΠR

g(x′) ,

then
dmin ≡ inf

x∈C
|gL(x) − gR(x)| > 0 . (2.3.3)

Qiu (1998, 2002b) also considered fault lines containing points x0 such that gL(x0) =
gR(x0), while there exists h > 0 such that gL �= gR on

(
ball(x0, h) \ {x0}

)
∩ C. In the

cited papers these were termed (one category of) “singular points.” Remark 2.6 deals
with the behaviour of our estimator with regard to these singular points.

Further to the assumptions in Section 1.2, assume the errors εi have a distribution that has
finite moment generating function in the neighbourhood of the origin; call this condition
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(Cerr). Suppose K is a circularly symmetric nonnegative function supported on ball(0, 1),
not vanishing on ball(0, 1), and Lipschitz continuous on R

2. (In particular, it follows that
K is a kernel of order 2.) Call these conditions (Cker).

In agreement with the framework of Section 1.2, we assume that the point process {Xi}
is either homogeneous Poisson with intensity n, or is equal to a square lattice with n

points per unit area. For ease of reference, call this condition (Cpp). Of the bandwidth
h we assume the following condition, (Cbw): h = h(n) → 0 as n → ∞; in the Poisson
case, (log n)2/(nh3) → 0; and in the lattice case, 1/(nh4) → 0. (A logarithmic factor is
not required in the lattice case; see Subsection 2.4.1 for discussion.)

Theorem 2.1. Assume that conditions (Cbw), (Cerr), (Cker), (Cpp) and (Crs) are satis-
fied, that Q̂ is within C1h

2 of Q, and that the slope θ̂ is within C2h of the slope of C at Q

for some constants C1, C2 > 0. Then with probability 1, for some C3 > 0, Ĉ is contained
in the envelope of all points that lie within C3h

2 of C. Moreover, with probability 1 the
algorithm terminates after O(h−2) steps.

It should be noted that, as emerges in the conclusion of the proof of the above theorem
(see Section 2.4), the constants C1, C2 and C3 are independent of h (and hence n) if h is
sufficiently small, that size being determined by the geometry of C and the exact mesh
width of the grids G,G′.

Corollary 2.1. In the Poisson process and regular lattice cases, any convergence rate
that is slower than n−2/3(log n)4/3 or n−1/2, respectively, is achievable almost surely by
the estimator Ĉ.

Remark 2.3. Correcting for location. It is straightforward to state and prove a version
of Theorem 2.1 in which location is re-estimated at each infinitesimal step. There, after
moving an amount δ along the tangent we re-fit both location and orientation. The
main conclusion remains true — that is, the estimated curve lies within O(h2) of the
true curve, and in fact within o(h2) of a deterministic approximation, provided it starts
within O(h2) of the true curve. We will elaborate on this interpretation in the paragraph
below equation (2.4.10) (see p. 45). As illustrated in Figure 3.1 of Section 3.1, it is
essential to use location re-fitting in order to obtain a good estimate even for fault lines
with a simple geometry.

Remark 2.4. Proximity to optimal convergence rates in the deterministic case. That
the convergence rate O(n−2/3), modulo logarithmic factors, is optimal in the Poisson case
follows from Theorem A.8. Likewise, the rates at which the slope of C is approximated
by the value of θ, computed by least-squares as at (2.2.2), are anything slower than
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n−1/3(log n)2/3 or n−1/4, in the Poisson and lattice cases respectively. These are within at
most logarithmic factors of the best that are possible in a minimax sense. It is essentially
this property which guarantees that, as claimed in the theorem, the algorithm concludes
after O(h−2) steps, since it ensures that the direction in which we move when estimating
the curve by a sequence of points on an O(h2) grid is close to being the correct one —
that is, along the curve.

Remark 2.5. Oversmoothing. Condition (Cbw) is deliberately constructed so as to
produce enough oversmoothing to allow a relatively simple asymptotic description of Ĉ.
We may smooth a little less, producing a slightly faster convergence rate in the Poisson
case (although only by a logarithmic factor), at the expense of a more complex asymptotic
description of Ĉ and a longer proof. See also the similar comments in Remark 4.5. The
oversmoothing also serves to make edge effects less palpable.

Remark 2.6. Small jump height. There is at least an occasional interest in the liter-
ature (for example Rudemo and Stryhn, 1994) in the case where the jump height, and
particularly dmin, tends to zero as n → ∞. By considering the scale of the responses Yi,
it can be seen that this has the same effect as letting the error variance σ2 → ∞. Our
proof will show that as long as |gL(x0) − gR(x0)| is of order at least h3/2, the conclusion
of the theorem remains true. The reciprocal relationship between the jump height and
the noise variance to which we have alluded will become evident in the definition of the
signal-to-noise ratio SNR in (4.2.5), used in Theorem 4.2.

Remark 2.7. More general point processes. The theorem may be generalised to include
the cases where Pn is a Poisson cluster process or a jittered grid process. The latter were
discussed by Korostelev and Tsybakov (1993). In all these settings the conditions on the
bandwidth, and the conclusions of the theorem and the corollary, are the same as in the
Poisson process case. For Poisson and Poisson cluster processes (see the definition on
p. 4) the intensity need not be constant. It is sufficient that the process have intensity
n λ(x) at each point x ∈ R

2, where λ is kept fixed as n diverges, and is bounded away
from zero and has bounded first derivatives in Π.

Remark 2.8. Estimating the starting point and slope. Assume C cuts the x(2) axis A,
with equation x(1) = 0, at a point Q = (0, q(2)) where C is not tangential to the axis;
and that Q is unique within Π ∩ A. Suppose too that C has two bounded derivatives in
a neighbourhood of Q. Let h = h(n) denote a bandwidth sequence that satisfies (Cbw)
in the Poisson case — that is, (log n)2/(nh3) → 0. Below we describe, in the Poisson
case, a method for calculating an estimate Q̂ of Q which lies on A and, under the above
conditions, achieves O(h2) accuracy a.s. It involves employing a univariate change-point
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method to compute a pilot estimator Q̂1, with an error of order h(3/2)−ε for any given
ε > 0, and then refining this to Q̂ by using the least-squares criterion at (2.2.2) with x

there taken equal to the coordinates of Q̂1. In addition, the approach we describe below
provides a starting orientation which achieves O(h) accuracy with probability 1, so that
the estimators obtained by this procedure satisfy the assumptions of the theorem, almost
surely.

Let h1 = n−(1/2)+∆ where 0 < ∆ < 1
2 , and project vertically onto A all those points

Xi ∈ Pn within the band |X(1)
i | ≤ h1. This produces a linear point process {X∗

i } with
intensity 2nh1; if the original process {Xi} is Poisson then so is {X∗

i }. Now any standard
change-point estimator (see e.g. Müller, 1992; Eubank and Speckman, 1994; Gijbels, Hall
and Kneip, 1999) may be applied to the data {(X∗

i , Yi)}. Note that the latter process
can also be construed as the independently marked point process where the marks Yi are
distributed according to (location-dependent) laws Fi(·|t − q(2)) for i = 1, 2, say, with
the supports of F1 and F2 being at least dmin apart, for all parameter values t ∈ R. The
distribution of {Yi} is a mixture of the two distributions F1 and F2 with the weights p

and 1 − p (or vice versa) and

p =
h1 + min{h sin θ, h1}

2 h1
, (2.3.4)

with θ �= 0 denoting the inclination angle of C to the axis A. A suitable change-point
algorithm yields an estimator Q̂1 of Q, with coordinates (0, x̂(2)) say, subject to an error
of O{(nh1)−1+δ + h1} almost surely, for all δ > 0. In view of our choice of h1, this is
of order n−(1/2)+∆. Since h satisfies (Cbw) then the error equals O(h(3/2)−ε) for each
ε > 3∆. Note that up to this point, the procedure closely resembles the one suggested
by Rudemo and Stryhn (1994) for their regressogram estimator (see Section 1.3).

Choose ∆ ∈ (0, 1
6), or alternatively ε ∈ (0, 1

2), and substitute the coordinates (x(1), x(2)) =
(0, x̂(2)) of Q̂1 into the definition of S(x, θ) at (2.2.2). Choosing (x, θ) to minimise S

produces the coordinate pair of a point Q̂2 which, with probability 1, is within O(h2)
of Q, and a starting orientation θ which, a.s., is within O(h) of the slope of C at Q.
(Methods outlined in Subsection 2.4.2 may be used to derive these results.) Taking
Q̂ = (0, η) and θ̂ = θ, we obtain the desired starting point and starting orientation for
the algorithm.

It should be noted that performance deteriorates sharply if the angle θ in (2.3.4) is small.
Using a perpendicular direction or a family of dissecting lines, rather than only one, will
improve performance. The additional computational cost, however, suggests the use of
a conventional edge detection algorithm (see the references in Section 1.3). This may be



CHAPTER 2. TRACKING OF FAULT LINES IN REGRESSION SURFACES 38

either for the purpose of estimating a viable direction for the line search of the change
point algorithm, or (if theoretical concerns are not too prominent) by directly using the
maximum of the JDC, as defined in Section 5.4, over the sample space Π, as the starting
point. If multiple fault lines are anticipated to be present in Π then a modification of
these schemes can be devised in a straightforward manner.

Remark 2.9. Splitting and terminating fault lines. It should be mentioned that the lo-
cal estimator at (2.2.2) is constructed to be almost as simple as possible, commensurate
with good performance. More elaborate local likelihoods can give improved performance
in some settings. The approach can be adapted to situations where the true regression
surface exhibits a fault line with a jump in the first derivative (a corner point or “kink”).
There, the locally fitted surface would be constant on either side of a line through x that
had a kink at x, with the two segments of the line having their normals in respective
directions θ1 and θ2. In the same way that one determines jump discontinuities in the
derivative of a univariate function from threshold exceedences of the differences between
one-sided derivative estimates (e.g. Hall and Titterington, 1992), a kink may be deemed
present in the neighbourhood of x if the distance between estimated values of θ1 and θ2,
chosen to maximise the log-likelihood ratio subject to θ1 · θ2 ≥ 0, exceeds a threshold.
However, estimation of kinks will be difficult unless the density of design points is rel-
atively high, since kinks are high-order features (they relate to derivatives of the fault
line, rather than directly to the fault line itself), and so are particularly susceptible to
data sparseness problems associated with multivariate contexts. The simpler method
suggested earlier, if applied to fault lines with kinks, will estimate the fault line at the
same rate as before at all places that are not locations of kinks, and will consistently
estimate kinks.

Unlike the testing problem described in the previous paragraph, there is a considerably
lesser theoretical difficulty, but high practical relevance, associated with the case when the
surface model underlying (2.2.2) is generalised in a somewhat different direction. Hall,
Qiu and Rau (2002) consider the case where for a finite number of points x1, . . . , xp ∈ Π,
and for all θ ∈ [0, 2 π), the limits along the rays xi + R+(cos θ, sin θ), i = 1, . . . , p, exist
and comprise a set of ki < ∞ elements. If C is interpreted not as a single curve but as
a mathematical graph then the points xi can be termed knots of respective order ki. In
particular, a knot of order one is a point in whose neighbourhood the condition (2.3.3)
is violated. In the present case, the regression surface is locally approximated by the
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functions

Gk(y|x0, θ1, . . . , θk, c1, . . . , ck) =
k∑

i=1

ci I
{
θ(i) ≤ arg(y − x0) < θ(i+1)

}
for k ≥ 2, where (θi, ci) ∈ [0, 2π) × R for i = 1, . . . , k, θ(1) ≤ θ(2) . . . ≤ θ(k) is the order
statistic for (θ1, . . . , θk), and θ(k+1) ≡ θ(1) + 2π. Note that in particular G1(·|x0, c) ≡ c,
and that the function G appearing at (2.2.2) represents only a singleton in the class of
functions for G2, so that the problem of corner detection is rather complementary to the
present discussion. Corner detection will be addressed in Section 5.4. It is straightforward
to devise a variant of the knot tracking algorithm (with the additional numerical devices
to be discussed in Section 5.2) that accommodates knots. Hall, Qiu and Rau (2002)
showed that the estimator to which this algorithm gives rise is consistent for the true edge
graph, under relatively mild conditions (including those given for the special situation
of edges in Section 3.4). These conditions can often be assumed to be satisfied in image
processing applications.

Other constraints could also be accommodated in the surface model defined by Gk, such
as using response-surface slope. In combination with modelling curvature of C, and with
the bandwidth condition adjusted as in Remark 4.5 below, this yields a benefit in terms
of convergence rate of the estimator, which is again within a logarithmic factor of the
minimax-optimal rate n−4/5. However, the price that is to be paid in the number of
nuisance parameters (six rather than two) lessens the attractiveness of such a procedure,
given the sparseness difficulties which affect the estimator of the present chapter, and
even more so those to be constructed in Chapters 3 and 4. Especially if there is reason
to believe that the corner arises through the meeting of two straight lines, a more robust
low-level method such as cited in Remark 4.8 would usually be preferable for practical
purposes.

2.4 Proof of Theorem 2.1

In order to make the arguments more lucid, we first give an outline of the main ideas of
the proof in Subsection 2.4.1, before proceeding with the rigorous arguments in Subsec-
tion 2.4.2.
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2.4.1 Intuitive Outline of Proof

First we consider the Poisson case. Let ball(x, h) ⊂ Π be the disc representing the region
of support of the kernel function K{(x − ·)/h} appearing in formula (2.2.2), and with
the points Xi distributed through it. Recall that the line U = U(x, θ) represents the
boundary where the jump in the local linear model fitted at (2.2.2) occurs.

Suppose the part of C which lies within ball(x, h) is distant C1h
2, at its furthest point,

from that part of U that lies within the disc. (The symbols C1, C2 . . . here and below
denote positive constants.) Then within the disc there is a region, with area O(h3),
between the line U and the curve C. To see why the area is of this size, note that the
region can be approximated by a rectangle of which one side is of length C2h (the order
of the length of a diameter of the disc; the line U will not be far from being a diameter),
and the other is of length C3h

2 (the order of the distance between U and C).

The region can be thought of as representing errors arising from two sources: (a) ap-
proximating the curve C by a straight line in our local linear model, and (b) putting the
approximating line in the wrong position. When we fit the local linear model we can de-
tect errors of types (a) and (b) if the number of Poisson-distributed points falling within
the region is large enough. Since the region has area O(h3) then the number of points
there is O(nh3), and so we can detect the errors if h is chosen so that nh3 is sufficiently
large.

We can determine what is required by ‘sufficiently large’ by arguing as follows. For
small h, the response surface will be locally constant on either side of the jump, and we
can estimate the two constants to within op(1) by fitting the local linear model. Since
by (2.3.3), the jump is O(1) and not o(1) then we do not have to be very accurate when
estimating the constants. Now, the performance of the least-squares fit will deteriorate
noticeably as soon as the number of points in the region increases beyond roughly O(1),
because then the fitted constant there will either be the one for the high side of the jump
when it should be that for the low side, or vice versa. Taking account of the need to
control moderate deviations, it turns out that ‘roughly O(1)’ has to be interpreted as a
power of log n.

Hence, we conclude that nh3 should be no smaller than a certain power of log n; or
equivalently, that the diameter h of the original disc centred at x should be no smaller
than n−1/3, multiplied by a logarithmic factor. As the argument above suggests, if h is
chosen in this way then the least-squares fitting procedure proposed at (2.2.2) can detect
departures of up to O(h2) from the true curve. And, by its nature, having detected the
departure the least-squares procedure applies an appropriate correction. It is critical



CHAPTER 2. TRACKING OF FAULT LINES IN REGRESSION SURFACES 41

to this argument that we start the curve-tracking procedure at a point which is within
O(hc) of the true curve, for some c > 1. But once that is done, the fact that we can
detect each time the curve estimate wanders beyond C5h

2 away from the true curve (for
some C5 > 0), and correct for it, means that we can stay within the range O(h2) on all
subsequent steps.

Similarly it can be shown that, provided the grid of θ values contains at least O(h−1)
elements, the estimate of the slope of C which is given by the value of θ defined by
minimising S(x′, θ) at (2.2.2), is within O(h) of the true slope. (The O(h) and O(h2)
assertions here and above apply a.s., uniformly along the length of C.)

When points of Pn are distributed on a lattice, rather than randomly distributed, an extra
restriction is necessitated by the fact that regions which are narrower than a constant
multiple of n−1/2 (the distance between adjacent rows of points) might not receive any
points at all. In particular, in order for the region whose width is h2 to be guaranteed to
have enough points to sustain our earlier argument, it is necessary that h2 be an order
of magnitude larger than n−1/2. That is, in the case of lattice-distributed design points,
h must be an order of magnitude larger than n−1/4, as assumed in condition (Cbw).

2.4.2 Details of Proof

Let x be a point on the grid G of potential estimates of points on C, and let x′ be any
point on G which is within h3/2 of x. (We could replace h3/2 by hc for any 1 < c < 2.)
Let T = T (x′) denote the disc of radius 2h centred at x′, and let U(x′, θ) be the line
passing through x′ in the direction of the unit vector θ. Then U(x′, θ) divides T into two
half-discs, T+(x′, θ) and T−(x′, θ) say. Let

∑
i∈I± denote summation over indices i such

that Xi ∈ T±(x′, θ). Write G1 for the set of all possible values of (x, x′, θ); because we
are working on a grid, this is a finite subset of R

5. (For simplicity of notation we do not
indicate dependence on x, and until the paragraph containing (2.4.8) and (2.4.9) we also
suppress dependence on (x′, θ)). For the respective choices of the plus and minus signs,
put

Ki = K
{
(x − Xi)/h

}
, N± =

∑
i∈I±

Ki ,

µ± N± =
∑
i∈I±

g(Xi)Ki , ε̄± N± =
∑
i∈I±

εi Ki ,

Ȳ± =
(
N±
)−1

∑
i∈I±

YiKi = µ± + ε̄± ,
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Figure 2.1: Illustration to equation (2.4.2).

δ±i = g(Xi) − µ± , ∆± =
∑
i∈I±

δ±i εi Ki ,

S1 =
∑

i

ε2
i Ki , S2 =

∑
i∈I+

(
δ+
i

)2
Ki +

∑
i∈I−

(
δ−i
)2

Ki ,

S3 =
(
ε̄+

)2
N+ +

(
ε̄−
)2

N− , S4 = ∆+ + ∆− ,

S5 = ε̄+

∑
i∈I+

δ+
i Ki + ε̄−

∑
i∈I−

δ−i Ki . (2.4.1)

Note that the constants M± are Nadaraya-Watson kernel estimators of the regression sur-
face (e.g. Korostelev and Tsybakov, 1993), locally on the ‘±′ sides of x′ and as determined
by θ. In this notation, the quantity S(x′, θ) defined at (2.2.2) is given by

S(x′, θ) =
∑
i∈I+

(
Yi − Ȳ+

)2
Ki +

∑
i∈I−

(
Yi − Ȳ−

)2
Ki

= S1 + S2 − S3 + 2 S4 − 2 S5 . (2.4.2)

In passing from (2.2.2) to (2.4.2) we have found the values of c1 and c2 that minimise
the sum of squares on the right-hand side of (2.2.2), and substituted them back into the
formula. See Figure 2.1 for an illustration.

By the Cauchy-Schwarz inequality, |S5| ≤ (S2S3)1/2, and so

|S(x′, θ) − (S1 + S2)| ≤ S3 + 2|S4| + 2 (S2 S3)1/2 . (2.4.3)
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Next we develop bounds to T1 ≡ ε̄±N± and T2 ≡ ∆±. Both T1 and T2 may be written
in the form T =

∑
i εiwi, where the weights wi are such that w = supi |wi| and W 2 =∑

i w2
i are both finite. Since, by (Cerr), the distribution of the errors εi has a finite

moment generating function γ, say, in a neighbourhood of the origin, then there exist
constants D1, D2 > 0 such that | log γ(t)| ≤ D1 t2 whenever |t| ≤ D2. Given u > 0, put
z = uW and t = min{u/(2D1W ), D2/w}. Then, by Markov’s inequality, using condition
(Cerr) and noting that |twi| ≤ D2 for each i, we have that P ′(T ≥ z) ≤ E′(etT−tz) ≤
exp(D1t

2W 2 − tz), where P ′ and E′ denote probability and expectation conditional on
the points of Pn (this is only relevant if Pn represents a Poisson process). Considering
separately the cases u ≤ 2D1D2W/w and u > 2D1D2W/w we may show that for all
u > 0, D1t

2W 2 − tz ≤ −C1u min(u, W/w), where C1 > 0 depends only on D1 and D2.
Furthermore, in the cases T = T1 and T = T2 we have respectively w ≤ ‖K‖∞ and
w ≤ 2 ‖K‖∞ ‖f‖∞. From these results, and their analogues in the opposite tail, we
deduce that in either case,

P ′(|T | > u W ) ≤ 2 exp
{
− C2 u min(u, W )

}
. (2.4.4)

Note that in the case of Tk, W = Wk where W 2
1 =

∑
i∈I± K2

i and W 2
2 =

∑
i∈I± (δ±i )2 K2

i .
When ambiguity could otherwise occur we shall write Tk as T±

k and Wk as W±
k . In this

notation, and using (2.4.4) and an obvious notation for the sum over the ± sides of C,
we have

P ′{(S2S3)1/2 ≥ (2S2 sup K)1/2 u
}

= P ′{S3 ≥ 2 (sup K)u2
}
≤

∑
j∈{+,−}

P ′{(T (j)
1

)2/
N± > (sup K)u2

}
≤

∑
j∈{+,−}

P ′(T (j)
1 ≥ W

(j)
1 u

)
≤ 2

∑
j∈{+,−}

exp
{
− C2 u min

(
u, W

(j)
1

)}
.

Also, provided u ≥ 1,

P ′{|S4| > 2 u2 max
(
S

1/2
2 , 1

)}
≤

∑
j∈{+,−}

P ′{∣∣T (j)
2

∣∣ > u2 max
(
W

(j)
2 , 1

)}
≤ 2

∑
j∈{+,−}

exp
[
− C2 u2 max

(
1, 1
/
W

(j)
2

)
× min

{
u2 max

(
1, 1
/
W

(j)
2

)
, W

(j)
2

}]
≤ 4 exp

(
− C2 u2

)
.
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Therefore, by (2.4.3), if u ≥ 1,

|S(x′, θ) − (S1 + S2)| ≤ C3 u2 max
(
S

1/2
2 , 1

)
Z1 , (2.4.5)

where C3 > 0 depends only on ‖K‖∞, and the nonnegative random variable Z1 = Z1(u)
satisfies

P ′(Z1 > 1) ≤ 6
∑

j∈{+,−}
exp
{
− C2 u min

(
u, W

(j)
1

)}
. (2.4.6)

If the points in Pn are Poisson-distributed then, for all C > 0,

P

[
inf

(x,x′,θ)∈G1

{
min

(
W+

1 , W−
1

)}2 ≥ C4 n h2

]
= 1 − O

(
n−C

)
, (2.4.7)

where C4 > 0 depends only on K. To appreciate why, use Markov’s inequality to prove
that P{|(W±

1 )2 − E(W±
1 )2| > εnh2} = O(n−C) for all ε, C > 0, uniformly in (x, x′, θ) ∈

G1. Direct calculation shows that E(W±
1 )2/(nh2) is bounded away from 0 uniformly in

(x, x′, θ) ∈ G1. From these properties and the fact that G1 has O(nC) elements for some
C > 0, we obtain (2.4.7).

When the points in Pn are on a square lattice, condition (Cbw) implies that for all
sufficiently large n, (W±

1 )2/(nh2) is bounded away from 0 uniformly in (x, x′, θ) ∈ G1. In
this case, (2.4.7) holds in a degenerate form, with its right-hand side replaced by 1, for
some C4 > 0.

From (2.4.5), (2.4.6) and (2.4.7), and the fact that nh2/ log n → ∞ under condition
(Cbw), we may show that for any C5 > 0 there exists C6 > 0 such that, uniformly in
choices of (x, x′, θ) ∈ G1, ∣∣S(x′,θ) − {S1 + S2(x′, θ)}

∣∣ (2.4.8)

≤ C6 (log n) max
{
S2(x′, θ)1/2, 1

}
Z2(x′, θ) ,

P{Z2(x′, θ) > 1} ≤ C6 n−C5 . (2.4.9)

(Take u in (2.4.5) and (2.4.6) to equal a sufficiently large constant multiple of (log n)1/2.)
From this point we explicitly state the dependence of Sk on (x′, θ).

Since the number of elements of G1 is only polynomially large in n, and since the constant
C5 at (2.4.9) may be taken arbitrarily large, then by (2.4.8),(2.4.9) and the Borel-Cantelli
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lemma we have that a.s., for all sufficiently large n,

|S(x′, θ) − {S1 + S2(x′, θ)}| (2.4.10)

≤ C7 (log n) max
{
S2(x′, θ)1/2, 1

}
for all (x, x′, θ) ∈ G1 .

We note in passing that in case that if an intrinsically ‘continuous’ viewpoint of the
algorithm is adopted (cf. the closing remark of Section 2.2), the proof can be maintained
by introducing the grid of points

(
xi, θi

)
∈ G ×G′ only at this stage, with G,G′ satisfying

the same conditions (2.3.1). The arguments up to and leading to formula (2.4.18) will
remain valid. What is crucial here is that there exists a triplet (x′′, θ′′) ∈ G × G′ such
that card

{
X ∩

{
T+(x′, θ) � T+(x′′, θ′′)

}}
= O(1). We also point out that the idea of this

symmetric difference approximation naturally leads to a deterministic tracking algorithm
in the continuum, pretending that the regression surface is observed without noise, and
with the bandwidth parameter held fixed. At each tracking step, the tangent is placed
in such a way that the kernel-weighted area assigned to the ‘wrong’ side of the kernel
disc, related to the symmetric difference from earlier in this paragraph, is minimised.
That is, the target function is the area enclosed by the diameter of the kernel disc and
the fault line; and an infinitesimal element da of that area which is distant u from the
diameter contributes an amount of K(u) da to the target function. Ties may be broken
by minimising the distance to the previously-estimated slope of the disc diameter. As
will be of relevance in Chapter 4, a correction of location as well as slope (cf. Remark 2.3)
may also be incorporated. The assessment of the performance of the estimator in terms
of the L1 norm will be discussed later in Remark 4.3; cf. also the numerical results in
Section 5.3.

Returning to the main proof, and in a similar manner as for obtaining (2.4.10), by going
back to the bound at (2.4.4) and taking u equal to a sufficiently large constant multiple
of (log n)1/2, we may prove that a.s., for all sufficiently large n,

∣∣ε±(x′, θ)
∣∣N±(x′, θ)1/2 ≤ C7 log n for all (x, x′, θ) ∈ G1 . (2.4.11)

This concludes the part of the proof that is concerned with the randomness induced by
the additive errors εi, while the following part addresses the effects of the randomness of
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design. Let D ≡ ‖grad f ‖∞ (the supremum norm is taken over Π) and

b = b(x′) =


length

(
C ∩ T (x′)

)−1
∫

C∩T (x′)

|fL(x) − fR(x)| dx , C ∩ T (x′) �= ∅

0 otherwise ,

in other words, b equals the integral mean of |fL−fR| over C ∩ T (x′); note that by (2.3.3),
b ≥ dmin > 0. Let

R±,+ = ΠL ∩ T±(x′, θ) , R±,− = ΠR ∩ T±(x′, θ) ,

with ΠL and ΠR as the left- and right-hand sides of C respectively as in the paragraph
containing (2.3.3), and with the ± signs taken respectively, and let

N±,+ = N±,+(x′, θ) =
∑

i:Xi∈R±,+

Ki , N±,− =
∑

i:Xi∈R±,−

Ki .

Then, if Xi ∈ T (x′) is on the left-hand side of C,

bN±,−
(
N±
)−1 − 4 D h ≤

∣∣δ±i ∣∣ ≤ bN±,−
(
N±
)−1 + 4 D h , (2.4.12)

and if Xi is on the right-hand side of C then the same is true provided N±,− is replaced
by N±,+. (Here and in (2.4.13) below we suppress dependence of N±, N±,+, N±,− and δ±i
on (x′, θ).) To prove (2.4.12), and skipping the simpler case b = 0, choose z ∈ C ∩ T (x′)
such that |gL(z) − gR(z)| = b. The assertion follows by applying the triangle inequality
to each of the paired terms in the expression

N± δ±i =
∑

m:Xm∈R±,+

{
[g(Xi) − gR(z)] + (gR(z) − g(Xm)]

}
+

∑
m:Xm∈R±,−

{
[g(Xi) − gR(z)] + [gR(z) − gL(z)] + [gL(z) − g(Xm)]

}
.

Returning to the main proof, squaring, multiplying by Ki, adding over i such that Xi ∈
T±(x′, θ), and noting that

(
N±,−

/
N±
)2

N±,+ +
(
N±,+

/
N±
)2

N±,− = N±,+ N±,−
/
N± ,
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we deduce that

b (b − 16 Dh)N±,+ N±,−
(
N±
)−1 ≤

∑
i∈I±

(
δ±i
)2

Ki (2.4.13)

≤ b (b + 16 Dh)N±,+ N±,−
(
N±
)−1 + 16 N± D2 h2 .

Next we prove that for a constant C8 > 0, and for j = 1, 2,

(
N± − C8nh2

) (
nh2
)−1 = o(1) , (2.4.14)

where the random variable represented by ‘o(1)’ is of that size uniformly in (x, x′, θ) ∈ G1,
a.s. To derive (2.4.14), consider first the case where Pn is a Poisson process. Let A±

denote the number of nonvanishing terms in the series defining N±, and define

π
(
C, A±

)
≡ P

{∣∣N± − E
(
N±
∣∣A±)

∣∣ > C var
(
N±
∣∣A±
)1/2 log n

∣∣A±
}

.

We consider this conditional expectation separately on the sets F1 =
{
A± ≤ (log n)2

}
and F2 =

{
A± > (log n)2

}
. Use Bernstein’s inequality (Theorem 1.1) to show that

it holds generally true that if X is a Poisson-distributed random variable with mean
µ = µ(n), satisfying µ(n)/ log n → ∞ as n → ∞, then P (|X − µ| > εµ) = O(n−C) for
all ε, C > 0. We apply this to the probability of the set F1. A second application of
Bernstein’s theorem is used to deal with the conditional probability on F2, bounding its
probability multiplier by 1. In this context, observe too that

0 < C9 A± ≤ var(N±|A±) ≤ ‖K‖2
∞A±,

for a constant C9 depending only on K. Hence it follows that if C > 0 is given then there
exists C ′ > 0 such that

P
{∣∣A± − E

(
A±)

∣∣ > C ′ (varA±)1/2 log n
}

= O
(
n−C

)
.

Combining these results with the Borel-Cantelli lemma, and exploiting the fact that the
number of elements of G1 is only polynomially large in n, we obtain (2.4.14) in the Poisson
case.

The context where Pn is a lattice may be treated more directly, since there N± is a
deterministic sum. It is asymptotic to a constant multiple of nh2, uniformly in (x, x′).
In the lattice case the assertion ‘a.s.’ is not required when describing (2.4.14).

Let I = I(x′, θ) be the line segment of length 4h defined as the diameter of T = T (x′)
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that is aligned in direction θ, and put CT = C ∩ T . In what follows, we shall temporarily
make use of the following

‘Distance’ Assumption: �dH(CT , I) ≤ h3/2. (The directed Hausdorff distance �dH is
defined at (A.8.1)).

When the ‘distance’ assumption holds, one of R±,+ and R±,− is of area not exceeding
4h5/2; let it be R±,k± . The other region is of area at least 2πh2 − 4h5/2. (Recall that
T (x′) is of radius 2h.) Let this region be R±,�± . The argument used to derive (2.4.14)
may be employed to show that

N±,k±
(
nh2
)−1 = o(1) (2.4.15)

uniformly in (x, x′, θ) ∈ G1 for which the ‘distance’ assumption holds, with probability 1.
Combining this result with (2.4.14) we conclude that N±,�±/N± = 1 + o(1), where the
‘o(1)’ term has the same interpretation as that at (2.4.15). Hence,

N+,+N+,−
N+

+
N−,+N−,−

N−
= {1 + o(1)}

(
N+,k+ + N−,k−

)
, (2.4.16)

again with the same interpretation of ‘o(1).’

Let J = J (x′, θ) = R+,k+ ∪R−,k− denote the closed region within T (x′) that is bordered
by CT , I and the perimeter of T (x′). Thus, J has a vertex at any point where CT
intersects I; it follows from (Crs) that the number of such vertices does not exceed two,
for h small enough. In the case where Pn is Poisson, let A = A(x′, θ) equal the integral
of K{‖x − y‖/h} over y ∈ J , and in the case where Pn is a lattice, let A be the average
of this kernel over all grid points y that fall within J . In the first case, A(x′, θ) can be
computed via the Poisson process Pn,K which is a (deterministic) transformation of Pn,
and is defined for Borel sets B ⊆ R as follows:

Pn,K(B) = Pn,K(B|x, x′, θ) ≡
∑

i

I
(
Ki(x) ∈ B

)
.

The rate function of this process is obtained by calculating

E(Pn,K(B)) =
∞∑

r=0

E(Pn,K(B) | Pn(B) = r)P (Pn(B) = r)

=
∞∑

r=0

r

‖B‖

∫
B

K

(
x − y

h

)
dy

(n‖B‖)r

r!
exp
(
− n‖B‖

)
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= n

∫
B

K

(
x − y

h

)
dy , (2.4.17)

and taking B = R+,k+ ∪ R−,k− shows that E(N+, k+ + N−, k−) = nA. We claim that,
with probability 1, uniformly in values (x, x′, θ) ∈ G1 for which the ‘distance’ assumption
holds,

N+,k+ + N−,k− = {1 + o(1)}n A(x′, θ) + O
{
(log n)2

}
, (2.4.18)

whence it follows from (2.4.16) that

N+,+N+,−
N+

+
N−,+N−,−

N−
= {1 + o(1)}n A(x′, θ) + O

{
(log n)2

}
, (2.4.19)

a.s., uniformly in the same range of values of x, x′, θ.

To appreciate why (2.4.18) holds, consider first the case where Pn is Poisson. Let A1 =
A1(x′, θ) = J (x′, θ) ∩ ball(x, 1). Using the argument leading to (2.4.14) and (2.4.15) we
may prove that, given C > 0, we can choose C ′ > 0 so large that for j = 1, 2,

P
{∣∣N+,k+ − E

(
N+,k+

)∣∣ > C ′ (nA1)1/2 log n
}

= O
(
n−C

)
uniformly in (x, x′, θ) ∈ G1 for which the ‘distance’ assumption holds and nA1 ≥ (log n)2.
To treat the case where nA1 < (log n)2 we note that when this inequality holds, the set
of which A1 is the area is contained within a set of which the area is A2 = n−1(log n)2.
Hence, given C > 0, we may choose C ′ > 0 so large that

P
[∣∣N±,k± − E

(
N±,k±

)∣∣ > C ′ {(nA1)1/2 + log n
}

log n
]

= O
(
n−C

)
uniformly in (x, x′, θ) ∈ G1 for which the ‘distance’ assumption holds, this time without
regard for the sign of nA1 − (log n)2. Result (2.4.18) follows from this property and the
observations preceding (2.4.17).

The case where Pn is defined on a lattice may be treated by a counting squares argument,
specifically by Lemma 2.1.1 in Huxley (1996, p. 27). It suffices to consider the case where
h is small enough so that A consists of at most three connected (solid) components. Also,
the con-convex parts of A, which we may assume to be the set for the point count N−,k− ,
can be treated as the difference of the relevant half-disc (a convex set) and the part of
the interior of the parabola that is in the same half-disc. The aforementioned lemma by
Huxley (1996) bounds the number of squares forming an inner or outer cover of a convex
set. We also need to account for the deviations incurred by the kernel K, where we need
the Lipschitz smoothness condition. Clearly, the length of the curve delineating the set
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of area N+,k+ is O(h). By similar reasoning for the ‘−’ side and the previous remarks, it
follows in the context of gridded design that

N+,k+ + N−,k− = nA + o(nA) + (O
√

nh) .

From (2.4.13), (2.4.14), (2.4.19) and the fact that (log n)2/nh3 → 0 (or 1/(nh4) → 0 in
the case of gridded design) we see that a.s., uniformly in values (x, x′, θ) ∈ G1 for which
the ‘distance’ assumption holds,

S2(x′, θ) =
∑
i∈I+

(
δ+
i

)2
Ki +

∑
i∈I−

(
δ−i
)2

Ki = {1+o(1)}n b(x′)2 A(x′, θ)+o
(
nh3
)
. (2.4.20)

From (2.4.10) and (2.4.20) we conclude that a.s.,

S(x′, θ) = S1 + {1 + o(1)}n b(x′)2 A(x′, θ) + o
(
nh3
)
, (2.4.21)

uniformly in (x, x′, θ) ∈ G1 satisfying the ‘distance’ assumption.

Note that while S1 depends on x it does not depend on (x′, θ). Therefore, (2.4.21)
implies that if we minimise A(x′, θ) rather than S(x′, θ), with respect to (x′, θ), we merely
neglect terms in the target function which are of order o(A + h3), uniformly in (x, x′, θ).
Although these functions will generally have multiple minimisers, the following arguments
are valid for any two respective choices, as assumption (Cpp) ensures that all minimisers
are contained within a rectangle of size O(h2) × O(h), a.s. For the purposes of the next
paragraph we view the choice of (ξ0, η0, θ0) ∈ {argminA(x′, θ)} as a function of h, and
proceed to show that the choice of (ξ0, η0) and θ0 differs from the ‘correct’ choices only
by terms of order O(h2) and O(h), respectively. This discussion is essentially the discrete
version of the considerations in the proof of Theorem 4.1. Indeed, the statements in the
next paragraph can be deduced by a combination of Lemma 4.1 and a Riemann sum
approximation to the integrals (area calculations) appearing there.

We start with noticing that assumption (Crs) implies that C is locally quadratic. For
greater ease of exposition we first consider the case when the area is not given kernel
weights, although we continue to use the notation A(x′, θ) for this modified target func-
tion. Geometric arguments may then be employed to show that if x′ is distant further
than O(h2) from C, with θ arbitrary, then A(x′, θ) is strictly larger than A(ξ0, η0, θ0), for
sufficiently small h. Similarly it can be shown that if the sequence x′ is within O(h2) of the
true curve but the slope component θ is such that there exists C > 0 with ‖θ−θ0‖ ≥ Ch,
then for h small enough there exists a grid point (ξ′, η′) between the line and the parabola
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with the property A(ξ′, η′, θ0) < A(x′, θ). (All foregoing statements hold a.s.) The pre-
vious arguments may be transferred to the case of kernel-weighting, if we too observe
that as K is assumed to be Lipschitz continuous, the function K{‖x − ·‖/h} converges
uniformly to K{‖x′ − ·‖/h} as x → x′. In summary, we thus have established that up
to terms of sufficiently small order, the algorithm minimises A(x′, θ) a.s., and we claim
that the theorem follows from this property.

To explain why, we note the following four properties. In points (a),(b) below we refer
to the location component of the minimiser of A(x′, θ), while (a′),(b′) refer to its slope.
(a) There exist constants 0 < C1 < C2 such that, if the point P with coordinates x at
which we are situated at a given step is further than C2h

2 from C, then the grid point
x′ that results from minimising A(x′, θ) is less than C1h

2 from C. (b) If C3 > 0 is given
then there exists C4 = C4(C3) > 0 such that, provided x is distant no more than C3h

2

from C, the value of x′ that results from minimising A(x′, θ) is distant no more than
C4h

2 from C. In (a) and (b), distance of a point to C denotes shortest distance. The
slope component θ which minimises A(x′, θ), has the following properties (a′),(b′) which
respectively correspond to (a),(b). (a′) There exist constants 0 < C5 < C6 such that, if
the slope estimate ω from the previous step is further than C5h from the true slope of
the curve at the point of C that is closest to x′, then the grid point θ that results from
minimising A(x′, θ) is less than C6h from that slope. Here and in in (b′), we represent the
true slope of the point on C to which we refer, by a unit vector such that the dot product
with θ is non-negative. (b′) If C7 > 0 is given then there exists C8 = C8(C7) > 0 such
that, provided ω is distant no more than C7h from the true slope on the corresponding
point on C as given in (a′), the value of θ that results from minimising A(x′, θ) is distant
no more than C8h from that slope. (The constants C1, C2, C4(C3), C5, C6, C8(C7) depend
on the maximum curvature of C and on the constants B1, B2 in the definition of the grid
of points x′ and θ, but for h sufficiently small they do not depend on h.)

Properties (a),(a′) and result (2.4.21) imply that: (c) if the grid vertex x is further than
C2h

2 from C then at the next step we move to a grid vertex x′ that is less than C1h
2+o(h2)

from C. Properties (b),(b′) imply that: (d) if at the nth step we are at a point x which is
distant no more than C3h

2 from C, then x′ will be distant no more than C4(C3)h2 +o(h2)
from C. Furthermore, in view of the uniformity of the remainder at (2.4.21), the o(h2)
remainders here are uniformly small. Now, Q̂ and Q, and the corresponding slopes,
are distant O(h2) and O(h) apart, respectively. (The last assertion would have to be
qualified ‘a.s.’ if Q and the slope at Q were estimated by a procedure such as described
in Remark 2.8, but the conclusions, being subject to the same restriction, would not be
affected thereby.) These initial conditions, and properties (c) and (d), imply that at each
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step the point estimate must uniformly lie within O(h2) of the curve. Also, due to the
same initial conditions, the initial triplet (x′, θ′) (be it deterministic, or the result of an
estimation procedure such as described in Remark 2.8) satisfies the ‘distance’ assumption
a.s. Then the fact that subsequent points are uniformly distant O(h2) from C implies that
this is valid throughout, a.s.

Similarly, using (a′) and (b′) from two paragraphs earlier, it may be proved that the
estimate of the slope of C, provided by the value of θ obtained from minimising with
respect to (x′, θ′), is uniformly within O(h) of the true slope of the curve at the point of
C that is closest to x′. Therefore, the sign convention for passing from a slope estimate θ

(a unit vector) at x to the slope estimate θ′ at x′ (see the paragraph containing (2.2.2))
ensures that successive point estimates progress steadily along the curve, on the grid G
with edge width equal to a constant multiple of h2, so that only O(h−2) steps are required
until termination within h of the opposite side of Π.



Chapter 3

Local Likelihood Tracking of Fault

Lines

3.1 Introduction

In Chapter 2 we have introduced a tracking estimator based on kernel-weighted local
least squares. The procedure suggested in Section 2.2 limited itself to the estimation
of the tracking direction for the edge. Notwithstanding the fact that this estimator is
theoretically sound, computational drawbacks even for relatively simple curves should be
recognised. One of these arises when curvature of the edge is large in comparison to the
step width of the tracking procedure.

Figure 3.1 shows a simple example where the true fault line is a circle. The true regression
surface, with equation

g
(
x(1), x(2)

)
=

1 − 8
{
(x(1) − 0.5)2 + (x(2) − 0.5)2

}
, (x(1) − 0.5)2 + (x(2) − 0.5)2 ≤ 1

16

0 otherwise,
(3.1.1)

is shown in Figure 1(a). This surface, which is very similar in structure to that used in Qiu
(2002), has a jump of constant magnitude 0.5 along the circle S =

{
x : ‖x−(0.5, 0.5)‖ =

0.25
}
. Based on the description in the paragraph following equation (2.4.10), and even

in the noise-free setting, it is not hard to prove that regardless how small the step size,
the tracked points will, except for degenerate cases, spiral away from the true curve until
the latter has been lost completely. This phenomenon is illustrated in panel (b), where
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we checked m = 300 angles in the minimisation of (2.2.2). (If we let m → ∞, the
ensuing estimator would be asymptotically equal to a circle that is concentric with S,
and with slightly larger radius. On the other hand, the likelihood surface ridge studied in
Chapter 4 would consist of an inscribed circle. This can be derived from Theorem 4.1.) In
Figure 3.1, tracking takes place in both directions from the starting point Q = (0.75, 0.5).
If the surface at (3.1.1) was modified such that it took the value 1 inside S, it would
emerge more clearly that the algorithm produces an estimator that has at each point a
similar derivative as in the projection on that point onto C.

The performance of the tracking estimate is slightly improved when a small amount of
noise is added. Panel (c) shows the original data with the superposition of independent
and N(0, 0.252) distributed noise. On this occasion the data are shown in form of an
image, because the plot of type (a) would not reproduce well. Figure (d) shows the
outcome in this situation.

In view of these problems, it seems natural to follow the suggestion of Remark 2.3 and
to consider the likelihood as a function of both slope and location. Benefits gained from
the study of the arising likelihood surface were already mentioned in Section 1.2. In the
present chapter we exploit this idea and point out again how in many practically rele-
vant situations that exhibit fault lines of moderately complex nature, the computational
workload can be held within acceptable limits. From the viewpoint of image analysis, the
results of this chapter show that basic local likelihood ideas can be successfully transferred
into a purely statistical framework.

A major advantage of the local-likelihood principle is that it can be adapted to a range of
problems that are often considered in an ad hoc fashion. We begin with the previously-
studied setup of fault lines in regression surfaces in Section 3.2, before moving on to the
case of fault lines in the support of densities in Section 3.3. The main results are given
in Section 3.4, with the theoretical arguments being deferred to Section 3.5.

3.2 Fault Lines in Response Surfaces

In this section we again adopt the standard assumptions of Section 1.2. Somewhat dif-
ferently from Chapter 2, we are now constructing the estimator Ĉ from a local likelihood.
The critical parameter in this technique is the bandwidth which, as in similar problems
in density function estimation studied earlier (Copas, 1995; Hjort and Jones, 1996), is
a sort of tuning parameter for choosing between a simple parametric model, which is in
general only approximately true, and a fully nonparametric model.
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Figure 3.1: Behaviour of the tracking estimate from Chapter 2. Panel (a) shows the
non-corrupted regression surface defined by equation (3.1.1). Panel (b) shows the result
of tracking with starting point x0 = (0.75, 0.5), kernel bandwidth h = 0.08, and step size
δ = 0.2 h. Panel (c) depicts the image corresponding to (a), observed with superposition
of N(0, 0.252) distributed noise. Panel (d) shows the performance of the algorithm for
the data in (c).
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The local likelihood is thresholded as indicated in the next paragraph, to yield points in
the sample space Π which are deemed edge points. In the standard reformulation of the
estimation problem as one of testing, thresholding amounts to determination of critical
points. It should be noted that it is here that we pay the prize for the locally-parametric
character of our model, due to the presence of bias in implicit estimates of both the fault
line and the response surface. Only if the fault line is exactly linear, and the response
surface exactly constant on either side of the fault line, does bias not complicate the use of
a formal testing procedure. Thus, the application of a fully data-driven approach in any
formal way seems to be made impractical. However, from a practical viewpoint this does
not heavily subtract from the feasibility of the approach, at least as long the parametric
model is a reasonable approximation. The more complex case where an additional testing
is employed in order to find points where edges split (see Remark 2.9) was shown to be
tractable by this method in two numerical examples in Hall, Qiu and Rau (2002).

The estimator Ĉ is defined using concepts that are closely related to hysteresis thresh-
olding of edges in image processing, for example the Canny edge detector (see pp. 107f
of this thesis), and comprises all those points x ∈ Π which have either

� a log-likelihood ratio above a pre-determined threshold tupper > 0, or

� are connected to any such point via the tracking algorithm from Chapter 2, and
have a log-likelihood ratio above a second pre-determined threshold tlower < tupper.

Thresholds tlower and tupper would usually be chosen from prior experience with the
data concerned. Choosing a relatively small value of tlower, the notion of ‘small’ being
dependent on the nature of the data that we are working with, yields longer ridge lines,
but usually also some spurious ridges. As these will typically comprise only a small piece
of a curve, they can easily be eliminated with methods used in Section 5.4. Conditions
on tlower and tupper are given in Section 3.4, where theoretical properties of the estimator
are discussed.

In order to construct the approximate likelihood, we temporarily assume that the errors
εi = Yi − g(Xi) are Normally distributed. Then we can interpret the quantity S(x, θ)
at (2.2.2) as a kernel-weighted local log-likelihood that C passes through the point x,
and has its tangent oriented in the direction of the vector θ. The maximiser of the log-
likelihood for the alternative case, that is when ball(x, h) ∩ C = ∅, is simply the locally
constant estimator known as the Nadaraya-Watson kernel estimator (e.g. Korostelev and
Tsybakov, 1993). Thus we obtain the following expression for the local log-likelihood
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ratio, up to additive and proportionality constants:

�(x, θ) =
[∑

i

{Yi − Ȳ (x)}2 Ki(x) −
∑

i∈I+(x,θ)

{Yi − Ȳ+(x, θ)}2 Ki(x)

−
∑

i∈I−(x,θ)

{Yi − Ȳ−(x, θ)}2 Ki(x)
]

N(x)−1

=
N+(x, θ)N−(x, θ)

N(x)2
{
Ȳ+(x, θ) − Ȳ−(x, θ)

}2
, (3.2.1)

where we adopt the convention 0/0 = 0; see also Remark 3.1 below. In (3.2.1), the
definitions of I± and the quantities N±, Ȳ± and Ki are the same as in Section 2.2 and
at (2.4.1), but taking x′ = x there, so that no double bandwidth is used. Also, N(x) =∑

i Ki(x), and the quantity Ȳ (x) = N(x)−1
∑

i Yi Ki(x) is the aforementioned Nadaraya-
Watson kernel estimator. The reason for not using double bandwidths, in contrast to
Chapter 2, is that here we do not employ a grid for the potential estimates of C as was done
to facilitate the proof of consistency. In this regard, we also note that the ‘continuous’
view of the edge estimator, mentioned in the paragraph below (2.4.10), harmonises better
with the differential-geometric stance of this chapter and Chapter 4. Figure 2.1 again
serves to illustrate the foregoing definitions.

Alternatively to reading the definition of � at (3.2.1) as a local log-likelihood ratio, it
can also be considered in terms of local least squares, as is evident from the supremum
operation over θ in (3.2.2). This alternative viewpoint motivates the abandonment of the
assumption that the error variables are Normally distributed.

In order to construct C from a grid of points obtained in the way described in the previous
paragraph, and in the finite-sample context, Ĉ may be thought of as the limit, as δ → 0, of
the polygonal estimates Ĉδ whose vertices are obtained, for a given realisation of (Xi, Yi),
as follows. Cover Π with a finite family

{
Υk = Υk,δ} of dissecting lines such that

max
k

min
k′ 	=k

dH

(
Υk, Υk′

)
≤ δ ,

so that their interspacing is at most δ. (The Hausdorff distance dH was defined at (A.8.2).)
Problems with parts of the fault line that are (nearly) tangential to the transects Υk are
clearly more acute than in the discussion in the last paragraph of Remark 2.8, and there
is no simple (and nonrandom) rule to overcome it. Along each of the Υk, search for the
(local or global) maximisers x̂0 = x̂0,k as at (3.2.2), requiring as at the beginning of this
section that m(x̂0,k) > tupper. The ridge estimate may then then obtained by a relatively
standard rule which connects close neighbours, similar to techniques used in Section 5.4.



CHAPTER 3. LOCAL LIKELIHOOD TRACKING OF FAULT LINES 58

For regression surfaces with edges that have a high signal-to-noise ratio (see the definition
at (4.2.5)), an already appealing result will usually be obtained by connecting the points
x̂0,k in such a way that progression through Π is maintained, for example by stipulating
that the x(1) coordinate of the point sequence is monotonically increasing.

Remark 3.1. Data sparseness. To avoid difficulties caused by data sparseness one would
consider only values of �(x, θ) for which the minimum of infθ N±(x, θ) over values of the
± signs exceeded a predetermined threshold, ν say. In practice this might be achieved by
choosing h to depend on x, and taking it sufficiently large in each case. What ‘sufficiently
large’ means is primarily dependent on the geometry of C. Note that because of the ‘search
cone condition’ from Section 2.2 that will again be stipulated here, it is straightforward
to verify that if θ∗ ∈ [0, 2π) denotes the previous tracking direction, then

infθ N+(x, θ)
N+(x, θ∗)

→ 1 a.s., n → ∞ ,

and hence, by the observations leading to (2.4.17),

P
(
inf
θ

N+(x, θ) ≥ ν, inf
θ

N−(x, θ) ≥ ν
)
≈ P

(
N+(x, θ∗) ≥ ν, N−(x, θ∗) ≥ ν

)
=


∞∑

r=〈ν〉+1

(
1
2 nh2

)r
r!

exp
(
− 1

2nh2
)

2

.

If the sparseness probability is to be bounded along longer stretches of C, a Bonferroni-
type argument similar to that in Remark 4.3 may be used.

Note that (3.2.1) is only approximately equal to the true likelihood, for several reasons.
Apart from those already pointed out in Chapter 2, note that in the definition at (3.2.1)
we have standardised by dividing by the ‘effective local sample size,’ N(x), which is
also an approximation to the number of degrees of freedom of the local likelihood-ratio
test. It is pertinent to notice that 2N±(x, θ)/(nh2) → C(x), a constant only depending
on x, and that Ȳ+(x, θ) − Ȳ−(x, θ) is approximately Normally distributed with variance
2
{

1
2 nh2C(x)

}−1
σ2. Somewhat surprisingly, it turns out, however, that a version of

Wilks’ theorem does not hold in the present context, in that the limiting distribution
derived from the likelihood surface

{
m(x), x ∈ Π

}
defined at (3.2.2) below is not of a

chi-squared type; see Theorem 4.2 in Chapter 4. The adjustment by dividing by the local
sample size can be important in practice if we are to achieve reasonable performance,
since it makes it feasible to compare likelihoods at different x values. However, it has no
influence on theoretical convergence rates discussed in Section 3.4.
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Note that �(x, θ) is nonnegative, and that if ball(x, h) ∩ C �= ∅ then �(x, θ) indeed tends
to assume larger values. Therefore, we estimate C as a ridge of �(x, θ), adopting the
notion of Definition A.1. Strictly speaking, the ridge is well-defined only in relation to
the surface derived from g instead of the empirical data (Xi, Yi), using definitions that
are analogous to those around (3.2.1) but with replacing sums by expressions involving
integrals; for example, Ȳ±(x, θ) is replaced by the convolution 2g(·) ∗ (H K){(· − x)/h},
where H ≡ {y : ±θ⊥ · (y − x) ≥ 0}. However, ridges will be referred to as belonging to
the estimates in the indicated way without further mention.

For the purpose of ridge finding we need an initial approximation x̂0 to a point on C. For
example, we might take

x̂0 = argsup
x

m(x) , where m(x) = sup
θ

�(x, θ) , (3.2.2)

and we calculate the argsup within a relatively small region through which we expect C
to pass. The validity of this definition of x̂0 is discussed in Remark 3.2. Formula (3.2.2)
assumes that tupper > ‖m‖∞, otherwise we would conclude that there is no significant
evidence for a fault line. Alternatively, we might draw a line transect across the plane
of the explanatory dataset, so that the line traverses a region through which we expect
C to pass, and project onto the transect those values of Xi in its neighbourhood; and
compute x̂0 by solving a relatively simple change-point problem in univariate regression,
for the new dataset, as described in Remark 2.8. The measurability of x̂0 is ensured by
the theory given in Section A.3.

As a corollary to the definition of the likelihood ridge, if x̂ denotes a point on Ĉ then
the value of m(x) decreases if x moves to either side of x̂ in a direction perpendicular
to the tangent to Ĉ at x̂. The orientation of this tangent is that of the unit vector
θ̂ = argmaxθ �(x̂, θ), or of its negative value.

Define θ̂(x) = argsupθ �(x, θ). With probability 1, θ̂(x) is uniquely determined by this
definition, except for sign. To trace out the fault line estimate numerically we may use
the algorithm described in Section 2.2, employing the threshold checking rules given
earlier (see p. 56). As evinced by the example in Section 3.1, the tracking should also
employ location correction. Alternatively, one could select the point x̂ that maximises
m(x) on the semicircle

A = {y : y = x + δe , ‖e‖ = 1 , | arg(e) − φ0| < π/2} , (3.2.3)

centred at the previous tracking direction φ0 and with radius π/2. The movement is now
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Figure 3.2: The lens function B(x), defined at (3.2.4).

to the point (in the continuum) which is located in direction θ̂(x), taking care of parity,
and distant δ from the previous point. Unless prior information is available, one would
in practice usually choose a compromise of the two alternatives mentioned, and select
the maximiser of �(x, ·) from the arc A defined as at (3.2.3) but with π/2 replaced by
an angle ∆φ ∈ (0, π/2). (Note that this is in line with the ‘search cone condition’ from
Section 2.2.) As was done in the introductory example of this chapter, we may also trace
out C in the opposite direction, starting from x̂0.

In a finite-sample context, the choice of δ would depend on assumptions on maximum
curvature of C. For example, if the bandwidth h was chosen to vary with the location
on the curve estimate, this could be done by fixing the ratio δ/h at a constant value
C ∈ (0, 1). If curvature is large then we would prefer a larger overlap of the kernel
smoothing discs in two subsequent steps. Note that the lens of intersection between two
unit discs whose centres are 2x apart has the area (see e.g. Hall, 1988, p. 67)

B(x) = π − 2 x
√

1 − x2 − 2 arcsinx , 0 ≤ x ≤ 1 , (3.2.4)

and in the present context x = δ/2. Function B(x) is illustrated in Figure 3.2. If the
left-hand side of expression (2.3.2) was specified to have the value 0.5, for example, this
would require choosing δ/h as the solution of B(x)/π = 0.5, or δ = 0.808 h.

Remark 3.2. Measurability. If the design points Xi are gridded and the noise distribu-
tion has atoms (for example, in the case of salt-and-pepper noise defined in the paragraph
containing (1.2.3)), then it is possible for the maximiser of �(x, θ) to be non-unique. More-
over, as noted by Kim and Pollard (1990, p. 194) in a very similar context, “Arbitrary
tie-breaking rules [...] raise other questions regarding measurability of the argmax.” How-
ever, complete rigour is achievable by using the theoretical framework from Section A.3.
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This framework is especially important in the case where a discontinuous (e.g., uniform)
kernel function is used, in which case the likelihood of this and the next section are not
continuous functions of their arguments. It should be noted that numerical optimisation
is an awkward task in this case. For the purposes of the present chapter, we shall adhere
to the simpler definition of the estimator via the argmax functional, and defer a more
rigorous discussion of the problems with the argmax functional to the proof of the main
theorem (Theorem 4.2) of Chapter 4; see Section 4.3.2.

The theoretical formula for our estimator Ĉ of C has δ = 0 in either of the definitions
in the paragraph containing (3.2.3). More precisely, assuming that tracking in one of
the variants described in the previous paragraph has taken us up to the point with
coordinates P = (x̂(1), x̂(2)), say, the next infinitesimal step in our construction of Ĉ is
taken in the direction of θ̂(s + ds), away from P and in the direction opposite from the
estimated starting point Q. The curve Ĉ of the theoretical formula may be thought of as
the limit, as δ → 0, of the sequence of steps defined by (x̂(1)

j+1, x̂
(2)
j+1) = (x̂(1)

j , x̂
(2)
j ) + δθ̂j

and (x̂(1)
0 , x̂

(2)
0 ) = (x̂(1)(0), x̂(2)(0)), where θ̂j denotes the vector that minimises S(θ) when

x̂j = (x̂(1)
j , x̂

(2)
j ) and is chosen to point away from the direction from which we have come.

Specifically, if P is distant s, along Ĉ, from Q; if θ̂ equals the gradient computed at P ;
and if x̂

(1)
1 (s) and x̂

(2)
1 (s) denote the first and second components, respectively, of θ̂; then

x̂(1)(s) = x̂(1)(0) +
∫ s

0
x̂

(1)
1 (t) dt , x̂(2)(s) = x̂(2)(0) +

∫ s

0
x̂

(2)
1 (t) dt . (3.2.5)

In this notation, Ĉ is defined as the plot of (x̂(1)(s), x̂(2)(s)) as a function of s. Our
estimator of a general point on C is x̂, say (one of the x̂js), and our estimator of the
direction of the normal to C at x̂ is argsupθ w(x̂, θ).

If there exist several separate fault lines, the number of which may not be known, the
algorithm described in the paragraph below the one which contains (3.2.2) can still be
applied. Once the tracking of a ridge line is completed, the subsequent search region
in that equation is chosen to exclude a sufficiently small closed neighbourhood of that
tracking estimate; in the i th step (i ∈ N0), let this neighbourhood be denoted Fi. The
estimation process is complete at step M when ∪M

i=0 Fi = Π, with (M + 1) being the
number of fault lines detected in Π. In case that the starting points are searched along
line transects passing through Π, as suggested earlier, invariance of the estimator with
respect to rotations of the design points does no longer hold true.

In the presence of intersecting fault lines, we suggest two strategies that can to some
extent be combined with each other. The first of these, which is more directly data-
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driven, draws on ideas from Hall, Qiu and Rau (2002). An excerpt of their methodology
has been given in Remark 2.9. In the notation of that remark, we have θ(i+2) = θ(i) + π

for i = 1, 2. Hall, Qiu and Rau (2002) used a second local (log)likelihood in order to
estimate such knots; the associated likelihood surface has its peaks at the loci of knots.
This likelihood is thresholded separately, obeying the same conditions as for tlower and
tupper given in Section 3.4. This of course compounds the difficulty associated with the
choice of threshold. An alternative, and more graphical, approach consists in examination
of the ridge surface M based on the differential-geometric concepts from Section A.2. It
was pointed out there that a point on a ridge line may be found by traversing a contour,
using for example the algorithm xj �→ xj+1 = xj ± δ v⊥(xj) (for a small positive δ, and
with either the + or the − sign used throughout), starting at any given point in Π; and
working out the value of ‖m‖ at each step. Whatever approach is being adopted, the
assumption, in our theory in Section 3.4, that fault lines do not intersect is mainly for
technical convenience.

As mentioned in Remark 2.9, the likelihood can be designed in a straightforward man-
ner to accommodate local surface models that are even more complex than the pattern
created by two or more essentially superimposed fault lines. The changes necessitated
thereby reduce, rather than add to, the computational (and theoretical) burden.

3.3 Fault Lines in Intensity Surfaces

Here we observe, as stated in condition 2 of Section 1.2 (see p. 19), i.i.d. bivariate data
Xi, for 1 ≤ i ≤ n, from a distribution with density g. The density is smooth except
for a fault line running through its support, S. We wish to estimate this line. To this
end we write down the likelihood ratio for a test of the null hypothesis that g is locally
constant at x, versus the alternative that g has a jump discontinuity along a line that
passes through x with its normal in direction θ, and g is locally constant on either side
of the jump. The kernel-weighted local (log)likelihood ratio is proportional to

�(x, θ) = log

{(
N+

N

)N+
(

N−
N

)N−
}

N(x)−1

=
{

N+(x, θ) log N+(x, θ) + N−(x, θ) log N−(x, θ)

− N(x) log N(x)
}

N(x)−1 , (3.3.1)

where N± is as defined in the paragraph containing (3.2.1). Where the above expression
is undefined, we set �(x, θ) = −∞. However, as in Section 3.2, we would restrict attention
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to xs for which infθ min+,− N±(x, θ) ≥ ν, a threshold. Also as in Section 3.2, we have
divided by N(x) so as to make local likelihoods at different locations comparable.

Note that �(x, θ) takes values in [− log 2, 0] ∪ {−∞}, and, if the disc centred at x and with
radius h lies across C, �(x, θ) tends to assume larger values when the alternative hypothesis
is true. The tracking algorithm suggested in Section 3.2 applies without change in the
present setting. There are obvious analogues of the methods there for computing a
starting point for the algorithm. Our local-likelihood approach is rather simple to apply
relative to, for example, “maximin” methods (e.g. Müller and Song, 1994), since it is
based on ridges of a smooth surface rather than heights of jumps of a discontinuous,
erratic surface.

3.4 Theoretical Properties

Because of the parallels with the more extensive proof in Section 4.3.2, in the exposition in
this and the next section we limit ourselves to the salient points. For the sake of simplicity
we shall limit ourselves here to i.i.d. data; this allows us to consider the regression and
density cases together. However, in the setting of response surfaces our methods may be
used to derive convergence rates when the Xs are generated differently, for example on
a grid. This configuration will be addressed at the end of this section. In both cases we
shall assume that the (continuous version of the) ‘search cone condition’ of Section 2.2
holds, and that:

(a) the distribution of X has a density that is bounded away from 0 in an open neigh-
bourhood of C;

(b) in neighbourhoods on either side (but not both sides simultaneously) of C, the
response or intensity surface has a bounded derivative;

(c) the size of the jump at the fault line is bounded away from 0 along C;

(d) the kernel K is a nonnegative, radially symmetric function with support equal to
ball(0, 1), and is Hölder continuous in R

2;

(e) the bandwidth h = h(n) satisfies h → 0 and n1−εh2 → ∞, for some ε > 0, as
n → ∞;

(f) the local likelihood estimator is started either at a point x̂0 that is within O(h2)
of C, or at x̂0 = argsupx m(x), where the argsup is computed within a sufficiently
small open neighbourhood of C; and
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(g) for some c > 0 and with t+ ∈ {tupper, tlower} (cf. p. 56), it holds that nc = O(t+)
and t+ = o(nh2) as n → ∞.

In the context of response surfaces, and as stated in Section 1.2, we ask in addition that

(h) the distribution of Y −g(X) does not depend on X and has finite moment generating
function in a neighbourhood of the origin.

In condition (d), the assumption of Hölder continuity is not essential and in fact the
results below may be derived using uniform weighting schemes. As stated in Remark 3.2,
difficulties with defining the maximisers of � when dispensing with the assumption that
K satisfies (d) arise primarily for numerical reasons. Condition (e) ensures that there
exist thresholds satisfying (g).

Theorem 3.1. In the cases of response and intensity surfaces, assume conditions (a)–(g),
and for response surfaces assume in addition (h). Then with probability 1, and provided
we construct local-likelihood estimators within a sufficiently small but fixed neighbourhood
of C, the estimators of points on C, and of the angles made by tangents to C at those
points, are accurate to within O{(nh)−1 log n+h2} and O{(nh2)−1 log n+h}, respectively,
uniformly on any subset of C that starts at least ε from one end of C and finishes at least
ε from the other end, for any ε > 0.

Taking h equal to a constant multiple of (n−1 log n)1/3 we see that the uniform rate of
convergence of our estimator to C is O{(n−1 log n)2/3}. As pointed out before, this is
within a logarithmic factor of the minimax-optimal pointwise convergence rate in both
response and intensity cases.

For both response and intensity surfaces, when the Xs are arranged in a regular lattice
(triangular, square or hexagonal) with n points per unit area of the x plane, an argument
similar to that used to derive Theorem 3.1 may be employed to prove that, taking h

equal to a constant multiple of (n−1 log n)1/4, the uniform rate of convergence to C is
O{(n−1 log n)1/2}.

3.5 Outline Proof of Theorem 3.1

We employ the definitions of I±, N±, ε̄± and µ± as at (2.4.1), using the support radius
of the kernel, h, as indicated in the paragraph containing (3.2.1). In addition, put
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ν±(x, θ) = E{N±(x, θ)} and

S±(x, θ) = N±(x, θ) − ν±(x, θ) , T±(x, θ) =
∑
i∈I±

g(Xi)Ki(x) − µ±(x, θ) (3.5.1)

and γ±(x, θ) = ν±(x, θ)−1 E{µ±(x, θ)}. Let δ = δ(n) → 0 in such a manner that h2 ≤
δ ≤ (1 − η)h for some η > 0. (This is the version of the “search cone condition” from
Section 2.2 that is appropriate in the present context.) Then for all sufficiently large
B1 > 0, for some B2, B3, B4 > 0, and with R1(x, θ) denoting any one of S±(x, θ)/(nh2),
T±(x, θ)/(nh2) or ε̄±(x, θ), we have, using Bernstein’s inequality similarly as in the proof
of Theorem 2.1,

sup
x,θ,x′,θ′

P
[
|R1(x, θ) − R1(x′, θ′)| > B1

{
δ (nh3)−1 log n

}1/2
]

= O
(
n−B1B2

)
, (3.5.2)

sup
x,θ

P
[
|R1(x, θ)| > B1

{
(nh2)−1 log n

}1/2
]

= O
(
n−B1B2

)
, (3.5.3)

sup
x,θ

P
{
B3nh2 < N±(x, θ) < B4nh2

}
= 1 − O

(
n−B1

)
, (3.5.4)

where the suprema are taken over all unit vectors θ, θ′ and vectors x, x′ such that x is in an
open neighbourhood of C and ‖x−x′‖ ≤ δ, ‖θ− θ′‖ ≤ δ/h. (Note that (nhδ)1/2/(nh2) =
{δ(nh3)−1}1/2.) Hence, defining

λ(x, θ) =
ν+(x, θ) ν−(x, θ)

ν(x, θ)2
{
γ+(x, θ) − γ−(x, θ)

}2
,

we have
�(x, θ) − �(x′, θ′) = λ(x, θ) − λ(x′, θ′) + R2(x, θ, x′, θ′) ,

where, in view of (3.5.2), (3.5.3) and (3.5.4),

sup
x,θ,x′,θ′

P
[
|R2(x, θ, x′, θ′)| > B1

{
δ (nh3)−1 log n

}1/2
]

= O
(
n−B1B2

)
, (3.5.5)

and the supremum is interpreted in the same manner as that at (3.5.2).

From (3.5.5) and the Borel-Cantelli lemma, and noting the Hölder continuity of K, we
conclude that if B5 > 0 is sufficiently large then with probability 1, for all sufficiently
large n, |R2(x, θ, x′, θ′)| ≤ B5{δ (nh3)−1 log n}1/2 uniformly in the values of (x, θ, x′, θ′)
over which the supremum at (3.5.2) is taken. Arguments based on the calculus now show
that by maximising �(x, θ) over x and θ (for all values x within a neighbourhood of radius
no more than (1 − η)h of C, and for all unit vectors θ), the obtained approximations to
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points x on C, and angles made by normals θ to C at those points, are accurate to within
±B6{(nh)−1 log n + h2} and ±B6{(nh2)−1 log n + h}, respectively.

To appreciate why, let (x′, θ′) denote respectively the point on C nearest to x and the unit
vector in the direction of the tangent to C at x′. Note that if x is distant δ from x′, and
if θ is distant δ/h from θ′, then λ(x, θ) is distant δ/h from λ(x′, θ′). In view of (3.5.5),
this is detected (above stochastic error and bias terms) for all sufficiently large n, with
probability 1, through reduction in the value of �(x, θ) relative to that of �(x′, θ′), if δ/h

is larger than a sufficiently large constant multiple of {δ (nh3)−1 log n}1/2 +h. (The term
in h arises through departure of C from a straight line, due to curvature. Note that the
function λ does not have two bounded derivatives at C, since the fault discontinuity in g

is bounded away from 0.) Equivalently, the reduction in the value of �(x, θ) is detected
if δ is larger than a sufficiently large constant multiple of (nh)−1 log n + h2. The case
δ > (1 − η)h may be treated using a subsidiary argument. This completes the outline
proof of Theorem 3.1 in the context of fault lines in response surfaces. The case of fault
lines in intensity or density surfaces may be treated similarly.



Chapter 4

Likelihood-Based Confidence

Bands

4.1 Introduction

In Chapter 3 we introduced a class of fault line estimators based on local likelihoods, and
proved that, like the estimator from Chapter 2, they are nearly optimal in the minimax
sense. Here we derive explicitly, under appropriate regularity conditions, the asymptotic
behaviour of the perpendicular distance between the true fault line and its local-likelihood
estimator as design intensity diverges. The analysis of asymptotic behaviour consists of
two main parts, which are given as Theorems 4.1 and 4.2: the bias, which is introduced
through the kernel smoothing, and the joint limiting distribution of the stochastic com-
ponent of the perpendicular distance and slope. That distribution will be seen to coincide
with the location of the maximum of a spatially-indexed Gaussian process with quadratic
drift, introduced earlier in Section A.4.2. Critical values, which determine the width of
the confidence bands, have to be approximated numerically. However, once scale, geo-
metric parameters and noise variance have been estimated, asymptotic confidence bounds
for fault lines in regression surfaces can be computed without the need to simulate the
quantiles anew. Moreover, it turns out that in the density and Poisson intensity surface
cases, the same limit distribution of stochastic error applies (see Theorem 4.4).

Practical benefits of the explicit expressions which we derive for the bias, and the dis-
tribution of the perpendicular distance of the fault line estimator at a given point, are
immediate. First, a bias adjustment can be made so to produce an improved estima-
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tor. Secondly, and of at least equal importance, the results enable us to establish an
asymptotic confidence band for the true fault line, taking account of bias.

Section 4.2 describes the model assumptions and the local-likelihood method. As the
exposition largely parallels that of Section 3.2, we keep rather brief. Details of the
technical arguments, in the case of Theorem 4.2 preceded by an intuitive outline of the
proof, are given in Section 4.3.

4.2 Methodology and Main Theorems

As in Chapter 3, we develop the methodology around the case of fault lines in response
surfaces, the density and Poisson intensity surface cases being similar but less complex.
We continue to work with the general assumptions on the model as stated in Section 1.2,
using the notation from around equation (3.2.1). For the purposes of the present chapter,
however, we do not standardise the likelihood by dividing through an additional factor
N(x). Hence the definition now reads

�(x, θ) =
N+(x, θ)N−(x, θ)

N(x)
{
Ȳ+(x, θ) − Ȳ−(x, θ)

}2
. (4.2.1)

We estimate C as a ridge line, Ĉ say, of m(x), in the same way as in Section 3.2. The
comments made there on spurious ridge points apply here as well. We shall assume that
the ridge points have been searched out in a sufficiently narrow open neighbourhood of C,
so that these issues do not arise.

Next we give regularity conditions for an expansion of the dominant terms in bias of
the estimator Ĉ of C. As in Chapters 2 and 3, let K be a radially symmetric, bi-
variate probability density, with a uniformly bounded derivative. The radius M of
supp(K) = ball(0, M) may now be any number in R

∗
+. Our assumption of radial symme-

try is not essential to obtain the convergence rates evinced by our theorems. Anisotropic
choices would be advantageous in some situations; for example, if the function defining
the response surface was known to vanish on one side of C, a one-sided kernel would yield
smaller multiplying constants in the (otherwise unchanged) convergence rates. Generally
however, the expense in additional complexity lessens the attractiveness of this alter-
native. As in Chapter 3, smoothness of K could principally be dispensed with, at the
expense of the continuity of �.

While the theory to be developed covers both cases of Poisson-distributed and gridded
design, we shall generally assume that X = {Xi} represents a (homogeneous) Poisson
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process. Adjustments for the case when the design points are located on a deterministic
lattice are addressed in Remark 4.4. Versions of our results may be formulated in the
case where X represents an inhomogeneous Poisson process, or in fact a much wider class
of point processes which satisfy the requirements of the infill asymptotic. The conditions
that are then to be imposed are straightforward, but to avoid being encumbered by added
technicalities and notation we shall only consider the case where the local probability
density function is constant.

Assume further that the origin O = (0, 0) ∈ C, and that in a neighbourhood of O the
curve is the locus of points x = (x(1), x(2)), where x(2) = f(x(1)). In accordance with the
general assumptions from Section 1.2, we ask that the function f have two continuous
derivatives in a neighbourhood of 0 and satisfies f(0) = f ′(0) = 0, f ′′(0) = 2a, for a ∈ R.
Then, the gradient of C at O may be represented by θ∗ = (1, 0), which corresponds to the
first principal component direction e1 in the paragraph preceding Definition A.1. The
direction of θ is determined by the rule given presently. In a neighbourhood of O the
two parts into which C divides the plane will be denoted by R+ and R−. In contrast to
Chapters 2 and 3, we now require a parity in that the ‘+’ and ‘−’ subscripts correspond
in that order to the locally-convex and concave sides of C. If C is given by a straight line
at O, or if f has a point of inflection at 0, then we allow any assignment of R±. Suppose
too that the regression mean g is given by

g(x) = g+(x) I(x ∈ R+) + g−(x) I(x ∈ R−) , (4.2.2)

where g+ and g− are real-valued functions defined in the plane, with bounded, continuous
derivatives in an open neighbourhood of O; and that, similar to condition (2.3.3), the
limit of |g+(x) − g−(x)|, as x converges to a point on C, is bounded away from zero for
those parts of C that lie in a neighbourhood of O. Call these conditions (C1).

On occasion we shall strengthen the smoothness assumptions in (C1) by asking that
in a neighbourhood of O, C be given by x(2) = f(x(1)), where f has three bounded
derivatives in a neighbourhood of 0; and that g+ and g− have two bounded derivatives
in a neighbourhood of O. Call these conditions (C2).

Under conditions (C1), and with probability 1, �(x, θ)/n has a proper, well-defined limit
as n → ∞, for h held fixed. Call this limit �0(x, θ), and let (x0, θ0) denote the value of
(x, θ) that maximises �0(x, θ) subject to x(1) = 0 and θ · θ∗ ≥ 0. (The latter constraint
serves to specify the orientation of θ0, but may also be seen as a convention which
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determines the direction in which C is traced.) Let t = t0 ∈ (0, M) be the solution of∫ t

0
K(u, 0) du =

∫ M

t
K(u, 0) du , (4.2.3)

which, under conditions (C1), is uniquely defined. Note that, due to the assumption of
rotational invariance, K(x) = K(0)(‖x‖) is a function of ‖x‖ only (where ‖ · ‖ denotes
the Euclidean norm), and that K(0)(u) may replace the integrands in (4.2.3).

Theorem 4.1. If conditions (C1) hold then as h → 0, x0 = (0, h2ξ0 + o(h2)) where
ξ0 = at20, and ‖θ0 − θ∗‖ = o(h). If both (C1) and (C2) hold then x0 = (0, h2ξ0 + O(h3))
and ‖θ0 − θ∗‖ = O(h2).

We may view Theorem 4.1 as an assertion about the size of the bias of Ĉ. It states that if
C is smooth then the ‘non-stochastic part’ of Ĉ, interpreted as the limit of Ĉ as n → ∞ for
fixed h, lies perpendicularly distant at20h

2, up to terms of order h3, from any given point
P on C, where 2a denotes the curvature of C at P and t0 is an absolute positive constant.
It may be verified that this estimator is essentially the same as the one mentioned in the
proof of Theorem 2.4 (see p. 45). Indeed, and as was done in Hall and Rau (2002), it
is straightforward to adjust that proof to the present situation, and hence to obtain the
results below (where h = h(n) → 0) by means of conditional expectations instead of the
strong law for large numbers. For later purposes, let Ch denote the curve obtained by
moving the appropriate distance, representing bias, away from each point P on C; for
example, moving a distance x

(2)
0 in the vertical direction when P is the origin, with the

tangent to C equal to the x(1) axis.

In Theorem 4.2 we shall see that to a first approximation, the stochastic component of
the perpendicular distance from C to Ĉ has zero mean, and in fact has a symmetric dis-
tribution. A first-order asymptotic approximation to the distance from C to Ĉ, measured
perpendicularly from C, is thus given by the bias term suggested by Theorem 4.1 plus
the error-about-the-mean component described in Theorem 4.2.

It should be appreciated that there is a degree of ambiguity in how one defines the point-
wise distance between C and Ĉ. Our approach, expressed in terms of the perpendicular
distance (relative to C) from the nearest point on Ĉ to a given point on C, has the clos-
est connections with the directed Hausdorff distance �dH(C, Ĉ), defined at (A.8.1). This
notion of distance is both conceptually and theoretically simpler than the perpendicular
distance (relative to Ĉ) from the nearest point on C to a given point on Ĉ. The differ-
ence consists in the generally differing tangent orientations for the respective points on
C and Ĉ. In order to operationalise the second notion of distance, and in consequence
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also the Hausdorff distance dH , a tangent estimator for Ĉ is needed, which is supplied
by the S∗ component appearing in Theorem 4.2; see Remark 4.6. In view of these diffi-
culties, the Fréchet distance dF , though suffering from drawbacks in numerical respects
(see Section A.8.1), seems an attractive alternative.

Next we state regularity conditions for Theorem 4.2. Recall that the r.v. s εi = Yi−g(Xi)
are supposed to be (jointly) independent of X , and conditional on X , have all moments
finite, zero mean and variance σ2 > 0. Suppose too that a �= 0 (that is, C has nonzero
curvature at O) and for some ε > 0 and all sufficiently large n, n−(1/3)+ε ≤ h ≤ n−(1/6)−ε.
Call these conditions (C3).

Under conditions (C1)–(C3) there exists a closed disc centred at the origin such that C is
locally convex or concave there. Let x̂ = (0, x̂(2)) denote the point in this disc at which
m(x) is maximised, subject to x(1) = 0. Let W (s, t) denote the polygonal Gaussian
process from Subsection A.6.2. Define further

(S∗, T ∗) = argmaxs,t

{
W (s, t) −

(
s2 + t2

)}
, (4.2.4)

and let d = g+(0) − g−(0) and τ2 = a2ρ t−2
0 t1, where ρ = ρ(d, σ) = 1 + 4(SNR)2, where

the signal-to-noise ratio (SNR) is defined as

SNR =
|d|
σ

, (4.2.5)

and

t1 =
2 t20 M3

K(t0, 0)2

∫ M

0
K(u, 0)2 du . (4.2.6)

Notice that t1 is invariant under a rescaling of K; that is, t1 is unaffected if K is replaced
by Kζ(·) ≡ ζ2 K(ζ·) for any ζ > 0. Table 4.1 displays the values of t0 and t1 for some
commonly-used kernels supported on the interval [−1, 1] (that is, these are the kernels
denoted K(0) in the paragraph preceding the statement of Theorem 4.1). In the case of
the Epanechnikov kernel, t0 is the solution of the equation

−4
5
t5 +

8
3
t3 − 4t +

16
15

= 0

in the interval (0, 1).

Theorem 4.2. Assume conditions (C1)–(C3), and let ξ0 be as in Theorem 4.1. Then
x̂(2) = ξ0 h2 + τ2/3 Tn hn−1/3, where the random variable Tn converges in distribution to
T ∗ as n → ∞.
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Kernel Definition t0 t1
Epanechnikov kernel f1(u) ∝ (1 − u2) 0.3473 0.1664
Biweight (quartic) kernel f2(u) ∝ (1 − u2)2 0.2811 0.0893
Triweight kernel f3(u) ∝ (1 − u2)3 0.2423 0.0576

Table 4.1: Values of t0 and t1 for commonly-used kernel functions.

By utilising parts of the proof in Section 4.3, specifically with the exclusion of the re-
sults related to Lemma 4.2, we obtain a version of Theorem 4.2 for a ‘locally-constant’
estimator. With that expression we mean that the likelihood � is maximised over x only,
with the slope being fixed at the true value (equal to zero). The family of r.v.s {T ∗,0

c },
indexed by c ∈ R

∗
+, was introduced before the statement of Theorem A.3.

Theorem 4.3. Assume the same conditions as in Theorem 4.2, and let x̂
(2)
0 denote the

previously defined profiled maximiser. Then x̂
(2)
0 = ξ0 h2 + τ2/3 T ′

n hn−1/3, where the
random variable T ′

n converges in distribution to T ∗,0
1/2 as n → ∞.

As an immediate consequence of Theorems 4.2 and A.8, we see that the estimator Tn is
capable of achieving ‘near’ optimality in the minimax sense. Because the estimator T ′

n

uses extra knowledge on the geometry of the edge, it does not fit in the framework of
Subsection A.8.2.

In the subsequent remarks we briefly discuss some aspects and implications of the result
of Theorem 4.2, which will transfer to the situation of Theorem 4.3 in an obvious way
where applicable.

Remark 4.1. Well-definedness of T ∗. It follows directly from Lemma A.1 that the
process W (s, t) is indeed continuous. Theorem A.2 then establishes that T ∗ is well
defined.

Remark 4.2. Pointwise confidence bands. Theorem 4.2 suggests the following procedure
for constructing a conservative, pointwise confidence region for either C or its determin-
istic, biased approximation Ch. Let a0 denote an upper bound to the absolute value of a;
compute consistent estimates d̂ and σ̂2 of d and σ2, respectively, and thereby obtain an
estimate ρ̂ = ρ(d̂, σ̂) of ρ(d, σ); and, from the Monte Carlo results in Section 5.3, obtain
a value t(α) such that P{|T ∗| ≤ t(α)} = 1 − α. Put

r1 =
(
a2

0 t1 ρ̂
)1/3

t(α)hn−1/3 and r2 = a0 t20 h2 + r1 . (4.2.7)

Then, the band B1 [respectively, B2] formed as the ‘tube’

Ĉ r1
h = Ĉh ⊕ ball

(
0, r1

) [
Ĉ r2 = Ĉ ⊕ ball

(
0, r2

)]
(4.2.8)
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is an asymptotically conservative, pointwise, nominal (1 − α)-level confidence band for
Ch [for C], in the sense that any given point on Ch [on C] which is not at an end of the
curve is contained within the band with probability at least 1− α− ε, for any ε > 0 and
all sufficiently large n.

Indeed, suppose P is a point on C. Then by Theorem 4.2, the probability that there is a
point of Ĉ within distance r2 of P , and along the normal to C at P , is at least 1−α−ε for
any given ε > 0 and for all sufficiently large n. The point P certainly lies in B2. In this
argument it is not necessary for P to remain fixed as n increases, as long as it is moved
around on C in a manner that does not depend on the data, and as long as its location is
bounded away from any ends of C. When applying the argument to Ch, this ‘moving P ’
interpretation is important as the point P is then traced along the trajectory which
is unambiguously defined by its endpoint obtained as the limit as h → 0. We may
allow a0, h, d̂ and σ̂ to vary with location on the curve without appreciably affecting
the argument. It should be noted that the estimator Ch is essentially the one already
introduced in Section 2.4 (see p. 45) and is more of theoretical rather than practical
relevance.

An estimator d̂ of the local jump height d is directly obtainable from the algorithm that
produces our estimator Ĉ. Indeed, Ȳ+(x̂, θ̂)− Ȳ−(x̂, θ̂) estimates g+(x)− g−(x) at a point
x on C that is near to x̂ on Ĉ; there is a degree of ambiguity in the sign of that difference,
which is a consequence of θ̂ being specified only modulo π, but this does not affect ρ.
The disadvantage of this approach in the case of high curvature, as well as a method for
remedying this effect, are as discussed in Remark 2.1.

Remark 4.3. Simultaneous confidence bands. The results on confidence bands given
in Remark 4.2 may be extended to allow for construction of conservative simultaneous
confidence bands for either C or Ch. With the same notation as there, put

r1,sim =
(

2
3 log n

)1/2
r1 and r2,sim = a0 t20 h2 + r1,sim . (4.2.9)

Then, the band B1,sim [respectively, B2,sim] formed as the tube produced by the union of
the set of all discs centred on Ĉ and with radius r1,sim [radius r2,sim], is an asymptotically
conservative nominal (1 − α)-level confidence band for Ch [for C], minus its endpoints.
Call this property (P). For an outline of the argument, note first that the proof of
Theorem 4.1 in fact establishes uniform O(h2) convergence of Ch to C. (To bound the
supremum distance between these two curves, we may use arguments similar to those
employed to derive (P).) In order to verify the assertion about r1,sim in (4.2.9), split Ĉ
into small segments, each of approximate length 2h. Due to its locally-linear nature,
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the properties of Ĉ are controlled, with probability tending to 1 as n → ∞, by a linearly
increasing collection of independent copies of T ∗. As in the case of Chernoff’s distribution,
the distribution of T ∗ has lighter tails than those of a standard Normal variate. Hence,
we conclude from Galambos (1978, Theorem 4.4.4, p. 230) or Embrechts, Klüppelberg
and Mikosch (1997, Example 3.5.4, pp. 174ff) that the ratio of the maximum of, say,
q independent copies of T ∗ and (2 log q)1/2 tends a.s. to 1. In our argument, 2hq ≈
(length of C). In view of conditions (C3) and result (4.2.7), property (P) follows. It should
be remarked that the rate of convergence here is rather slow, although the finite-sample
approximation is not so poor that it is impractical; see Section 5.3. This is analogous to
the well-known property of sequences of independent and Normally distributed r.v.s; see
Hall (1979) and Leadbetter, Lindgren and Rootzén (1983, pp. 39–40).

In view of this and the remarks preceding the statement of Theorem 4.2, it seems to be
more natural to adopt a global error measure. Assuming only for the purposes of this
paragraph that C (and hence also Ĉ) is a closed curve, and that C and Ĉ enclose the
compact sets G and Ĝ = Ĝn respectively, it may be deduced by methods used in the proof
of Theorem 4.1 in Subsection 4.3.1 that

d1(G, Ĝn) = O
(
n−(2/3)+ε

)
,

where the semimetric d1 was defined in Subsection A.8, and ε > 0 may be made arbi-
trarily small by the choice of h. (The comments made in Remark 4.5 below on further
improvement of the convergence rate apply also in the present context.) Edge effects that
occur in adapting the definition to non-closed curves, pose few problems. The metric d1

seems to be the best suited one in the description of the global properties of Ĉ. The task
of bounding the implied constant in (4.3) requires knowledge about the overall geometry
of C, which poses the greatest problem in construction of confidence regions. Neverthe-
less, this metric will be shown in Section 5.3 to be practical in assessing performance of
the estimator.

Remark 4.4. Design points on a lattice. The case where the points Xi are on a regular
lattice (triangular, square or hexagonal), and so are nonrandom, is similar. The only
necessary changes are to replace the condition n−(1/3)+ε ≤ h ≤ n−(1/6)−ε in (C3) by
Cn(−1/4)+ε ≤ h ≤ n−(1/6)−ε, for C > 0 depending on the edge width of the lattice, and
replace ρ(d, σ) by 4σ2/d2. That is, we drop the component ‘1’ from ρ; it is contributed
by the stochastic variability of points in the Poisson process, and so is not relevant in the
case of a fixed grid. Taking h ∼ n−(1/4)+ε shows that the radius of the confidence band
is within a polynomial factor of the minimax-optimal order. This can be compared with
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Theorems 3.1–3.3 in Gayraud and Tsybakov (2002) who considered a testing problem in
a related ‘macroscopic’ setting; minimax rates of testing were defined in Ingster (1993).
The relations between our work and that of Gayraud and Tsybakov (2002) have been
delineated earlier in this thesis (see Section 1.3, p. 27).

Remark 4.5. Different orders of bandwidth. For bandwidths h of order n−1/6 or larger,
it remains true that x̂(2)−x

(2)
0 = τ2/3 Tn hn−1/3 where Tn =⇒ T ∗. However, an expansion

of x
(2)
0 that is valid up to terms of order hn−1/3 now includes terms of order at least h3.

Therefore, the simple manner in which Theorem 4.2 is expressed, leading to elementary
confidence bands for C, is no longer valid.

Sufficient regularity conditions for both a Taylor approximation to x
(2)
0 , of the form

x
(2)
0 = ξ0 h2 + . . . + ξr−2 hr + O(hr+1), and for the limit theorem x̂(2) = ξ0 h2 + . . . +

ξr−2 hr+τ2/3 Tn hn−1/3 where Tn =⇒ T ∗, are (C1), (C3) with the restriction h ≤ n−(1/6)−ε

replaced by h ≤ n−1/(3r)−ε for an integer r ≥ 2, and in place of (C2): f has r + 1
bounded derivatives in a neighbourhood of 0, and g+ and g− have r bounded derivatives
in a neighbourhood of O. Furthermore, we ask that in either case, K have a uniformly
bounded derivative of order (r − 1).

If h ∼ n−1/3 then the limiting distribution of x̂(2) − x
(2)
0 is not a Gaussian functional,

and depends intimately on the error distribution. If the condition imposed on that
distribution in (C3) is strengthened merely to the extent that a finite moment generat-
ing function in the neighbourhood of 0 is required, bandwidths of strictly larger order
than n−1/3 (log n)2/3 are admissible, and thus a convergence rate within a logarithmic
factor of optimal is achievable. To appreciate why, note that under these altered cir-
cumstances, exponential bounds may replace Markov-inequality bounds in the proof in
Subsection 4.3.2. This enables estimation of various intermediate quantities up to re-
mainders of logarithmic (instead of polynomial) size in n. Hence, deterioration of the
least-squares fit in (2.2.2) can be detected with smaller point counts in the local kernel
disc of interest.

Remark 4.6. The role of S∗. From the proof of Theorem 4.2, it can be seen that under
the same conditions as stated there, the variation of the estimated angle θ0 around the
true value zero satisfies arg(θ0) = O(h2) + τ2/3 Sn n−1/3, where the random variable Sn

converges in distribution to S∗ as n → ∞. Apart from the assertion of near-minimax
optimality, this result may be used in practice to monitor the behaviour of the estimator.
For example, by varying the bandwidth h at a given location and recomputing Sn as a
function of h, evidence for the locally-linear character of C may be gathered. The case of
zero curvature is addressed in more detail in Remark 4.8.
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Remark 4.7. Correlated errors. In practice it is often more realistic to model the errors
as dependent random variables. The purpose of this subsection is to show that if the
errors instead exhibit a ‘mild’ or short-range dependency (relative to the bandwidth), the
results obtained previously may be retained with only the asymptotic variance having
to be corrected by a scaling factor. Theoretical framework for this situation has been
laid down in work by Opsomer (1995, 1997) and Opsomer, Yang and Wang (1999), in
continuation of work by other authors (e.g. Altman (1990, 1993)) in the one-dimensional
(time-series) context. That framework has aimed at generalisation of time-series methods,
both with regard to the domain of the covariates (which is spatial) and the non-gridded
character of the design data.

Below we state conditions and the adjustments of the results obtained by Opsomer (1995)
and Opsomer, Yang and Wang (1999) to cater for our setup. These papers consider
locally-linear regression estimators rather than kernel estimators. It seems, however,
that this restriction was solely motivated by the known asymptotic inadmissibility of
kernel-based estimators in the case of random design; see Wand and Jones (1996).

Conditions on the correlation structure:

The error variables have the representation {εi = ε(Xi), i ∈ I}, where {ε(z), z ∈ Π} is a
stationary second-order process with mean zero and covariance function

E(ε(x)ε(y)) = σ2ψ(‖x − y‖) . (4.2.10)

Of the sequence of correlation functions ψ = ψn, we ask that it have the following
properties, which essentially agree with the properties (P.1) and (P.2) from Opsomer
(1995) and Opsomer, Yang and Wang (1999).

(D.1) ψn is differentiable, n−1/3h
∫
|ψn(t − x)| dt = O(1) and n−1/3h

∫
|ψn(t − x)|2 dt =

O(1);

(D.2) There exists ω̄ > 0 such that∫
|ψn(t)| I{‖t| > ω̄h} dt = o

(∫
|ψn|(t) dt

)
.

Under conditions (D.1) and (D.2), the results in the previously cited papers continue
to hold, with a correction factor multiplied by σ2 in Theorem 4.1, in analogy to the
factor of Opsomer (1999, Theorem 2.1). An admissible, and often plausible, choice for
the correlation function is ψn(t) = {1 + (n1/2t)α}−1, where α > 1 denotes a (globally or
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locally estimated) parameter. Estimation of α poses a difficult problem in practice, on
which further research is needed.

If the exploratory data are gridded, dependence structures which are, in a sense, cross-
products of ordinary ARMA(p, q) time series models have been studied by various au-
thors; see Etchison, Patula and Brownie (1994) and the references cited therein. Note
that these models do not encompass dependence structures as at (4.2.10).

Remark 4.8. Case of zero curvature. The case a = 0, which is not covered by The-
orem 4.2, leads to a different and non-symmetric distribution type when smoothness
assumptions are strengthened. Under the old assumptions, consistency of x̂(2) still holds.

The practical relevance of this case stems from the situation where curvature vanishes
on a whole subinterval (rather than at a single point) of the parameter interval indexing
C. In the typical situation when no knowledge about C is available a priori, the method
presented in this paper should be seen as sequential to a ‘macroscopic,’ or low-level,
procedure for locating straight segments of C. Marcel and Cattoen (1997) have described
a method on which a construction of a pilot estimator of the fault line, gathering evidence
of possible straight line segments, may be based. In Section 5.4 we shall suggest another
macroscopic approach that also deals with corner points, that is, discontinuities in the
second derivative. Note that in many circumstances where curved and linear parts of C
join, corner points arise at the ends of the linear parts, as is the case with the example
function in Section 5.4. For any separated straight line segment, and through use of
its slope, confidence bands may be obtained by using Theorem 4.3. In order for this
approach to be theoretically valid, the slope of the linear part of the edge must have an
estimation error no larger then O(h). Also, the bands will usually not connect with the
bands yielded by the procedure in the vicinity of the curved parts of C.

If curvature vanishes at isolated points on C only, good practical performance of confi-
dence bands can be expected without any alteration to the procedure, as evinced by the
simulation study in Section 5.3.

Remark 4.9. Case of corners. The case where C exhibits corners may be addressed by
using a low-level method as in Remark 4.8, or by resorting to the devices mentioned in
Remark 2.9. While a version of Theorem 4.1, modified so to accommodate kinks, may
be readily devised, the limiting distribution will differ from that in Theorem 4.2 mainly
insofar as the drift term subtracted from the pertaining Gaussian process is no longer
quadratic.

In the remaining part of this section we address the cases of edges in density and Poisson
intensity surfaces. In the density setting, and as in Chapter 3, we assume that i.i.d. data
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X = {Xi, 1 ≤ i ≤ n} are sampled from a distribution with density g, where n is nonran-
dom, and g is smooth except for a fault line running through its support. The relevant
kernel-weighted log-likelihood ratio is defined as

�(2)(x, θ) =
{

N+(x, θ) log N+(x, θ) + N−(x, θ) log N−(x, θ)

−N(x) log N(x)
}

nh2 N(x)−1 . (4.2.11)

This differs from the likelihood proposed at (3.3.1) (see also the conventions there) only
by the normalisation factor nh2, which is included only to stabilise the variance of �(2),
in a similar fashion as for 4.2.1; it is of course irrelevant for finding the maximiser of �(2).
The fault line within the density surface defined by ϕ, or a part thereof, is then estimated
as a ridge in the likelihood surface defined in analogy to the regression setting.

As a second variation of the regression problem, consider the situation when a realisation
of an (inhomogeneous) planar Poisson process X = Xn with intensity ng, where the
function g is bounded away from zero and infinity throughout Π; that g is represented
in the interior of Π by two sufficiently smooth functions g+, g− corresponding to the
respective sides of a fault line. We also assume that |g+ − g−| is bounded from below by
a positive constant; and that the fault line has regularity properties as specified in the
regression setting. To estimate (a section of) this line, we may again use the statistic
at (4.2.11). The effective sample size, that is Nn = Xn(Π), clearly satisfies the condition
stated on p. 19.

Theorem 4.4 below is an analogue of Theorems 4.1–4.2 for the case of a fault line in a
density or intensity surface. Let (C′

1) and (C′
2) denote conditions (C1) and (C2), with

in addition the assumption that g is bounded away from 0 in an open neighbourhood of
the fault line. Define t̃0 ∈ (0, M) as the solution of (4.2.3), where an extra multiplier of
ς ≡ g+(0)/g−(0) is taken on the left-hand side, and note that the bias decreases (increases)
in the respective cases ± log ς > 0. The quantities t̃1 and τ̃1 are defined as at (4.2.6),
but with t̃0 now replacing t0. Take ρ = 1 in the definitions preceding Theorem 4.2 and
put n1 = 1

2n{g+(0)+ g−(0)}. When presented with an intensity surface, we would adopt
entirely similar definitions.

Theorem 4.4. Assume the previous notation, and consider either of the density or
intensity surface problems described above.
(i) If conditions (C′

1) hold then as h → 0, x0 = (0, h2ξ0 + o(h2)) where ξ0 = at̃20, and
‖θ0−θ∗‖ = o(h). If both (C′

1) and (C′
2) holds then x0 = (0, h2ξ0 +O(h3)) and ‖θ0−θ∗‖ =

O(h2).
(ii) Assume conditions (C′

1)–(C′
2) and (C3). Then x̂(2) = ξ0 h2 + τ̃

2/3
1 Tn hn

−1/3
1 , where
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the random variable Tn converges in distribution to T ∗ as n → ∞.

4.3 Proofs

4.3.1 Proof of Theorem 4.1

Let d = g+(0) − g−(0), and for x = (x(1), x(2)) and 0 ≤ t < M , define g±,i(x) =
(∂/∂x(i)) g±(x), κ =

∫
x(2)>0 x(2) K(x) dx,

κ1(t) =
∫ M

t

(
u2 − t2)K(u, 0) du , κ2(t) =

∫ t

0

(
t2 − u2)K(u, 0) du . (4.3.1)

Recall the definitions around (3.2.1), (3.5.1) and those referenced there, and in addition
put

G±(x, θ) =
∑

i∈I±(x,θ)

g(Xi)Ki(x) ,

and ν = EN(x) = nh2 (not depending on x). As in the proof of Theorem 2.1 in
Section 2.4 (see also Hall and Rau, 2002), it may be shown that maximisation of the
original likelihood � is asymptotically equivalent to finding the value (x, θ) = (x0, θ0)
that maximises ψ(x, θ) ≡ |E{G+(x, θ) − G−(x, θ)}| subject to x(1) = 0 and θ0 · θ∗ ≥ 0,
where we recall that θ∗ = (1, 0).

We need several properties of ψ(x, θ), which are summarised in the next lemma. In this
discussion it is sufficient to confine attention to vectors θ such that θ · θ∗ ≥ 0. Assume
for the time being that the curvature, 2a, of C at O is nonzero, and let x and θ depend
on h.

Lemma 4.1. Let ψ(x, θ) be defined as above.
(i) If x(1) = 0 and x(2) = O(h2), the value of ψ(x, θ∗) is strictly smaller, for all sufficiently
small h, if x(2) has the same sign as 2a, the curvature, than it is if the sign is opposite.
(ii) If x(1) = 0 and x(2) is of strictly larger order than h2 then ψ(x, θ) is strictly larger,
for all sufficiently small h, than ψ(0, θ∗).
(iii) If x(1) = 0, if x(2) = O(h2), and if ‖θ − θ∗‖ ≥ Ch (where C > 0), for all sufficiently
small h, then there exists a bounded function ξ = ξ(h), with the same sign as a, such
that ψ((0, ξh2), θ∗) is strictly greater than ψ(x, θ) for all sufficiently small h.

Proof of Lemma 4.1. Part (i) is clear from geometric considerations. In order to prove (ii)
and (iii), we may use the calculations in Sections 4.3.2 and 4.3.3, specifically for EG±(x, θ)
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and χ(x, θ) in the notation introduced there. (In the case of χ(x, θ), we dispense with
the assumption |β| ≤ n−ε.) In either case, it is easy to verify the asserted reduction of
the value of ψ(x, θ), which is the coefficient of the leading term of size O(nh3).

Combining properties (i)–(iii) of Lemma 4.1, and using a subsequence argument, we
deduce that, provided a �= 0, θ0 = θ∗ + o(h) and, for a bounded function ξ of h having
the same sign as a, x0 = (0, h2ξ). The case where a = 0 is straightforward; there it is
clear from considerations of symmetry that x0 = (0, o(h2)) and θ0 = θ∗ + o(h). To derive
the first part of the theorem it remains to find the asymptotic value of ξ in the case
a �= 0.

To this end we shall prove that if x = (0, h2ξ) and θ = θ∗ + o(h) then

E{G+(x, θ) − G−(x, θ)} = nh2
[

1
2 d + hκ {g+,2(0) − g−,2(0)} (4.3.2)

− 2 h|a|d {κ1(w) + κ2(w)} + o(h)
]
,

where w = w(ξ) = min{(ξ/a)1/2, M}. It follows that |E{G+(x, θ) − G−(x, θ)}| equals
−2nh3|ad| {κ1(w) + κ2(w)} plus terms, with a positive sum, that either do not depend
on ξ or are of smaller order than h3 as h → 0. Therefore, ξ = ξ0 + o(1), where ξ0 is the
quantity that minimises κ1(w0) + κ2(w0) when w0 = w(ξ0). Elementary calculus shows
that κ1(t) + κ2(t) is minimised at t = t0, and so ξ0 = at20. This gives the first part of the
theorem.

To derive the second part of the theorem, note that under the stronger conditions there
the arguments two paragraphs above imply that θ0 = θ∗ + O(h2); cf. Lemma 4.2 below.
Furthermore,

κ1(w) + κ2(w) = κ1(w0) + κ2(w0) + b1 (w − w0)2 + o
(
|w − w0|2

)
,

where b1 = 2t0K(t0, 0). We may now derive the following form of (4.3.2): writing
x0 = (0, h2ξ0 + h2η) where η = η(h) → 0, we have, provided θ = θ∗ + O(h2),

E{G+(x, θ) − G−(x, θ)} = nh2
[

1
2 d + hQ1(h) − 2 h|a|d

{
κ1(w0) + κ2(w0)

+ b2 η2 + o
(
η2
)}

+ O
(
h3
)]

, (4.3.3)

where b2 = (2a2t0)−1K(t0, 0) and Q1(h) is bounded and does not depend on η. It follows
that η = O(h), which implies that x0 = (0, h2ξ0 + O(h3)).

Finally we prove (4.3.2). Without loss of generality, a > 0. Then for any bounded
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function ξ = ξ(h) we have, with x = (0, ξh2) and θ = θ∗ + o(h),

E{G+(x, θ)} = nh2

∫
y(2)>0

g+(x + hy)K(y) dy

+ 2nh2

∫ M

w
dy(1)

∫ h{a(y(1))2−ξ}

0

{
g−(x + hy)

− g+(x + hy)
}

K(y) dy(2) + o
(
nh3
)

= 1
2 nh2 g+(0) + nh3 g+,2(0)κ − 2nh3ad κ1(w) + o

(
nh3
)
,

E{G−(x, θ)} = nh2

∫
y(2)>0

g−(x + hy)K(y) dy

+ 2nh2

∫ w

0
dy(1)

∫ 0

h{a(y(1))2−ξ}

{
g+(x + hy)

− g−(x + hy)
}

K(y) dy(2) + o
(
nh3
)

= 1
2 nh2 g−(0) + nh3 g−,2(0)κ + 2nh3ad κ2(w) + o

(
nh3
)
,

implying (4.3.2).

4.3.2 Proof of Theorem 4.2

As we did for Theorem 2.1, we shall start with an intuitive outline of the proof before
giving the stringent arguments.

Intuitive Outline of Proof

Under the conditions of Theorem 4.2 we may, by Theorem 4.1, write x0 = (0, x
(2)
0 ) =

(0, h2ξ0 + O(h3)), where ξ0 is as in Theorem 2.1; and θ0 = (cos ω0, sinω0), where ω0 =
O(h2). Consider a semidisc of radius h with its centre at the point x1 = (0, h2ξ0 + αt),
where α = hn−1/3 and −∞ < t < ∞. Assume that the diameter, D, of the semidisc
makes an angle ω1 = (α/h)s to the horizontal, where −∞ < s < ∞. Note that α is of
strictly larger order than h3, and so we have shifted the value of x(2) by an amount αt

that is of larger order than the remainder in our approximation to x
(2)
0 .

Tilting the disc through α/h radians raises or lowers the ends of its diameter by the same
amount, in order of magnitude terms, as moving the disc’s centre vertically through
distance α. This is the reason for the choosing the particular relative values of the
amounts of translation and tilting.

It may be deduced from (4.3.3) that the effect on λ(x, θ), defined below at (4.3.5), of
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shifting x a distance αt vertically away from x0, as suggested by our definition of x
(2)
1 ,

is to reduce its value by an amount νhβ2τ1t
−1
0 t2, where ν = nh2, β = α/h2 = (nh3)−1/3

and τ1 > 0. Lemma 4.2 will show that the effect of tilting D through (α/h)s radians is to
produce a further reduction, by νhβ2τ1t0s

2, in λ(x, θ); and that the ‘interaction’ effect
of doing both these things together is negligibly small. Therefore, up to terms that are
either negligibly small or do not depend on s or t, translation of x0 to x1 and rotation of
θ0 to θ1 changes λ from λ(x0, θ0) to λ(x1, θ1) = λ(x0, θ0) − νhβ2τ1 (t0s2 + t−1

0 t2).

This takes care of the deterministic effects of translating and rotating the diameter of the
semidisc. It may be proved that to first order, the stochastic effects equal νhβ2τ2 Ŵ1(s, t),
where τ2 > 0 and Ŵ1 and Ŵ2 will denote bivariate stochastic processes that are asymp-
totically distributed as W . We chose the formula for β, i.e. β = (nh3)−1/3, so that the
deterministic and stochastic terms are both of size νhβ2. Their net contribution is their
sum,

νhβ2
{
τ2 Ŵ1(s, t) − τ1

(
t0s

2 + t−1
0 t2

)}
. (4.3.4)

Note that in (4.3.4), the quantity t0 appears once in the numerator and once in the
denominator. This feature is discussed in Remark 4.10. To first order, �(x1, θ1) equals the
quantity at (4.3.4) plus terms that do not depend on s or t. Changing scale appropriately,
so that (s, t) transforms to (u, v), renders the quantity at (4.3.4) equal to a constant
multiple of Ŵ2(u, v) − (u2 + v2). It follows that the value of t at the maximum of
�(x1, θ1), over s and t, equals a constant multiple of a random variable whose limiting
distribution is that of T ∗, defined in Section 4.2. Theorem 4.2 follows from this result.

Details of Proof

We now turn to the details of the proof of Theorem 4.2. First we state and prove a
lemma, describing the effects of small rotations on E{G+(x, θ) − G−(x, θ)}.

Lemma 4.2. Assume the conditions of Theorem 4.2, with a > 0. Let x = (0, ξh2), where
ξ = ξ(h) ≥ 0 is bounded, and let θ = (cos hβ, sinhβ). Then,

χ(x, θ) ≡ E{G+(x, θ) − G−(x, θ)} − E{G+(x, θ∗) − G−(x, θ∗)}
= −d K

{
(ξ/a)1/2, 0

} (
ξ
/
a3
)1/2

νhβ2 + o
(
νhβ2

)
+ O

(
νh3
)
,

uniformly in values of β satisfying |β| ≤ n−ε for any given ε > 0.

From the lemma and (4.3.3) we conclude that if x(t) = (0, h2ξ0+h2βt), θ(s) = (cos(hβs),
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sin(hβs)) and
λ(x, θ) = ν−1

{
EG+(x, θ) − EG−(x, θ)

}2
, (4.3.5)

then

λ(x(t), θ(s)) = −νhβ2τ1

(
t0s

2 + t−1
0 t2

)
+ o
(
νhβ2s2) + o

(
νhβ2t2

)
+ O

(
νh3
)

+ terms that do not depend on s or t , (4.3.6)

where τ1 = |a|−1d2K(t0, 0). If we take β = (nh3)−1/3 then (4.3.6) holds uniformly in
|s|, |t| ≤ nε for some ε > 0.

Proof of Lemma 4.2. Put c± = g±(0), in which notation d = c+ − c−. Write x = (0, ξh2)
where ξ = ξ(h) is bounded. Without loss of generality, β ≥ 0. For simplicity we shall
consider only the case where g± ≡ c± and C has exactly the equation y(2) = a(y(1))2; in a
somewhat more complicated manner than in Subsection 4.3.1, it may be shown that this
induces an error term of size O

(
νh3
)
. Put u1 = (ξ/a)1/2, and let y(1) = u2 < 0, u3 > 0

denote the two solutions of the pair of equations y(2) = ha(y(1))2 and y(2) = h(ξ +βy(1)).
Then we have u2 < u1 < u3, |u2| < |u3| and

(2ν)−1χ(x, θ)

= c−

∫ −u1

−M
dy(1)

∫ 0

hβy(1)

K(y) dy(2) + c−

∫ u2

−u1

dy(1)

∫ h{a(y(1))2−ξ}

hβy(1)

K(y) dy(2)

+ c+

∫ u2

−u1

dy(1)

∫ 0

h{a(y(1))2−ξ}
K(y) dy(2) + c+

∫ 0

u2

dy(1)

∫ 0

hβy(1)

K(y) dy(2)

− c+

∫ u1

0
dy(1)

∫ hβy(1)

0
K(y) dy(2) − c−

∫ u3

u1

dy(1)

∫ h{a(y(1))2−ξ}

0
K(y) dy(2)

− c+

∫ u3

u1

dy(1)

∫ hβy(1)

h{a(y(1))2−ξ}
K(y) dy(2) − c−

∫ M

u3

dy(1)

∫ hβy(1)

0
K(y) dy(2)

= (I)+(II)+. . .+(VIII) .

(The 2 in the factor (2ν)−1 on the left-hand side derives from the fact that rotation
results in counts being simultaneously added to E{G+(x, θ) − G−(x, θ)} and removed
from E{G+(x, θ∗) − G−(x, θ∗)}, or vice versa; so each change in counts needs to be
included twice.) In the inner integral of term (II), we perform a substitution ỹ(2) �→
−y(2), and combine terms (I),(VI) and (VIII). The terms (III),(IV) and (V) can also be
combined. Hence, retaining the name of the variable y(2), it follows that (2ν)−1χ(x, θ)
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equals (c− − c+)A, where

A =
∫ u1

−u2

dy(1)

∫ h{a(y(1))2−ξ}

−hβy(1)

K(y) dy(2) +
∫ u3

u1

dy(1)

∫ hβy(1)

h{a(y(1))2−ξ}
K(y) dy(2) . (4.3.1)

Now, u1 = (ξ/a)1/2 and, by Taylor expansion, −u2 < u3 are given by −u2 = u1 −
(β/2a) + O(β2) and u3 = u1 + (β/2a) + O(β2). Therefore, approximating the parabola
y(2) = ha(y(1))2 by a straight line in the vicinity of (u1, hau2

1), we see that

A =
∫ u1

u1−(β/2a)
dy(1)

∫ 2hau1(y(1)−u1)

−hβy(1)

K(u1, 0) dy(2)

+
∫ u1+(β/2a)

u1

dy(1)

∫ hβy(1)

2hau1(y(1)−u1)
K(u1, 0) dy(2) + o

(
hβ2
)

= 2 K(u1, 0)
∫ β/2a

0
dy(1)

∫ hβu1

2hau1y(1)

dy(2) + o
(
hβ2
)

= 1
2 K(u1, 0)hβ2u1a

−1 + o
(
hβ2
)
.

This concludes the proof of the lemma.

Remark 4.10. The role of the kernel-related quantities. As remarked in the paragraph
containing (4.3.4), the quantity t0 appears once in the numerator as well as in the de-
nominator of that equation. This can be intuitively explained as follows. In the proofs of
Theorem 4.1 and Lemma 4.2, and disregarding the kernel weights for the moment, we have
approximated the modulus of continuity of the ‘area function’ (s, t) �→ ‖R+ �A(s, t)‖,
where R+ and A(·, ·) were defined in the paragraphs containing (4.2.2) and at (A.6.3)
respectively. It is not surprising that the order of growth of the coordinate-wise moduli
of the area function are equal. However, the areas transferred from one semi-disc to the
other as one moves away from the minimum of the area function are far from the centre
of the kernel disc in the case of translating (that is, for varying t), but close to that centre
in the case of tilting or changes in the s variable. Being a measure of concentration of
the mass of K about the origin, the quantity t0 naturally reflects these properties.

Now we return to the proof of Theorem 4.2, and take β = (nh3)−1/3 rather than the more
general definition assumed in the lemma. Recall that εi = Yi−g(Xi), and (redefining some
of the notation from Chapters 2 and 3 for convenience) put µ±(x, θ) = E{G±(x, θ)},

S±(x, θ) =
∑

i∈I±(x,θ)

εi Ki(x) , (4.3.7)
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T±(x, θ) = G±(x, θ) − µ±(x, θ), U±(x, θ) = N±(x, θ) − 1
2 ν, S = S+ + S−, T = T+ + T−,

U = U+ + U− = N − ν and γ±(x, θ) = 2ν−1µ±(x, θ). For all B, ε > 0, and with R1

denoting any one of S±/ν, T±/ν and U±/ν, we may obtain, using Markov-inequality
bounds,

sup
x,θ

P
{
|R1(x, θ)| > ν−1/2 nε

}
= O

(
n−B

)
, (4.3.8)

where the supremum is taken over all unit vectors θ and vectors x such that x is in a
sufficiently small open neighbourhood of C.

In the formula for �, express N± as 1
2ν +U± and G± as µ± +T±, and then Taylor expand

� as a power series in S±, T± and U±, to obtain:

�(x, θ) = λ(x, θ) + L(x, θ) + Q(x, θ) + R2(x, θ) , (4.3.9)

where λ, defined at (4.3.5), represents terms that do not involve S±, T± and U±,

L ≡ 1
4 U (γ+ − γ−)2 + (γ+ − γ−)

{
(S+ + T+ − γ+ U+) − (S− + T− − γ− U−)

}
(4.3.10)

represents terms that are linear in S±, T± and U±, Q represents terms that are quadratic
in those quantities, and R2 represents terms that are cubic or of higher order.

In view of (4.3.8) we have, for all B, ε > 0,

sup
x,θ

P
{
|R2(x, θ)| > ν−1/2 nε

}
= O

(
n−B

)
. (4.3.11)

A similar argument shows that, if δ = h2nη for η > 0 sufficiently small,

sup
x,θ,x′,θ′

P
{
|Q(x, θ) − Q(x′, θ′)| >

(
δ
/
nh3
)1/2

nε
}

= O
(
n−B

)
, (4.3.12)

where the supremum is taken over all unit vectors θ, θ′ and vectors x, x′ such that x is in an
open neighbourhood of C and ‖x−x′‖ ≤ δ, ‖θ− θ′‖ ≤ δ/h. (Note that (nhδ)1/2/(nh2) =
(δ/nh3)1/2.)

Put
L1 = 1

4 d2 U + d
{
(S+ + T+ − c+U+) − (S− + T− − c−U−)

}
.

Recall the definition of (x0, θ0) as the maximiser of the asymptotic likelihood, as given
in the paragraph containing (4.2.3). Observe that γ+ − γ− differs from d by O(δ/h),
uniformly in x, θ such that ‖x−x0‖ ≤ δ and ‖θ− θ0‖ ≤ δ/h, and that in the same sense,
γ± differs from c± by O(δ/h), with c± as in the proof of Lemma 4.2. Therefore, using
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Markov-inequality bounds we may show that, for B > 0 arbitrarily large,

sup
x,θ

0 P
{
|L(x, θ) − L1(x, θ)| > n(1/2)+ε δ

}
= O

(
n−B

)
, (4.3.13)

where sup0
x,θ denotes the supremum over x, θ such that ‖x−x0‖ ≤ δ and ‖θ− θ0‖ ≤ δ/h.

Combining (4.3.9)–(4.3.13) we conclude that

�(x, θ) = λ(x, θ) + L1(x, θ) + R3(x, θ) + R4(x0, θ0) , (4.3.14)

where R4(x0, θ0) does not depend on (x, θ) and, since δ = h2nη and n−(1/3)+ε ≤ h ≤
n−(1/6)−ε for some ε, η > 0, we have for j = 3 and η = η(ε) > 0 sufficiently small,

sup
x,θ

0 P
{
|Rj(x, θ)| > n(1/2)+ε δ

}
= O

(
n−B

)
. (4.3.15)

Defining c = c+ + c−,

L2 = d
{
2 (S+ + T+) − c U+

}
and L3 =

(
d

4
+ c−

)
d U − d (S + T ) ,

we have
L1 = L2 + L3 . (4.3.16)

Using the inequality |Ki(x) − Ki(x0)| ≤ C‖x − x0‖/h, where the constant C depends
only on K, we may prove using Markov-inequality bounds that, with V denoting any of
S, T and U , we have for all B, ε > 0,

sup
x,θ

0 P
{
|V (x, θ) − V (x0, θ0)| > n(1/2)+ε δ

}
= O

(
n−B

)
. (4.3.17)

Therefore,
sup
x,θ

0 P
{
|L3(x, θ) − L3(x0, θ0)| > n(1/2)+ε δ

}
= O

(
n−B

)
. (4.3.18)

Put J1(x, θ) = I+(x, θ)\I+(x0, θ0), J2(x, θ) = I+(x0, θ0)\I+(x, θ), J3(x, θ) = I+(x, θ) ∩
I+(x0, θ0),

D1(x, θ) =
∑

i∈J1(x,θ)

vi Ki(x) , D2(x, θ) =
∑

i∈J1(x,θ)

vi Ki(x0) ,

D3(x, θ) =
∑

i∈J2(x,θ)

vi Ki(x0) , D4(x, θ) =
∑

i∈J3(x,θ)

vi

{
Ki(x) − Ki(x0)

}
,

∆j = Dj − E(Dj) ,
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where vi = εi, g(Xi), 1 in the cases V = S, T, U respectively. Then,

V+(x, θ) − V+(x0, θ0) = ∆1(x, θ) − ∆3(x, θ) + ∆4(x, θ) , (4.3.19)

and by an argument similar to that leading to (4.3.17),

sup
x,θ

0 P
{
|∆1(x, θ) − ∆2(x, θ)| > n(1/2)+ε δ

}
= O

(
n−B

)
,

sup
x,θ

0 P
{
|∆4(x, θ)| > n(1/2)+ε δ

}
= O

(
n−B

)
. (4.3.20)

Combining (4.3.1)–(4.3.20) we see that we may write

�(x, θ) = λ(x, θ) + L2(x, θ) + R5(x, θ) + R6(x0, θ0) ,

where R6(x0, θ0) does not depend on (x, θ), and R5(x, θ) satisfies (4.3.15). Let N+,±(x, θ)
denote the sum of Ki(x) over indices i ∈ I+(x, θ) such that Xi ∈ R±, with the ± signs
taken respectively. Then, T+ ≈ c+N+,+ + c−N+,− − µ+, and in fact (4.3.15) holds if we
take Rj there equal to T+ − (c+N+,+ + c−N+,− − µ+). Therefore we may write

�(x, θ) = λ(x, θ) + L0(x, θ) + R7(x, θ) + R6(x0, θ0) , (4.3.21)

where R7 satisfies (4.3.15) and

L0 = d
{
2
(
c+N+,+ + c−N+,− − µ+ + S+

)
− c U+

}
= d

{
d
(
N+,+ − N+,−

)
+ 2
(
S+ − µ+

)
+

c

2
ν
}

= d
{
d
(
N+,+ − N+,− − E

(
N+,+ − N+,−

))
+ 2 S+

}
. (4.3.22)

Define x(t) = (0, ξ0h
2 + h2βt) and θ(s) = (cos ω(s), sin ω(s)), where ω = hβs, −∞ <

s, t < ∞ and β = (nh3)−1/3. Put S[s, t] = S+(x(t), θ(s)),

τ2
2 = 2d2

(
d2 + 4σ2

)
M3

∫ M

0
K(u, 0)2 du (4.3.23)

and

N [s, t] = N+,+(x(t), θ(s)) − N+,−(x(t), θ(s))

−E
{
N+,+(x(t), θ(s)) − N+,−(x(t), θ(s))

}
. (4.3.24)
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In conclusion we establish the following assertions, which will enable us to conclude the
proof of Theorem 4.2: (a) the stochastic process Ŵ1, defined by

Ŵ1(s, t) ≡
(
νhβ2

)−1
τ−1
2 d

(
d N [s, t] + 2S[s, t]

)
, (4.3.25)

converges weakly to a Gaussian process W (K) in the Skorokhod space of functions to
which we referred in Subsection A.6.3; and (b) the ‘argmax’ functional, which defines the
sequence of estimators of perpendicular distance and slope, transfers to the Gaussian limit
in (a). To appreciate the implications of (a) for �(x, θ), note that by (4.3.6) and (4.3.21),
and by using an almost sure representation on a complete probability space (Ω, E , P ′)
(the existence of which is ensured by Theorem A.1), there exists for all δ > 0 a set U ∈ E
with P ′(U) ≥ 1 − δ, on which

�(x(t), θ(s)) = νhβ2
{

τ2 W (K)(s, t) − τ1

(
t0s

2 + t−1
0 t2

)}
+ o
{
νhβ2(t0s2 + t−1

0 t2)
}

+ O
(
νh3
)

+ terms that do not depend on s or t , (4.3.26)

uniformly in (s, t) ∈ An,ε, where

An,ε ≡ {(u, v) : |u| ≤ c1n
ε, |v| ≤ c2n

ε} (4.3.27)

for some c1, c2 > 0 and ε > 0 sufficiently small.

First we prove (a). Within this part of the proof, it may be assumed that attention is
restricted to a compact subset S1 ⊆ S, where S ≡ {|x(1)| ≤ M}. Let F0 denote the
collection of subsets of R

2 defined in the paragraph containing (A.6.1). By Lemma A.3,
the class F0 is an indexing collection in the sense of Definition A.5. Lemma A.2 implies
that the process W is continuous on F0 with respect to the metric d1.

We now proceed to verify the conditions of Theorem A.5 and Remark A.1. Define the
counting process

Ñ(A) =
∑

i:Xi∈A

Ki(x) , A ∈ A , A ⊂ S1 , (4.3.28)

let Ñ [s, t] = Ñ(A(s, t) � A(0, 0)), and define S̃ in a similar way by summing in (4.3.28)
over εi Ki instead of Ki. The process that is defined as Ŵ1 at (4.3.25), with replacing
N, S by Ñ and S̃ respectively, is a process somewhat similar to that studied in (IM,
Section 9.2, pp. 181ff). It is the continuity property of the process which allows us,
by Remark A.1, to establish weak convergence. Conditions 2 on 3 from Remark A.1 in
Section A.6.3 may be verified by similar Markov-inequality arguments as were used to
derive formulae (4.3.8) and (4.3.17), respectively, in conjunction with the Borel-Cantelli
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lemma. The variance measure of this process is asymptotically equal to Lebesgue measure
with kernel weights depending on the distance from the axis x(1) = 0, as at (4.3.23). Using
the conditional uniformity property of the Poisson process, it may further be deduced that
the remaining conditions 1–4 of Theorem A.5 hold; the calculations are similar to those
in (IM, pp. 181ff), and note that condition 2 is trivially satisfied. The limiting Gaussian
process depends on K, with the variance measure having the previously mentioned kernel-
weighted form. In view of the observations made above, we can apply the result stated in
Remark A.1, to obtain the convergence in distribution on S1 of the process considered,
and hence also of Ŵ1, to W . Since S1 ⊆ S was arbitrary, the proof of (a) is complete.

Next we derive (b). Let (Sn, Tn) be any measurable sequence such that

�(Sn, Tn) ≥ sup
(s,t)∈An,ε

�(x(t), θ(s)) − op(1) ,

where An,ε was defined at (4.3.27). To obtain (b) we will apply Theorems A.6 and A.7
on the argmax functional. It follows from Theorem A.7 in Subsection A.7.2, using the
statement from its last sentence, that with probability tending to 1, uniformly in n, as
B → ∞, the supremum of τ2Ŵ1(s, t) − τ1(t0s2 + t−1

0 t2) over (s, t) ∈ An,ε, for ε > 0
sufficiently small, occurs for (s, t) ∈ (−B, B)2, whence the sequence (Sn, Tn) is uniformly
tight. A bound on the continuity modulus of N [s, t] is readily available, and due to
the moment condition on the errors imposed in (C3), it may be shown that that bound
also applies to the process S[s, t]. To obtain these results we use the fact that K has a
bounded derivative. Hence, assertion (b) follows.

In the final step of the proof we separate out those quantities on the right-hand side
of (4.3.26) which, via t0, depend on K. We display this dependency explicitly, so that
t0(L) denotes the value of t0 calculated for a kernel L. First, rescale K by letting
Kt0(x) = t20 K(t0x), so that the disc on which Kt0 is supported has radius t−1

0 M . Then
it is readily seen that t0(Kt0) = 1, whence we may consider (4.3.26) with t0 replaced
by unity. In equation (4.3.21) we change variable from (s, t) to (u, v), where s = τ3u,
t = τ3v and τ3 = (τ2/τ1)2/3 = τ2/3, τ being as in the paragraph containing (4.2.4). Put
Ŵ2(u, v) = τ

−1/2
3 Ŵ1(τ3u, τ3v). By assertion (a), Ŵ2 converges weakly, on bounded rect-

angles, to W (K). Furthermore, the previous assertions and (4.3.21) imply that

argmaxs,t

{
�(x(t), θ(s))

}
=⇒ argmaxs,t

{
τ2 Ŵ1(s, t) − τ1

(
s2 + t2

)}
= argmaxu,v

{
τ2 τ

1/2
3 Ŵ2(u, v) − τ1 τ2

3

(
u2 + v2

)}
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= argmaxu,v

{
Ŵ2(u, v) −

(
u2 + v2

)}
d= τ2/3

(
S∗, T ∗) .

In view of the scaling of x(t), this proves Theorem 4.2 if, in computing the supremum
that defines x̂ = (0, x̂(2)), we restrict attention to values of x = (0, x(2)) that satisfy
|x(2)| ≤ hn−(1/3)+ε for ε > 0 sufficiently small, and also note that W may replace W (K)

in the definition of the distribution of the maximiser. A subsidiary argument may be
used to extend this result to the range |x(2)| ≤ r, where r > 0 is such that C is convex
or concave throughout the disc of radius r centred at the origin. By analogous reasoning
for θ(s), we may verify the statement in Remark 4.6.

4.3.3 Outline Proof of Theorem 4.4

The arguments employed in the present instance are similar to those in Sections 4.3.1
and 4.3.2, and hence we shall keep rather brief. By expanding the likelihood at (4.2.11),
we obtain

�(2)(x, θ) = λ(2)(x, θ) + L(2)(x, θ) + Q(2)(x, θ) + R
(2)
2 (x, θ) ,

where

λ(2)(x, θ) =
{

ν+(x, θ) log ν+(x, θ) + ν−(x, θ) log ν−(x, θ)

− ν(x) log ν(x)
}

nh2 ν(x)−1 ,

L(2)(x, θ) =
(
nh2 log

(
ν+

ν−

)
(U+ν− − U−ν+)

)
/ν2

=
(
nh2 log

(
ν+

ν−

)
(N+ν− − N−ν+)

)
/ν2 ,

ν± = EN± , U± = N± − EN± , (4.3.29)

Q(2) represents terms that are quadratic in U±, and R
(2)
2 represents terms that are cubic

or of higher order. In several instances on the right-hand-side of (4.3.29) and in some
of the displays below, arguments (x, θ) will be suppressed for notational convenience. In
order to prove the bias assertion (part (i) of Theorem 4.4), we rewrite �(2) as follows:

�(2)(x, θ) =
ν+

ν+ + ν−
log
{

ν+

ν+ + ν−

}
+

ν−
ν+ + ν−

log
{

ν−
ν+ + ν−

}
= (1

2 − r) log(1
2 − r) + (1

2 + r) log(1
2 + r)
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= − log 2 + 2 r2 +
4
3

r4 + O(r6) ,

where r = 1
2 − ν+/

(
ν+ + ν−

)
. We therefore seek the value

(
x

(2)
0 , θ

(2)
0

)
of (x, θ) that

maximises ∣∣∣∣12 − ν+

ν+ + ν−

∣∣∣∣ = ∣∣∣∣12 − ν−
ν+ + ν−

∣∣∣∣ = 1
2

∣∣∣∣ν+ − ν−
ν+ + ν−

∣∣∣∣ . (4.3.30)

The treatment of the expression |ν+ − ν−| on the right-hand side of (4.3.30) is the same
as in Section 4.3.1. It can be shown that the weighting by expected effective sample size
ν+ + ν− leads to the incorporation of the factors g±(0) in the form asserted in part (i)
of the theorem.

As for part (ii), the appearance of n1 as an arithmetic mean of two asymptotic local
sample sizes arises due to the asymptotically linear nature of C when considered at the
scale of shifts that are considered in calculation of the stochastic error. This is similar
to the proof of Theorem 4.2. A rigorous proof of this property is expected to proceed by
further examination of (4.3.29), however we are unable to provide the full details here.

In order to deal with the case where X represents a Poisson process, we use the fact
that conditional on the r.v. X (Π), the points in X are i.i.d. with common distribution
Y , where

P (Y ∈ A) =

∫
A

g(x) dx∫
Π

g(x)dx
,

whence the foregoing results yield the conclusion of the theorem.



Chapter 5

Numerical Properties

5.1 Introduction

This chapter is concerned with the finite-sample properties of the tracking estimator
of Chapter 2, as well as the likelihood-based estimators of the edge and concomitant
confidence bands of Chapters 3 and 4. These two topics are respectively addressed in
Sections 5.2 and 5.3. Though the edge curves studied here have an appreciably higher
degree of complexity than the one of the example function of Section 3.1, they are ar-
guably still not versatile enough for many practical situations. This applies especially
to corner points (discontinuities in the second derivative of the edge curve) and straight

line segments. Both of these cases are not covered by Theorem 4.2. In order to address
these issues, in Section 5.4 we augment the local-likelihood estimator by a ‘macroscopic’
component. This methodology is exemplified by discussion of an example curve with the
above features.

As noted in Remark 4.8 (see Section 4.2), confidence bands for straight line segments may
be obtained by using Theorem 4.3. This, however, presupposes that the linear character
of the edge has been established where it is present, and slope has been estimated with
sufficient accuracy. At least the first of these tasks, if not the second, poses appreciable
problems. Remark 4.8 pointed to work by other authors, which integrated a step for
identification of straight line segments. The procedure we shall develop in Section 5.4
does not present novel methodology in addition to the previous chapters, nor does it aim
to extend the theoretical optimality properties proved for the estimators there. Instead,
our goal is to demonstrate that the local-likelihood estimator has its place in more ‘robust’
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image processing schemes that use methodologies that are familiar from the computer
vision literature. Specifically, we will use the Canny edge detector which, as noted in
Section 1.3, has comparatively solid theoretical foundations among the non-statistical
edge detectors. In the corner detection step we shall also draw on scale-space theory as
described in Section A.2.

In a coarse-to-fine approach to detecting edges, and also for more complex image pro-
cessing tasks, it is plausible for the local-likelihood estimator to be used in the final
stage. Therefore, its potential to be integrated into other and relatively standard schemes
seems large indeed. To give one more example, which will not be further developed here,
consider the estimation of splitting or terminating fault lines (already addressed in Re-
mark 2.9) by a ‘divide and conquer’ approach. Start by dividing the observation window
Π into a number of subsets, whose diameter converges to zero in successive stages of the
model; in the simplest case, these subsets would consist of an increasing collection of
squares, or their parts which intersect the observation area. Within each subset in turn,
check for evidence for a fault line by using a pre-determined threshold, as in the para-
graph containing (3.2.2). In order to construct the estimator globally, rules for connecting
neighbouring edges and discarding outliers are needed, similarly to those in the proce-
dure of Section 5.4. It is this versatility in appending the tracking and local-likelihood
estimators to other image processing modules that motivates our use of the term edge

detection architecture.

For the purposes of Sections 5.2 and 5.3, we use the notation from Chapters 2 and 4
respectively, other than that introduced here.

5.2 Numerical Properties of Tracking Method

To explore numerical performance of the tracking method of Chapter 2 we investigated
several levels of noise degradation of the regression surface defined at (5.2.1) below, taking
d = 1 there. We used the explicit formula for the quantity S(x, θ) defined at (2.2.2);
see (2.4.2). As in the context of Section 2.3, the index j ∈ N0 counts how many steps the
tracking sequence has advanced, with x̂0 = Q̂ being the starting point. To minimise S

as a function of θ, for fixed x = x̂j , we used an algorithm based on golden-section search,
described e.g. in Press, Teukolsky, Vetterling and Flannery (1992). In the context of the
paragraph containing (3.2.3), we chose the arc radius for the search angle around the
previous tracking direction φ0 as ∆φ = π/10.

We experimented with a number of variants of the methodology suggested in Chap-
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ter 2, which approximated the continuum version of the estimator; see the discussion at
the close of Section 2.2, and the paragraph containing (3.2.5). One was to take x = x̂j

in (2.2.2), and move an amount δ in the direction of the fitted value of θ, rather than move
directly to a neighbouring point of the grid G. (We took δ = 0.005.) This amounted to
using an unsieved M -estimator (cf. the comment in the second paragraph of Section 2.2).
Unsieved M -estimators are known to perform well in many examples, their larger ‘vari-
ance’ (in a somewhat loose sense) notwithstanding (Van der Vaart and Wellner, 1996,
p. 323).

As in the example in Section 3.1, in the finite-sample context it is important to employ the
suggestion of Remark 2.3, thereby refitting location. We found that it was adequate, and
saved time, to refit location at points distant δ and δ/2 on either side of x on the line that
passed through x and was perpendicular to the estimated orientation of the curve at x.
In low-curvature parts of C the cycle length between successive location refittings could
be varied within a wide range, from 1 to about 10 steps, without having any noticeable
effect on performance. However, refitting at each step was noticeably beneficial in places
of high curvature. A related matter is that of estimating θ, which represents a derivative
and so is inherently more prone to error than an estimate of C. Nevertheless, these
difficulties could be overcome in part by using a smaller value of δ in places where C
has higher curvature. In the computer vision context, and because δ and h should at
least approximately have a constant ratio (see the paragraph containing (3.2.4)), this
issue is seen to be connected with the scale-space of an image, defined in Section A.2
(see p. 142). It might even be appropriate to use cycle length and δ as spatially-varying
tuning parameters. In principle, curvature could be estimated from values of Ĉ computed
in earlier steps, and used to select these quantities at the current location. This is the
approach taken in Section 5.3.

For definiteness the curves were drawn using an algorithm that refitted location at each
step. Also, to smooth out sharp turns to some extent we derived θ̂ from a moving average
of the present step and two previous ones, with

θ̂j+1 = w1 θ̂j + w2 θ̂j−1 + w3 θ̂j−2

and the weight vector (w1, w2, w3) = (0.6, 0.3, 0.1).

Inspired by similar ideas previously employed by Qiu (1997, 2002a), we smoothed over
an ellipse with half-axes hmin and hmaj, rather than a disc, with its shorter axis hmin in
the direction of motion. (The efficacy of this idea becomes much more apparent in the
case of fault lines with knots; see Hall, Qiu and Rau (2002).) This meant using the kernel
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Kasymm
i,θ (x) (where ‘asymm’ stands for ‘asymmetric’) instead of Ki(x), defined by:

Kasymm
i,θ (x) = K

(
U

(1)
i /hmin, U

(2)
i /hmaj

)
,

with the respective (normalised) projections on the tangent vector θ = θ(x) and its
normal θ⊥,

U
(1)
i =

(
X

(1)
i − x(1)

)
cos θ +

(
X

(2)
i − x(2)

)
sin θ ,

U
(2)
i = −

(
X

(1)
i − x(1)

)
sin θ +

(
X

(2)
i − x(2)

)
cos θ .

In our experiments we took (hmin, hmaj) = (0.08, 0.12).

For the experiments in this and the following Section 5.3, we shall consider the family{
gd(·) : d > 0

}
of example functions, conveniently described in polar coordinates:

gd(r, φ) = d · I
{
f(φ) ≤ r

}
,

f(φ) =
[
exp{cos(3φ)} + sin(φ/2)

]/
8 , 0 ≤ φ ≤ 2π . (5.2.1)

Hence the parameter d represents the (constant) jump height of the fault line in the
regression surface. For the example in this section, we will limit ourselves to the case
d = 1, deferring the case of varying d to Section 5.3. This example illustrates how the
algorithm copes with ‘meandering’ functions that do not admit simple representations in
Cartesian coordinates. Specifically, the fault line described by f exhibits some challenging
geometric properties, since absolute curvature reaches a value of 33.95 at angles (in
radians) φ1 = 0.302 and φ2 = 2π − φ1 = 5.981 respectively, corresponding to the points
(0.239,±0.075); further peaks are located at φ3 = 1.791, φ4 = 2.398, φ5 = 2π − φ4 =
3.885, and φ6 = 2π − φ3 = 4.493. In contrast, curvature vanishes at points on C located
at angles φ7 = 0.574, φ8 = 1.342, φ9 = 2.662, φ10 = 2π−φ8 = 4.941 and φ11 = 2π−φ7 =
5.709. With the notation from the paragraph preceding the statement of Theorem 4.1,
we used the biweight kernel, K(0)(t) = (15/16) (1 − t2)2 for |t| ≤ 1, so that

K(x) = K
(
x(1), x(2)

)
=

3
π

(
1 − x(1) − x(2)

)2
, ‖x‖ ≤ 1 ,

and εi ∼ N(0, σ2), where σ = 0.5 or 0.75. Design points were either on a regular 330×330
lattice within the square [−0.55, 0.55] × [−0.55, 0.55], or in the form of a homogeneous
Poisson process with the same expected number of points per unit area. An illustration
of the data appeared in Figure 1.2 (see p. 13).

Our first objective was to estimate C over its full length (note that length(C) = 4.272).
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For that purpose, and for definiteness, we chose the single starting point Q̂ = (0.2, 0.08)
(which is located close to C) and the approximate tangent direction θ(0) = π. If Q̂

is selected by eye, and if the design points form a regular lattice, then one or more of
the design points may lie on the line that divides the kernel domain into two half-discs,
causing ambiguity. While in theory this causes only negligible problems, in practice the
possibility of these ties should be recognised. Note, however, that this problem only
affects the starting point. The possibility to move principally in any direction between
the vertices of the grid comprising the design, which we construe here as pixels, implies
what is often called sub-pixel accuracy. In order to overcome the ambiguity problem
with the starting point, the method of dithering can be used, which means a random
jiggling of the points along the disc diameter. For a discussion of sub-pixel accuracy and
dithering, see for example Huertas and Medioni (1986), Liu and Ehrich (1995), and the
references cited therein.

Panels (a)–(d) of Figure 5.1 are to be read in pairs, the left-hand side showing the
case of a lattice design and the right-hand side, the case of Poisson-distributed design.
Each pair of panels corresponds to a different value of σ. Six typical realisations are
superimposed in each panel, and show that performance deteriorates only slightly from
σ = 0.5 to σ = 0.75. From the displays, the conclusion can be drawn that even those
parts of C where absolute curvature briefly exceeds an absolute value of 30, cause few
problems. However, we found that erratic behaviour of the estimates begins to occur
regularly for σ = 0.75 if the previously mentioned auxiliary devices were not employed.
Moreover, we found generally that higher noise levels, say σ = 1.0, most often led to
unsatisfactory results in the non-straight parts of C. It would be possible, however, to
improve performance here by further increasing the intensity of the point process.

Next we investigated the sensitivity of the algorithm with respect to the starting point Q̂.
We continued to use the previous regression surface, focusing now on the higher noise
level σ = 0.75 and the case of Poisson-distributed design. Figure 5.2 displays our
simulation results. Panels (a)–(d) depict behaviour of three typical estimates in the
cases Q̂ = (q + 0.08 k, 0), with q = e/8 ≈ 0.34 and k ∈ {−2, . . . , 1}. In this part of
our example we smoothed over discs (instead of ellipses) with radius h = 0.08, and for
illustration we have added a disc of that radius, centred at Q̂, to our displays. Also, on
this occasion we tracked the fault line on both sides of the starting point. The results
indicate that the algorithm is sensitive to choice of Q̂, although it readily tracks the fault
line once the latter has been found. In practice it is a good idea to experiment with
different, neighbouring starting points.
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Figure 5.1: Performance of the algorithm is illustrated for Normal N(0, σ2) noise, with
σ = 0.5 in panels (a) and (b), and σ = 0.75 in panels (c) and (d). Panels (a) and (c) depict
the case of gridded design, while panels (b) and (d) are for the case of Poisson-distributed
design. The starting point Q̄ = (0.2, 0.08) is encircled.
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Figure 5.2: Panels show the effects of choice of Q̂ on behaviour of the tracking esti-
mate. Three realisations are depicted on each panel, represented respectively by empty
diamonds, by empty triangles pointing upwards, and by empty triangles pointing down-
wards. The starting point Q̂ is represented by a filled diamond. It moves steadily from
the left-hand side to the right-hand side of the curve as we progress through panels
(a)–(d).
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Figure 5.2: Continued
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5.3 Numerical Properties of Likelihood Method

In this section we report the results of simulation studies of finite-sample performance of
the asymptotic confidence band rsim suggested in Remark 4.3 of Section 4.2. We again
consider, in the context of nonparametric regression, the family {gd} of surfaces defined in
the paragraph containing (5.2.1), this time with varying d > 0. The design process X was
homogeneous Poisson, and observed within the square Π = [−0.55, 0.55] × [−0.55, 0.55].
For the intensity of X we considered the two values n1 = 3752 and n2 = 7502, and
the error distribution was chosen to be Normal with standard deviation σ = 0.75. We
further took h = 0.08 ≈ 4.16 n

−1/3
1 . As in Section 5.2, K was chosen as the biweight

kernel function.

In order to estimate ρ = ρ(d, σ) = 1+d2/σ2 as the natural plug-in estimator ρ̂ = ρ(d̂, σ̂),
we employed the empirical procedures suggested in Remark 4.2. These were found to
perform well when the estimate σ̂ was obtained from response values within the sub-
window [0.35, 0.55] × [0.35, 0.55] ⊂ {g = 0} ⊂ Π, and provided that the estimate |d̂|
was obtained from stretches of Ĉ which were sufficiently far from the points (f(φi) cos φi,

f(φi) sinφi) for i = 1, . . . , 6, thereby ensuring that the bias due to curvature was only
moderate. (The maximisers φ1, . . . , φ6 of absolute curvature are as defined in Section 5.2).
Because of the constancy of the jump height in this example, and for the sake of simplicity,
we took ρ̂ equal to its true value in the simulations of this section. If ρ̂ is instead estimated
from data which suffers from curvature bias, the confidence bands will be wider, as is
evinced by formula (4.2.7).

Estimation of a0 has significant impact on estimation of the local band radii rptw and rsim.
In fact, it is the sparseness difficulties arising in this context that necessitates the choice
of a relatively large value for n1. To compute the estimate we searched along the rays
represented by the equation φ = c, with c running over the points on the uniform grid on
the interval [−3 h, 2π + 3 h], with edge size 0.01, and including the left end-point. This
served to overcome the problems by which the derivative estimators would otherwise
have been affected in the boundary regions. For non-closed fault lines, of course, edge
effects would be more difficult to remedy. In construction of the band itself, the overlap
region of total length 6h was discarded. Note that the above search method is viable
whenever the fault line encloses a strictly star-shaped region (as defined in Section 1.1)
that is known to contain O. However, in this example, constructing the estimate using
the definition given in Section 4.2 (see p. 57) to obtain points on the ridge Ĉ requires
only moderate extra effort.

Points on Ĉ were computed by the procedure described shortly. Based on these points,
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local curvature was estimated using Gasser-Müller type kernel estimators for each of the
functions f , f ′ = df

/
dφ, f ′′ = d2f

/
dφ2. For an account of the underlying theory, see

Gasser, Kneip and Köhler (1991), Herrmann (1997), and the references cited therein.
(Usage of notation f ′, f ′′ is limited to this section only. A similar remark applies to the
interpretation of the function κ introduced shortly.) Gasser et al. (1991) employed an
iterative algorithm to estimate the bandwidth which is asymptotically optimal in the
sense of integrated mean square error. We used an implementation in Fortran code,
available from the URL address

http://www.unizh.ch/biostat/Software/.

The estimators for f ′ and f ′′ are also displayed in Ramsay and Silverman (1997, p. 53).
Estimates were computed at 130 points equidistantly spaced on [0, 2π], and bandwidths
for the three functions were selected independently for each realisation. As expected,
these tended to be larger for n = n1 than for n = n2, and increased with decreasing
jump height d, for which we considered the three values 1.0, 0.3, and 0.08. For n = n2

and d = 1.0, the average bandwidths over 40 realisations were hf = 0.024, hf ′ = 0.052,
and hf ′′ = 0.108. The kernel estimates were plugged into the exact formula for the true
curvature at a point (f(φ) cos φ, f(φ) sin φ) ∈ C, as displayed in equation (A.2.5). (We
used the individual estimates of hf , hf ′ and hf ′′ in these computations, rather than the
averages.) Since the true regression surface is a black-and-white image, the area-based
curvature formula from Section A.2 does not apply in this example. We note that in
other cases, the use of that formula can be coupled with the tracking approaches from
Chapters 2 and 3. The ensuing procedure may be construed as the tracking estimator
for the tube Ĉr2 , defined at (4.2.8). If the curvature estimate at a given point on the
estimate is based on tracked points that are further advanced, the tube will have a ‘lag’ of
the size of approximately one bandwidth. An algorithm that incorporates the area-based
curvature formula is presented at the end of this section.

Approximations to critical values t(α) are given in Table 5.1. We used two different
methods to obtain the displayed results. The first utilised a central limit theorem for
partial-sum processes, based on a minor modification of Example 2.12.9, p. 230 of Van der
Vaart and Wellner (1996); the second employed a bivariate Karhunen-Loève expansion
as described in Subsection A.5.2.

Panels (a)–(d) of Figure 5.3 illustrate, for different input parameters in each case, three
realisations of point sequences on Ĉ, calculated by the search method described above,
and represented by squares, diamonds and ‘x’ symbols respectively. Also shown are the
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α 0.250 0.100 0.050 0.025 0.010
Critical value t(α) 0.73 1.04 1.24 1.41 1.58

Table 5.1: Approximate critical values t(α) such that P{|T ∗| ≤ t(α)} = 1 − α.

respective simultaneous confidence bands, represented by the solid, dash-dotted, and
dotted lines. In order to construct the radius of the band locally, we used the vector
κ̂ ∈ R

130 from above, and obtained an estimate of a0, of the same length, by taking
the maximum modulus of estimated curvature at five sequential points, thus obtaining
a vector â0 which had the same value within each of the 130/5 = 26 stretches. The
extra points at the boundaries were again used to obtain the estimates near φ = 0 and
φ = 2π. In order to lessen the bias inherent in this procedure, we used a random offset
to shift the location of the entries within â0. The points on the ‘inner’ and ‘outer’ bands
were computed relative to the kernel estimate of f , rather than the ridge line Ĉ itself.
Finally, as suggested in Section 3.2 (see p. 57), the bands were obtained by joining these
calculated points by straight lines, to yield polygons. Alternative or post-processing of
the bands, for example by using B-splines, is clearly desirable, but we shall not further
discuss such ramifications.

We used L1 distance to measure deviation of the estimate; see Remark 4.3. This dis-
tance can be computed in MATLAB with the function polyarea.m, which computes the
area enclosed by a polygonal curve. For this purpose, the edge was approximated by
the polygon with vertices at the points (f(γi) cos(γi), f(γi) sin(γi)) with γi = 0.02 i for
i = 0, . . . , 314. Table 5.2 shows the median and upper and lower quartile behaviour of
the estimator according to these measurements for n = n1 and n = n2, and the three
jump heights d mentioned earlier on. In order to obtain an average of a local perfor-
mance measure, these results should be related to the arc length of C (equal to 4.272).
The pointwise coverage was computed using the MATLAB function inpolygon.m, which
determines whether a given point lies inside a polygonal region specified by the vertex
coordinates. Pointwise coverage was below the nominal levels, with a median of about
65% in the two respective cases, and a variability of roughly five to ten percent. It is
not too surprising that the coverage does not improve with increasing d. Indeed, as the
signal-to-noise ratio is lowered, the estimate of the second derivative has a higher vari-
ance, and by construction of â0 this implies that estimated radii of the confidence bands
increases. This effect counteracts the increasing deviation of the ridge from the true
fault line, which is only proportional to ρ1/3. The centring convention from the previous
paragraph also caused coverage to generally improve. was already lessened.

In conclusion to this section we give the definition of a purely statistical estimation proce-
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n = n1 n = n2

Quantile 25% 50% 75% 25% 50% 75%
d = 1 0.0160 0.0176 0.0198 0.0132 0.0144 0.0152
d = 0.3 0.0184 0.0211 0.0230 0.0156 0.0176 0.0201
d = 0.08 0.0208 0.0263 0.0337 0.0172 0.0191 0.0221

Table 5.2: Empirical median and upper and lower quantile behaviour, ob-
tained using in each case 40 realisations of the fault line estimator with an
L1-criterion, as described in Section 4.2.

dure for both C and its confidence envelope, under the additional assumption that C has
the interpretation of a level curve as in the paragraph containing (A.2.7). The tracking
algorithm which yields the points

{
x̂j

}
⊂ Ĉ is the same as described in Chapters 2 and 4.

Assume that the sequence of points
{
x̂0, . . . , x̂M

}
, for M ≥ 0, has already been tracked.

The local tangent estimate θ̂ = θ̂(x̂M ) divides the kernel disc of radius h, centred at
x̂M , into two halves. Choose the one for which the mean-square error is the smallest,
and use it to estimate the derivatives required in (A.2.8), for example by cubic spline
fitting. This enables estimation of the local radius r2 = r2(x̂j) and hence augmentation
of the confidence envelope to the point x̂M+1. Note that the mean-square criterion in the
foregoing definition is used in a similar way as in one of the surface estimation procedures
proposed by Qiu (2002b).

The foregoing procedure has the disadvantage of being applicable only under more severe
restrictions than those required by the conditions of Theorem 4.2. In the next section we
devise an extension of the edge estimator which is specifically aimed at wider applicability.

5.4 An Edge Detection Architecture Using Canny’s Method

In this section we examine how the edge estimators proposed in Chapters 3,4 and partic-
ularly 5 may assume a role in the primary processing of images even if edge has features
that are not covered by our theorems. (Our use of the term ‘features’ here differs from
the abstract notion from pattern recognition, introduced in Section 1.2.) Such features,
which are commonly encountered in practice, prominently include splitting or terminat-
ing edges, straight line segments (for the theory of Chapter 4), and corners. The first of
these cases has been addressed in Remark 2.9, whence we shall focus on the remaining
two. The corner-sensitive edge estimator to be developed will accommodate the detection
of straight line segments, which is the simpler of the two tasks from an image analysis
(and non-statistical) viewpoint. As pointed out in Section 1.2 (see p. 15), a corner may
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Figure 5.3: Illustration of three superimposed realisations of simultaneous confidence
bands, constructed using the procedure described in Section 5.3. Panel (a): n = n1 and
d = 1.0. Panel (b): n = n1 and d = 0.08. Panel (c): n = n2 and d = 1.0. Panel (d):
n = n2 and d = 0.08.

be construed as a feature of one level of complexity above an edge.

Our goal here is not to claim any optimality property of the edge estimator, which would
be complex to analyse for the (non-smooth) class of edges considered. Instead, we want
to back our assertion that it can be used as a building block in a more sophisticated
architecture, whose ‘macroscopic’ (i.e., working on scales above the bandwidth of the
local-likelihood estimator) parts are readily exchangeable.

In order to achieve greater robustness for the edge detector to be developed, we utilise
concepts from computer vision, and especially scale-space theory as described in Sec-
tion A.2. Upon detection of these features, extraction of the fault line may proceed
separately for each of the smooth segments of C. A preliminary analysis showed that
within those segments, the standard edge detectors do not perform well enough to be
competitive to the ridge estimator from Chapter 4. On the other hand, their computation
consumes only a fraction of the computing time for the ridge estimator, while yielding
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Figure 5.3: Continued.

results that can be utilised in an edge detection architecture. We shall therefore not
dwell on an examination of performance of the edge detectors considered in this section
relative to each other, but instead propose a method that, as we argue, makes good use
of their relative advantages, with a special focus on computational ease. We do not claim
that the approach will perform well with the diversity of real-world data, but want to
highlight instead that local-likelihood methods are capable of being integrated into such
architectures.

For the purposes of this section, we relax the assumptions on the fault line C by allowing
for a finite number of exceptions. Specifically, we assume that there exists N ∈ N and
0 = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xN = T , where [0, T ] is the parameter set in the natural
parametrisation of C (T = length(C)), such that C is twice differentiable on [xi, xi+1],
for 0 ≤ i ≤ N − 1. As before, if C is closed then an arbitrary point on C may be used
as starting and end point. The above mentioned features are then characterised by the
behaviour of the second derivative: the interest is then in its zero-crossings and infinities,
respectively. In analogy to derivative-based edge detectors (see Section 1.3), many corner
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detection algorithms operate by examining sharp extrema of the second derivative of the
curve.

The discontinuous regression function that we shall consider in this section is defined as
follows, where the sampling window is again equal to Π = [−0.55, 0.55]2:

g(r, φ) = I
{
f(φ) ≤ r or

(
x(1), x(2)

)
∈ P
}

,

f(φ) =
[
exp{cos(3φ)} + sin(φ/2)

]/
8 , 0 ≤ φ ≤ 2π , (5.4.1)

where the polygon P has the following definition in Cartesian coordinates:

P =
{(

x(1), x(2)
)

: x(1) ≥ −0.08, x(1) ≤ 0.3 − 0.5 x(2), x(2) ≥ 0.3 x(1) − 0.5, x(2) ≤ 0.1
}

.

We will restrict ourselves to the case where the explanatory data are on a grid with
n = 1752 points per unit area. As has been mentioned already in Section 1.2, gridded
design is a standard requirement of edge detectors like the Canny method. The function
at (5.4.1) is a modification of the example used in Sections 5.2 and 5.3, with the intention
to examine the features of special interest in this section. Panel (a) of Figure 5.4 shows
the image with the previous specifications, subjected to Normally distributed noise with
standard deviation σNoise = 0.3. Panel (b) shows the Euclidean norm of the image
gradient, approximated by differencing.

In the first step of rough isolation of edges, various (robust) edge detectors could be used,
such as the Sobel, the Laplacian of Gaussian, and other user-specified filters. For the
purposes of this section, we shall limit ourselves to the Canny edge detection algorithm
essentially as proposed by Canny in his original paper (Canny, 1986), to which we refer
for more details. A major reason for this choice is that the Canny algorithm is considered
to be superior theoretically, as well as more successful in practice, than other derivative-
based methods. The Canny edge detector defines edges as the loci of points where the
second derivative changes sign from + to − while following the direction of the image
gradient. Estimates of these derivatives can be computed using (A.2.10).

With regard to the edge pixels which are found in the vicinity of the true edge by the
Canny algorithm (and in fact many others such as the one proposed by Qiu and Yandell,
1997), two tasks emerge, which are described in the next two paragraphs.

Because the peak of the estimated gradient function, from which the JDC of the Canny
algorithm derives, may extend over several pixels perpendicular to the edge direction,
the first problem consists in the need to ‘thin’ the edges. (Recall from Section 1.3 (see
p. 20) that JDC stands for ‘jump detection criterion.’) The common remedy of non-
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maximum suppression takes the original values of the JDC, and discards those pixels
whose gradient values on either side, obtained by interpolation from neighbouring pixels,
are not both smaller than the JDC value for the original pixel. For their own JDC, Qiu
and Yandell (1997) used a procedure (called MP1 there) which is similar to non-maximum
suppression, but using only the set of previously-computed candidate points, rather than
the JDCs of these points and their neighbourhood. Importantly, in both of the above
cases, C is assumed to be differentiable: the theory does not apply to corners in images.
It is important to know how strongly this restriction is felt in practical situations, where
kinks are almost invariably occurring as isolated points, and whether that problem can
be dealt with by means of a corner detection algorithm. We will return to these issues
later in this section.

The second of the aforementioned tasks consists in making the boundaries contiguous, as
the value of the JDC will generally fluctuate across the edge, a phenomenon commonly
referred to as streaking. To overcome streaking, one commonly uses hysteresis threshold-

ing, which operates by setting a lower as well as an upper threshold limit. The concept
of hysteresis thresholding already appeared in Section 3.2 (see p. 56). Denoting these
thresholds again by tlower and tupper, then all points with JDC ≥ tupper are immediately
accepted, points with JDC ≤ tlower are immediately rejected, and points in the interval
(tupper, tlower) are accepted if they are, for a given choice of neighbourhood (for example,
3 × 3), connected to a pixel for which JDC ≥ tupper. As can be seen in panel (c), the
value of the pair (tlower, tupper) that was selected by the ‘magic’ number conventions of
MATLAB, which is based on an assumption of the proportion of edge pixels in the entire
image, did not yield a satisfactory outcome. Panel (d) shows the result after using the
modified lower threshold t∗lower with

t∗lower = 0.25 tlower + 0.75 tupper . (5.4.2)

Another, although somewhat subordinate, issue in post-processing the edge candidate
points is the deletion of isolated spurious edge pixels. In their modification procedure
MP2, Qiu and Yandell (1997) reject a candidate pixel if less than half of its neighbours
are flagged as candidates. In our post-processing method, to be described next, such
spurious pixels are detected through a somewhat different notion of connectivity.

We now proceed to describe our edge detection scheme in full. The first step after
obtaining the set of edge pixels through the Canny algorithm is the linking of the edge
points by line segments. In a second phase, the ensuing segments are linked together to
produce a more connected estimate. (Although the Canny method produces ab initio a
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connected edge because of its zero-crossing definition, the subsequent processing destroys
this property.) Both steps require the specification of tolerances. The first applies to the
locations of the points in a sequence: points are considered collinear if the maximum
deviation from a line is not too large. For algorithms that are instrumental here, see for
example Chapter 5 in Preparata and Shamos (1985, pp. 185ff). The second tolerance
value relates to the maximum turning angle between neighbouring segments, and the
distance of one such segment to the next. The implementations we used are authored by
Peter Kovesi, and were obtained from the URL address

http://www.cs.uwa.edu.au/˜pk/Research/MatlabFns/index.html,

as the functions edgelink.m, lineseg.m, mergeseg.m and maxlinedev.m. The output of
the pre-processing steps is shown in panel (e) of Figure 5.4. The spurious cusp is clearly
undesirable, but will be seen to result in a false positive in this case. A small number of
such points is not really detrimental to the procedure, and may thus be tolerated.

In the next step, the list of line segments is ordered according to two criteria. These
are, in order of priority, of the same nature as in the construction of each individual line
segment as outlined in the previous paragraph, namely proximity and slope, but with
parameter relaxation. By way of this procedure, the problem of spurious edge pixels is
also largely overcome.

With the first stage of edge detection thus completed, attention is now turned to the
detection of corners. As mentioned previously, corner detection relies on edge detection,
either implicitly or explicitly, in most cases. An approach in which the latter step is of
less significance appeared in Kohlmann (1996), and we shall use this approach in getting
a pilot estimate of the number of corners. It is based on the discrete Hilbert transform.
For a definition of this transform, also in two dimensions as needed here, we refer to
Kohlmann (1996, pp. 226–228). Several examples of the effects of the Hilbert transform
on noise-free images may also be found in that paper. The key point is that discontinuities
appear as singularities in the Hilbert transform, whereas the smooth parts are suppressed,
leading to a highlighting of corners in the output image to an extent depending on its
orientation. In order to select the corner candidates, we used the following ‘histogram-
type’ rule. First, we took the 100 pixels whose brightness values were the largest. This
gives a cluster of marked pixels, most of which are expected to be near the locus of a
corner of C. Then, we used morphological operations to reduce these clusters to single
points. The resulting number was taken to calibrate the value of σ for the curvature
scale space parameter for the procedure, which is used to yield the estimated set of
corner points

{
x̂i, i = 1 . . . , N ′}. For reasonably ‘well-behaved’ edges, the number of
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false positives is not too large and that of false negatives is small; ideally, after suitable
enumeration, N = N ′ and xi = x′

i for every i.

The definition of the evolution of Cσ was given around equation (A.2.11). We start with
a relatively large value of σ and successively lower its value. The number K = K(σ) of
corner candidates as obtained by the curvature scale space (CSS) procedure described by
Mokhtarian and Suomela (1998), which built on the work of Mokhtarian and Mackworth
(1992) mentioned at the close of Section A.2, is then recorded. Due to the observation
made in Section A.2 on the postulates of the scale space (see p. 142), K can be expected
to be a monotonically decreasing function of σ. We take the target number of corners
from the procedure described in the previous paragraph as the benchmark, in that we
successively lower the value of σ until the number of corners computed from Cσ exceeds
this value. The sequence of values for σ need not to be spaced very densely, as the function
K will usually have abrupt jumps and be constant over reasonably large intervals.

Panel (f) of Figure 5.4 shows the output of the CSS procedure after 20 iterations, based
on one simulation; further replica showed comparable or better behaviour. The starting
point for either the tracking method of Chapter 2, or the likelihood methods of Chap-
ters 3 and 4 are highlighted as the red + symbols. For reference, the output of the
two-dimensional Hilbert transform and the corner detector of Kohlmann (1996) are dis-
played in panels (g) and (h) respectively. From panels (f) and (h) it can be seen that
although some false positives as well as some false negatives are created, performance of
the estimator is overall quite satisfying.
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(a) (b) (c) (d)

x − Start

(e)

Iteration No.20

(f) (g) (h)

Figure 5.4: Edge detector performance for the image defined by equations (5.4.1) in
Section 5.4.



Chapter 6

Functional Signal Discrimination

6.1 Introduction

In this chapter, a discrimination method for spatial functional data, in the sense of
Section 1.2, is considered. Following the general theme of the thesis, dimension reduction
assumes a key role in the analysis. Practical issues related to the methodology of the
classifier, which includes data pre-processing steps, are explored by means of a real dataset
of navigational radar targeting ships. The two cornerstones of our approach in the above
respects are nowadays commonly referred to as wavelet shrinkage in the sense developed
in the seminal paper by Donoho and Johnstone (1994), and the already mentioned area of
functional data analysis, which was first extensively treated in the monograph by Ramsay
and Silverman (1997).

As described in Subsection A.5.1, we interpret the data as realisations of a stochastic
process defined over a continuous space. Earlier in this thesis (see Section A.5) we gave
an exposition of the background of the continuous Karhunen-Loève transform in terms
of (non-statistical) functional analysis. We also argued that it is an attractive candidate
for the task of condensing data that has a probabilistic aspect, into a low-dimensional
subspace. Among the bonuses that the Karhunen-Loève approach offers is, as noted
earlier (see the corresponding remarks on p. 10), that the underlying probability model
requires few specifications, and is instead mainly data-driven. The most important point
is the need to specify the set of (Bayesian) prior probabilities, denoted {ωl, 1 ≤ l ≤ L}
in the paragraph containing (1.3.5), where L is the number of classes. In the absence
of prior information on observation occurrence we shall assume a uniform prior, that is,
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ωl = 1/L for 1 ≤ l ≤ L.

In Subsection A.5.3 we pointed out that it is generally necessary to exercise care in
reducing dimension for the purpose of discrimination, so as to preserve salient features.
In this context, saliency is not to be equated with visual evidence from a graphical plot
of the data. The latter task can be fairly challenging, especially when the variability
within each class is large compared to variability across classes, such as is the case for
the dataset studied in Section 6.3.

Similar to the use of principal components in classical multivariate analysis, a central role
in FDA is played by the approximation of the input data by linear combinations of basis
elements. This basis then comprises functions (one-dimensional curves in Hall, Poskitt
and Presnell (2001) and two-dimensional surfaces in this thesis), rather than just vector
ensembles as in multivariate analysis. These functions may be subjected to smoothness
and boundary constraints, although only the former turn out to be of importance here.
In the FDA setting that we pursue, it is natural to require at least the following two
conditions on the functions with respect to which the observations, modulo statistical
error, are represented:

1. The basis functions (surfaces) should have qualitative properties that are closely
comparable to, or at least not inconsistent with, the ‘true’ functions (surfaces) from
each type.

2. The information from the original domain of the data (temporal in the case of
curves, spatial in the case of images) should be used to a greater extent than
frequency (Fourier) domain information, if the latter is not entirely disregarded.

The point stated in item 1 is essentially the same as in Ramsay and Silverman (1997,
p. 46). Item 2 is included because artifacts created by the imaging device or subsequent
pre-processing steps are most likely to occur in the Fourier domain. The caution towards
Fourier domain information expressed in item 2 was motivated by the statement in Hall,
Poskitt and Presnell (2001, p. 1) on the “problems associated with the highly nonlinear
preliminary filtering [to which signals are subjected.]” As mentioned there, this makes
it less attractive to employ tools from time series analysis. The problem of artifacts due
to pre-processing is also prevalent in the analysis of fault lines with noisy surface data,
as has been remarked in Section 1.2. In the present context, however, these issues are
particularly serious.

As at the close of Subsection A.5.1, the coefficients of the low-dimensional linear com-
binations of basis functions which approximate the observations will be called scores.
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Because our interest is in discrimination, which is based on the score vectors, the goal
as well as the method to be described put a much stronger emphasis on data-analytic
rather than visual-perceptional properties. Nevertheless, the dimension reduction tech-
nique employed here plays an important role in a visually-oriented explanatory data
analysis. It may also serve as a valuable guide in choosing model parameters, for exam-
ple by complementing the method suggested in Subsection 6.3.3 for selecting the basis
functions.

We proceed with the formal definition of the discrimination or classification problem. As
noted in Section 1.3, we shall use the two terms synonymously.

Definition 6.1. (Mardia, Kent and Bibby, 1979, p. 300) Let Π1, . . . ,ΠL, for L ≥ 2,
denote L populations or groups, and suppose that for each population Πl, there is a
probability density f(l) on R

m such that an individual from population Πl has probability
density function f(l). A discriminant rule d corresponds to a division of R

m into disjoint
subregions R1, . . . , RL (∪l Rl = R

m). The rule is defined by

allocate x to Πl if x ∈ Rl .

We shall apply the Karhunen-Loève expansion to the case where the underlying stochastic
model is that of a mixture distribution of L ∈ N classes or types, as introduced in
Subsection A.5.1. Recall equation (A.5.7):

PX =
L∑

l=1

ωlPX̃l
,

where the prior probability of drawing a sample from the lth population equals ωl, and,
under the assumption of a uniform prior, may be replaced by the relative frequency nl/n

of drawing a sample from class l.

From Subsection A.5.3 we recall that the singular value decomposition (SVD) of the
empirical covariance matrix of observations of the process X leads to natural estimators
of the quantities defining the Karhunen-Loève expansion, particularly the score vectors.
The relationships between the functional and vectorial, that is the classical multivariate,
aspects of the analysis in this chapter are illustrated in Figure 6.1. Importantly however,
for the continuous form of the Karhunen-Loève transform, smoothing has an interpreta-
tion and is used in Subsection 6.3.2. This can help these functions meet the stipulation
from item 1 in the display before Definition 6.1. For our dataset, however, classification
error was only marginally affected by this device.
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Continuous Model
Sampling−−−−−−→ Discrete Model

Continuous K−L Transform

+ +Principal Components Analysis

Basis Functions −−−−−−→
Sampling

Basis Vectors

Figure 6.1: Interrelationships between ‘discrete’ and ‘continuous’ views of dimension
reduction via the Karhunen-Loève transform.

Using once more the notation from Subsection A.5.3, it follows from Mercer’s Theorem
(Theorem A.4 in Subsection A.5.1) that the Karhunen-Loève approximation obtained
by using the first m ≤ rank(X) empirical basis functions maximises the proportion
of variability explained, among all sets of orthogonal functions with m elements. The
maximum value of this proportion then equals ζm, defined at (A.5.6).

We now turn to a preliminary discussion of the database used in our experiments. This
database, on which more elaboration will be given in Subsection 6.3.1, consisted of over
3000 images of low-resolution navigation radar data on various target objects. These
images will subsequently also be referred to as radar signatures. The axes had the
physical interpretation of azimuth and range (i.e., the distance of the object from the
location of the radar antenna, which was stationary). It was a technological feature, and
of importance in later considerations, that the information content in each of the sampling
bins (resolution pixels) was appreciably larger in range than in azimuth direction. The
strength of the return within each azimuth/range bin was measured by an eight-bit
integer ranging from 0 to 255. In a preamble to each datafile, physical information such
as target range, speed, bearing and course was usually also available. Together with this
preamble, the image comprised what we shall call a dataframe.

For the classification experiment in Subsection 6.3.4, the range and speed information
were used directly. Bearing and course could be combined, using a simple formula, to
obtain the angle of view relative to the observing platform. The angle of view is highly
relevant in radar image acquisition (see Acker, 1988, Robinson, 1996, and Inggs and
Robinson, 1999). However, it does not seem easy to incorporate this information into
the classifier. This may be seen as a drawback in comparison to purely Bayesian or
neural network methods. For a discussion of various other approaches to classification of
data of the type considered here, see Gibbins, Gray and Dempsey (1999). It should be
noted that Bayesian elements are relatively easy to incorporate into the classifier to be
developed here. This could be done, for example, by using non-uniform prior probabilities
in the weighting of the odds-ratio at (1.3.5) that is used here, just as in Hall, Poskitt
and Presnell (2001), to choose the most likely class. It is also conceivable to embed the
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method presented here as a module into a different (e.g., tree-based) classifier.

The targets themselves were vessels of different kinds, which for classification purposes
were divided into three ‘superclasses,’ referred to below as A1, A2 and A3. These super-
classes were in turn subdivided into seven sub-categories, here labelled s1, s2,. . ., s7. The
class frequencies are listed in Table 6.1.

Although the issues arising from the spatial nature of the data do not profoundly alter
the methodology of the classifier itself, greater problems arise from the influence of ‘noise’
(the term is used in a somewhat loose sense as it does not necessarily refer to a strictly
probabilistic notion), and sea clutter. The resolution of the individual scatterers on a
vessel was limited by several factors. These included prominently the convolution with the
approximately rectangular-shaped pulse (see the discussion in Subsection 6.3.1), and the
multipass and ghosting effects that occurred as the radar bounced around the vessel and
on the sea surface, especially at larger distances. The angle of view also had significant
impact on the quality of the radar signature.

In the appearance of the noise as well as the signal, a crucial role is played by the tech-
nology of the radar. However, it seems a rather difficult task to exploit the dependencies
in order to improve the signal-to-noise ratio (SNR). (Note that the SNR is defined here
as the ratio of mean-square-root error of the signal and the noise respectively, in con-
trast to the definition at (4.2.5) in the context of edge estimation). In spite of their
theoretical strengths, many statistical methods that could be considered for the purpose
of this chapter have the disadvantage that the choice of their parameters is not easy to
motivate from the physical characteristics of the imaging process. Automated param-
eter selection methods are often grounded on assumptions on large sample size and/or
stochastic independence which are only approximately satisfied, at best, in the present
case study. These considerations are of relevance both in improving the SNR and in the
classification itself. Much of the subsequent development was motivated by the goal to
use enhancement methods that are not only well-suited to the context, but which are
also relatively insensitive to changes in ill-defined ‘parameters,’ notably weather and sea
conditions. They should also work with only a small number of input parameters. The
popular tool of wavelet thresholding is well suited to this task.

6.2 Methodological Issues

In order to obtain the input quantities for the classifier, the radar signature (that is,
the matrix of scatterer strength for each range/azimuth bin within the observation win-
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dow) is subjected to several pre-processing steps which are the topic of the subsequent
sections. This serves to achieve a degree of uniformity in sampling, especially as the ob-
servation window, which was chosen automatically, contained a highly variable amount of
noisy (sea) background surrounding the tracked object. (This amount tended to be espe-
cially large for weak signals at large ranges.) Moreover, after discarding the background
part (reusing it, however, to set noise attenuation parameters; see Subsection 6.2.2), the
segmented, or rather cropped, image is the one from which relevant measurements, for
example pixel extension in range, are extracted to assist classification.

The purpose of this section is to discuss in some detail two salient problems that arise in
pre-processing of the image data, namely segmentation from the noisy sea background
(Subsection 6.2.1) and noise suppression/reduction via wavelet thresholding (Subsec-
tion 6.2.2). Being a third important topic, registration appears to be the most elusive in
relation to this dataset. Subsection 6.2.3 outlines the problems involved here, alongside
with general comments and references on registration of functional data.

6.2.1 Preliminary Segmentation

In order to segment the images from the ocean background noise, we use the morpho-
logical operations of dilation and erosion, ⊕ and 
, defined in Section 1.1. With sets
approximated on a pixel grid, the set B from that definition, in this context sometimes
called the structuring element, typically comprises only a few pixels, and its shape is
crucial in determining the preferential features to be eroded (i.e., thinned out). Opera-
tors ⊕,
 and various others are built-in functions in the Image Processing Toolbox of
MATLAB, from Version 6.

It should be noted that the goal in the present section is to remove only those parts
of the background which are readily identified as noise. Thus, we accept at this early
processing stage that the complementary part may still overestimate the bounding box,
and hence the actual pixel dimensions dimtrue

az and dimtrue
rg of the target.

Because there is latitude in the choice of parameters for the morphological operations on
the images, we shall limit ourselves to a cursory exposition. Before everything else, the
Canny edge detector was applied. For the scale parameter we chose the default value,
σ = 1.0. The output of the edge detector is a binary image, as required by the subsequent
MATLAB routines for the ⊕ and 
 operations.

In our implementation, we used twice the value of the optimiser for the low and high
threshold in the Canny detector as returned by the MATLAB implementation of the
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Canny edge detector. This stabilised the performance of edge detection at the loci of the
bounding box to be determined.

The upper row of panels in Figure 6.2 illustrates the previously made points. The leftmost
panel shows the unprocessed signature of a ship from class A2, observed at a range of
10.5km. In this and later plots, ranges and azimuths correspond to the horizontal and
vertical axis, respectively. The two panels to the right show, respectively, the result of
applying the Canny edge detector with σ = 1.0 with the low and high threshold values
calculated by MATLAB, and the same with those thresholds doubled, showing a much
better rendering of the edges. With regard to the preceding discussion, it should be
remarked that no problems with edge streaking occurred. Presumably, this was due to
the coarse pixelisation of the images. Depending on the size of the ship and its range,
the values of dimaz and dimrg rarely exceeded a value of about 80.

Figure 6.2: Panels show, from top to bottom and left to right in a row-wise fashion: The
unprocessed signature of a ship from class A2 at range 10.5km, and the morphological
operations on the binary version of that image, as described in Subsection 6.2.1.

In the next step, we used erosion operators in the horizontal (range) direction, and subse-
quently, a dilation by 3-pixel diagonal lines oriented at angles of 45◦ and 135◦. The output
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of this procedure can be seen in the fourth panel (bottom left) of Figure 6.2. Having
thus obtained more ‘solid’ edges, the MATLAB filling operator BWdfill (with the ‘holes’
specification) was applied. This step is illustrated in the fifth panel. Another erosion
operation, by a horizontal three-pixel line element, removed further clutter. Finally, the
bounding box was determined as the minimum rectangle which enclosed the ship’s out-
line, calculated in the illustrating example from the image in the last panel of Figure 6.2.
The boundary regions were extracted and retained for later use; see Subsection 6.2.2.

It should be remarked that the morphological operations could likely be simplified, while
maintaining or even improving overall performance, by using linear processing as a pre-
lude. This could include wavelet methods in the spirit of Subsection 6.2.2, or (to cir-
cumvent the difficulties that led to the present order of pre-processing steps) the use of
median filtering. Both of these alternatives appear to be interesting avenues for future
research.

Finally, we should remark that we have also experimented with other non-linear ap-
proaches for segmentation, especially random-walk methods as described in Smolka and
Wojciechowski (2001). While these may have some advantages in that they use the full
data rather than a binary caricature of it, and require fewer parameters, their consider-
ably higher computational expense recommended against using them in this application,
where the need for online calculation is acute.

6.2.2 Wavelet Shrinkage

From the sizeable literature, as well as preliminary experiments for example with Wiener
filtering, it appeared that wavelet methods were the most attractive for improving the
SNR. To address similar tasks in one, and also to a fair extent in two, dimensions, Donoho,
Johnstone and Silverman introduced and developed in a series of papers (e.g. Donoho and
Johnstone, 1994, and Johnstone and Silverman, 1997) the now well-established concept
of wavelet shrinkage, which operates by:

� Taking the Discrete Wavelet Transform (DWT) of the input image,

� Applying a thresholding rule to the resulting wavelet coefficients, and

� Taking the inverse DWT to render the reconstructed or denoised output image.

The composition of these three operations yields a denoising operator, which will be
denoted D, on the space of signals or images. In the rest of this subsection we discuss
how to specify the parameters of D.
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With regard to the first two of the above points, there is considerable freedom left to the
data analyst. The most important issue, however, arises with the choice of threshold.
This should actually be a vector-valued quantity, so as to account for two features, the
first of which is known to be prevalent in most problems in image and signal processing:

� As the resolution level of the DWT increases (corresponding to increasingly fine
details), the SNR of the coefficients of that level decays.

� There is considerably more information contained in the refinement resolution chan-
nels for range than for the azimuth dimension, a feature that was clear in advance
(and which can also be gleaned from Figure 6.3).

Before discussing our adaptation of the theory to the ship data, in the next section we give
a brief review of the pertinent methodology of orthonormal wavelets. A strong reason for
the use of orthonormal wavelets was the availability of a mature and well-tested software
package to perform the computations.

Orthogonal Wavelets for Images

We begin with notation, closely aligned to that used in the papers cited earlier in this
subsection. An implementation of the methods was provided by the authors cited there,
together with collaborators, with the WaveLab802 package for MATLAB 5.x and above,
available from the URL

http://www-stat.stanford.edu/˜wavelab/ ,

referred to below as ‘WaveLab.’ The present spatial nature of the data required some
alterations to that code, which were generally straightforward. We proceed with a brief
account of methodological background, and use the notation (x, y) rather than (x(1), x(2))
to facilitate notation. Suppose that a single radar signature is represented as a realisation
of the following statistical model:

Zij = f(Xi, Yj) + εij , i, j = 1, . . . n , (6.2.1)

where the error variables εij are drawn from some noise process (note that a nontrivial
correlation structure of this process is thus permitted), and n = 2J for some J ∈ N,
implying that J represents the number of levels in the orthonormal wavelet decomposi-
tion. The case where the input image (i.e., the output of the procedures described in
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Subsection 6.2.1) is of arbitrary rectangular or non-dyadic dimensionality may be treated
by zero-padding.

Let W = (wij) = W(Z) denote the orthogonal wavelet transform of the input signal
(image) Z = (Zij). For example, this could be the periodised wavelet transform imple-
mented as the function FWT2 PO.m in WaveLab, using a Daubechies filter of order 4 as
the quadratic mirror filter. A small filter order seems adequate in view of the coarse
pixelisation and often low SNR in the images that are to be enhanced. We will also need
the notation W (A, B) =

{
wij : i ∈ A , j ∈ B

}
for A, B ⊆

{
1, . . . , n

}
. Arrangement of

coefficients wij follows standard conventions, with the low-pass residual towards the top
left, and the refinement coefficients shown as ‘wedges’ towards the lower-right corner.
Figure 6.3 shows the output of the decomposition of the output image of Figure 6.2. For
an illustration of the method applied to ‘folklore’ images in the literature, see Mallat
(1999).
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Figure 6.3: The left panel shows the cropped image from Figure 6.2 after zero-padding
to the next-highest dyadic dimension (64 × 64). The right panel shows the result of
applying a Daubechies wavelet transform, using three resolution scales. Coefficients were
brightened for better visibility.

Since we are dealing with spatial rather than linear data, the multiresolution cascade
comprises three channels instead of only one. Specifically, if we let dyad(j) ≡

{
2j +

1, . . . , 2j+1
}

for j ∈ N0, then the decomposition at each level j, with L ≤ j < J , involves
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the three sets of coefficients
{
wH

j , wV
j , wD

J } with

{
wH

j

}
= W (dyad(j − 1), dyad(j)) ,{

wV
j

}
= W (dyad(j), dyad(j − 1)) , (6.2.2){

wD
j

}
= W (dyad(j), dyad(j)) ,

and the remaining elements for the case L = 0 are called the low-pass residual of Z. In
equation (6.2.2) and later, superscripts H, V, D are used to indicate the relation of these
sets of coefficients to what could be called, more informally, the ‘horizontal,’ ‘vertical,’
and ‘diagonal’ refinement details of the image. The coefficient sets w

{V,H,D}
j with j <

L are usually thought of as being predominantly exhibiting signal rather than noise
characteristics, hence they are not thresholded. At the outset of the analysis, the so-called
depth of the decomposition was chosen as a maximum of five, namely L = max(J −5, 1).
However, not all of the considered channels were thresholded later on.

To choose a threshold vector, we apply methods employed first in the context of correlated
noise by Johnstone and Silverman (1997); see also Coifman and Donoho (1995). Before
we proceed, we briefly comment on our choice of threshold function; see Section 1.1
for the definition of thresholding rules. We used the rule ηHard; the soft thresholding
rule ηSoft gave less satisfying results. This can be made plausible by observing that the
predominant interest here is not in visual appearance, but in L2 (near-)optimality (in
the Bayesian risk setting as described in the aforementioned papers), which is known
to recommend ηHard over ηSoft. From our experiments, similar remarks apply to some
continuous compromise between ηHard and ηSoft. This includes raised cosine thresholding,
which has gained some popularity in image denoising in other settings; see for example
Kingsbury (1999).

Choice of Threshold

For the problem of setting the threshold, Johnstone and Silverman (1997) discussed
the relative merits of two approaches. Both of these require preliminary estimation of
noise standard deviation σ

{V,H,D}
j in each decomposition channel. In order to do so, and

following the suggestion of Johnstone and Silverman (1997), we used a robust estimator
based on the median absolute deviation (MAD) from zero, defined earlier at (2.2.3):

σ̂
{H,V,D}
j = MAD

({
w

{H,V,D}
j

})
/ 0.6745 .
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Note that robustness is essential because signal will generally still be present, if only
sparsely, in the channels considered. Due to the decorrelation properties of the wavelet
transform, the latter assumption is much more tenable in the wavelet domain, even if
the noise was moderately correlated in the spatial domain (see Johnstone and Silverman,
1997). As mentioned earlier, the routines that are available in the WaveLab package
were modified so as to take the two-dimensional nature of the index set into account. In
calculating the MAD, this is simply meant to string out the data as a vector. Less trivial
changes applied to the routines used below, but these were evident enough.

The threshold methods that we shall consider shortly all suffer from the problem that
they are quite far from being conservative. Hence, we used the estimate of σ̂

{H,V,D}
j

that was the maximum of the four estimates that were calculated from the (up to) four
boundary regions that were identified as pure noise in the preceding segmentation step
(cf. Section 6.2.1). Jansen and Bultheel (1999) proposed a generalised cross-validation
criterion to obtain the threshold value that was found to perform well enough, but was
still inferior in comparison to the approach discussed here.

The assumption of Normally distributed wavelet coefficients of the noise also underlies
the first threshold definition, through a consideration based on extreme-value theory:

λ
{H,V,D}
j,Univ = σ

{H,V,D}
j ·

√
2 log n

{H,V,D}
j ,

where n
{H,V,D}
j = card

({
w

{H,V,D}
j

})
, and ‘Univ’ is the customary label ‘universal’ for

this threshold. In other contexts this threshold is known to be rather conservative, in
that it tends to yield larger estimates than the second rule to be described. However,
this proved to be an advantage in the context of denoising the ship data.

The second rule draws strongly on the formulation of the thresholding problem in terms
of L2 risk. We content ourselves with the definition; the detailed derivation of this result
may be found in the aforementioned papers, and the references cited therein. Suppressing
the superscripts V, H, D here and below for ease of notation, the unbiased risk criterion
for data wj =

{
wjk

}
is

Ûj(t) = σ̂2 nj +
∑

k

{
(w2

jk ∧ t2) − 2 I (|wjk| ≤ t)
}

,

where a ∧ b = min
{
a, b
}
. Define

t̂(wj) = argmin
0≤t≤

√
2 log nj

Ûj(t) .
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The SURE (an acronym for Stein’s Unbiased Risk Estimate) threshold is then obtained
as follows:

λj,SURE = σ̂j · t̂
(
wj/σ̂j

)
, L ≤ j < J .

Before going further, in this paragraph we explain a further expedient that is applied to
the data. This consists in calculating the threshold not from the original image itself,
but from an average over a total of K2 circulant shifts in azimuth and range directions.
Specifically, with (

Sk1,k2 Z
)
ij

= zi∗,j∗ , 1 ≤ k1, k2 ≤ K ,

where i∗ = (i+k1) mod n, j∗ = (j+k2) mod n, we consider the cycle-spinned image, with
‘TI’ standing for (the approximately fulfilled property of being) ‘translation invariant’:

ZTI = K−2
K∑

k1=1

K∑
k2=1

S−k1,−k2 ◦ D ◦ Sk1,k2Z .

We adopted the value K = 8 that was also used in the WaveLab implementation. Com-
plete translation invariance would be achieved by letting K = max

{
dimaz, dimrg

}
, but

the less costly approximation was found preferable. By the cycle-spinning procedure, the
tendency of the ordinary wavelet transform to produce spurious (Gibbs) phenomena in
regions of abrupt changes is ameliorated. In addition to the above references, these issues
are addressed by Coifman and Donoho (1995).

As remarked in Section 6.1, the information content in range direction is higher than in
azimuth. That feature warrants the use of different depth in thresholding the channels
wH

j and wV
j . (Recall that depth is defined via the minimum resolution level considered,

denoted L in Subsection 6.2.2.) This motivated our choice of two and three for the
respective values of depth in azimuth and range. In addition, the channel wD

j is treated
in the same fashion as wH

j (depth three). In each channel, bearing in mind the properties
of λj,Univ and λj,SURE mentioned earlier, we applied the threshold λj,Final = max

{
λj,Univ,

λj,SURE

}
. It seems possible to justify these choices by non-purely data analytic means,

as details that are physically distant less than 5m in range can not be unambiguously
detected by the radar (the azimuth bin width depends on range). We shall not dwell
on such issues here. Suffice it to say that the study of the connections between wavelet
decomposition and physical parameters of the radar is an interesting avenue for further
work.

The wavelet denoising carried out in this manner was expected to sufficiently sup-
press noise so as to complete the segmentation (cf. the corresponding remark in Sub-
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section 6.2.1). To this end, a rather simple procedure was used, operating as follows.
For each azimuth bin

{
Zi,j0 , 1 ≤ i ≤ dimaz

}
represented by the column index j0 with

1 ≤ j0 ≤ dimrg, the intensities were arranged in ascending order: Z(1),j0 ≤ Z(2),j0 ≤ . . . ≤
Z(dimaz),j0 , so that the peaks of the scatterers which corresponded to the object were in
the bottom row of the matrix (Z(i),j)ij of order statistics. The index j0 was flagged as
belonging to a signal scan if it satisfied the following conditions:

Z(dimaz −1),j0 > 0.9 Z(dimaz),j0 , Z(dimaz −2),j0 > 0.9 Z(dimaz −1),j0 , (6.2.3)

Z(dimaz −3),j0 > 0.85 Z(dimaz −2),j0 and
∑

i

Z2
i,j0 > 0.2 max

j

{∑
i

Z2
ij

}
.

The endpoints of the support of the ensuing zero-one vector of length dimrg was then
taken as the final estimate of the range extension of the pixels. Similar computations
were also applied to determine the azimuth extension, however in a much simplified
version, as the only condition retained from the above was the fourth one regarding
the gain/maximum gain ratio. Because the azimuth dimension of the bounding box
represents only little information further to the strength of the peak scatterer, this mea-
surement was not used for the analysis in Section 6.3.1.

The nine panels in Figure 6.4, to be read from the top left in a row-wise fashion, illustrate
the pre-processing scheme from Subsections 6.2.1–6.2.2 in its application to the image
of a ship from class A1. The second and third panels show the noisy border regions
that were identified in the step described in Subection 6.2.1. Panel four shows the
cropped image, zero-padded to the next binary dimension which equals in this case
n = 32 for each axis. The next two panels show a spikes plot of the amplitudes of the
wavelet data. A similar style of display is given by Donoho and Johnstone (1994), and
is implemented for one dimension in WaveLab as IMJPlotWaveCoeff.m. The version
developed for this report uses the maximum (black spikes) and minimum values (blue
spikes) of the wavelet coefficients, taken over the appropriate dimension, in order to
condense the two-dimensional set of coefficients into a linear collection. The seventh
panel shows the denoised version of the third, the eighth is the result after dropping the
zero padding, and the last panel is obtained after applying the steps described around
equation (6.2.3).

6.2.3 Registration

The Karhunen-Loève analysis in Subsection 6.3.4 requires a unified format for each da-
tum, which necessitates interpolation to a norm pixel size in both azimuth and range.
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Figure 6.4: Illustration to the image pre-processing steps, as described in Section 6.2.2.

For those parameters we chose dimaz = 35 and dimrg = 40, so that after stringing out
the data as row vectors, the result was an n × 1400 dimensional matrix corresponding
to the radar signatures. Here and in what follows, n denotes the total sample size, to be
given in Section 6.3.4, and which should not be confused with the use of n in (6.2.1).

An important issue that should be explored at this stage is the possibility of aligning
a given image to a reference image. Even without the ‘submersion’ phenomenon that
affects the strength, and in fact the sheer presence, of scatterer peaks as range increases
and curvature of the Earth is no longer negligible, changes in the angle of view could
lead to erroneous conclusions about the number of such peaks. Hence it is hard to find
so-called landmarks that would otherwise be very useful for registration; see for example
Ramsay and Silverman (2002, Chapter 4, pp. 57ff). From our experiments it appeared
that if the data are split, according to their angle of view, into two extremes of 0◦ and
180◦, thereby creating two sub-classes, classification does not significantly improve and
in fact often deteriorates. This might be due to the amount of training data becoming
too small. If the database was expanded, one could naturally consider using more than
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two aspect angles. It is pertinent to note that the change in aspect angle leads to a
sinusoidal scaling of the image, where the best recognition is possible for the 0◦ and 180◦

angles.

In view of these difficulties, the data from the first paragraph were augmented by the
estimated pixel extension along the range axis, the estimated range of the vessel, and
the maximum speed that was observed within the training set. It is the last of these
measurements that is of crucial importance in distinguishing the superclasses A1 and A3,
notwithstanding the fact that difficulties with distinguishing these two groups remain;
see Figure 6.7.

Problems concerning curve registration were discussed by Ramsay and Silverman (1997,
Chapter 5, pp. 67ff) at some length. We refer to that monograph, and the references
cited therein, for a comprehensive account of issues not discussed here.

6.3 Case Study

In this section we combine the processing techniques from the previous section with tools
from functional data analysis to tackle the navigation radar dataset. Some comments on
the raw dataset are given in Subsection 6.3.1. The question of how to obtain basis func-
tions that subsume both the signal, and the measurements of discrete parameters such
as range and speed from the preamble to each datafile, is addressed in Subsection 6.3.2.
In order to select the basis functions, in Subsection 6.3.3 we employ a criterion that,
although unlikely to be really new, seems to have been used rarely under comparable
circumstances. Classification results are presented in Subsection 6.3.4. Concluding re-
marks and future problems relating to the specific data of the case study, but probably
applying in a considerably wider context, are given in Subsection 6.3.5. A flowchart of
the processing and classification scheme as a whole is given in Figure 6.5.

6.3.1 The Raw Dataset

The dataset on which the subsequent analysis was based is shown in Table 6.1, and is of
the same low-resolution type as analysed in Robinson (1996), Inggs and Robinson (1999),
and Gibbins, Gray and Dempsey (1999). All data were sampled at a pulse recurrence
frequency of 2kHz and at a pulse length of 80ns, and the ’≥’ signs were due to the
combination of various vessels for which no own names were available in the preamble of
the dataframe. The shape of the pulse was approximately (but not exactly) rectangular.
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Figure 6.5: The processing and classification scheme. (‘PC’ stands for ‘Principal compo-
nents.’)

Data on vessels observed at ranges below 1500m were excluded from the analysis, due
to the distortion effects of sensitivity time control (cf. Acker, 1988, pp. 8–9), which is
an inherent part of the radar technology to improve clutter performance. The class s4’,
which mainly comprised unidentified vessels, was likewise excluded.
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Superclass / Vessel Type # Vessels # Dataframes

A1= s1 9 920
A2

s2 9 507
s3 5 183
s4 6 380
s4’ (≥) 5 288

A3
s5 (≥) 5 154
s6 (≥) 5 244
s7 (≥) 6 679

Total (≥) 50 3355

Table 6.1: The raw data.

6.3.2 Determining the Basis Functions: Regularisation

It was found efficacious to perform further smoothing through imposing a roughness
penalty on the basis functions, as described in Ramsay and Silverman (1997, Chapter 7,
pp. 111ff). Here it may suffice to give a very condensed account. The structure of this
penalty is that of the differential operator D2 (i.e., the second derivative of a functional
interpolant of the data), conveniently computed in a Fourier representation. The ma-
trix manipulations can then take advantage of the fact that the Fourier functions are
the eigenfunctions of D2. Control over the size of the penalty is exercised through a
coefficient (multiplier) λ ≥ 0, with the case λ = 0 corresponding to an ordinary prin-
cipal components analysis. The value of λ was chosen differently for each superclass,
but typically of the order of 10−4, or even smaller. It is also possible to choose λ by
cross-validation, but this requires very substantial computational effort. The sensitivity
of classification results with respect to the choices of λ for A2 and A3 did not seem to
be high. The implicit assumption of stationarity could be seen as a theoretical disadvan-
tage of using the Fourier transform. However, for the size of our dataset this drawback
was more than outweighed by the computational cost that is associated with alternative
representations, as these would involve densely-populated matrices of high order. We
refer to Ramsay and Silverman, 1997, pp. 117ff, with the following corrigendum by the
authors: In equation (7.10) and the next two displayed equations, V should be replaced
by JVJ; and in stage 2 of the algorithm, ci should be replaced by Jci on both occasions.

Of further help in classifying the ship types were the individual recorded speeds. Append-
ing the speed data, the ith datum was represented by a vector (xi, vi) ∈ R

1401 where the
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last component vi could be called, following Ramsay and Silverman (1997), the numerical

part as opposed to the functional part xi, i.e. the vectorisation of the image. In order
to allow the meaningful analysis of the joint variability of these two parts (recall that
the Karhunen-Loève expansion takes recourse to the singular value decomposition of the
grand covariance matrix, which is not invariant to scale of its coordinates), one needs to
first calibrate the respective scales. To this end, we multiplied vi, for all i = 1, . . . , n, by
the three respective scaling constants C{A1,A2,A3}. Ramsay and Silverman (1997, p. 130)
suggested the choice (x̄ = card(A1

)−1∑
k∈A1 xi , v̄ = card(A1

)−1∑
k∈A1 vi)

C2
A1 =

∑
k∈A1 ‖xk − x̄‖2∑
k∈A1 ‖vk − v̄‖2

, (6.3.1)

and analogous definitions for CA2 and CA3. There is, however, the problem that while ‖·‖
in the denominator denotes the ordinary Euclidean norm, in the numerator the norm is
to be taken in the functional (L2) sense. Since the length of the definition interval of the
images xi is ill-defined in the present case, and because the xi have furthermore been up-
or down-sampled by varying rates, questions are raised in justifying the use of (6.3.1) on
its own. Also, as in the related discussion in Ramsay and Silverman (1997, ibid.), there
are questions as to which normalisation should be used in (6.3.1). Experiments showed
that by using an additional multiplier of (dimaz ·dimrg)−1 in (6.3.1), and using half of the
ensuing value of C{A1,A2,A3}, we obtained good approximations to the ‘optimal’ choices
of these values, in the sense that they yielded the smallest error (i.e., misclassification)
rates.

6.3.3 Determining the Basis Functions: Subset Selection

The techniques discussed previously yield a realisation of the random vector of scores{
Ξir

}
for the ith observation, where r is the order of the coefficient in the expan-

sion (A.5.2), and we also substitute Ξir for ξr there. Two major issues arise in connection
with the dimension reduction technique that is based on the Karhunen-Loève expansion:

� How should the integer M be chosen such that the vectors
{
Ξij , 1 ≤ j ≤ M

}
are (close enough to being) optimal for classification purposes? If M is chosen
too large then the phenomenon of overfitting will in fact lead to a deterioration of
classification rates.

� As a point subordinate to the previous one, it is a priori reasonable to allow for
the possibility that noise in (realisations of) the scores Ξij does not consistently
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become dominant over signal as r increases. Hence, we are interested in a method
that is capable of selecting a subspace span

{
ψj1 , . . . , ψjM′

}
, with j1 < j2 < . . . jM ′

and jν > jν−1 + 1 for some ν.

In order to address the first of these issues, Hall, Poskitt and Presnell (2001) proposed
cross-validatory estimation of M . In the context of the present data, however, this
approach was found not to be satisfactory when used by itself. From preliminary trials,
it was observed that the number of basis functions to consider is generally small, and
indeed we found it sufficient to retain no more than ten basis functions. The eventual
choice of the basis was therefore left with the second of the above problems, which was
tackled by a method that was simple yet effective. Specifically, assume that an upper
limit on the value of M , for example M = 10, is given. In the sequel, a generic subset of
{1, . . . , M} will be denoted by calligraphic letters. For two class assignments (functions
of the test data) A, B, define

ckl(A,B) = (number of observations that are in class k under assignment A
which fall in class l under assignment B).

If A represented the true class assignments, this would yield the standard confusion
matrix.

For S ′ ⊆ S, let AS′ denote the (self-)classification on the training set when using the
subset {ψν , ν ∈ S ′} of the Karhunen-Loève basis. For brevity, write ckl = ckl(S,S ′), and
let 0/0 ≡ 0. Let

FLOW(S,S ′) =
∑
(k

l)
Ikl(S,S ′) I {ckl + clk ≥ n0} , (6.3.2)

where
(
k
l

)
stands for summation over all combinations of size l drawn from k elements,

n0 ∈ N0 is a threshold (a void condition for n0 = 0), and

Ikl = (ckl + clk)
−1

(
ckl

ckl + clk

)ckl
(

clk

ckl + clk

)clk

.

Note that the last expression is somewhat similar to the definition of the (log-)likelihood
at (3.3.1). For the two superclasses A2, A3 which split up into several types, we applied
the FLOW criterion in order to reject basis functions in the range m = 4, . . . , M with M =
10. With somewhat more simplicity than suggested by (6.3.2), we used S = {1, . . . , M},
S ′ = S \ {m}, n0 = 2, and rejected the basis function of index m if FLOW(S,S ′) <

2.5 · 10−3.
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6.3.4 Classification

In order to divide the dataset described in Section 6.3.1 into the shiptypes s1–s7, we used
the sequential pre-processing techniques described in Section 6.2. Apart from the output
images, normed by resampling to dimension dimaz ×dimrg = 35 × 40 = 1400, the only
features used were related to the physical measurements. Namely, in distinguishing the
three superclasses, we utilised:

� the estimated ship’s pixel size in range,

� the ship’s range, and

� the maximal speed observed in the training set.

Figure 6.6 shows pairwise scatterplots of these measurements for the original data. These
are to be read in pairs, the upper two panels corresponding to the training data, which in
this case comprised ntrain = 2230 ships, and the test data with the corresponding number
ntest = 815. The speed is given in knots, with one knot equalling 1.852 kilometres per
hour. Note that for illustrative purposes, and because of the significantly larger amount
of data at small distances, the ranges are displayed on a logarithmic scale. A listing of
the training and the test datasets for each type is shown in Table 6.2.

Using the speed maxima instead of individually measured speeds in the classifier is ben-
eficial for classification, notwithstanding the fact that the Gaussian assumption that
underpins the QDA classifier (see the definition below) is clearly less tenable. Certainly,
speed should not be regarded as a very reliable input, especially if the training sample
used only a relatively short time window.

Training Data Test Data
#Vessels #Data #Vessels #Data

s1 7 684 3 228
s2 5 290 4 223
s3 5 149 1 34
s4 9 303 2 77
s5 3 100 2 54
s6 3 121 3 117
s7 5 583 2 82

Table 6.2: Sizes of training and test datasets for the example in Subsection 6.3.4.

In order to distinguish the three superclasses, we used a standard (non-smoothed) prin-
cipal components analysis applied to the above three measurements. The maximum
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Figure 6.6: Scatterplot of physical measurements for the three superclasses.
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number of basis functions that are calculable (namely, three), was used. We obtained
good separation of the superclass A2 from the other two, and varying but generally sat-
isfactory performance in distinguishing A1 from A3. An example output is shown in
Figure 6.7; note that the main diagonal of the confusion ‘matrix’ in Figures 6.7–6.8 runs
from the bottom-left to the upper-right corner.

0%  

20% 

40% 

60% 

80% 

A1 A2 A3

A3

A2

A1

11.9 0.4 87.7

4.9 95.1 0.0

78.1 0.0 21.9

Error rate:
 11.3%

Figure 6.7: Confusion matrix for classification into the three superclasses.

It should be noted that improved error rates are likely achievable by using the original
images, as well as the processed ones, in the analysis. This would mainly serve to
ameliorate the occasional failures of the pre-processing techniques when determining the
bounding box of very noisy data at distant ranges.

The training and test datasets were chosen according to the rules given below. It should
be noted that the sensitivity of the results to the design of the train/test combination
is considerable, but one would expect that this variability decreases as the database is
enlarged.

� If there was more than one run on a vessel available, the number of test runs was
chosen to be the largest integer less than a third of the number of runs.

� In the opposite case, the single run was assigned to the training or the test pool
with probabilities 0.7 and 0.3 respectively. This implies that in particular, no data
were discarded after selection for the training/test pools.
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� In either of the above situations, upper bounds of 250 and 50 were imposed on the
sizes of the training and test datasets, respectively.

� As there exists large fluctuation of the number of frames within the runs, the size
of the test dataset could possibly exceed the size of the training data for a given
ship type. This was remedied by interchanging these sets where necessary.

Figure 6.8 illustrates classification results obtained in this setup, obtained by quadratic
discriminant analysis in the same way as in Hall, Poskitt and Presnell (2001). Recall
that quadratic discriminant analysis estimates the class density for the lth type using
a multivariate normal density. The mean and covariance matrix for the lth type are
estimated by their sample analogues,

X̄
(m)
(l) = n−1

l

nl∑
i=1

X
(m)
(l),i and Σ̂(l) = n−1

l

nl∑
i=1

(X(m)
(l),i − X̄

(m)
(l) )(X(m)

(l),i − X̄
(m)
(l) )′,

respectively. The density estimate is then

f̂(l),m(x) ∝ det(Σ̂(l))
−1/2 exp

{
−1

2

(
x(m) − X̄

(m)
(l)

)′
Σ̂−1

(l)

(
x(m) − X̄

(m)
(l)

)}
.

As noted earlier, the shipclass s4’ from Table 6.1 was excluded from the analysis because
it appeared to be too vaguely defined to permit being grouped separately; acronyms are
as in Table 6.1. The respective sets of basis functions were chosen according to the rule
described in Subsection 6.3.3, based on the FLOW criterion of (6.3.2). While only the
first three basis functions were retained for the superclass A3, the ninth was in addition
retained for the superclass A2. The inclusion of this basis function may show the presence
of superstructure, even if only at a weak level.

The result seems to be representative of the error rates that were obtained in multiple
trials, at least if very disproportionate training/test configurations obtained under the
above conventions were disregarded. Note that due to varying weather conditions for
separate runs, and in view of the fluctuations in the number of frames contained in
a run, disproportionality is not straightforward to describe. These circumstances were
often detected only after the experiment. The existence of otherwise distorted data
further complicates a quantification of the frequency of occurrence of such unfavourable
configurations. Sometimes the error rates could be as low as 30%, but on other occasions
also in excess of 40%. For vessels for which multiple runs were available, the transfer of a
training set to a test set worsened the results quite dramatically. This seems to support
the conjecture that expansion of the database is crucial in order to obtain better, or at
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least in practice more reliable, results with the Karhunen-Loève (as probably with any
other) classifier.
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Figure 6.8: Estimated (mis)classification rates (row percentages) using quadratic dis-
criminant analysis.

6.3.5 Conclusion and Further Research

The research in this chapter indicates that by dimension reduction via the Karhunen-
Loève approach, it is possible to detect shape differences which characterise ship types.
These differences are not obvious to the eye, even with knowledge of the true types which
the letters s1–s7 represent. Problems which arise from varying angles of view, as well as
other sources, are felt quite strongly. Nevertheless, a relatively unsophisticated approach
that performs images enhancement on each datum in turn, without taking sequential
features into account, seems to be capable of reducing such distortions while retaining
salient features for classification. At least, mingling a moderate proportion of poor-
quality data into the training set does not seem to severely confound the basis functions
or, by implication, the classifier.
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Expanding the database seems to be an essential step in the implementation of more
sophisticated methods which utilise the sequential aspect of the data. This applies to
both the image processing, notably the registration, and the classification levels. But
even with the present database, it seems worthwhile to attempt a more judicious use of
the viewing angle information.
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A.1 Overview

In this appendix, we collect some background material from elementary differential ge-
ometry, probability theory and statistics that are instrumental for the results presented
in Chapters 2–4 of this thesis. The style of the survey will be aimed not at completion,
but rather at indicating how our results relate to existing work, especially regarding the
links to the now well-developed area of empirical process theory. Because clarity is given
preference over completeness, frequent references to the literature will be given.

The study of edge curves necessitates the use of concepts from elementary differential
geometry, which are recapitulated in Section A.2. We turn to the problem of framing the
sequence of edge estimators in rigorous probabilistic terms in Section A.3. Due to their
appearance as limits of summation processes such as our likelihoods, in quite complex
contexts such as here, Section A.4 is devoted to Gaussian processes. Computational
treatment of Gaussian, and in fact more general L2 processes, is greatly facilitated by the
so-called Karhunen-Loève expansion, discussed in Section A.5. In Section A.6 we utilise
theory of martingales indexed by classes of planar sets in order to address the convergence
of stochastic summation processes, which are especially important in Chapter 4. Being
a special case of M -estimation, the likelihood theory from Chapter 4 can be related to
results from the wider class of M -estimators that derive from a stochastic process such as
considered here, which are the subject of Section A.7. Finally, in Section A.8 we discuss
some aspects of minimax theory, which has become the by far most important tool to
assess and compare performance of edge estimators statistically.

A.2 Descriptors for Planar Curves and Surfaces

As pointed out in Section 1.2, we regard the edge detection problem as primarily relating
to curves, rather than point sets. This enables the description of the original edge, as
well as the estimators to be presented in Chapters 2 and especially 3 and 4 of this thesis,
in terms of differential-geometric rather than set-theoretic notions. In describing our
estimators, an important role is played by the intrinsic differential-geometric coordinate
system, commonly (as in this section) referred to as the gauge coordinate system, which
is determined by the local analytic properties of the curve as described in the following.
The estimators proposed in Chapters 3 and 4 make essential use of the notion of a ridge

in a planar surface. There are several plausible definitions for a ridge (see e.g. Hall, Qian
and Titterington, 1992). In order to give a concise description of our estimator, and for
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occasional use elsewhere, it is convenient to collect in the present section some notions
from elementary differential geometry of planar curves and surfaces. More details on the
subsequent topics may be found in do Carmo (1976), Hall et al. (1992), and Haralick
(1983).

We start with the basic descriptors of a planar curve, for which we will use the letter C.
The curve C can be represented by a parametric equation,

u �→ x(u) =
(
x(1)(u), x(2)(u)

)
, u ∈ [0, T ] , T < ∞ . (A.2.1)

The points x(0) and x(T ) may be called the ‘beginning’ and ‘end’ of C. Recall that C is a
Jordan curve if x(0) = x(T ) and x(·) is injective on [0, T ), in which case any point on C
may function as the beginning of C as well as its end. If C is a continuously-differentiable
curve, its (arc) length,

length(C) =
∫ T

0
‖ẋ(u)‖ du =

∫ T

0

{
(ẋ(1)(u))2 + (ẋ(2)(u))2

}1/2
du , (A.2.2)

is well-defined. (Here and in the sequel, the usual dot notation is used for derivatives.)
Considering the upper integration limit in equation (A.2.2) as variable, denoted by w

say, yields a strictly increasing function Γ(w) on [0, T ]. A special role is played by the
natural parametrisation, which arises when Γ(s) ≡ s. In this case, the parameter s is
related to an arbitrary parametrisation as at (A.2.1) via the equation

s = s(u) =
∫ u

0
‖ẋ(v)‖ dv .

For any parametrisation, the tangent vector at parameter value u is given by θ =
θ(u) =

(
ẋ(1)(u), ẋ(2)(u)

)
/‖ẋ(u)‖, and the corresponding normal vector θ⊥(u) is ob-

tained by rotating θ(u) counter-clockwise through π/2 radians, viz., θ⊥(u) =
(
− ẋ(2)(u),

ẋ(1)(u)
)
/‖ẋ(u)‖. The curvature of C is given by the formula

κ(u) =

∣∣∣∣∣ ẋ(1)(u) ẍ(1)(u)
ẋ(2)(u) ẍ(2)(u)

∣∣∣∣∣
‖ẋ(u)‖3

, (A.2.3)

where | · | denotes the determinant. Formula (A.2.3) simplifies for the natural parametri-
sation since in that case ‖ẋ‖ ≡ 1. The sign of κ is determined by the (simplified) Serret-

Frenet equation, θ(s) = κ(s) θ⊥(s). Usually we will only be interested in the magnitude
of curvature, |κ|. Henceforth the qualifier ‘absolute’ is tacitly understood when referring
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to curvature. The vectors θ and θ⊥ define the gauge coordinates of C. The advantage of
the gauge coordinate representation is that the description of points is invariant under
rotation of the curve.

In cases where a representation of the curve in Cartesian coordinates, say of the form

C =
(
t, f(t)

)
, f : [0, T ] −→ R , (A.2.4)

or in polar coordinates:

C =
(
r(φ) cos φ, r(φ) sin φ

)
, r : J ⊆ [0, 2π] −→ R+

exists, the following respective versions of (A.2.3) may be used:

κ(t) =
{
1 + f ′(t)2

}−3/2
f ′′(t) , (A.2.5)

κ(φ) =
{
r(φ)2 + r′(φ)2

}−3/2 {
r(φ)2 + 2r′(φ)2 − r(φ)r′′(φ)

}
. (A.2.6)

Because the curve estimators to be developed in Chapters 4 and 5 derive from surfaces
in the form of ridge curves, the curvature of C may, under some extra conditions, be
estimated through the partial derivatives of that surface. Using such two-dimensional
operators in this context is appealing for three reasons, mentioned in Koenderink and
Richards (1988) and which we rephrase as follows:

1. Estimation of curvature of a fault line in a smoothed surface is not equivalent to
the two sequential steps of extraction of that line, and application of a smoothing
method for curves. The former process is likely to better preserve the information
on curvature.

2. The robustness to noise can be expected to be superior for an area-based operator.

3. From a psychophysical point of view, an area-based operator is more plausible as
well: human vision appears to discern ridge curves in this manner.

With regard to item 1 in the foregoing list, it should be appreciated that the two men-
tioned procedures are not even equivalent if the smoothing parameters for the surface
and the curve are chosen to be optimal. To illustrate this fact, recall that the optimal
estimator of the mode of a density is not recovered by using the optimal bandwidth for
the density estimate. The verdict from item 3 seems not to have been superseded by
research since the time of writing of Koenderink and Richards (1988).
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In this paragraph we rederive, under the mentioned extra conditions, the area-based
curvature formulae. For simplicity, assume that the fault line has a representation as
at (A.2.4), and for notational convenience we use xy notation for points in R

2 until
the paragraph containing (A.2.8). We now stipulate that the regression surface has a
constant limit on one, say the ‘−’ side, of C,

g∗ = lim
(x,y)→(x0,y0)

(x,y)∈R−

g−(x, y) , for all
(
x0, y0

)
∈ C . (A.2.7)

Assumption (A.2.7), although restrictive, is often satisfied in practical applications where
the image is obtained through thresholding at some level of the response variable. Our
second assumption is that gy ≡ (∂/∂y)g has a continuous extension from R− to R̄− =
R− ∪ C and does not vanish on C. Under these conditions, the image set of C can be
expressed, in a sufficiently small neighbourhood of R̄−, as the level curve with equation
g
(
x, y(x)

)
= g∗. By implicit differentiation, it follows that

y′ = −gx

gy
,

y′′ =
(
− gxxg2

y + 2 gxygxgy − gyyg
2
x

)
/g3

y , (A.2.8)

which in combination with (A.2.5) gives the announced alternative formula for the cur-
vature of C.

We now review briefly the basic differential geometric properties of surfaces, building on
the previously introduced concepts. In an abstract context, such a surface is often also
referred to as a (two-dimensional) manifold, customarily denoted by the letter L, and
defined on some compact domain D. In the present instance, and for each x ∈ D, the
(first-order) gauge coordinates u = u(x) and v = v(x), often also called the first and
second principal directions, are given by the normalised gradient vector, m0 = m0(x)
say, and its perpendicular m⊥

0 parallel to the x plane, choosing any of the two possible
orientations. Moving along m⊥

0 on the surface, in an infinitesimal context, amounts
to tracing a contour of the surface defined by g. The vectors u(x) and v(x) span the
eigenspace of the Hessian of L(x). Moreover, the eigenvalues of L(x) represent the
respective (local) curvatures of the planar curves that are obtained by restricting L to
the projection of the one-dimensional affine subspace generated by either u(x) or v(x), on
D. Along these directions, curvature on the surface is respectively minimal and maximal.

We now give the definition of a ridge that suits our purposes.

Definition A.1. Assume the same notation as above. A point (x,L(x)) is a ridge point
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if Lu(x) = 0 and Luu(x) < 0. A ridge line is the projection of a ridge onto D. An
antiridge (line) is a ridge (line) in the surface defined by (−L).

Where a contour line meets a ridge line, it does so necessarily at a right angle. At the
intersection point, the value of ‖m0‖ is minimal; this property relates to the fact that
successive contour lines, as one moves away from a ridge in the perpendicular directions,
have local maxima along these directions. A consequence of the previously-mentioned
property is that by following a contour line, and (in our applications, numerically) com-
puting the value of ‖m0‖ at each step, ridge points can be found. This is important in
the estimation of fault lines as ridges, as described in Section 3.2 as well as Chapter 4.

It should be recognised that although the tasks of blurring, which is instrumental in
the scale-space representation of an image, and smoothing are similar in many ways,
they have different aims and should be distinguished. We also note that the motives for
wavelet decomposition are related to an appreciable extent to scale-space theory. The
use of wavelets in connection with edge estimation will not be addressed in this thesis.

For the purposes of image analysis and estimation of curves, a very important concept is
that of the so-called scale space. Scale space theory is instrumental in both the Canny
and curvature scale space algorithms, which is used in Section 5.4. The rationale for
considering an image at various scales simultaneously is, in the words of Lindeberg (1998,
p. 122),

. . . the basic fact that image structures, like objects in the world, exist as
meaningful entities over certain ranges of scale, and that one, in general,
cannot expect to know in advance what scales are appropriate for describing
those.

Below we shall give only the basic definitions of scale spaces that are relevant to us; for
more details see Lindeberg (1998) and the references cited therein. We resort to the
notation I = I(x) for the original image, so to be consistent with the standard use of the
letter L to denote the scale-space mapping of I. Formally, this is a map L : R

2×R+ → R,
or more specifically L : Π × R+ → R if Π denotes the observation window, usually a
square. The image Iσ ≡ L(·, σ) is thought of as the representation of I at scale or
blurring level defined by the scale parameter σ. (Here and below, the parameter σ is
not to be confused with a statistical standard deviation, although these notions will be
seen to be connected.) It is well known that under fairly general assumptions, including
linearity, spatial shift invariance, and the avoidance of creating, in some sense, new detail
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when σ is increased, the Gaussian kernel function

ϕ(t, σ) =
1

σ
√

2π
e−

t2

2σ2 , t ∈ R , (A.2.9)

is singled out as a canonical choice for constructing L via convolution. (That ϕ satisfies
the last of the properties listed above has been proved by Silverman (1981); see also
the related discussion in Hirst (2002, p. 5)). In the case of two-dimensional imagery,
the convolution is usually done in a separable fashion, tolerating a cost in performance
along directions off the main axes. Accordingly, at scale σ, the image is defined as
L(·, σ) = (I ∗ (ϕ ⊗ ϕ))(·, σ). Partial first and second-order derivatives can be computed
using the formula

∂α+β

∂αx(1)∂βx(2)
L(x, σ) =

(
I ∗ ∂α+β

∂αx(1)∂βx(2)
(ϕ × ϕ)(x, σ)

)
, α, β ∈ N0 . (A.2.10)

We always assume that these derivatives exist up to order two in the parts of Π where
the regression surface is continuous.

Using a similar idea, Mokhtarian and Mackworth (1992) introduced the concept of the
curvature scale space. Let

{
(X(1)(s), X(2)(s) : 0 ≤ s ≤ T

}
denote the natural parametri-

sation of C, and let σ > 0 denote a scale parameter. An evolved version of C, denoted
Cσ, is defined by

{(
X

(1)
σ (s), X(2)

σ (s)
)

: 0 ≤ s ≤ T
}
, where

X(i)
σ (s) = X(i)(s) ∗ ϕ(s, σ) , i = 1, 2 , (A.2.11)

and ϕ is as defined at (A.2.9). An illustration of the effect of applying the evolution
operator to Jordan curves, such as one that approximates the circumference of the African
shoreline, is given in Mokhtarian and Mackworth (1992). In Section 5.4 we present an
example of the usage of scale-space representations of curves.

We finally note that in Section 4.2 we also use the notation Xh =
{
Xh(s) : 0 ≤ s ≤ T

}
,

for h > 0 a bandwidth parameter. Notwithstanding the similarities of their definitions
and properties (the second operator does also have a tendency to smooth out peaks and
thereby reduce total arc length), these two curve operators should be distinguished.

A.3 Convergence and Measurability

This section is devoted to topological and measure-theoretic properties of the state spaces
on which the summation processes in which we are interested are defined. Our exposition
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is mainly based on Van der Vaart and Wellner (1996), especially Chapters 1.5 and 1.6.
First, we give a brief explanation how measure-theoretic issues arise with the summation
processes considered in this thesis.

It was first noted in the mid-sixties (see e.g. Billingsley (1968) and the references cited
therein) that when the space D[0, 1] (see the definition on p. 25) is endowed with the
supremum metric, then the empirical d.f. of an i.i.d. Uniformly(0,1) distributed sequence
fails to be measurable with respect to the Borel σ-field. To remedy this problem,
two different main approaches were subsequently developed. The first of these uses the
Skorohod metric (or a suitable modification thereof) on D[0, 1]. This permits the use
of the classical theory on weak convergence on metric spaces in the lines of Billingsley
(1968). A second corrective, originally proposed by Dudley (1966), was to abandon the
Borel σ-field on D[0, 1] in favour of the σ-field generated by the open balls with respect
to the supremum metric. Due to the non-separability of D[0, 1], it may be suspected
that the latter σ-algebra is strictly coarser. This indeed turns out to be true, and in
particular, the empirical d.f. is rendered by a measurable map. Pollard (1984) gave a
fine description of this method, which is easier to work with than the one mentioned
earlier. However, empirical and partial-sum processes in more general settings, such as
those used in this thesis, cannot be handled by Dudley’s approach.

The main invention in Hoffman-Jørgensen’s concept (1991) of weak convergence was to
drop the requirement of measurability of the sequence, and to maintain it only for the
limiting element. This assumption is not as artificial as it might seem at first. Indeed,
in the example of the empirical d.f. from the previous paragraph, it is a pivotal result
(although not trivial to prove) that the limiting process may be chosen to have sample
paths in the space of continuous functions on the unit interval. Thus, the limit may
be taken to be the standard Brownian motion on [0, 1]. It is appropriate to remark
already here that in a similar manner, Gaussian processes whose covariance functions
are ‘well behaved’ admit continuous modifications. Hoffman-Jørgensen’s definition of
weak convergence has widely been accepted as the appropriate notion to handle the
general empirical process, as well as most aspects of large sample theory in statistics. It
will be referred to below as modern weak convergence in the sequel whenever explicit
mention is made.

Modern weak convergence is framed in terms of so-called outer integrals (or outer expec-

tations), which refer to a well-established concept in measure theory. If X : Ω → [−∞,∞]
is an arbitrary extended real-valued map defined on a probability space (Ω,F , P ), then
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the outer integral of X with respect to P is defined as

E∗X = inf {EU : U ≥ X, U : Ω → [−∞,∞] measurable and EU exists} .

As usual, existence of EU means that min
{
E[UI(U > 0)],−E[UI(U < 0)]

}
< ∞.

Modern weak convergence of a sequence {Xn}, which takes its values in a metric space
with metric d, to a limiting element X is then defined by requiring that X be measurable,
and that

E∗f(Xn) → Ef(X) , for every bounded and continuous f .

In this case we use the notation Xn =⇒ X, which is consistent with the classical use of
the arrow symbol. We shall also need the concept of outer probability of an arbitrary
subset B of Ω:

P ∗(B) = inf {P (A) : A ⊃ B , A ∈ F} ,

on which the definition of convergence in outer probability builds. Specifically, with
the same notation as above, Xn converges in outer probability to X if for every ε > 0,
it holds that P ∗(d(Xn, X) ≥ ε

)
→ 0. The standard apparatus of weak convergence

theory (most importantly, Portmanteau’s theorem and the characterisation of infinite-
dimensional convergence by convergence of marginals plus a tightness/equicontinuity
condition, or Prohorov’s theorem), largely carries over to the new definitions. In this
way, a convergence theory may be established which is sufficiently rich to accommodate
most of the present-day statistical applications. Due to the sacrifice of measurability it is
necessary to rephrase the definition even of almost sure convergence, but this programme
may be carried out as well. In general, we will be slightly sloppy by dropping the asterisk
in probabilities and expectations.

The lack of total order in the indexing sets of general empirical processes, and those
considered here, make it useful to formulate the theory with the use of nets rather than
sequences. Thus, the index sets only need to be directed rather than totally ordered.
For our purposes, the only relevant example is a collection of subsets A ⊆ B of a given
planar set, which is a "-directed class via

A " B :⇐⇒ B ⊆ A ,

because every pair (A1, A2) with Ai ⊆ B has a "-successor:

A3 ≡ A1 ∩ A2 $ Ai , i = 1, 2 .
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We do not expand further on these topics and instead refer to any standard textbook on
topology, for example Munkres (2000).

We now recall the definition of the (vector) space of bounded functions on an arbitrary
set T , denoted �∞(T ), which consists of all functions z : T → R such that

‖z‖∞ = ‖z‖∞,T = sup
t∈T

|z(t)| < ∞ .

As in the classical theory, weak convergence in the space �∞(T ) may be characterised
by a Prokhorov-type theorem (Van der Vaart and Wellner, 1996, Theorem 1.5.4, p. 35).
It is also possible to give a relatively simple characterisation of tightness of a stochastic
process on this space (see Van der Vaart and Wellner, Theorem 1.5.7, p. 37).

The space �∞loc(T ) ⊇ �∞(T ) of locally bounded functions, which is the one of greatest
relevance to us, is defined as follows. Assume that T is σ-compact, that is, there exist
T1 ⊆ T2 ⊆ . . . ⊆ T such that each Ti is compact and T = ∪∞

i=1Ti. The space �∞loc(T ) is
defined as the set of all functions z : T → R that are uniformly bounded on every Ti (but
not necessarily on T ). If each Ti is compact then the norm ‖ · ‖∞, defined by

‖z‖∞ =
∞∑

k=1

2−k min(1, ‖z‖∞,Tk
) ,

makes �∞loc(T ) a Banach space where the metric is that of compact convergence. Weak
convergence in the space �∞loc(T ) can be characterised by convergence in the spaces �∞(Ti),
for any sequence {Ti} as above, provided that the limit in each Ti is a tight r.v. (Van der
Vaart and Wellner, 1996, Theorem 1.6.1, p. 43).

We conclude this section with a definition and a theorem which pertain to switching the
underlying probability space, while preserving the properties of the sample paths up to
sets of arbitrarily small probability. This will serve to simplify the argumentation at the
close of the proof of Theorem 4.2 in Subsection 4.3.2. As noted in Van der Vaart and
Wellner (1996, p. 17), the separability condition in Theorem A.1 is slightly weaker than
tightness, and the latter will suffice for our purposes, where also D is a subset of R

2.

Definition A.2. (Van der Vaart and Wellner, 1996, p. 52) Let Xn, X : Ω → (D, d)
be arbitrary maps, taking values in a metric space. The sequence Xn converges almost
uniformly to X, written Xn →au X, if for every ε > 0, there exists a measurable set A

with P (A) ≥ 1 − ε and d(Xn, X) → 0 uniformly in A.

Theorem A.1. (Van der Vaart and Wellner, 1996, p. 59) Let Xn : Ω → (D, d) be
arbitrary maps into a metric space and X be Borel measurable and separable (i.e., there
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exists a measurable separable set that has probability 1 under the law of X). If Xn =⇒ X,
then there exists a probability space (Ω̃, Ã, P̃ ) and maps X̃n : Ω̃ → D with (i) X̃n →au X̃∞

and (ii) E∗f(X̃n) = E∗f(Xn), for every bounded f : D → R and every n.

A.4 Gaussian Processes

In this section we define Gaussian processes, and discuss some of their properties which
will be of relevance later on. Gaussian processes typically arise as weak limits of em-
pirical and partial-sum processes, and it is especially the connection to the latter that
is of importance to us. As is well-known, empirical processes generally have limits that
are ‘tied-down’ Gaussian processes, the prototype being the Brownian bridge on the unit
interval, i.e. when T = [0, 1]. We are especially interested, however, in Gaussian pro-
cesses on general fixed compact subsets of R

2. While there has been an ongoing vivid
research interest in the case T = [0, 1] or more generally, T = [0, 1]d for d ≥ 1, due to
the aforementioned intimate connection with empirical process theory (see e.g. Alexander
and Pyke, 1986, Shorack and Wellner, 1986, and Van der Vaart and Wellner, 1996), there
is a scarcity of available results for the kind of Gaussian processes that are of interest to
us. The development in this subsection mainly follows Adler (1990).

A.4.1 Definition and Fundamental Properties

We start with the basic definition.

Definition A.3. Let T denote a semimetric space. A stochastic process {Xt, t ∈ T}
is called Gaussian if for every finite subset T0 ⊆ T and collection {αt, t ∈ T0} of real
numbers, the r.v. ZT0 =

∑
t∈T0

αt Xt is Normally distributed. If E(ZT0) = 0 for all
choices of T0, the process {Xt} is called centrally Gaussian.

Unless stated otherwise, centrality will be assumed throughout this subsection. Gaussian
processes with (quadratic) drift will be considered in Subsection A.4.2. Notice that the
assumption on T is fairly weak, which allows us to consider the following class of processes
under the Gaussian framework.

Definition A.4. (Adler, 1990, p. 6) Let (E, E , ν) be a σ-finite measure space, and let
E0 ⊆ E denote the subring of those sets with finite ν-measure. A Gaussian white noise
based on ν is a random set function W = Wω : Ω → [−∞,∞]E0, where (Ω,F , P ) is some
probability space, such that for all A, B ∈ E0,
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1. W (A) is Normally distributed with mean zero and variance ν(A).

2. If A ∩ B = ∅ then W (A ∪ B) = W (A) + W (B) with probability 1.

3. If A ∩ B = ∅ then W (A) and W (B) are independent.

The measure ν is also referred to as the variance measure of W .

From the above definition, it is tempting to think of W in terms of the representation

W (A) =
∫

A
dW (t) , A ∈ E0 , (A.4.1)

which indicates how one would integrate simple E-measurable functions. However, it
is generally impossible to interpret (A.4.1) in a pathwise sense. To appreciate why, it
suffices to recall textbook facts on trajectories of standard Brownian motion on T = R+.
The process W is also known under the names isonormal Gaussian process (Dudley, 1973,
Shorack and Wellner, 1986) or just Brownian motion (Ivanoff and Merzbach, 2000, p. 67).
The first of these synonyms is explained by extending W through the natural embedding
E0 ↪→ L2(E, E , ν), A �→ IA. By the usual method of extending to linear combinations and
taking limits, it is then readily verified that EW (f)W (g) =

∫
fg dν for f, g ∈ L2(E, E , ν).

Thus, the process W defines an isometry between the spaces L2(Ω,F , P ) and L2(E, E , ν),
and a standard construction can be carried out to rigorously define a stochastic integral
with respect to W , and so to give meaning to (A.4.1).

The covariance function of the process W may easily be calculated from Definition A.4,
which gives

cov{W (A), W (B)} = cov{W ((A ∩ B) ∪ (A \ B)) , W ((A ∩ B) ∪ (B \ A))}
= var{W (A ∩ B)}
= ν(A ∩ B) .

The nomenclature of Definition A.4 is justified by the following argument. To construct
W , define the function R = Rν : E0 × E0 → R+ via R(A, B) = E{W (A)W (B)} =
ν(A ∩ B) . The function R is easily be shown to be positive semi-definite; i.e., for all
k ≥ 1, all real α1, . . . , αk, and all A1, . . . , Ak ∈ E0, it holds that

∑
i,j αiαj R(Ai, Aj) ≥ 0.

Hence, by well-known arguments based on Kolmogorov’s extension theorem, there exists
a probability space (Ω,F , P ) which is the domain of a Gaussian white noise based on ν.
By definition, R is the covariance function of that process. As is true for any second-order
stochastic process, pathwise mean-square continuity of a Gaussian process is equivalent
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to continuity of its covariance function. The values of W over general rectangles, say
R = [a1

1, a
2
2]× . . .× [ak

1, a
k
2] ⊆ R

k
+, may be reconstructed by means of iterated application

of the difference operator ∆·,· on each of the k respective coordinates, viz.,

W (R) = ∆a1
1,a2

1
· . . . · ∆a1

k,a2
k
W (t)

= W (a2
1, . . . , a

2
k) − W (a2

1, . . . , a
1
k) + − . . . + (−1)kW (a1

1, . . . , a
1
k) .

As noted in the paragraph containing (A.4.1), the reconstruction of W on sets other than
rectangles requires use of the stochastic integral. For our purposes it suffices to note that
such a construction is possible.

The case which has been most extensively studied in the literature (see Shorack and
Wellner, 1986; Van der Vaart and Wellner, 1996; and the references cited therein) is
where E is a subset of R

k, like the positive orthant R
k
+ or the unit cube Ik ≡ [0, 1]k. In

either of these cases, one usually considers the stochastic process {W (t) ≡ W ([0, t))},
which defines the Brownian sheet on either of the above parameter sets. (Here we use
the customary notation, [0, t) = [0, t1) × . . . × [0, tk).) Of special importance is the case
T = Ik, due to the frequent appearance of ‘tied-down’ Gaussian processes, i.e. processes
which, in analogy to the Brownian bridge on [0, 1], vanish on one or several boundaries
of Ik. Examples of such processes are given in Van der Vaart and Wellner (1996).

In all practically relevant applications the space E from Definition A.4 has some topo-
logical structure. By forming equivalence classes, E can then be made a metric space.
Even if this is not done, the semimetric d which is defined by

d(s, t) = {E[(Xs − Xt)2]}1/2 ,

is often (as here) called the canonical metric for WT (or T ). The canonical metric is
easier to work with than the original one (if different), but still insufficient to describe
the ‘size’ of the parameter set T . Entropy conditions are needed to characterise most of
the important properties of general Gaussian processes, notably continuity. We shall not
further dwell on the topic, on which more information can be found in Adler (1990); see
also item 3 in Example 7.1.3 of Ivanoff and Merzbach (2000, pp. 135–136). Lemmas A.1
and A.2 below, of which especially the second will be of importance later on, give a
flavour of the nature of conditions required, and the subtleties that arise even in the case
where the measure ν equals Lebesgue measure.
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For the Gaussian white noise W based on ν, the canonical semimetric is given by

d2(A, B) = E {W (A) − W (B)}2

= ν(A) + ν(B) − 2ν(A ∩ B)

= ν(A ∪ B) − ν(A ∩ B)

= ν(A � B) .

In Section A.8 we introduce the semimetric d1 = d2, which arises in the important case
where ν equals Lebesgue measure.

The last two lemmas that we reproduce here relate to continuity properties of the Gaus-
sian process, with the second lemma showing that the restriction to polygonal sets in
Lemma A.1 cannot be dispensed with. Call the set A ⊆ R

d a lower set if (s ≤ t and
t ∈ A ⇒ s ∈ A).

Lemma A.1. (Dudley, 1973, Theorem 4.1) Let W denote a Gaussian white noise based
on d-dimensional Lebesgue measure on a set E ⊂ R

d. For m > d and x1, . . . , xm ∈ E,
let g(x1, . . . , xm; ω) = Wω (conv{x1, . . . , xm}) where conv denotes the convex hull. Then
the following assertions hold:
(a) The sample functions g(·; ω) are continuous on Em.
(b) If x1, . . . , xm ∈ K ⊆ E, where K is compact, then g has the sample modulus of
continuity equal to h(u) = (u| log u|)1/2.

Lemma A.2. (Adler, 1990) (a) The Brownian sheet on lower sets in [0, 1]2 is a.s. dis-
continuous and unbounded. (b) If considered on the convex subsets of [0, 1]2, however, it
is a.s. continuous.

It will prove important, especially for numerical calculations, that Gaussian processes
admit an alternative construction as a random biorthogonal series. This expansion, which
is well known from the area of signal processing, also applies to general L2 processes, and
hence will be utilised in Chapter 6. The theoretical background of this expansion is the
topic of Section A.5. First we collect some results about the location of the maxima of
Gaussian processes in the next subsection.

A.4.2 Maximisers of Gaussian Processes

In the sequel, let V ∈ R
d×d (d ∈ N) be a fixed positive-definite matrix and {W (t), t ∈

T ≡ R
d} be a centred Gaussian process whose covariances have the following rescaling
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property:
cov {W (λt1), W (λt2)} = λ cov {W (t1), W (t2)} , (A.4.2)

for all λ > 0 and t1, t2 ∈ T . The following result, due to Kim and Pollard (1990),
establishes that the maximiser of a Gaussian process minus a drift parameter is a Borel
measurable map. This fact will be essential in the considerations of weak convergence,
in the sense of Section A.3, of a sequence of M -estimators derived from a partial-sum
process; see Section A.7. As noted by Ferger (1999), unimodality may also be deduced
from an older result (Tsirel’son, 1975, cited by Lifshits, 1982). Using Tsirel’son’s result,
it is possible to replace the non-degeneracy condition of the subsequent theorem by the
weaker condition

E{[Z(s) − Z(t)]2} �= 0 for all pairs s �= t ∈ T . (A.4.3)

Theorem A.2. (Kim and Pollard, 1990) Assume the previously stated conditions with
the exception of (A.4.3), and define the Gaussian process Z by Z(t) = W (t) − 1

2 t′V t. If
Z has non-degenerate increments, i.e.,

var {Z(s) − Z(t)} �= 0 for all pairs s �= t ∈ T ,

then Z ∈ �∞(T ) a.s. Moreover, Z is a.s. unimodal, i.e. no sample path of Z can achieve
its supremum at two distinct points of T .

Section A.7 gives a brief account on the approach that is generally taken in deriving
the limit distribution of modes as appearing in Theorem A.2. That limit distribution is
very often of the quadratic-drift type on which our previous discussion focused (see Kim
and Pollard, 1990, and Van der Vaart and Wellner, 1996, Theorem 3.2.10, p. 293). The
arguments used to prove Theorem 4.2 of this thesis, however, will establish the limit form
by direct Taylor-series type expansion with the aid of Markov-inequality bounds.

The most commonly encountered case is when in the setup of Theorem A.2, one has d = 1
(i.e., the scalar case) and V = 2. This distribution has made a frequent appearance
since the 1960s, commencing with the work on the mode of a probability density by
Chernoff (1964), Venter (1967), Prakasa Rao (1969), and Wegman (1971). As a result
of a deep analysis, Groeneboom (1985, 1989) and independently Daniels and Skyrme
(1985) obtained the Fourier transform of the distribution of this r.v. The latter authors
were the first to give tabulated values. Groeneboom and Wellner (2001), who named the
distribution in honour of Chernoff, presented an effective method for its simulation, after
previous attempts by other authors cited in that paper.
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Below we state Groeneboom’s main result, which determines more generally the dis-
tribution of the r.v. T ∗,0

c (say) which is obtained for V = 2c. The term “Chernoff’s
distribution” will be reserved for the case c = 1.

Theorem A.3. (a) (Groeneboom (1989), Corollary 3.3) The density of T ∗,0
c is given by

f
T ∗,0

c
(u) = 1

2 ϕc(u)ϕc(−u) ,

where the function ϕc(u) has the Fourier transform

ϕ̄c(λ) =
∫ ∞

−∞
eiλsϕc(s) ds =

21/3c−1/3

Ai(i(2c2)−1/3λ)
,

and Ai denotes the Airy function as defined, for example, in Abramowitz and Stegun
(1970).

(b) (Groeneboom (1989), Corollary 3.4 (iii)) The density f
T ∗,0

c
(u) has the following

asymptotic behaviour:

f
T ∗,0

c
(u) ∼ 1

2(4c)4/3|u| exp
{
−2

3c2|u|3 + (2c2)1/3a1|u|
}

Ai′(a1)
−1 as |u| → ∞ , (A.4.4)

where a1 ≈ −2.3381 is the largest zero of the Airy function Ai and where Ai′(a1) ≈ 0.7022
(see Abramowitz and Stegun, 1970).

As Groeneboom notes, it follows from part (b) that the distribution of T ∗,0
c has very

thin tails. In the present context of edge estimation, it will become evident later on that
this means that a quite narrow confidence region could be constructed. We shall discuss
the consequences of this fact simultaneously with our main result (Theorem 4.2), which
involves a close relative of T ∗,0

c with c = 1/2.

A.5 The Karhunen-Loève Expansion

In Subsection A.4.1 (p. 148) we have noted that a Gaussian process {W (t), t ∈ T} with
a covariance function that is continuous on T × T may be treated as a random element
in the space L2(T ). In order to compute a functional of W , as shall be the case in this
thesis (Theorem 4.2 in Section 4.2), one needs to find an approximation which is capable
of reproducing the behaviour of the process W . The L2 condition makes it possible to
use tools from functional analysis. A central role in this approach is played by Mercer’s
theorem (Theorem A.4). From a computational viewpoint, this approach has often been
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argued to be more appealing than direct random sampling in some underlying probability
space (see e.g. Ghanem and Spanos, 1991).

Importantly, Mercer’s theorem and its corollaries apply to general L2 processes. In
the modelling of physical phenomena such as radar image acquisition, the ‘continuous’
viewpoint is usually the most natural to employ, especially if we do not want to be
relatively specific about the model that generates the data, such as is implicit in the
Fourier and (albeit to a lesser extent extent) wavelet transforms.

A.5.1 Generalities

Throughout what follows, T denotes a compact subset of the Euclidean space R
k for

some k ∈ N, and
{
X(t), t ∈ T

}
is an L2-integrable stochastic process with

E{X(t)} = 0 , t ∈ T , (A.5.1)

and covariance function ΓX(t, t′) = E
[
X(t)X(t′)

]
for t, t′ ∈ T . Heuristically, we are

looking for an expansion

X(t) =
∞∑

r=1

ξr ψr(t) (A.5.2)

with an orthonormal system of (deterministic) functions {ψr}, and uncorrelated r.v.s
{ξr}, which makes the right-hand side of (A.5.2) a random biorthogonal series. For now,
the convergence is assumed only to be in L2. Under the foregoing assumptions, we have
the representation

ξr =
∫

X(s)ψr(s) ds (A.5.3)

(which exists as a mean-square integral), and hence by uncorrelatedness,∫∫
ψr(t)ψu(s) ΓX(t, s) dt ds = E

(
ξ2
r

)
δru ,

δru denoting the Kronecker delta. Conversely, for a given orthonormal system {ψr} ⊂ L2,
one can project the data (viz., the realisations of X as at (A.5.3)) such that (A.5.2) holds.
Among the infinity of possible choices for the sequence {ψr} in (A.5.2), there is one which
is distinguished by the requirement that for each K ∈ N, the Kth residual, obtained by
summing in (A.5.2) over indices r > K only, has minimal L2 norm. This corresponds to
the special case of the Karhunen-Loève expansion of X. (By what we have stipulated, the
enumeration of the terms in the sum is completely specified, which is of relevance later
on; see the remarks at the end of Subsection A.5.3.) In this special case, the previous
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discussion is made valid through the following central result, which is of purely functional-
analytic nature and has been known for quite a while; for a proof, see e.g. Zaanen (1956).
We formulate it for Gaussian processes on unit cubes. By means of a rescaling, this does
not imply a serious restriction. We also simplify notation as K ≡ ΓX .

Theorem A.4. (Mercer’s Theorem). (Adler, 1990, p. 75). Let X be a centred Gaussian
process on Ik = [0, 1]k with continuous covariance function K(s, t), and let λ0 ≥ λ1 ≥ . . . ,

and ψ0, ψ1, . . . , be, respectively, the eigenvalues and normalised eigenfunctions of the
integral operator K : L2(Ik) → L2(Ik) defined by

Kψ(t) ≡
∫

K(s, t)ψ(s) ds . (A.5.4)

Then it holds that

K(s, t) =
∞∑

n=0

λn ψn(s)ψn(t) ,

where the sequence converges absolutely and uniformly on Ik × Ik.

In the situation of Theorem A.4, and with the notation used earlier, the random coeffi-
cients {ξr} in (A.5.2) may be normalised as

ξr = λ1/2
r ηr , ‖ηr‖ = 1 , (A.5.5)

and the quantity

ζ = ζm =

(
m∑

i=1

λr

)/( ∞∑
i=1

λr

)
(A.5.6)

may be interpreted as the proportion of the variance explained by the first m terms in
the expansion of X. A plot of ζm (or 1 − ζm) as a function of m is often, especially in
applied contexts, referred to as a ‘scree plot’ (Sharma, 1996).

By Theorem 3.8 in Adler (1990, p. 71), the convergence in (A.5.2) is automatically even
uniform a.s., provided that the sample paths of X are a.s. continuous.

As evinced by (A.5.4), the eigenfunctions are the solutions of a Fredholm integral equation
of the second kind. The number of known examples where the solutions are obtainable
analytically is rather small. Nevertheless, a discretised version of the expansion may be
expected to perform well, and to yield stable behaviour. This is important in the usual
situation where the process X is observed under the presence of additive random noise,
as we assume in Chapter 6. The underlying model that will be of relevance to us is where
X is a finite mixture of L ∈ N independent processes with mutually different probability
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laws, defined on a space of square-integrable functions over a common probability space:

PX =
L∑

l=1

ωlPX̃l
, (A.5.7)

where PY denotes the probability law induced by the stochastic process Y =
{
Y (t), t ∈

T
}
, ωl > 0 for l = 1, . . . , L with

∑L
l=1 ωl = 1 are the mixing weights, and for each l, in

the customary differential notation and using the notions from Section A.4,

dX̃l(t) = Xl(t) dt + σl(t) dW (t) , t ∈ T , (A.5.8)

where the σl(t) are deterministic variance processes. The process W may be assumed to
be white noise, but this is taken rather as a calibration model for a wider class of random
error processes later on. In the situation that will be of interest, a sample of size nl ≥ 1
is available for each of the l ‘types’ for l = 1, . . . , L. A datum from the sample consists of
a realisation of the relevant process Xl on a discrete set of points, usually a regular grid.

For a given set of observations, dimension reduction is achieved by projecting the observed
data onto a basis {ψr} as in (A.5.2). Realisations of the sequence {λr} from (A.5.2) are
then extracted from realisations of the sequence of r.v.s, viz., λr = var(ξr) for r ≥ 1. In
this context, interest is in the sequence {λr} from (A.5.2), and especially the sequence
of associated scores, that is, the realisations {ξr = ξr(ω̃)} from (A.5.2) and (A.5.5).
The latter are taken as surrogates in estimation problems pertaining to the population
process.

The question of how many basis functions are to be retained in the expansion at (A.5.2)
is both important and usually, such as in the case study of this thesis, highly non-trivial.
If the goal is classification, and even if differences between various methods for this are
deemed of no importance, the sequence {λr} or the proportion of variance calculated
therefrom (see the paragraph containing (A.5.6)), is not always reliable, as even basis
functions of small index may contain a large amount of noise.

There may also be a need to compute the actual approximant to the stochastic process
X, that is the right-hand side of (A.5.2) minus the residual. This case will be considered
in the next subsection.

A.5.2 Karhunen-Loève Expansion for Gaussian Processes

There is a discrete form of the K-L expansion which has already been mentioned in the
introduction. This (linear) operator is called the K-L Transform, and will be considered in
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more detail in Subsection A.5.3. Unlike the situation for the Fourier transform, there is no
fast algorithm such as the Fast Fourier Transform (FFT) available for computation of the
K-L Transform (Ahmed and Rao, 1975, p. 191). This seems to have had a disencouraging
effect on its use. More recently however, Courmontagne (1999) has described a method
which utilises the previously described ‘continuous’ origins of the K-L Transform in order
to devise an algorithm that speeds up the computations significantly, with additional
benefits in terms of numerical precision.

We limit ourselves to the exposition of the main points in Courmontagne (1999), referring
to the original paper for a complete account. In addition to the general assumptions of
Section A.5, we specialise to the case T = [−R, R] for finite R. Courmontagne (1999) also
assumes stationarity of the process X, so that ΓX becomes a circulant matrix. The key
idea is to symmetrise the underlying stochastic process X, now assumed to be defined
on the cube T = [−R, R] and hence its kernel:

Xsymm(t) = X(R − |t|) ,

ΓXsymm(t, t′) = ΓX(R − |t|, R − |t|) .

By inspection, if the eigenvalues are ordered according to magnitude and signs are dis-
regarded, the solutions of the following modified Fredholm integral equation:

1
2

∫ 2R

−2R
ΓXsymm(t, s)ψsymm(s) ds = λ ψsymm(t) ,

are connected to the solutions of (A.5.4) via the relation

ψsymm(t) = ψ(T − |t|) , |t| ≤ T . (A.5.9)

The Fourier expansions of ΓXsymm and each element in the solution set
{
ψ

(n)
symm, n ∈ N

}
retain only the even (i.e., cosine) terms, whence the Gibbs phenomenon is not present,
and the convergence

ΓXsymm(t, t′) =
K0(t)

2
+

∞∑
l=1

Kl(t) cos
(

πmt′

2R

)
, where

Kl(t) =
1

2R

∫ 2R

−2R
ΓXsymm(t, t′) cos

(
πls

2R

)
dt′,

is even uniform. Thus, for any truncation index N ∈ N, and defining the matrix Ω =
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(
Ωl,m, 0 ≤ l, m ≤ N

)
with entries

Ω0,m = 1
2 Ω′

0,m , Ωl,m = Ω′
l,m for l ≥ 1 , (A.5.10)

Ω′
l,m =

1
2R

∫ 2R

−2R

∫ 2R

−2R
ΓXsymm(t, s) cos

(
πmt

2R

)
cos
(

πls

2R

)
dt ds ,

the eigenvectors
{
αl = α

(n)
l , l ∈ N

}
are such that

N∑
l=0

α
(n)
l Kl(t) ∝ ψ(n)

symm , n ∈ N . (A.5.11)

The ordering in n in (A.5.11) is again according to the sequence of associated eigenvalues,
ordered with respect to their moduli, which coincide for the two cases; our interest,
however, is limited to the sequence

{
αl

}
. From (A.5.9) it follows that the approximations

of the solutions of (A.5.4) evaluate to

ψ(n)
approx(t) =

N∑
l=0

αn
l cos

(
πl(t − T )

2R

)
, |t| ≤ R . (A.5.12)

With alterations of a mainly notational kind, the previous discussion also applies to the
case of random fields. Similarly as before, it may be assumed that T = [−R, R]2 ⊂ R

2

is a rectangle. The added complexity shows up mainly in the analogue of (A.5.10),
which now involves a four-dimensional Fourier or cosine transformation. In order to keep
the computational expense feasible, we use a sparse grid approach that was described
by Hallatschek (1992). The four-dimensional Fourier Transform of the covariance kernel
ΓXsymm is then replaced by two consecutive two-dimensional Fourier Transforms operating
on a different pair of dimensions. Thus the saving in terms of sparsity, and hence of order
of complexity, is considerably less than for a four-dimensional FFT.

A.5.3 More General L2 Signals

For reasons mentioned earlier, in the area of signal processing it is particularly appealing
to treat observations as discrete samples from a stochastic process that is intrinsically
continuous in time or, as in the case study of Chapter 6 of this thesis, in a two-dimensional
space of images. Estimators of discretised versions of the series of functions {ψr(t)} and
of the non-negative sequence {λr}, defined in Subsection A.5.1, are then obtainable
through the time-honoured approach of singular value decomposition (SVD). We confine
ourselves to a rather sketchy review of the theory, because our main interest will be
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in those aspects which distinguish the case of functional data from classical (discrete)
multivariate analysis.

We envisage the situation described in the paragraphs containing (A.5.7) and (A.5.8), and
hence let the data consist of a sample from a population with L distinct sub-populations
or types (determined by laws of stochastic processes), such that a sample of size nl is
available on type l, for l = 1, . . . , L. In each instance the discretisation is assumed to be
on the same finite grid, T =

{
t1, . . . , tp

}
with p < ∞. For the purposes of the present

section only, and in order to avoid ambiguities in notation, we will use underlined letters
to denote matrices. The SVD is computed for the matrix X ∈ R

n×p which contains, in
each row, an observation of the process {X(t)}. In the case where X is R

2-valued, as is
the case in the analysis of Chapter 6, the data will need to be vectorised as described in
Section 1.2 (see p. 9). The total number of observations available is n =

∑L
l=1 nl. As is

standard practice in the literature (e.g. Ramsay and Silverman, 1997), and in parallel
to the analogous stipulation at (A.5.1), a centring at the overall mean is assumed to
have been performed so that the column sums of X are all equal to zero. In customary
notation, write the SVD of X as follows:

X = U LV ′,

with row-orthonormal matrices U ∈ R
n×q, V ∈ R

p×q and the diagonal matrix L =
diag

{
d1, d2, . . . , dq

}
∈ R

q×q, d1 ≥ d2 . . . ≥ dq, where q = rank(X). The sample covariance
matrix equals R = V L2V ′/n, and ‘natural’ estimators of the quantities in (A.5.5) are
given by {

η̂r(t), t ∈ T
}

= er U , λ̂r = L2
rr/n , 1 ≤ r ≤ q , (A.5.13)

where er denotes the rth unit (row) vector of the appropriate dimension. Reasons why
these estimators can be indeed considered ‘natural’ are given in Hall, Poskitt and Pres-
nell (2001), where a more comprehensive exposition of the theory, alongside with ref-
erences, may be found. Additionally, we point to the observation of Gerbrands (1981,
p. 379) that it is because of the choice of the covariance estimator R that the notions
of the singular value decomposition on the one hand, and the (random) techniques of
Karhunen-Loève expansion and principal components analysis on the other hand, essen-
tially coincide.

In a statistical context with the presence of noise, the quantity ζ defined at (A.5.6) is
suited to choosing the most appropriate number q of basis functions: at the point where
it levels, it is likely that the variability is contributed mostly by unwanted noise (see also
the related discussion in Li and Shedden, 2002). Including such basis functions could
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actually increase classification error, due to overfitting. In our case study, we resort to
a cross-validatory approach (see the paragraph containing (6.3.2)) to select the basis
functions.

A.6 Central Limit Theorem for Set-Indexed Martingales

In this section we state a central limit theorem for set-indexed processes, such as the one
that we are concerned with in Chapter 4. The key feature to exploit is the martingale
property. Subsection A.6.1 gives a brief exposition of the theory of set-indexed martin-
gales. The martingale of specific interest in Chapter 4 is introduced in Subsection A.6.2,
and the central limit theorem itself is stated in Subsection A.6.3.

A.6.1 Framework and Notation

The exposition in this subsection gives some background material on the central limit
theorem (CLT) which will be instrumental in the proof of Theorem 4.2 in Section 4.3.
The CLT is given in Ivanoff and Merzbach (2000), referred to below as IM, and we refer
to their monograph for a detailed account.

First we recall some definitions pertaining to the notion of a set-indexed martingale.
Using this framework in the present context is particularly appealing because both cases
of gridded or Poisson-distributed design turn out to be tractable by this approach.

As we have seen in Subsection A.4.1 (see Lemma A.2), care must be taken with regard
to the size of the class of sets over which a Brownian motion is considered. The notion
of an indexing set, defined in (IM, p. 10), is tailored to this need. We reproduce it below
for later reference, suppressing the definition of the somewhat lengthy and technical
condition which these authors call “separability from above.” As is usually the case
in practically relevant examples, this condition is later shown in our application to be
satisfied.

Definition A.5. (Ivanoff and Merzbach, 2000, p. 10) Let T ⊆ R
2 denote a closed (but

not necessarily bounded) connected set. A nonempty class A of subsets of T is called
an indexing collection if it satisfies the following, where A(u) denotes the class of finite
unions of sets in A:

1. ∅ ∈ A, and A◦ �= ∅ if A �= ∅ or T . In addition, there is an increasing sequence (Bn)
of sets in A(u) such that T =

⋃∞
n=1 Bn.
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2. A is closed under arbitrary intersections and if A, B ∈ A are nonempty, then A ∩ B

is nonempty. If (Ai) is an increasing sequence in A and there exists n such that
Ai ⊆ Bn for every i, with (Bk) the same as mentioned in point 1, then

⋃
i Ai ∈ A.

3. The σ-algebra generated by A coincides with the class of Borel sets of T .

4. A is separable from above.

The classical example, for which all the assumptions of Definition A.5 may be readily
verified, is T = R

d and A equal to the class of lower sets in R+. In the next subsection
we introduce a somewhat more complex example which will play a major role later on
(see Section 4.2).

Among the various alternative definitions of a martingale indexed by a subset of R
d

with d > 1, we shall need the one given presently. Following IM (p. 25), an A-indexed
process X is said to be additive if X∅ = 0 and if X(C1) + X(C2) = X(C) a.s. for
any C, C1, C2 ∈ V with C = C1 ∪ C2 and C1 ∩ C2 = ∅. Here the class V is defined as
V ≡

{
A\B, A ∈ A, B ∈ A(u)

}
. As usual, we write

∨
i Ei for the smallest σ-algebra which

contains ∪i Ei. In the sequel we occasionally use the alternative notation XA = X(A).

Definition A.6. (Ivanoff and Merzbach, 2000, p. 54) Let (Ω,F , P ) be a complete prob-
ability space with a filtration

{
FA, A ∈ A

}
which satisfies FT = F and the conditions:

� For all A ∈ A, we have FA ⊆ F and FA contains the P -null sets.

� If A, B ∈ A satisfy A ⊆ B, then FA ⊆ FB.

� Monotone outer-continuity: F∩Ai =
⋂

FAi for any decreasing sequence (Ai) in A.

Let X =
{
XA, A ∈ A

}
denote an additive integrable process such that XA is FA-

measurable, for every A ∈ A. Let further G∗
C =

∨
B∈A(u),B ∩C=∅ FB. The process X

is called a strong martingale if E(XC | G∗
C) = 0 for all C ∈ C.

An important example of a strong martingale is provided by a mean-zero process with
independent increments, where the filtration is taken to be the minimal one (see IM,
p. 66). Important examples are provided by the Poisson process (see the definition below
Theorem 1.1) and, especially for our purposes, Gaussian white noise based on some
variance measure ν (see Definition A.4 in Subsection A.4.1). For strong martingales in
L2, it can be shown that there exists a unique ‘∗-predictable’ quadratic variation process
(IM, p. 74). We mention this fact merely in reference to the statement of Theorem A.5 in
Subsection A.6.3. Other properties well-known from martingale theory on the real line,
derived in IM and the references cited therein, shall not be of concern here.
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A.6.2 A Polygonal Gaussian Process

In this subsection we construct a Gaussian process defined on R
2 that plays a key role

in Section 4.2. As noted in the paragraph following Definition A.6, this process is a
martingale, and hence we also specify a suitable indexing collection of this martingale in
the sense of Definition A.5.

Let S =
{
x : |x(1)| ≤ M

}
⊂ R

2 denote the semi-infinite strip bordered by the straight
lines x(1) = ±M , for M > 0. Let

A =
{
A = A1 ∪ A2 : A1, A2 ∈

{
∅
}
∪ F0 , A1 ∩ A2 is empty or a singleton

}
,

F0 =
{
F0 ⊂ S : F0 ⊂ R × R+ or (−F0) ⊂ R × R+ , (A.6.1)

F0 is compact, convex and satisfies
(
(x(1), x(2)) ∈ F0 ⇒ (x(1), 0) ∈ F0

)}
.

Lemma A.3. The system A is an indexing collection.

Proof. With each set A ∈ F0 we associate its boundary function hA on the interval
[lA, rA], where lA = min

{
x(1) : (x(1), 0) ∈ A

}
, rA = max

{
x(1) : (x(1), 0) ∈ A

}
and

hA(x(1)) =


sup
{
x(2) : (x(1), x(2)) ∈ A

}
, A ∩

(
{x(1)} × R

∗
+

)
�= ∅ ,

inf
{
x(2) : (x(1), x(2)) ∈ A

}
, (−A) ∩

(
{x(1)} × R

∗
+

)
�= ∅ ,

0 , otherwise ,

this function having the property of being either concave and non-negative, or convex
and non-positive. Hence the assertion may be proved by employing arguments that
are very similar to those in Example 1.2.6 in IM (pp. 17–18). To verify condition 2 in
Definition A.5, note that the intersection of an arbitrary number of convex sets is convex.
Finally, let

An =
{
A = A1 ∪ A2 : A1, A2 ∈

{
∅
}
∪ Fn

0

}
, (A.6.2)

Fn
0 =

{
F0 ∈ F0 : hF0 is either non-positive and convex, or non-negative and concave

on [lF0 , rF0 ], and linear on [k 2−n M, (k + 1) 2−n M ], for k ∈ {−2n, . . . , 2n − 1}
}

.

The sequence of sets {An, n ∈ N} defined at (A.6.2) may be shown to meet the re-
quirements of the ‘separability from above’ condition, stated as item 4 in (IM, p. 10).
The required corresponding functions {gn, n ∈ N} may be chosen as the dyadic-valued
majorants of the function h appearing at (A.6.2), similar to (IM, p. 19) but with us-
ing a piecewise-linear instead of a piecewise-constant approximation. It follows that, for
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example, A = ∩n gn(A) because of the fact that any convex set is the intersection of
enveloping tangents placed at a countable dense subset of boundary points.

Consider now the Gaussian process W which is defined as follows. For s, t ∈ R, let

A(s, t) =
{
x = (x(1), x(2)) ∈ R

2 : |x(1)| ≤ 1 , x(2) ≤ t + sx(1)
}

, (A.6.3)

and put W (s, t) = W (A(s, t) � A(0, 0)).

Lemma A.4. The process W is continuous, with modulus of continuity equal to h(u) =(
u log |u|

)1/2 on bounded subsets of R
2.

Proof. The assertions follow directly from parts (a) and (b), respectively, of Lemma A.1.

We conclude this subsection by giving the explicit form of the covariance function

ϕ = ϕ(s1, t1, s2, t2) = cov
{
W (s1, t1), W (s2, t2)

}
. (A.6.4)

The intimate connection to the indexing collection defined earlier, which is apparent from
the definition of ϕ, motivates us to refer to the process W with this covariance function as
the polygonal Gaussian process. In calculating ϕ, and without loss of generality, it may
be assumed that t1−s1 ≥ 0 (otherwise take the negative of all arguments at (A.6.4)) and
that if t1 − s1 = t2 − s2, then t1 + s1 ≥ t2 + s2. Note too that by well-known properties
of the Boolean ring of sets,

ϕ(s1, t1, s2, t2) = ν
(
{A(s1, t1) ∩ A(0, 0)} � {A(s1, t1) ∩ A(s2, t2)}

� {A(s2, t2) ∩ A(0, 0)} � A(0, 0)
)

where ν in this case is Lebesgue measure. The exact description of ϕ requires the con-
sideration of a number of nested cases, and it will be most convenient to display them in
the form of computer pseudo-code. Let

ρ =
t1 − t2
s2 − s1

, s1 �= s2 ,

denote the first coordinate of the intersection point in R of the two lines which define
the (finite) boundaries of A(s1, t1) and A(s2, t2) in the x(2) direction, either upwards or
downwards.
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if t1 + s1 > 0 then

{Boundary completely above the axis x(2) = 0}
if (s1 = s2) or (|ρ| > 1) then

if t2 + |s2| > 0 then

ϕ = 0
else

if t2 − s2 > 0 then

if t2 + s2 > 0 then

ϕ = 2t2

else

ϕ = 1
2s2

(t2 − s2)2

end if

else

ϕ = 1
2s2

(t2 + s2)2

end if

end if

else

{Boundaries cross}
if s2 �= 0 then

if t2 − s2 < 0 then

ϕ = t2

(
ρ + t2

s2

)
+ s2

2

(
ρ2 − t22

s2
2

)
+ t1(1 − ρ) + s1

2 (1 − ρ2)

else

ϕ = t2(ρ + 1) + s2
2 (ρ2 − 1) + t1(1 − ρ) + s1

2 (1 − ρ2)
end if

else

ϕ = t2(ρ + 1) + t1(1 − ρ) + s1
2 (1 − ρ2)

end if

end if

else

{The case t1 + s1 < 0}
if (s1 = s2) or (|ρ| > 1) then

{Boundaries of the polygons do not cross}
if t2 − s2 > 0 then

ϕ = t2

(
1 − t2

s2

)
+ s2

2

(
t22
s2
2
− 1
)

+
∣∣∣t1(1 + t1

s1

)
+ s1

2

(
1 − t21

s2
1

)∣∣∣
else

ϕ =
∣∣∣t1(1 + t1

s1

)
+ s1

2

(
1 − t21

s2
1

)∣∣∣
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end if

else

{Boundaries cross}
if t2 − s2 > 0 then

if ρ < − t1
s1

then

if (s2 �= 0) and
(
− t2

s2
< 1
)

and
(
− t2

s2
> − t1

s1

)
then

ϕ = t2(ρ + 1) + s2
2 (ρ2 − 1) − t1

(
t1
s1

+ ρ
)

+ s1
2

(
t21
s2
1
− ρ2

)
+
∣∣∣t2(1 + t2

s2

)
+

s2
2

(
1 − t22

s2
2

)∣∣∣
else

ϕ = t2(ρ + 1) + s2
2 (ρ2 − 1) − t1

(
t1
s1

+ ρ
)

+ s1
2

(
t21
s2
1
− ρ2

)
end if

else

ϕ = t2

(
1− t2

s2

)
+s2

2

(
t22
s2
2
−1
)
+
∣∣∣t1(ρ+ t1

s1

)
+s1

2

(
ρ2− t21

s2
1

)∣∣∣+∣∣∣t2(1−ρ)+s2
2 (1−ρ2)

∣∣∣
end if

else

if ρ < − t1
s1

then

ϕ = t2

(
ρ + t2

s2

)
+ s2

2

(
ρ2 − t22

s2
2

)
− t1

(
t1
s1

+ ρ
)

+ s1
2

(
t21
s2
1
− ρ2

)
else

if (s2 = 0) or
(∣∣∣ t2s2

∣∣∣ > 1
)

then

ϕ =
∣∣∣t1(1 + t1

s1

)
+ s1

2

(
1 − t21

s2
1

)∣∣∣+ ∣∣∣t2(1 − ρ) + s2
2 (1 − ρ2)

∣∣∣
else

ϕ =
∣∣∣t1(1 + t1

s1

)
+ s1

2

(
1 − t21

s2
1

)∣∣∣+ ∣∣∣t2( t2
s2

+ ρ
)
− s2

2

(
t22
s2
2
− ρ2

)∣∣∣
end if

end if

end if

end if

end if

A.6.3 Central Limit Theorem

In this subsection we cite a version of a central limit theorem for set-indexed martingales.
For this purpose, the martingales are considered as elements of a function space that is
a set-indexed analogue of the Skorokhod space D(R+). A precise definition of this space
can be found in IM (p. 134). The study of set-indexed processes is greatly facilitated
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by the concept of a flow, which provides a link to related theory for stochastic processes
on R or R+, and in fact underpins the definition of convergence for the set-indexed
martingales (see Definition A.8) that would usually, such as here, be established first. As
noted before, functional convergence may not always be the suitable concept due to the
discontinuity of Gaussian processes over classes of sets that are too large.

Definition A.7. Let Ã(u) denote the class of countable intersections of sets in A(u),
and let a, b ∈ R with a < b. A flow (on [a, b]) is an increasing function f : [a, b] → Ã(u).

Write S(A) for the class of all simple flows (see IM, p. 148), and denote by D[S(A)]
the space of all additive A-indexed processes X such that for every f ∈ S(A), there
exists a modification of X ◦ f which is in D[0, 1] and unique up to indistinguishability.
(Two stochastic processes on [0, 1] are called indistinguishable if their sample paths are
identical a.s.) In what follows, this version of X ◦ f will be denoted Mf (X).

Definition A.8. Let X, X1, X2, . . . ∈ D[S(A)]. The sequence (Xn) converges semi-
functionally to X, denoted Xn →sf X, if Mf (Xn) =⇒ Mf (X) in D[0, 1], for ev-
ery f ∈ S(A).

Remark A.1. Connections between semi-functional and weak convergence. If the semi-
functional convergence to X is such that Mf (X) is even continuous for every simple
flow f , then the finite dimensional distributions of Xn converge (see IM, Proposition
7.3.7, p. 149). Convergence in distribution of X itself, with respect to the Skorohod-type
metric defined in IM (p. 134), requires an additional condition on the approximability
of Xn by a sum of purely atomic and continuous processes, given as condition 5 of IM
(Theorem 9.1.4, pp. 180–181). We shall only need the following weaker result, given as
Theorem 7.2.7 in IM (pp. 146–147), and which involves less technical conditions. The
Hausdorff distance dH is defined below at (A.8.2), or see IM (p. 19). Assume that

1. the finite dimensional distributions of Xn converge to those of X,

2. ∀ η > 0 ∃ a > 0 such that P
(
sup{Xn(A) : A ∈ A} > a

)
< η ∀n, and

3. ∀ η > 0 and ε > 0 ∃ δ > 0 such that P
(
w(Xn, δ) ≥ ε) < η ∀n,

where w(Xn, δ) = sup
{
|Xn(A) − Xn(B)| : dH(A, B) < δ, A, B ∈ A

}
. Then Xn =⇒ X.

With the preparations from the previous subsection we are now able to formulate the CLT
for set-indexed martingales as given in IM. In the formulation of Theorem A.5 we use the
so-called jump functional of a process y ∈ D[0, 1], defined by J(y) = sup

{
|y(s)−y(s−)| :

0 ≤ s ≤ 1
}
.
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Theorem A.5. (Ivanoff and Merzbach, 2000, p. 176) Let (Xn,Fn, Pn) be a sequence of
strong martingales defined on the indexing collection A, and let (Qn) be any sequence of
corresponding ∗-quadratic variation processes. Assume that

1. supn E
[
|Xn(T )|2+δ

]
< ∞ for some δ > 0,

2. J(Mf (Xn)) →P 0 as n → ∞ for every simple flow f ,

3. {Qn(T )} is uniformly integrable,

4. for every A ∈ A, Qn(A) →P Λ(A), where Λ is a deterministic, increasing, mono-
tone inner- and outer-continuous function (IM, p. 27) on A.

Then there exists a Brownian motion X defined on A, based on the measure Λ, such that

Xn →sf X .

The combination of Theorem A.5 and Remark A.1, together with minor adjustments,
yields the central limit theorem which will be instrumental in the proof of Theorem 4.2.

A.7 M-Estimators

Likelihood estimators are special instances of M -estimators, which are reviewed in the
present section. The theory for the latter allows us to embed the results of Chapter 4,
especially Theorem 4.2, in this context through identification of the limit as a functional
of a multi-indexed Gaussian process with quadratic drift. We shall need an argmax-
continuous mapping theorem which, after some general remarks in Subsection A.7.1, is
stated in Subsection A.7.2.

A.7.1 Introduction

The boundary estimators which will be introduced in Chapters 3–5 are based on maximi-
sation of a suitable criterion function, evaluated at a local part of the given data. Such
estimators are called M-estimators, and their paramount importance among statistical
estimators has been the main rationale for their extensive study. The prototype case is
the ordinary (parametric) maximum-likelihood estimation where the criterion function
is the logarithm of the product density of the sample. Specifically, if {X1, . . . , Xn} are
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i.i.d. with density pθ, where θ ranges over a subset of R
k for some k ∈ N, one seeks to

maximise the function

θ �→ Fn(log pθ) =
1
n

n∑
i=1

log
(
pθ(Xi)

)
, (A.7.1)

where Fn is the empirical d.f. pertaining to {X1, . . . , Xn}. It is a folk theorem (see
e.g. Schervish, 1995, pp. 418–424) that if the map at (A.7.1) satisfies regularity condi-
tions, then the maximum likelihood estimator is asymptotically N(0, I−1

θ ) distributed,
where Iθ is the Fisher information matrix. In an example in Van der Vaart and Wellner
(1996, pp. 288–289) it is shown how to derive this result from quite far-reaching results
on asymptotic behaviour of M -estimators of processes that satisfy an equicontinuity con-
dition in expectation (in the sense of Section A.3); see equation (A.7.2). Note, however,
that the main result for which we shall use M -estimation theory (Theorem 4.2 of Chap-
ter 4) involves a decreasing sequence of bandwidths, and thus the theory on estimators
of the form as at (A.7.1) cannot be applied.

We are concerned with the asymptotic behaviour of maximisers of functionals of Gaussian
processes of the general type defined in Section A.4. However, we shall need only the
case where the parameter set equals a subset of R

2. In view of the central limit theory
recapitulated in Section A.6, it is not surprising that the estimators in which we are
interested are asymptotically defined via the location of the maximum of a Gaussian
process, which exhibits strong (quadratic) negative drift away from the origin.

A.7.2 The Argmax-Continuous Mapping Theorem

In Subsection A.4.2 we have noted that under weak conditions, the maximiser of a Gaus-
sian process gives rise to a well-defined and, in fact Borel-measurable, map from �∞(T )
into R

d. In order to establish (modern) weak convergence of maximisers belonging to a
sequence of stochastic processes with a Gaussian limit, one seeks to use an appropriate
version of the continuous mapping theorem. Thus, it is necessary to impose a continuity
condition on the (nonlinear) argmax functional,

t̂ = argmaxt∈T f(t) , f ∈ �∞loc(T ) ,

with respect to the uniform metric on �∞loc(T ). However, it turns out that it is enough
to impose the condition of upper semincontinuity on the stochastic processes in order to
prevent erratic behaviour of the argmax functional which is defined through it. We quote
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the following theorem from Van der Vaart and Wellner (1996), which is a refinement of
a result given by Kim and Pollard (1990).

Theorem A.6. (Argmax-Continuous Mapping Theorem) (Kim and Pollard, 1990; Van
der Vaart and Wellner, 1996, p. 286) Let Γn, Γ be stochastic processes indexed by a metric
space T such that Γn =⇒ Γ in �∞(K) for every compact K ⊆ T . Suppose that almost
all sample paths t �→ Γ(t) are upper semicontinuous and possess a unique maximum at a
(random) point t̂, which as a random map in T is tight. If the sequence {t̂n} is uniformly
tight and satisfies Γn(t̂n) ≥ supt Γn(t) − oP (1), then t̂n =⇒ t̂ in T .

In the study of the limit behaviour of maximisers, the next question of interest is the
rate of convergence. To this end, it is customary to consider a rescaling of the original
process, Γn say, as

Γ̂n(t) ≡ Γn(t̂ + r−1
n t) − Γn(t̂) . (2.4.5)

Then, if t̂n is assumed to exactly maximise Γn, it is immediate that

rn(t̂n − t̂) = argmaxt Γ̂n(t) , for all n.

Hence, r−1
n ↘ 0 may be seen as (an upper bound to) the rate of convergence of the

sequence {t̂n}. This setup is envisaged in the application of the next theorem we cite,
formulated with somewhat more restrictive conditions and adapting notation to our own.
The critical condition to check there is the bound on the expected continuity modulus
of Γn − Γ. Note that Theorem A.7 makes only minimal assumptions on the ‘distance’ d.
Moreover, its last statement makes it possible to use it in parallel, rather than in sequence,
to Theorem A.6. This will be the situation in which we shall use the two theorems in
Section 4.3.2.

Theorem A.7. (Van der Vaart and Wellner, 1996, pp. 289–290) Let Γn be stochastic
processes indexed by a metric space T , and Γ : T → R be a deterministic function with
unique maximiser t̂. Suppose that there exists δ0 ∈ (0,∞], a universal constant C1 > 0,
and a function d : T → R+ such that for all δ in a neighbourhood of δ0,

Γ(t) − Γ(t̂) ≤ −C1 d2(t, t̂) .

Furthermore, assume that there exists a constant C2 > 0 such that for every n and all
sufficiently small δ > 0, the process Γn − Γ satisfies

E∗ sup
t:d(t,t̂)<δ

∣∣(Γn − Γ)(t) − (Γn − Γ)(t̂)
∣∣ ≤ C2

φn(δ)
n

, (A.7.2)
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where the functions φn : (0, δ0) → (0,∞) are such that δ �→ φn(δ)/δα is decreasing for
some α < 2 (not depending on n). Let {rn} be a sequence of positive constants with the
properties r−1

n ∈ (0, δ0) and

r2
n φn

(
1
rn

)
≤

√
n , for every n .

If the sequence t̂n satisfies Γn(t̂n) ≥ Γn(t̂) − OP (r−2
n ) and converges in outer probability

to t̂, then rn d(t̂n, t̂) = O∗
P (1). If the displayed conditions are valid for every t and δ, then

the condition that t̂n is consistent is unnecessary.

The third step in the approach that Van der Vaart and Wellner (1996) suggest (p. 288)
consists in establishing the limit distribution of the relevant M -estimator, normalised
by the appropriate rate as may be obtained by Theorem A.7. Results in that direction
from their monograph pertain to empirical processes where decreasing bandwidths play
no role. Hence, in Section 4.3.2 the limiting form of the estimator as the functional of a
Gaussian process with drift will be established by direct arguments.

A.8 Minimax Theory and Optimal Convergence Rates

The main goal of the present section is to give a definition of the mean-square and several
other relevant distance measures in Subsection A.8.1, and subsequently introduce the risk
function used in minimax theory recapitulated in Subsection A.8.2. As evinced by the
formula of the key result (Theorem A.8), the convergence rate approaches the parametric
rate n−1, known from change-point problems on the line, as the regression surface and
the edge simultaneously belong to a higher smoothness class. For our own estimators,
and with our smoothness assumptions, this optimal benchmark rate becomes O(n−2/3).

A.8.1 Distance Measures for Boundary Curves

In the formulation of the edge estimation problem as one pertaining to curves, as is done
in this thesis, an important problem is the specification of the underlying distance or
similarity measure (s.m.) between curves which define boundaries. We often avoid the
term ‘metric’ such as here, as it turns out that many practically relevant s.m.s fail to
satisfy the positive definiteness condition, or even the symmetry in its arguments. It
is obvious that closeness and consistency of boundary curves crucially depend on the
s.m. that is being used, and to the extent to which it satisfies natural postulates. A
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plausible set of such postulates will be given shortly. Unlike in conventional statistical
problems of point estimation, where Euclidean distance usually suffices, there is a range
of competing s.m. s which fulfil the postulates to varying degrees. In this subsection we
briefly review some of the most common s.m.s. We also introduce the s.m. that is implied
by our method of confidence band estimation in Chapter 4.

As we noted in passing in Chapter 1, edge detection may frequently be seen as the first
step in reconstructing a more complex image. For example, the edge may arise as a binary
image, with the edge comprising the contour line in a preliminary thresholding procedure;
the contour line then of course completely characterises the planar set it encloses. Thus,
each s.m. on the set of images (possibly with regularity constraints) gives rise to an
s.m. on the corresponding set of contours or edges. Although such s.m.s apply directly
to closed curves only, they may readily be adapted to situations where only sections of
curves are to be estimated, although with the absence of natural coordinate axes, there
will usually be no canonical way of doing this. For defining s.m.s on images, Lp-type
distances, especially the cases p = 1 and p = 2, are of special importance.

Hagedoorn and Veltkamp (1999) list desirable properties of s.m.s pertaining to patterns
(which are, in the present context, either images or the boundaries defining them). We
redisplay these criteria for s.m.s, with some minor alterations.

Desirable properties of similarity measures:

� Fulfilment of the properties of a metric.

� Linearity in the reciprocal of scale, and invariance with respect to translation and
rotation.

� Robustness for perturbation.

� Robustness for partial occlusion.

Marron and Tsybakov (1995) discuss several “visual error criteria” which show that the
visual concept of distance is often inappropriately reflected by the metric being used, and
that different concepts (possibly not requiring some of the properties of a metric) may
yield more satisfying results. Apart from its independent theoretical appeal, the second
point in the above list may be seen as responsible for the potential improvement provided
by those alternatives.

Next we list and briefly discuss three basic s.m.s which will be important in this thesis.
These apply mainly to parametrised curves, finite point sets, and planar regions respec-
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tively. Our references are Marron and Tsybakov (1995) and Hagedoorn and Veltkamp
(1999).

The Fréchet distance. This notion of distance generalises the idea that underlies the
definition of the Skorohod metric on D[0, 1]. The definition given here considers Jordan
curves only, but this entails no real loss of generality. Recall that Jordan curves are the
homeomorphic images of the unit sphere S1. Now, for any two Jordan curves C1, C2, the
Fréchet distance is given by

dF (C1, C2) = inf
{
‖φ1 − φ2‖∞ : φ1 ∈ Hom(S1, C1), φ2 ∈ Hom(S1, C2)

}
.

This defines a semimetric which is invariant under isometries. It is also robust for small
deformations such as humps. Such deformations would have a potentially much more
serious effect on distance if instead of the infimum in the above definition, one took
specific functions φi (i = 1, 2) such as, for example, rescaled versions of the natural
parametrisations of the Ci, calculated from intersection points of these curves with a
given line. The Fréchet distance is fairly expensive to compute: for two polygonal curves
with m and n defining points, it requires O(mn log mn) arithmetic operations. The
logarithmic factor disappears when it is only to be determined whether the two curves
are less than ε > 0 apart with respect to dF .

The Hausdorff distance. This is a distance measure (and in fact a metric) which has
been used much more widely in the literature than the Fréchet distance. Let K denote
the class of nonempty compact subsets of the plane. The directed Hausdorff distance of
the nonempty sets A, B ∈ K is defined as

�dH(A, B) = max {d(a, B) : a ∈ A} , (A.8.1)

where d(x, M) = min{‖x−m‖ : m ∈ M} denotes the distance between x and the closed
(nonempty) set M . Marron and Tsybakov (1995) presented this as their “visual error
criterion” VE∞; they considered A and B as the sets below graphs of functions, but do
point out the extension to the general case. The Hausdorff metric on K is defined as

dH(A, B) = max
{

�dH(A, B), �dH(B, A)
}

, (A.8.2)

which corresponds to the SE∞ (where ‘S’ stands for ‘symmetric’) error criterion of Marron
and Tsybakov. Computation of dH(A, B) for finite sets A, B is known to be executable
in O((m + n) log(m + n)) time, where m = card(A), n = card(B). We also point to the
modification of the Hausdorff distance that is presented in Qiu (2002b), who argues that
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the modification is better suited to image processing applications where outlier pixels
may render dH awkward to use.

The distance of symmetric difference. This is defined as the area (two-dimensional
Lebesgue measure) of the set-theoretic symmetric difference:

d1(A, B) = ‖A � B‖ . (A.8.3)

The s.m. d1 is indeed a distance if A and B are solid sets; a set C is called solid if
(C◦)− = C. In the notation d1, the subscript 1 indicates the relationship to the functional
L1 norm of the associated boundary fragments (if existent) as defined in Subsection A.8.2,
where the risk function will be the expected value of the L2 distance. Note that it is
problematic to define a metric d2, in analogy to d1 at (A.8.3), via the functional L2

norm. Therefore, in order to formulate the results of Subsection A.8.2, a piecewise
representation as a function in Cartesian coordinates is employed for the edge. In global
assessment of edge estimator performance, the generally meandering nature of the fault
lines considered in this thesis necessitates the use of the above set-theoretic, rather than
the classical functional, version of the various metrics.

A.8.2 Decision Theory for Curve Estimators

In this subsection we develop, in a now conventional manner, the decision-theoretic un-
derpinnings that are used to assess, and especially compare, the asymptotic performance
of boundary estimators. The use of decision theory requires the specification of the class
of images to which the true model is assumed to belong, and from which the estimator is
chosen; and selection of a suitable risk function, which is most commonly (as here) taken
to be the minimax risk. We confine ourselves to a brief outline of the methodology and
refer to Korostelev (1991) and Korostelev and Tsybakov (1993, 1994) for more details.

Because of the assumption of compactness of the image, it entails no loss of generality
to restrict attention to images which are subsets of the unit cube I2 = [0, 1]2. Following
Korostelev and Tsybakov (1993, 1994), we define the class of boundary fragments as
those images whose domains admit a representation

Γ =
{

x = (x(1), x(2)) ∈ I2 : 0 ≤ x(2) ≤ g(x(1))
}

,

with g ∈ Σ(β, L, h), where

Σ(β, L, h) = Σ(β, L) ∩
{

g : g(x(1)) ∈ [h, 1 − h], x(1) ∈ [0, 1]
}
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for h ∈ (0, 1
2), and Σ(β, L) is the class of univariate Hölder continuous functions of order

β ≥ 1 with Hölder constant L ∈ R
∗
+. The following regularity assumptions from Ko-

rostelev and Tsybakov (1993, 1994) define the class of domains which will be considered.
They contain the class of boundary fragments, and it is a helpful guiding principle, from
both the theoretical and practical viewpoints, to split a domain of the below defined class
into boundary fragments.

Let G denote the class of domains defined by the following properties (see Korostelev and
Tsybakov, 1993, p. 143):

1. All members of G are closed connected compact subsets of I2. Euclidean distances
between the edges and the boundary of I2 are bounded away from zero uniformly
over G.

2. There exists a universal constant C1 ∈ R
∗
+ such that |Γ| = length(Γ) ≤ C1 for any

edge Γ in the class.

3. In the natural parametrisation Γ =
(
x(1)(s), x(2)(s)

)
, 0 ≤ s ≤ |Γ|, the functions

x(1)(s/|Γ|), x(2)(s/|Γ|) belong to the class Σ(γ, L, h) with some fixed γ, L, h.

4. The curve Γ has no singular points, i.e. there exists a constant C2 > 0 such that
‖ẋ(s)‖ ≥ C2 for all s ∈ [0, |Γ|].

5. γ ≥ 2, so that curvature is uniformly bounded.

For any β ∈ R
∗
+ and γ as above, a class of grey-scale images Φβ,γ ⊆ {f : domain(f) = I2}

is defined by those functions with a representation that generalises equation (1.2.2):

f(x) = f0(x)I{x /∈ G} + f1(x)I{x ∈ G} ,

where G denotes an arbitrary element of G,

inf
x∈G

f1(x) ≥ b , sup
x/∈G

f0(x) ≤ a , 0 < a < b < 1 , (A.8.4)

and fi are bivariate Hölder continuous functions of order β. In (A.8.4), the inequality
b < 1 is introduced merely for technical reasons, and may be achieved by rescaling the
response variable. Grey-scale boundary fragments are defined analogously.

In line with the general assumptions of this thesis, the observations are assumed to be
of the form (Xi, Yi). As before, X = Xn = {Xi} denotes the explanatory data, either
located on a grid or uniformly distributed over the unit square I2; and the responses Yi
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are assumed to follow the additive model given at (1.2.3), with the additional requirement
that the errors εi be independent N(0, σ2) distributed r.v.s. The best studied risk function
is the integrated (square) risk, which is given by

R(f, Tn) = RI(f, Tn) = E

(∫
{f(x) − Tn(x)}2

)
dx ,

where Tn is an image estimator (see Section 1.1), and the expectation is with respect to
the joint d.f. of the pairs (Xi, Yi). Assessment of a given edge estimator is now treated
as an image estimation problem, as follows.

Definition A.9. (Korostelev and Tsybakov, 1994, p. 50) A positive sequence ψn is called
a minimax rate of convergence on the class of images Φ if for all sufficiently large n and
some constants C0, C1 ∈ R

∗
+,

C0 ≤ inf
Tn

sup
f∈Φ

ψ−2
n R(f, Tn) ≤ C1 ,

where Φ is a class of images such as, for example, the previously defined classes Φβ,γ for
some β, γ. An estimator fn is called an optimal image estimator if for all n,

sup
f∈Φ

ψ−2
n R(f, fn) ≤ C1 ,

where ψn is the minimax rate.

A.8.3 Minimax-Optimal Convergence Rates

The minimax-optimal convergence rates for image models in which we are interested have
been obtained by Korostelev and Tsybakov (1993, 1994), whose results we display below;
see also Mammen and Tsybakov (1995).

Theorem A.8. (Korostelev and Tsybakov, 1994, p. 65) Assume that model (1.2.3)
holds, and that the previously introduced notation is retained. Then, the minimax-optimal
convergence rate for the model with images from the class Φγ,β is given by

ψn = max
{

n−γ/(2(γ+1)), n−β/(2(β+1))
}

, γ ≥ 1 , β ∈ R
∗
+

in the case of Poisson-distributed design, and by n−1/2 in the case of gridded design, if
the metric of symmetric difference is being used. For the Hausdorff metric, the (slower)
rates are given by replacing n with n/ log n in all previous statements.
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Korostelev and Tsybakov (1993, 1994) also gave an explicit construction of an estimator
that achieves these optimal rates. This construction, however, seems not easy to imple-
ment numerically. In the next three chapters we shall develop estimators which, while
not nearly suffering from this drawback to the same extent, come within a logarithmic,
or at least an arbitrarily small polynomial, factor of the minimax-optimal convergence
rate.
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Random Processes, Ed. P. Lachout and J.Á. Vı́̃sek, pp. 102–105. Prague: Academy of
Sciences of the Czech Republic.

Hjort, N.L. and Jones, M.C. (1996). Locally parametric nonparametric density estimation.
Ann. Statist. 24, 1619–1647.

Hoffmann-Jørgensen, J. (1991). Stochastic Processes on Polish Spaces. Various Publication
Series 39. Aarhus Universitet, Aarhus, Denmark.

Huber, P.J. (1981). Robust Statistics. Wiley, NY.

Huertas, A. and Medioni, G. (1986). Detection of intensity changes with subpixel accuracy
using Laplacian–Gaussian masks. IEEE Trans. Patt. Anal. Mach. Intell. 8, 651–664.

Huxley, M.N. (1996). Area, Lattice Points and Exponential Sums. London Mathematical
Society Monographs 13, Oxford University Press.

Inggs, M.R. and Robinson, A.D. (1999). Ship Target Recognition using low resolution radar
and neural networks. IEEE Transactions on Aerospace and Electronic Systems 35, 386–
392.

Ingster, Y.I. (1993). Asymptotically minimax hypothesis testing for nonparametric alterna-
tives. Math. Methods of Statist. (2–4) , 85–114, 171–189, 249–268.

Ivanoff, G. and Merzbach, E. (2000). Set-Indexed Martingales. Chapman and Hall/CRC,
Boca Raton, FL.

Jain, A.K. (1989). Fundamentals of Digital Image Processing. Prentice Hall, NJ.



REFERENCES 180

Jansen, M. and Bultheel, A. (1999). Multiple Wavelet Threshold Estimation by General-
ized Cross Validation for Images with Correlated Noise. IEEE Transactions on Image
Processing 8, 947–953.

Johnstone, I.M. and Silverman, B.W. (1997). Wavelet threshold estimators for data with
correlated noise. J. Roy. Statist. Soc. Ser. B 59, 319–351.

Jones, R.H. and Stewart, R.C. (1997). A method for determining significant structures in a
cloud of earthquakes. J. Geophysical Res. 102, 8245–8254.

Khmaladze, E., Mnatsakanov R. and Toronjadze, N. (2002). The change set problem and
local covering numbers. Manuscript.

Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Stat. 18, 191–219.

Kingsbury, N. G. (1999). Image Processing with Complex Wavelets. Philosophical Trans-
actions of the Royal Society of London A, on a Discussion Meeting on “Wavelets: the
key to intermittent information?”, London, 1999.

Kittler, J. and Young, P.C. (1973). A new approach to feature selection based on the
Karhunen-Loeve expansion. Pattern Recognition 5, 335–352.

Kneip, A., Park, B.U. and Simar, L. (1998). A note on the convergence of nonparametric
DEA estimators for production efficiency scores. Econometric Theory 14, 783–793.

Koenderink, J.J. and Richards, W. (1988). Two-dimensional curvature operators. J. Opt.
Soc. Am. Ser. A 5, 1136–1141.

Kohlmann, K. (1996). Corner detection in natural images based on the 2-D Hilbert trans-
form. Signal Processing 48, 225–234.

Korostelev, A.P. (1991). Minimax reconstruction of two-dimensional images. Theory Probab.
Appl. 36, 153–159.

Korostelev, A.P. and Tsybakov, A.B. (1993). Minimax Theory of Image Reconstruction.
Springer Lecture Notes in Statistics 82. Springer-Verlag, Berlin.

Korostelev, A.P. and Tsybakov, A.B. (1994). Asymptotically minimax image reconstruction
problems. In: Topics in Nonparametric Estimation, Ed. R.Z. Khasminskii, pp. 45–86.
AMS, Providence, RI.

Lachenbruch, P.A. (1975). Discriminant analysis. Hafner Press, London.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983). Extremes and Related Properties
of Random Sequences and Processes. Springer-Verlag, NY.

Li, K.-C. and Shedden, K. (2002). Identification of shared components in large ensembles
of time series using dimension reduction. J. Amer. Statist. Assoc. 97, 759–765.

Liu, X. and Ehrich, R. (1995) Subpixel edge location in binary images using dithering. IEEE
Trans. Patt. Anal. Mach. Intell. 17, 629–634.

Lifshits, M.A. (1982). On the absolute continuity of distributions of functionals of random
processes. Theory Probab. Appl. 27, 600–607.



REFERENCES 181

Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection.
Internat. J. Computer Vision 30, 117–154.

Loader, C.R. (1996). Local likelihood density estimation. Ann. Statist. 24, 1602–1618.
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