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The Essence …

Using the power of modern supercomputers and quantum

mechanical methods for solving the fundamental equations for

describing chemical systems, a range of hydrocarbon cage sys-

tems designed to have good potential for containing a planar-

tetracoordinate carbon atom have been examined.  Exact planar-

ity at a central tetracoordinate carbon atom is achieved in the

molecules dimethanospirooctaplane and dimethanospirobinona-

plane.  These are the first neutral saturated hydrocarbons pre-

dicted to contain an exactly planar tetracoordinate carbon atom.

The recommended synthetic target is dimethanospirobinonaplane

(pictured below).   
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Abstract

A number of novel hydrocarbon cage systems have been designed and characterized using

ab initio molecular orbital calculations at the MP2 and B3-LYP levels.  In particular, equi-

librium structures for five families of molecules, hemialkaplanes, hemispiroalkaplanes,

alkaplanes, spiroalkaplanes and dimethanospiroalkaplanes, have been examined in detail

with the aim of designing a saturated hydrocarbon with a planar-tetracoordinate carbon

atom and with a view to identifying appropriate synthetic targets.  

The hemialkaplanes and hemispiroalkaplanes are constructed from a spiropentane or neo-

pentane subunit, respectively, which is capped by a cyclic hydrocarbon.  The hemispiro-

alkaplanes are predicted to contain a pyramidal-tetracoordinate carbon atom possessing a

lone pair of electrons.  Protonation at this apical carbon atom is found to be highly favor-

able, resulting in a remarkably high basicity for a saturated hydrocarbon.  The proton

affinities of the hemispiroalkaplanes are calculated to be more than 1170 kJ mol–1, even

greater than those for the diamine “proton sponges”.   

The alkaplanes and the spiroalkaplanes, which are constructed by bicapping a neopentane

or spiropentane subunit, respectively, with a pair of cyclic hydrocarbons, show unprece-

dented flattening of a tetracoordinate carbon atom.  Linking the spiroalkaplane caps with

methano bridges gives the dimethanospiroalkaplanes, two of which, dimethanospiroocta-

plane and dimethanospirobinonaplane, achieve exact planarity at the central carbon atom.

They are the first neutral saturated hydrocarbons predicted to contain an exactly planar-

tetracoordinate carbon atom.  This has been achieved through structural constraints

alone.  The electronic structure at the central carbon atom results in a highest occupied

molecular orbital corresponding to a p-type lone pair.  Consequently, the adiabatic ioniza-

tion energies for octaplane, spirooctaplane and dimethanospirooctaplane (approximately

5 eV) are predicted to be similar to those of lithium and sodium — incredibly low for a

saturated hydrocarbon.  

Some consideration has been given to likely pathways for unimolecular decomposition

for all species.  Predicted structures, heats of formation and strain energies for all the novel

hydrocarbons are also detailed.  Tetramethylhemispirooctaplane and dimethanospiro-

binonaplane are identified as the preferred synthetic targets.  
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Summary

A summary of previous work directed towards the design, synthesis and understanding of

compounds that might contain a planar-tetracoordinate carbon atom  is given in Chapter

1.  Both the electronic and structural approaches to achieving this goal are examined.

Considerable success has been previously achieved with the electronic approach, which

has enabled the synthesis of a number of organometallic compounds which contain a pla-

nar-tetracoordinate carbon atom.  The majority of these molecules rely on the incorpora-

tion of the planar-tetracoordinate carbon atom into a π-bonding system and have an elec-

tronic configuration of σnπ2 (where n = 3–4) at carbon rather than the σ2π2 configuration

predicted for square-planar methane.  Synthetic work directed towards forming planar-

tetracoordinate carbon via the structural approach has centered on the fenestranes.  How-

ever, despite considerable attention, little progress  has been made towards the goal of

achieving an exactly planar-tetracoordinate carbon atom.  Our own calculations on the

[4.4.4.4]- and [5.5.5.5]fenestrane isomers are included to illustrate how these molecules

are unlikely to ever lead to planar-tetracoordinate carbon.  

Chapter 2 gives a brief description of the theoretical methods used in the present work and

some observations are made concerning the computational resources required.  

In Chapter 3 we explore, using ab initio molecular orbital calculations at the MP2 and B3-

LYP levels, the hemialkaplanes (I)† and hemispiroalkaplanes (II), which are constructed

by capping a spiropentane or neopentane subunit, respectively, with a cyclic hydrocarbon.

The hemialkaplanes capped by a larger ring are predicted to exert considerable flattening

†  Throughout the present work Roman numerals (e.g. II) are used to represent schematic structures while
molecules are labelled with Arabic numerals (e.g. 2).  

I II
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at the apical carbon atom (αplan = 9.6–10.0°) but are not expected to be particularly stable

due to the presence of overlong C–C bonds (with lengths of 1.7 Å or more).  The hemisp-

iroalkaplanes are characterized by a pyramidal-tetracoordinate carbon atom possessing a

lone pair of electrons.  Protonation at this apical carbon atom is found to be highly favor-

able, resulting in a remarkably high basicity for a saturated hydrocarbon.  The proton

affinities of the hemispiroalkaplanes are calculated to be more than 1170 kJ mol–1, even

greater than those for the diamine “proton sponges”.  Consideration of the strain energies

suggests that tetramethylhemispirooctaplane or tetramethylhemispirobinonaplane should

be the preferred synthetic targets.  Some consideration of likely pathways for unimolecu-

lar decomposition has been given, with reference to the calculated vibrational normal

modes and experimental evidence from unimolecular rearrangements of bridged spiro-

pentanes.  

Molecules which we have named alkaplanes (III), spiroalkaplanes (IV) and dimethano-

spiroalkaplanes (V) are examined in Chapter 4.  The alkaplanes and the spiroalkaplanes,

which are constructed by bicapping a neopentane or spiropentane subunit, respectively,

with a pair of cyclic hydrocarbons, show unprecedented flattening of a tetracoordinate

carbon atom (αplan = 5–9°, and αplan = 3–4°, respectively).  In addition, the spiroalka-

planes with an eight-membered primary-ring cap are calculated to have structures without

any particularly long C–C bonds and to have a low barrier to inversion at the central car-

bon atom (∆Eplan = 4–13 kJ mol–1).  Examination of the structures and strain energies of

these larger spiroalkaplanes suggests that they are likely to be good synthetic targets.

Linking the caps of these larger spiroalkaplanes with methano bridges gives the dimetha-

nospiroalkaplanes.  Two of the molecules so formed, dimethanospirooctaplane (1) and

III IV V
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dimethanospirobinonaplane (2), achieve exact planarity at the central carbon atom.  They

are the first neutral saturated hydrocarbons predicted to contain an exactly planar-tetra-

coordinate carbon atom.  This has been achieved through structural constraints.  The elec-

tronic structure at the central carbon atom results in a highest occupied molecular orbital

corresponding to a p-type lone pair.  This loosely bound pair of electrons leads to pre-

dicted adiabatic ionization energies for octaplane, spirooctaplane and dimethanospiro-

octaplane of approximately 5 eV — values similar to those for lithium and sodium and

incredibly low for a saturated hydrocarbon.  

Some consideration has been given to likely pathways for unimolecular decomposition.

The probable existence of a low-lying triplet surface in the alkaplanes suggests that these

molecules will not be good synthetic targets.  On the other hand, the spiroalkaplanes and

dimethanospiroalkaplanes are not expected to have a low-lying triplet surface and a pre-

liminary examination of the cleavage of what is expected to be the weakest C–C bond sug-

gests a reasonable barrier to decomposition.  Predicted structures, heats of formation and

strain energies are detailed.  Dimethanospirobinonaplane (2) is found to have the lowest

strain of the dimethanospiroalkaplanes and is suggested as the preferred synthetic target

for synthesis of a saturated hydrocarbon with an exactly planar-tetracoordinate carbon

atom.  

1 2
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