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Abstract

A great deal of theoretical activity has resulted from blending the fields of

computer science and quantum mechanics. Out of this work has come the

concept of a quantum computer, which promises to solve problems currently

intractable for classical computers. This promise has, in turn, generated

a large amount of effort directed toward investigating quantum computing

experimentally.

Quantum computing is difficult because fragile quantum superposition

states of the computer’s register must be protected from the environment.

This is made more difficult by the need to manipulate and measure these

states.

This thesis describes work that was carried out both to investigate and

to demonstrate the utility of rare earth ion dopants for quantum computa-

tion. Dopants in solids are seen by many as a potential means of achiev-

ing scalable quantum computing. Rare earth ion dopants are an obvious

choice for investigating such quantum computation. Long coherence times

for both optical and nuclear spin transitions have been observed as well as

optical manipulation of the spin states. The advantage that the scheme de-

veloped here has over nearly all of its competitors is that no complex nano-

fabrication is required. The advantages of avoiding nano-fabrication are two

fold. Firstly, coherence times are likely to be adversely effected by the “dam-

age” to the crystal structure that this manufacture represents. Secondly, the

nano-fabrication presents a very serious difficulty in itself.

Because of these advantages it was possible to perform two-qubit opera-

tions between independent qubits. This is the first time that such operations

have been performed and presents a milestone in quantum computation us-

ing dopants in solids. It is only the second time two-qubit operations have

been demonstrated in a solid.

The experiments performed in this thesis were in two main areas: The first

was the characterisation of hyperfine interactions in rare earth ion dopants;

the second, simple demonstrations directly related to quantum computation.

The first experiments that were carried out were to characterise the hyper-
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fine interactions in Pr3+:Y2SiO5. The characterisation was the first carried

out for the dopants in a site of such low symmetry. The resulting information

about oscillator strengths and transition frequencies should prove indispens-

able when using such a system for quantum computation. It has already

enabled an increase in the coherence times of nuclear spin transitions by two

orders of magnitudes.

The experiments directly related to the demonstration of quantum com-

putation were all carried out using ensembles. The presence of a significant

distribution of resonant frequencies, or inhomogeneous broadening, meant

that many different sub-ensembles could be addressed, based on their reso-

nant frequencies. Furthermore, the properties of the sub-ensembles could be

engineered by optically pumping unwanted members to different hyperfine

states away from resonance with the laser.

A previously demonstrated technique for realising ensembles that could

be used as single qubits was investigated and improved. Also, experiments

were carried out to demonstrate the resulting ensembles’ utility as qubits.

Further to this, ions from one of the ensembles were selected out, based on

their interaction with the ions of another. Elementary two qubit operations

were then demonstrated using these ensembles.
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Outline

The thesis begins with two introductory chapters, describing relevant de-

tails from the fields of quantum computation and rare earth spectroscopy

respectively.

The first experiments carried out in the course of this work were to char-

acterise the hyperfine structure in praseodymium doped yttrium orthosilicate

(Pr3+:Y2SiO5). This characterisation was the first to be successful in a site

with such low symmetry. These and an attempt to gain similar information

for europium dopants in the same host are described in Chapter 3.

It was initially envisioned that the characterisation of the Pr3+:Y2SiO5

system would be used to improve the demonstrations of slow and stopped

light in the material. However, the first time these results were used was in a

technique to extend this material’s coherence times for hyperfine transitions

by over two orders of magnitude. This represented a very significant result

for rare earth quantum computing because it is these transitions that would

be used for the long term storage of quantum information.

In Chapter 4 a review is made, with the emphasis on rare earth ion

dopants, of the mechanisms that cause interactions between optical centres

in solids. Following this, the previously published schemes for achieving

quantum computation in such materials are evaluated. The general plan for

quantum computation pursued in this thesis is then presented. This plan

consists of two areas of endeavour. The first is the demonstration, using

ensembles, of quantum logic operations for a small number of qubits. As

part of this, a practical method that was developed for achieving two qubit

operations is presented. The second area of endeavour is the study of methods

for scaling to a large number of qubits. Various possibilities for scaling are

discussed.

Chapter 5 describes the experimental work that was directly aimed at

carrying out quantum computing operations. Ensembles that can act as

qubits (anti-holes) have been demonstrated previously. Here the improve-

ments made are discussed. Also, the utility of the resulting ensembles as

qubits was demonstrated using single qubit quantum state tomography ex-
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periments.

Following this, various experiments with two of these anti-holes were car-

ried out. These were used to both characterise the strength of the interaction

between the ions and demonstrate its suitability for multi-qubit operations.

This was followed by the application of some of the techniques described

theoretically in Chapter 4. Using these techniques, a phase shift in the state

of one qubit, that was conditional on the state of another qubit, was demon-

strated. This represents the most elementary two qubit operation. Various

simple ways in which the experiment could be improved to significantly in-

crease the fidelity of the operation are discussed.

The thesis finishes with a summary of the results achieved. The future

for quantum computing that is based on optical centres, and rare earth ion

dopants in particular, is discussed.



Chapter 1

Introduction to quantum

computing

1.1 Computer science goes quantum

Modern computer science was founded in 1936 by Alan Turing [1]. He did

this by developing the notion of Turing Machines, machines that follow al-

gorithmic processes. Further to this, Turing gave an example of a universal

Turing machine which could simulate any other Turing machine. By investi-

gating his universal Turing machine he showed various things are and others

are not possible using Turing machines.

In his view, any physical machine which performed a task in an algo-

rithmic manner was a Turing machine. This led to the assertion that any

algorithmic process could be simulated with a Turing Machine. This asser-

tion is known as the Church-Turing principle [2], in honour of the work of

both Turing and Alonzo Church, another early computer scientist.

Since the time of Church and Turing the field of computing has of course

exploded, with computer hardware performance improving like no other class

of tools previously. In 1965 [3] Gordon Moore, then at Fairchild Camera and

Instrument Corp., noticed that the number of components in an integrated

circuit (then about 50) had doubled yearly for the past three years. He

pointed out that if this continued, chips would have typically on the order

of 50,000 components by 1975. Following this people started using the term

“Moore’s Law” to describe the idea that performance per cost would double

every year or so. Since 1965 Moore’s Law has more or less held true, giving

us the amazing computational power that we now have readily available to

us.

In the years following 1936 computing has become more of a practical
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concern than a purely mathematical one, making the relative performance of

various forms of computation important. To a computer scientist it is just

as important to know whether your computer can tell you the answer in a

timely manner, as it is to know whether any conceivable computer can, given

any length of time.

A general rule developed which separated ‘efficient’ methods of compu-

tation from ‘inefficient’ ones. As the size of a problem increases so does the

resources required to solve it. Here resources could represent a number of

things such as the number of computational steps, or information storage

required. The problem is deemed efficient if the increase in resources can

be bounded by a polynomial in the problem size. If it cannot it is deemed

inefficient. This is a very practical definition. Generally we solve problems

on computers where the performance can be described by taking the limit of

large problem size. In this limit the ‘efficient’ methods outperform the ‘inef-

ficient’ ones. Furthermore the definition is a very simple one which appeals

to theorists in their search for deep results.

A strengthened version of the Church-Turing principle was put forward,

with this in mind. This version said that any algorithmic process could not

only be simulated on a Turing machine, but could be done so efficiently.

However, in the mid 1970’s, not long after this strengthened form was put

forward, stochastic algorithms were developed that solved problems more effi-

ciently than any current deterministic algorithms can. While there is a finite

probability of failure on each run through such an algorithm, such methods

will always be much faster than their deterministic counterparts1. This led

to a modification of the strong Church-Turing principle, which replaced the

words ‘Turing machine’ with ‘probabilistic Turing machine’ [4].

In the mid 1980’s, David Deutsch began investigating whether it was

possible to come up with something like a strong Church-Turing principle

with its basis in physical laws, rather than speculative arguments.

In his search for a physical system that could simulate any other sys-

tem efficiently, Deutsch came up with the notion of a “Universal Quantum

Computer” [5]. Instead of being a collection of classical two state systems,

the register of such a computer would be a collection of two state quantum

systems known as ‘qubits’. The basis in which the qubit is read out is known

as the computational basis, with basis states |0〉 and |1〉.
The computation would proceed as follows. First the register would be

initialised, for example, all to the ground state |0〉. Then various different

unitary operations would be performed to the register, either to one or more

1Unless you are exceedingly unlucky.
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than one qubit at a time. Finally the states of the qubits would be measured

and you would (hopefully) have your answer.

To model a N -qubit computer you would need a Hilbert space of dimen-

sion 2N . As the size of a quantum computer is increased, its simulation by a

classical computer requires exponentially more resources. Thus Deutsch pro-

duced a hypothetical system which provided a violation of the Church-Turing

principle.

Following on from this Deutsch introduced the idea of quantum paral-

lelism. He argued that the potential power of a quantum computer could

be understood by thinking of it as a massively parallel classical computer,

with the possibility that each of the 2N possible computational basis states

go through the calculation at the same time. However you can only make N

measurements at the end of the calculation.

With these two factors in mind, Deutsch gave a trivial example of a task

where a quantum computer could out-perform a classical one. Suppose you

have a function that maps a member of the set {0, 1} to a member of the

same set. Such functions — there are of course four of them — can be

classed as either constant (f(x) = f(¬x)) or balanced (f(x) = ¬f(¬x))2.

Suppose you were given a rule for calculating such a function and had to

find out whether it was constant or balanced. On a classical computer you

would calculate f(0) and f(1) and compare them. However with a 2-qubit

quantum computer one can achieve the same with only one evaluation of f

by making use of quantum parallelism. Deutsch and Josza [6] extended this

idea to show that with a n+ 1 qubit quantum computer you can distinguish

between a constant or balanced function that takes {0, 1}n to {0, 1} with just

one evaluation of the function. Such a function is said to be balanced if it

returns 1 for half of its 2n possible input states.

Perhaps the most obvious situation where a quantum computer could out-

perform a classical one is in the simulation of quantum mechanical systems.

Feynman [7] pointed this out in his early contribution to quantum com-

puting. Following on from this idea, quantum algorithms have been found

for studying various quantum mechanical problems on a universal quantum

computer. These include simulating many-body fermionic systems [8] and

finding eigenvalues and eigenvectors of atomic Hamiltonians [9, 10].

It could be argued that the above examples are not of particularly wide

interest. However, in 1994, Peter Shor [11] showed that it is possible for a

quantum computer to efficiently solve a problem of great importance. The

problem was finding two large prime numbers when given their product. No

2Here ¬ represents the logical not operation.
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corresponding efficient classical algorithm is known and this fact forms the

basis of the security of RSA public key encryption.

Public key cryptography is a process by which two parties can communi-

cate securely with all of their correspondence public. It is hard to overstate

the importance this has had in commerce and the internet. The idea behind

the protocol is that each party has a public key and a corresponding private

key. If Alice wants to send a sensitive message to Bob, she asks Bob for his

public key and uses this to scramble the message in such a way that Bob’s

private key is needed to unscramble it.

Bob’s public key is analogous to an open padlock and Bob’s private key

to the padlock’s key. Bob sends Alice his padlock open, Alice uses this to

lock a box containing the message, then sends it to Bob knowing that only

he can open the lock.

The details of a method for public key cryptography were first made public

following the work of Ronald Rivest, Adi Shamir and Leonard Aldeman [12].

In their scheme, which is by far the most practical available today, the

public key contains the product of two large primes and the private key can

easily be found from the two primes. This method is secure as long as no one

is able to find the two primes from their product. There is no known algo-

rithm which allows classical computers to solve this problem efficiently (where

the resources required are polynomial in problem size). This means that with

the current level of computation available it is possible to choose a size for

the primes such that the encryption and the decryption with the private key

takes moments whereas to find the two factors and so decrypt the message

without the private key would require a prohibitively long time. Shor’s algo-

rithm would allow a sufficiently large quantum computer to efficiently find

the two primes from their product and thus render RSA encryption insecure.

Lov Grover, a colleague of Shor at Bell Labs discovered another use for

a quantum computer. Grover’s algorithm [13] was related to finding a par-

ticular member in an unstructured database. Suppose you have a function

f(x) that maps the integers {1, 2, 3, ...N} to the set {0, 1} and has the value

of 0 for all but one member of its domain. Finding the value of x for which

f(x) = 1 on a classical computer takes O(N) function evaluations, because

you can’t really do any better than going through {1, 2, 3, ...N} one by one.

Grover gave a quantum mechanical algorithm that takes O(
√
N) function

evaluations. The intrinsic benefit of using a quantum computer in this case

is smaller than with Shor’s algorithm — large sub-primes cannot be factored

with classical computers whereas large databases can be searched.

While quantum computers have the potential to dramatically out-perform
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classical computers for certain tasks, it appears to be very hard to write

algorithms that make use of this power. Until more algorithms are found,

Shor’s algorithm is the only immediate use to which a practical quantum

computer would be put.

1.2 The requirements for experimental

quantum computing

With Shor’s algorithm came increased interest in achieving practical quantum

computing. Many, many proposals have been put forward. It would be close

to the truth to say that almost every type of system for which a coherent

effect can be demonstrated has been proposed for quantum computing.

David DiVincenzo [14] put forward five requirements a system must meet

in order for it to be useful as the basis for a quantum computer. The criteria

constitute a set of criteria against which potential quantum computers can

be judged.

The requirements he gave are:

1. A scalable physical system with well characterised qubits.

2. The ability to initialise the state of the qubits to a simple starting state,

such as |000...〉.

3. Very long coherence times relative to the time required for quantum

gates.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

The “quantum gates” are unitary transformations of the state of the com-

puter, and because of inspiration from classical computers, they are generally

simple operations that only affect the state of a small number of qubits. A set

of quantum gates is said to be “universal” if any unitary transformation of

the state of the computer’s register can be achieved by repeated application

of members of such gates. In 1995, DiVincenzo et al. [15] showed that single

qubit operations and the CNOT operation between two qubits are universal.

The CNOT or conditional-not gate inverts the “target” qubit conditional on

the state of a “control” qubit. In the basis {|00〉 , |01〉 , |10〉 , |11〉} this has
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the matrix representation 
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.1)

Quantum computing proposals generally choose the CNOT and single qubit

operations to show that they can achieve a universal set of gates. As far

as universality is concerned there is nothing particularly special about the

CNOT, it has been shown [16, 17] that ‘almost any quantum logic gate

is universal’. Work along with a similar theme has shown that any fixed

entangling gate along with single qubit operations is also universal [18, 19].

DiVincenzo’s requirements highlight the fundamental difficulty in achiev-

ing quantum computing. On the one hand, the qubits must be made to

interact both with themselves and some sort of measuring apparatus. At

the same time they must be well isolated from everything so their coherence

times are long.

1.3 Bloch spheres and Rabi frequencies

Before reviewing a number of current experimental demonstrations relevant

to quantum computing, it is helpful to present the Bloch formalism for de-

scribing a single qubit system. In this formalism it is very easy to understand

the dynamics of such systems when influenced under coherent driving and

dissipation and this is presented also.

In understanding the dynamics of single qubits, the formal equivalence

between a spin half system and any other two state quantum system is very

useful. We treat the state |0〉 as the z = −1/2 state and |1〉 as the z = +1/2

state of our fictitious spin-half particle. In the z basis our two states are3

|0〉 =

[
0

1

]
, |1〉 =

[
1

0

]
(1.2)

For an arbitrary initial state |ψ〉 we define a position vector

rψ = (〈ψ|X|ψ〉 , 〈ψ|Y |ψ〉 , 〈ψ|Z|ψ〉) (1.3)

3Many people do the opposite of this and have the |0〉 along the positive z axis on the
Bloch sphere. Presumably this is so the state |0〉 can have the vector representation [1; 0]
rather than [0; 1].
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Figure 1.1: Bloch sphere with the state given in Eq. 1.5 shown.

where X, Y and Z are the Pauli operators:

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
(1.4)

As can be seen by direct substitution, for all states |φ〉, rφ will be a unit

vector. Further if one considers the arbitrary state

|ψ〉 = sin θ |0〉+ eiφ cos θ |1〉 (1.5)

which gets mapped to (see Fig. 1.1)

r = (cosφ sin θ, sinφ sin θ, cos θ) (1.6)

One can see that the mapping is one to one with the z co-ordinate given by

the population difference between the two states. The angle the projection

of the state onto the x, y plane makes with the x axis (φ) shows the phase of

the superposition. The position of a state on the Bloch sphere is unchanged

by the transformation |ψ〉 → eiα |ψ〉. However, for a single two state system

this global phase factor is irrelevant physically.

The density matrix, conventionally denoted ρ [21], is useful to describe

mixed states, that is states where there is classical uncertainty about which

quantum state the system is located in. Mixed states are distinct from pure

states. Pure states are those where there is certainty about which quantum
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state the system is in.

Suppose the system could be in one of a set of states |ψi〉4 and the prob-

abilities for each state are given by pi. The density matrix in this situation

is given by:

ρ =
∑
i

pi |ψi〉 〈ψi| (1.7)

From the definition it is easy to verify that the expectation value for a given

quantity associated with a given operator M is

〈M〉 = Tr(ρM) (1.8)

where Tr denotes the trace. Again from the definition, one can verify that

the time evolution of the density matrix under the action of the Hamiltonian

H is given by (~ = 1)

ρ̇(t) = −i[H, ρ(t)] (1.9)

Another property of the density matrix is that it has a trace of one. This can

be seen by considering the expectation value of the identity operator. Further

to this, because the eigenvalues are real and positive, we have det(ρ) ≥ 0.

For a mixed state, one can define a Bloch vector in the same manner as

for a pure state.

rρ = (Tr (ρX) ,Tr (ρY ) ,Tr (ρZ)) (1.10)

In fact, the following identity, which is valid for all 2×2 Hermitian matrices,

ρ =
1

2
(Tr(ρ)I + Tr(ρX)X + Tr(ρY )Y + Tr(ρZ)) (1.11)

shows that again there is a one to one mapping between the state of the

system ρ and a 3-vector. This time however the result |r| = 1 which was

true for pure states, gets replaced with |r| ≤ 1. This can be seen from

det ρ = 1−X2 − Y 2 − Z2 ≥ 0 (1.12)

⇒ X2 + Y 2 + Z2 ≤ 1 (1.13)

Thus we have the situation in which an arbitrary mixed state gets mapped

onto the unit ball. Two measures of the degree to which a state is a mixed

4Here we will assume that the |ψi〉 are orthogonal to one another. This assumption
doesn’t need to be made but makes the argument simpler. If the |ψi〉 weren’t orthog-
onal the resulting density matrix could be diagonalised and the new eigenvalues p′i and
eigenstates |ψ′

i〉 used instead
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state, Tr(ρ2) (which is the sum of the squares of the probabilities for orthog-

onal |ψi〉) and |r|2, are related by the following.

Tr(ρ2) =
1 + |r|2

2
(1.14)

1.3.1 Qubit dynamics and the Bloch sphere

The real power of the Bloch sphere formalism comes through its use in un-

derstanding the dynamics of single qubit systems. The dynamics of states

under the action of a time independent Hamiltonian, H, can be described

simply as a spinning about a particular axis on the Bloch sphere.

Consider the Hamiltonian

H = ω0 |0〉 〈0|+ ω1 |1〉 〈1| (1.15)

This can be rewritten

H =
ω1 − ω0

2
Z +

ω1 + ω0

2
(1.16)

The term (ω1 + ω0)/2 can be safely ignored for a single qubit as it only

causes irrelevant global phase shifts. The second term on the Bloch vectors

can most easily be seen in the Heisenberg picture. In this case the Heisenberg

equations of motion are

Ẋ = −δY (1.17)

Ẏ = δX (1.18)

Ż = 0 (1.19)

These have the solution

X(t) = X0 cos(δt)− Y0 sin(δt) (1.20)

Y (t) = Y0 cos(δt) +X0 sin(δt) (1.21)

Z(t) = Z0 (1.22)

Thus the initial state just precesses about the z-axis with angular frequency

δ = ω1−ω0. For a spin-half system in a magnetic field, this is called Larmor

precession [22] and is analogous to the classical precession of a gyroscope.

The above can be generalised to an arbitrary Hamiltonian with the help

of Eq. 1.11. A Hamiltonian H, will cause the rotation of states on the Bloch
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sphere with an angular frequency given by the generalised Rabi frequency

Ωg =
√

Tr(HX)2 + Tr(HY )2 + Tr(HZ)2 (1.23)

about the axis
(Tr(HX),Tr(HY ),Tr(HZ))

Ωg

. (1.24)

A very common situation is where there is an energy gap between the

two states |0〉 and |1〉 and you are driving the system with a time-dependent

perturbation with a frequency approximately commensurate with the energy

difference. For example, when driving an optical transition of an atom co-

herently, one has the following Hamiltonian [23]

H = ~ωe |e〉 〈e|+ ~ωg |g〉 〈g| − E cos(ζt)(P |g〉 〈e|+ P ∗ |e〉 〈g|) (1.25)

Here P is the transition dipole moment. For a single electron atom this

is equal to e 〈g|x|e〉, where e is the electron charge and x is the position

operator for the electron. Without loss of generality P can be assumed to be

real. Here x is assumed to be in the same direction as the applied electric

field E. Another example of a two level system driven close to resonance is in

a magnetic resonance experiment. A large DC magnetic field is applied along

the z axis and a much smaller AC field applied in a perpendicular direction.

The Hamiltonian in this case is given by

H =
µ(B0Z +B1 cos(ζt)X)

2
(1.26)

The two situations are formally equivalent. Both the Hamiltonians can be

written in the form

H/~ =
∆

2
Z +

Ω

2
cos(ζt)X (1.27)

Here the Rabi frequency Ω is given by PE/~ for the optical case and µB1/~
for the magnetic case. In the parameter regime ∆ � Ω (which is always

the case for optical systems) the perturbation caused by the second term

in Eq. 1.27 will be small, except when ζ ≈ ∆. On the Bloch sphere the

term ∆
2
Z causes a fast rotation about the Z axis, the term Ω cos(ζt)X will

oscillate between causing positive and negative rotations about the X axis

of the Bloch sphere. If the rate of this oscillation is the same as the rate at

which the state is spinning around the Z axis the effects of this perturbation

will combine constructively during each trip round the Bloch sphere. This

can be seen mathematically in the interaction picture where the evolution

due to ~ζ/2 Z is taken out of the states. This is equivalent to looking at
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Figure 1.2: The trajectories on the Bloch sphere of the ground state, for two resonant
driving fields with the phases differing by 90◦.

the state of the Bloch vector in a co-ordinate frame rotating about the Z

axis with angular frequency ζ. After the rotating wave approximation, that

neglects the terms that are now oscillating at a frequency 2ζ, the Hamiltonian

becomes

H =
δ

2
Z +

Ω

2
X (1.28)

Here δ = ∆− ζ. If you consider the case of resonant excitation (δ = 0) you

can see from Eqns. 1.23 and 1.24 that the dynamics will be a rotation about

theX axis at frequency Ω. This is the well known Rabi flopping phenomenon.

If the phase of the driving field was shifted by φ, the axis about which the

states were precessing would be shifted by φ along the equator. The effect

of the detuning is to cause the rotation axis to move off the equator and the

rate at which the state precesses is given by the generalised Rabi frequency√
δ2 + Ω2.

1.3.2 Damping and the Bloch sphere

In the above, all coupling of the qubit to the environment, apart from that

due to the coherent driving, has been ignored. Consequently, the results are

only valid for times short compared to times over which the system interacts

with the environment. Here we shall introduce a description of the damping

process which simplifies the dynamics down to two variables T1 and T2. This

model was first put forward by Bloch when introducing his now ubiquitous
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Figure 1.3: The trajectory on the Bloch sphere of the ground state being driven off
resonance, in this case δ/Ω = 0.5

Bloch equations [24]. While for many situations describing the damping by

T1 and T2 is very useful, in solids often gross approximations must be made

regarding the dynamics of the environment of the qubit and the nature of

the coupling. For a formal approach to the damping of quantum mechanical

systems see [25, 26].

In the T1, T2 approximation the equations describing a damped Bloch

vector are:

˙〈X〉 = − 1

T2

〈X〉 (1.29)

˙〈Y 〉 = − 1

T2

〈Y 〉 (1.30)

˙〈Z〉 = − 1

T1

(〈Z〉 − Z0) (1.31)

Here Z0 is the Z value at thermal equilibrium. Because of their roots in

magnetic resonance T1 and T2 are known as the longitudinal and transverse

relaxation times respectively.

As an example, we now consider damping of our qubit analogous to spon-

taneous emission in an atom. This gives an equation of motion for the density

matrix of the form[26]

ρ̇ = γ
2
(N + 1)(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+γ
2
N(2σ+ρσ− − σ−σ+ρ− ρσ−σ+) (1.32)
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Here N = (exp(~ω/kT )− 1)−1 describes the temperature of the system’s

surroundings, σ+ = |0〉 〈1| is the raising operator and σ− = σ†+ is the lowering

operator.

This gives the following equations of motion for the Bloch vector.

˙〈X〉 = − 1

2T1

〈X〉 (1.33)

˙〈Y 〉 = − 1

2T1

〈Y 〉 (1.34)

˙〈Z〉 = − 1

T1

(
〈Z〉+

1

2N + 1

)
(1.35)

where 1/T1 = γ(2N + 1) and −1/(2N + 1) is the Z value at thermal equilib-

rium. You can see that associated with population decay you have a decay

in the coherence — in this situation T2 = 2T1. It is true in general that pop-

ulation decay always causes phase decay of this magnitude and as a result

we have the inequality

T2 ≤ 2T1 (1.36)

The transverse relaxation time can be shorter than twice T1 because of pro-

cesses that cause a loss of coherence only. These can be thought of as being

due to fluctuations in the frequency splitting between the ground and excited

states, which in turn cause fluctuations in the speed of the precession around

Z. This causes a loss of information about the phase of any superposition

state without any population damping.

1.4 Efforts toward experimental

quantum computing

Many proposals for realising experimental quantum computing have been

put forward5 and the list discussed here is by no means exhaustive. Indeed

in the author’s opinion the field is characterised to some extent by high

profile proposals that have only been investigated to the level of “back of the

envelope calculations” before being published. The schemes discussed here

are those the author believes have the most well established fundamentals.

5Rare-earth and other optically based quantum computing schemes in solids will be
discussed in Chapter 4.
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1.4.1 Liquid state NMR

Liquid state NMR has provided the most successful demonstrations of quan-

tum computing to date, although there are fundamental difficulties in scaling

to large numbers of qubits. Currently about 5 qubits is the state of the art

[29]. Furthermore NMR quantum computing has direct parallels with the

quantum computing attempts described in this thesis. For these two rea-

sons NMR quantum computing will be described in the most detail of all the

quantum computing proposals described here.

To investigate NMR the sample is placed in a large, steady and homo-

geneous magnetic field. A set of smaller coils are placed perpendicular to

the large DC coils both to provide RF driving fields and for detection. By

convention, the strong magnetic field is applied in the Z direction and the

field from the driving/detection coils placed perpendicular to that, leading

to a Hamiltonian of the form

H = µ(B0Z +B1(t)X) (1.37)

where X and Z are Pauli spin operators and B0 and B1(t) are the large static

and smaller driving magnetic fields respectively.

The detection is based on the bulk magnetisation of the sample. Due to

the small magnetic moment of the nuclei this magnetisation is very small.

The component of the magnetisation parallel to the Z axis would be very

difficult to observe over the large DC field. However, under the action of

the µB0Z term, the magnetisation components perpendicular to the Z axis

precess around the Z axis at the angular frequency µB/~. This small voltage

induced in the driving/detection coils can be detected easily.

The steady magnetic field should be made as large as possible. This large

magnetic field is important for a number of reasons. Even for the largest

fields, the energy difference between spin states ≈ µNB is much smaller

than kBT . Because the signal extractable is proportional to the population

difference, the stronger B the bigger the signal. Large fields also improve

spectral resolution. The coherence times and therefore linewidths are only

weakly dependent on the magnetic field strengths, whereas splittings between

the resonant frequencies of different nuclei increase linearly with field.

Nuclear spin states in liquids are an ideal place to store quantum informa-

tion, with coherence times generally being measured in seconds or minutes.

The robust nature of the nuclear states in such a chaotic environment as a

liquid is due to differing time-scales. The orientation of molecules in a liq-

uid is changing rapidly compared to the resonant frequencies of the nuclear



1.4 Efforts toward experimental quantum computing 17

spin transitions, so the effect of the fluctuating magnetic field from outside

a given molecule averages out. Indeed, if the sample is frozen, the spectral

lines become much broader. This is due to a marked increase in both the ho-

mogeneous and inhomogeneous broadening in the system. The homogeneous

linewidth, or the linewidth of each individual nucleus, becomes much broader

because couplings to nuclei outside the molecule now become important. The

relative orientations of all the nuclei are now more or less fixed, allowing cross

relaxation and similar effects to take place. Furthermore because no crystal

is ever perfect, each nuclei now exists in a slightly different environment.

This leads to a spread in resonant frequencies or inhomogeneous broadening.

However, even in a liquid the magnetic fields that have their origin within

a molecule do not average to zero, this can be seen as frequency shifts in the

spectra of liquids. Shifts in the spectral lines due to differences in the chemical

environments (chemical shifts) of nuclei within a molecule are generally in the

range of tens to hundreds of kilohertz. These shifts are much larger than the

linewidths and allow inequivalent nuclei/qubits in a molecule/computer to

be addressed individually based on their resonant frequency. The linewidths

are indeed small enough for the frequency shift due to the change in the

spin state of another nucleus within the molecule to be resolvable. It is

this interaction between the two nuclei that allows one to perform two qubit

gates. These interactions come in part from simple magnetic dipole-dipole

interactions and in part from J-coupling where the interaction is mediated

by shared electrons in a chemical bond.

Because the spin-spin interactions and the chemical shifts provide a wealth

of information about the molecule being studied, techniques for studying

them were very advanced before interest arose in quantum computing [30].

For simplicity we shall now restrict our attention to a molecule containing

two spin-1/2 nuclei. In this case the Hamilton describing our system can be

written (~ = 1):

H =
∑
i=1,2

ωi
2
Zi +

α

2
Z1Z2 +HRF +Henv (1.38)

Here ωi are the resonant frequency for each of our two nuclei and are

due to the splitting produced by the magnetic field and chemical shifts. The

term α
2
Z1Z2 describes the coupling between the two nuclei. HRF describes

the action of driving fields and Henv describes the unwanted coupling to the

environment which leads to dissipation. Zi is the Pauli Z operator for the

ith spin.

The steady state of such a system when coupled to a bath of temperature
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Figure 1.4: Pulse sequence used to achieve CNOT in NMR quantum computing

T is dominated by the first term
∑

i=1,2
ωi

2
Zi and because we are dealing with

the situation kBT � ~ωi the thermal state is highly mixed.

The terms ωi

2
Zi can be removed by moving to the appropriate interaction

picture. We shall neglect dissipation by assuming that the terms in Henv are

small enough to be ignored for the time over which the computation takes

place. It shall also be assumed that both the frequency difference between the

two nuclei and the Rabi frequencies available from the driving fields are much

bigger than the interaction strength α. The fact that this approximation

can be made means that by applying pulses of the right frequency, phase,

intensity, and length the driving fields can cause instantaneous, arbitrary

single qubit operations.

In order to show that we can apply a universal set of gates, it suffices to

show that, in addition to single qubit rotations, a CNOT gate is possible.

Now the coupling term α
2
Z1Z2 in the Hamiltonian of Eq. 1.38 can be

seen as causing a rotation of the state of one qubit on the Bloch sphere at

an angular velocity of ±α conditional on whether the other is the excited

state or not. Of course such a description is valid only if the other qubit

is in the ground or excited state and not some other linear combination.

However, such a description is sufficient to describe the action of the pulse

sequence on the member of the computational basis {|00〉 , |01〉 , |10〉 , |11〉}.
If the target nucleus is initially in the ground state, then the first pulse,

which provides a rotation of π/2 about the Y axis, moves the state to being

along the X axis. Under the action of the coupling term this state vector

precesses around the equator and at a time π/α later is either pointing along
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Figure 1.5: The trajectories on the Bloch sphere for the target qubit during CNOT
operation. The target starts off in the ground state and the two trajectories correspond
to the control being either in the ground state or the excited state.

the positive or negative Y axis. The actual direction is of course conditional

on which direction the state was precessing, which in turn was conditional

on whether the control qubit was in the ground or excited state. The second

pulse rotates the state vector π/2 around the Y , which takes the qubits

either to the ground or excited state. These two trajectories are shown in

Fig. 1.5. The control qubit is either in the ground or excited state for the

whole operation and thus is insensitive to the interaction.

The problem with liquid state NMR quantum computing is DiVincenzo’s

requirement number two (see Sec. 1.2), namely to be able to initialise the

system in a particular state. As already mentioned, the current experiments

have been done with the temperature large compared to the transition fre-

quency resulting in highly mixed states. In order for a pure initial state

the ratio between scaled temperature and scaled transition frequency would

ideally be large compared to one, instead it is

~ω
kT

≈ 10−6. (1.39)

There is no way of avoiding this highly-mixed initial state. Reducing the

temperature helps but it cannot be reduced very far or the sample will freeze.

Increasing the Zeeman splitting in order to make the ratio of Eq. 1.39 more

respectable is not fruitful either. Modern NMR spectrometers work with

fields similar to the highest static fields available — further increasing ~ω
by the many orders of magnitude that would be required is not currently

possible.

There are two techniques for getting round the problem of state initial-
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Figure 1.6: Simplified view of a Cooper-pair-box based qubit. The reservoir and Cooper-
pair-box are made of superconducting material and separated by a Josephson junction.
The two computation basis states in such a qubit would be whether an excess Cooper pair
is in the Cooper pair box or on the reservoir. By changing the field on the control gate
the energy differences between the two computational basis states can be tuned.

isation. These are logical labelling and temporal labelling [31]. They both

provide a method for extracting a signal proportional to what would have

resulted if the system was initially in a pure state. The problem they and all

of their variants share is that the strength of this signal decreases exponen-

tially as the number of qubits increases. This means that it is not possible

to scale to a large number of qubits.6

Another, perhaps less severe, problem for NMR quantum computing is

that the interaction is on all the time. This means you have to employ

refocusing pulses in order to turn off all but the wanted interactions for each

computational step. There are methods for achieving this refocusing with an

overhead that goes up polynomially in the number of qubits. [33]

1.4.2 Superconducting qubits

Electrons are great for classical computing and people are now very good

at manufacturing small electronic devices. With the nano-fabrication tech-

niques available, one can routinely make conductors sufficiently small for the

increase in potential caused by adding one electron to be significant. This

leads to the classical effect known as Coulomb-blockade [34] in which move-

ment of an electron onto a conducting region can be blocked by the excess

of one electronic charge. Single electron transistors (SET) [35, 36] that are

based on this effect can measure with good fidelity the movements of sin-

gle charges. What stops single electrons being useful in implementing single

6It should be mentioned that there are actually schemes for state labelling that don’t
have a exponential signal decrease [32]. However such schemes are not practical with the
very small polarisations that are present in liquid state NMR.
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Figure 1.7: Energy level diagram for stationary states of the Cooper pair box as a function
of control gate voltage. The left minima corresponds to N Cooper pairs in the box and
the right to N + 1 Cooper pairs. The dotted line represents the absence of Josephson
tunnelling. Only the N and N + 1 states are shown here. In reality the figure should be
periodic along the x-axis with minima corresponding to {...N − 1, N,N + 1, N + 2...} in
the Cooper-pair box.

qubits is their very short coherence times. These are hundreds of picosec-

onds at best [31]. Because of their charge, electrons strongly interact with

everything, especially the ions of the host lattice. One way of improving this

situation dramatically is using superconducting materials. In these materi-

als, at temperatures below their transition temperature, the electrons pair

up into Cooper pairs. These electrons that make up these Cooper pairs are

bound by their interaction. The net interactions of a pair and the lattice are

much smaller than those of single electrons. As a result the coherence times

for qubits based on Cooper pairs can be much larger — typically nanosec-

onds.

A simplified description of such a qubit is shown in Fig. 1.6. The diago-

nal terms of the Hamiltonian for the qubit are determined by the potential

difference between the box and the reservoir. This depends both on the

self capacitive charging energy for the box and on the effect of the control

gate, which is capacitively coupled to the box. The off-diagonal terms of the

Hamiltonian are constant and are given by the tunnelling rates through the

Josephson junctions. In experiments, the readout is effected by having the

Cooper pair box weakly coupled to a “probe” via an incoherent tunnel junc-

tion. The presence of an excess Cooper pair on the box will cause a current

through this probe when it jumps off.

Nakamura and his coworkers at NEC in 1997 [37] showed an effect similar

to Rabi flopping with such a system. They set the control gate so that they

were operating at, for example, the left minima of Fig. 1.7. After sufficient

time for the system to fall into the ground state the voltage was ramped



22 Introduction to quantum computing

quickly to the anti-crossing. Ideally this would be done much quicker than

any other of the system dynamics and the sudden approximation [38] could

be made.

The eigenstates for the system at the anti-crossing are linear combinations

of those states with definite numbers of pairs. An initial state with a definite

pair number will undergo a nutation between N and N + 1 Cooper pairs

on the box. After waiting for a chosen length (∆t) of time, the voltage is

quickly ramped back away from the anti-crossing. By looking for an excess

Cooper-pair tunnelling through the probe junction, the probability of finding

the qubit in the excited state can be measured. The probe current shows a

sinusoidal variation as the length of time at the anti-crossing (∆t) is varied.

Very recently, the same group at NEC has shown similar oscillations for

two Cooper pair boxes capacitively coupled together [39]. They infer from

their measurements that the two qubits were at some part of the process

entangled, although no direct measurements were made.

Many of the problems encountered while carrying out these experiments

came from the extreme timescales involved. While the coupling can be made

large enough for the coherence time to be large compared to the interaction,

other factors are also important. The coherence time of ≈ 10 ns [39] was

estimated. The Josephson coupling terms were of the order of 10 GHz. This

means that rise times much quicker than 100 ps would be required to make

the sudden approximation strictly valid. This pushes the limits of available

technology and rise times of approximately 35 ps were estimated for the

experiment.

In these experiments the coupling between the Cooper-pair box and the

probe was constant. In order that the decoherence caused by this coupling be

kept to a reasonable level the coupling must be weak. Given this situation

it would be difficult to imagine that the near perfect readout that can be

achieved with ion traps could be attained.

1.4.3 Ion traps

In contrast to superconducting qubits, qubits based on the hyperfine struc-

ture levels of trapped ions are very robust. Coherence times in excess of

10 minutes have been realised [40]. For this reason they have found appli-

cations in time and frequency standards. Also the state of qubits based on

single ions can be read out with very close to unit fidelity.

In 1995 Cirac and Zoller [41] proposed a method for achieving the one

remaining piece of the puzzle, qubit-qubit interactions. They proposed using

a harmonic trap that provided tight confinement in two dimensions and looser
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Figure 1.8: In the Cirac-Zoller scheme the qubits would be stored in a chain of ions in a
linear trap. Interactions would be effected using the motion of the atoms along the weaker
axis of the trap.

confinement in the third. The confinement in each direction would need to

be sufficiently large so that in the motional ground state the atom would

be trapped within a wavelength of the light used to probe the ions. In this

“Lamb-Dicke limit”, the vibrational structure on the optical spectra can be

resolved.

It was envisioned that the trap would be loaded with a handful of ions and

that they would be cooled to their motional ground states by sideband cool-

ing. Because of coulomb repulsion between the ions, they would form a string

of ions lined up along the weaker axis of the trap as shown schematically in

Fig. 1.8. The separation between the ions would be a few micrometres al-

lowing the ions to be addressed individually with a focused laser beam. The

qubits would be stored in the ground state structure of the ions. Addressing

one of the ions with a laser one could deterministically affect the collective

motion of the whole group, because the vibrational structure is resolvable

optically. In this manner interactions between the qubits could be effected.

When compared against the DiVincenzo criteria, trapped ion quantum

computing measures up very well. There are however serious obstacles that

need to be overcome before the approach can be extended from the currently

small number of qubits.

A review of the issues involved in implementing this scheme experimen-

tally can be found in Ref. [42]. Currently operations have been achieved on a

small number of ions, including the entanglement of four ions [43]. The main

problem to be overcome is to avoid the heating of the ions’ motion caused to

the time varying trapping potential, the mechanism for this heating is poorly

understood.

1.4.4 Linear optics quantum computing

Photons make ideal qubits, with it possible to encode the quantum infor-

mation in a number of ways. One possibility is in polarisation, where the

|1〉 state is represented by one particular polarisation and the |0〉 state by

an orthogonal polarisation [44]. Another possibility is using photon number

states. Single qubit operations can be done easily using standard optical el-

ements such as beam-splitters and wave plates. Single photon detectors now
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have quantum efficiencies approaching unity and ever decreasing dark count

rates. In addition to this, two qubit entangled states are easily produced

using pair generation.

The problem with using photons for quantum computation is performing

two-qubit operations. Nonlinear materials provide a mechanism for interac-

tion between photons and have been suggested as a mechanism for two-qubit

gates [45, 46]. The problem with such an approach is achieving a high enough

nonlinearity such that there is an appreciable effect for just one photon while

keeping losses low. Such effects can be seen, with great difficulty, using high

finesse optical cavities [47].

A ingenious scheme for doing photon based quantum computation with

only linear elements, feed-forwards and photon detectors was put forward by

Knill, Laflamme and Milburn [48]. The details are particularly complicated

and, for someone that doesn’t like aligning one interferometer, the resources

needed are breathtaking. However Knill et al. conclude that they have an

efficient (in the sense that the required resources grow linearly with the num-

ber of qubits and gates) scheme that is robust against errors from photon

loss and detector inefficiency.

The scheme achieves conditional phase shifts using auxiliary entangled

pairs which are combined to be incident on various ports of an interferometer.

Measurements are made on some of the output ports of the interferometer.

Depending on the results of the measurement it can be concluded that the

measurement induced back action has either caused the gate operation to be

a success or a failure. If the gate operation was a success then the photons

can be allowed to propagate to the next step in the calculation, if not then

the feed-forwards must take appropriate action to send the inputs through

the gate again.

One advantage that this scheme has is the simplicity of the physical ele-

ments used. While the scheme itself could be described as complex one can

make very realistic predictions about how well each element should behave.

Other than keeping a complex array of optics stable enough other tech-

nical difficulties in realising this scheme would be in implementing the feed-

forwards required and creating a suitable single photon source. Light travels

at 1 foot/ns which means that a combination of long lengths of optical fi-

bre and fast switching optical elements will be required. Currently the best

single photon sources use parametric down conversion sources. By detecting

its twin you know when a photon comes out of such a source with very high

fidelity. However you can’t trigger the source and you get no warning as to

when a photon is coming. In order not to make the feed-forward require-
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ments unrealistically stringent, a trigger-able single photon source would be

required. Such devices have been proposed [49, 50] but not yet realised.

1.5 Error correction

A remarkable feature of classical computation is how reliable with respect to

errors it can be made7. While this is due in part to the very low error rates

in many of the devices used, error prone devices can also be used effectively

without adversely affecting system performance. In general for classical pro-

cesses these devices are involved in either transmission or storage of data.

For example consider the situation where you have a noisy communication

channel and you want to tell the person at the other end either ‘yes’ (1) or

‘no’ (0). One way would be to encode yes as 11111 and no as 00000. Suppose

that the errors are independent, and the probability of them occurring p, is

small enough that things with probability p3 could be neglected. Now the

receiving party would take your transmission and if it consisted of a majority

of ones then it would assume that the message was ‘yes’ and ‘no’ if it got a

majority of zeros. More sophisticated classical codes for error correcting and

checking exist [51]. An example is CD-ROMs, which are used to store large

amounts of data in situations where bit errors cannot be tolerated. It does

this using a physical format that has a reasonably high error rate while still

storing close to the same amount of data as raw encoding.

As well as schemes to overcome the errors in transmission and storage of

data, there are methods for performing all of classical computation in a fault

tolerant manner [52, 53]. However, due to the very low error rates of elec-

tronic logic devices such schemes are only used in specialised circumstances.

When trying to apply similar ideas to quantum computers, three rather

formidable difficulties arise [31]:

• It is not possible to clone the quantum state of a physical system/qubit

[54, 55].

• A continuum of different errors can affect a qubit.

• Measurement destroys quantum information.

A great deal of theoretical investigation has been carried out into the area

of fault tolerant quantum computing.

A chapter in [31] is devoted to the subject and provides an excellent

review. Perhaps the most profound result is the so-called threshold theorem.

7This thesis was written using Emacs and LATEX on a Dell laptop running GNU/Linux.
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The threshold theorem for quantum computation:

Provided the error rate on individual quantum gates is be-

low a certain threshold, it is possible to efficiently perform an

arbitrarily large quantum computation.

The most optimistic value of the threshold is of the order of one part in 104

[31] which is beyond the fidelity of most current experiments. However, in

the absence of dephasing this threshold is not as high as it might appear. If

the gate operation was carried out by turning some sort of unitary evolution

on for a given length of time the precision in the time which this evolution

turned on for need only be 1 part in 102.

1.6 Type-II quantum computing

By anyone’s measure, it will be difficult to make a standard (or ‘type-I’) quan-

tum computer with a large enough number of qubits to be useful. In 2001

Yepez [56] proposed a hybrid classical-quantum computer or type-II quantum

computer. Such a computer would consist of a large number of nodes, each of

which consisted of a quantum computer with a small number of qubits. The

communication channels between these nodes would be classical. Modelling

of the diffusion equation has been proposed [57] and demonstrated using

NMR style quantum computing with gradient fields [58]. A large type-II

quantum computer is a lot easier to construct,8 than a standard quantum

computer. However such a computer wouldn’t have the advantage over a

classical computer that a large (type-I) quantum computer would. As there

is only classical interaction between each node, for such a computer to make

sense each node must be able to out perform the best classical process. Be-

cause of the inherent difficulty in making these little quantum computers it

could easily be assumed that such a computer would operate slower than the

best classical device. Thus, one is left with the situation that the number

of qubits in each node must be large enough for the exponential speedup of

quantum parallelism to push you past the best classical computer. This is

the same situation as for standard quantum computers.

8The author would like to be the first to suggest making a world-wide type-II quantum
computer using NMR spectrometers connected via the internet.
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1.7 Quantum state tomography

Quantum state tomography will be important in the diagnosis of any quan-

tum computer. Given one instance of a quantum system in an unknown

state, quantum mechanics tells us it is impossible to completely determine

the state of the system. Quantum state tomography is the method by which

the state of the system, ρ, can be determined from measurements of a collec-

tion of systems in such a state. These collections can either be an ensemble

of systems such as in NMR quantum computing, or a number of “shots” of

a single quantum system, such as with single-photon based experiments.

Quantum state tomography was first proposed for continuous variable

systems [59] but we will restrict ourselves to the much simpler case of finite

dimensional systems, in particular those comprising of a few qubits.

Quantum state tomography is best understood by treating the operators

of a Hilbert space as another inner-product space [60]. We will call the space

of quantum states the Hilbert space and the space of operators the inner-

product space so that they can be distinguished although mathematically

they are both Hilbert spaces and both inner-product spaces.

The inner product used is the Hilbert-Schmidt inner product [31], and

the inner product between two operators A and B, is given by

(A,B) = Tr(A†B) (1.40)

For a Hilbert space of dimension N , this inner product space has dimension

N2 and an orthonormal basis given by the N2 operators Ei. The matrix

representation of each Ei consists of all zeros except one member which is a

one.

Given a set of operators {A1, A2, ..} and their expectation values for a

particular state {a1, a2, ...} we have the following relationship.

ai = Tr(Aiρ) (1.41)

= (Ai, ρ) (1.42)

=
N2∑
j=1

(Ai, Ej)(Ej, ρ) (1.43)

In the situation where there are N2 linearly independent operators A,

the density matrix can easily be found from the measurements. Defining
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Mij = (Ai, Ej) we have

(Ei, ρ) =
N2∑
j=1

(
M−1

)
ij
aj (1.44)

⇒ ρ =
N2∑
i=1

N2∑
j=1

(
M−1

)
ij
ajEi (1.45)

In many situations, the set of measurements made will not have exactly

N2 members and perhaps will not be linearly independent. In particu-

lar when the measurements over-determine the density matrix the Morse-

Penrose pseudo-inverse [61] can be used. In this situation M−1 is replaced

with (M †M)−1M †. The reconstructed density matrix is a least squares fit (in

terms of the norm associated with the Hilbert-Schmidt inner product) to the

density matrix. In cases where the measurements under-determine the den-

sity matrix or other cases where the problem of determining ρ is “ill-posed”,

regularisation methods used in the field of inverse problems [61] are useful.

Quantum state tomography is particularly simple for one qubit. In that

case four operators that form an orthonormal basis of the inner-product

space are the Pauli operators {I,X, Y, Z}. Of course Tr(ρI) = 1 so the only

measurements that need to be made are of {X, Y, Z}, which confirms what

we already know from Section 1.3.

For more than multi-qubit systems, one orthonormal basis of the inner-

product is made of the operators of the form

Θ1 ⊗Θ2 ⊗Θ3 ⊗ ... (1.46)

where each Θ independently takes on the values {I,X, Y, Z}. In particular

for a two qubit system, the following operators provide an orthonormal basis

I1 ⊗ I2 I1 ⊗X2 I1 ⊗ Y2 I1 ⊗ Z2

X1 ⊗ I2 X1 ⊗X2 X1 ⊗ Y2 X1 ⊗ Z2

Y1 ⊗ I2 Y1 ⊗X2 Y1 ⊗ Y2 Y1 ⊗ Z2

Z1 ⊗ I2 Z1 ⊗X2 Z1 ⊗ Y2 Z1 ⊗ Z2

(1.47)

One can see that the number of measurements required to completely char-

acterise a system increases rapidly with the number dimensionality of the

Hilbert space. In particular totally describing the state of an N qubit sys-

tem requires the measurement of 22N − 1 real valued parameters.
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1.8 Quantum process tomography

Quantum process tomography [62, 63] is an extension of the ideas introduced

in quantum state tomography. In this case it is not the state of the system

that we are trying to determine but the effect some process has on the system.

The measurements that need to be carried out are quantum state tomography

on each of the output states corresponding to a complete set of d2 input states.

Here d is the dimensionality of the Hilbert space, and the set of states must be

complete in terms of the inner product (1.40) when the states are expressed

as density matrices.



Chapter 2

Rare earth ion spectroscopy

Rare earth ions are characterised by partially full 4f orbitals and their spec-

troscopy is dominated by 4fn → 4fn transitions. The electrons involved

in these transitions are inside filled 5s and 5p orbitals, which screen them

from perturbations caused by the lattice. The narrow lines caused by this

screening have fascinated spectroscopists for a long time. In the days be-

fore tunable laser sources huge spectrometers were used to get the required

resolution in order that the lines not be instrumentally broadened [65]. The

tunable laser sources developed in the 1970s made the resolution required to

study inhomogeneously broadened aspects of these transitions more accessi-

ble. Further to this the holeburning and time-domain techniques that could

then be used allowed one to probe the homogeneously broadened nature of

these transitions. These homogeneous linewidths are up to 107 times nar-

rower than the inhomogeneous ones. To date linewidths of around 100 Hz

[66] for a transition in the visible and approximately 50 Hz for a transition

in the infrared [67] have been reported.

2.1 Homogeneous and inhomogeneous

broadening

The processes which broaden the transitions in rare-earth doped solids can

be broken up into two categories. These are those that cause inhomogeneous

broadening and those that cause homogeneous broadening. It is the homoge-

neous linewidth that one would measure if measurements could be made of

a single system rather than of an ensemble. The absolute narrowest this can

be is determined by the population decay rate. In modern materials such as

Y2SiO5 which provide a quiet environment this limit has been approached

[66] but for most systems magnetic interactions with other spins in the lattice
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Figure 2.1: Radial distribution functions for rare earth orbitals. The screening caused
by the 5s and the 5p orbitals effectively shields the 4f electrons from perturbation. The
figure here was drawn for Gd+. It was taken from [64].

cause significant excess dephasing.

Crystal strain and similar effects alter the immediate environment around

each dopant making each slightly different, resulting in a spread of the reso-

nant frequencies in an ensemble of ions. For the transitions we are interested

in this inhomogeneous broadening is generally much larger than the homo-

geneous broadening and the transitions are called inhomogeneously broad-

ened. A large ratio of inhomogeneous to homogeneous broadening is desirable

for classical information processing. Transitions where the inhomogeneous

broadening is insignificant, compared to the homogeneous broadening, are

called homogeneously broadened.

2.2 Chemistry and occurrence of the

rare earths

The rare earth elements also known as the Lanthanides are the 15 elements

between Lanthanum (Z = 57) and Lutetium (Z = 71) on the periodic table

and correspond with the filling of the 4f orbitals.1 The elements are all

strongly electro-positive and their bonding can, to a good approximation, be

considered purely ionic. The chemistry of the rare earths is dominated by

1The are differing views about whether either or both of the two elements on the ends
should be included [68].
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Figure 2.2: Shows the relationship between inhomogeneous and homogeneous broaden-
ing. The inhomogeneous line is made up of a continuum of homogeneously broadened
packets. The diagram is not to scale, the ratio of inhomogeneous to homogeneous broad-
ening is much smaller than the ratio encountered in physical systems where it can be as
high as 107 [67].
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a single oxidation state (M3+) to an extent unparallelled in the transition

metals or the actinides. The most stable M2+ and M4+ oxidation states are

those of Eu2+, Yb2+, Ce4+ and Tb4+. These correspond to full, empty or half

filled f orbitals (4f 0, 4f 7 and 4f 14) but are not as stable as the elements’ 3+

oxidation state. Yttrium has similar chemical properties to the rare earths

because of its similar size and 3+ oxidation state. It is often included in

discussions of rare earth chemistry.

As the prevalent oxidation states of the rare earths are all the same, the

main feature that distinguishes between the elements chemically is ionic size.

The ionic radii of the elements steadily and uniformly decrease across the

series, an effect known as the lanthanide contraction.

The term “rare earth” is a bit of a misnomer. It came about because they

were initially discovered in small quantities in oxide mixtures. These were

once called “earth” mixtures. The only rare-earth that you would describe

as rare is promethium which is radioactive and occurs naturally only in trace

amounts associated with uranium [69]. The rarest stable rare earth is thulium

and has a similar crustal abundance to iodine [70]. With its abundance of

≈ 2 × 10−5wt. % it is more common than arsenic, mercury, cadmium or

selenium, none of which is usually considered rare [71].

2.3 Energy levels of the 4f states

A sketch of the energies of the 4f states to differing levels of approximation is

shown in Fig. 2.3. In a coulombic potential, all the f states are degenerate as

indicated in Fig. 2.3(a). Spin orbit coupling is large in rare earths due to their

low position on the periodic table and this splits the f states into different

manifolds as shown in Fig. 2.3(b). As the total angular momentum J is

conserved by the spin orbit coupling, J can be treated as a good quantum

number and label for the manifolds. It is the spin orbit interaction that

primarily determines the frequencies of the transitions. The host dependent

interactions can be treated as perturbations. The classic “Dieke” diagram

[72, 73] showing the spin orbit levels in lanthanum trichloride is shown in

Fig. 2.4.

Fig. 2.3(c) depicts the action of the crystal field on the spin-orbit split

manifolds. As already stated the crystal field splittings are much smaller than

the spin orbit coupling, generally O(100cm−1). The crystal field perturba-

tion splits the J manifolds into at most 2J + 1 components. An important

exception to the validity of this is Eu3+ where there is a low lying spin orbit

level close to the ground state and the small energy gap allows significant
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(c)(b)(a) (d)

Energy

Figure 2.3: Energy levels of the f states of rare earth ions to different levels of approx-
imation. It is drawn for an ion/host system which shows no electronic Zeeman effects to
first order, as is the case for both europium and praseodymium in Y2SiO5. The dotted
line in (c) represents a “lowest to lowest” transition

mixing between the two manifolds.

When it comes to the magnetic properties of rare earth ions, it is useful

to treat ions with an odd number of f electrons differently from those with

an even number. Because of the unpaired electron rare earth ions with an

odd number of f electrons have ground states that are magnetic doublets

(Kramers doublets) with a magnetic moment about that of the Bohr mag-

neton. Both the species studied in this work (Pr3+, Eu3+) have an even

number of electrons and therefore no magnetic moment due to electron spin.

For sites of axial symmetry or higher, it is possible for the ground state to

be a magnetic doublet due to non-zero orbital angular momentum around

the symmetry axis (non-Kramers doublet). In sites with less than axial sym-

metry, such angular momentum is said to be “quenched”. All the states

have zero angular momentum because the Hamiltonian no longer commutes

with an angular momentum operator for any direction. In such situations

the degeneracy in the J manifolds is completely lifted and the states are all

electronic singlets.

If we restrict ourselves to non-Kramers ions in low symmetry hosts the

next level of detail in the level structure beyond crystal field splitting comes

from a range of sources. Electronic Zeeman, nuclear Zeeman, hyperfine and

quadrupole interactions tend to be of similar strength and all appear at

the level of second order perturbations to the crystal field split lines. The

one natural occurring praseodymium isotope 141Pr and the two europium
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Figure 2.4: The classic Dieke diagram, the energy levels of triply ionised rare earths in
LaCl3 [72, 73]. Because the energy levels are determined predominantly by the spin-orbit
interaction rather than the crystal field interaction the energy levels are similar for other
hosts. The two transitions of interest to this thesis are from the ground (3H4) state to
the 1D2 state of praseodymium and from the ground (7F0) state to the 5D0 of europium.
Both of these transitions occur at about 17 × 103 cm−1. This image was scanned from
[74].
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isotopes 151Eu and 153Eu all have nuclear spin 5
2

and in zero magnetic field

each crystal field split level is broken into three doublets. For the three nuclei

we are interested in this splitting is O(10MHz).

2.4 Theory of hyperfine splittings

An overview of the theory of hyperfine splittings in rare earth ions where the

unperturbed states are electronic singlets follows. To describe the dynamics

of the f -electrons and nucleus we start with the following Hamiltonian

H = {HFI +HCF}+ {HHF +HQ +Hz +HZ} (2.1)

The six terms on the right represent the free ion, crystal field, hyperfine,

nuclear quadrupole, electronic Zeeman and nuclear Zeeman Hamiltonians

respectively. The first group of terms are much larger than the second and

are what determine the electronic energy levels.

The perturbation caused by the second group of terms is what determines

the electronic levels’ hyperfine structure. As mentioned above for both the

systems studied in this thesis the energy eigenstates of HFI +HCF are orbital

singlets. Due to this “quenching” of the electronic angular momentum there

is no first order perturbation due to hyperfine and the electronic Zeeman.

Second order hyperfine and electronic Zeeman and the nuclear Zeeman and

quadrupole effects are generally of similar size.

Applying second order perturbation theory gives, for a particular hyper-

fine manifold, the following effective spin Hamiltonian [75]

H = B · (g2
Jµ

2
BΛ) ·B + B · (γNE + 2AJgJµBΛ) · I

+I · (A2
JΛ + TQ) · I (2.2)

The tensor Λ is given by

Λαβ =
2J+1∑
n=2

〈1|Jα|n〉 〈n|Jβ|1〉
∆En,1

(2.3)

where the sum is over all the members of the J manifold except for the one

labelled |1〉 for which the spin Hamiltonian applies. Generally we are only

interested in the lowest energy level in the J manifold as it is insensitive to

spontaneous phonon processes.

Also E is the 3 × 3 identity matrix, B is the magnetic field and I is

the vector of nuclear spin operators, while gJ is the Landé g-value, γN is the
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nuclear gyro-magnetic ratio and AJ is the hyperfine interaction parameter.

∆En,1 is the difference between the unperturbed energy eigenstates for the

energy levels n and 1.

The term I · TQ · I describes the nuclear electric quadrupole interaction.

The term A2
JI · Λ · I which has the same form is due to the second order

magnetic hyperfine, also known as the pseudo-quadrupole interaction [76].

The term B · (g2
Jµ

2
BΛ) ·B is due to the second order magnetic hyperfine

interaction and is known as the quadratic Zeeman interaction. For the work

on Pr:Y2SiO5 it was neglected, because it makes no changes to the hyperfine

splittings and has only a small effect on the optical frequency for the small

magnetic field values used. For the work on Eu:Y2SiO5 the technique used

was just as sensitive to changes in the optical frequency as to the hyperfine

splittings and this term was important.

2.5 The linewidths of rare earth spectra

2.5.1 Optical transitions

The lowest levels in each crystal field split J manifold are much longer lived

than the other members. This is because the energy gap from the lowest

state of a J manifold down to the next available level is large and it can-

not be bridged by spontaneous phonon processes. The transitions that link

these lowest members are correspondingly narrow. Such a “lowest to lowest”

transition is indicated by the dotted line in Fig. 2.3(c).

In the absence of thermal phonons the only vibrational mechanism caus-

ing decoherence of this transition comes from weak population decay due

to multi-phonon emission. The combination of this and radiative decay re-

sult in long population lifetimes. The corresponding minimum homogeneous

linewidths are generally small, somewhere in the region of 10 Hz to 10 MHz.

At low temperatures (compared to the Debye temperature), the effect of

these thermal phonon processes rapidly decrease with further decreases in

temperature. At liquid helium temperatures these thermally induced effects

are often entirely negligible.

At such low temperatures, the lowest to lowest transitions are inhomo-

geneously broadened by the effects of crystal strain — typically by a few gi-

gahertz. The homogeneous linewidths are very narrow yet generally slightly

wider than the lifetime limit. The bulk of this excess dephasing comes from

magnetic spins in the lattice, although with very quiet hosts like Y2SiO5

these effects can be very small. At higher temperatures, the homogeneous
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linewidth is broadened by the effects of thermal phonons and the homoge-

neous linewidth approaches that of the inhomogeneous broadening.

The transitions that involve levels other than the lowest in each crystal

field manifold are homogeneously broadened at essentially all temperatures.

The spontaneous phonon processes determine the linewidths with values in

the region of 10-100 GHz common.

2.5.2 Hyperfine transitions

The spin-lattice relaxation times for the hyperfine transitions are very long

and linewidths are limited by other factors. The hyperfine transitions are

inhomogeneously broadened to tens of kilohertz for the same reason as the

optical transitions. The homogeneous linewidths are dominated by spin-spin

interactions with other ions in the lattice. Recently, it has been shown that

the dephasing effect of these interactions can be alleviated at a particular

magnetic field value allowing for much larger coherence times, see Sec. 3.1.8.

2.6 Techniques that probe inside the

inhomogeneous line

With the advent of tunable laser sources in the 1970’s, a range of methods for

probing inside the inhomogeneous linewidth became possible. Two of these

methods are described here. The concepts introduced by these techniques

form the basis for the quantum computing demonstrations described in Chap-

ter 5. These and other ‘non-linear’ spectroscopic techniques are discussed in

[77].

2.6.1 Spectral holeburning

The population of the ions is initially spread throughout the different ground

state levels. When a laser is applied with its frequency somewhere inside the

inhomogeneous line, a certain set of the ions will have an optical transition

close to the laser. As the ions get excited and fall back down to the ground

states, the population gets optically pumped into ground state levels from

which there is no transition resonant with the laser. The ions that have been

optically pumped away no longer interact with the laser. The mechanism

for this is shown in Fig. 2.5. Fig. 2.5(b) is a crude approximation of the

absorption pattern only; in reality a complex pattern of holes and anti-holes

(corresponding to enhancement of population in some hyperfine levels) ap-
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pear around the hole. The narrowest holes that can be burned depend on the

homogeneous linewidth of the transitions. However, burning narrow holes is

an inaccurate way to measure homogeneous linewidths. These measurements

are very susceptible to laser jitter and for all but the most stable laser sys-

tems the holes will be limited by this. With such narrow features power

broadening and saturation phenomena are also hard to avoid.

2.6.2 Optical free induction decay and photon echoes

Photon echoes and measuring free induction decays are part of a range of

coherent transient techniques that can be applied to the study of rare earth

systems. These techniques are directly analogous techniques used in mag-

netic resonance experiments. With them instead of a RF driving field, a laser

is used to excite the ions. In magnetic resonance the transverse magnetisa-

tion (ensemble averages of the X and Y components of the Bloch sphere)

is measured using the AC voltage induced in the same driving coils. Analo-

gous measurements can be made in the rare earth system using the coherent

spontaneous emission described in Section 4.4.

Suppose that one was able to align the optical Bloch vectors for a group

of the ions at a particular point on the equator of the Bloch sphere. This

would initially result in a strong coherent emission in an way fully analogous

to a similar magnetic system. As time progresses this coherent emission will

decay as the ensemble decoheres. The resulting signal is called an optical free

induction decay (FID) because of its similarity to the analogous situation in

magnetic resonance.

In rare earth systems, the timescale over which the free induction decays

is generally given by the spectral width of the excited ensemble rather than

the homogeneous linewidth which is narrower. Indeed the Fourier transform

of the FID signal gives the spectra of the excited ions. This fact is used

extensively in the optical memory and signal processing applications using

rare earths [78]. It was also used to extract the spectra in Section 3.2

The excitation of spectrally narrow ensembles is helpful in observing op-

tical FIDs. The length of time that the signal lasts is inversely proportional

to the spectral width, meaning that the FIDs from wide spectral features are

hard to distinguish from transients in the detection system due to the excit-

ing pulses. There are various ways these spectrally narrow packets can be

achieved, perhaps the simplest of these is by a long weak pulse. Alternatively

a short pulse can be applied to a narrow feature.

Measuring FIDs offers one a better way of characterising sharp spec-

tral features that have been prepared in the inhomogeneous line using hole-
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LASER

(a)

(b)

Figure 2.5: The spectral holeburning mechanism. (a) Illustrates how an ion which has a
transition resonant with the laser gets optically pumped to another hyperfine level. This
means that the homogeneous packets that would absorb at the laser frequency will now
have a lot of their members in different hyperfine levels. This results in a “hole” in the
absorption spectrum, as shown in (b). This lower figure is a crude approximation of the
true absorption, see text.
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burning techniques than sweeping the laser frequency and measuring ab-

sorption. They do not however provide a way of measuring homogeneous

linewidths that is insensitive to laser stability and saturation. Photon echoes,

however, provide a means of measuring homogeneous linewidths in a manner

which is much less sensitive to laser frequency stability. Photon echoes are

named after ‘spin echoes’ [79], the corresponding phenomenon in spin sys-

tems. An ideal photon echo sequence is to apply π/2 pulse, and then after

a wait of ∆t, a π pulse. After a further wait of ∆t the sample produces a

pulse of light in the same spatial mode as the driving laser.

To make the explanation simpler we shall assume that the phase of the

laser is such that it causes rotations about the Y axis of the Bloch sphere.

Further to this we shall assume that the pulses are short compared to the

inverse spectral width of the feature. As discussed below, neither of these

restrictions are necessary in order for photon echoes to give a measure of the

coherence time for the transition T2. The states of the ions in the ensemble

after the first π/2 pulse has been applied are shown in Fig. 2.6(a). The result

of a π/2 rotation about the Y axis has moved the ensemble from the ground

state to along the X axis. In the time that follows this pulse, each ion in the

ensemble precesses around the Bloch sphere at a rate given by its detuning

from the laser. For an atom with detuning δ the angle from the X axis at

time t is simply δt. At the time t = ∆t, a π pulses is applied, which rotates

all the Bloch vectors π about the Y axis. Before the π pulse an ion with

detuning delta is at an angle of δ∆t from the X axis and afterwords it is at

an angle of π − δ∆t.

The states before the π pulse are depicted in Fig. 2.6(b). Fig. 2.6(c) shows

the states after the π pulse. Usually this second pulse is applied long after the

coherence of the ensemble has decayed; here it has been applied before the

states are too spread out in order that each individual homogeneous packet

can be followed more easily. In the time period after the π pulse the states

evolve in exactly the same manner as they did before. The angle a state

makes with the X axis is therefore given by

π − δ∆t+ δ(t−∆t)

Thus at a time t = 2∆t all the ions, regardless of their detuning, will have

their states aligned along the negative X axis. This is shown in Fig. 2.6(d).

The evolution on the Bloch diagrams is shown for pulses with ideal hard

pulses and a perfectly stable laser. These criteria do not need to be satisfied

in order to observe a photon echo or even for photon echoes to be useful.

Photon echoes can be obtained from features much broader than the Rabi
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frequency of the pulses. In this situation it is the duration of the pulses that

determines the duration of the echo rather than the width of the feature.

While the description above has been for ideal π/2 and π pulses the

process that produces the echo is very robust to changes in the pulse ar-

eas. Often, sometimes for reasons of simplicity in the experimental setup or

otherwise, photon echo sequences with two equal pulse lengths are used.

The homogeneous linewidth is determined by varying the delay between

the driving pulses and recording the echo intensity. For the amplitude of

an echo to be reproducible there are only two conditions that need to be

met regarding the frequency stability of the laser. Firstly it must be phase

stable over the length of the pulses. Secondly the frequency must not change

by more than the inverse of the length of the pulses in the time between the

pulses. The much more stringent stability criterion of phase stability between

the pulses is not required. A drift in the phase of the laser in the time between

shots will cause the π rotation of the second pulse to be applied about an

axis different to the Y axis. As a result the ensemble will still rephase in

exactly the same way except now at a different point on the equator.

It is by a combination of spectral holeburning to the use of coherent

transients that enabled the quantum computation demonstrations in this

thesis. The techniques used can be considered an extension of those used

by Pryde et al. [80]. In that work ensembles with a narrow spectral width

were produced using holeburning techniques. The width of those ensembles

were less that the available Rabi frequency which allowed pulses of accurate

area to be applied for the first time. A photon echo sequence applied to such

an ensemble is shown in Fig. 2.7. The use of such ensembles is discussed in

Chapters 4 and 5.
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Figure 2.6: The positions of the Bloch vectors of a group of ions during an ideal photon
echo sequence.
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Figure 2.7: An experimental trace of an echo applied to an anti-hole. The upper and
lower traces show the coherent emission produced in phase and in quadrature with the
laser respectively. A pulse of approximately 3 µs in length is applied at t = 0 µs. This
length was chosen to roughly correspond to a π/2 pulse. The pulses are about 30 db more
intense than the coherent emission and saturate the detection system. The pulses appear
in the trace as a sharp transient followed by a flat area where the detection system is
saturated. Following the first pulse there is a free induction decay with a decay constant
of about 20 µs, This corresponds to the O(50 kHz) width of the anti-hole. The π at
t = 40 µs should result in no coherence in the sample, but because the ions in the anti-
hole are spread throughout the laser beam, it will not be an ideal π pulse for all of the
ions. This variation in the Rabi frequencies means that accurate pulses cannot be applied
to the ensemble. Selecting the ions in the anti-hole based on their Rabi-frequency, as well
as their detuning, can overcome this problem. At t = 80 µs the echo forms and if the π
pulse was ideal this would consist of two back to back versions of the first echo flipped in
phase. The fact that the echo is pretty much out of phase with initial FID shows that the
phase of the laser remained fairly stable throughout the shot. The slight dispersive nature
of the echo and the FIDs suggests a small detuning between the laser and the centre of
the anti-hole.



Chapter 3

Hyperfine splittings in rare

earth ion dopants

This chapter investigates the characterisation of the hyperfine structure for

trivalent praseodymium and europium dopants in yttrium orthosilicate (Y2SiO5).

This characterisation has already provided the foundation for an elegant tech-

nique used to extend the hyperfine coherence times in rare earth ion dopants

[81]. Information about oscillator strengths and transition frequencies will be

of importance in any quantum information processing applications in which

these materials are used.

While such a characterisation would have limited usefulness with other

hosts, yttrium orthosilicate is an ideal host for rare earth ions with a lattice

that provides a very quiet environment for rare earth ions.

The demonstration of slow light in a solid [82] and the narrowest observed

optical resonance in a solid [66] both used dopants in this host, the dopants

being praseodymium and europium respectively.

The rare earth ions substitute for yttrium. The yttrium carries a charge

of +3 allowing trivalent rare earth ions to be substituted without charge com-

pensation effects. Yttrium is also of a similar size to the dopants and that

means comparatively little strain is introduced by the substitution. Further

to these, the Y2SiO5 provides only small perturbations from spins within the

lattice. There are no unpaired electron spins in the lattice — oxygen pro-

vides no nuclear moment and silicon only provides a small nuclear moment

from a minor isotope. This leaves the yttrium nuclei with their small mag-

netic moments as the dominant unwanted spin. Handling Y2SiO5 samples is

made much simpler because of its stability. It has melting temperature of

1980◦C and against most reagents it can be considered inert. It is even under

investigation for a coating to protect against oxidation in high temperature

materials [83].
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Yttrium orthosilicate has symmetry given by the C6
2h space group [84]

with two formula units of Y2SiO5 per translational unit (four per conventional

unit cell) [85, 86]. This gives four different sites at which the praseodymium

can substitute for yttrium. The four sites can be divided into two pairs,

with the members of each pair related to each other by the crystal’s C2 axis.

These two pairs have different crystal field splittings and hence different

optical transition frequencies.

The yttrium sites in Y2SiO5 have C1 (no) site symmetry, which makes

interpretation of the spectra difficult. To the author’s knowledge the work

presented here on Pr:Y2SiO5 is the first time that such information has been

obtained for such a low symmetry site. Powerful inverse problem techniques

and not insubstantial (especially compared to the simplicity of the system)

computing resources were needed to arrive at the parameters for the spin

Hamiltonian. Such a lack of symmetry does, however, remove any require-

ment of learning group theory which should always be seen as positive.

In the case of Pr:Y2SiO5 Raman-heterodyne spectroscopy (see Sec. 3.1.2)

gave good signals and was used to obtain hyperfine spectra as a function of

the magnetic field vector. For Eu:Y2SiO5 Raman-heterodyne spectroscopy

gave barely visible signals in some conditions and these were not enough to be

useful for characterising the hyperfine interaction. Instead a technique based

on spectral holeburning was used. This didn’t provide data as readily as

Raman-heterodyne spectroscopy and (unlike for Pr:Y2SiO5) it hasn’t proved

possible yet to extract a total characterisation of the parameters of the spin

Hamiltonian.

3.1 Hyperfine interaction in praseodymium

doped Y2SiO5

3.1.1 Background

The two cryptographically distinct sites in the crystal pairs have different

crystal field environments. Here we are only concerned with “site 1”, for

which the optical transition between the lowest energy components of the
3H4 and 1D2 multiplets is at 605.7 nm.

The crystal on which the measurements were performed consisted of

0.05% praseodymium, which has only one naturally occurring isotope (Pr141,

I = 5/2).
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Figure 3.1: Zero field energy level diagram for Pr:Y2SiO5 as given in the work of
Ham et al. [87, 88, 89, 82]

The spin Hamiltonian, Eq. 2.2, for our purposes can be rewritten:

H = B ·M · I + I ·Q · I (3.1)

The M(= γNE + 2AJgJµBΛ) and Q(= A2
JΛ + TQ) are the two (tensor

valued) parameters that we wish to determine. The quadratic Zeeman term

has been ignored for the praseodymium work. It has the effect of moving

the whole hyperfine manifold up or down in energy and as such it does not

contribute to the hyperfine splittings.

The zero field energy level diagram for Pr:Y2SiO5 in “site 1” is shown in

Fig. 3.1, where each of the six membered hyperfine manifolds are split into

three degenerate pairs by the term I ·Q · I. By convention, these states are

labelled ±1/2, ±3/2 and ±5/2 even though they are only very approximately

angular momentum eigenstates. Using the coordinate system (x′, y′, z′) which

diagonalises Q the Hamiltonian becomes

H = E(I2
x′ − I2

y′) +DI2
z′ (3.2)

For axial sites E = 0 leading to a Hamiltonian DI2
z′ which in turn leads

to Iz′ eigenstates for the stationary states. For non-axial sites in which we

are interested, the term E(I2
x′ − I2

y′) causes significant mixing among the Iz′

eigenstates. The energy levels are still doubly degenerate because of inversion

symmetry. Zero magnetic field Raman heterodyne signals can be seen at 10.2,
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17.3, 4.6 and 4.8 MHz. Smaller signals can be seen at 17.3 and 9.4 MHz, due

to the ±1/2 ↔ ±5/2 transitions because the mixing allows violation of the

∆I = 1 selection rule.

The application of a magnetic field splits the degenerate pairs, and for a 40

Gauss magnetic field the splitting is of order of 1 MHz. For each orientation

of “site 1” in the crystal, each of the above Raman heterodyne lines would

split into four. The line splits into eight, in general, because of the two

possible orientations of “site 1”.

3.1.2 Experiment

A diagram of the experimental setup is shown in Fig. 3.2.

The sample was mounted in a set of small superconducting XY Z-coils

which enabled a field of about 40 Gauss to be generated from currents of

in the region of 3 A. These coils were calibrated using an simple magne-

tometer made from the 3516 Linear Hall Effect Sensor chip [90] of Allegro

Microsystems. The current was supplied with a purpose-made three channel

current supply. The sample and XY Z coils were placed in a glass cryostat

and immersed in liquid helium. The measurements were carried out with the

sample below the lambda point (2.2 K).

To obtain Raman-heterodyne [91, 92] spectra, light from a frequency-

stabilised (1MHz) dye laser was incident on the sample. The laser was tuned

so it was resonant with the transition from the lowest level of the 3H4 multiplet

to the lowest level of the 1D2. The frequency of the laser was slowly swept

within the (3H4 → 1D2) inhomogeneous line to prevent holeburning processes.

A swept radio-frequency (RF) field was applied to the sample using a

6 turn coil wrapped around the sample. When the RF field was resonant with

a hyperfine transition a coherence was produced between the hyperfine levels.

This coherence, along with that induced by the laser, creates another optical

field with the same mode characteristics as the laser but with a frequency

shifted by the frequency of the RF driving field. See Fig. 3.4. This optical

field is detected as a beat on the transmitted light. An example of a Raman-

heterodyne spectrum is shown in Fig. 3.3.

The task of generating the RF signal and analysing the signal was carried

out using a RF network/spectrum analyser. The signal was averaged on a dig-

ital oscilloscope and then stored on a PC. Along with a computer-controlled

current supply for the XY Z coils this enabled autonomous collection of the

data.

For the ground state the spectra were recorded as the magnetic field was

http://www.allegromicro.com/datafile/3515.pdf
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Figure 3.2: Experimental setup for collecting the Pr:Y2SiO5 Raman-heterodyne data.
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Figure 3.4: Energy levels involved in the Raman Heterodyne detection. The applied
optical and RF fields are ωL and ωHF respectively. The Raman field produced at ωL+ωHF

gives a beat with the transmitted laser beam at ωL.
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rotated in a spiral (see Fig. 3.5) of the form

B =

B0

√
1− t2 cos 6πt

B0

√
1− t2 sin 6πt

B0t

 , t ∈ [−1, 1] (3.3)

The ground state spectral lines were in two bands a couple of MHz wide,

one centred around 10.2 MHz (±1/2 ↔ ±3/2) and the other 17.3 MHz

(±3/2 ↔ ±5/2). Sweeping the entire range from 9 through to 19 MHz

would mean that a lot of time would be spent scanning the 12 − 15 MHz

region where no spectral lines were present. Considering the relatively short

hold time of the cryostat used (a couple of hours), it was desirable to make

the data collection process as time efficient as possible. For this reason, and

because they were available, two spectrum/network analysers were used —

one to look at the region around 10.2 MHz and the other for the region

around 17.3 MHz. The simultaneous collection of two spectra in this manner

had no adverse effects on the measurements and may have slightly improved

signal levels due to suppression of holeburning processes.

For the excited state, the magnetic field was rotated in cones (see Fig. 3.6)

about each axis. This was because it was desirable to have larger fields for

the excited state to help resolve all the lines present. This was most easily

achieved by having a larger non-computer-controlled current supply on one

of the three channels.

The positions of all the visible peaks in the 100 ground state and 135

excited state spectra were recorded. These positions were determined by

the manual inspection of the spectra and were recorded using a computer

by clicking on spectra. Out of the total of 1600(= 16 × 100) ground state

peaks, 1223 positions were recorded. For the excited state the frequencies of

1503 out of a total of 2160 peaks were determined. The 25 per cent of peaks

that didn’t have their positions recorded were either too weak to be seen

above the noise or were obscured by an overlapping peak. These sets of peak

positions and their corresponding magnetic field values were the datasets

used in reconstruction of the spin Hamiltonians.

3.1.3 Solving the inverse problem

Given the spin Hamiltonian parameters M and Q and the magnetic field B

the calculation of the hyperfine transition frequencies is straightforward. The

Hamiltonian given by Eq. 3.1 is constructed and its eigenvalues found, then

the frequency differences between these eigenvalues give the spectral lines.
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Figure 3.5: Magnetic field values used to obtain ground state hyperfine spectra. The x,
y and z axes are coloured red, white and blue respectively.
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Figure 3.6: Magnetic field values used to obtain excited state hyperfine spectra. The x,
y and z axes are coloured red, white and blue respectively.
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The techniques used for solving the inverse problem are outlined below. As

the problem is nonlinear and there are a large number of unknowns, the

only available techniques are those based on the stochastic sampling of the

posterior probability distribution function.

Given two binary random variables x and d we have the following identity

p(x, d) = p(x|d)p(d) = p(d|x)p(x) (3.4)

Here p(x, d) is the probability that both x and d are true, while p(x) is

the probability that x is true and p(x|d) is the conditional probability that

x is true given that d is known to be true.

The above can be rearranged to give Bayes theorem

p(x|d) =
1

p(d)
p(d|x)p(x) (3.5)

Such an argument is equally valid for the p’s as probability distribution

functions rather than just probabilities. We will assume that we are trying

to infer the value of x (the unknown) from the value of a measurement of

d (the data). If we treat the probability distribution p(x) as our “state

of knowledge” of the value of x before the measurement Eq. 3.5 provides

a method for determining p(x|d), which is our “state of knowledge” of x

following the measurement. All that is required in updating our state of

knowledge is p(d|x), which is the probability that one would obtain a certain

value for the measurement of d if, hypothetically, the model parameters which

we are trying to determine had value x. The term 1/p(x) can be treated as a

normalisation constant. We shall call p(x) the prior probability distribution

and p(x|d) the posterior probability distribution.

Using Bayes theorem it is no more difficult to calculate the probability

distribution relevant to the inverse problem p(x|d) than the one relevant to

the forward problem p(d|x). The difficulty comes in obtaining something use-

ful from the probability distribution. In our particular problem the number

of unknowns N is of order 10, (for example 5 or 6 for each of the two tensors

M and Q and two for the directions of the crystal’s C2 axis). Obtaining

statistics, such as a mean, from such a distribution requires a N dimensional

integration. Conventional quadrature techniques are useless for such a high

number of dimensions. Calculating the mode of the posterior probability dis-

tribution function, or the most-likely value of the model parameters, requires

finding the global maximum within N dimensional space. This is a difficult

problem because of the large number of local maxima in which the algorithm

may get stuck. In order to overcome these problems in this situation it was
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necessary to use stochastic methods. The success of these techniques relies

on efficient solution of the forward problem because its solution is required

many many times in the execution of the algorithms. In this situation solv-

ing the forward problem for the dataset involves creating and diagonalising

of the order of 100 6 × 6 Hamiltonians. The two million steps used in the

annealing took approximately 8 hours on a 933 MHz Pentium III PC.

The technique used for this work was based on the work of Metropo-

lis et al. [93]. They devised a scheme for stochastically jumping around the

configuration space of a given model system in such a way as to sample the

Boltzmann distribution. Hastings provided a generalisation [94] that allowed

the sampling of arbitrary distributions. However, for this and many other

inverse problems, the posterior probability can be made to coincide with the

Boltzmann distribution. If we assume no prior information and if the uncer-

tainty can be effectively modelled by the addition of uncorrelated Gaussian

noise to the peak positions then one has

p(x|d) = p(d|x) =
1

Z
exp

(∑
i

−(ωi − di)
2

2σ2

)
(3.6)

Here Z is the normalisation constant, ωi is the theoretical frequency for the

spectral line i, which is based on the model parameters x. The correspond-

ing observed frequency is given by di. Such a distribution is the same as the

exp(−E/kT ), but with the energy replaced by the misfit between experimen-

tal results and theory, E =
∑

i(ωi− di)2, and temperature replaced with the

uncertainty in the measurements, kT = 2σ2.

Because of its simplicity Eq. 3.6 was used when solving the inverse prob-

lem. However, it should be noted that the experimental uncertainty cannot

be modelled so simply. As a result of this the uncertainties in the various spin

Hamiltonian parameters determined using it should be viewed with caution.

This is discussed further in the results section.

The Metropolis algorithm is as follows:

(i) Record the system state a

(ii) Randomly choose a trial state a′ based on a

(iii) Chose a randomly distributed number r between 0 and 1.

If exp
(
E(a)−E(a′)

kT

)
< r then replace a with a′ otherwise

leave a unchanged.

(iv) Goto Step (i).
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Here E(a) is the energy of the system when in state a and kT is Boltz-

mann’s constant times the temperature. The states of a at step 1 sample the

Boltzmann distribution representatively. For E(a) > E(a′) the algorithm al-

ways accepts the trial state, that is, it always accepts a step down in energy.

Sometimes, it also accepts steps for which E(a) < E(a′). When the energy

difference is small compared to kT this is likely; when the energy difference

is large compared to kT this is unlikely.

In many situations it would be enough to loop through the Metropolis

algorithm a large number of times. The statistics collected from the set of the

values of a at step (i) approximate the statistics of the posterior probability

distribution function. The difficulty in many situations, including this one,

is that the Metropolis algorithm can require a prohibitively large number of

steps to come to equilibrium. The initial state will, no doubt, be one of high

energy (low probability) and it can take a prohibitively large number of steps

to reach equilibrium. This is similar to the situation in some physical systems

where a system can get stuck in a metastable high energy state, even though

there exist much lower energy states. A physical example of such a situation

is where a melt ends in an amorphous state and stays there for a long time at

low temperatures, despite the existence of a lower energy crystalline state. In

order to achieve such a crystalline state physically the melt must be cooled

slowly. Using this slow cooling for numerical minimisation, or simulated

annealing, was pioneered by Kirpatrick and co-workers [95]

3.1.4 Model parameters and the misfit metric

Along with the orientation of the principal axes there are two parameters

required to determine the pseudo-quadrupole tensors. For this work the

following parameterisation was used

Q = R(α, β, γ)

E 0 0

0 −E 0

0 0 D

RT (α, β, γ) (3.7)

where R(α, β, γ) is the rotation matrix defined by the three Euler angles

(α, β, γ) [96]. For the Zeeman tensor there are six independent parameters

and the following parameterisation was used

M = R(α, β, γ)

gx 0 0

0 gy 0

0 0 gz

RT (α, β, γ) (3.8)
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There is the potential for a great deal of confusion when dealing with Euler

angles, many different conventions are used. For this reason the convention

used to convert the parameters in Eq. 3.7 and 3.8 into the M and Q tensors

is given in Appendix A.

In the case of a system with no true quadrupole interaction, it can be

easily seen from (2.2) that the principal axes of the two tensors M and

Q will be aligned. Further to this the parameters apart from Λ are all

known, and so there are only three independent parameters in addition to

the orientation of the tensors. The absolute values of the parameters D and

E can be determined from zero-field quadrupole splittings which would help

greatly in determining these. Because of this three different models were

used to try and fit the data, one where it was assumed that there was no

real quadrupole interaction, one where the tensors M and Q were taken to

share the same axes but the principal values were allowed to vary freely and

one where no relationship was assumed between the two tensors.

The position of the C2 axis was nominally along the y-axis but was in-

cluded as a parameter because of the small misalignment between the coils

and the sample. The parameters D and E were allowed to vary from their

values determined by the zero field splittings because the zero-field lines were

broader than those that had been split by the magnetic field. This was a

result of a small background magnetic field.

The data containing all the peak positions was then fed into a computer

program that used simulated annealing to minimise the difference between

the experimental values and what would be expected from a pair of systems,

one with a Hamiltonian

H = B ·M1 · I + I ·Q1 · I (3.9)

and the other with a Hamiltonian

H = B ·M2 · I + I ·Q2 · I (3.10)

Here each X1 and X2 are related to each other via the C2 axis.

The misfit metric which is used for the “energy” in the simulated an-

nealing process was the sum of the squares of the differences between the

calculated and measured frequency values. The difficulty of assigning theo-

retical peaks to experimental ones, especially when each spectral line is not

always visible added complications. You never see more experimental peaks

than theoretical peaks, so the number of experimental peaks is always less

than or equal to the number of theoretical ones. In early attempts it was
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assumed that each experimental peak corresponded with the closest theo-

retical one. However with this strategy the algorithm tended to get stuck

in unrealistic situations in which one theoretical peak was used to explain a

number of distinct experimental peaks.

To counteract this tendency it was decided to use the mapping from the

set of experimental peaks X to the set of theoretical peaks Y such that

M(f) =
∑
x∈X

(f(x)− x)2 (3.11)

is minimised — with the restriction that each member of Y gets mapped to

at most once.

Such a minimum mapping has to be an increasing function.1 Suppose that

f is the minimum of M, x1 > x2 and f(x1) < f(x2). Then by considering

the function g : X → Y , which is identical to f except that g(x1) = f(x2)

and g(x2) = f(x1), we have the following contradiction,

M(f)−M(g) = (f(x1)− x1)
2 + (f(x2)− x2)

2

−(g(x1)− x1)
2 − (g(x2)− x2)

2 (3.12)

= f(x1)x2 + f(x2)x1 − f(x2)x2 − f(x1)x1 (3.13)

= (f(x2)− f(x1))(x1 − x2) (3.14)

> 0 (3.15)

With the set of possible mappings reduced to increasing functions we have

a set of
(
n
m

)
candidates, where n is the number of theoretical peaks and m is

the number observed. You can specify the mapping by just deciding which

m theoretical peaks will get mapped to.

For the case of 8 theoretical lines, as is the case for each of the set of

lines about 10 MHz and 17 MHz in the ground state, the largest this can

be is
(
8
4

)
= 70. For the excited state where each experimental peak could

be assigned to any one of 16 theoretical peaks the worst case blows out to(
16
8

)
= 12, 870. Exhaustively searching through 70 possible combinations is

possible, but 12,870 makes the algorithm prohibitively slow. Keeping in mind

of course that this procedure has to be done for each of the∼ 100 or so spectra

in the dataset at each of the ∼ 2 million steps of the simulated annealing

algorithm. For the ground state the hyperfine parameters were first found

by searching exhaustively for the minimum. For the excited state a more

1For practical purposes we can assume that the sets X and Y are non-degenerate.
This can be arranged by adding an insignificantly small amount of either experimental or
numerical “error”.
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sophisticated algorithm was developed. The source code and a description is

given in Appendix B.

3.1.5 Sensitivity of the spectra to the Hamiltonian

An important question to ask when determining Hamiltonian parameters

from spectra is whether more than one Hamiltonian can lead to the same

spectra. The answer is yes, as can be seen by considering the transformation

H → −H. The energies of the eigenvalues of the new Hamiltonian will be

minus those of the old one, but the transition frequencies will be the same.

At sufficiently low temperatures the two situations could be distinguished

but for a 10 MHz transition ∆E doesn’t equal kT until a temperature of

0.5 mK.

In zero magnetic field, the ambiguity H → −H in our system presents

itself as the ambiguity Q→ −Q. In our case the spectra would have been in-

distinguishable for the reasons mentioned above. It should be noted however

that experiments that measure the optical transition strengths and frequen-

cies, such as spectral holeburning, will be sensitive to the ‘sign’ of Q

Holliday and his co-workers [97] reported negative signs for both D and

E (see Eq. 3.7) in the ground state and positive signs in the excited state.

This determination was made by comparing spectral holeburning patterns

with those calculated from the transition strengths. As pointed out in their

paper this method is not entirely robust and has led to false conclusions with

Pr:LaF3 [98, 99]. While it is not made clear, in their paper it appears that

Holliday et al. took the principal axes to be overlapped. If this was the case

it would make sense to report the sign of E. In general however exactly the

same tensor Q (see Eq. 3.7) could be made by flipping the sign of E if a

different rotation matrix was used. This is because flipping the sign of E

is exactly the same as swapping the roles of x′ and y′ in the quadrupolar

Hamiltonian

HQ = D
(
I2
z′ − I(I + 1)/3

)
+ E

(
I2
x′ − I2

y′

)
(3.16)

The orientations of the pseudo-quadrupole tensors were found during the

work undertaken for this thesis and the relative orientations for the principal

axes are shown in Fig. 3.15. It can be seen there that the principal axes with

principal values D are close to each other for the two tensors, whereas the

other principal axes are not.

Another insight into the relative signs of the D is in the work of Ham and

co-workers who have investigated electromagnetically induced transparency
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phenomena (EIT) in this material [87, 88, 89, 82]. While they give the work

of Holliday [97] as its source, in their papers they report an energy level

diagram as shown in Fig. 3.1. This energy level diagram would be the result

of choosing a negative sign for D for both the ground and excited states.

As the EIT work carried out by Ham and his coworkers is both extensive

and sensitive to this technicality, one must assume that this is the correct

situation.

As already mentioned above, the work carried out for this thesis was

insensitive to Q → −Q and in analysing the data the D and E parameters

(see Eq. 3.7) were positive for each of the electronic states. In order for

these results to coincide with Ham’s energy level diagram, the substitution

Q → −Q should be made for both the ground and optically excited state

tensors. This substitution is done when reporting the results in Tables 3.1

and 3.2.

For our problem we must also consider the following:

Given a coordinate transformation P (P †P = E) with the property that

PQP † = Q the two Hamiltonians (Eq. 3.1) H = B ·M · I + I ·Q · I
and H ′ = B ·MP · I + I · Q · I give the same hyperfine spectra and

oscillator strengths.

This can be seen by considering the following

H = B ·M · I + I ·Q · I (3.17)

= B ·MPP † · I + I · PP †QPP † · I (3.18)

= B ·MP · (P †I) + (P †I) ·Q · (P †I) (3.19)

The three operators (P †I)x,y,z are simply the three angular momentum

operators for a different set of axes and have the same algebra as the angular

momentum operators for the initial basis.2 This leads to the same eigenvalues

for both cases, with the eigenstates differing only in their representation.

Oscillator strengths for transitions between these eigenstates are calculated

by considering the matrix elements of operators corresponding to magnetic

field perturbations. These are also unchanged. To understand this consider

an oscillating magnetic field pointed along the n̂ direction. The relevant

operator when calculating the transition strength between two states |α〉

2If P involves a change in the handedness of the coordinate system, det(P ) = −1, the
commutation relations change from [Ii, Ij ] = i~εijkIk to [(P †I)i, (P †I)j ] = −i~εijk(P †I)k

This doesn’t affect the argument.
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and |β〉 is

〈α| n̂ ·M · I |β〉 (3.20)

= 〈α| n̂ ·MP · (P †I) |β〉 (3.21)

= 〈α′| n̂ ·MP · I ′ |β′〉 (3.22)

(3.23)

Here |α′〉 is the same as |α〉 but written in terms of, for example, the I ′z
eigenstates rather than the eigenstates for Iz.

The eight coordinate transformations that have the property PQP † = Q

form a representation of the D2h point group. The operations which make

up this group are: rotations of π about the principal axes of Q; reflections in

the planes whose normals are the principal axes; inversion and the identity.

Explicitly the operations are

P = U

±1 0 0

0 ±1 0

0 0 ±1

U † (3.24)

where U rotates the coordinate frame onto the principal axes of Q.

Taking the limit of no quadrupolar term in the Hamiltonian one finds

that M can be right multiplied by any coordinate transformation P without

affecting the observables inferred from the spin Hamiltonian. In this case

all that is important is MM † = MPP †M †, for example the splittings are

proportional to:

‖B ·M‖ =
√

B†MM †B (3.25)

However if we make the restriction that M be symmetric then the number

of Ms that lead to the same physical results drop dramatically.

To see this, suppose we have a symmetric M , then:

MP is symmetric ⇐⇒ MP = P †M † (3.26)

⇐⇒ MP = P †M (3.27)

⇐⇒ MP − P †M = 0 (3.28)

⇐⇒ P †(MP − P †M) = 0 (3.29)

⇐⇒ P †MP = P †P †M (3.30)

The inference between line 3.28 and 3.29 is in both directions. Because

detP 6= 0 we have PX = 0 ⇐⇒ X = 0.

As we are only interested in coordinate transforms P that leave the
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quadrupole tensor invariant (given by Eq. 3.24) we have P †P † = E. This

leads to the result that MP is symmetric if and only if

PMP † = M (3.31)

So ultimately we have the following situation: For sites of axial or higher

symmetry or when the principal axes for the tensors overlap, all the P given

by Eq. 3.24 satisfy Eq. 3.31. The transformations M → MP simply flip the

signs of the principal values of the Zeeman tensor (the g-values). In such a

situation we can conclude that the signs of the principal axes of the Zeeman

tensor are unable to be inferred from the hyperfine spectra. Indeed they

have no relevance until situations involving transitions between hyperfine

manifolds are considered. An example of this would be when determining

oscillator strengths for optical transitions.

When the principal axes do not overlap, the only transformation M →
MP that keeps the Zeeman tensor symmetric is inversion. In this situation

we can conclude that spectra observed are sensitive to the signs of the g-

values. The spectra are only insensitive to a simultaneous flip of all the signs

of the g-values.

3.1.6 Implementation of algorithm

Simulated annealing was used to solve the inverse problems in this work.

In order to obtain some idea of the uncertainties in the inferred values, the

Metropolis algorithm was run at a temperature corresponding to the uncer-

tainties in the spectral lines. As mentioned above, this can be shown to

be rigorous if all the uncertainty in the experiment is due to independent

Gaussian noise added to the true positions of the spectral lines as they are

measured. In such a case, the posterior probability distribution and the

“pretend” Boltzmann distribution we are sampling are the same.

The model parameters chosen were:

• The values of the parameters describing the pseudo-quadrupole and

Zeeman tensors. E, D, gx, gy, gz, αQ, βQ, γQ, αM , βM and γM , see

Eqns. 3.7 and 3.8.

• The azimuthal angle and elevation angle that describe the position of

the C2 axis.

• The background magnetic field (Bx, By, Bz).
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For each magnetic field value in the data set a Hamiltonian was con-

structed and theoretical positions for the spectral lines calculated. The mis-

fit between the theoretical and experimental values was calculated with the

help of the algorithm for assigning peaks described above. The misfit was the

dominant contribution to the “energy” but small contributions were added

to reflect the prior knowledge of the position of the C2.

When implementing such an algorithm there is freedom in choosing two

things — how you lower the “temperature” and how you choose the proposed

state. When analysing the data collected for this thesis, in order to find the

solution that minimised the error the initial temperature was chosen at a level

corresponding to an uncertainty in the spectral lines of about 1 MHz. It was

then lowered exponentially to 1 kHz over two million jumps, at which point it

was no longer changing. This was repeated several times with different initial

conditions and random number seeds to confirm that the true minimum had

been found. For the evolution step one of the system parameters was chosen

at random and a random variable with a Lorentzian distribution was added

to it. The initial width (it has infinite variance) of this distribution was

chosen to be about five degrees for angles and 10% of the expected results

for other quantities. These were also reduced exponentially but three times

slower than the temperature.

3.1.7 Results

The spectra, along with the best theoretical fit, are shown in Figs. 3.7 and 3.8.

The RMS deviation between the measured and fitted lines was 23 kHz for

the ground state and 7 kHz for the excited state.

In order to find the uncertainties in the determined parameters, a further

two million time-steps of the Metropolis procedure were carried out after the

annealing. This was with a constant nonzero “temperature”, corresponding

to the uncertainties in the measured peak positions. As has been mentioned

earlier, such a method can be shown to be rigorous if all the uncertainty was

due to independent Gaussian noise in the peak positions. The frequencies of

a large number of spectral lines were used in determining parameters and if

the uncertainties in the positions of each of them were perfectly uncorrelated

this would lead to small uncertainties in the inferred parameters. In this

situation however this assumption was not strictly valid, leading to what is

probably an underestimate of the uncertainties.

The other important consideration is inhomogeneous broadening of the

hyperfine parameters. Each ion is sitting in a slightly different environ-

ment leading to a distribution of hyperfine parameters among the ensemble.
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Figure 3.7: The hyperfine spectra obtained for the ground state. Each vertical slice is
one spectrum with darkness indicating intensity of Raman heterodyne signal. The field
was varied along the horizontal axis as described in the text.
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Figure 3.8: The hyperfine spectra obtained for the optically excited state. Each vertical
slice is one spectrum with darkness indicating intensity of Raman heterodyne signal. The
field was varied along the horizontal axis as described in the text.

Characterising these distributions using, for example, the line-shapes of the

observed spectral lines was not attempted.

To work out the uncertainties in the hyperfine parameters the “tempera-

ture” was chosen to correspond with the standard deviation of the errors in

peak positions for the best fit (23 kHz for the ground state and 7 kHz for

the excited state). The best values for the hyperfine parameters are shown

in Tables 3.1 and 3.2.

The total uncertainty is a more conservative estimate that includes var-

ious systematic errors. These include the systematic errors in the measure-

ment of the frequencies due to slightly dispersive line-shapes and imperfec-

tions in the XY Z coils but do not include uncertainty due to misalignment of

the crystal and the calibration of the magnetometer. While the chip used for

the calibrations of the XYZ coils was very precise its absolute calibration was

only guaranteed to be good to 10% [90]. The alignment of the crystal was

done by eye and was the greatest source of uncertainty in the orientations,

being of the order of 5◦.

The position of the C2 axes were in both cases close to the y-axis. The

difference between the C2 and the y-axis represents how well the crystal

was aligned in the XY Z coils. The crystal was taken out and remounted

between the collection of the ground and excited state data. Because of how
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Figure 3.9: Program output for fitting of the ground state. This shows the values of the
program parameters during an annealing run. The program lasted for 2 million time steps
with values for the parameters recorded every 1000 points. All angles are in degrees, the
g values in kHz/Gauss and the pseudo-quadrupole parameters D and E are in MHz. The
components of the background field B0 are in Gauss. The misfit and ‘temperature’ are in
MHz2
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Figure 3.10: Program output for fitting of the excited state. This shows the values of the
program parameters during an annealing run. The program lasted for 2 million time steps
with values for the parameters recorded every 1000 points. Units used for the parameters
are the same as for Fig 3.9.
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Figure 3.11: Ground state results. Histograms of program parameters with the program
run at constant temperature. The histograms represent approximations to the posterior
probability distribution for the parameters. Units used for the parameters are the same
as for Fig 3.9.
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Figure 3.12: Excited state results. Histograms of program parameters with the program
run at constant temperature. The histograms represent approximations to the posterior
probability distribution for the parameters. γ − 180◦ (modulo 360◦) is plotted rather
than γ to avoid problems with the angles wrapping around the circle. Units used for the
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Figure 3.13: An “artist’s impression” of the ground state tensors. The green vectors
represent the principal axes of the pseudo-quadrupole tensor with lengths proportional to
the principal values. The yellow vectors represent the Zeeman tensor. Negative principal
values are depicted by inward pointing vectors. Only one of the two orientations is shown.
The tensors have been scaled so the length of the vector corresponding to the principal
axis with the largest principal value is the same for both tensors.
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Figure 3.14: An “artist’s impression” of the excited state tensors. The green vectors
represent the principal axes of the pseudo-quadrupole tensor with lengths proportional to
the principal values. The yellow vectors represent the Zeeman tensor. Negative principal
values are depicted by inward pointing vectors. Only one of the two orientations is shown.
The tensors have been scaled so the length of the vector corresponding to the principal
axis with the largest principal value is the same for both tensors.
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Figure 3.15: An “artist’s impression” of the two quadrupole tensors. The cyan vectors
represent the ground state and the magenta the excited state. The vectors show the
principal axes with lengths proportional to the principal values. Negative principal values
are depicted by inward pointing vectors. Only one of the two orientations is shown. The
tensors have been scaled so the length of the vector corresponding to the principal axis
with the largest principal value is the same for both tensors.
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Table 3.1: Results for fitting of the ground state. The uncertainties stated are those
from the Metropolis algorithm, see the text for a discussion. The substitutions D → −D
and E → −E have been made so the results agree with the energy level diagrams of
Hemmer et al. (see Sec. 3.1.5)

Quantity Value Uncertainty Units

E -0.5623 0.0002 MHz
D -4.4449 0.0003 MHz
gx 3.20 0.11 kHz/G
gy 2.69 0.08 kHz/G
gz 11.54 0.02 kHz/G
αM -84.9 0.2 deg.
βM 120.7 0.2 deg.
γM 206 3 deg.
αQ 89.6 0.7 deg.
βQ 152.3 0.3 deg.
γQ 26 2 deg.
C2 az. 87.8 0.1 deg.
C2 elev. -2.1 0.1 deg.

Table 3.2: Results of fitting of the excited state. The uncertainties stated are those
from the Metropolis algorithm, see the text for a discussion. The substitutions D → −D
and E → −E have been made so the results agree with the energy level diagrams of
Hemmer et al. (see Sec. 3.1.5)

Quantity Value Uncertainty Units

E -0.4228 0.0001 MHz
D -1.3575 0.0002 MHz
gx 1.526 0.009 kHz/G
gy 1.441 0.004 kHz/G
gz 3.439 0.003 kHz/G
αM -29.3 0.2 deg.
βM 88.0 0.1 deg.
γM 210 5 deg.
αQ 91.4 0.2 deg.
βQ 53.8 0.2 deg.
γQ -16.8 0.3 deg.
C2 az. 87.4 0.1 deg.
C2 elev. 2.9 0.1 deg.
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the crystal was mounted the azimuthal angle of C2 axis should be much more

reproducible than the elevation. This is seen in the results — the azimuthal

angle differs only 0.4◦ between the ground and excited state experiments.

The elevation of the C2 axes differs by about 5◦.

For the ground state, while the difference between the principal axes of

the Zeeman and pseudo-quadrupole tensors was resolved, the difference was

small (< 5◦). This would be expected if the pseudo-quadrupole was much

greater than the real quadrupole interaction. However the data could not be

at all well explained by a model where the real quadrupole contribution was

neglected.

For the excited state, the Zeeman and pseudo-quadrupole tensors are not

aligned, however the pseudo-quadrupole tensors for both the ground and

excited state are aligned.

It must be recognised that working with such a low symmetry system

increases the chance that the fit might be fortuitous. However, the author

is confident in the results presented here because of the range of magnetic

field directions used and the robust nature of simulated annealing. Values for

some of the parameters were known independently of the fitting procedure

(quadrupole parameters and position of the C2 axis) and the fitted and a

priori values agreed with each other within the respective uncertainties.

Furthermore, measurements were made with larger field strengths, with

the large magnet used changing the direction of the magnetic field was not

attempted, instead spectra were taken only as a function of field magnitude.

The measurements are shown in Fig. 3.16 along with the theoretical values

calculated using the spin Hamiltonian derived in this work. The spin Hamil-

tonian parameters derived here were also used successfully in the work of

Alexander [100].

While one can be confident in the ability of the parameters found here to

reproduce the spectra for an arbitrary magnetic field, it should be remem-

bered (as discussed in Sec. 3.1.5) that such spectra are not sensitive to all

aspects of the Hamiltonian. So rather than finding the ‘true’ spin Hamilto-

nian we have found a small class of Hamiltonians. This class of Hamiltonians

contains the true spin Hamiltonian and all the members give the same spec-

tra.

3.1.8 The future

We have characterised the hyperfine manifolds for both the ground and one

optically excited state of praseodymium dopants in Y2SiO5. This enables

one to find both the transition frequencies and oscillator strengths for any
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Figure 3.16: A test of the spin Hamiltonian parameters at higher field values. The graph
shows experimental and calculated frequencies of spectral lines as the magnetic field was
increased along a particular direction, nominally the x-axis. The direction used in the
calculation was allowed to move slightly off the x-axis to allow for errors in alignment.
The data for this graph was collected with Elliot Fraval.
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transition between or within the manifolds for an arbitrary applied magnetic

field.

The initial motivation behind this work was to enable EIT experiments

to be performed in a magnetic field, because knowledge of the energies of

the hyperfine levels would be required to apply the re-pumping beams (see

[87, 88, 89]). However the most exciting use of these results so far is in the

work of Fraval et al. [81].

They have used the information gained to significantly extend the co-

herence times of a hyperfine transition. The coherence time for hyperfine

transitions that has appeared in the literature for Pr:Y2SiO5 is 500 µs [101].

This has been attributed to the fluctuating magnetic field from the yttrium

nuclei. These fluctuations can be reduced by the application of a magnetic

field and the coherence time can be increased correspondingly. However with

the knowledge of the hyperfine splittings that this work has made available

it has been possible to find a magnetic field value where the frequency of a

hyperfine transition was insensitive to magnetic field.

The transition frequency of the transition undergoes a turning point as

the magnetic field is increased in two orthogonal directions and a point of

inflection in the third. At this point, to first order, the fluctuating magnetic

field causes no Zeeman shift in the transition, and thus the dephasing due

to these random Zeeman shifts is greatly reduced. Fig. 3.17 shows T2 mea-

surements made by Fraval at this critical point. Coherence times as long as

80 ms were observed. In a rare earth quantum computer, it is envisioned that

these hyperfine transitions will be used for long term storage of the quantum

information. Thus, for the field of rare earth quantum computation, this is

a very significant result.

3.2 Hyperfine interaction in europium

doped Y2SiO5

After the Pr:Y2SiO5 hyperfine characterisation proved to be very useful and

because the attempts reported in Section 5.5 were thwarted by lack of ade-

quate oscillator strengths for all the required transitions, it was decided to

attempt the characterisation for Eu:Y2SiO5.

3.2.1 Experimental setup and procedure

As mentioned in the introduction to this chapter this task was made difficult

by the lack of Raman-heterodyne signals. In an attempt to collect enough
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Figure 3.17: A figure taken from [81] showing spin echo amplitude verses time interval
between the driving pulses. The pluses show the echo decay behaviour for the insensitive
transition. The crosses and circles show the echo decay behaviour for transitions at the
same magnetic field but where the gradient of transition frequency with respect to magnetic
field does not vanish. A line corresponding to the T2 = 500 µs for zero magnetic field is
shown for comparison.
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Figure 3.19: Europium energy level diagram showing the transitions involved in the
holeburning spectra. The splitting of the ±5/2 energy levels due to the magnetic field is
exaggerated. The hyperfine splittings are of the order of 50 MHz (see Fig. 5.1 on page 112)
and the Zeeman splittings were of the order of 500 kHz. The four transitions that might
be expected to be seen in the spectra taken are shown. The transitions represented by
dotted lines were not observed.
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data to infer the hyperfine parameters, a holeburning technique was used.

The sequence of events in each experimental shot is shown in Fig. 3.18. First

a long weak pulse (≈ 160 ms) was applied to the sample to burn a narrow

hole in the sample. The transition was then split by the application of an

applied magnetic field, and a time of 500 ms was allowed for the supplies to

reach the appropriate currents. The spectra of the resulting feature was then

read out with a short intense pulse (≈ 0.6 µs). The resulting free induction

decay was Fourier transformed to obtain the spectra. The experimental setup

used was essentially the same as described in Sec. 5.2.

Just as in the case of Praseodymium dopants, there are four different crys-

tallographic positions at which the europium can substitute yttrium. The

four positions can be divided into two pairs with the members of each pair

related to each other by the crystal’s C2 axis. These two pairs have differ-

ent crystal field splittings and hence different optical transition frequencies.

Unlike praseodymium which has only one stable isotope, europium has two

stable isotopes of approximately equal abundance, 151Eu and 153Eu. These

two isotopes have the same transition optical frequencies but different hy-

perfine transition frequencies. The experiments of this thesis were carried

out on the 151Eu isotope at “site 1”[102]. In order to simplify the spectra,

the procedure was applied to a broad anti-hole that had been prepared in

a manner similar to that described in Sec. 5.3.2. Although other measure-

ments were made, all the results presented here were for the ±5/2 → ±5/2

transition as shown on Fig. 3.19.

The magnetic field was supplied by a set of custom made superconducting

XY Z coils. These were newer than those used for the praseodymium work

and had a larger number of turns. The X and Y coils had sensitivities of

70 G/A and the Z, 50 G/A.

In order to better distinguish between the quadratic Zeeman effect and

laser drifts, it was decided to take spectra while increasing the magnetic field

along a discrete set of directions.

The crystal was delivered cut with faces perpendicular to the crystallo-

graphic axes and the faces marked as such, using an a, b or c. The sample

was placed in the XY Z coils with X axis parallel to the b (which is the C2)

axis and the normal of the face marked c pointing along the Z direction. The

laser beam was directed along the X axis and polarised in the vertical plane.

The optical transition was somewhat polarised with maximum absorption

occurring for this vertical polarisation.
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3.2.2 Results

From each of the two orientations of “site 1” up to four spectral lines were

expected. Thus, in general, eight spectral lines could be expected for an

arbitrary field and four when the field was applied along or perpendicular to

the C2 axis. Instead, either four lines or two lines were observed.

The spectra as a function of magnetic field for two field directions are

shown in Figs. 3.20 and 3.21. Measurements were taken for the field changing

along 13 directions. These were approximately the directions3 [abc] where

each of a, b and c took on the values {0, 1, 1̄}.
For Fig. 3.20, the applied magnetic field was along the C2 axis and two

transitions can be seen, as well as a number of what could be weaker lines.

One serious weakness in the method used is that it is not possible to tell if

these are due to weakly allowed transitions or to signals from other subgroups

of ions, for example, from the other isotope or a packet that is resonant with

the laser due to some other transition. The spectral lines split at approxi-

mately 1 kHz/G and the line traced out by the peaks of the spectra is gently

curved due to the quadratic Zeeman. The magnetic field values used are

shown in Fig. 3.22(a).

For Fig. 3.21 the field was ramped along a direction close to the [1̄11].

Because this direction was not perpendicular to or parallel with the C2 axis,

four spectral lines can be seen, two for each of the orientations of the site. The

quadratic Zeeman splitting was among the highest seen for all the directions

measured and was of the order of 4 Hz/G2. The magnetic field values used

are shown in Fig. 3.2.4.

3.2.3 Discussion

It might be expected that the ±5/2 → ∓5/2 transitions would be weak

because they only occur due to the mixing between the +5/2 and −5/2

states and for these two states the mixing would be small. However, the

situation was similar for the ±1/2 → ∓1/2, in this case the hyperfine ratio

of the hyperfine splittings suggests that the mixing of these states should be

large [103]. Reflecting on these results led to the ‘discovery’ of the cyclic

transition (see Sec. 4.7). It should be noted that Silversmith [103] used the

same property of the Hamiltonian in order to more simply arrive at analytic

expressions for the Hamiltonian eigenvalues.

3Even though the crystallographic notation is used for the directions of the magnetic
field, they are described here in terms of the ‘lab-frame’ defined by the XY Z coils rather
than any axes of the crystal. The relationship between these two are described in the text.
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Because of the stability of the laser and long coherence times of the optical

transitions involved the spectral resolution achieved is impressive. However,

the bandwidth of the technique is also small, being limited by the length of

the readout pulse, which is in turn limited by the laser power. Further to this,

when compared to the hyperfine splittings the resolution of the technique is

not so impressive. In many of the 13 directions for which the data was taken

it was not possible to clearly see the spectral lines due to their finite width.

3.2.4 Conclusions

With the data obtained it has not been possible to extract the spin Hamil-

tonian parameters yet. The spectral lines weren’t well resolved. In some

cases the interpretation of the spectra was further complicated by weak over-

lapping peaks due to transitions of the system that we were not trying to

measure.

From the data obtained the Zeeman splitting of the hyperfine transition

is of the order of 1 kHz/G and the largest quadratic Zeeman splitting was of

the order 4 Hz/G2.
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Figure 3.20: Spectra of the Zeeman split ±5/2 → ±5/2 transition as the field is increased
along the C2 axis. (a) Each horizontal slice is the amplitude of the delayed free induction
decay (FID) signal from hitting the hole with the 0.6 µs readout pulse. Both phases of the
free induction decay signal were recorded. The light blue band to the right of the figure
is made of the weak phase reference pulses applied after each FID had finished. (b) The
spectra of split hole as a function of magnetic field obtained by Fourier transform of FID
signal.
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Figure 3.21: Spectra of the Zeeman split ±5/2 → ±5/2 transition as the field is increased
along a field direction different to the C2 axis (see text).
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Figure 3.22: Magnetic field values used to obtain the spectra shown in (a) Fig. 3.20 and
(b) Fig. 3.21. For (a) the magnetic field was applied along the crystal’s C2 axis (z in the
lab frame). See the text for how the x, y and z axes of the lab frame correspond to the
crystallographic axes.



Chapter 4

Optical Quantum Computing

in Solids

In this chapter a review is made of the proposals for optical based quantum

computation in solids. These are based on two types of systems, rare earth

ion dopants and NV centres in diamond. After discussing the details of ion-

ion interactions in rare earth ion dopants, each of the published schemes is

evaluated critically. Then the direction pursued in this thesis is then laid

out. The progress made in trying to implement this direction experimentally

is described in Chapter 5.

While the most sophisticated quantum computing demonstrations to date

have involved liquid state NMR, it is unlikely the problems involved in scal-

ing such an approach to a large number of qubits can be overcome (see

Sec. 1.4.1). The experiments must be carried out at close to room temper-

ature. Consequently the thermal state is highly mixed. There are other,

perhaps less important, problems in NMR quantum computation. Firstly,

the interactions between the qubits are on all the time which leads to the

need for rephasing sequences to stop the effects of interactions when they are

not wanted. Secondly, the interactions between the nuclei are weak, ∼100 Hz,

making the operation of the computer slow.

Optical centres in solids provide a method of overcoming the problems of

liquid state NMR computing, while retaining its two main strengths. These

strengths are: (a) the storage of quantum information in long lived nuclear

states and (b) the elegance of a scheme that doesn’t require complex fab-

rication. It is desirable to avoid this fabrication for two reasons; the most

immediate, but perhaps least important, is cost. A much bigger issue is that

nano-fabrication will cause damage to the crystal structure and this is likely

to affect coherence times. Importantly, this “damage” not only includes unin-

tentional damage caused in the manufacture, but also includes the disruption
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to the crystal that the fabricated structures represent. In rare earth systems,

crystal imperfection has been shown to significantly increase dephasing rates

[104].

The rare earth ions stand out as a group of optical centres for quantum

computing. The lifetimes for the hyperfine levels can be very long (hours)

[102]. Furthermore, the coherence times for the hyperfine transitions can

also be long — 80 ms was recently measured [81] and it is thought that

this could be increased significantly. The outstanding feature of rare earth

ions is the narrowness of their optical transitions, an optical coherence time

of 2.6 ms has been measured for Eu3+:Y2SiO5 [66]. Furthermore there is a

comparatively large distribution of transition frequencies within an ensemble

of ions (∼GHz). These two facts allow many different groups of ions to be ad-

dressed individually, based on their resonant frequencies. The ratio between

the inhomogeneous and homogeneous broadening can be as large as 107. The

nuclear splittings are generally O(10 MHz) in zero field. This is much bigger

than the homogeneous linewidths of the transitions, which means the nuclear

states of the ions can be manipulated optically. The fact that the hyperfine

structure is resolvable optically means quantum information encoded in the

nuclear transitions can be transfered to the optical transitions and vice versa.

Rare earth ions in non-centro-symmetric hosts also have large (as big

as GHz) interactions involving their optical transitions and these provide

the ion-ion interactions needed for multi-qubit gates. The advantage of these

interactions is that quantum information is only sensitive to their action when

it is encoded in the optical states. Putting the quantum information into the

ground state hyperfine structure would free one from having to rephase the

interaction when it is not wanted. This isolation was investigated in the

recent work of Alexander [100].

One weakness of rare earth ions is the difficulties that will be encountered

when reading out the states of single ions. In this the NV centre in diamond

does much better. Single site spectroscopy has been demonstrated for the

NV centre in diamond [105] and this has allowed it to be used as the basis

of single photon sources [106]. A nitrogen-vacancy or NV centre is where

two of the carbon atoms in the diamond lattice have been replaced by a

nitrogen atom and a vacancy. The NV centre has an oscillator strength

similar to that of an allowed transition in a free atom. The larger oscillator

strength means higher Rabi frequencies are available and faster spontaneous

emission, both of which help in single site detection. The problem with all the

previous proposals for quantum computing using NV centres is in realising

the interactions between ions. Previous proposals have used either cavities
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that have difficult to realise parameters or the resonance interaction. Using

the resonance interaction puts strict criteria on the optical frequencies of

the centres — criteria that would be hard to meet in practice. With this in

mind, the possibility that NV centres might interact using exactly the same

mechanism as the rare earths is exciting. This is discussed in Sec. 4.1.1.

Several schemes for optical quantum computing in solids have been pro-

posed [107, 108, 109]. The use of both ensembles [108] and single impurities

[107, 108, 109] for the qubits has been proposed. In all such systems the

long lived hyperfine levels of an impurity, be it a rare earth ion or a NV cen-

tre, are used to store the quantum information. Optical transitions are used

to cause qubit-qubit interactions for multi-qubit gates. The inhomogeneous

broadening in such transitions is used to selectively address the qubits.

The ability to apply accurate single qubits operations optically in a solid

was first demonstrated by Pryde et al. [80]. The single qubits were absorptive

features prepared in the inhomogeneous line that were narrow compared to

the available Rabi frequencies. Further development of the techniques to

create and characterise these ensembles was carried out in this work and the

results are presented in Chapter 5.

These demonstrations of single qubit operations leave the following chal-

lenges of this type of quantum computing: effecting qubit-qubit interactions

and detection of the qubit states. These are discussed below.

4.1 Interaction between rare earth ions’

optical transitions

Here we discuss the various phenomena that might be exploited in order

to effect two qubit-qubit operations, and in the case of phonon mediated

interactions, those processes that might interfere with these. The treatment

is focused on rare earth ions; however the applicability of the concepts to the

NV centre is also discussed. The discussion of the use of high finesse cavities

to effect ion-ion interactions is deferred until later in the chapter.

Rare earth ions at low temperatures can exhibit very narrow homoge-

neous linewidths. Because of this, very sensitive measurements of frequency

shifts and the decoherence caused by various phenomena can be studied. Us-

ing photon echo techniques means one is not limited by the inhomogeneous

linewidth and it is possible to probe for effects that are only limited by the

homogeneous linewidths. Historically these effects have not been studied for

academic interest alone, but also because of the application of these materi-

als for time-domain optical memory (TDOM) [78]. The frequency shifts and
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decoherence effects discussed here are of great importance in TDOM as they

provide fundamental limits to the performance of a particular dopant/host

system.

In all the experiments previous to this thesis, the random nature of the

frequency shifts which were caused by otherwise coherent ion-ion interactions

have always been observed as decohering effects, which increase with the size

of perturbing pulses. In spite of this the mechanisms for these interactions

could be put forward and a great deal of supporting evidence given. A

good review of the ion-ion interactions and their role in causing photon echo

attenuation is found in the work of Graf et al. [110].

4.1.1 Electric dipole-dipole interactions and excitation

induced frequency shifts

The use of the electric dipole-dipole interaction that occurs in rare earth ion

systems for quantum computation was first proposed by Sellars and Man-

son [111]. The environment surrounding a rare earth ion in most hosts is

anisotropic, which leads to a permanent electric dipole moment associated

with the dopant. This dipole moment depends on the electronic state of the

ion. An ion will therefore experience a Stark shift that is conditional on the

state of its neighbour. The interaction between the ions is given by [112]

~ωij =
[δµi · δµj − 3(δµi · r̂ij)(δµj · r̂ij)]

4πεr3
ij

(4.1)

Here δµi is the (vector valued) change in the electric dipole moment between

the ground and excited state for ion i, and rij is the vector describing the

relative positions of ions i and j.

This interaction is the dominant ion-ion interaction for the Eu:Y2SiO5 and

it is used in this thesis to effect the qubit-qubit interactions. The interaction

is diagonal in the sense that the perturbation it causes only changes the

energies of the existing eigenstates of the system. This is to be contrasted

with off-diagonal interactions, such as the resonance interaction, which can

cause an exchange of excitation. Diagonal interactions cause ‘instantaneous

spectral diffusion’ or ‘excitation induced frequency shifts’, which are other

phrases used to describe diagonal interactions. To the author’s knowledge,

the electric dipole-dipole interaction is the only mechanism for such diagonal

interactions that has been put forward.

Excitation induced frequency shifts for the optical transitions in solids

first appeared in the literature in 1974 in the work of Taylor and Hessler [113].
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They were attempting to explain the concentration dependence of photon

echo decays in ruby [114]. While the mechanism was eventually discounted

for ruby [115], it has turned out to be an important dephasing mechanism

for rare earth ions, especially when there are few other perturbations in the

lattice.

The effects of excitation induced frequency shifts were first demonstrated

in Tb3+:LiYF4 by Liu et al. [116]. In this work they demonstrated that the

effective dephasing times as measured using photon echoes were sensitive to

the sizes of the perturbıng pulses used. Furthermore the first pulse had a

much smaller effect in shortening the coherence time than did the second.

This can easily be understood in terms of excitation induced frequency shifts.

If the first pulse excites a lot of ions it will cause a large random shift in the

frequencies of the ions’ transitions. Unless the time between pulses is long

compared to the lifetime, however, the frequency shift will stay constant

throughout the echo sequence and will be rephased along with the inhomo-

geneous broadening. If the middle pulse excites a lot of ions, then the ions

which form the echo will experience a large random frequency shift that is

only effective for half of the photon echo sequence. These frequency shifts

will not get rephased and will cause a decoherence of the ensemble of ions

that produce the echo, leading to smaller echoes.

Huang et al. followed this with more probing experiments on a Eu3+:Y2O3

sample [117]. Their experiments used pulses from a gated CW laser and

shorter more intense pulses made from the excimer-pumped dye amplification

of the gated CW laser pulse.

The measurements reported by Huang et al. can be broken up into three

groups.

First they did T2 measurements using photon echoes where one of the

driving pulses was a gated CW pulse and the other an amplified pulse. They

found, as Liu had, that putting the large pulse second caused more echo

demolition than having it first. Further when the intense pulse was first they

noticed non-exponential decay in the echo heights as the time between the

pulses was increased. This could be expected because the decay rate of the

coherence changes as the ions which were excited by the first pulse relax back

to the ground state.

Next, Huang et al. performed photon echo experiments where both the

pulses of the echo sequence were produced by gated CW pulses. A third,

amplified pulse was applied at some time during the echo sequence. The

time when this perturbing pulse was applied was varied and its effect on the

echo height observed. They found the echo height showed a ‘U’ shaped de-
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pendence with the position of the perturbing pulse. With perturbing pulses

near either the first pulse or the echo, the height of the echo was not strongly

affected. However, for the perturbing pulse applied close to the second pulse

of the photon echo sequence the reduction in the echo amplitude was signifi-

cant. This can be explained using a simple extension of ideas given above to

describe the increased sensitivity of the echo height to the amplitude of the

second pulse compared to that of the first. From their measurements and

estimates of the number of ions excited by the perturbing pulses, an electric

dipole change of O (10−32 Cm) was inferred.

Thirdly, Huang et al. showed that the mechanism causing the reduction

in the echo height was due to the number of ions that the pulses excited,

rather than the energy of the pulses. To do this, they measured the decay in

echo amplitude as a function of length of the echo sequences. They did this

twice, each time using pulses that approximated the ideal π/2 and π areas

for resonant ions. The second time the intensities of the pulses were reduced

by a factor of ten and the lengths increased by a factor of ten. A longer

effective T2 was observed for the long weak pulses. This was explained using

the fact that the longer weaker pulses excited less ions due to their narrower

spectral width.

Further insight was provided by Mitsunaga et al. in 1992 [118] using

three pulse echo techniques. They showed that the excitation of ions in one

of the two sites of Eu:Y2SiO5 produced an instantaneous (< 1 µs) frequency

shift in the ions of the other site. Furthermore this shift lasted for a time

(∼2 ms) similar to that required for these ions to decay. A three pulse echo

experiment is similar to a normal photon echo experiment except that the

second (π) driving pulse is replaced with two pulses of half the length. The

first two pulses cause a spectral grating to be written into the population

of the ions in a manner similar to Ramsey fringes [119]. When hit with the

third pulse, an echo is formed from the combined free induction decay signals

of the ions in this spectral grating. The advantage of the three pulse echo

techniques to these experiments is that the dephasing and rephasing time

intervals are separated by the length of time between the second and third

pulses. This length of time can be made very long because, due to spectral

holeburning, the grating is still present after the decay of the population in

the excited state. The time the resulting grating exists is governed then by

the population lifetimes for the ground state spin structure. These lifetimes

can be as long as hours [102].

In Chapter 5 experiments which further characterise these ion-ion inter-

actions are described. In particular, Rabi oscillations are seen in the size
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of a photon echo as the duration of the perturbing pulse, which was hitting

another group of ions, was varied.

In 1992, both Meixner et al. [120] and Wang et al. [121] published direct

measurements of the Stark shifts of Rare Earth Ions. In both cases the

methods employed were essentially the same — a photon echo sequence was

used where an electric field was applied for half of the time. In both cases

YAlO3 was used as the host,1 Meixner investigated europium dopants and

Wang erbium. The use of YAlO3 was crucial for the technique. In YAlO3 the

dopants are in two equal groups each with their dipole moments in opposite

directions. These two groups of ions see equal and opposite frequency shifts.

The beating of these two frequency shifts results in an oscillation in the

height of the photon echoes as the time delay is varied. In this manner the

phase shifts caused by the Stark shift could be observed without requiring a

high resolution laser. A Stark coefficient of 33.7 kHz cm V−1 was reported

for europium and 141 kHz cm V−1 for erbium.

Because the expression of Eq. 4.1 only depends on the change in the

electric dipole moment between the ground and excited states, these mea-

surements of the change in dipole moment together with the relative positions

of two ions, completely describe their interaction.

The Stark shift value measured in [120] was used in Eq. 4.1 by Ohls-

son et al. to estimate interaction strengths of 1 GHz, 1 MHz and 1 kHz for

separations of 1, 10 and 100 nm respectively.

The NV centre in diamond consists of a nitrogen sitting next to a vacancy

and as such it is obviously an anisotropic system. Because of this a Stark shift

can be expected. To the author’s knowledge no values of the Stark shifts have

been reported. However, the effect of electric field perturbations on optical

centres in diamond was investigated in 1980 by Davies and Manson [122].

They were more interested at that stage in determining what the optical

centres were, rather than making quantitative measurements. The measure-

ments were made by applying an oscillating electric field to the sample and

looking for an change in the absorption as the shape of the inhomogeneous

line was varied.

In their experiments, electric fields of the order of 10 kV/mm were used.

For the sake of argument, we shall assume that this causes a Stark shift com-

parable to the inhomogeneous line width. This is an incorrect assumption

— the splittings were less than the linewidth. This assumption will result

1Wang also did measurements for the chromium ions in alexandrite (Cr3+:BeAl2O4

(0.05%)) which have shorter coherence times, but apart from a slightly more complicated
geometric arrangements of dopants, modulating heights of the echo signal were produced
in much the same way.
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in a upper bound for the Stark shift. Using 10 kV/mm and a value for the

inhomogeneous linewidth of ∼1000 GHz this leads to a value of the Stark

coefficient of the order of 109 Hz cm V−1. This is of the order of 104 times

greater than for rare earth systems and so the interaction strengths will be

of the order of 108 times larger. This should be compared to the shorter co-

herence times; coherence times for NV centres in diamond are of the order of

106 larger than typical rare earth values. Assuming the separations between

the centres involved are the same, we get an 100 fold increase in the ratio

of interaction strength to dephasing rates with the NV centre compared to

rare earths. Of course, this should be seen as an absolute best case scenario.

However, it can still be concluded that the implications of the possibility of

a sizable electric dipole-dipole interaction for the NV centre justifies further

investigation. Interaction between the centres is the weakest part in current

quantum computing proposals for the NV centre.

4.1.2 The resonance interaction

As well as the diagonal interactions mentioned above, the possibility of off-

diagonal interactions in rare earths has also been investigated. Their possible

role in causing excess dephasing was investigated theoretically by Root and

Skinner [123] and a method for using this interaction to effect controlled

atom-atom interactions has been put forward by Lukin and Hemmer [124].

These off-diagonal or exchange interactions occur when two resonant ions

are placed in each other’s near field. Without the interaction, the two of

the four eigenstates of the system, namely |ge〉 and |eg〉, would be degener-

ate2. The resonance interaction which comes from the exchange of virtual

photons between the two ions will cause this degeneracy to be broken. This

interaction and its R−3 dependence was first noted by Eisenshitz and London

in investigations of the first excited states of H2 [125]. The new eigenstates

are the symmetric and anti-symmetric linear combinations of the two states

mentioned above

|p±〉 =
|ge〉 ± |eg〉√

2
(4.2)

The energy difference between these two states for distances close com-

pared to the wavelength of the transitions takes the form3 [126]

V (R) = 3~γ
(
λ̄

R

)3

(4.3)

2Here the state |ge〉 is the one where ion 1 is in the ground state and ion 2 is in the
excited state.

3Here λ̄ = λ/(2π).
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There is some disagreement about the behaviour of the interaction for

distances larger than the wavelength. The commonly accepted result is that

of McLone and Power [127] which predicts long range oscillatory behaviour.

Boström et al. [128] showed the same result is achieved using a semi-classical

method, if the usual approximation is made where the atom-field coupling

constant is assumed to be constant. This approximation is invariably made

when dealing with optical resonances in atoms as the linewidth is always a

very small percentage of the transition frequency. When Boström et al. didn’t

make this approximation a R−4 dependence was found. This disagreement

has little importance to quantum computing because it only occurs in the

regime R > λ̄. In this regime the interaction strength is weak compared

to the spontaneous emission rate, making it useless for effecting qubit-qubit

interactions.

For rare earth systems, using Eq. 4.3, it can be seen that the resonance

interaction has the same R−3 dependence and a similar size to the diag-

onal electric dipole-dipole interactions mentioned above. At a distance of

one wavelength, the size of the interaction is comparable to the spontaneous

emission rate in both cases. However, the resonance interaction does not con-

tribute significantly to ion-ion interactions because of inhomogeneous broad-

ening. Off diagonal interactions, such as the resonance interaction, are sig-

nificant only when the detuning between the two systems is small compared

to the interaction strength.

This requirement for resonance has important implications for quantum

computation in solids. Ideally, one might expect that it could be useful be-

cause the interactions would be more selective. In the medium term, however,

it is hard to see how this would outweigh the extra complication arising from

strict requirements on the optical transition frequencies.

4.1.3 Dephasing by non-equilibrium phonons

Instantaneous spectral diffusion is most commonly invoked to explain the

intensity dependent relaxation rates in rare earth systems. However it is also

possible that incoherent effects cause excess dephasing. It is important to

be aware of this when using such systems for quantum computing. Bai and

Kachru [129] provided an example of such an effect. Their work followed a

previous investigation [130] that showed that the sensitivity of a photon echo

in Pr3+:YAlO3 to the size of the first pulse was too high to be explained by an

excitation induced frequency shift. By varying the laser focus Bai and Kachru

were able to show that for such a system the excess dephasing was dependent

“on both the density of the excited ions and the size of the excitation volume”.
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For this to happen, they concluded, the “perturbers” caused by the excitation

must be mobile. In their mechanism the reduction in the size of the echoes

was due to a cloud of resonant phonons caused by the non-radiative decay

of the praseodymium ions interacting with other praseodymium ions. The

praseodymium ions in YAlO3 are particularly sensitive to phonons because

of another member of the 3H4 crystal field split manifold close to the ground

state (∼51 cm−1). The ground state for trivalent europium is a singlet.

Therefore there is no possibility of other low lying levels in the ground state

manifold. This means that this mechanism shouldn’t be important for the

quantum computing experiments carried out in Eu3+:Y2SiO5 for this thesis.

4.2 Previous schemes for optical quantum

computation in solids

Of the three previously published schemes for all optical quantum computa-

tion in solids, two [107, 109] overcome the problems of qubit-qubit interac-

tions and readout using high finesse optical cavities. They are in many ways

similar to an earlier work of Pellizzari et al. [131] for trapped atoms but use

either rare earth ions [107] or NV-centres [109].

In order for the cavity to be useful, the strong coupling regime is required.

This is where the coupling strength between the colour centres and the cavity

field (the single photon Rabi frequency) is much larger than the decay times

for both the cavity and the coherence of the colour centres. This requires

the use of very small cavities in order to achieve a coupling strength that

is large compared to the spontaneous emission rate of the impurity. The

requirement for small cavities means that the finesse must be very large in

order to achieve the required cavity decay rates.

It is possible, if difficult, to achieve this regime for free atoms [47] but

it has not yet been possible for optically active colour centres in the solid

state. The difficulty lies in making the cavity decay smaller than the single

photon Rabi frequency. The oscillator strength of the NV centre, suggested

by Shahriar et al. [109], is comparable to that of an allowed transition in

a free atom; however, the losses caused by having a solid material in the

cavity are significant. The production of better cavities using photonic-band

gap materials and surface plasmon modes is under active investigation [132]

and for the NV centre it is possible that the strong coupling regime will be

achievable in the medium term. The oscillator strengths for f–f transitions

in rare earth ions, suggested by Ichimura [107], are three orders of magnitude

smaller than the NV centre and it’s unlikely that for such systems the strong
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Figure 4.1: Sketches of absorption versus frequency for two different steps when carrying
out the instance identification for the scheme of Ohlsson et al.

coupling regime will be achieved without radically new techniques for making

optical cavities.

4.2.1 Ensembles and instance identification

The electric dipole-dipole interactions explained in Sec. 4.1.1, together with

the single qubit ensembles of Pryde et al. [80], would suffice for quantum

computing if it were not for one problem — the inhomogeneity of the inter-

actions strengths. Fortunately, this problem can be solved to some extent

using holeburning techniques.

The scheme would be as follows. First a number of the Pryde single qubits

would be prepared in the inhomogeneous line and then all the ions in these

ensembles that didn’t have the correct interaction strength would be optically

pumped into an auxiliary hyperfine level and removed from consideration.

The process has been called instance identification [133].

The method that has appeared in the literature for achieving this instance

identification is that of Ohlsson et al. [108], which appeared in 2002. Their

procedure for two qubits was as follows. First one (the left in Fig. 4.1) qubit

is excited with a π pulse. Because of the interaction between the two qubits

this causes a spread in the resonant frequencies of the ions of the second qubit
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(see dotted line in Fig. 4.1(a)). Then the ions with resonant frequency which

haven’t shifted by a sufficient amount are then burnt away (Fig. 4.1(b)). The

left qubit is then brought back down to the ground state. The process is then

repeated with the roles of the two qubits reversed. What remains are two

qubits, one of which can be switched out of resonance by the excitation of

the other. In the description of the scheme of Ohlsson et al. the interaction

between the ions within one qubit was disregarded, but perhaps this flaw

could presumably be overcome with only slight complication.

One problem with this approach is that the mean frequency shift in the

ions of a target qubit when a control qubit is excited is generally a small

fraction of the spectral width of the control [134]. Put another way, the

dotted peak in Fig. 4.1(b) should have a width that is only a few percent

wider than the unbroadened peak. It has been estimated in a subsequent

paper by the same group that in order to achieve two qubits in such a system

99.7% of the ions in each qubit would have to be pumped into the auxiliary

hyperfine state, leaving only 0.3% of the ions [135]. This puts severe limits on

the allowable background level of ions in the holeburning process. The reason

that so many ions must be thrown away is that the Ohlsson technique requires

the controlled frequency shift of the ions to be larger than the inhomogeneous

linewidths of each anti-hole.

Wesenberg and Mølmer [133] recently proposed the use of composite

pulses for the single qubit rotations in the Ohlsson scheme. Using these

pulse sequences, it may be possible to get closer to the value of 0.3% of the

ions than would have otherwise been the case. Still, the requirement that the

interaction must be larger than the inhomogeneous linewidth of each anti-

hole would mean that you have to burn away the vast majority of the ions

in each qubit. In Section 4.5 it is shown that there is nothing fundamental

in this restriction and provides an alternative method for instance identifica-

tion requirements. The introduced technique only requires the interactions

to be larger than the homogeneous linewidth. It also naturally deals with

the problem of interaction between ions within the same qubit.

A second problem with the ensemble approach of Ohlsson is the diffi-

culty in scaling it to a large number of qubits. Initialisation of the Ohlsson

quantum computer consists of starting with a very large number of ions and

throwing away (by optically pumping to the auxiliary hyperfine state) all

those that don’t have the correct interactions. As the number of qubits in-

crease, the number of ‘instances’ of a suitable collection of ions will decrease

exponentially. Using the techniques of Section 4.5, the number of ions may

not need to decrease as quickly as 0.003N , as in the Ohlsson scheme, but the
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decrease would still be exponential. Wesenberg and Mølmer [133] suggest a

“bus architecture”, where each of the qubits is only coupled to one “bus”

qubit. Such an architecture they argue would require less ions to be thrown

away. From the author’s reading such a system would still require working

with exponentially smaller groups of ions as the number of qubits increases.

No definitive statements are made in the paper.

4.3 The direction pursued in this thesis

Developing a practical quantum computer is a very considerable undertaking,

and as such it is useful to have both shorter and longer term goals. This

work, due to its limited timespan and the infancy of rare earth quantum

computation, has been primarily involved in achieving shorter term goals.

These include characterisation of the physical systems and processes that

might be used and also simple demonstrations. Longer term goals, such as

overcoming obstacles to scalability were not actively pursued experimentally,

although some thoughts about these are presented toward the end of this

chapter.

All the experimental work in this thesis was carried out using ensembles.

Narrow anti-holes were used as single qubits and the states of these qubits

were detected by monitoring coherent optical emission. In order to achieve

the demonstration of two qubit operations the electric dipole-dipole interac-

tions were used. Using a method of instance identification, an ensemble was

selected from the ions that made up two qubits where the interaction be-

tween the two qubits was no longer random. As discussed above, the method

presented by Ohlsson et al. is totally inadequate for achieving this in practice

because the mean interactions between the ions in each ensemble are a small

percentage of their spectral width. To overcome this problem a technique

was developed that required the interactions be large compared to the ho-

mogeneous linewidth only and this required a lot less ions to be thrown out

when distilling the ensemble.

While this improved method for the instance identification allows demon-

strations to be carried out for a small number of qubits the approach is not

scalable to a large number of qubits. It still requires throwing away all the

ions except those with particular interactions. Just as for the Ohlsson et al.

method, the requirements on what groups of ions are allowed to stay in the

qubits get rapidly more severe as the number of qubits increases. Starting

with a randomly doped material you would be dealing with qubits that con-

tained on average less than one ion before you got past a handful of qubits.
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In order to achieve the long term goal of a scalable computer, a better way

for overcoming this inhomogeneity in interaction strength would be required.

Options are discussed at the end of this chapter.

4.4 NMR-like measurements for ensembles

When dealing with spontaneous emission especially in atomic systems, the

atoms4 are usually treated independently, and the resulting spontaneously

emitted radiation is isotropic and incoherent.

Theoretical investigation beyond this independent atom approximation

were first carried out by Dicke [136]. In his paper there were two predictions.

Firstly, if the atomic states have particular phase inter-relationships then the

resulting spontaneous emission from the atoms can interfere and the result

can be both directional and coherent. This effect, which we shall call coherent

spontaneous emission, produces the free induction and photon echo signals

discussed in Chapter 2 and provides measurements completely analogous to

those available in NMR quantum computing. Coherent spontaneous emission

is sometimes used to explain the signals produced in magnetic resonance.

However that situation is complicated by the presence of the detector in the

near field of the nuclear spins [137].

The second of Dicke’s predictions was the possibility that the sponta-

neous emission from a collection of atoms could be greatly larger or smaller

than if the atoms were independent. Because of the dilute nature of the sam-

ples used and the random spatial distribution of dopants, such super-radiant

phenomena wasn’t important in the work supporting this thesis.

In what follows we shall give a brief outline of the theory of coherent

spontaneous emission. A more full description is given in [138].

In the rotating wave approximation, the Hamiltonian describing N atoms

coupled to a bath of radiation modes can be written

H = Hatoms +Hrad +Hint (4.4)

4From here on in this section the word ‘atom’ will be used to describe a system that
spontaneously emits and therefore includes atoms, ions, colour centres etc.
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where

Hatoms =
N∑
i=1

~ωiσzi (4.5)

Hrad =
∑
k

~ωkb†kbk (4.6)

Hint = G

N∑
i=1

∑
k

(
eik·ribkσ

+
i + e−ik·rib†kσ

−
i

)
(4.7)

The menagerie of constants such as the transition dipole moment, quantisa-

tion volume etc. have all been put into G.

Here we shall assume the laser is a plane wave, with wavevector k0 and

frequency ω0. Moving into the interaction picture spinning at ω0 we introduce

the two new operators

S−
i = e−i(ω0−ωi)te−ik0·riσ−i (4.8)

a0 = b0e
−iω0t (4.9)

Also included in the S−
i is the term e−ik0·ri which is equivalent to changing

the phases of the atomic basis states so that the plane wave with wave vector

k0 addresses all the ions with the same phase.

Moving into the interaction picture where all the evolution due to Hrad

and Hatoms have been put into the states we arrive at the following equation

of motion for ak0
d

dt
ak0 =

N∑
i=1

S−
i (4.10)

which leads to
d

dt
〈ak0〉 =

N∑
i=1

〈X〉 − i 〈Y 〉 (4.11)

In other words, the sample radiates coherently into the same mode as the

driving laser, and the amplitudes of the two quadratures are given by 〈X〉
and 〈Y 〉. Thus, by measuring the amplitude of the coherent emission in a

phase sensitive manner, direct measurements of the ensemble averages of 〈X〉
and 〈Y 〉 can be obtained.

The coherent emission is generated at a well defined frequency and in a

well defined spatial mode. Very sensitive measurements of the echoes can be

made because of the good discrimination and very high collection efficiency

this enables. Very small ensembles can be measured in principle, perhaps

with as few as thousands of ions. Photon echoes with as few as 400 photons
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have been measured. In this work, the signal to noise ratio when detecting

the coherent emission was not a limiting factor.

4.5 CNOT with refocusing

As mentioned above, the method of Ohlsson et al. selects out ions which

shift a large amount compared to the inhomogeneous linewidth. Assuming

the perturbing and target ensembles are the same size, no ions satisfy this

criterion in practice. The situation is depicted in Fig. 4.2.

Coherent transient techniques [77] have been used extensively in rare

earth systems to probe the rare earth ion system with greater resolution

than what would be allowed by the inhomogeneous broadening using conven-

tional techniques. Here we provide a method for achieving both the instance

identification and the computation based on photon echo sequences.

In the appropriate interaction picture, the Hamiltonian for two ions in

two separate anti-holes is

H =
δ1
2
Z1 +

δ2
2
Z2 +

η

2
Z1Z2 (4.12)

Here δ represents the detuning from the centre anti-hole and η the interaction

strength. Z is the Pauli-Z operator (Z = [1 0; 0 −1]).

The pulse sequence to achieve a CNOT operation between the two ions

is illustrated in Fig. 4.3. The first pulse puts the target ion on the equator

of the Bloch sphere where it then precesses around the equator at a rate

given by its detuning from resonance. This detuning is given by the sum

of δ1 and the effect of the interaction. Without the π pulse on the control

qubit at the middle of the gate operation the π pulse to the target gate

would refocus this precession. This would lead to the target ion being at

the same position on the equator of the Bloch sphere as if no interaction

was present. The application of the π pulse to the control ions stops the

re-phasing of the precession due to the interaction. If the waiting time is

equal to an odd multiple of π
4η

then the two trajectories on the Bloch sphere

corresponding to the control ion being initially in the states |0〉 and |1〉 end

up separated by angle π. They can then easily be mapped to the ground and

excited states with the appropriate π/2 pulse. Such a pulse sequence would

be useful in liquid state NMR if you were limited by the inhomogeneity of

your DC magnetic field.

The unitary evolution operator describing the gate’s operation can be
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Figure 4.2: Shows the effect on the ions in one anti-hole when exciting another. Due
to the electric dipole-dipole interactions, the frequencies of each of the ions will get a
random shift. The top trace depicts the inhomogeneous profile of the anti-hole (dashed
line) and three homogeneously broadened packets, labelled A, B, and C. The excitation
of the perturbing anti-hole causes a random shift in the ions’ frequencies. This causes the
packets A, B and C to become inhomogeneously broadened, which is shown in the lower
three traces. The vertical scale on the bottom three traces is different to the top, while the
dashed line is the same in all four traces. The scheme of Ohlsson et al. selects ions that
are shifted outside the original inhomogeneous linewidth. Because the mean frequency
shifts caused by the interaction are much smaller than the initial homogeneous linewidth,
no ions satisfy this criterion in practice. The refocusing based technique developed here
selects out ions and achieves computation using shifts that occur within the inhomogeneous
linewidth. The ions selected for in this case are the ones shaded in each of A’, B’ and C’.
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Yπ
2

Target

∆t = (4n+1)π
4η

Yπ Xπ
2

Control

YπYπ

∆t = (4n+1)π
4η

Figure 4.3: Pulse sequence to achieve a CNOT gate in the presence of inhomogeneous
broadening. Xπ is a pulse that causes a π rotation about the x axis on the Bloch sphere.

expressed as the product of seven elementary operations

U = U7U6U5U4U3U2U1 (4.13)

where

U1 = exp

(−iY1
π
2

2

)
(4.14)

U2 = exp (−iH∆t) (4.15)

U3 = exp

(
−iY1π

2

)
(4.16)

U4 = exp

(
−iY2π

2

)
(4.17)

U5 = exp (−iH∆t) (4.18)

U6 = exp

(−iX1
π
2

2

)
(4.19)

U7 = exp

(
−iY2π

2

)
(4.20)

This gives us, independent of δ1,2,

(−1)
1
4


sin(θ) −i cos(θ) 0 0

− cos(θ) i sin(θ) 0 0

0 0 cos(θ) −i sin(θ)

0 0 − sin(θ) −i cos(θ)

 (4.21)
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where θ = 2η∆t. For ∆t = (4n+1)π
4η

this becomes

(−1)(
1
4
+n)


−1 0 0 0

0 i 0 0

0 0 0 i

0 0 1 0

 (4.22)

The difference between this and the evolution matrix describing the CNOT

operation 
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (4.23)

is simply rotations about the qubits Z axis. These need not be physical

operations but can instead be changes in the definition of the phases for the

qubits [139].

Initially, because of the random distribution of the ions throughout the

crystal there will be a distribution of interaction strengths. In order to create

an ensemble with interaction strengths given by η∆t = (4n+ 1)π/4 the gate

operation can be applied repeatedly with both ensembles initially in their

ground states and with a pause between the pulse sequences to allow the

ions to relax. The target ions that see the correct interaction strengths will

still be in the ground state at the end of the operation while the others

will have some population in the excited state. Repeated application of

such sequences, swapping the roles of target and control qubit will gradually

optically pump all the ions that don’t see the correct interaction strength into

an auxiliary hyperfine level in an way analogous to spectral holeburning.

Results of modelling of the interaction-strength-holeburning process are

shown in Fig. 4.4. The branching ratio for an atom to spontaneously emit

back down into the state |0〉 versus another hyperfine level was taken to be

one half.

One problem with this method is achieving high fidelity gate operation in

the presence of what is still reasonably large inhomogeneity in the interaction

strength. This problem can be overcome using the results of Jones’ findings

[140]. Jones pointed out that the problem of inhomogeneity in interaction

strength for two qubit gates is exactly analogous to the problem of inho-

mogeneity in Rabi frequency for single qubit operations. This means that

methods analogous to the “composite pulses” used to overcome these prob-

lems can be used. In the absence of other errors, using such techniques would

enable a fidelity better than 10−6 in the presence of 10% inhomogeneity in
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Figure 4.4: Selecting target ions with the desired interaction strength using repeated
application of the CNOT gate. Each graph shows the fraction of ions left at a particular
interaction strength after 1, 5, 20 and 50 gate operations. The holeburning efficiency is
assumed to be 50%. The time for free evolution between pulses in the CNOT gate was
∆t = π/4. The effect of spontaneous emission was included with the spontaneous emission
rates being: (a) γ = 1

10 , (b) γ = 1
20 , (c) γ = 1

50 , (d) γ = 1
100 .
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the interaction strengths.

This leads to the two conditions that must be satisfied in order to demon-

strate the CNOT using this refocusing process.

Firstly, in order that the ensemble selection and gate operation sequences

do not suffer too much dephasing, the chosen interaction strength must be

large compared to the dephasing rate. In order for there to be a reasonable

number of ions in the selected ensemble the chosen interactions strength must

be comparable to the average interaction between the ions. These conditions

are more easily satisfied when starting with wider anti-holes.

The second condition is that the spectral width of the ensembles must be

small enough, when compared to the available laser power, that the pulses

applied have the same effect on the whole ensemble.

For the example of Eu:Y2SiO5 if we prepare anti-holes of the order of

100 kHz wide then we expect to have appreciable numbers of ions with in-

teraction strengths of the order of 10 kHz which is large compared to the

≈ 500 Hz spontaneous emission rate. With 500 mW of laser power focused

with a 10 cm lens, Rabi frequencies of the order 1 MHz can be easily achieved.

This suggests that the demonstration of such a two qubit gate is achievable

with current technology.

The demonstration of something like a two qubit gate using this technique

is described in Chapter 5. The remainder of this chapter discusses ways that

rare earth quantum computation might be scaled.

4.6 Inhomogeneity in the interaction strength

and scaling

In one sense, the problem of inhomogeneity is the only problem to overcome

in rare earth quantum computation. The ions have experimentally verified

long coherence times and large interaction strengths and, for ensembles, mea-

surements akin to NMR are available.5 In the approach suggested above ions

are selected from a macroscopic collection based on their resonant frequency

and interactions strength. The criterion for determining which ion groups

are acceptable to be part of the ensemble of quantum computers gets in-

creasingly more stringent with the number of qubits. As mentioned above

this will lead to exponentially fewer ions as the size increases.

5It was rightly pointed out by one of the referees that the ability to make projective
measurements on one qubit while leaving others untouched is important for procedures
such as error correction. It is possible that such projective measurements could be made
using the large difference in decay times for different energy levels in rare earth ions.
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In order to make rare earth quantum computing scalable a better way

of overcoming this inhomogeneity is needed. The possibilities discussed here

involve single ion spectroscopy, either directly or by coupling to other ions,

and the use of “solid state molecules”.

4.6.1 Solid state “molecules”

In liquid state NMR based quantum computing you are dealing with an en-

semble of “computers” just as for the rare earth scheme described above. The

problems of inhomogeneity overcome because each computer is a molecule

which is identical to all the others. It should be emphasised that rare earth

quantum computing doesn’t share the initialisation problem that causes

NMR quantum computing to become untenable for large numbers of qubits.

A material can be imagined where there are large numbers of identical col-

lections of rare earth dopants. The coherent detection method used in this

thesis is sufficiently sensitive that perhaps ensembles with as few as a thou-

sands of atoms could produce a measurable signal (see Sec. 4.4). With the

huge research effort currently being brought to bear on problems involving

nanotechnology, it may in the future be possible to make such ensembles.

One advantage in trying to achieve this is that ‘defective’ members of the

ensemble, for example where an atom is missing, would have a different set

of optical resonant frequencies due to the huge interactions which would be

achieved by having the ions so close. Indeed the situation is similar to select-

ing out the right ensemble from a bulk sample but with a more favourable

starting position.

All the rare earths are strongly electro-positive with their bonding to

other atoms essentially ionic in nature [71] and as such incorporating them

in a molecular solid would be difficult. One possibility, put forward by Sellars

[141], for realising something akin to “solid state molecules” is by adding de-

fects to a stoichiometric sample. Crystals containing stoichiometric amounts

of europium can still exhibit relatively long coherence times, as long as the

inter-europium spacing is large within the crystal [142]. The europiums close

to defects would provide an ensemble of a identical groups of europium ions.

The defect would shift the resonant frequencies of the members of this group

to differing amounts allowing them to be individually manipulated based on

their optical frequencies. The fact that they are shifted out of resonance with

the bulk europiums should also increase their coherence times.
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4.6.2 Single dopant detection

One way of overcoming the inhomogeneity in interaction strength is by aban-

doning the use of ensembles. In such a situation the computer would consist

of a single cluster of ions. Because the ions are selected based on their fre-

quency rather than their precise positions and because the gate operations

can be tailored to given interaction strengths no complex fabrication would

be required. This leaves the problem of detection of single ions. Spectroscopic

measurements of single NV centres in diamond have been demonstrated [105]

and while the lower oscillator strengths for rare earth ions would push current

detector technology, it may be possible to detect the approximately 1000 pho-

tons/sec produced when driving an optical transition strongly. The reason

for such weak fluorescence is due to the long radiative lifetimes associated

with rare earth ions. How long any emission lasts depends on what rate pop-

ulation gets optically pumped into other hyperfine levels. For free atoms/ions

outside solids strong selection rules result in “cyclic transitions” where the

optically excited state only decays into the ground state from which it is

being driven. This means that the state of the hyperfine level can be read

out to a high fidelity. If the atom is in the hyperfine state from which the

atom is being driven from then a large amount of fluorescence is generated,

whereas if it is in a different state no fluorescence will be generated.

Another option [141] is to use non-radiative transitions and detect the

phonons produced. The qubit would be transfered to the optical transition

and then a short lived non-radiative transition would be driven from the

ground state. What would determine whether this would work would be

if you detect the amount of phonons that could be produced within the

(∼ 2 ms) life time of the long lived optically excited state. Extremely sensitive

calorimeters (bolometers) exist that operate on the edge of superconducting

transitions [143]. These have been highly developed due to their application

as detectors for astronomy. Their sensitivity has been demonstrated in their

use as part of a single photon detector that operated down to a wavelength

of 4 µm [144].

Other options involve coupling to other centres that can be read out more

easily. A detailed theoretical examination of such a scheme using the NV cen-

tre to readout an nuclear spin has been carried out recently by Pulford et al.

[145]. Another option is to treat rare earth quantum computing as some-

thing of a prototype and to move on to optical centres which are easier to

read out. The centre that immediately comes to mind is the NV centre in

diamond. If this has a reasonable Stark shift as speculated in Sec. 4.1.1 then

the quantum computing operations could be envisioned that were completely
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analogous to those carried out in this thesis in rare earths. Doing the oper-

ations in a time-domain manner would require much faster modulators than

rare earths. The excited state lifetime is 8 ns, but very high bandwidth mod-

ulators have been realised for telecommunications applications and this may

not be impossible. While these very fast operations may be possible, another

alternative is to use EIT in a manner analogous to the current proposals for

quantum computing in diamond that use different interactions [146, 109].

4.7 Cyclic transitions in rare earth systems

When compared to free atoms/ions cyclic transitions are harder in the solid

state because of the reduced symmetry. One possible method for achieving

something like a cyclic transition in the systems studied in this thesis uses a

special characteristic of a pseudo-quadrupolar Hamiltonian. In zero magnetic

field the effective spin Hamiltonian for the rare earth systems studied in this

thesis is given by the Hamiltonian below. See Sec. 2.4.

H = D(I2
z − I2/3) + E(I2

x − I2
y ) (4.24)

This is called a pseudo-quadrupole Hamiltonian because although it has

the same form as a nuclear quadrupole Hamiltonian, it has some contribution

from second order electronic Zeeman effects. Using identities for angular

momentum operators this can be rewritten

H = D(I2
z − I2/3) + E(I2

+ + I2
−) (4.25)

In the Iz basis and for a nuclear spin I = 5/2 the Hamiltonian will have

a matrix representation of the form

H =



|−5/2〉 |−3/2〉 |−1/2〉 |+1/2〉 |+3/2〉 |+5/2〉
|−5/2〉 25

4
D 0 2

√
10E 0 0 0

|−3/2〉 0 9
4
D 0 6

√
2E 0 0

|−1/2〉 2
√

10E 0 D/4 0 6
√

2E 0

|+1/2〉 0 6
√

2E 0 D/4 0 2
√

10E

|+3/2〉 0 0 6
√

2E 0 9
4
D 0

|+5/2〉 0 0 0 2
√

10E 0 25
4
D


(4.26)

Because the terms I2
± always only add terms to the second upper and

lower diagonals, the Hamiltonian will be of this tridiagonal form for all values

of nuclear spin. Matrices of such a form can be made block diagonal by
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changing the ordering of the Iz, in particular, if we take the normal ordering

(−I,−I + 1, . . . , I) and replace it with all the odd members followed all the

even members. For our example of nuclear spin I = 5/2 the Hamiltonian is

H =



|−5/2〉 |−1/2〉 |+3/2〉 |−3/2〉 |+1/2〉 |+5/2〉
|−5/2〉 25

4
D 2

√
10E 0 0 0 0

|−1/2〉 2
√

10E D/4 6
√

2E 0 0 0

|+3/2〉 0 6
√

2E 9
4
D 0 0 0

|−3/2〉 0 0 0 9
4
D 6

√
2E 0

|+1/2〉 0 0 0 6
√

2E D/4 2
√

10E

|+5/2〉 0 0 0 0 2
√

10E 25
4
D


(4.27)

The transition strength between a particular ground state hyperfine level

and an optically excited hyperfine level is the product of two terms. The

first is the transition strength for the optical transition ignoring the hyper-

fine interaction. The second term is the overlap between the nuclear states

for the ground level and the excited state level. The eigenvalues for the above

Hamiltonian can be broken into two groups one of which consists of linear

combinations of the Iz states {|1/2〉 , |−3/2〉 , |5/2〉} and the other linear com-

binations of the states {|−1/2〉 , |3/2〉 , |−5/2〉}. Thus, if the z axes for each

electronic state overlapped, then these two groups are closed under the op-

erations of driving and spontaneous emission leading to something akin to

a cyclic transition. The states from the manifold {|1/2〉 , |−3/2〉 , |5/2〉} will

not spontaneously emit into the states {|−1/2〉 , |3/2〉 , |−5/2〉}. A energy

level diagram showing how this could be used for single ion readout is shown

in Fig. 4.5.

An example of a situation where the z axes for each electronic state will

overlap is a system that contains an axis of symmetry, for example Pr:LaCl3

where there is a C2 axis through the Praseodymium impurities.

One complication is that the hyperfine states are two fold degenerate

at zero field with each pair consisting of a member of each group. This

degeneracy can be lifted without affecting the closed nature of the groups by

applying a magnetic field along the z direction. Only a small field is needed to

break the degeneracy of the multiplets and it is possible to work in a regime

where the effect of the field can be treated as a first order perturbation to the

pseudo-quadrupole Hamiltonian. In such a situation the effect would not be

very sensitive to the alignment of the magnetic field along the z axis. This

is because a magnetic field in any direction, while it would have a first order

effect on the energies of the eigenstates, would only have a second order effect
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on the eigenstates themselves.

4.8 Conclusion

The future for optical solid state quantum computation is exciting. It has

many strengths. These include the possibility to avoiding complex fabrication

and well characterised systems that have useful parameter regimes. Two

qubit demonstrations have been carried out and currently the only known

problem that stands in the way of scalable rare earth quantum computation

is detecting the state of single dopants. Single site spectroscopy has been

carried out for NV centres in diamond. Measurements of the NV centre

suggest the same phenomena used in the rare earths demonstrations might

be applicable in those cases also. A simple measurement of the Stark shift

would be all that would be required to determine whether this was the case.
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B=0

GS

ES

Figure 4.5: Energy levels diagram showing cyclic transition. ES denotes the optically
excited state and GS denotes the ground state. A small magnetic field is needed to break
the degeneracy of the two groups of eigenstates. The states represented by dashed lines
don’t spontaneously emit into the states represented by solid lines and vice-versa. If the
ion is initially in one of the ground states represented by a solid line there will be continual
fluorescence, whereas if the ion is in a dashed state, it will stay in that state, resulting in
no fluorescence. For the example system of Pr:LaCl3, GS is the lowest crystal field level
in the 4H4 multiplet and ES the lowest crystal field level in the 1D2.



Chapter 5

Quantum computing using rare

earths — Experiment

This chapter describes the progress made in implementing quantum logic

operations in rare earth ion dopants. The theoretical background to these

investigations is discussed in Chapter 4. All the experiments described were

carried out with ensembles. Spectral holeburning techniques were used to

create ensembles of ions that had the wanted properties.

First existing techniques [80] for selecting spectrally narrow groups of ions

were investigated and improved. Various experiments were carried out on

these spectrally narrow packets, or “anti-holes”, to demonstrate their utility

as qubits. Following this, the electric dipole-dipole interactions discussed

in Section 4.1.1 were investigated. This not only confirmed the nature of

and the size of the interactions in this system were suitable for quantum

computing. The ability to apply the same single qubit operation to a group

of ions enabled the nature of the interaction to be demonstrated in a more

direct manner than previously possible.

Finally, ions were selected from one anti-hole (qubit) based on their inter-

actions with the ions of another anti-hole. This enabled the demonstration

of a conditional phase shift, the most rudimentary quantum logic operation.

5.1 The sample

Europium doped yttrium orthosilicate (Y2SiO5) was used for these experi-

ments. The population lifetime for its ground state hyperfine structure is a

number of hours [102], which for the purposes of these investigations is infi-

nite. This means that the ions that one wishes to remove from interaction

with the laser stay in their auxiliary hyperfine levels indefinitely, allowing
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Figure 5.1: Energy level diagram of Yano et al. for 151Eu at ‘site 1’.
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Ground state

±1
2

±3
2

±5
2

Excited

state

±1
2

0.0 34.5 80.2

±3
2

-75.0 -40.5 5.2

±5
2

-177.0 -142.5 -96.2

Table 5.1: Frequencies (in MHz) of the optical transitions of 151Eu:Y2SiO5 at ‘site 1’
based on the measurements of Yano et al. The frequencies are relative to the ± 1

2 → ± 1
2

transition. The uncertainty is dominated by 1 MHz uncertainty for the excited state
hyperfine splittings. This work gave a more precise measurement of the value for the
± 5

2 → ±5
2 transition of −95.95± 0.05 MHz.

the ensembles to be prepared in a number of steps.

The coherence times for the optical transitions are also long (2.6 ms).

In terms of the ratio of the linewidth to transition frequency, they are the

narrowest spectral lines that have been observed in a solid [66]. While those

measurements were made in a magnetic field, the field was moderate and

similar coherence times can be achieved without such a field. In order that

the coherence times weren’t affected by instantaneous spectral diffusion, very

low laser powers and dilute samples were used. The instantaneous spectral

diffusion was caused by the same interaction between the ions that we wished

to utilise for the interactions between qubits. It was therefore heartening that

instantaneous spectral diffusion was so easy to observe.

The sample used in these experiments was provided by Scientific Materials

Corporation of Bozeman, Montana [147]. The europium concentration was

0.1 at. %.

The experiments were carried out on the 7F0 →5 D0 optical transition.

As explained in the introduction to Chapter 3, there are two crystalographi-

cally distinct sites where europium can substitute for yttrium in the crystal.

These experiments were carried out on the ions at ‘site 1’, which have the
7F0 →5 D0 occurring at approximately 589.879 nm. Europium has two natu-

rally occurring isotopes that occur in approximately equal abundance, 151Eu

and 153Eu, each of which leads to different hyperfine structure. For these

experiments the isotope 151Eu was used. The energy level diagram, as con-

structed by Yano et al. [102], for this system is shown in Fig. 5.1. The optical

transition frequencies relative to the ±1
2
→ ±1

2
transition are given in Ta-

ble. 5.1. The 7F0 →5 D0 transition for ions at ‘site 1’ had an inhomogeneous

linewidth of approximately 1.6 GHz in this sample.
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Sample in RF coil
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Cryostat
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10 MHz bandpass
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IQ

10 MHz L.O.

Oscilloscope

Figure 5.2: Experimental setup used for europium studies. An auxiliary beam is not
shown. It was picked off the main beam, passed through an AOM and then steered
toward the sample. This beam was used to apply light shifted from the laser frequency by
∼ 100 MHz when ‘burning back’ the narrow features.

5.2 Experimental setup

The experimental setup used for the quantum computing related experi-

ments is shown in Fig. 5.2. Light from a highly stabilised dye-laser was

steered toward a Mach-Zehnder interferometer. The first beam-splitter in

this interferometer is a piece of uncoated glass. This resulted in most of the

light going into one particular arm. This arm, the ‘sample arm’, contained

two acousto-optic modulators (AOMs) in series followed by the sample. The

‘reference arm’ was empty except for a polarisation rotator followed by a

polariser. These two elements were used to provide continuous attenuation

to the light in the reference arm and enabled the intensity of this reference

arm to be reduced to a suitable level for the detector.

Not shown in Fig. 5.2 is the auxiliary optical beam. This was taken

off one of the zeroth order beams of the first AOM in the sample beam,

passed through an AOM. This auxiliary beam was then steered through into



5.2 Experimental setup 115

AOM
Crystal

Figure 5.3: The different beams generated by the second AOM to address the control and
target anti-holes deflected by differing amounts as they are deflected. The geometry shown
was used to counteract this. The angle between the two beams has been exaggerated and
without the lens, the two beams would only just be resolved by the time the light had
propagated to the cryostat. Very good overlap between the beams could be achieved
because of this.

the spare output port of the interferometer. Because of the layout of the

experiment on the optical table this was the easiest way to assure that the

auxiliary beam and the main experimental beam overlap in the sample. It

was decided to make the auxiliary beam quite wide at the sample to make

achieving this overlap easier.

The use of two acousto-optic modulators resulted in a total attenuation

of the light of > 100 db when turned off. The first AOM was driven with

a 90 MHz signal and the first order diffraction on the low frequency side

left unblocked. For the experiments involving only one anti-hole, the second

AOM was driven with a 80 MHz signal and the first order diffraction taken

on the high frequency side. This resulted in the light reaching the sample

being 10 MHz lower than that in the reference arm. When the two beams

were combined on the exit beam-splitter of the interferometer, a 10 MHz beat

on the light was produced. When the light from each arm is mode-matched

and of the same intensity, the resulting amplitude modulation on the signal

from the detector will have 100% depth. If care was taken adjusting the

positions of the lenses and aligning the beams modulation depths of > 95%

were obtained. Typically a modulation depth of > 80% was used.

As well as shifting the frequency, AOMs deflect the light an amount pro-

portional to the modulating frequency. So that the beams that were used to

address each anti-hole were well overlapped, the lens that focused the light

on to the sample was arranged such that it imaged the second AOM. It was

this AOM that was used to shift the frequency of the beam to address differ-

ent anti-holes. The geometry is shown in Fig. 5.3. A 60 cm lens was placed

upstream of the interferometer and this was used to alter the position of the

beam waist relative to the AOM. This was used to vary the position of the

beam waist relative to the sample.
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While the interferometer was aligned for the target beam, the mode

matching was sufficient to see beat signals at the detector due to the control

beam.

The physics of how the detection scheme operates is described in Sec. 4.4.

In summary, the amplitude and phase of the coherent emission produced in

the same mode as the exciting laser beam provides a direct measurement of

the ensemble average of the Pauli operators 〈X〉 and 〈Y 〉. Generally mea-

surements were made on the target anti-hole. The coherent emission from the

target anti-hole produces a 10 MHz beat signal when combined with the light

from the reference arm of the interferometer. This beat signal was passed

through a 10 MHz band pass filter with a bandwidth of approximately 3 MHz.

This filtered signal was then amplified and passed into a Mini-Circuits MIQA-

10D detector [148]. This detector has two outputs which give the amplitude

of the component of the input signal that is both in phase and in quadrature

with a supplied 10 MHz local oscillator signal. A block diagram of the de-

tector is shown in Fig. 5.4. Assuming the interferometer is rigid, the phase

of the 10 MHz beat signal is given by the phase of the light in the sample

arm. Thus, the output of the IQ detector gives the amplitude and phase of

the light coming from the sample arm of the interferometer. The resulting

system was shot noise limited and has previously enabled photon echoes con-

taining as few as 400 photons [141] to be observed. The IQ detector could

only operate at 10 MHz which meant that it could only monitor the target

anti-hole easily. When measurements of the other anti-hole were required,

the roles of the two anti-holes could be reversed. Both a simple amplitude

detector and recording the beat signal raw were also used at times, but not

for any of the results presented here.

Over the short timescales of an experimental shot (hundreds of microsec-

onds) the phase noise from the interferometer was small <5◦ but in some

cases significant. Over longer periods, such as the time between shots, the

effect of the phase noise from the interferometer was total. As the pulses used

to drive the atoms saturated the detection system, a weak phase reference

pulse was applied after the experimental shot in situations where phases of

the emission from the ions relative to the laser were required.

A photon echo obtained with this detection system is shown in Fig. 2.7

on page 44.

5.2.1 Ultra-high resolution laser

As has been mentioned above, the homogeneous linewidths of the optical

transitions are extremely narrow. To make full use of these long coherence
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Figure 5.4: Block diagram showing the operation of the IQ detector.

times, a laser that is phase stable for at least a similar length of time is

required. This is a very strict criterion and it was fortunate that such a laser

was indeed available. The criterion of phase coherence times for the laser

was not met by many of the labs RF sources (even some reputedly designed

for NMR) even though the frequencies of oscillation were seven orders of

magnitude smaller. Achieving such stability in a system that contains what

is essentially a jet of antifreeze in the optical path is truly remarkable. The

laser has been developed by Dr. Matthew Sellars and various co-workers at

the Laser Physics Centre, at ANU.

This laser is discussed in detail elsewhere [149, 150], so only a brief de-

scription is given here.

The laser is a modified Coherent 699 ring dye laser. If the laser was

perfectly mechanically stable it would have a linewidth of approximately

2 Hz [151]. However the motion of various parts of the laser, in particular the

dye jet cause frequency jitter and active stabilisation is required to obtain a

reasonable linewidth. In its unmodified form the frequency control elements

used consist of a galvo-driven Brewster plate and cavity mirror mounted

on a piezoelectric-electric stack. The Brewster plate is used to correct for

slow fluctuations (DC up to around 100 Hz) and the piezoelectric-stack is

used for faster fluctuations. The error signal for the commercial control

system is generated from the side of a transmission peak of a low finesse

near-confocal cavity. This cavity has a free spectral range of approximately

1 GHz. The laser linewidth achieved by the commercial stabilisation system



118 Quantum computing using rare earths — Experiment

is approximately 2 MHz.

An investigation of the frequency noise of this laser showed significant

frequency jitter over timescales much faster than the 2 kHz bandwidth of the

commercial frequency stabilisation system [150].

The frequency reference for the improved stabilisation system was custom-

made by the CSIRO. The spacer for the cavity 50 cm long tube of “zerodur”,

was suspended by wires and surrounded by a heat-shield. The temperature

of the heat-shield was actively stabilised at approximately 313 K. The whole

assembly placed in a vacuum chamber to help this. The error signal for the

laser frequency was generated by the Pound-Drever method [152].

The bandwidth of the stabilisation system was improved by improve-

ments to the servo electronics. An electro-optic modulator was added to the

laser cavity to provide frequency corrections over faster timescales than those

possible using the piezoelectric-driven mirror.

When optimised the resulting stability was better than 200 Hz over

timescales of 0.2 s [149].

5.3 Generating and characterising single qubits

In order to obtain the same single qubit rotations of an ensemble when ap-

plying pulsed driving fields, two criteria must be satisfied.

Firstly each ion in the ensemble must experience the same Rabi frequency.

This is problematic because the intensity of light is not constant across the

nominally Gaussian profile of a laser beam. The hyperfine structure also

causes problems because the oscillator strength of an optical transition de-

pends on which of the ground state hyperfine and excited state hyperfine

levels are involved.

The second criterion for definite single qubit rotations involves the detun-

ing of the ions within the ensemble. In order that the dephasing caused by

the inhomogeneous spectral width of the ensemble not be significant during

the pulse, it is necessary for the duration of the pulse to be short compared

to the inverse of the spectral width of the feature. Thus, for a rotation

about a substantial angle, the Rabi frequency must be large compared to

the spectral width of the feature. The inhomogeneous linewidth of the whole

ensemble is typically >1 GHz, which is, unfortunately, much larger than the

Rabi frequencies available using CW lasers. With 200 mW of laser focused

to 100 µm, Rabi frequencies of the order of 500 kHz are achieved.

Fortunately, ensembles can be created using the spectral hole-burning

mechanism of Section 2.6.1 which satisfy the two criteria. The ensembles are
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created by taking all of the ions present in the crystal and optically pumping

those which are unwanted into a different ground state hyperfine level. There

the unwanted ions have no population in levels that have transitions close

to resonance with the laser. As a result they no longer interact with the

laser and can be removed from consideration. The lifetimes of the ground

state hyperfine levels for Eu:Y2SiO5 are much longer than the timescale of

the experiment [102]. This means that until, the application of either optical

or RF perturbations, the features can be considered permanent.

The application of definite pulse areas to an optical transition in a solid

was first demonstrated by Pryde, Sellars and Manson [80]. Their paper

represented a significant milestone for optical spectroscopy of solids, as it

was the first time that multiple definite area pulses from a phase coherent

oscillator were used on an optical transition. In the Pryde experiment, the

narrow absorptive feature was made by applying “zero area” pulses to a

region of the inhomogeneous line. The problem of intensity variations in

the resulting ensemble was then alleviated by applying a sequence of ‘2π’

pulses. The pulses applied corresponded to 2π pulses only for ions that saw

a particular intensity. These ions would be returned to the ground state

after each pulse. The rest of the ions in the ensemble would be left with

some population still remaining in the excited state after each pulse. In the

time between the pulses these excited ions would relax and incrementally get

optically pumped into other ground state hyperfine levels and thus removed

from consideration.

For demonstrating the two qubit operations using ensembles, one would

prefer ensembles with the largest possible spatial density of ions in order to

get the largest mean interaction strength between two qubits. It is therefore

important that when creating an ensemble to minimise the number of ions

that are wanted for the ensemble, but are none the less removed. Further to

this, the number of ions that are not wanted in the ensemble, but will still be

excited by the control pulses should be minimised. The excitation of these

‘background’ ions will hinder the two qubit operations.

The anti-holes achieved by Pryde et al. do not stand up well to these

criteria, so other techniques were investigated. The two techniques described

here involved using more sophisticated zero-area pulses and ‘burning back’ a

narrow anti-hole into a wide hole. In the early, single qubit, experiments a

combination of these two methods were used. An anti-hole made by burning

up was subsequently ‘cleaned up’ with zero area pulses. In later, two qubit,

experiments the zero area pulses were dispensed with. The reasons for this

were two fold. Firstly, it was discovered that is was possible using weak
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burn-back optical beams with their frequencies carefully tuned, to burn back

narrow anti-holes. The second reason was to combat the growing amount

of equipment needed for the experiments — equipment which wasn’t always

immediately available1.

5.3.1 Zero area pulses

The zero area pulses used by Pryde et al. are shown in Fig. 5.5. As can be

seen from Fig. 5.5(v) as well as the anti-hole there is a significant background

also. The width of this background feature is here limited by the spectral

width of the pulses used to measure it. In working toward the goal of big anti-

holes with small background levels, ‘double-sinc’ zero area pulses as shown in

Fig. 5.6 were investigated. The sharp cornered frequency spectrum of these

pulses allow more pulses to be applied, thus reducing the background levels

without eroding the anti-hole. The flat spectrum of these pulses around zero

frequency should make the process of creating the anti-hole more robust with

respect to drifts in laser frequency.

The envelope of the double-sinc pulses was given by2

y(t) = A exp

(
− t2

2u2

)
(w1 sinc(w1t)− w2 sinc(w2t)) (5.1)

Here the width of the trench burnt is given by the larger of the wi and the

width of the anti-hole in the middle is given by the smaller wi. A is a scaling

factor and the Gaussian term is used to remove any ringing that would occur

if a rectangular window was used. The sequence length of the pulse used

determines u and, in turn, the maximum spectral resolution achievable. If

the fast sinc function is much shorter than the slower sinc function, it will

have to be much more intense in order to have the same area. Therefore, the

ratio between the spectral widths of the sinc functions is limited by dynamic

range concerns. In view of all these considerations the following parameters

were chosen

w1 = 50 kHz (5.2)

w2 = 1 MHz (5.3)

u = 24 µs (5.4)

The result of a photon echo sequence applied to an anti-hole prepared

1This was in no small part due to RF switches inexplicably failing at the hands of the
author.

2Here sinc(x) ≡ sin(πx)/(πx) for x 6= 0, and sinc(0) ≡ 1.
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Figure 5.5: Graphs describing the anti-holes created by Pryde et al. [80]. The amplitude
of the zero-area pulses used to generate the anti-hole is given as a function of time in
(i). Here the combined areas of the long weak pulses is the same as that of the short
intense pulse, leading to a zero area pulse. Traces (ii) and (iii) show numerical estimates
of absorption profiles of the resulting anti-hole after 13 and 130 pulses (a hole-burning
efficiency of 5% was assumed). Trace (iv) shows the spectra of the pulses used in their
experiments. Trace (v) is a Fourier transform of the experimental echo shape. This is
equal to the product of the ion density versus frequency and the spectrum of the exciting
pulses. The shoulders on this peak indicate a significant number of background ions. This
figure was scanned from [149].
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Figure 5.6: The envelope and spectra of the double-sinc pulses used for creating anti-
holes. Because the pulses used had to be of a limited temporal extent, a Gaussian window
was used. This caused the rounded edges in the spectrum of the pulses.
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with these zero area pulses is shown in Fig. 5.7. To prepare the anti-hole,

300 double-sinc pulses were applied to a broad burn-back feature. (See next

section.) The sinc-like shape of the echo and its square shaped spectrum

correspond well with what would be expected from the preparation pulses

applied. Compared with the earlier results of Pryde et al. a great improve-

ment in the background level can be seen. For Fig. 5.7 the overall phase was

chosen so the integrated echo signal was all in one quadrature. There is a

slight dispersive nature to the echo, as can be seen from the other quadrature.

This dispersion is due to a slight frequency mismatch between laser and the

anti-hole. This also appears as the spectrum shown in (b) being slightly off

centre.

If the laser and the ions in the crystal were perfectly phase stable, the free

induction decays from the two pulses would be exactly out of phase with the

signal from the echo. This is not the case and it appears the phase between

the laser and ions drifted approximately 30◦ during the 0.5 ms of the shot.

The high frequency signal on the second FID is at 500 kHz and is due to the

excitation of the edges of the trench in which the anti-hole lies (see spectrum

in Fig. 5.6). These ions don’t contribute much signal to the echo because

they are only weakly excited by the applied laser pulses and therefore do not

get rephased well.

The well defined frequency of the ringing suggests sharp spectral features.

Very recent simulations [153] have shown that such sharp features can be

expected if the driving sinc pulses are intense enough to drive the ions far

from the ground state.

5.3.2 Burning back anti-holes

Another method of generating a sharp absorptive feature is by burning a

spectral hole at another frequency. One advantage of such a technique is that

it is possible to generate an anti-hole such that all the ions in the feature

interact with the laser using the same transition. Thus, one of the reasons

for inhomogeneity in the Rabi frequency can be removed.

While one doesn’t have the same control over the sharpness of the result-

ing feature as when using zero area pulses, the simplicity of the technique is

helpful when doing experiments with more than one anti-hole. Using very

weak burn-back beams enabled features with sufficiently narrow widths. The

limit of how narrow the features could be made was of the order of 30 kHz,

which is comparable to what is likely for the inhomogeneous broadening in

the hyperfine levels. No hard measurements of the level of this inhomoge-

neous broadening have been made.



124 Quantum computing using rare earths — Experiment

−100 0 100 200 300 400 500 600 700 800
−4

−3

−2

−1

0

1

2

t (µs)

(a) The two quadratures of the coherently emitted light as a
function of time. The first pulse of the echo sequence was applied
at t = 0 µs and the rephasing pulse at t = 250µs. The overall
phase was chosen so the integrated echo signal was all in one
quadrature.
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(b) Shows the Fourier transform of the echo. The dotted line is
the spectrum of the rephasing π pulse.

Figure 5.7: Photon echo on an anti-hole prepared with the double-sinc pulses. Three
hundred double-sinc pulses were applied.
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Figure 5.8: A diagram showing the two methods used to prepare sharp absorptive fea-
tures to which accurate pulses could be applied. Plots (a)–(d) show the absorption versus
frequency for various stages of the preparation using zero area pulses. The zero area
pulses are repeatedly applied and the ions that are close to resonance with the laser but
not wanted as part of the feature are burnt away. Plots (e)–(h) show the absorption versus
frequency for various stages of the preparation using the burn back of ions. First, a broad
hole is burned with a swept frequency beam (f) then by applying a different frequency,
which is determined by the hyperfine splittings, an anti-hole can be burnt back in the
middle of this trench.
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Figure 5.9: Energy level diagram showing the energy levels used when burning back anti-
holes. The diagram also shows the effect of the burn back beams on an ion that will end
up at the centre of the anti-hole. The transitions depicted with dotted lines were used
to optically pump all the ions with the correct inhomogeneous splitting into the ±5/2
ground states. The trench in which the anti-hole lay was made by using a swept beam of
a frequency close to that shown with the solid line. The difference between the frequency
of the optical burn back beam and the frequency at which the anti-hole appears is a
combination of the hyperfine splittings.



5.3 Generating and characterising single qubits 127

The transitions driven to create an anti-hole for an ion in the centre of the

resulting anti-hole are shown in Fig. 5.9. The ions in the resulting anti-hole

will interact with the laser due to the ±5/2 → ±5/2 transition (shown as a

solid line in Fig. 5.9).

The procedure for creating the anti-hole was as follows. First, the main

laser beam and the RF signal at 34.5 MHz was applied to all the sample.

The laser optically pumped all the ions that have a transition close to the

laser into a hyperfine level where they no longer interact with the laser. The

RF field ensured that no ions would get placed back into the hole if only

a 34.5 MHz RF field is applied. In order to counteract the lack of precise

knowledge of the ±1/2 ↔ ±3/2 transition frequency, the 34.5 MHz signal

was swept approximately 200 kHz. For early experiments this wide trench

was prepared using an intense laser beam. Power broadening and saturation

of the hole, made the trench sufficiently wide. In later experiments, a less

intense beam was used with its frequency swept; this reduced the number of

ions left in the bottom of the trench. This improvement was attributed to the

weak beam causing less off-resonant excitation of other hyperfine transitions.

The anti-hole was then placed in this trench by applying an auxiliary op-

tical beam, to drive the ±1/2 → ±1/2 transition. The RF field at 34.5 MHz

was also applied in order to stop population accumulating in ground state

±3/2 hyperfine levels. The field was necessary because the branching ratio

from the ±1/2 excited state to the ±5/2 ground state is low, due to the small

degree of mixing of these two levels. It was decided to use these transitions

primarily because of the ease with which the auxiliary beam could be gen-

erated. The frequency difference between the main and auxiliary beams was

≈ 96 MHz which allowed the auxiliary beam to be created easily with an

acousto-optic modulator.

The degree to which the resulting anti-hole is centred at the laser fre-

quency can be determined by looking at the shape of the photon echo that

the anti-hole gives. The frequency difference can be determined from the

phase ramp across the echo. In this way, the frequency difference between

the two optical transitions was measured as 95.95± 0.05 MHz. This is more

than an order of magnitude more precise than previous measurements and

such techniques would be useful for characterising the hyperfine structure

more generally.

5.3.3 Nutations

Using either one of or both of the techniques described in the last two sections,

it was possible to produce ensembles such that the inhomogeneous width was
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smaller than the available Rabi frequencies. If the ensemble was based around

an anti-hole as described in Sec. 5.3.2 it was also possible to have all of the

members of this ensemble resonant via the same transition. However due

to the spread of laser intensity across the beam it is not possible to apply

pulses of definite area with such ensembles. To overcome this problem a

series of ‘2π’ pulses were applied to the sample. These were separated by

a time long compared to the lifetime of the optically excited state. For the

ions in a particular part of the beam, this was a true 2π pulse and they

were in the ground state at the end of the pulse. Ions in different parts of

the beam that didn’t experience a 2π pulse would be left partially excited.

As more pulses were applied, these ions were incrementally optically pumped

into an auxiliary ground state and passed out of consideration. The resulting

ensemble experienced a well defined Rabi frequency.

The effect of the application of 2π pulses is illustrated in the results

shown in Figs. 5.10 and 5.11. The ensemble on which the measurements

were made, was made by first burning back an anti-hole as described in

Sec. 5.3.2. Because of the moderately intense power used for the burn-back

beam this anti-hole had a width of approximately 300 kHz. The anti-hole was

then ‘cleaned up’ using 300 of the double-sinc zero area pulses as described

in Sec. 5.3.1.

From the decay of the nutation shown in Fig. 5.11, it can be concluded

that the Rabi frequency spread over the ensemble was of the order of 10%

after the application of 10 ‘2π’ pulses.

5.4 Quantum state tomography

In order to demonstrate how well the narrow ensembles act as single qubits,

quantum state tomography was demonstrated. The ensembles used were as

described in the above section; that is a ≈ 300 kHz wide feature was burnt

back into an empty trench. This anti-hole was then narrowed to a 50 kHz

feature with a rectangular lineshape by applying ‘zero area pulses’ to the

ions.

It should be mentioned that because of the tighter focus of the laser

applied to the sample, the Rabi frequencies experienced by the ions were

higher for the results in this section than in the previous one. In this case, 4 µs

long ‘2π’ pulses were used to select which ions experienced Rabi frequencies

close to 250 kHz. As above, ten 2π pulses were applied with an 8 ms delay

between.

The pulse sequence used for the tomography consisted of three pulses,
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Figure 5.10: An anti-hole without 2π pulses applied. Each row of pixels in the image
shows the amplitude of the coherent emission from the sample during a photon echo
experiment. The first pulse was applied at t = 0 µs and a length as indicated on the y
axis. The second pulse was applied at approximately t = 200 µs and had a length twice
that of the first. Due to these two pulses an echo formed at about t = 400 µs. As can be
seen from the echo and the FIDs from the two pulses, a π/2 pulse for the ions is around
2 µs. A strong FID from the second pulse is seen when it has a length of approximately
2 µs. A strong FID from the first pulse and a strong echo are seen when the lengths of
the pulses are 2 and 4 µs respectively. The vertical blue stripe to the right of the figure
is due to long, weak phase reference pulses being applied after the end of each shot. The
sinc-like modulation of the echoes and FIDs is due to the square frequency profile of the
anti-hole.
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(a) As in Fig. 5.10 each horizontal line corresponds to one photon echo shot. Here
the length of the first pulse was varied while the second one was held constant (4 µs).
Before the photon echo sequence ten 2π pulses were applied to the anti-hole in order
to remove ions which didn’t experience Rabi frequencies close to 1/(8 µs) = 125 kHz.
Nutations in the size of the echo and FID from the first pulse can be seen with
the strongest emission occurring for pulses with areas (n + 1/2)π. Only small FID
signals are seen after the rephasing π pulse, as is expected, because it should create
no coherence.

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ec
ho

 a
m

pl
itu

de
 in

 p
ha

se
 w

ith
 la

se
r

length of first pulse (µs)

(b) The amplitude of the component of the echo emission that is in phase with the
laser. In all cases the component of the echo emission in quadrature with the laser
was small. An initial π/2 (2 µs) pulse produces a FID out of phase with the laser and
an echo in phase with the laser. Conversely a 3π/2 pulse (6 µs) puts the states on
the opposite side of the Bloch sphere resulting in a FID in phase with the laser and
an echo out of phase with the laser.

Figure 5.11: An anti-hole with 2π pulses applied.
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each separated by 70 µs. First a pulse of a particular length and phase was

applied. This was followed by a 2 µs long π pulse unshifted in phase — to

rephase the inhomogeneous broadening in the sample. At t = 140 µs, a 1 µs

long π/2 pulse was applied that was also unshifted in phase. The axes for

the Bloch vectors were chosen such that the ground state (|0〉) was along the

negative z axis and laser pulses that were unshifted in phase caused rotations

about the y axis.

The first pulse was used to create an arbitrary state, and the coherent

emission resulting from this and the rest of the sequence constituted a mea-

surement of this state. The first pulse was, therefore, viewed as causing a

rotation of the state vector on the Bloch sphere and the following two pulses

viewed as a rotation of the both the state vector and the Bloch sphere itself.

At each point, the coherent emission measured the projection of the state

onto the horizontal plane. Thus, the amplitude of the component of the

emission after the first pulse that was in phase (in quadrature) with the laser

was proportional to 〈−X〉 (〈Y 〉) for the initial state. This coherent emis-

sion decayed over ∼ 20 µs (1/(50 kHz)) due to the inhomogeneous linewidth

of the ensemble. The ensemble rephased at 140 µs and, at that time, a 1

µs long π/2 pulse was applied. As the ensemble was rephasing before the

π/2 pulse the amplitude of the emission in phase (in quadrature) with the

laser was proportional to 〈X〉 (〈Y 〉) for the initial state. After the π/2,

pulse the amplitude of the emission in phase (in quadrature) with the laser

was proportional to 〈−Z〉 (〈Y 〉) for the initial state. These measurements

over-determined the initial Bloch vector, and linear least squares was used

to extract the measured Bloch vector. The length of the Bloch vector was

calibrated using two particular input states: (|0〉+ |1〉)/
√

2 prepared using a

π/2 pulse unshifted in phase; and |0〉 prepared by not having a preparation

pulse.

The fidelity is given by F = 〈φ| ρ |φ〉 where |φ〉 is the input state and

ρ is the measured density matrix. A significant contribution to the error

in the tomography process was the shot to shot variation in the number of

ions to which the process was applied. The requirement of phase coherence

for the 200 µs of the tomography sequence was easily satisfied by the laser.

However, the preparation of the anti-hole took approximately 10 s, leading

to the possibility that the laser drifts a significant fraction of the 50 kHz

width of the anti-hole in this time. This caused a shot to shot variation in

the number of ions to which the tomography was applied, which in turn had

the effect of scaling the length of the measured Bloch vector. If a state that

is being measured can be assumed to be pure, the measured Bloch vector
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Figure 5.12: The effect of the tomography sequence on the Bloch sphere when the prepa-
ration pulse is a π/2 pulse. Experimental results for a shot of this type are shown in
Fig. 5.13. (a) The state is moved to the equator by the first pulse in the sequence. This
gives coherent emission out of phase with the laser. (b) Just before t = 140µs the system
rephases on the opposite side of the Bloch sphere, giving coherent emission in phase with
the laser.(c) The final π/2 pulse rotates the state to the ground state, which results in no
coherent emission.

should be normalised. This normalisation makes the tomography process

insensitive to drifts in the number of ions to which the process is applied.

This leaves the inhomogeneity in the Rabi frequencies as the main source of

error in the process.

The fidelity of the combined state preparation and tomography for a

number of different input states are shown in table 5.2.

The results of one particular experimental shot are shown in Fig. 5.13.

Here the state to be measured is created at t = 0 µs with a π/2 pulse

unshifted in phase. This puts the Bloch vector along the x axis. This gave

coherent emission out of phase with the laser and this emission decayed as the

inhomogeneous broadening dephases the ensemble. At t = 70 µs the π pulse

was applied to rephase the inhomogeneous broadening. This should have

caused no polarisation of the ions and thus produced no coherent emission.

As the time t = 140 µs was approached the ensemble rephased on the opposite

side of the Bloch sphere, producing coherent emission in phase with the laser.

At t = 140 µs a π/2 pulse was applied, which took the ions down to the

ground state, stopping the coherent emission. The high frequency ringing

superimposed on the emission following the application of the pulses was

due to the excitation of the edges of the trenches in which the anti-hole lay

(see Sec. 5.3.1).
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Figure 5.13: The results of a quantum state tomography sequence. In the top trace the
amplitude of the coherent emission in phase with the applied light is plotted versus time.
The second trace shows the component in quadrature with the applied light . The applied
optical pulses saturate the detector which takes ≈ 10µs to recover. The positions of the
applied light pulses are shown schematically in the third trace. The labels (a), (b) and (c)
correspond the snapshots of the Bloch spheres shown in Fig. 5.12. The regions over which
the signal was integrated to arrive at measurements are shown in grey.
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Input

State
Fidelity

Fidelity

assuming

pure state

(|0〉+ i |1〉)/
√

2 0.95 0.95

(|0〉+ |1〉)/
√

2 0.95 0.95

|0〉 0.96 0.97

(|0〉 − |1〉)/
√

2 0.96 0.97

|1〉 0.88 0.89

(|0〉 − i |1〉)/
√

2 0.88 0.96

cos(0.960) |0〉+ sin(0.960) exp(2.60i) |1〉 0.81 0.99

Table 5.2: Fidelity of the combined state preparation and tomography for different input
states. Each point was repeated three times and the fidelities reported are the worst
of those repeats. The position of the last state on the Bloch sphere corresponds to the
position of Canberra on the Earth.

5.5 A four level system for type-II quantum

computing

perhaps the simplest way to extend the single qubit demonstrations described

above to perform multi-qubit quantum computation is to use more than two

levels of each ion. In particular, a four level system is required to encode

two qubits. Such an approach doesn’t scale very well, as you quickly run

out of energy levels and the operations needed to apply simple gates quickly

become complicated. However, it is one of the strengths of rare earth quan-

tum computation that quantum information can be stored in the long lived

ground state hyperfine levels. It would therefore be desirable to demonstrate

this. Furthermore such a four state system would be ideal for the “Type-

II” quantum computation described in Sec. 1.6. The large inhomogeneous

broadening and the many spectrally resolvable spots in a given crystal pro-

vide a wealth of different ways in which the parallelisation required could be

carried out. Rare earth ion dopants are competitive materials for classical

data storage and signal processing [78] for the same reasons.

The four levels that were investigated are shown in Fig. 3.19. This four

level system was chosen in simplify the experimental setup because the fre-

quencies of all the transitions would be within the (a few MHz) bandwidth

of an acousto-optic modulator.

Fig. 5.14 shows the spectra of an anti-hole that has been split by a mag-

netic field. The anti-hole consisted of ions resonant with the laser via the

±5/2 → ±5/2 transition. The magnetic field was applied along the crystal’s
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Figure 5.14: The splitting of a square anti-hole by the application of a magnetic field
along the C2 axis. Each horizontal line is from the Fourier transform of a photon echo
produced from an anti-hole that had been split with a magnetic field.

C2 axis and as such the two orientations of ‘site-1’ should behave the same.

Four transitions are expected if all the transitions were allowed. However

only two were observed. Following this failure to observe all four transitions,

a systematic investigation of the hyperfine structure of the ions was carried

out. This investigation is described in Sec. 3.2.

5.6 Characterisation of dipole-dipole

interactions

Before the work for this thesis took place, a number of experiments had in-

vestigated the electric dipole-dipole interactions between rare-earth ions and

their role in dephasing due to excitation induced frequency shifts. These

experiments have been discussed in Sec. 4.1.1. In this section we report on

further experiments to characterise these interactions. These experiments

add weight to the conclusions of an already considerable amount of work

characterising the ion-ion interactions. Furthermore, the ability to apply ac-

curate pulses enables more direct demonstrations of the phenomena involved

than has been possible previously. These include Rabi nutations in the size

of the echo produced by one set of ions as the area of a pulse applied to an-

other set of ions is varied. This shows directly that the mechanism causing

the echo demolitions is related to the excitation of another group of ions and

is the first time in such experiments that a bigger perturbing pulse has led
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to a smaller effect on the echo.

The other reason for these investigations was to characterise the ion-ion

interactions for this sample and the type of ensembles used. Simple estimates

of the interaction strengths based on the expected change in dipole moment

and the density of the ions were confirmed. This approach also provided

a step-by-step path for approaching the two qubit operations discussed in

Sec. 5.7

5.6.1 Instantaneous spectral diffusion on an anti-hole

The first experiments that were carried out in the pursuit of two qubit oper-

ations were to measure the coherence times using photon echoes and study

how the results varied with the number of ions excited. In order to vary the

number of ions excited, the intensities and lengths of the exciting pulses were

varied. In all cases the combination of intensities and length were chosen so

that the pulse areas for resonant ions were constant. These pulse areas were

chosen to be close to the ideal case of π/2 and π pulses.

Similar measurements have previously been made by Huang et al. [117].

However, in the present case, the measurements were made on an anti-hole

rather than a broad part of the inhomogeneous line. Furthermore the use of

a highly stabilised laser allowed much longer and weaker pulses to be applied

than in previous experiments.

The results are shown in Fig. 5.15. The measurements show the echo

amplitude decays fastest (blue) for an unattenuated beam (∼ 150 mW) and

pulse lengths of 0.6 µs and 1.2 µs. For the other four cases shown the driving

beam was attenuated by 10 db, 20 db, 30 db and 40 db. The first pulses

were correspondingly 1.8 µs, 6 µs, 18 µs and 60 µs. The amplitude of each

coloured set of data was scaled so that the fit lines all went through the

origin. This early data had a significant noise level in the echo height; this

was later improved by grounding the set of XYZ coils in which the sample

was mounted. The stark shift makes the transition sensitive to electric field

fluctuations and mounting the sample in a copper box proved useful to get

the longest coherence times that have been measured [66]. It should be noted

that each dot in Fig. 5.15 represents one experimental shot — no averaging

was performed.

The slopes for the different length pulses are generally as expected. As

the pulses got longer and weaker they excited fewer ions, and this causes less

instantaneous spectral diffusion. For the most intense and shortest pulses, the

effective T2 was 375 µs. The T2 values were longer for −10 db pulses but then

changed little over the next two orders of magnitude. The effective T2 values
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for -10 db, -20 db and -30 db were 940 µs, 780 µs and 1.36 ms respectively.

The effective T2 then jumped significantly between -30 db and -40 db pulses.

For the -40 db pulses the decay rate in the echo height was too small to be

measured with any sort of accuracy and the slope of the fit was very small

and positive. In summary, the excess dephasing rate dropped rapidly, then

stayed constant and then finally dropped rapidly again as the pulses were

lengthened. This behaviour was attributed to the fact that the measurements

were made on an anti-hole and not just part of the inhomogeneous line. The

most intense pulses were attributed with exciting both the ions in the anti-

hole and the edge of the trenches in which the anti-holes sat. Because of

the large number of ions excited there was significant excess dephasing. For

the -10 db, -20 db and -30 db pulses, the excess dephasing was relatively

constant in spite of the large changes in the spectral width of the exciting

pulses. This was because the pulses applied had sufficient spectral width to

excite all the ions in the anti-hole but not enough to excite the edges of the

trench. The spectral width of the -40 db (60 µs) pulses was ∼ 16 kHz, which,

because it had reached a size narrower than the width of the feature, means

the dephasing rate started decreasing again with the length of the pulses.

5.6.2 Dependence of the first pulse length

As discussed in Sec. 4.1.1, the first pulse in a photon echo sequence doesn’t

alter the amount of excess dephasing because the frequency shifts caused by

the excitation of the ions are rephased. Investigations were carried out to

see if this was the case when pulses of definite area were applied. Coherence

decay measurements were made for an x–π–echo sequence.

The motivation for this was that with an initial π/2 pulse the rephasing

π pulse causes no change in the populations. Whereas for a smaller initial

pulse the rephasing π pulse would cause significant change in the populations.

Because of this one might expect faster decay for say π/4–π–echo sequences

than for π/2–π–echo sequences but this belief proved to be erroneous as is

discussed below.

The echo height as a function of time for the x–π–echo sequences with

x ∈ {π/4, π/2} are shown in Fig. 5.16. As can be seen from that graph,

there is no difference in the behaviour of the two cases except for the obvious

constant difference in the size of the echoes.

To see how this is still consistent with the excess dephasing being due to

the electric dipole interactions we shall consider the simple case of two ions
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Figure 5.15: Instantaneous spectral diffusion on an anti-hole. The decay in photon echo
amplitude as a function of delay time for various intensity pulses is shown. In each case
the length of the pulses was chosen so that the areas of the pulses, for resonant ions, were
the same.
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Figure 5.16: The echo decay behaviour for an ensemble to which accurate pulse areas
could be applied. The upper (blue) points are for a π/2–π–echo sequence and the lower
(green) for a π/4–π–echo sequence.

in the ensemble that interact with one another with the Hamiltonian

Hint = δ |ee〉 〈ee| (5.5)

This is equivalent to Eq. 4.12, except that a different interaction picture

has been chosen and we have neglected inhomogeneous broadening. Inhomo-

geneous broadening is important of course, with slight complication it could

be added to this treatment. The final result would remain unchanged. After

the application of the initial pulse, with area θ the state of the system is

(
cos

θ

2
|g〉+ sin

θ

2
|e〉
)
⊗
(

cos
θ

2
|g〉+ sin

θ

2
|e〉
)

(5.6)

= cos2 θ

2
|gg〉+ cos

θ

2
sin

θ

2
(|ge〉+ |eg〉) + sin2 θ

2
|ee〉 (5.7)

After a wait of ∆t the interaction has caused a rotation of the |ee〉 com-

ponent of the state. Thus just before the application of the rephasing π pulse

the state is

cos2 θ

2
|gg〉+ cos

θ

2
sin

θ

2
(|ge〉+ |eg〉) + e−iδ∆t sin2 θ

2
|ee〉 (5.8)

The π pulse just swaps the roles of |g〉 and |e〉 leading to the state after
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the π pulse of

cos2 θ

2
|ee〉+ cos

θ

2
sin

θ

2
(|ge〉+ |eg〉) + e−iδ∆t sin2 θ

2
|gg〉 (5.9)

There is then another period of ∆t before the echo forms as the ensemble

rephases, this leads to the state of the two ions at the time of the echo being

e−iδ∆t cos2 θ

2
|ee〉+ cos

θ

2
sin

θ

2
(|ge〉+ |eg〉) + e−iδ∆t sin2 θ

2
|gg〉 (5.10)

In order to calculate the complex valued echo amplitude we take the

expectation value of σ+
1 = (X1 + iY1)/2. As the roles of the two ions are

symmetric the same result is gained for σ+
2 . The expectation value gives

〈X〉+ i 〈Y 〉 = sin (θ) exp(−iδ∆t) (5.11)

Integrating this result over the range of interactions strengths δ we find

two things. Firstly, as expected, the echo decays with increasing ∆t. Sec-

ondly, the size of the first pulse, θ, in no way influences the nature of this

decay. It simply scales the size of the echo in a manner independent of delay,

as was observed.

5.6.3 Echo demolition

The rest of the results discussed in this chapter concern experiments that used

two anti-holes. In the rest of this section the experiments which investigated

the electric dipole-dipole interaction between two anti-holes are described.

In these experiments, the inter-anti-hole interactions were of random

strength. Because of this, the effect of shifts caused by the interactions

only cause a dephasing of the ensembles. This was observed by applying a

photon echo sequence to one anti-hole (the target) and recording how the

height of the echo was affected by manipulating the second anti-hole (the

control).

The anti-holes were made using the CW process described in Sec 5.3.2.

The zero area pulses described in Sec 5.3.1 weren’t used, primarily to reduce

the level of complexity. The burn back beam was on for 3 seconds and

the spectral width of the resulting anti-hole was controlled by varying the

intensity of this beam. Narrow (∼50 kHz) control ensembles were used in

order to minimise the effect of interactions between the ions in the target

anti-hole. In order that the interactions between the control and the target

be as large as possible, the width of the control was chosen to be as large

as the available Rabi frequency allowed. Generally anti-holes of the order of
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200 kHz wide were used.

There are a number of factors to consider when deciding how far apart

in frequency the two anti-holes should be. Obviously they should be far

enough apart that the pulses intended to address one anti-hole do not excite

the other. However if the anti-holes are too far apart then problems of

beam overlap become significant. Taking into account these concerns, a

separation of 5 MHz was initially used. However, this precise value was

problematic because of a coincidence in the hyperfine transition frequencies.

The difference in frequencies between the ±5/2(gs) → ±3/2(es) transition

and the ±1/2(gs) → ±1/2(es) transition was approximately 5 MHz (see

Table 5.1). This means that applying the beam to “burn back” ions into

the lower frequency anti-hole drives the transition ±5/2(gs) → ±3/2(es) on

the higher frequency anti-hole. To avoid this problem a frequency separation

of 3 MHz was used. This separation was many times the 210 kHz Rabi

frequencies used.

5.6.4 Perturbing pulse position dependence

The first two anti-hole experiments carried out investigated the effects of

exciting the control at either the beginning of the pulse sequence, exciting

the control at the middle of the pulse sequence or not exciting the control anti-

hole at all. The results of these measurements are shown as the delay between

the pulses was varied. Figure 5.17 shows the results of these measurements

as the delay between the photon echo driving pulses was varied.

It is characteristic of instantaneous spectral diffusion that the echo height

is much less sensitive to the size of the first pulse of a photon echo sequence

than the second. The explanation in terms of electric dipole-dipole interac-

tions is that exciting an ion causes a random frequency shift in its neighbours.

So long as population decay for the perturbing ions is not important, the fre-

quency shifts that are induced by the first pulse are rephased. The frequency

shifts induced by the second pulse break the symmetry between the two time

periods in the photon echo sequence and therefore can significantly affect the

size of the echo.

In this experiment the perturbing pulses were applied at a different fre-

quency and to a different ensemble of ions than those creating the echo.

However, exactly the same argument applies and Fig. 5.17 shows that per-

turbing at the start of the pulse sequence had no effect except for times

significant when compared to the excited state lifetime. However, just as in

the previous case, exciting the control at the middle of the pulse sequence

causes a significant reduction in the echo amplitude because the frequency
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shifts induced are in place for only half of the photon echo sequence. The

fact that a reduction of 1/e in the echo heights is caused by the interaction

being on for ∼500 µs indicates that 1/(500 µs) = 2 kHz is some sort of rep-

resentative value for the interaction between the ions of the control and the

target. Assuming the control ensemble contains 10−6 of the total ion density,

then the mean separation between the ions in the control ensemble would be

of the order of

mean inter-particle distance = (separation for nearest neighbours)

× (fraction of dopant ions)−
1
3 (5.12)

∼ 1 Å×
(

0.1%

100%
× 10−6

)− 1
3

(5.13)

= 100 nm (5.14)

This interaction strength is therefore similar to what one would expect theo-

retically if the stark shift in this material was the same as for Eu:YAlO3 (see

Sec. 4.1.1).

5.6.5 Perturbing pulse length dependence

Here we describe experiments in which a photon echo sequence was applied

to the target anti-hole and the length of the perturbing pulse applied to the

control anti-hole pulse was varied. The pulse sequence that was used is shown

in Fig. 5.18. Because accurate area pulses could be applied, it was possible to

observe Rabi nutations of the control anti-hole in the amplitude of the echo

produced by the target ions. This is only one step away from quantum logic

operations. If there was just one particular interaction strength between the

ions in the control and the target. In particular one would see a phase shift

in the echo rather than its demolition.

Figure 5.19 shows the echo decay versus delay between the pulses for

the cases of no perturbation, perturbation with a π pulse and perturbation

with a 2π. If the perturbation pulses were ideal, one would expect that the

perturbation by a 2π pulse to have no measurable effect on the size of the

echo. By the end of the pulse the ions would all be placed in the ground state.

The frequencies of the target ions would only be affected during the length

of the perturbing pulse which is too short for any appreciable dephasing

to occur. This effect is seen in Fig. 5.19 with the 2π pulses having a much

smaller effect on the echo amplitude than the π pulses. The modulation in the

echo height as the delay increased was tentatively attributed to a background

magnetic field slightly lifting the ±x/2 degeneracies in the hyperfine levels.
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Figure 5.17: The effect on the size of the echo produced by the target anti-hole by exciting
the control anti-hole at various positions. A photon echo sequence is applied to the target
anti-hole. The control anti-hole is excited either (a) at the beginning of the sequence, (b)
at the middle, or not excited at all. Each point corresponds to one experimental shot.
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Figure 5.18: Pulse sequence used to collect the results shown in Figs. 5.19 and 5.20. A
photon echo sequence was applied to the target ions. Immediately after the π pulse of this
sequence, a perturbing pulse of varying length was applied to the control anti-hole.
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Figure 5.19: Echo amplitude as a function of delay between the two pulses. Three cases
are shown. These are where the target ions were perturbed with a π pulse applied to
the control, perturbed with a 2π pulse and not perturbed. Rabi frequency spread for the
control anti-hole had been reduced with 10 2π pulses. The modulation in the echo height
as the delay increased was attributed to a background magnetic field slightly lifting the
±x/2 degeneracies in the hyperfine levels.
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Figure 5.20: Nutation in the size of the echo produced by the target anti-hole as the
length of the perturbing pulse applied to the control is varied. The measurements were
made alternating between the blue crosses, which represent where the perturbation was
applied and the green circles where the perturbing pulse was not applied. In the top graph
nothing was done to the anti-hole to select ions with a particular Rabi frequency. In the
middle and bottom graphs 4 and 10 ‘2π’ pulses were used respectively.
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The application of a small magnetic field changed the rate of the modulation.

To obtain the results presented in Fig. 5.20, the delay between the photon

echo pulses was fixed at 500 µs and the length of the perturbing pulse varied.

In is instructive to compare the Rabi nutation measured in this indirect

manner with the more direct measurements for a single anti-hole of Sec. 5.3.3.

It should be noted in this case the measurement being made of the control

anti-hole is the degree of excitation — this is maximum for pulse areas of

(2n + 1)π. In Sec. 5.3.3, the coherence was measured. This attains its

maximum absolute values for pulse areas of (n + 1
2
)π. It should be noted

that for the measurements of Sec. 5.3.3 the beam size at the sample and the

laser power were different and therefore the Rabi frequencies were different

also.

In the case depicted in the top graph of Fig. 5.20 no 2π pulses were applied

in the preparation of the control anti-hole. Due to the variation in intensity

across the beam, the distribution of Rabi frequencies was therefore large.

A small hint of a nutation can be seen, but the effect is washed out much

beyond a π pulse. This is similar to the sort of nutations seen in Fig. 5.10.

In that figure one can see the outcomes of direct measurements made on an

anti-hole that was prepared without 2π pulses. In Fig. 5.20 the results are

shown with the exponentially damped cosine wave that best fits the data.

For the top graph, the distribution of Rabi frequencies is such that there is

not a particularly good fit.

In the cases depicted by the lower two graphs of Fig. 5.20, 4 (middle)

and 10 (bottom) 2π pulses were applied to the control. As the number of

these pulses applied to the control ensemble increased the nutation became

more pronounced. The recovery of the echo for a 2π perturbing pulse was

significantly larger in the case of an anti-hole prepared with ten 2π pulses

than one prepared with four. The more 2π pulses that are applied to the

control anti-hole, the less ions it will contain. As a result the magnitude of

the echo demolition for a perturbing π pulse decreased as the number of 2π

pulses applied increased.

5.6.6 Rephasing of the interaction induced decoher-

ence

If the accumulated phase shifts due to the interactions are the same in both

periods of free evolution of the photon echo sequence then the effect of the

interaction should be rephased. This is illustrated by the experiments where

the perturbing pulse was applied at either the middle or the end of a photon
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Figure 5.21: Pulse sequence used to demonstrate the recovery of the photon echoes when
the two periods of free evolution in the photon echo sequence are equivalent. A series of
shots were taken as the value of delta was increased from zero to one. The shots alternated
between having no perturbing pulses applied, having just the later perturbing pulse applied
and having both perturbing pulses applied. The delay between the two driving pulses of
the photon echo, τ , was 400 µs. The results are presented in Fig. 5.22.

echo sequence (see Fig. 5.17). With the command that we had over the

state of the control anti-hole it was possible to demonstrate this rephasing

when the effect of the interaction wasn’t constant during the entire pulse

sequence. These experiments were useful because they provided a measure

of how well the single qubit operations could be applied to the wide control

anti-hole. Furthermore they were arrived at by looking at the effect on the

target anti-hole. Thus, the measurements were sensitive to the imperfections

in the control pulses in a manner similar to potential quantum computation

demonstrations.

Experiments with a similar theme have been carried out by Altner and

Mitsunaga [154] but instead of coherent control over the perturbing ensemble

they used a co-doped sample. Ions with long coherence times were used for

the target ions and ions with a much shorter lifetime were used for the control.

The symmetry between the two periods of free evolution of the photon echo

was achieved by having the lifetime of the perturbing ions short compared

to the length of these periods of evolution.

The pulse sequence that was used is shown in Fig. 5.21 and the results in

Fig. 5.22.

In the case of one perturbing pulse (red dots of Fig. 5.22) the behaviour

is easy to understand. As delta is increased the length of time for which

the control ions are excited reduces. The interaction therefore causes less
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Figure 5.22: Echo recovery. The results obtained using the pulse sequence of Fig. 5.21.
The dots (red) correspond to applying only the latter perturbing pulse and the open
circles (green) to applying both perturbing pulses. The blue crosses correspond to when
no perturbing pulses were applied. The blue line shows the mean echo height in the
absence of perturbing pulses. The other two lines are least squares fits of an arbitrary
quadratic to the data.
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decoherence.

The experimental points represented by open circles (green) in Fig. 5.22

correspond to the application of both of the perturbation pulses, depicted in

Fig. 5.21.

If the first perturbing pulses were an ideal π pulse for all of the control

ensemble, then the first pulse would put all of the control ensemble into the

excited state, then the second would put them all back in the ground state.

As a result, each of the free evolution periods in the photon echo sequence

would have the control ensemble excited for a fraction δ of the time. This

should result in no echo demolition because the effect of the interactions

should be rephased. The phase shift due to the interaction accumulated by

the target ions during each half of the photon echo sequence would be the

same.

In practice, the echoes from the target ions when the control ions had

been addressed twice (open circles Fig. 5.22) were smaller than those when

the control ions were left untouched (blue crosses). The main contribution

to the asymmetry that caused the reduction in the echo heights was the

imperfection in the π pulses. The 210 kHz Rabi frequency used was about

the same as the spectral width of the control anti-hole, rather than being

much bigger.

For the smaller values of delta, the primary reason for this asymmetry

was the fact that all control ions were not placed perfectly into the ground

state by the second pulse. As delta was increased, the length of time after the

second pulse decreased and this resulted in the echo heights represented by

open circles (green) getting larger. Neglecting population decay, the periods

of each photon echo sequence during which the ions were excited were the

same even with imperfect π pulses on the control.

However for larger values of delta, when the fraction of time spent with

the excited control ions excited was largest, population decay became more

important. This means that at δ = 1, the echo heights represented by open

circles (green) do not reach those of the unperturbed echoes unlike the singly

perturbed echoes, which are shown as dots (red).

How much closer the open circles (green) in Fig. 5.22 are to the crosses

(blue) than to the dots (red) is a measure of the echo recovery. In this case,

the echo recovery was much smaller than in the experiments depicted in the

lower graph in Fig. 5.20 (Sec. 5.6.5). In those experiments, a perturbing

π pulse caused significant echo demolition whereas the echo height after a

2π perturbation was almost the same as the unperturbed height. This is

primarily a consequence of how the ensembles were prepared. The ‘2π’ pulses
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that were applied to the anti-holes are intended to select out ions based on

their Rabi frequencies. For ensembles with spectral width small compared

to the Rabi frequency this would occur. However, for ensembles where the

spectral width of the ensemble was comparable to the Rabi frequency one

must remember that the selection of ions was based on their generalised Rabi

frequency. Keeping this in mind it is easy to see why the 2π pulses did a

better job of putting ions back in the ground state than two separated π

pulses did. We chose our ensembles so they would consist of ions that ended

up back in the ground state at the end of a ‘2π’ pulse. Another contributing

factor to the smaller recovery in Fig. 5.22 was the use of ensembles for the

control anti-hole that were wider in frequency. This can be seen in the larger

amount of echo demolition that occurred when a π pulse was applied to the

control ensemble half way through an echo sequence on the control.

5.7 Conditional phase shifts

The experiments discussed in the previous section demonstrate that the in-

teraction between the ions is coherent, although inhomogeneous. The exper-

iments also show that the control ensembles used above had a (spatial) ion

density large enough for the average interaction with the ions of the target

ensembles to be observable over the homogeneous linewidth.

The only problem left to overcome in order to carry out quantum logic

operations concerns the inhomogeneity in the interaction strength. This in-

homogeneity was tackled using spectral holeburning techniques. Pryde et al.

were the first to use spectral holeburning to select for something other than

frequency with the use of ‘2π’ pulses to select for the Rabi frequency expe-

rienced by ions. Here we extend spectral holeburning further to select ions

based on their interactions with other ions. The pulse sequence used for

selecting the ions is shown in Fig. 4.3 on page 101 and the method for this

selection process is discussed in Sec. 4.5.

Composite pulses [30] were used for the pulses applied to the control

ensemble in order to make better use of the limited Rabi frequency available.

With composite pulses, a number of pulses of various amplitudes and phases

are applied one after another. The result is intended to better approximate

the intended pulse over a range of detunings and driving strengths. The

use of composite pulse sequences in quantum computing generally has been

investigated by Jones and co-workers [140]. To the author’s knowledge the

present work is the first time that composite pulses have been used on an

optical transition. The composite pulses were used in place of the π pulses
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Figure 5.23: Pulse sequence used to demonstrate conditional phase shifts once the target
ions had been selected based on the interaction strength. The delay between the driving
pulses for the target ions was 60 µs. The phase difference in the echo conditional on
whether the first π is applied to the control ions is shown in Fig. 5.24. Composite pulses
were used for the operations on the control ensemble (see text).

to the control anti-hole. It consisted of a conventional π pulse that was split

into two π/2 pulses, and a π pulse that was shifted by 90◦ was inserted in

the middle. No systematic investigations of the benefits of using composite

pulses were conducted but quick checks, similar to the δ = 0 case for the

experiments of Sec. 5.6.6, were made. These showed that the use of composite

pulses resulted in a measurable, if not a substantial, improvement.

The two anti-holes used for the results presented in this section were

prepared in the same manner as described in Sec. 5.6.3. Five 4.8 µs long

‘2π’ pulses were applied to both the control and the target anti-holes in

order to select out ions with a particular Rabi frequency. This was followed

by five applications of the pulse sequence shown in Fig. 4.3 to select ions

from the target anti-hole that only experienced a particular interaction with

those of the control anti-hole. As mentioned above, composite pulses were

used for the control anti-hole. It was not possible in practice to drive both

anti-holes at the same time so when the pulse sequence required pulses to be

applied to both anti-holes at the same time, the pulses to the control anti-hole

were applied directly after those to the target. The timing error introduced

was small compared to the periods of time over which the interaction was

significant.

The value of ∆t (see Fig. 4.3) chosen was 60 µs and the delay between

the application of successive pulse sequences was 10 ms.

The pulse sequence used to demonstrate the conditional phase shift is

shown in Fig. 5.23. This is very similar to the CNOT sequence of Fig. 4.3

except the pulses at the end of the sequence were not applied. The state

of the control ions was not measured so it was of little value to apply a
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single qubit operation to them at the end of the sequence. Also, the laser

pulse required to achieve this would have interfered with the measurements

of the target ensemble. The measurements of the ions which could be made

were of coherence so there was little to be gained by applying a π/2 pulse

to convert the accumulated phase shift into a population difference, because

the application of a subsequent π/2 pulse would be required to measure such

a difference. As with the pulse sequences used for selecting the ions based on

their interaction strength, composite π pulses were used on the control ions.

The pulse sequence used — if we ignore the pulse represented with a

dotted line for a moment — can be interpreted as a CNOT gate minus single

qubit operations at the end of the sequence. Alternatively, if the first π/2

pulse applied to the target ions is viewed as state preparation performed

prior to the gate operation, the pulse sequence can be viewed as carrying out

a phase-gate operation. The difference between a phase-gate and a CNOT is,

of course, a Hadamard gate (π/2 pulse) applied to the target qubit on either

end [31]. The first π in the pulse sequence for the control qubit (represented

with a dotted line) was applied when it was desired to investigate the effect

of the gate with an initially excited control qubit.

To obtain the results shown in Fig. 5.24 the gate operation was carried

out 26 times and on alternate shots the gate was carried out with the control

ions initially excited. The echoes were averaged in a phase coherent manner

and the envelope and phases for the two cases (control initially excited or

not) are shown. When each of the echoes measured was integrated, the

mean phase shift between the two cases was 17.9◦. From the scatter in

the phases of the echoes an uncertainty in this phase shift of ±2.3◦ was

inferred. Control experiments were carried out where the control ions were

burnt away before readout and where no pulses were applied to the control

ions during the readout. In both cases no phase shift was observed. The

phase of the echo signal changed across the echo because of the spectral profile

of the target. The imperfections of the pulses used in the pulse sequence for

interaction strength burning meant that target ions were selected on their

resonant frequency as well as their interaction with the control ions. The

phase varied across the echo in the same manner as in the control experiments

where no pulses were applied to the control ions.

5.7.1 Limiting factors

A conditional phase shift of 180◦ would be required for gate operation with

high fidelity rather than the 20◦ that was observed in the experiments. This

poor fidelity is due to purely technical reasons and significant improvement



5.7 Conditional phase shifts 153

−20 −15 −10 −5 0 5 10 15 20
0

20

40

60

80

ph
as

e 
(d

eg
re

es
)

−20 −15 −10 −5 0 5 10 15 20
0

2

4

6

8

t (µs)

am
pl

itu
de

Figure 5.24: The amplitude and phase for the echoes produced by the target ions when
the control ions were initially in the excited state (green) or the ground state (blue).
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Figure 5.25: The fraction of ions left in a target anti-hole as a function of their interaction
strength with the ions of the control. Five interaction strength burns and 20% holeburning
efficiency are similar parameters to those used for the observation of the conditional phase
shift. In order to obtain an ensemble with a better defined interaction strength with the
control ions, either more interaction strength burns or a larger holeburning efficiency is
required.

should be possible.

The small phase shift was attributed to the small number of interaction

strength selecting pulse sequences that were applied. If a large number of

interaction strength selecting pulse sequences were used, then a very partic-

ular interaction strength would result. With the small number of interaction

strength burns applied and the low (∼ 20%) holeburning efficiency, the inter-

action strength was not particularly well defined. The problem restricting the

number of interaction strength selecting pulse sequences was the fidelity of

the single qubit operation. An estimate of the resulting distribution of inter-

action strengths, for perfect single qubit operations, is shown in Fig. 5.25. In

order to obtain an ensemble with a better defined interaction strength, more

interaction strength selecting pulse sequences and/or a higher holeburning

efficiency would be required. There are a number of simple measures which

should result in significant improvement in both of these areas.

5.7.2 Realising larger conditional phase shifts

As discussed above, the small conditional phase shift was the result of the

experiments being restricted to a small number of interaction strength select-

ing pulse sequences and the low holeburning efficiency. The experiment was

carried out using the ±5/2 levels in both the ground and excited states. The
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holeburning efficiency was low because ions that were left in the ±5/2 excited

states at the end of an operation spontaneously emitted — into the ±5/2

ground states predominantly rather than into the other hyperfine levels. One

possibility for improving this situation is to use, for example, the ±1/2 hy-

perfine levels for the excited state. While the holeburning efficiency would

be higher, the oscillator strength for the ±5/2 → ±1/2 transition would be

correspondingly lower. This lower oscillator strength would result in lower

Rabi frequencies which is undesirable as is discussed below. One way to im-

prove the holeburning efficiency without introducing this problem would be

to drive an excited state hyperfine transition with a RF π after the unwanted

ions had been left to decay. For this to be useful the Rabi frequencies obtain-

able would need to be higher than the optical decay rates. Using 1 kHz/G

(see Sec. 3.2) for the Zeeman splitting, one can estimate that a RF amplitude

of 10 G would be required to obtain a 10 kHz Rabi frequency. With a big

amplifier and a resonant coil such amplitudes are available experimentally.

The problem restricting the number of interaction strength selecting pulse

sequences was the accuracy to which single qubit operations could be applied

to the spectrally wide anti-holes.

Wide spectral features are required for the spatial ion density to be high,

which is in turn required so the mean interaction between ions in such fea-

tures is high. In order to apply pulses which achieve the same operation

for all the ions of an inhomogeneously broadened ensemble, the pulse length

must be short compared to the inverse of the spectral width. The Rabi

frequencies provided by the laser only enabled this criterion to be achieved

approximately. The two ways to increase the Rabi frequency are to either

increase the laser power or reduce the spot size. Laser powers greater than

the ∼200 mW used in these experiments have be generated from dye lasers.

However, the easiest way to increase the intensity at the sample would be

to use a smaller spot size. For the experiments described in this section the

laser was focused onto the sample with a 15 cm lens; Rabi frequencies of

∼210 kHz resulted. Initially experiments were attempted with a 10 cm lens

which resulted in Rabi frequencies of ∼400 kHz. However the resulting higher

intensities were incorrectly considered responsible for the “5 MHz problem”

discussed in Sec. 5.6.3. The ability to apply definite area pulses would be

helped by the square features provided by the zero area pulses mentioned in

Sec. 5.3.1. The fact that the use of composite pulses only slightly increased

the ability to perform the single qubit operations suggests possible problems

with the background level of ions, or the presence of long tails on the anti-

holes, or both. The zero area pulses are good at getting rid of such problems.
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There is nothing that stopped these being used in these experiments other

than the desire to keep the setup as simple as possible coupled with the lack

of a small amount of extra equipment.

Composite pulse sequences can be very useful in magnetic resonance ex-

periments when there is inhomogeneity in the transition frequency and driv-

ing strengths. The composite pulses used in this experiment were added in

an ad hoc fashion and were retained because they improved the performance

slightly. A more systematic look at the use of composite pulses than was

carried out here would no doubt be useful.

Another way to increase the spatial density of the ions in the anti-holes

is to increase the total concentration of dopant ions. It should be noted,

however, that increasing the concentration of the ions would also increase

strain in the crystal and thus the inhomogeneous broadening. A packet of

the same spectral width would, therefore, contain a smaller fraction of the

total number of ions than in a sample with a smaller concentration. Further

investigation is warranted.

Ideally, the interaction strength burning process should be only limited

by the homogeneous line width optical transitions but it is also sensitive to

laser jitter. For these experiments the linewidth of the laser was of the or-

der of 200 Hz which is larger than the ∼100 Hz homogeneous linewidth. A

more stable laser would allow smaller interaction strengths to be selected by

using longer interaction strength selecting pulse sequences. This would then

in turn reduce the spatial ion density required and, as a result, the spectral

width of the control anti-hole as well. This would allow more accurate sin-

gle qubit operations to be applied to the control anti-hole and higher two

qubit fidelities would result. However, the benefit of improving the laser fre-

quency stability would diminish quickly as the laser’s linewidth approached

the homogeneous linewidth of the optical transition.

5.7.3 Tomography

The use of quantum state and process tomographies (see Chapter 1) pro-

vide a powerful framework for the description of quantum operations. The

application of such two qubit quantum tomographies was considered to char-

acterise our two qubit system. Quantum process tomography on the con-

ditional phase shifts and quantum state tomography on an entangled state

made using these phase shifts was considered. However, these experiments

were not performed, it was decided that higher fidelities for the conditional

phase shift operations should be sought before such work was attempted.

It was initially thought that state tomography along the lines of that



5.8 The future 157

described by Chuang et al. [155] for an NMR system could be used. For the

purposes of the tomography the NMR system and our two qubit system are

analogous. However, it was realised when investigating the implementation

of the tomography that the method did not provide what it advertised. In the

paper of Chuang et al., the state was determined by making measurements

of the free inductions signals after a number of different combinations of

single qubit operations had been applied to the two qubits. They used XI to

represent a rotation of π/2 about the x axis for the first qubit and nothing

(the identity) for the second. Chuang’s method involved measuring the free

induction signals after II, IX, IY , XI, XX, XY , Y I, Y X and Y Y . This

didn’t provide full characterisation of the density matrix as can easily be seen

by considering the maximally entangled state 1
2
(|0〉+ |1〉)⊗(|0〉+ |1〉). Such a

state will give no coherent emission regardless of what single qubit operations

are applied to it and is thus indistinguishable from the T →∞ thermal state.

The least squares means that in the presence of a number of states that fit the

data equally well the one with the lowest Tr(ρ2) (purity) is used. Chuang’s

method in effect simply does single qubit tomography for each of the two

qubits and then takes the product state. It should be remembered that the

state that was being reconstructed by Chuang et al. was a product state so

the procedure was accurate for their situation. However it was never stated

that this was partial state tomography rather than full state tomography as

could be inferred. The paper has been cited widely and the error has been

repeated in other works (e.g. [156]).

The difficulty with tomography highlights the physical principal that

without either making correlated measurements on the two qubits or using

an interaction between them, it is impossible to distinguish entanglement

from classical noise. Thus, to carry out full quantum state tomography for

the system considered in this chapter, where correlated measurements are

impossible, it would be necessary to use the interaction between the qubits.

Because the ensemble still contained a relatively broad range of interaction

strengths, using these interactions to characterise the system will be prob-

lematic until the fidelity is improved.

5.8 The future

Above we have described experiments in which a 17.9◦ conditional phase shift

was observed for two independent qubits (anti-holes). The interaction used

was the electric dipole-dipole interaction that usually causes instantaneous

spectral diffusion in such systems. A pulse sequence that was developed in
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Chapter 4 was used to select ions based on their interactions strength. The

limitation in the fidelity of the two qubit operations was how well defined

the interactions were for the resulting ensemble. This was in turn related to

the holeburning efficiency and how many times the selecting pulse sequence

could be applied. There are simple steps that could be taken to substantially

improve both of these aspects. With such steps taken fidelities approaching

the ∼ 90% achieved in liquid state NMR [157] should be possible.

In order to increase the number of qubits beyond two, the ions’ hyperfine

structure could be used. The differing timescales for the decoherence could

be used to demonstrate teleportation in a similar fashion to NMR [158], in

this case the teleportation would be over 10–100 nm rather than between

nuclei within the same molecule.

As discussed in Chapter 4 the selecting of sub-ensembles pursued here

is not scalable to a large number of qubits. The conditional phase shift

is nonetheless an important demonstration, it is the first time that such a

conditional phase shift has been observed between independent qubits in a

solid. Also discussed in Chapter 4 are a number of exciting possibilities for

scalability, in particular the detection of single dopants.



Chapter 6

Summary

This thesis explores and demonstrates the utility of rare earth ion dopants for

quantum computing. The experiments performed were broken into two sets.

The first are presented in Chapter 3 and relate to the characterisation of the

hyperfine structures of rare earth ion dopants. The aim of this work was to

provide the information about oscillator strengths and transition frequencies

required for the optical manipulation of hyperfine states. The characteri-

sation of Pr3+:Y2SiO5 was the first time that such information had been

gathered in such a low symmetry site. The knowledge gained has enabled an

increase in the coherence times of hyperfine transitions by over two orders of

magnitude.

The second set of experiments relate to quantum computation demon-

strations with optical states. The ability to perform state initialisation and

single qubit operations had already been demonstrated in this laboratory

when this research began. This left the problems of readout and two qubit

operations. Solutions to these two problems were discussed. A discussion

of ion interactions in optical centres with emphasis on rare earth ions was

presented. Following this and a review of previous schemes, the direction

that was pursued in this thesis was given. Included was a practical method

for realising demonstrations of quantum computation, using ensembles, for

a small number of qubits. Also included are discussions of how the method

might be scaled, in particular the readout of single rare earth ions.

Experiments were performed with the aim of quantum computing demon-

strations. These included methods for improving the “single qubit” ensem-

bles that had been realised earlier and demonstrations of their utility as

qubits using single qubit quantum state tomography. Also included were

experiments that characterised the ion-ion interactions which culminated in

the observation of conditional phase shifts between two qubits.

This is the first time that such conditional phase shifts have been observed
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between two independent solid state qubits. The only previous two qubit

demonstration in a solid used charge based superconducting qubits. These

qubits had such short coherence times that the control needed to demonstrate

conditional phase shifts was not available.

It is a commonly held belief that extensive nano-fabrication will be re-

quired for scalable solid-state spin based quantum computation. However,

following the results of this thesis, everything required for scalable quantum

computation has been demonstrated for rare earth ion dopants except for

the detection of the states of single dopants.

The state detection for rare earth ion dopants will be difficult. How-

ever, there are measurements which suggest that the interaction between

rare earth ions used in this thesis will also be significant for the NV-centre

in diamond. Single site spectroscopy on these centres is now almost routine

and the prospects for the detection of the spin states of single centres are

promising.

This thesis shows the future of solid state all-optical quantum computing

is exciting. It will no doubt continue to benefit from the advantages that

come from the use of easy to characterise simple systems. It is hoped that

this thesis will help convince the rest of the quantum computing community

that the future of quantum computing might not lie with bunny suits but

instead with something that looks like a small piece of glass.
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Appendix A

Rotation conventions used in

creating M and Q tensors

The description used for the tensors describing the hyperfine parameters in

this thesis is based on Euler angles (see Sec. 3.1.4). Euler angles are used

to specify an arbitrary rotation in terms of three rotations about particular

axes. There are many conventions in use. The one used in this thesis is called

the y-convention by Goldstein [96]. Starting with the axis set (x, y, z), first

there is a rotation of α about the z axis producing a new system (x′, y′, z′)

(note z = z′). This is followed by a rotation of β about the y′ axes to form the

axis set (x′′, y′′, z′′), and then a rotation of γ about z′′ to form (x′′′, y′′′, z′′′).

Explicitly we have

R(α, β, γ) = R3(γ)R2(β)R1(α) (A.1)

=

cos(γ) sin(γ) 0

cos(γ) − sin(γ) 0

0 0 1


×

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)


×

cos(α) sin(α) 0

cos(α) − sin(α) 0

0 0 1

 (A.2)
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=

 c(γ)c(β)c(α)− s(γ)s(α) c(γ)c(β)s(α) + s(γ)c(α) −c(γ)s(β)

−s(γ)c(β)c(α)− c(γ)s(α) −s(γ)c(β)s(α) + c(γ)c(α) s(γ)s(β)

s(β)c(α) s(β)s(α) c(β)


(A.3)

In the last line ‘cos’ has been replaced with ‘c’ and ‘sin’ with ‘s’.

The first two operations rotate the z axis to a point where its azimuthal

angle is given by α and its elevation by π/2−β. The third operation provides

a rotation about this new z axis. From this it can easily be seen that the

ranges α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π) cover all the possible rotations

once.

The definition of the C2 axis is less likely to cause confusion. The position

of the C2 axis was described by an azimuthal angle (φ) and an elevation (θ).

Explicitly, the unit vector about which the rotation is applied is given by

r̂ = (cos θ cosφ, cos θ sinφ, sin θ) (A.4)

Rodrigues’ formula is helpful when constructing the matrix describing a

rotation of t (for our case t = π) about a particular axis [96].

x′ = x cos(t) + sin(t)(r̂ × x) + (1− cos(t))(r̂.x)r̂ (A.5)

Here, the rotation about r̂ maps x → x′.
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Algorithm for assigning

observed spectral lines.

Below is the C file for determining the value of the misfit (see Sec. 3.1.4) if

given a set of theoretical and observed spectral lines. The function assign lines

on line 98 takes two arrays containing the frequencies of the nobs observed

transitions and the frequencies of the ntheo theoretical transitions and re-

turns the misfit. The algorithm is based on each observed peak claiming the

nearest theoretical as its own. When more than one observed peak claims

the same theoretical peak “dispute sets” are created each of which contain

a group of observed peaks and the group of theoretical peaks they want.

These dispute sets are merged together until they no longer have any theo-

retical peaks in common. These disputes are resolved by recursively searching

through all the combinations for the minimum misfit.

After declaring variables the first thing done in assign lines is to make a

table distance table of size nobs×ntheo table containing all the frequency

differences between the observed and theoretical spectral lines. Next a table

of the same size called nearest table is initialised, each column in this table

contains, in order of increasing distance from the observed peaks, the indices

of each of the theoretical peaks. In the same loop (starting at line 136) the

“dispute sets” are initialised. The array peaks contains a bitmask of all the

peaks claimed by a particular dispute set. The array dispute size contains

the number of peaks in a given dispute set and is initialised to 1. The array

worry represents how far down its list of preference an observed peak might

have to settle.

Initially there is one dispute set for each observed line and each of these

dispute sets only claims the nearest theoretical line to its founding member.

The ‘do’ loop that starts on line 153 continually loops through the dispute

sets merging those which lay claim to the same theoretical peak. It continues
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until none of the dispute sets overlap.

Then in line 184 the algorithm loops through the dispute sets finding the

best mapping of experimental to theoretical peaks through an exhaustive

search. Because the numbers of peaks in the dispute sets vary, this search

was implemented recursively (recursively resolve dispute).

#include <math.h>

int min peak(int num){
int k;
for(k=0;k<30;k++){

if(num&1) break;
num=num>>1;

}
return k;

} 10

int max peak(int num){
int k;
for(k=30;k>=0;k−−){

if(num&1073741824) break; //1073741824=2^30
num=num<<1;

}
return k;

}
20

void recursively resolve dispute(int pos, //current obs peak to loop over position posibillities
int last pos, // the last obs peak in this dispute set
int* start peak,//array, where to start looping for each peak
int* finish peak,//array, where to stop looping for each peak
double current error, //error at this level
double* best error, //pointer to the best error the answer
double* distance table, //distance lookup table
int ntheo)

{
int k; 30

if(pos==last pos){ //if at highest level of recursion
for(k=start peak[pos];k<=finish peak[pos];k++){

if(current error+distance table[pos*ntheo+k]<*best error){
*best error=current error+distance table[pos*ntheo+k];

}
}

}else{ //other wise recurse some more
for(k=start peak[pos];k<=finish peak[pos];k++){

start peak[pos+1]=k+1;
recursively resolve dispute (pos+1, 40

last pos,
start peak,
finish peak,
current error+distance table[pos*ntheo+k],
best error,
distance table,
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ntheo);
}

}
} 50

void jsort(int* nearest table, double* distance table, int ntheo){
int k,min index=−1,max index;
double min =HUGE VAL;
for(k=0;k<ntheo;k++){

if(distance table[k]<min){
min = distance table[k];
min index = k;

} 60

}

if(min index==−1){
printf("error");
exit(1);

}

max index=nearest table[0]=min index;

for(k=1;k<ntheo;k++){ 70

if(min index==0)
nearest table[k]=++max index;

else {
if(max index==ntheo−1)

nearest table[k]=−−min index;
else {

if(distance table[max index+1]>distance table[min index−1])
nearest table[k] = −−min index;

else
nearest table[k] = ++max index; 80

}
}

}
}

//auxillary function for sorting
int compare double pointers(const void *p1,const void *p2)
{

const double *da = *(const double **)p1; 90

const double *db = *(const double **)p2;
if(fabs(*da−*db)<1e−4)

return (da > db) − (da < db);
else

return (*da > *db) − (*da < *db);
}

double assign lines(double* obs, //freq of observed
//spectral lines
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int nobs, // num observed lines 100

double* theo, //freq of theoretical lines
int ntheo) //no theo lines

{
//temporary vairables
double temp dbl;
int temp int;
int k,l,no merges;
double error out=0;
double dispute set error; 110

// member (i,j) will be the ith closest theoretical peak to the observed peak j
int nearest table[nobs*ntheo];
//lookup table containing the distances between
//the observed and theoretical frequencies
double distance table[nobs*ntheo];
//used for looping over all combinations within a dispute set
int start peak[nobs],finish peak[nobs]; 120

int worry[nobs]; //used in merging of dispute sets
//each member bitwise mask of which peaks are in each dispute set
int peaks[nobs+1];
int dispute size[nobs+1]; //num of members in each dispute set

// initalise distance table
for(k=0;k<(nobs);k++){

for(l=0;l<ntheo;l++){
temp dbl = (obs[k]−theo[l]);
distance table[k*ntheo+l] = temp dbl*temp dbl; 130

}
}

//loop over all observed peaks
for(k=0;k<nobs;k++){

//initialise nearest table
jsort(&nearest table[k*ntheo],&distance table[k*ntheo],ntheo);

//Initialise each dispute set to contain a observed peak 140

worry[k] = 0;
dispute size[k] = 1;
peaks[k] = 1<<(nearest table[k*ntheo]);

}

//used to terminate loops
dispute size[nobs]=0;
peaks[nobs]=0;

150

//make dispute sets by merging sets which claim common peaks
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do {
no merges=0;
for(k=0;k<(nobs−1);){

//if the set of peaks in this dispute set and that of the
//next dispute set intersect
if(peaks[k]&peaks[k+dispute size[k]]){

//merge the two dispute sets
no merges++; 160

peaks[k]=peaks[k]|peaks[k+dispute size[k]];
temp int = dispute size[k+dispute size[k]];

dispute size[k+dispute size[k]]=0;
dispute size[k]+=temp int;

for(l=k;l<k+dispute size[k];l++){
while(worry[l]<dispute size[k]−1){

worry[l]++;
peaks[k]=peaks[k]|(1<<(nearest table[l*ntheo+(worry[l])])); 170

}
}

}else{
//go onto the next dispute set
k+=dispute size[k];

}
}

}while(no merges!=0); //loop until the peaks want by each dispute set dont intersect
180

//for each dispute set recursively try all combinations looking for the best

for(k=0;k<nobs;k+=dispute size[k]){
if(dispute size[k]==1){

error out+=distance table[k*ntheo+nearest table[k*ntheo]];
}else{

//find start and end pos for each peak for each dispute
temp int = k+dispute size[k]−1; //end of this dispute set

190

finish peak[temp int] = max peak(peaks[k]);
for(l=temp int−1;l>=k;l−−)

finish peak[l]=finish peak[l+1]−1;

start peak[k]=min peak(peaks[k]);
for(l=k+1;l<=temp int;l++){

start peak[l] = start peak[l−1]+1;
}

dispute set error=HUGE VAL; 200

//recursively resolve dispute
recursively resolve dispute(k,

temp int, //last obs peak in this dispute set
start peak,
finish peak,
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0, //error at this level of recursion
&dispute set error, //where to put the answer
distance table, //so we dont have to calc it again
ntheo);

error out+=dispute set error; 210

}
}
if(error out==HUGE VAL){

printf("error");
exit(1);

}
return error out;

}
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cate. Phys. Rev. B, 66:035101, 2002
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