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iv Abstract

Abstract

The central theme is the study of error propagation effects in decision feedback equal-
izers (DFEs). The thesis contains: a stochastic analysis of error propagation in a
tuned DFE; an analysis of the effects of error propagation in a blindly adapted DFE; a
deterministic analysis of error propagation through input-output stability ideas; and
testing procedures for establishing correct tap convergence in blind adaptation. To a
lesser extent, the decision directed equalizer (DDE) is also treated.

Characterizing error propagation using finite state Markov process (FSMP) techniques
is first considered. We classify how the channel and DFE parameters affect the FSMP
model and establish tight bounds on the error probability and mean error recovery
time of a tuned DFE. These bounds are shown to be too conservative for practical use
and highlight the need for imposing stronger hypotheses on the class of channels for
which a DFE may be effectively used.

In blind DFE adaptation we show the effect of decision errors is to distort the adap-
tation relative to the use of a training sequence. The mean square error surface in a
LMS type setting is shown to be a concatenation of quadratic functions exposing the
possibility of false tap convergence to undesirable DFE parameter settings. Averaging
analysis and simulation are used to verify this behaviour on some examples.

Error propagation in a tuned DFE is also examined in a deterministic setting. A finite
error recovery time problem is set up as an input-output stability problem. Passivity
theory is invoked to prove that a DFE can be effectively used on a channel satisfying
a simple frequency domain condition. These results give performance bounds which
relate well with practice.

Testing for false tap convergence in blind adaptation concludes our study. Simple
statistic output tests are shown to be capable of discerning correct operation of a
DDE. Similar tests are conjectured for the DFE, supported by proofs for the low
dimensional cases.
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CHAPTER

1. INTRODUCTION

Aim: The dissertation contains an analysis of the effects of error
propagation on the operational aspects of a decision feedback
equalizer. The object of our study is to show how the non-linear
recursive mechanism behind error propagation detrimentally
distorts the operation of a decision feedback equalizer as a
channel equalizer both during adaptation and after it is tuned.

1.1 Preamble
We describe how intersymbol interference (ISI) arises in a dispersive channel used for
digital communication, and establish the need to compensate for this effect by the
use of channel equalizers (§1.2). We present, at a tutorial level, the operation of a
decision feedback equalizer (DFE) as a simple non-linear (adaptive) structure that
combats ISI. Our description is based on a two parameter example of a DFE which
exhibits some of the key operational problems of these devices. For comparison the
decision directed equalizer (DDE) is introduced. The DDE is seen to be essentially
a linear structure that compensates for ISI. Adaptive equalization is also described,
highlighting the important difference between training sequence adaptation and blind
adaptation for both devices.

The discussions found in the following sections will also serve to introduce the
terminology associated with the analysis of these equalizer structures. Keywords and
concepts are emphasized. In §1.3 one may find a brief review of the literature on
equalization focussing mainly on DFEs and those works from which the thesis draws.
The balance of this chapter, §1.4, is composed of a summary of the contents of the

Page 1



2 Chapter 1 Introduction

thesis on a chapter by chapter basis, and concludes, in §1.5 with a point summary of
the main contributions of the thesis.

1.2 Equalization
1.2.1 Intersymbol Interference
Communication systems generally deal with the transfer of information between two
separate points over some medium in the presence of disturbing influences such as
noise and dispersion. Recently, and increasingly, the information format, rather than
being an analogue voice signal, has taken the form which can be most easily digested
by a computer. This has meant that in modern communications systems it is desirable
to have both the temporal variation and the signal amplitude quantized, e.g., in the
simplest case we would send binary symbols (bits) represented by pulses of plus or
minus some voltage and sample our received waveforms at a regular interval of time.
Naturally the channels over which these signals are propagated remain real analogue
systems and typically display the distortion associated with non-ideal behaviour, which
is characterizable in the frequency domain by either a non-constant group delay or
non-constant gain (usually both). This distortion is manifested in the time domain
by pulse dispersion and is labelled intersymbol interference (ISI). This terminology
reflects the fact that sampling the output of a dispersive channel shows a contribution
not only from the desired symbol but also from neighbouring symbols whose energy
has been smeared in time over several sampling intervals.

Figure 1.1 shows the sampled impulse response of a representative dispersive
channel. We regard the peak as the cursor, i.e., the weight bearing the information,
and the remaining samples as the ISI. (Note the privileged impulse response value
labelled the “cursor” is arbitrarily chosen but generally corresponds to the impulse
response peak.) Such ISI may lead to incorrect decoding of the symbols sent and the
system performance may suffer a high error probability as a result. As an example of an
analogue channel showing ISI in digital communication we have the common telephone
networks which were designed and developed for voice communication. These networks
are being partially utilized to send digital signals in a variety of formats, the details of
which will not concern us here. Further, we note that the increasing demands for ever
higher bit rate communications only accentuate the problems of ISI and the associated
enhanced error rate [1].
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Fig.1.1 Sampled Channel Impulse Response and Intersymbol Interference

The utilization of existing analogue networks (and of course new networks) for
high speed data transmission requires compensation for the ISI (dispersion) introduced
by the channel. Such a compensation process is known as equalization. When the
channel over which the data is sent is unknown, which is common, then one must
employ adaptive equalization. Such adaptation is simply a merging of some channel
identification scheme with equalization, and is indispensable in many applications,
e.g., at speeds of 2400 bits/sec and above on switched telephone networks, because at
such speeds there is a wide variation in the channel characteristics within a typical
network [1].

We now turn to discuss at a tutorial level the two types of equalizer which will
interest us here, after which we will move onto describing some adaptation schemes.
These equalizers are the decision feedback equalizer (DFE) and the decision directed
equalizer (DDE). Both are termed sub-optimum equalizers because their performance
on noisy channels is inferior in an error probability sense to the use of more elaborate
schemes typically based on maximum likelihood sequence estimation (usually employ-
ing the Viterbi algorithm) [1]. However, overwhelmingly, their often slight performance
disadvantage is nullified by their extreme structural simplicity, which translates into
great cost effectiveness.

1.2.2 Decision Feedback Equalization
This thesis deals primarily with decision feedback equalizers. To understand the basic
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operation of this simple non-linear structure it suffices, we believe, to look at a simple
low order example. The example consists of an idealized three tap linear sampled
model of a channel given by h0 + h1q

−1 + h2q
−2, where q−1 is a one sample period

delay operator. The input sequence {ak} takes binary values ak ∈ {−1,+1} and
k ∈ {0, 1, 2, . . .} is the discrete time index labelling the sampling instants (in this
thesis we only work in discrete time).

Fig.1.2 The Idea Behind Decision Feedback Equalization.

In motivating the DFE structure consider the fictitious system in Fig.1.2a. The
input data ak is passed through two linear systems, the upper being the simple three
tap channel model and the lower a model of the postcursor ISI (defined in Fig.1.1) of
the same channel (here we regard h0 > 0 as the cursor, i.e., the weight carrying the
desired information). Clearly the output of the summation will be h0ak after which,
passing through a signum slicer, we obtain the output ãk = ak (simple generalizations
to multilevel, non-binary alphabets are possible). So ak is both the input and output
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(here we have made the first and hopefully the last mistake in the thesis which we
will explain in the next paragraph). Given this information we could just as easily
feed the postcursor ISI model h1q

−1 + h2q
−2 with the system output as is done in

Fig.1.2b. That part of Fig.1.2b excluding the channel (shown boxed) is precisely the
perfectly tuned 2 tap DFE. (Higher order DFEs take an analogous form.) Clearly its
basic action is to model and cancel channel postcursor ISI.

This example can serve to highlight some of the basic operational problems with
the DFE. First we reconsider Fig.1.2a. At time periods k = 0 and k = 1 the output
ãk need not be the same as the input ak (as we suggested above) because the initial
conditions (modelled at time k = 0) in the two tap delay line need not correspond to
the initial conditions of the ISI in the channel. However such a problem does not exist
for k ≥ 2 where the output satisfies ãk = ak, k ≥ 2, as is easily seen. Therefore after
two time steps we can be confident the output is correct because any initial condition
mismatch (error condition) is flushed out.

This initial condition problem is far more acute in Fig.1.2b and destroys our
confidence that the two systems in Fig.1.2 are truly equivalent. To see this, suppose
we have arbitrary initial conditions in the two tap delay line section of the DFE in
Fig.1.2b. This system does not generally have the property that errors are flushed out
in finite time; indeed, now the possibility arises that output errors âk 6= ak, which are
fed back into the delay line, induce further (future) errors in a never ending recursion.
This is the well-known error propagation mechanism and it is non-trivial to analyze [2].
It is even possible for the errors to persist after any arbitrary length of time, for some
input sequences (and initial conditions), in which case we say the input sequence is
pathological [3]. Note we may regard channel noise as being the principal potential
source for a range of initial conditions in the DFE.

Further insights into the DFE can be gained from this example. Clearly what
is desirable from an operational point of view is for the DFE in Fig.1.2b to act like
the structure in Fig.1.2a, in the sense that any initial error condition is flushed out
in a finite time. What will become clearer from this thesis is that this is precisely a
stability notion [3] lending itself to treatment by standard techniques in input-output
stability. Evidently we are faced with a finite error recovery time problem. More
common linear notions of stability requiring the channel to be minimum phase do not
make much sense when we deal with the non-linear structure of the DFE as we will
see. Finally, we note that the example in Fig.1.2b also displays the tap values for a
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perfectly tuned DFE, setting an ideal objective for adaptation which we will describe
in §1.2.4.

1.2.3 Decision Directed Equalization
The second type of equalizer which we shall briefly consider in this thesis (and so our
review here will correspondingly be short) is the decision directed equalizer (DDE)
shown in Fig.1.3 (this terminology pertains more to its adaptive behaviour). The
first portion of the DDE consists of a linear equalizer d0 + d1q

−1 + d2q
−2 + . . . which

attempts to compensate for channel ISI by approximating an inverse to the channel
(the values for a tuned DDE have not been indicated). Like the DFE a slicer is
employed to recover an output sequence constrained to the symbol values, in this case
binary values âk ∈ {−1,+1}. (It is possible to generalize to multilevel, non-binary
alphabets.) Note that the use of a slicer relaxes the demands on the linear portion to
exactly form the inverse of the channel (or the inverse with some delay if the channel
is non-minimum phase). The DDE being basically a linear device is relatively simple
to analyze, in comparison to the non-linear recursive DFE. From such an analysis we
could describe its properties but here let us highlight just one specific defect.

Fig.1.3 Linear Channel and Decision Directed Equalizer.

The basic operation of the DDE is to model the channel inverse. Therefore, at
frequencies where the channel attenuation is high the DDE tends to enhance any
channel noise and this is a serious drawback not shared by the DFE [1]. However, our
analysis of the DDE in this thesis concerns more its behaviour during adaptation (for
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comparison with the DFE) and a description of this aspect of equalization we shall
briefly describe in §1.2.4.

A more common equalizer structure in fact merges the linear equalizer (Fig.1.3)
and the DFE, in a sense combining the good properties of both. The linear equalizer,
which precedes the DFE, functions to cancel the precursor ISI (Fig.1.1) without neces-
sitating channel full inversion (and thus is able to avoid excessive noise enhancement).
The remaining postcursor tail (Fig.1.1) is compensated for by the DFE (in a way that
avoids excessive error propagation). It is generally sufficient, as we do in most of this
thesis, to consider the DFE section in isolation (when considering error propagation)
because the channel and linear equalizer responses can always be convolved into a
single effective linear channel. Further, a possibility which arises in applications is
for the channel to not require the preceding linear equalizer because it exhibits little
precursor ISI, and so in this case the analysis is directly applicable [4].

1.2.4 Adaptive Equalization
The analysis of adaptation we perform in this thesis requires an absolute awareness
of the difference between adaptation with a training sequence and blind adaptation.
These are different techniques to obtain channel identification in adaptive equalization,
be it with a DFE or DDE.

Channel identification utilizes in a general context both input and output chan-
nel measurements [5]. Adaptive equalization with a training sequence is able to utilize
the input data information (knowledge of ak) by having the transmitter send a data
sequence {ak} known a priori to the equalizer for a limited time duration [1]. This
is equivalent in Fig.1.2b (DFE) or Fig.1.3 (DDE) to having available both the ak

and bk signals to identify the channel parameters. Fig.1.4 (DFE) shows the precise
arrangement which is used when implementing a training sequence (the description
of such adaptive systems is left to the body of the thesis) and the close relationship
with Fig.1.2b is apparent. Naturally such a training process implies a loss of efficiency
in terms of useful data actually sent and is also inappropriate in many practical ap-
plications. (Equally well, many applications require the use of a training sequence,
especially if the channel is rapidly varying which we do not consider [6].)

In contrast to equalization with a training sequence when only the measurements
available at the equalizer are used for identification, specifically bk and âk in Fig.1.2b
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Fig.1.4 Adaptation with a Training Sequence

(DFE) or Fig.1.3 (DDE), then the standard terminology is blind adaptive equaliza-
tion [7]. (However, a priori information regarding the statistics of the input ak, e.g.,
the joint distribution of the symbols is implicitly used.)

Blind adaptation as opposed to adaptation with a training sequence is more in
the spirit of equalization per se in the sense that only information at the receiver is
employed for adaptation. Philosophically speaking, precise knowledge of the channel
input data sequence by the receiver defeats the purpose of the equalization process.
Also the use of a training sequence has the effect of completely decoupling the adaptive
equalization into distinct identification and equalization modes. Blind equalization on
the other hand demands greater analytical tools for its understanding, and because of
this is not completely understood [8].

In blind adaptation of DFEs we note that the same output that via feedback
generates error propagation (thus bursts of errors) is used as the regressor in iden-
tification. This feature serves to distinguish the DFE from the DDE and forms one
focal point of the thesis. For this reason the literature contains a number of papers
concerning blind adaptation of DDEs but only one (that we are aware of) on blind
adaptation of DFEs [9]. We move onto a more comprehensive literature review in the
next section.

1.3 Literature Review
The contents of this section are organized as follows. We begin by reviewing the
various common equalizing structures which have been proposed for combatting ISI
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in linear digital communication channels with the view to locating within this large
set the purpose, function and advantages of the DFE. Then we move on to reviewing
works most relevant to our study dealing specifically with DFEs. We remark here that
it is impossible to do justice in generating a review of this form—important references
may be overlooked. In any case, our main aim is to give a flavour of the style of results
which may be found in the literature.

Early research efforts into developing equalizer structures concentrated on linear
signal processing structures followed by a thresholding device, i.e., essentially that
arrangement depicted in Fig.1.3. Such an arrangement was referred to as a linear
equalizer (but we prefer to call this a decision directed equalizer or DDE). Having
fixed the general structure the research concentrated on optimizing its performance.
In defining a performance objective for the (tap weights of the) equalizer Tufts [10]
used as a measure the mean square error (MSE) between the equalizer output sample
and the corresponding input sample. In this way he jointly optimized a transmit-
ter filter (which can be thought of as part of the channel) and the equalizer tap
weights (receiver). He also obtained the optimum receiver (fixing the transmitter) for
the minimum MSE (MMSE) under a zero forcing condition which demands complete
elimination of the ISI. When the number of taps in the linear equalizer is finite the
solution to this non-zero forcing condition for MMSE was given by Smith [11].

The main motivation for using mean square error performance measures for de-
termining optimum equalizing structure comes from the analytical simplifications that
this criterion affords. (In an adaptive context such measures also permit similar ad-
vantages [12] which we will return to discuss.) Less analytical tractability is possible
if one uses as a performance measure the probability of error PE . In this case the
optimal linear equalizing structure is described by parameters obtained by solving
coupled non-linear equations [13].

Naturally a broader class of equalizer structures is given by non-linear signal
processors (of which the DFE in Fig.1.2b is a special case). The comprehensive con-
sideration of such devices lies well outside the scope of this thesis but our intention
is to give a small taste of the various types of receivers which have been proposed
and ultimately utilized in practice. Examples of the criteria used in such devices are:
(i) maximum a posteriori probability for a finite length input sequence; (ii) maximum
a posteriori probability on a symbol by symbol basis; (iii) maximum likelihood symbol
by symbol detectors, and the list goes on. Generally these systems tend to be very
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complex non-linear systems, e.g., see [14,15].

A significant advance in terms of reducing implementation complexity within
the general class of non-linear equalizer structures considered above was made by
Forney [16]. In this equalizer a “whitened matched filter”, as a first stage, generates
at its output a sequence which theoretically contains sufficient statistics to estimate the
input data sequence. Then the efficient Viterbi Algorithm is employed in estimating
the maximum likelihood sequence estimate of the state and hence an estimate of the
original input sequence. (In this modelling the effective channel is FIR and its output
is corrupted by white gaussian noise—this enables a finite state Markov process to
model the output process.)

One disadvantage of the approach in [16] is that its complexity grows quickly
with the effective channel length making implementation for (effective) channels with
long impulse responses difficult. Based on a suggestion of Forney some authors [17,18]
presented equalizer structures which used a preliminary filter to shorten the effective
channel response. One then uses a less complex Viterbi Algorithm at the expense
of some loss in performance. So a trend was established which sort simpler non-
linear equalizer structures in a suboptimal framework. This is where the DFE fits
into the grand scheme of equalization—it is a suboptimal non-linear structure with
performance advantages over the linear equalizer (DDE) but with comparable low
implementation complexity (c.f., Fig.1.2b with Fig.1.3).

The research into DFEs has taken several directions. The early work concentrated
on deriving the optimum taps settings using MMSE, zero forcing, or probability of
error PE criteria [19-24] under a variety of constraints ranging from: the number of
feedback taps; the use of prefilters (linear equalizer as described in the end of §1.2.3);
and modulation schemes employed. The interesting feature of all these works, par-
ticulary with regard to our research, is that the analyses in all these references have
employed the assumption that all past decisions were error free. This assumption
seemed almost essential to obtain closed form analyses but it has the effect of re-
moving the non-linear recursive mechanism which is at the heart of the device. This
assumption analytically denies the existence of error propagation, the effect we saw in
the simple DFE in Fig.1.2b of §1.2.2.

This thesis weighs strongly the significance of error propagation in DFEs. Thus
it is appropriate here to discuss in more detail the DFE literature dealing specifically
with error propagation. Recall that error propagation is that complicated mechanism
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whereby data estimation errors (output errors) recursively influence the generation
of bursts of errors at later time instants (even in the absence of noise). The precise
description of this propagation mechanism explicitly involves the input sequence. Con-
sequently, given a stochastic model of the input, the standard characterization of error
propagation is probabilistic. Fundamental steps in defining precisely the probabilistic
model which describes error propagation were made by Zador [25], Duttweiler, Mazo
and Messerschmitt [2], and Cantoni and Butler [3]. They all showed that under the
usual independence assumption on the data sequence (and on the noise, if included)
that the standard mathematical notion of a finite state Markov process (FSMP) could
be used to derive performance bounds, either on the mean error recovery time, i.e.,
the period of time before the influence of an initial error state on the equalizer perfor-
mance is completely quenched (i.e., the time it takes for Fig.1.2b to have equivalent
behaviour to Fig.1.2a); or the error probability, i.e., the steady state relative frequency
of making errors given channel noise. Even without the independence assumption on
the driving stochastic input (the input data sequence and noise) Markov techniques
may be used as approximations [26,27].

We highlight some deficiencies in these papers intending in no way to diminish
the importance of these works. (Also at some of our work similar criticisms could be
levelled.) The performance bounds derived in both [2] and [3] suffer from two main
shortcomings. The first is that no theoretical indication is given for the tightness of
the bounds; the second is that the bounds convey little practical information because
they are generally hopelessly conservative (especially for DFEs with large numbers
of taps). Thus the bounds do not appear to match the good performance of DFEs
seen in practice. More recently, O’Reilly and de Oliveira Duarte [26,27] considered
the problem of approximating the performance bounds in [2] and gave a formal proce-
dure which reduced the dimension of the problem whilst maintaining the Markovian
modelling techniques. However even with this simplification the modelling remains
generally too complicated if the order of the DFE is high and the calculations become
involved (this problem is certainly true of some of our work).

Another problem with the results in the literature (based on FSMPs) is that the
performance bounds generally can only be calculated on a channel by channel basis.
No general non-trivial condition on the types of channels which lead to satisfactory be-
haviour of the DFE (in terms of error propagation) is given. So this type of important
practical information is lacking. (Some of the work in this thesis aims at correcting
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these deficiencies.)
The second major area of interest concerning DFEs (and, of course, equalizers in

general) is the analysis of adaptation. (A comprehensive review on adaptive equaliza-
tion is given in Qureshi [1].) Adaptation via training sequence methods lead to classical
analyses [20,21,28] and so the current theoretical interest lies with blind adaptation.
Analogous results for the DDE have indicated great problems for blind adaptation
exist, specifically convergence to unequalizing equilibria and related defects [29,30].
No globally converging blind algorithm has yet been found for linear equalization ex-
cept when the data takes impractical input distributions [7,8]. The situation for blind
DFE adaptation is less well understood and only preliminary investigations have been
made [9]. One can anticipate or conjecture problems analogous to the DDE situation
but an analysis, unlike the linear case, needs to contend with error propagation and
the problem looks formidable. Blind adaptation for DFEs is poorly understood, so
there exists a dire need to have some results in this subject area. The problem of blind
adaptation is one focal point of this thesis.

1.4 Outline of the Thesis
1.4.1 Overview
This thesis studies the DFE and to a lesser extent the better understood DDE. These
investigations were prompted by an applications demand which highlighted a thin
theoretical coverage of some of the operational aspects of DFEs.

The subject areas (and rough chronological order) of the thesis cover a study of
error propagation, the effects of noise, blind adaptation, and blind adaptation con-
vergence tests. Some tools used in the thesis are: finite state Markov processes [2],
averaging theory [31] and input-output stability [32].

The following subsection reviews what might be found in each of the four technical
chapters, 2 to 5. (This discussion is often specific and may be safely skimmed over.)
The final section (§1.5) gives a point summary of our main contributions.

1.4.2 Contents and Contributions of Thesis
Chapter 2: examines the behaviour of a binary DFE when its parameters are fixed
at the ideal tuned values (which might have resulted after an adaptive phase of opera-
tion). The ideal values for the DFE parameters are precisely those which are identical
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with the postcursor tail of the dispersive channel, see §1.2.3. Our investigation takes
a classical form [2,3] and the subject of the study is error propagation. Chapter 2 par-
titions itself according to the two most conspicuous manifestations of the detrimental
effects of error propagation: firstly, the analysis of error recovery times in the absence
of noise; and secondly, the analysis of error probability performance in the presence
of noise.

The now classical basis of the analysis of error propagation in DFEs [2,3,25-27]
centres on applying the theory of finite state Markov processes (FSMPs). This is true
also of our work here in Chapter 2. However we adopt an apparently redundant, higher
dimensional model. This affords several advantages. Our first contribution is to define
precisely how the channel parameters determine the stochastic dynamical properties
of the DFE. It is shown that for a given length of DFE tapped delay line (modelling
the significant ISI in the channel) the parameter space may be partitioned into a finite
set of equivalence classes (polytopes) which can be identified in a one-to-one way
with a finite set of FSMPs. This is really just the mathematical formulation of the
intuitive notion that the DFE quantizer (Fig.1.2b) has insensitivity to its argument.
Attention is then focussed on those equivalence classes which lead to extremes in
behaviour. Indeed, we show that the conservative bounding procedures found in early
works [2,3] correspond to realizing the worst case equivalence class. For example, in
[2] one finds bounds on the error probability (asymptotically with small noise) which
are proportional to 2N where N is an effective channel length; in [3] the mean error
recovery time is bounded in terms of the same exponential. We display channels
where these bounds are actually achieved. For example, one can get a figure like 1010

years for a realizable mean error recovery time for a DFE which, evidently, is totally
impractical. We also show minimum phaseness, as an imposition on the channel class,
does not necessarily guarantee lower bounds.

In the sense that we construct equivalence classes of channel which: (i) realize
the error recovery time bounds in [3], (ii) realize the error probability bounds in [2],
we say that the results are tight. This resolves some open problems raised in [2,3].
So our analysis indicates why the results in [2,3] cannot be improved on (without
imposing further hypotheses, stronger than minimum phaseness), and drives home the
point that DFEs are useful devices only on some restricted class of channel models—
hopefully, models matching well with physical reality. Chapter 2 also gives a detailed
classification of channel models along with a low order example.
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The particular model we adopt for the FSMP makes a classification of pathological
input sequences (§1.2.2), i.e., those input sequences for which decision errors are always
made after any arbitrary length of time, particularly transparent. These sequences,
which are a function of the channel parameters, in a sense are the ones to be avoided
if good/rapid error recovery performance in practice is desired. We use graphical
methods to show they need not be periodic in structure. This classification is another
contribution.

Statistical calculations comprise the balance of Chapter 2, e.g., we give formulae
for the mean and variance of the error recovery times and an asymptotically tight
bound on the probability of recovering from an arbitrary error state within a given
time. Computation of error probability bounds follows a similar line. Overall our
work stresses methods giving constructions rather than straight existence proofs, and
highlights the need for imposing stronger hypotheses on the channel model to achieve
results observed and demanded in practice. The results in Chapter 2 have been pub-
lished in [33-35].

Chapter 3: looks at the blind adaptation of binary DFEs. We examine this simplest
non-trivial system which exposes the influence of error propagation on adaptation.
Comparisons are made to the simpler and better understood blind DDE [6-8,29,30].
The analysis in essence combines FSMPs (with their associated polytopes to describe
the output statistics as a function of the adapting tap parameters) with averaging
theory [31] (to describe the underlying drift mechanism of the adaptation). Our con-
tribution, apart from developing the first apparently accurate model for the behaviour
of this simple blind system, is to show clearly the mechanism behind the convergence
of the parameter values to undesirable settings where the equalizer performs poorly in
an error probability sense (even in the absence of noise). It is the output correlation
statistics distorted by error propagation which lead to these undesirable equilibria.
Roughly analogous results are known for the DDE (a device which, however, does not
suffer from error propagation) [29,30].

Classification of equilibria is a major subject area of Chapter 3. Delay-type equi-
libria, i.e., those leading to output decision sequences which are a simple delay of the
input (along with a possible sign-inversion) are intensively studied and characterized.
The details involve fiddly questions about the structure of the underlying FSMP. How-
ever, ultimately, the conditions under which delay-equilibria exist are very simple to
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state and test. These tests involve only simple sums on the channel impulse response
coefficients.

Important conjectures are raised which are mathematically equivalent to questions
of reachability of various closed subsets of the underlying FSMP, i.e., the manner in
which input data sequence can transfer the DFE system to different states. The
resolution of these conjectures is likely to be far from easy. Failed attempts to solve
one of these conjectures led to the closely related results on the DDE to be found
in Chapter 5 and these results are important in at least two contexts—as tests for
convergence, and as implying the existence of well-behaved globally converging blind
algorithms.

The latter part of Chapter 3 examines sign-error blind algorithms. Effects of
quantizing the error signals on blind adaptation are investigated and these results
lead to accurate predictions of the behaviour for a simple example. A closely related
area of research is the use of sign-error algorithms for adaptive filtering [36]. Some of
the material in Chapter 3 has been published in [37-40].

Chapter 4: returns to the error propagation problem [2] but with new techniques
and a more general setting (required by our analysis of adaptation in Chapter 3). It
presents a significant advance on the standard FSMP analyses met before. Firstly
the techniques lend themselves readily to the non-ideal DFE where the channel is
IIR (or FIR) but the DFE is only FIR. Second, the DFE parameter settings need
not be close to the desired ideal values—how close they must be is precisely defined.
Third, statistical models for the input are abandoned in favour of an implicit worst
case analysis. So the sometimes awkward, analytically difficult stochastic modelling
reflected in [2,3,33] is not needed. Therefore the recovery time bounds derived are
absolute maxima regardless of the particular input sequence (driving the system)
and regardless of the initial error condition (which initiates the error propagation).
(This analysis is therefore valid if the input sequence is correlated which occurs in
some applications.) These results are achieved by imposing stronger hypotheses on
the channel model to align with what might be expected in practice (this approach is
necessary as we highlight in Chapter 2). The condition we impose on the channel model
has a simple description which says the real part of the channel frequency response
(modulo a phase shift associated with a delay) needs to be sufficiently positive, i.e., a
strictly positive real condition. Our techniques use passivity ideas [32] and the notions
of stability first enunciated in [3].
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Standard techniques from input-output stability (of which passivity is a special
case) that we draw on are: (i) the use of loop transformations, and (ii) the theory of
multipliers. The first technique enables us to cast a finite error recovery time DFE
problem (§1.2.2) in the framework of control stability ideas. The use of multipliers is
used to obtain explicit bounds and convergence rates from the analysis. Then we use
tools related to Parseval’s Theorem to put the results into the frequency domain [32].

Some of the more detailed investigations that we undertake include the study
of error propagation defined for delay-like behaviour. This possibility was largely
ignored in the classical references. We develop all of the necessary theory to cover this
interesting case.

In Chapter 4 we compute explicit error recovery bounds and present examples
throughout our analysis, including a case which has appeared in the literature [4].
Another example shows the flexibility of the general technique as demonstrated by a
timing phase sensitivity study for the DFE, which can be interpreted as a robustness
result. This complements a related (but different) classical result which relied on the
strong assumption of the DFE never making incorrect decisions [40]. The analysis is
also carried out for the M -ary case with comparable results to the binary case. Our
investigations of this work in Chapter 4 have been reported in [42-44].

Chapter 5: studies the existence of convergence tests for blind adaptation. A prob-
lem identified in Chapter 3 concerns the existence of undesirable settings of the DFE
parameters where blind adaptation hangs. Clearly it would be desirable to have a
means of determining whether or not the equilibrium of the adaptation was one cor-
responding to correct operation of the equalizer. Blind adaptation demands that only
signals available at the equalizer be used, and so in asking for blind convergence tests
only these same signals can sensibly be used.

The M -ary DDE forms our main object for study because it is intrinsically a
simpler device than the DFE and we are able to perform a complete analysis. In this
case we demonstrate that simple correlation and distribution tests suffice to guarantee
tap convergence to a desirable setting. In the DFE case we establish a test for a one
tap binary DFE leaving the general question of existence of such blind DFE tests as
a conjecture needing more advanced techniques for verification.

This theory is strongly motivated by conjectures and analysis to be found in
Chapter 3. However the work also connects with ideas of the existence of blind algo-
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rithms which converge globally to equalizing equilibria [7,30]. The material found in
Chapter 5 has been reported in [45].

In overviewing the style of results, we see our work stressing the desire to include
error propagation effects into all facets of our analysis into DFEs. This represents
a considerable challenge as it is an effect born of non-linearity and recursion. To
highlight that recursion is intrinsically a subject area of deep conceptual problems we
need only refer the reader to [46, §1.4].

1.5 Point Summary of Contributions
A summary of the major contributions of this thesis follows. Note that each chapter
includes its own more detailed summary in its conclusions.

• Refinement of stochastic modelling techniques for DFEs.

• Determination of the effects of the channel parameters on the ideal DFE perfor-
mance.

• Proof of the tightness of error recovery time bounds found in the literature.

• Classification of pathological input sequences.

• Proof of the tightness of error probability bounds found in the literature.

• Analysis of blind adaptation of DFEs.

• Explanation of the mechanism behind undesirable convergence of blind adaptive
DFEs.

• Classification of equilibria for blind DFE adaptation.

• Analysis of delay-like equilibria.

• Analysis of sign-error blind adaptive algorithms and generalizations.

• New techniques and improved bounds for error recovery analysis which relate well
with practice.
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• Proof of good properties of exponential impulse response channels.

• Proof of good properties of channels which satisfy a positive real frequency domain
condition.

• Convergence rates and explicit bounds on DFE error recovery.

• Analysis of finite recovery time sensitivity to timing phase.

• Construction of blind adaptation convergence tests for DDEs and low order DFEs.
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CHAPTER

2. DFE ERROR
RECOVERY ANALYSIS

Aim: To present a general analysis of error propagation
in tuned decision feedback equalizers and establish
tight theoretical bounds on their performance.

2.1 Introduction
In the study of decision feedback equalizers (DFEs) we can identify two open problem
areas. The first is the subject of investigation in this chapter (and Chapter 4). It
concerns the analysis of the mechanism whereby errors in a feedback structure induce
further errors under recursion and non-linearity, an effect termed error propagation.
The second problem area concerns blind adaptation in which the analysis needs to take
into account the way that error propagation distorts and interacts with adaptation.
This is the subject of Chapter 3. This dependence of the analysis of blind adaptation
on the study of error propagation strongly motivates our work here.

Our aim is to present some error recovery properties of DFEs in terms of the
parameters describing a communication channel. We show that the non-linear deci-
sion function in the DFE receiver has the effect of partitioning the space of channel
parameters into a finite number of sets when the channel can be modelled (or approx-
imated) by a finite impulse response (FIR) filter. We show that by examining this
partition one is led naturally to classify some of the important non-adaptive properties
of DFEs namely: (i) the error recovery time statistics; (ii) the input data sequences
which result in arbitrarily long recovery times; and (iii) the identification of channels
which are inappropriate for the use of DFEs as equalizers.

Error recovery and error propagation effects of DFEs have been the subject of
several papers and our work forms a natural extension of previous ideas. Duttweiler,
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Mazo and Messerschmitt [1] determine upper bounds on the steady state error prob-
ability of the DFE in terms of the probability of error in the absence of past decision
errors. This bound is valid for arbitrary channels but questions regarding tightness
were left open. More recently, O’Reilly and de Oliveira Duarte [2,3] extended the
techniques and results in [1] by developing a procedure which gives upper and lower
bounds on the steady state error statistics and recovery time statistics for a given
channel. They are motivated by the need to reduce the computational effort associ-
ated with doing an exact calculation. (Their results are also valid for multilevel data
and correlated noise.) A different approach to the stochastic analysis of DFEs was
given by Cantoni and Butler [4,5] who gave a bound on the expected error recovery
time which is also valid for arbitrary channels and the presence of noise. They include
a discussion on the input sequences which result in poor DFE recovery performance.
These references all use ideas based on finite state Markov processes (FSMPs) (see
also [6]). This is true also of the analysis in this chapter [7,8].

Our contribution, in the first instance, is to analyze the DFE in terms of the
noiseless (high signal to noise ratio) communication channel, and to show precisely how
the channel parameters affect the stochastic dynamics of DFEs [7]. We provide exact
calculations for the classes of channel which in our opinion are of greatest theoretical
and practical interest. We emphasize that the stochastic analysis of DFEs can be
conceptually reduced to the understanding of the one-to-one correspondence between
disjoint polytopes in the space of channel parameters and a set of FSMPs (or more
generally a set of state transition diagrams). Our results extend, generalize and clarify
the important contributions in [4].

With the inclusion of noise into the analysis our contribution is not so much to
extend the techniques and results found in [1-3] but rather to contrive noisy channels
which realize the upper bounds in [1], thereby settling the open questions regarding
tightness [8]. (These bounds are realized by manipulating the channel parameters
typically in the presence of small noise, rather than by taking the limit as the noise
variance increases [4].) It is not our intention to suggest that such contrived channels
will or do arise in practice (although it is not clear that they do not). Rather, the
merit of our results rests in showing the need for imposing stronger hypotheses in
characterizing the channel parameters for practical systems (see Chapter 4). This
would enable tighter bounds on the error probability to be derived, thereby better
reflecting the DFE performance to be expected in practice. However, we argue that
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imposing a minimum phase property on the (high signal to noise ratio) channels does
not appear strong enough to guarantee improvements on the error rate bounds in [1].
Another consequence of our analysis is the suggestion that by adding dither to a DFE
one may improve its error performance. Both these latter points seem, at least initially,
to be counter-intuitive [8].

Finally, the explicit use of the recovery time bound derived by Cantoni and Butler
[4,5] to give a straightforward proof of an error probability bound in [1], illuminates
the non-trivial but close connection between the two important early contributions to
the analysis of the error propagation mechanism in DFEs.

In this chapter we work exclusively using binary input sequences. The ideas
could easily be generalized to handle M -ary inputs, at least in principle (see e.g., [2-
5]). Later, in Chapter 4, we treat some closely related M -ary problems. (However in
Chapter 4 we will return to look at error propagation without using an analysis based
on FSMPs.)

We preview the contents of this chapter by section. Section 2.2 contains our
definitions and a development of FSMPs used to analyze the non-adaptive stochastic
dynamics of DFEs. The N = 2 tap DFE is treated in §2.3. By extending the results
and concepts found in §2.3, we are able to treat in §2.4 the general N ≥ 2 tap DFE.
Then in §2.5 we treat the case where we have large noise, and this is complemented
in §2.6 where we treat the asymptotic high signal to noise ratio case. A summary and
discussion may be found in the conclusions §2.7.

2.2 Problem Formulation
2.2.1 System Definitions
The system under consideration is shown in Fig.2.1. It shows the communication chan-
nel modelled as a finite impulse response filter (FIR) driven by an equi-probable inde-
pendent binary sequence {ak}. (In Fig.2.1, q−1 denotes the delay operator.) The chan-
nel will be represented by a cursor h0 > 0 paired with a tail H ∆= (h1, h2, . . . , hN )′ ∈
IRN (here v′ represents the transpose of v). A discussion of a wide class of physical
channels (defined by those which are minimum phase), which generally consist of a
dominant cursor followed, but not preceded, by a series of echoes (the tail), is given
by Clarke [9]. He advocates the use of DFEs for the equalization of these channels.
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Fig.2.1 Channel and Decision Feedback Equalizer Model.

The effect of the channel tail is to introduce intersymbol interference (ISI) which
corrupts the information carried with the cursor h0, as in Fig.2.1. Additive channel
noise nk may also contaminate the received signal. The receiver structure attempts to
remove the introduced ISI by modelling the channel tail with a tapped delay line which
is represented by the vector of weights D ∆= (d1, d2, . . . , dN )′ ∈ IRN . Using estimates
of the data âk rather than the actual data ak, the channel ISI is reconstructed and
cancelled at the receiver input bk.

The data estimates âk are generated by a signum function sgn(·) which produces
−1 for negative arguments and +1 otherwise (see Fig.2.1). The fundamental decision
equation representing the output of the DFE is then given by

âk = sgn(h0ak +
N∑
i=1

hiak−i −
N∑
i=1

diâk−i + nk), h0 > 0. (2.1)

This equation represents an idealization since it assumes that the length of the DFE
tapped delay line equals the length of the channel tail (both N). Of course what
is important in practice is that the number of taps in the DFE is sufficiently large
to model the significant ISI generated by the channel. One can think of lumping
any residual ISI caused by undermodelling (N too small) into the additive noise nk
implying (2.1) remains valid under suitable reinterpretation.

In a later section we treat the case where the channel noise in (2.1) is significant.
In the mean time we take nk ≡ 0 noting this will be a good pointer to the high signal-
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to-noise ratio situation which is of greatest practical interest. Also it is well known
that an attractive property of DFEs is that they provide a certain margin against
noise because of the insensitivity of the signum function.

We assume the feedback tap weights take ideal tuned values, i.e., D = H, along
with the noiselessness assumption. Under these conditions (2.1) simplifies to

âk = sgn
(
h0ak +

N∑
i=1

hi(ak−i − âk−i)
)
, h0 > 0 (2.2)

The idealized assumptions we have presented here can be relaxed. However, at this
early stage of development we wish to keep things simple. In Chapter 4 we will see a
more complete analysis but using different techniques.

Error recovery becomes an object of concern when previous decisions are incor-
rect since this increases the likelihood of further errors. In this situation the ISI is
incorrectly cancelled and consequently an eye diagram closes [1]. This effect, termed
error propagation, may result in unsatisfactory performance—typically as measured
by error rates when noise is present or by the time it takes for the DFE to recover
from an initial error condition (with or without noise).

Further, many DFE applications are adaptive and involve the adjustment of D
on line in response to errors. It is important that the error recovery properties and
the time scales of the correctly tuned DFE be understood before we can proceed with
a sensible analysis of an adaptive DFE (as we will see in Chapter 3).

2.2.2 Finite State Markov Processes
Our analysis of the recovery statistics of DFEs uses the theory of finite state Markov
processes (FSMPs) as have [1-6]. In modelling the DFE, we can assign a Markov state
to the 2N binary vector of past data (channel states) and past decisions (DFE tapped
delay line states) as follows:

Xk
∆= (ak−1, . . . , ak−N , âk−1, . . . , âk−N )′ ∈ ZZ 2N . (2.3)

Each component can take on two values; therefore, we have 4N different Markov state
vectors (2.3) which we refer to as atomic states. The complete set of atomic states
will be denoted by Ω. The Markovian property arises since the input binary stream
is a sequence of independent, equi-probable binary symbols, i.e., {ak} is a sequence of
i.i.d. random variables.
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We remark that this particular definition of an FSMP has not been used pre-
viously in the DFE literature. We will show that by aggregating atomic states, one
obtains the FSMPs which appear in [1-5]. Further advantages of the 4N atomic state
Markov process are: (i) in the analysis of pathological input sequences (§2.3.2); and
(ii) without modification it may be used to analyze the case when D 6= H (e.g.,
with adaptive DFEs—Chapter 3). One advantage of aggregated FSMPs is reduced
complexity because of lower dimensionality.

We introduce an ordering of the atomic states which will be particularly useful in
§2.3.2. Any logical scheme can be used for this purpose, and we choose the following
lexicographic rule which assigns a number <i> to an atomic state Xk, viz.,

<i> ∆=
1
2
(
(22N−1, 22N−2, . . . , 4, 2, 1).Xk + 22N − 1

)
, (2.4)

e.g., with N = 2, Xk = (−1, +1, +1, +1)′ gets coded as <i> = 7. In words, this
cryptic formula simply gives the number associated with state Xk (2.3) considered
as a 2N -bit binary number with ak−1 the most significant bit, and âk−N the least
significant bit (with −1 7→ 0). As a consequence <i> ∈ {0, 1, . . . , 4N − 1}.

It is both convenient and computationally advantageous to aggregate the atomic
states Xk into Markov states forming a new process. Such an aggregation forms an
FSMP (capable of exactly modelling the transient properties of the atomic FSMP) if
and only if the following properties holds (in all pairs of aggregated states U and V). If
the probability is p for one particular atomic state in an aggregated state U to transit
to the set of atomic states in aggregated state V, then all atomic states in U transit
to V with the same probability p. In the DFE problem that we consider, such an
aggregation is possible since the DFE tapped delay line weights correspond precisely
to the channel tail. This implies that atomic states with particular past decision error
patterns need not be distinguished, e.g., a correct decision when ak = −1 has precisely
the same effect on the distribution of future decisions as a correct decision when the
data is ak = +1. Using this observation, one can derive an FSMP where the states
are

Ek
∆= (ek−1, ek−2, . . . , ek−N )′ ∈ ZZN (2.5a)

where
ek

∆= ak − âk. (2.5b)

These vectors will be referred to as E-states (short for error states). Each component
of this vector can take a value in {−2, 0, +2}; hence, there are 3N E-states. This
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error model was used in [1,2,4,5] to model the stochastic dynamics of the DFE. For
our purposes we introduce a yet more efficient structure which may be derived from
the error model. We show that we can roughly halve the number of states in the error
model by exploiting the symmetry in the ak symbol probability density function.

The new aggregation pairs off the two E-states Ek and −Ek defining a P -state
(short for paired state). If Ek = 0, then this forms a P -state by itself. This new FSMP
has (3N + 1)/2 P -states, which means for N = 2, we can model the DFE dynamics
with 5 states rather than 9 or 16. Proof that the resulting process is Markovian follows
from two properties:

Property 2.1: The input ak takes values in {+1,−1} with equal probability.

Property 2.2: State Ek transits to state Ek+1 if and only if state −Ek transits to

state −Ek+1 when the datum ak is of opposite sign.

Proof: Let S ∈ IRN×N be the shift matrix of subdiagonal ones; then from the

definition of Ek (2.5a), we have the simple recursive formula [4]

Ek+1 = S.Ek +
(
ak − sgn(h0ak + H ′Ek), 0, 0, . . . , 0

)′ (2.6a)

where we have used (2.5a) to rewrite (2.2) compactly as

âk = sgn(h0ak + H ′Ek). (2.6b)

Multiplying both sides of (2.6a) through by −1 we get

−Ek+1 = S.(−Ek) +
(
− ak − sgn(h0(−ak) + H ′(−Ek)), 0, 0, . . . , 0

)′ (2.6c)

and this can be readily interpreted as Property 2.2.

Hence, there is a one-to-one correspondence between an atomic state belonging to Ek
and an atomic state belonging to −Ek. Both of these atomic states belong to the same
initial P -state {Ek,−Ek} and transit to the same destination P -state {Ek+1,−Ek+1}
(with data of the opposite sign). Because of Property 2.1, the transition probabilities
are the same despite the transitions being made on data symbols with opposite signs.
Hence the P -states form an FSMP as claimed.

A salient feature of both the error system and the P -state system is that the
aggregation has created a single absorbing state corresponding to a closed set of 2N
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Fig.2.2 Atomic States Generic Form Representing Behaviour of DFE.

atomic states. These atomic states satisfy âk−i = ak−i, ∀i ∈ {0, 1, . . . , N}, and
they form a closed set since the only transitions from one such atomic state are to
another in the set. We refer to this absorbing state as A (for absorbing), and it has
the simple interpretation that if the system is in state A, then we have the last N
decisions correct, and hence all future decisions will be correct. Naturally, once in
A, the system stays in A (in the absence of further noise disturbances) and we say
the DFE has recovered. We will denote the set of atomic states excluding A, i.e., the
complement of A, by Ω \A. An abstract representation of these definitions is given in
Fig.2.2†.

We make a further definition:

Definition: The error recovery timeis the first time k such that state Xk ∈ A, given

some initial condition X0 ∈ Ω \A.

(Note if X0 ∈ A, then this is not an error state, so the error recovery time is defined
as zero.) We model the initial error condition, e.g., a single noise induced error, in

†
Flies feasting on a fried egg.
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the DFE as an initial error distribution π0 across the atomic states. Without loss of
generality, we take the time of this disturbance as k = 0. For time k > 0, we assume
the only subsequent decision errors are internally generated by the DFE through error
propagation [1].

In a natural way, a distribution across the atomic states induces a distribution
across the aggregated states π0, through a matrix B,

π0 = B.π0 (2.7)

where Bij
∆= 1 if <j> belongs to aggregated state i, and 0 otherwise. If we choose

the P -state aggregation, B would have dimensions (3N + 1)/2 by 4N . When working
with an aggregated state model, we will denote that part of the induced distribution
excluding set A by π0

∗, i.e., the partial distribution across Ω\A. Therefore we partition
π0 as follows

π0 =

 π0
∗

σ

 . (2.8)

Letting
∥∥·∥∥

1
denote the l1-norm, we have σ ∆= 1−

∥∥π0
∗∥∥

1
∈ IR, noting we have implicitly

ordered the aggregated states with A last.

Remarks:

(i) The main restriction with aggregating atomic states is that we lose information
by having our observations based on coarser objects, e.g., P -states rather than
atomic states. However, in studying DFE error recovery, we are mainly concerned
with observations on A and its complement Ω \A. These two sets are resolved by
the P -states. Therefore, some of our general results can be modelled by P -states.

(ii) The P -states appear to be the lowest order FSMP for which we can exactly model
the transient properties of DFEs. Lower order models appear in [1-3]. However,
these are incapable of exactly modelling the nonstationary stochastic dynamics
of DFEs on every channel.

2.3 Two Tap DFE
2.3.1 29 Classes of Channel
The decision equation governing the performance of the N = 2 tuned DFE is given
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from (2.2) by

âk = sgn(h0ak + h1ek−1 + h2ek−2), h0 > 0. (3.1)

The space of channel parameters (or equivalently, the space of tap parameters) will
be called H-space, corresponding in this case to IR2, within which lies H ∆= (h1, h2)′.
(The cursor h0 will be carried along implicitly or, equivalently, we could adopt a
channel normalization.)

The set of lines in H-space given by

{H ∈ IR2: h1t1 + h2t2 = h0} (3.2)

where (t1, t2) ∈
{
{−2, 0, +2}×{−2, 0, +2}

}
\(0, 0), define the thresholds or switch-

ing hyperplanes of the sgn(·) function in (3.1), and as such represent the boundaries
between regions in H-space where the performance of the DFE is fixed. So the DFE
performance does not depend continuously on H, but varies in a quantized fashion.
These regions are the intersection of half-planes with boundaries given in (3.2) and
therefore represent polytopes in IR2.

The eight boundaries of (3.2) partition H-space into the 29 polytopes of Fig.2.3.
(This figure contains addition information which we will describe later. For clarity
the bottom left insert shows the uncluttered polytope boundaries.) Hence, there are
only 29 classes of channels to be considered, up to an arbitrary scaling factor (note
how the cursor is represented in Fig.2.3).

Remarks:

(i) Two DFEs working on two different channels belonging to the same polytope,
subject to the same data sequence {ak} and initial conditions, have indistinguish-
able output sequences. For example, channels {h0 = 1, H = (0.55,−0.03)′} and
{h0 = 3, H = (5, 1.4)′} to a tuned binary DFE are equivalent.

(ii) With noise the position of the channel vector relative to the polytope boundary
has a bearing on the DFE behaviour.

2.3.2 Pathological Sequences
As noted in [4], there may exist “pathological” input data sequences {ak}, depending
on the polytope, for which by definition the DFE never recovers from an initial error
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Fig.2.3 The 29 Classes of Channel for N=2 and Their Statistics.

state, i.e., the absorbing group of atomic states A is never reached. In this situation
some decision errors must be made after any fixed but arbitrary time. However,
from a stochastic viewpoint, it was demonstrated in [4] that these sequences have
zero probability in the sense that the probability of the input sequence remaining
pathological decreases to zero with time.

Our aim is to classify the pathological sequences in terms of the polytopes for
N = 2. For brevity, our demonstration will be for one of the 29 polytopes, labelled V
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and shown shaded in Fig.2.3, which is defined by

V ∆=
{
H ∈ IR2: {h0 > 2h1} ∩ {h0 > −2h1} ∩ {h0 < 2h1 + 2h2}

∩ {h0 < 2h2 − 2h1}
}
. (3.3)

The remaining 28 polytopes may be treated in a similar fashion. (Generalizing the
result for N > 2 proceeds analogously. However, the calculations become increasingly
intractable the higher the order.)

We adopt the atomic FSMP consisting of the 16 atomic states indexed by (2.4)
to classify the pathological input sequences for polytope V. In Fig.2.4 we have shown
a restricted state transition diagram where the four atomic states in the absorbing set

A
∆= {<0>,<5>,<10>,<15>}

corresponding to recovery, have been deleted. Such a diagram encapsulates the com-
plete ensemble of pathological input data sequences (by definition). We note there are
an infinite number of periodic and aperiodic pathological input data sequences associ-
ated with polytope V, e.g., we have the periodic sequence {+1, +1, −1, −1, +1, . . .}
corresponding to the transitions <1>→ <8>→ <14>→ <7>→ <1> . . ., etc. The
reader may wish to verify that the following sequence, when we begin in state <1>, is
pathological and deliberately aperiodic (or apparently so): ak

∆= {+1, −1, −1, −1,
+1, +1, −1, +1, +1, −1, −1, −1, +1, +1, −1, +1, +1, +1, −1, +1, +1, +1, −1, −1,
+1, −1, −1, −1, +1, −1, −1, +1, +1, −1, −1, −1, +1, +1, −1, +1, +1, −1, −1, −1,
+1, +1, −1, +1, +1, +1, −1, +1, +1, +1, −1, −1, +1, −1, −1, −1, +1, +1, −1, −1,
+1, −1, −1, −1, +1, −1, −1, +1, +1, −1, −1, −1, +1, +1, −1, +1, +1, −1, −1, −1,
+1, +1, −1, +1, +1, +1, −1, +1, +1, +1, −1, −1, +1, −1, −1, −1, . . .}.

In Fig.2.4 we also delineate the critical (shaded) and non-critical (non-shaded)
atomic states of the polytope V. When in a non-critical state, the input datum is
essentially “DON’T CARE” and the system cannot recover in one step. This defines a
purely stochastic component of a pathological input sequence—the source of potential
aperiodicity. In a critical state, shown shaded in Fig.2.4, we have only a probability
of 1/2 of remaining pathological. For the 28 remaining polytopes we may have: (i)
no pathological input sequences; (ii) only periodic pathological input sequences; or
(iii) as in polytope V, both periodic and aperiodic pathological sequences. In the next
subsection we will determine to which of these three classes each of the 29 polytopes
belongs.
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Fig.2.4 Pathological Sequence Diagram for PolytopeV .

2.3.3 Finite Recovery Time Polytopes
In the previous subsection we referred to the existence of polytopes for which the set of
pathological sequences was empty. In view of the definition of pathological sequences,
this implies that after some fixed time k and for all input sequences, we must have
Xk ∈ A, i.e., a finite recovery time. (This recovery time is finitely bounded because
there are only a finite number of atomic states.) In this subsection we determine
necessary and sufficient conditions for an N = 2 polytope to have this property. In
[4] it was shown that a necessary condition on the channel parameters for there to
be no pathological sequences is that they lie in the triangle ACE of Fig.2.3. In the
following, we demonstrate that this is also a sufficient condition.

Theorem 2.3: A necessary and sufficient condition on the channel parameters, given

by the pair {h0, H}, for the DFE to have a bounded recovery time is H ∈ ACE

(Fig.2.3).

Proof: Define sets:

G01
∆= {<1>,<4>,<11>,<14>} where ek−1 = 0 and ek−2 6= 0

G10
∆= {<2>,<7>,<8>,<13>} where ek−1 6= 0 and ek−2 = 0
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G11
∆= {<3>,<6>,<9>,<12>} where ek−1 6= 0 and ek−2 6= 0

A
∆= {<0>,<5>,<10>,<15>} where ek−1 = 0 and ek−2 = 0.

In Fig.2.5 we have abstractly represented these sets along with possible (but not

certain) transitions, noting it is not a FSMP because the Markovian property gener-

ally does not hold. Referring to (3.1), if we constrain H to lie in the horizontal strip

R0
∆= {H:

∣∣2h2

∣∣ < h0}, and let Xk ∈ G01, then h0 >
∣∣h1ek−1 + h2ek−2

∣∣, whence

Xk−1 ∈ A, i.e., the DFE recovers (i.e., the path labelled a in Fig.2.5 is impossible for

channels in R0). Now if instead we let Xk ∈ {G10 ∪G11}, then either Xk+1 ∈ G11

or Xk+1 ∈ G01. In the latter case we get Xk+2 ∈ A. Hence any pathological se-

quence must consist only of transitions constrained within the set G11 (ignoring the

first transition). However, the only possible G11 → G11 → G11 → . . . transitions

are: (i) <3> → <3> → <3> → . . . and <12> → <12> → <12> → . . . for the

half-plane region R1
∆= {H: h0 < −2h1 − 2h2}; (ii) <6> → <9> → <6> → . . .

for the half-plane region R2
∆= {H: h0 < 2h1 − 2h2}. Note the region defined by

{H: R0\{R1∪R2}} is identical to the triangle ACE (Fig.2.3). Therefore there are

no pathological sequences inside triangle ACE. Given that being in triangle ACE

is a necessary condition on the channel parameters [4], then Theorem 2.3 follows.

Fig.2.5 Pictorial Representation of Sets Defined in Theorem 2.3.

Remarks:

(i) Triangle ACE defines the union of five polytopes (see Fig.2.3) which have an
empty set of pathological sequences. This region determines necessary and suffi-
cient conditions for stability as defined in [4]. The definition of stability given in
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[4] is precisely equivalent to the statement that any error recovery time is finite.
In Chapter 4 we will investigate further this stability question using passivity
techniques.

(ii) The six polytopes in {H: R0 \ {ACE}} have only pathological input sequences
which are periodic (see the sequences listed above in the proof of Theorem 2.3 for
the two regions R1 and R2). These six polytopes are shown lightly shaded in the
lower right insert in Fig.2.3.

(iii) The 18 polytopes in {H: IR2\R0}, including polytope V (3.3), have both periodic
and aperiodic pathological sequences since the non-critical set G10 is reachable
from set G01. (Recall, a set of atomic states is critical if A is reachable in one
step.) These 18 polytopes are shown heavily shaded in the lower right insert in
Fig.2.3.

In Fig.2.3 we have superimposed a region labelled M defining the class of (second
order) minimum phase channels (zeros inside the unit circle). It is interesting to note
that triangle ACE is contained wholly within M. We will return to relationship
between our channel classification and minimum phase channels in §2.4.4.

2.3.4 Mean Error Recovery Time
Pathological sequences represent the worst case situation since arbitrarily long recov-
ery times are possible. However, as pointed out in [4], pathological sequences have
a special structure which makes their occurrence among the ensemble of sequences
{ak} events of zero probability. This is implied by the upper bound derived in [4]
for the mean error recovery time. (We will have some more to say about the prob-
abilistic nature of pathological sequences in §2.4.5.) It therefore becomes relevant
to determine the statistical error recovery properties of DFEs rather than examine
improbable (pathological) behaviour.

The specific aims of this section are to demonstrate how the 29 polytopes (and
hence the particular class of channel) affect the mean and variance of the recovery time
and to give some general formulae for the recovery statistics. Each of the 29 polytopes
defines a different probability transition matrix P which describes the stochastic dy-
namics of the DFE for that class of channel. The FSMP we choose for our following
N = 2 example is the P -state system consisting of only five aggregated states.
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The probability transition matrix P and the associated induced initial error dis-
tribution π0 can always be represented in the following generic form (valid for any of
the aggregations of atomic states that we consider here):

P =

Q 0

r′ 1

 ; π0 =

 π0
∗

σ

 . (3.4)

where we order the aggregated states with A last, r is some positive vector, and Q

is a submatrix describing transitions between aggregated states belonging to Ω \ A
(Fig.2.2) which has eigenvalues satisfying

∣∣λi(Q)
∣∣ < 1. This non-trivial property of

the eigenvalues follows from the theory of non-negative (and stochastic) matrices [10],
as we now show. Theoretically it can be shown that the dominant eigenvalue of any
stochastic matrix P is unity. The multiplicity of this eigenvalue corresponds to the
number of irreducible closed subsets of the FSMP [11]. As will be shown in the proof
of Theorem 2.4 in §2.4.3, the state A is reachable from all atomic states in Ω \ A,
and as such, there are no closed subsets within Ω \ A. Only state A forms a closed
subset of the FSMP, and therefore the unity eigenvalue of P is simple. The remaining
eigenvalues of P are common to Q and this implies the eigenvalues satisfy

∣∣λi(Q)
∣∣ < 1.

Determining the recovery time is precisely a study of transitions made to the
absorbing state A. From the generic form (3.4), let matrix T be defined as

T
∆= (I−Q)−1. (3.5)

(Note, matrix T is non-singular because
∣∣λ(Q)

∣∣ < 1.) Then the mean and variance of
the absorption (recovery) time K can readily be evaluated to yield a standard result in
FSMPs. Let E{·} denote the expectation operator, then from [11, pp.89-99], the mean
µ(π0) ∆= E{K} and the variance σ2(π0) ∆= E{K2} − µ(π0)2 rewritten in our notation
become

µ(π0) = 1′T.π0
∗ (3.6a)

σ2(π0) = 1′(2T− I)T.π0
∗ − µ(π0)2 (3.6b)

where π0
∗ is determined from π0 by (2.7) and (2.8), and where 1 denotes the vector of

1’s of the appropriate dimension.
We now proceed to use (3.6a) and (3.6b) in calculating the first two moments of

the recovery time statistics for each of the 29 polytopes, where we assume an initial
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error distribution corresponding to (i) a single noise induced error πn0 , and (ii) a
uniform error distribution across the 16 atomic states, πu0

∆= 1
16

.1. These are the two
cases of greatest practical interest. The first models corruptive channel noise as a rare
event (a high signal to noise ratio approximation). The second models a startup of
the DFE where the N tap states âk−i, i ∈ {1, . . . , N} take arbitrary initial values
(independent of {ak}), e.g., during a reset or during power up.

We give an outline of the calculation for polytope V defined in (3.3) and shown
in Fig.2.3 (the remaining 28 polytopes can be handled similarly). With the index-
ing in (2.4) the atomic states form the following 5 P -states: P1

∆= {<3>,<12>-
}, P2

∆= {<2>,<7>,<8>,<13>}, P3
∆= {<6>,<9>}, P4

∆= {<1>,<4>,<11>-
, <14>} and A

∆= {<0>,<5>,<10>,<15>}. The probability transition matrix (in
the above ordering of P -states) for polytope V along with the noise induced error
distribution π0

n and the uniform error distribution π0
u are

P =


0 0 0.5 0 0
0 0 0 0.5 0

0.5 0 0 0 0
0.5 1 0.5 0 0

0 0 0 0.5 1

 , π0
n ∆=


0
1
0
0

0

 , π0
u ∆=


0.125
0.25
0.125
0.25

0.25

 . (3.7)

Note that with a single noise induced error we have ak−1 6= âk−1 and ak−2 = âk−2, and
this codes through (2.4) as one of four states in P2 . The uniform atomic distribution
induces a P -state distribution which has components in proportion to the cardinality
of the 5 P -states, i.e., 2:4:2:4:4 in the above ordering.

Substituting for Q and π0
∗ using (3.5) and (3.6) we get µk = 4 and σ2

k = 8 for the
first distribution, and µk = 3 and σ2

k = 10 for the second. The remaining 28 polytopes
can be handled similarly and Fig.2.3 summarizes the results for both distributions.
(Due to a symmetry in the recovery time statistics for both distributions with respect
to a sign change in h1, we have saved space by giving the statistics for πn0 on the
right side of the Fig.2.3 and those for πu0 on the left. For example, to determine the
statistics for πn0 for a “left” polytope we select the numbers in the mirror image “right”
polytope, etc.) We make the following comments based on Fig.2.3:

Remarks:

(i) The inner l1-ball BCDF (diameter h0) has the best recovery statistics of the 29
polytopes for the two distributions.
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(ii) For the uniform distribution (left hand entries), the maximum mean recovery time
of µk = 4 is associated with 8 symmetrically placed polytopes. We generalize this
observation in §2.4.3. (Note, some of the channels in these polytopes are minimum
phase.)

(iii) For the noise induced distribution (right hand entries), there are 5 polytopes
clustered about the origin with deterministic recovery behaviour (zero variances).
This shows that certain atomic states are unreachable from π0

∗ (unlike the uniform
distribution case). Therefore, conclusions regarding DFE performance based on
the single noise induced error distribution alone could be misleading.

(iv) There is a symmetry with respect to h1 sign change but not with respect to h2

sign change. In general, we can demonstrate that H-space displays an asymmetry
in the moments of the expected recovery time (for the two distributions consid-
ered) with respect to arbitrary sign changes of the components of H for N ≥ 2.
Therefore, the appearance of symmetry for h1 with N = 2 can be regarded as
anomalous.

In §2.4 we will have more to say on the polytopes where the slowest and quickest
recovery times have been observed, for the general N ≥ 2 case. Also, later in Chapter 4
we will investigate further those regions of parameter space for which the recovery time
is finite regardless of the initial conditions or the input {ak} sequence.

2.4 General N-Tap DFE
2.4.1 Subspace Results
Let H = (h1, h2, . . . , hN )′ be a tail of a channel and consider the subspace in IRN

formed by setting hi = 0 for i ∈ {3, 4, . . . , N}. This degenerate channel is identical to
the H = (h1, h2)′ channel in IR2. Hence, we can expect all the non-trivial properties
of the N = 2 DFE to be present in the general N > 2 DFE, e.g., the existence of
aperiodic pathological sequences, etc.

2.4.2 Finite Class of Channels
Here we generalize the results of §2.3.1. The decision equation (2.6b) is repeated here
for convenience,

âk = sgn(h0ak + H ′Ek), h0 > 0. (4.1)
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The 3N −1 hyperplanes which partition H-space into a finite number of polytopes are
given by the thresholds of the sgn(·) function, as follows,

{H ∈ IRN : H ′TN = h0} (4.2)

where TN = (t1, t2, . . . , tN )′ ∈ ZZN such that (t1, t2, . . . , tN ) ∈
{
{−2, 0, +2} ×

{−2, 0, +2} × . . . × {−2, 0, +2} \ (0, 0, . . . , 0). (Note the cardinality of this set
is 3N − 1.) The word polytope is reserved in this work for the smallest regions in IRN

generated by the boundaries given in (4.2).

It is a difficult problem to determine the exact number of polytopes which result
in this partition of IRN . However, the number of polytopes ZN , can be bounded as
follows,

2N .N ! < ZN < 3(3N−1)/2. (4.3)

The upper bound follows by considering the (3N − 1)/2 pairs of parallel hyperplanes
which each divide IRN into three regions. We can then generate a unique ternary
number corresponding to each polytope where each digit identifies in which of the
three regions the polytope lies. This (conservative) upper bound simply gives the
total number of combinations of (3N − 1)/2 ternary digits. The lower bound is easily
deduced from arguments given in the next section (see Theorem 2.4; also further
details are given in [7]). The size of ZN for N ≥ 3 prohibits a complete classification
of channels. Hence it is important to identify those polytopes which represent the
extremes in DFE behaviour and whether these extremes are physically relevant. In
the next subsection we examine precisely those restricted classes of channel which
represent the best and worst in terms of the DFE mean recovery time performance.

2.4.3 Mean Recovery Time Bounds
Cantoni et al., [4] address the problem of bounding the mean recovery time and by
using the theory of success runs they demonstrated that an upper bound was (in their
notation) µ( 1

2 , N) = 2(2N − 1). We will show that this is the tight bound when we
have the worst case class of channel (to be defined) and a single noise induced error.
(This bound is tight in the sense that we define channels which realize the value of the
bound.) The aims of this section are to give both the tight upper and lower bounds
for the mean recovery time and to determine some of the corresponding polytopes,
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i.e., classes of channel which realize these bounds. As in the previous section we will
consider the two (same) initial error distributions of greatest practical interest.

We begin with some definitions before deriving our main result (Theorem 2.4). Let
PB denote the probability of a correct decision common to all atomic states belonging
to some set B, e.g., if we set B = A (the absorbing group of states) we have PA = 1
(valid for all polytopes). We are interested in two cases:

(i) The polytopes where PΩ\A = 1, i.e., before recovery the DFE always makes the
correct decision.

(ii) The polytopes where PΩ\A = 1
2 , i.e., before recovery the decision will be correct

or incorrect with equal probability.

Theorem 2.4: (a) There exists a single polytope where PΩ\A = 1.

(b) There exists at least 2N .N ! polytopes where PΩ\A = 1
2 .

Proof: (a) In polytope {H ∈ IRN : h0 > 2.
∥∥H∥∥

1
} we have h0 > max

Ek
(H ′Ek),

i.e., the residual ISI can never be of sufficient magnitude to corrupt the decision.

Therefore, directly from (4.1), this implies PΩ\A = 1. Conversely, if the channel

lies in the region {H ∈ IRN : h0 < 2.
∥∥H∥∥

1
}, then there exists at least one TN (4.2)

such that
∣∣H ′Ek∣∣ > h0 and so when the system is in state Ek = TN it makes an

incorrect decision with ak = − sgn(H ′TN ).
(b) If ak = sgn(H ′Ek) then âk = ak, see (4.1). (This proves set A is always

reachable in at most N steps from all atomic states. Further, this implies that

matrix Q defined in (3.4) has all its eigenvalues bounded above in magnitude by

unity, since there is always a non-zero probability of exiting from Ω\A.) Therefore,

PΩ\A = 1
2 if and only if we make an incorrect decision with ak = − sgn(H ′Ek) for

all Ek 6= 0. Construct the following polytope (c.f., (4.2)),

{
H ∈ IRN : {2h1 > h0} ∩ {2h2 > h0 + 2h1} ∩ . . . ∩ {2hN > h0 + 2

N−1∑
i=1

hi}
}
. (4.4)

For any channel H in this region we have
∣∣H ′Ek∣∣ > h0 for all Ek 6= 0. (By

construction we have spaced the hi sufficiently far apart; see also Theorem 2.5

later.) Therefore when ak = − sgn(H ′Ek) we necessarily have âk 6= ak. This

gives the desired result. Further, there are precisely 2N .N ! polytopes of this form

obtained by 2N sign changes and N ! permutations of the channel vector H. If
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N > 2 there are additional polytopes such that PΩ\A = 1
2 , e.g., consider h0 = 2

and H = (9, 11, 15)′, where the hi are positive and increasing but do not conform

to (4.4). However, polytopes of the form (4.4) have a vertex with the least l1-norm

and in this sense are the nearest PΩ\A = 1
2 polytopes to the origin.

We adopt the terminology “best case class of channel” and “worst case class of chan-
nel”, respectively, for the two cases considered in Theorem 2.4. Clearly the terminology
is justified in the former case since decision errors (in the absence of noise) are never
made. In the latter case, we claim the recovery time is maximized when PΩ\A = 1

2 .
This fact can be deduced from an important and intuitively reasonable result in [5]
whose proof needs a lengthy formal argument. In our notation this result takes the
form,

Pr(Xk ∈ A
∣∣ PΩ\A =

1
2
, π0) ≤ Pr(Xk ∈ A

∣∣ π0, nk). (4.5)

In words, the slowest (conceivable) recovering DFE system is precisely one where the
probability of a correct decision for all atomic states before recovery is 1

2 . This is
true for all arbitrary initial (error) distributions and whether or not noise nk (which
is independent and symmetrically distributed) is present. (In a later section we treat
the noisy case where nk 6= 0.)

We now evaluate the mean recovery times for the two classes of channel considered
in Theorem 2.4 and thereby obtain lower and upper bounds on the mean recovery times
for all channels. Clearly for PΩ\A = 1 channels, we obtain a lower bound noting that
the error recovery is deterministic. Therefore, for this case we simply note that the
recovery time is bounded above by N . In fact, from elementary considerations, the
“mean” recovery time realizes this bound when we have a single noise induced error.

The calculation for the PΩ\A = 1
2 channels, giving the upper bounds, is less

straightforward than that for the lower bounds. It is possible to compute the mean
recovery time bounds as a function of π0, however, for brevity we compute the bounds
for the two important practical cases. We use the theory in [4] to determine the upper
bound when we start from the single noise induced error distribution πn0 . From such
a distribution we need to make N consecutive correct decisions each of probability 1

2

to recover. However this mean recovery time was computed in [4] by using the theory
of success runs and is given by

µ(πn0 ) = 2(2N − 1). (4.6)
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(This bound is also derived in [3].) However, our calculation is for an explicit channel,
e.g., any channel satisfying (4.4), and not for a hypothetical one [4]. (As pointed out
in [4], the bound (4.6) becomes “tight” in the low signal to noise ratio limit. As the
symmetric noise variance increases, the probability of a correct decision tends to 1

2 ,
independent of the channel.)

From (4.6) we may regard a single noise induced error as being in the worst case
class of initial error distributions when working on the worst case class of channel.
However, for other channels the single noise induced error need not represent the
worst case amongst all distributions.

The second initial error distribution of interest is the uniform atomic distribution
πu0 . In this case the mean recovery time can be shown to be

µ(πu0 ) = 2(2N − 1)−N (4.7)

by an elementary but tedious calculation. A more extensive treatment of calculations
involving mean recovery times, their variances and error propagation effects may be
found in [2,3]. Our contribution to this style of analysis is to demonstrate that actual
channels result in behaviour best described as pathological. However, the question
as to the physical significance of these channels needs to be addressed. This is the
subject of the next subsection.

2.4.4 Minimum Phase Channels
We make some remarks regarding whether PΩ\A = 1

2 polytopes contain minimum
phase channels. Sensible models for physical channels should be causal and (nearly)
minimum phase [9]. Note in (4.4) we have a region whose channel impulse responses
increase at least exponentially. It is extremely dubious whether such a channel would
exist in practice or that a DFE would be contemplated for its equalization. Channels
of the form (4.4) appear to be (nearly) maximum phase. However, (4.4) represents
only one of a class containing 2N .N ! polytopes. Another, more interesting, polytope
in this class is represented by

{
H ∈ IRN : {2hN > h0} ∩ {2hN−1 > h0 + 2hN} ∩ . . .∩ {2h1 > h0 + 2

N∑
i=2

hi}
}
. (4.8)

When N = 2 this polytope intersects the triangular minimum phase region (see §2.3.3
and Fig.2.3). We conclude in this case there exist minimum phase channels with
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the worst possible error recovery performance. For N > 2 we have been able to
demonstrate that polytope (4.8) contains “nearly” minimum phase channels, i.e., those
with only one zero outside the unit circle and N − 1 zeros inside. In fact it is easy
to see that channels with this property always exists (but not necessarily in polytope
(4.8)) as the following calculation shows:

Theorem 2.5: There exist PΩ\A = 1
2 channels {h0, H} with at least N − 1 stable

zeros.

Proof: Pick any H such that h1 +h2q
−1 + . . .+hNq

−N+1 has N − 1 zeros inside

the unit disk in the complex plane C/. Call these {zi ∈ C/:
∣∣zi∣∣ < 1}. If we pick the

cursor h0 = ε > 0 then the channel

ε+ h1q
−1 + h2q

−2 + . . .+ hNq
−N (4.9)

will have N − 1 zeros approaching the N − 1 zeros zi as ε → 0+, by continuity.

Therefore for some ε1 > 0 (4.9) will have at least N − 1 stable zeros whenever

0 < ε < ε1. Note the remaining zero of (4.9) will tend to be unstable because

the product of all N zeros is necessarily hN/ε which blows up as ε → 0. Now we

can pick ε sufficiently small (in a different context) to ensure (4.9) is a PΩ\A = 1
2

channel. To see this, we construct ε > 0 such that

ε < min
TN

∣∣H ′TN ∣∣ ∆= ε2 (4.10)

where TN is defined as in (4.2), and the arguments mirror those in Theorem 2.4.

Equation (4.10) is subject to a mild condition H ′TN 6= 0, ∀TN which can be easily

avoided when choosing an H. With the choice ε < min{ε1, ε2} we guarantee at

least N − 1 stable zeros for a PΩ\A = 1
2 channel (4.9).

We have been unable to determine, absolutely, whether there are any minimum phase
channels in the class of all PΩ\A = 1

2 polytopes (though we do not believe there
are any minimum phase channels in the 2N .N ! PΩ\A = 1

2 polytopes constructed in
Theorem 2.4 for N > 2).

We remark that discretization of continuous minimum phase channels (zeros only
in the left half plane) need not result in a discrete minimum phase channel. There are
two possible causes for this. Firstly sampling a continuous minimum phase channel
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with clock skew can easily result in a non-minimum phase discrete channel. The second
cause is a result well known in the control literature. In [12], Åström et al., show that
a zero-order-hold discretization of a minimum phase continuous system with a high
frequency roll-off of greater than 12dB/octave always results in a non-minimum phase
discrete system at sufficiently high sampling rates. Further, this may happen for quite
reasonable sampling rates [12]. Therefore, for this second case, the fact that we have
a worst case channel with only one zero outside the unit circle (non-minimum phase)
does not negate the possibility that the continuous model of the channel is minimum
phase.

2.4.5 Asymptotically Tight Recovery Time Bound

The intention here is to give an asymptotic formula for the probability of a DFE failing
to recover by time k, starting from an arbitrary error distribution when we have the
worst case class of channel (where PΩ\A = 1

2 ). This then forms an asymptotically
tight upper bound on the DFE error recovery performance versus time, upon invoking
(4.5). (The bound is asymptotically tight in the sense that there exist channels whose
recovery time corresponds with the bound.)

To simplify subsequent calculations we consider a new aggregation of atomic
states which reduces the order of the DFE model from 4N atomic states to N + 1
aggregated states. This simpler system is defined in [3] (which is based, in turn, on
ideas in [1]). The new states in Fig.2.6 are labelled according to “recovery distance” [3].
An atomic state belongs to the aggregated state i if the DFE requires i consecutive
correct decisions to reach set A (also an aggregated state).

Fig.2.6 Finite State Markov Process for a Worst Case Channel.
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We now describe why the fixed transition probabilities shown in Fig.2.6 are ap-
propriate for any PΩ\A = 1

2 channel. As correctly pointed out in [1] the aggregation
depicted in Fig.2.6 will not preserve the Markov property of the original atomic FSMP
(i.e., the transition probabilities between aggregated states will not be constants, in
general). So, in general, the transition probabilities between aggregated states would
be quantities varying according to the particular atomic state within the aggregated
state. However, for a PΩ\A = 1

2 channel all the atomic states within Ω \A have iden-
tical probabilities of 1

2 , by definition. Hence the probability of transiting: (i) from
aggregated state i to i − 1 (a correct decision) is 1

2 ; and (ii) from aggregated state
i to N (an incorrect decision) is 1

2 . This is precisely what is represented by Fig.2.6.
Therefore, Fig.2.6 represents a valid FSMP capable of exactly modelling a DFE on a
PΩ\A = 1

2 channel.

We remark that the use in [3] of models similar to Fig.2.6 is a device for approxi-
mation that leads to upper and lower bounds on DFE performance. However, as noted
in [3], if the upper and lower bounds coincide then the approximation scheme is exact.
This possibility is realized by our construction of PΩ\A = 1

2 channels.

We need a simple preliminary lemma before we demonstrate our main results.

Lemma 2.6: The polynomial

F (z) = zN −
N−1∑
i=0

zi (4.11)

has: (i) one real simple root z1 ∈ (1, 2) approximately given by z1 ≈ 2− (2N −1)−1;

(ii) N − 1 simple roots zi ∈ C/ such that
∣∣zi∣∣ < 1 for i = 2, 3, . . . , N .

Proof: The Schur-Cohn matrix associated with (4.11) is given by Y
∆= 211′ − 2I

which has N − 1 eigenvalues at −2 and one at 2N − 2 [13]. This shows that N − 1
roots lie in

∣∣z∣∣ < 1 and one in
∣∣z∣∣ > 1. Since F (1)F (2) < 1, there is one root lying

in the interval (1, 2). The Newton approximation is easily checked. The derivative

of (z−1)F (z) has roots at 0 of multiplicity N −1 and a simple root at 2N/(N + 1).
Neither value is a root of F (z). Therefore, all roots of F (z) are simple.

With the worst case channel (modelled in Fig.2.6) and the aggregated state or-
dering {N, N − 1, . . . , 1, A}, the Q ∈ IRN×N matrix of the generic form (3.4) looks
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like

Q =


0.5 0.5 . . . 0.5 0.5
0.5 0 . . . 0 0
0 0.5 . . . 0 0
...

...
...

...
0 0 . . . 0.5 0

 . (4.12)

The eigenvalues of Q and the associated right and left eigenvectors are respectively,

λi(Q) =
1
2
zi, i ∈ {1, 2, . . . , N} (4.13a)

νi = (zN−1
i , . . . , z2

i , zi)
′ ∈ IRN (4.13b)

ωi =
(
1,

N−1∑
j=1

z−ji , . . . , z−1
i + z−2

i , z−1
i

)′ ∈ IRN (4.13c)

where zi are the roots defined in Lemma 2.6. (Note F (z) in Lemma 2.6 is the charac-
teristic polynomial of the companion matrix 2Q.)

Theorem 2.7: The probability of a DFE failing to recover by time k when operating

on a worst case channel (lying in a PΩ\A = 1
2 polytope), starting from an initial

error distribution π0, is given by

Pr
(
Xk ∈ Ω \A

∣∣ PΩ\A =
1
2
, π0

)
= (ω̂1

′π0
∗).λk1(Q) + o(2−k) (4.14)

where λ1(Q) is the dominant eigenvalue of matrix Q (4.12); π0 and π0
∗ are related

through (2.7) and (2.8) using the aggregation depicted in Fig.2.6, and

ω̂1
∆=

1− αN
1−NαN+1

(
1,

N−1∑
j=1

αj ,
N−2∑
j=1

αj , . . . , α+ α2, α
)′ ∈ IRN (4.15)

with α
∆= 1

2
.λ−1

1 (Q).

Proof: We outline the steps in the proof. Step 1: We normalize the left and right

eigenvectors (4.13b) and (4.13c) corresponding to the dominant eigenvalue λ−1
1 (Q)

to yield ν̂1 and ω̂1 such that
∥∥ν̂1

∥∥
1

= 1 and
∥∥ω̂1

∥∥
1

= 1. Then ω̂1 is as given in (4.15).

Step 2: Choose ω1 = ω̂1 and ν1 = ν̂1 and scale {ω1: i = 2, 3, . . . , N} in (4.13c)

such that ωi
′νj = δij (Kronecker delta). Step 3: By the simplicity of the roots in

Lemma 2.6 the basis {νi} spans IRN . With this basis, π0
∗ ∈ IRN has components

ωi
′π0
∗. In particular, the component in the direction of the dominant eigenvector
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is ω1
′π0
∗. Step 4: ω̂1 is a positive vector. Therefore with π0

∗ non-zero and non-

negative, we have ω1
′π0
∗ ∈ (0, 1] (non-degeneracy). Step 5: From Lemma 2.6 the

remaining eigenvalues behave asymptotically as o(2−k) as k →∞. Step 6: Noting

Pr
(
Xk ∈ Ω \ A

∣∣ PΩ\A = 1
2 , π0

)
=
∥∥Qkπ0

∗∥∥
1
, then (4.14) follows from standard

bounding arguments.

Remarks:

(i) The dominant eigenvalue Q determines the asymptotic “leakage rate” to the ab-
sorbing state A, and is approximated by λ1 ≈ 1− (2N+1−2)−1 using Lemma 2.6.
So the ability of the DFE to recovery from error on a worst case channel deteri-
orates with N increasing.

(ii) There are two initial error partial distributions (2.8) of practical interest corre-
sponding to a single noise induced error

π0
∗ = (1, 0, . . . , 0)′ ∈ IRN

and the uniform distribution across the atomic states which implies

π0
∗ = 4−N .(22N−1, 22N−2, . . . , 2N )′ ∈ IRN .

(iii) The error term o(2−k) decays very rapidly with time, hence, the asymptotic
formula is very accurate even for small k. Figure 2.7 gives an example of the
theorem for N = 3 and distribution π0

∗ = (1, 0, 0)′ with the asymptotic formula
shown as a straight line and the true Pr(Xk ∈ Ω \A) as a sequence of diamonds.

(iv) This result is both simpler than and intimately related to the overbound (Theorem
4.1) found in [4] (note the variable x in [4] equals our λ−1

1 (Q)). Our result also
makes explicit the role of the initial error distribution.

(v) This result gives the worst case probability bound associated with the input se-
quence remaining pathological at a given time k and for general N (c.f., §2.3.2).

Corollary 2.8: Formula (4.14) forms the asymptotically tight bound as k →∞.

Proof: This result follows directly from (4.5).



50 Chapter 2 DFE Error Recovery Analysis

Fig.2.7 Example of Asymptotic Bound (Theorem 2.7).

Note in Corollary 2.8, the addition of noise nk cannot make things worse in the sense
that even without noise the error probability before recovery is 1

2 which realizes the
worst case. We will have more to say on the case where noise is significant in the next
section. We conclude our discussion on the noiseless case by foreshadowing our results
to be found in Chapter 4. In Chapter 4 we re-examine the noiseless error recovery
problem with the objective of finding sufficient conditions on the channel parameters
to ensure error recovery in a finite time, i.e., to ensure no pathological input sequences
exist. The analysis to be found there also removes some of the weaknesses of the
present analysis. Specifically the (implicit) assumptions regarding ideal tap settings,
FIR channels and ideal modelling are relaxed. It is also possible to generate well-posed
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error recovery problems for the case where errors are defined in the form

ek(δ) ∆= ak−δ − sgn(hδ)âk

for some delay δ ∈ {0, 1, . . . , N}, rather than the error signal ek = ak − âk that we
adopted in this chapter. We refer the reader to Chapter 4.

2.5 Error Recovery with Additive Noise
2.5.1 Background
In this section we study the range of performance that one can expect from a DFE as
we vary across the class of noisy FIR channels used for binary transmission. We will be
interested in finding a subclass of noisy channels which realize the worst possible error
probability performance of the DFE. In the noiseless case, §2.4, it was meaningless to
study steady state error probabilities because with probability one the DFE converges
to a closed set of error-free states A. This implies the stationary error probability
is zero. This situation changes with the introduction of channel noise (of sufficient
amplitude) and we may observe unacceptably high error rates, reflected in a high error
probability, in the DFE due to the error propagation mechanism, §2.3 [1].

In [1], Duttweiler, Mazo and Messerschmitt derive upper bounds on the stationary
error probability for classes of noisy channels subject to various constraints. However,
these bounds appear conservative and it seems natural to question the tightness of the
bounds. Indeed, this very question is raised in the conclusions of [1]. We re-pose and
solve this problem.

A significant advance on the work of Duttweiler et al., [1] has appeared recently in
the DFE literature. O’Reilly and de Oliveira Duarte [2,3] develop a procedure which
gives upper and lower bounds on various error statistics for a given channel. (Their
techniques are applicable to multi-level data sequences and correlated noise.) It is
clear that this procedure produces an upper bound on the stationary error probability
which cannot exceed that given in [1]. However, like [1], these results give no indication
about what range of error probabilities one might expect, apart from what may be
indicated by specific examples.

Our contribution to this style of analysis is not to extend the techniques and
results found in [2,3] but rather to contrive noisy channels which realize the upper
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bounds in [1], thereby settling the open questions regarding tightness. (These bounds
are realized by manipulating the channel parameters, typically in the presence of small
noise, rather than by taking the limit as the noise variance increases [4].) It is not our
intention to suggest that such contrived channels will or do arise in practice (although
it is not clear that they do not). Rather, the merit of our results rests in showing
the need for imposing stronger hypotheses in characterizing the channel parameters
for practical systems. Finally, the explicit use of the recovery time bound derived by
Cantoni and Butler [4,5] to give a straightforward proof of an error probability bound
in [1], illuminates the non-trivial but close connection between the two important early
contributions to the analysis of the error propagation mechanism in DFEs.

We begin by filling out our previous notation from the noiseless case of the previ-
ous sections. The DFE decision equation which is central to our analysis is given by
(2.1) and is repeated here for convenience (see Fig.2.1)

âk = sgn(h0ak +
N∑
i=1

hiak−i −
N∑
i=1

diâk−i + nk), h0 > 0 (5.1)

Assuming, as in the noiseless case, correct tap weights D = H, the above equation
reduces to

âk = sgn(h0ak +
N∑
i=1

hiek−i + nk), h0 > 0 (5.2)

which may be more compactly written,

âk = sgn(h0ak + H ′Ek + nk), h0 > 0 (5.3a)

= sgn(h0ak + Sk + nk) (5.3b)

= sgn(h0ak +Rk) (5.3c)

where we have introduced the shorthand Sk
∆= H ′Ek representing the residual inter-

symbol interference (ISI), and Rk
∆= Sk + nk representing the residual ISI plus noise.

The channel noise nk is assumed: (i) to be zero mean; (ii) to have finite variance
σ2
n < ∞; (iii) to be independent of the data ak and the residual ISI Sk; and (iv) to

form an independent sequence. In some applications assumptions (iii) and (iv) are
particularly important because they ensure one can use FSMP modelling for a noisy
DFE as was done for the noiseless case in §2.3 and §2.4. Some of these assumptions
are stronger than what is actually needed to derive useful results. In later subsections
we will indicate when various assumptions can be dropped.
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We make a simple but fundamental observation regarding (5.3c) which we state
as a lemma:

Lemma 2.9: (i) If ak = sgn(Rk) then âk = ak.

(ii) If ak = − sgn(Rk) then âk 6= ak if and only
∣∣Rk∣∣ > h0.

Most of our subsequent results centre on this simple result.

2.5.2 Global Error Probability Bound
In [1] it was established that the probability of error is always bounded above by 1

2 .
In essence, this translates to a statement that having a DFE as a channel equalizer is
generally better than not having one at all—but not always. We rederive this result
because its proof will be useful in later sections, in different contexts. Using Bayes’
rule, the probability of a decision error is given by

Pr(âk 6= ak) = Pr
(
âk 6= ak

∣∣ ak = sgn(Rk)
).Pr(ak = sgn(Rk)

)
+ Pr

(
âk 6= ak

∣∣ ak = − sgn(Rk)
).Pr(ak = − sgn(Rk)

)
. (5.4)

Using Lemma 2.9, and the assumptions: (i) the data takes binary values with equal
probability; and (ii) Rk is independent of ak, then (5.4) reduces to

Pr(âk 6= ak) =
1
2

.Pr(âk 6= ak
∣∣ ak = − sgn(Rk)) (5.5a)

=
1
2

.Pr(
∣∣Rk∣∣ > h0) (5.5b)

and clearly this expression is bounded above by the global bound 1
2 . In §2.5.4 we

construct a set of channels and a noise distribution which realize the pathological
value of 1

2 . (This bound is realized without the assumption that the signal to noise
ratio is vanishingly small in which case the error probability can be made arbitrarily
close to the value 1

2 [4].)

2.5.3 General Error Probability Bound
The second bound derived in [1] takes the form

PE ≤
ε.2N

2ε(2N − 1) + 1
(5.6)
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where PE is the probability of an error under stationarity, ε is the probability of error
in the absence of past decision errors, and N is the number of taps. Our approach
to demonstrating the tightness of (5.6) is simply to construct a channel and noise
density which realizes the value of the bound. For simplicity and clarity we assume
the channel noise magnitude can be bounded above by BU as follows,

∣∣nk∣∣ ≤ BU <∞. (5.7)

(This requirement can be relaxed and Chebyshev’s Inequality invoked to demonstrate
the same bound in (5.6) works for unbounded noise with finite variance σ2

n <∞. The
analysis given in §2.6 is typical of the modification in style required to treat this more
general case.)

The system we consider is given in Fig.2.8, which we shall now explain. (The state
labelling and the transition probabilities marked on the arrows joining states need to
be separately described. We will show subsequently that there exists a set of channels
and noise densities for which Fig.2.8 represents an exact stochastic description, under
suitable interpretation.) We adopt the “recovery distance” aggregated FSMP states
given in [2,3]. (This set of aggregated states was also used to treat the noiseless channel
case in §2.4.5.) In review, aggregated state 0 comprises the set of 2N atomic states
which satisfy Ek = 0. (In §2.4.5 this set was called the set A.) Further, an atomic state
Xk belongs to the aggregated state i > 0 if the DFE requires i consecutive correct
decisions to reach aggregated state 0. Despite the fact that aggregated state 0 is no
longer absorbing, as it was for the noiseless case, we will continue to refer to the DFE
as having recovered when it is in aggregated state 0.

Fig.2.8 Finite State Markov Process of Bounded Noise Channel Class.
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We now describe the transition probability assignments shown in Fig.2.8. When
in aggregated state 0 (where Ek = 0) only noise can cause a decision error. With such
an error the system transits to state N with probability ε defined by

ε
∆= Pr(âk 6= ak

∣∣ Ek = 0)

=
1
2

.Pr(
∣∣nk∣∣ > h0) (5.8)

where we have used (5.5b) with Rk = nk. Note, varying the channel tail H (keeping
h0 fixed) does not change ε. As will be clear from a definition of the channel given
below this error probability is the same for all atomic states in aggregated state 0.

Next we consider the transitions emanating from the aggregated states N through
to 1 in Fig.2.8. It is clear from the definition of recovery distance that if the DFE
makes an error it transits to aggregated state N . Otherwise with each consecutive
correct decision the index defining the aggregated state, i.e., the recovery distance,
decrements. Now the transition probabilities shown in Fig.2.8 imply that for some
hypothetical channel correct decisions occur with probability 1

2 and incorrect decisions
also with probability 1

2 (in the presence of bounded noise). We realize this hypothetical
channel by constructing a class of channels with the desired property.

Consider the DFE error probability during recovery (where Ek 6= 0). Then,

Pr(âk 6= ak
∣∣ Ek 6= 0) =

1
2

.Pr(
∣∣Rk∣∣ > h0

∣∣ Ek 6= 0) (5.9)

derived in analogy to (5.5b) except conditioned on the DFE not having recovered. To
make this last expression equal to 1

2 we simply need to ensure that Rk, considered as
a random variable, has a conditional probability density which is zero in the interval
[−h0, h0]. Now since the noise is assumed bounded above by BU (5.7), it is sufficient
that the random variable Sk has zero probability density in the interval [−h0−BU , h0+
BU ]. This in turn ensures that whilst the system is in the aggregated states where
Ek 6= 0, the decision in (5.3a) is based solely on Rk, and therefore âk is completely
uncorrelated with ak. We can guarantee Sk has the desired property by a suitable
choice of H.

We assert that the non-empty region in the channel parameter space given by{
H ∈ IRN : {2hN > h0 +BU} ∩ {2hN−1 > h0 + 2hN +BU} ∩ . . .

∩ {2h1 > h0 +BU + 2
N∑
i=2

hi}
}

(5.10)
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defines a proper subset of the channels which have Fig.2.8 as their FSMP repre-
sentation. We now show this. The formula (5.10) simply ensures the parameters
h1 > h2 > . . . > hN are spaced sufficiently far apart that

∣∣H ′Ek∣∣ > h0 +
∣∣nk∣∣ for

all Ek 6= 0. This implies, via the triangle inequality, that
∣∣H ′Ek + nk

∣∣ > h0, i.e.,∣∣Rk∣∣ > h0. Then using (5.9), we conclude that for all channels satisfying (5.10) one
obtains Pr(âk 6= ak

∣∣ Ek 6= 0) = 1
2 . Therefore, we have constructed a class of chan-

nels (5.10) where: (i) the statistical behaviour of the DFE before recovery is the same
whether or not bounded channel noise is present; and (ii) Fig.2.8 is an exact stochastic
description under suitable interpretation. We will now show how this property and
our previous results for the noiseless case provide an elementary derivation and rein-
terpretation of the bound (5.6) derived in [1]. In the light of (5.8), we consider only
the non-degenerate case where Pr(

∣∣nk∣∣ > h0) > 0 which ensures aggregated state 0 is
non-absorbing, i.e., ε > 0.

Example: Let N = 2 and
∣∣nk∣∣ < 1.2, i.e., BU = 1.2 in (5.7). Then the channel

{h0 = 1, H = (1.15, 2.26)′} satisfies (5.10), noting that subject to Ek 6= 0, we have∣∣Rk∣∣MIN
= 2× 2.26− 2× 1.15− 1.2 = 1.02.

Now consider Fig.2.8. When the system is in aggregated state 0 we can either: (i)
continue normal error-free operation; or (ii) make a noise induced error. Once in
aggregated state 0 the mean waiting time before a decision error is made is

t1
∆= ε−1 (5.11)

from elementary considerations. With a decision error the system transits to aggre-
gated state N . The mean time spent during recovery when we start in aggregated
state N , is by construction the same as for the noiseless case (4.6), i.e.,

t2
∆= 2(2N − 1). (5.12)

Now since the arrangement in Fig.2.8 depicts a FSMP, the time it takes to transit
from aggregated state N to 0 is independent of the transitions which led the system
to state N . Similarly for the case starting in 0 transiting to state N . Therefore under
stationarity, the probability the system will be found in state 0 is given by t1/(t1 + t2),
and the probability the system is recovering (the complement event) is t2/(t1 + t2).
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Therefore the stationary probability of error PE for our constructed channels is simply
given by Bayes’ rule,

PE
∆= Pr(âk 6= ak)

= Pr(âk 6= ak
∣∣ Ek = 0).Pr(Ek = 0) + Pr(âk 6= ak

∣∣ Ek 6= 0).Pr(Ek 6= 0)

= ε.
t1

t1 + t2
+

1
2

. t2
t1 + t2

(5.13a)

=
ε.2N

2ε(2N − 1) + 1
. (5.13b)

Expression (5.13b) is precisely the bound (5.6) derived in [1]. Hence we have estab-
lished that this bound is tight, being achieved by certain noisy channels satisfying
(5.7) and (5.10).

Remarks:

(i) A straightforward modification to the analysis also yields the same (supremum)
bound given the assumption of unbounded channel noise with finite variance. In
this case we select BU (as a parameter rather than a bound) sufficiently large
in the expression for the channel (5.10) to make PE arbitrarily close to (5.13b).
However, with larger BU in (5.10) the resulting channels become more contrived
and less likely to appear in practice.

(ii) In the high signal to noise ratio limit, i.e., as σ2
n → 0, the channels that are anal-

ogous to (5.10), which yield a stationary error probability PE that is arbitrarily
close to the bound (5.6), are the PΩ\A = 1

2 polytopes considered in §2.4.3. (We
give no formal proof of this but simply note that as BU → 0 in (5.10) we obtain a
region which corresponds to a PΩ\A = 1

2 polytope in (4.4).) Hence, questions re-
garding the physical relevance of these high signal to noise ratio channels coincide
with the questions raised in §2.4.4 concerning noiseless minimum phase channels.

(iii) Expression (5.13a) relates the worst case recovery time bound (5.12) derived in
[4] to the error probability upper bound (5.6) derived in [1].

(iv) The independence assumption on {nk} is probably not needed in the above deriva-
tion because noise (by construction) only comes into play when Ek = 0. Provided
Rk and nk are independent the proof should carry through.
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2.5.4 Range of Realizable Error Probabilities
In this subsection we contrive noise densities (distributions) which realize all values
of ε in the interval [0, 1

2 ] and hence from (5.13b) all values of PE in the interval [0, 1
2 ].

Consider noise nk which can be bounded above and below as follows,

h0 < BL ≤
∣∣nk∣∣ ≤ BU . (5.14)

Then the presence of the lower bound implies ε = 1
2 from (5.8). By §2.5.2, the presence

of the upper bound ensures that a channel can be constructed (5.10) such that (5.13b)
is realized. With ε = 1

2 in (5.13b) we get PE = 1
2 , a most pathological situation.

Constructing further noise densities yielding the remaining values in [0, 1
2 ] for PE is

straightforward but not of practical interest.

2.6 Asymptotically Tight Error Probability Bounds
2.6.1 Preliminary
As before let H ∆= (h1, h2, . . . , hN )′ ∈ IRN and h0 denote respectively the N -tap tail
and cursor of a channel. We partition the tail H according to

Hn
∆= (h1, h2, . . . , hn)′ ∈ IRn and Hd

∆= (hn+1, hn+2, . . . , hN )′ ∈ IRN−n.

With an l1-norm overbound on Hd given by

∥∥Hd

∥∥
1
<

1
2

.h0, (6.1)

Duttweiler et al., [1], were able to demonstrate that asymptotically as σ2
n → 0

PE ≤ ε.2n (6.2)

subject to mild constraints on the shape of the impulse response tail (it needs to
belong to l1) and a gaussian noise assumption. The demonstration in [1] is also valid
if we let N → ∞ which we will not consider here for brevity. With finite N we need
no constraint on the shape of the tail. We also drop the gaussian noise assumption
and require only that the noise variance is finite to demonstrate that the upper bound
(6.2) is asymptotically tight. This bound is asymptotically tight in the sense that
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certain noisy channels realize the value of the bound as the noise variance decreases
to zero.

In the following subsection, we construct a class of channels whose stationary
error probability approaches (6.2). The bound (6.2) is important because it shows
that by imposing conditions on the shape of the channel, viz., (6.1), corresponding to
physical reality, less pessimistic error probability bounds than (5.13b) are possible.

2.6.2 Construction of a Candidate Class of Channels
The N -tap channel decision equation (2.2) is algebraically equivalent to

âk = sgn(h̃0(k)ak +
n∑
i=1

hiek−i + nk), h0 > 0 (6.3a)

where

h̃0(k) ∆= h0 + ak

N∑
i=n+1

hiek−i ∈ [h0 −D, h0 +D] (6.3b)

and

D
∆= 2

N∑
i=n+1

∣∣hi∣∣ = 2.∥∥Hd

∥∥
1
. (6.3c)

With constraint (6.1) we simply have

D < h0 (6.4)

and then (6.3a) can be interpreted as an equation for an n-tap channel with a random,
time-varying cursor bounded to strictly positive values, i.e., h̃0(k) > 0. We note that,
as mentioned in [1], condition (6.1) corresponds to the eye being open (i.e., the residual
ISI satisfies

∣∣Sk∣∣ < h0) after the first n taps are discarded. Therefore, in the absence
of noise nk, recovery is guaranteed if we make n rather than N consecutive correct
decisions.

It is now straightforward to construct an N -tap channel H (for a given h0) such
that Fig.2.9 describes the transition probabilities between the aggregated states 0
through N when channel noise nk is absent (these aggregated states are the same
as those in Fig.2.8). (We will subsequently demonstrate that for all such channels
PE → ε.2n asymptotically for small noise where ε is the error probability when there
is zero residual ISI (5.8).) Note from Fig.2.9 that the probability of a correct decision
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is 1 for aggregated states 0 through N − n because the eye is open after n or more
consecutive correct decisions have been made. When the DFE is in an atomic state
within any of the aggregated states N, N−1, . . . , N−n+1, we claim we can construct
a suitable H such that the probability of error is precisely 1

2 (in the absence of noise).
If so, then Fig.2.9 forms a valid FSMP representation of this noiseless channel.

Fig.2.9 Noiseless Channel Class which Realize High SNR Bound.

We begin our construction by defining a region in the space of the first n channel
parameters in terms of a positive quantity φ > 0,

W(φ) ∆=
{
Hn ∈ IRn: {2hn > φ} ∩ {2hn−1 > 2hn + φ} ∩ . . . ∩ {2h1 > 2

n∑
i=2

hi + φ}
}
.

(6.5)
Then we assert that a sufficient condition on the N -tap channel H subject to (6.1) to
have the desired behaviour in states N through N − n + 1 is the following condition
on its first n parameters,

Hn ∈ W(h0 +D). (6.6)

To see this, first consider a (truncated) noiseless channel Hn with cursor h0 +D. Then
equation (6.6) is identical to a sufficient condition that a noiseless channel has exactly
an error probability of 1

2 when it has made less than n consecutive correct decisions
Theorem 2.4(b). We now demonstrate that the channel pair {h̃0(k), Hn}, which has
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the same fixed tail Hn but the time varying cursor of (6.3b), has this behaviour also.
From the definitions (6.5) and (6.6) it is clear that for all Hn ∈ W(h0 +D) ⇒ Hn ∈
W(h̃0(k)), i.e.,

W(h0 +D) ⊂ W(h̃0(k)). (6.7)

Due to the algebraic equivalence of {h̃0(k), Hn} to {h0, H} expressed through (5.2)
and (6.3a) we have determined a subset of the class of channels H, subject to (6.1) and
(6.6), which have the FSMP representation of Fig.2.9. (For a more detailed account
of this style of construction of noiseless channels see §2.4.3.) We now give an example
of our construction.

Example: Let N = 7, n = 3 and h0 = 1. We pick any vector in IR4 whose

l1-norm satisfies (6.1), say Hd = (−0.3, 0.1, 0.05, −0.01)′. Here
∥∥Hd

∥∥
1

= 0.46
and therefore D = 0.92 from (6.3c). Next we select any H3 ∈ W(1.92) according to

(6.5) and (6.6). A suitable choice is say H3 = (3.95, 2.00, 0.97)′. Then we claim

that the channel {h0 = 1, H = (3.95, 2.00, 0.97, −0.3, 0.1, 0.05, −0.01)′}, in the

presence of noise nk, will have an error probability PE → 8.ε (6.2) as σ2
n → 0, where

ε→ 0 is given by (5.8).

2.6.3 Noise with Vanishingly Small Variance
We now include channel noise nk in the analysis of our constructed channel. We note
that the lumping of atomic states into aggregated states corresponding to “recovery
distance” [2] no longer yields a FSMP (for our constructed channel) when noise is
present. To see this, observe that each atomic state within a single aggregation will
have different noise thresholds, implying different error probabilities. This destroys
the Markov property because knowledge of the recovery distance is insufficient to
deduce exact error probabilities. Fortunately, in deriving our error probability bound
we do not need to use a (noisy) FSMP. However, the aggregation of atomic states into
recovery distance states will be useful in deriving approximate bounds as was done
in [2].

We define a further coarser partition of the set of atomic states into three sets. Set
S (slow phase of recovery) is defined as the set of atomic states whose recovery distance
is greater than N − n. Set Q (quick phase of recovery) those whose recovery distance
is between (and including) N − n and 1. Set R (recovery) those corresponding to



62 Chapter 2 DFE Error Recovery Analysis

recovery. These three sets which delineate three phases of DFE recovery behaviour on
our constructed channels (in the high signal to noise ratio limit) are shown in Fig.2.9.
Of course with noise the transition probabilities shown in Fig.2.9 are incorrect.

To facilitate a simple and systematic derivation of the desired asymptotic formula
we introduce some shorthand. The probability of error under stationarity given that
the present atomic state, whatever it is, lies in a subset X ∈ Ω will be denoted

PE|X
∆= Pr(âk 6= ak

∣∣ X). (6.8)

Similarly, the probability that the present state Xk lies in X (again assuming
stationarity) is denoted

ρX
∆= Pr(Xk ∈ X). (6.9)

Based on these definitions and noting the sets S, Q and R partition Ω, we have under
stationarity and using Bayes’ rule

PE = PE|R.ρR + PE|Q.ρQ + PE|S .ρS

= ε.ρR + PE|Q.ρQ + PE|S .ρS . (6.10)

By bounding the components of the right hand side of (6.10) we will be able to
determine bounds on the stationary error probability PE for our constructed channels.

To prove the upper bound (6.2) of Duttweiler et al., is tight, we will find both
lower and upper bounds for our constructed channel which approach (6.2) in the high
signal to noise ratio limit, i.e., as σ2

n → 0.

2.6.4 Lower Asymptotic Bound
For the lower bound we have, from (6.10),

PE ≥ ε.ρR + PE|S .ρS

≥ ε.ρ
R

+ PE|S
.ρ
S

(6.11)

where ρ
R

, PE|S , ρ
S

(to be determined) are lower bounds on ρR, PE|S and ρS respec-
tively.

Consider first the calculation for ρ
S

in (6.11). Let ρi denote the probability that
the DFE will be found in (recovery distance) aggregated state i under stationarity.
Then by definition (see Fig.2.9), noting these sets are disjoint,

ρS = ρN + ρN−1 + . . .+ ρN−n+1 (6.12a)
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and

ρQ = ρN−n + ρN−n−1 + . . .+ ρ1. (6.12b)

Now with every decision error the DFE transits to an atomic state whose recovery
distance is N (by definition). This shows ρN = PE . Further, by §2.5.2 the least
(imaginable) probable transition from aggregated state N to N−1, or N−1 to N−2,
etc., occurs with probability 1

2 . This shows ρi ≥ PE( 1
2 )N−i. Using (6.12a) we may

then define

ρ
S

∆= PE +
1
2

.PE + . . .+ (
1
2

)n−1PE

= 2PE(1− 2−n). (6.13)

We now compute a suitable ρ
R

in (6.11). First, we give a very conservative upper
bound on ρS+ρQ using (6.12a) and (6.12b). Clearly, ρi ≤ PE for i = N, N−1, . . . , 1
because aggregated state i ∈ {1, 2, . . . , N − 1} can only be reached from aggregated
state i+ 1. Therefore

ρS + ρQ ≤
N∑
i=1

PE

and this implies (noting ρS + ρQ + ρR = 1) that a suitable ρ
R

is given by

ρ
R

∆= 1−N .PE . (6.14)

The calculation for PE|S in (6.11) can proceed by invoking Chebyshev’s Inequality.
Consider some particular Xk ∈ S then from (5.5b) we have

Pr(âk 6= ak
∣∣ Xk) =

1
2

.Pr(
∣∣Rk∣∣ > h0

∣∣ Xk), Xk ∈ S.

Now for all Xk ∈ S we have
∣∣Sk∣∣− h0 > 0 by construction (6.5). Define,

KS
∆= min

Xk∈S
{
∣∣Sk∣∣− h0} > 0,

i.e., in set S the eye is always closed by at least KS in the absence of noise. Therefore,
when

∣∣nk∣∣ =
∣∣Rk − Sk∣∣ < KS the eye remains closed, and we deduce (outline only)

Pr(âk 6= ak
∣∣ Xk) ≥ 1

2
.Pr(

∣∣Rk − Sk∣∣ < KS

∣∣ Xk), ∀Xk ∈ S.
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Therefore, applying Chebyshev’s Inequality we obtain

PE|S
∆= Pr(âk 6= ak

∣∣ S) ≥ 1
2

.
(

1− σ2
n

K2
S

)
,

i.e., anticipating the high signal to noise ratio limit and using a signed order notation,

PE|S
∆=

1
2
−O(σ2

n). (6.15)

Clearly by letting σ2
n → 0 we obtain the noiseless result.

A similar calculation involving Chebyshev’s Inequality, for M = Q or R where
h0 −

∣∣Sk∣∣ > 0 (eye open without noise), yields

PE|M ≤
1
2

. σ
2
n

K2
M

(6.16)

where
KM

∆= min
Xk∈M

{h0 −
∣∣Sk∣∣} > 0.

Hence, if M = R where Sk = 0 (Ek = 0) for all atomic states, we have KR = h0 which
leads to

ε ≤ 1
2

.σ
2
n

h2
0

. (6.17)

This result says that (i) the probability of error after recovery is bounded above by
the reciprocal of twice the signal to noise ratio, and (ii) ε ≤ O(σ2

n).
We can now compute the lower bound on PE (6.11) by substituting in for (6.13),

(6.14), (6.15) and (6.17):

PE ≥ ε.ρR + PE|S
.ρ
S

= ε.(1−NPE) +
(1

2
−O(σ2

n)
).2PE(1− 2−n)

≥ ε+ PE − 2−nPE − PE .O(σ2
n)

≥ ε.2n −O(σ4
n) (6.18)

which is the desired lower bound.

2.6.5 Upper Asymptotic Bound
We now seek an upper bound on PE . From (6.10) we may write

PE ≤ ε.ρR + PE|Q.ρQ + PE|S .ρS (6.19)
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where the quantities on the right hand side of (6.19) will be shown to be given by

ρR
∆= 1 ≥ ρR (6.20a)

PE|Q
∆= O(σ2

n) ≥ PE|Q (6.20b)

ρQ
∆= (N − n)2−nPE

(
1 +O(σ2

n)
)
≥ ρQ (6.20c)

PE|S
∆=

1
2
≥ PE|S (6.20d)

ρS
∆= 2PE(1− 2−n)

(
1 +O(σ2

n)
)
≥ ρS . (6.20e)

In the above (6.20a) and (6.20d) are clearly bounded by the quantities given and it
turns out that these bounds are adequate. Also we have already demonstrated (6.20b)
because this is just (6.16) with M = Q. The remaining two terms are non-trivial to
derive and we now give their proof.

First, we focus on the bound in (6.20e). We have, for the set S,

ρi ≤ PE (1− PE|S)N−i, i ∈ {N − n+ 1, . . . , N} (6.21)

because PE = ρN and an overbound on the transition probabilities N → N − 1,
N − 1→ N − 2, etc., within S, is simply (1− PE|S). Thus from (6.12a)

ρS ≤ PE
N∑

i=N−n+1

(1− PE|S)N−i

= PE

n−1∑
i=0

(1
2
(
1 +O(σ2

n)
))i

= 2PE(1− 2−n)
(
1 +O(σ2

n)
) ∆= ρS (6.22)

which is precisely (6.20e).
Now we prove (6.20c). From (6.12b) we may write

ρQ ≤
N−n∑
i=1

ρN−n (6.23)

where ρN−n is some suitable overbound on ρN−n. This formula (6.23) is based on
having unity as the overbound on the transition probabilities within Q when we have
correct decisions. The same old argument, this time to compute an overbound on
ρN−n, yields

ρN−n
∆= PE (1− PE|S)n

= 2−nPE
(
1 +O(σ2

n)
)
, (6.24)
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where we have used (6.15). Substituting (6.24) into (6.23) yields (6.20c).

Now we can compute the upper bound (6.19), by substituting in for (6.20). This
leads to

PE ≤ ε+O(σ2
n).(N − n)2−nPE

(
1 +O(σ2

n)
)

+
1
2

.2PE(1− 2−n)
(
1 +O(σ2

n)
)

= ε+ PE − 2−nPE + PE .O(σ2
n)

which implies, after a few lines of algebra,

PE ≤ ε.2n +O(σ4
n). (6.25)

2.6.6 Main Result Statement
Combining (6.18) and (6.25) we have demonstrated the following theorem:

Theorem 2.10: There exist channels satisfying
∥∥Hd

∥∥
1
< 1

2
.h0 (6.1) subject to ad-

ditive noise nk of variance σ2
n (specifically those satisfying (6.6)) which have an

asymptotic error probability Pr(âk 6= ak) given by

PE = ε.2n +O(σ4
n) as σ2

n → 0. (6.26)

where ε
∆= Pr(âk 6= ak

∣∣ Ek = 0) (5.8). Further this bound is asymptotically tight

over the class of channels {h0, H}.

Remarks:

(i) Note the constituent bounds (6.20) hold over any channel {h0, H} satisfying
(6.1), and this is why we can say (6.26) is asymptotically tight.

(ii) These channels which realize (6.26) are precisely those whose stochastic dynamics
in the absence of noise are described by the FSMP in Fig.2.9.

(iii) The introduction of channel noise nk into the analysis of DFEs involves only
O(σ2

n) modifications relative to the noiseless case. This justifies the practical
relevance of studying noiseless DFEs as we have in §2.3 when the signal to noise
ratio is high.
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(iv) The proof is invalid if N →∞ . To incorporate this case, we need to modify (6.14)
by imposing a further constraint on the channel tail, e.g., an l1-norm constraint,
see [1].

(v) It is a folly to believe that with ε sufficiently small, (6.26) implies good DFE error
behaviour because with just one decision error the error recovery time may have
the worst case mean of 2(2n − 1) which can be astronomically large. This point
is taken up again in Chapter 4.

2.6.7 Effect of Noise on Error Recovery

Based on our results we classify the effect of channel noise on the error recovery
performance of the DFE relative to the noiseless case. We distinguish three cases:

(i) No Effect on DFE Recovery: We have constructed a channel where, before
recovery, (bounded) noise is inconsequential to DFE recovery, see (5.7) and (5.10).
After recovery it is straightforward to construct (bounded) noise densities which
realize any value of ε and hence PE in the interval [0, 1

2 ], see §2.5.4.

(ii) Noise Worsens DFE Recovery: This might be regarded as the expected or
standard case. As an example let the channel satisfy 2.∥∥H∥∥

1
< h0, i.e., the eye

is always open in the absence of noise. Then let Pr(
∣∣nk∣∣ > h0) > 0. Clearly with

noise the eye can close.

(iii) Noise Improves DFE Recovery: An example of this case was obtained in
§2.6.4 where by construction for the noiseless case PE|S = 1

2 but with noise PE|S
may be asymptotically 1

2 −O(σ2
n), see (6.15).

The third case is of course counter-intuitive and the most interesting. It is a non-trivial
problem to determine which classes of channels result in improved (transient) error
recovery for certain noise distributions. Also it is not clear whether these channels can
be expected in practice. It is also possible to contrive situations where for a particular
channel parameter/channel noise distribution combination, not only is the (transient)
error recovery performance improved, as indicated by (6.15), but also the stationary
error probability PE is reduced. However, it is dubious whether such channels will
appear in practice.
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2.7 Conclusions
2.7.1 Summary
We itemize some contributions:

(i) The class of all channels of a given tap length N can be classified into a finite
number of subclasses identified with polytopes in IRN .

(ii) Each polytope has identified with it, in a one-to-one fashion, a unique FSMP from
which one may determine the error recovery statistics.

(iii) For N = 2, we showed how to classify the complete set of pathological input se-
quences, i.e., those input sequences which lead to arbitrarily long recovery times,
for a given polytope. This classification generalizes to higher order systems.
Graphical devices rather than algebraic relationships are the most effective for
this classification.

(iv) For N = 2 we gave necessary and sufficient conditions on the channel parameters
for a polytope to have a bounded recovery time which holds irrespective of the
input data or the initial conditions. (In Chapter 4 we will return to investigate a
class of channels which have such a property.)

(v) For general N we identified polytopes, i.e., those classes of channels, which repre-
sent the best and worst extremes in DFE error recovery behaviour and thus gave
tight bounds on the expected recovery times (Theorem 2.4).

(vi) An asymptotic formula which gave the tight bound on the probability of a DFE
failing to recover in a given time was developed (Theorem 2.7). This derivation
highlights that the non-stationary or transient properties of a DFE during error
recovery are dominated by the largest non-unity eigenvalues with the probability
transition matrix.

(vii) One of our main contributions is to highlight that the apparently pathological
upper bounds on the expected recovery times of DFEs given in [4,5] are tight in
the sense that there exist channels which realize these bounds (in the absence of
noise). Further, we showed that for N = 2 there are minimum phase channels
with this property (for N > 2 it is known that there are nearly minimum phase
channels with this property; but the same question regarding N > 2 minimum
phase channels is open).
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(viii) Our results demonstrate that DFEs are a practical option only on restricted
classes of channel, else, e.g., with a N = 64 tap DFE running at a sampling rate
of 1kHz the mean (error) recovery time can be as high as 1010 years, invoking
(4.6). The imposition of just a minimum phase condition on the class of channels
does not appear strong enough to guarantee satisfactory DFE operation.

(ix) With noise in the analysis we have shown that the most pathological conceivable
DFE behaviour is realized by some channel parameter/channel noise combination.
By purely constructive methods the bounds derived by Duttweiler et al., [1] were
shown to be tight, thereby settling the open question raised in [1].

(x) The presence of noise either: (i) has no effect on; (ii) worsens; or (iii) improves,
the DFE error recovery performance relative to the noiseless case. It seems a
non-trivial exercise to classify explicitly those channels which benefit from the
presence of channel noise. (Naturally, the level of benefit depends also on the
noise distribution.)

2.7.2 Discussion
In contriving channels and noise densities which display pathological behaviour it is
not our intention to suggest they reflect behaviour to be observed in practice. (On
the contrary, we would not expect or hope this to be the case.) More importantly, our
results indicate the manner in which stronger hypotheses need to be imposed on the
channel and noise, to further tighten the bounds on error probabilities and the like
and thereby better reflect the DFE performance to be expected in practice.

We have argued that results concerning the behaviour of high signal to noise ratio
DFEs can be suitably approximated by the noiseless DFE. In §2.4.4 we presented
evidence that a minimum phase constraint on the channel parameters was insufficient
to guarantee satisfactory error recovery behaviour. A similar conclusion thus carries
over to the noisy case where it appears certain minimum phase channels may give
unacceptably high error rates through error propagation, even though as a class they
generally appear attractive, see [9].

In Chapter 4 we return to look at the error propagation with the objective of
finding classes of channels—which turn out to satisfy a passivity constraint—which
do have satisfactory error recovery behaviour. In the next chapter, having developed
the basic mathematical tools in this chapter, we look at blind adaptation of DFEs.
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We will see that an understanding of the error mechanism in DFEs is essential before
a sensible analysis of the convergence properties can proceed.
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CHAPTER

3. STOCHASTIC DYNAMICS
OF BLIND ADAPTATION

Aim: To determine the influence of decision errors and
error propagation on the stochastic dynamics of
blind adaptation in decision feedback equalization.

3.1 Introduction
Adaptation is employed in equalization when a channel, over which data is sent, is
unknown and time-invariant or the channel is slowly time-varying and needs to be
tracked [1]. Standard identification schemes normally require channel input ak and
output bk measurements to identify the channel (see Fig.3.1). Of course if we had
complete knowledge of the real data ak available at the receiver then this defeats the
purpose of equalization. So what is standard in practice is to send a known training
sequence {ak} for a limited time duration during which the channel parameters may
be learnt. After training, with the equalizer correctly tuned, unknown data is sent
and recovered at the equalizer output âk with a sufficiently low probability of error.
Typically the adaptation during this time is left on to track slow channel variations.
However, in the absence of the (knowledge of the) real data ak, the data estimates âk
are used in the adaptive algorithm.

Blind adaptation, in the sense that we define, represents something slightly dif-
ferent [2]. As in the post-training phase of standard adaptation, the data estimates âk
are used in lieu of the real data ak, but never is a training sequence used. So channel
identification is based only on signals bk and âk. Therefore blind adaptation concerns
global convergence issues when the input is unavailable and we have unreliable data
estimates because the equalizer need not be tuned. There are a number of situations

Page 72
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Fig.3.1 Adaptive Channel Equalization.

where blind adaptation is important in practice such as during a break in multipoint
communications, see [3].

The simplest equalizer structure we could use in Fig.3.1 is the linear equalizer in
its various guises. Typically it consists of a FIR filter cascaded with the channel [4].
However when incorporating a decision device at its output in an adaptive context
it is called a decision directed equalizer (DDE) [5,6]. Another variation uses an IIR
filter in which case it is called a recursive (linear) equalizer [7]. The theory analyzing
the blind adaptation for linear equalizers is well developed, though incomplete, and
contains many interesting results which we shall return to discuss, [2-4,7-9]. Because
one almost always works with discrete alphabets, and hence a decision device is used,
then we will use the terminology DDE rather than linear equalizer in this chapter.

The second popular type of equalizer structure is the decision feedback equalizer
(DFE) which is the non-linear recursive filter met in Chapter 2 which utilizes past
outputs âk−1, âk−2, . . ., in its filter structure [1]. The literature is thin on the subject
of blind adaptation of DFEs [10]—the principle reason being the difficulty of incor-
porating error propagation effects [11-17] into the analysis of adaptation. (Of course,
fundamentally, an analysis of blind adaptation which excludes the effects of decision
errors is not well-posed.) The problem is most acute when the DFE is poorly tuned;
then decision errors are common (the error probability may be high) and its recursive
nature ensures continuing poor error performance. In this situation the effects of er-
rors will be to distort adaptation relative to the training sequence case. Our theory
developed in Chapter 2 provides a partial basis to quantify such a distortion.

The other important component of any adaptation scheme, particularly in the
blind case, is the choice (or design) of the algorithm. In the blind case, because the
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statistics of the equalizer output govern the dynamics of adaptation rather than the
actual input data, one needs to characterize the attraction points of the algorithm
carefully.

For the DDE case the traditional approach to blind equalization has been to use
stochastic gradient algorithms based on generalized cost functions, beginning with
Sato [18]. However only when one assumes that the input distribution is subgaussian
(being a one parameter family of smooth distributions with the uniform distribution
as a limiting case) are global convergence results available, i.e., can it be shown that
the only stable points of the algorithm correspond to the channel-equalizer combina-
tion acting as a pure delay [2]. The case when the input takes discrete values, the
most common situation in practice, is not covered by the theory [9] (though one can
note that discrete distributions may at least be approximated by a subgaussian dis-
tribution if the number of symbols is large [2]). Indeed Verdú [9] has shown that the
Sato algorithm and its natural generalizations fail to have attractive global conver-
gence properties for a very large class of memoryless adaptive laws when the input
distribution is binary. This work throws into serious doubt the practical utility of the
results in [2] (although with good cause these algorithms may be regarded as the best,
most robust, available). Verdú [9], given the failure of the generalized Sato algorithms,
notes in his conclusions that higher dimensional output statistics (correlations, etc.)
contain information which might be exploited when devising more robust algorithms.
(This observation we take up again in Chapter 5.)

Much less is known about the blind adaptation algorithms that should be em-
ployed in the DFE case which is our main focus of study here. Because a DFE is
a non-linear device (with memory) the elegant results in [2] and those in [9], which
rely on linearity, no longer apply. However it is our intention to say something about
the gross convergence properties for DFEs. To keep our expectations realistic, we will
focus on a Sato-like algorithm and a binary symbol alphabet. Like the DDE case we
will be most interested in establishing when the channel-equalizer combination acts
as a pure delay system. However, the quest for a globally convergent algorithm for
which the only attraction points of the algorithm result in delay systems, like the
DDE case, seems to be a distant goal (if it is achievable at all). Thus it is important
to characterize the simplest case of the Sato algorithm (which has a strong similarity
to the familiar LMS-type algorithms) before moving on to more esoteric schemes. A
secondary problem in relation to globally convergent schemes is to be able to predict
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convergence times.

A more subtle issue involved with the global convergence of DFEs is whether
or not the problem is well-posed; after global convergence has occurred, there is no
guarantee good system performance. Even with the hypothetical situation of rapid
convergence to a single global minimum leading to a perfectly tuned DFE, the error
propagation phenomenon can lead to appalling performance, as we have seen in Chap-
ter 2 [15,16], suggesting that practical equalization is a channel dependent issue. A
rough parallel exists with the DDE where it is known [1] that at frequencies where
the channel attenuation is high the resulting ideal equalizer can lead to excessive noise
enhancement.

The general aims of this chapter are to compare theoretically the blind adaptation
of DDEs with the blind adaptation of DFEs, with emphasis on the latter. The points
of contact and departure between these two types of equalizer will be examined. As
in the DDE case our results are incomplete but not empty. Concerning the theory
of blind adaptation, we see two general schools of thought. The first seeks to modify
the blind adaptation algorithm to achieve global convergence, i.e., to ensure the only
stable equilibria of the algorithm correspond to the channel-equalizer acting as a simple
delay. This approach has been moderately successful in the DDE case [2]. However
for discrete symbol distributions there have certainly been some negative results [9].
In contrast to this, our philosophy towards blind adaptation is fostered in part by
the belief that the goal of achieving a globally convergent scheme is too ambitious.
Our approach is more conservative in that it seeks only to classify sets of channels
for which the desirable sort of global convergence is assured. Contact with reality can
then hopefully be made by comparing real channels with these classes.

This chapter is organized as follows: Section 3.2 sets up a minimal DFE blind
adaptive system and compares it with the better known blind DDE equalizer. Section
3.3 is a brief review of the parameter space partition which exists independently of
the particular blind algorithm employed and is a mild generalization to that found
in Chapter 2. Section 3.4 shows the mechanism behind the multiple equilibria of
the blind algorithms. Section 3.5 gives a global picture of the blind tap convergence;
classifying equilibria and establishing conditions on the channel and DFE parameters
which ensure channel inversion with some delay. Section 3.6 considers the sign-error
algorithm, and this is followed by §3.7 in which an analysis of the convergence of a
broad class of algorithms is given. The conclusions are given in §3.8.
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3.2 System Description and Notation
3.2.1 Channel and Equalizer Models
The channel we consider is shown in Fig.3.2. It will be modelled as a filter, with
impulse response {h0, h1, . . .}, driven by binary data ak ∈ {−1,+1} (where k denotes
the discrete time index). Additive zero-mean channel noise nk is depicted in Fig.3.2.
However, mostly we will regard its influence as secondary to simplify our analysis
(although the effect of noise will be briefly considered).

Fig.3.2 Channel Linear Model.

The DFE structure we study, shown in Fig.3.3, consists of an N -tap delay line,
represented by weights {d1, d2, . . . , dN} adapted to minimize the (residual) intersym-
bol interference (ISI). This tapped delay line is fed by past decisions or data estimates
âk ∈ {−1,+1} and even if the di are correctly adjusted this can lead to problems
when past decisions are incorrect, and this is the error propagation mechanism of
Chapter 2 [11]. Note that in Fig.3.3, an additional weight d0 is incorporated when
forming an error signal εk to compensate for the non-unity channel term h0. We will
describe later the adaptive update mechanism which uses the error signal εk.

A more typical and indeed more general DFE structure usually consists of a FIR
filter followed by the structure given in Fig.3.3. We have two motivations for con-
sidering the simpler structure. Firstly, our application demand is for subscriber-local
exchange twisted pair telephone lines which measurements have shown to possess little
precursor intersymbol interference thus obviating the need for the FIR cascade [20].
Secondly one of our aims is to understand the effects of error propagation on adapta-
tion (relative to the well understood training sequence case) and Fig.3.3 is the minimal
non-trivial structure to study these effects. Further in the more general structure it is
sometimes possible to separate the adaptation of the FIR section from the DFE sec-
tion. Then with a preliminary FIR adaptation completed the cascade of the channel
and the FIR section consists of a linear system describable by the impulse response
{h0, h1, . . .}, effectively forming a new channel.
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Fig.3.3 Blind Adaptive Decision Feedback Equalizer.

The fundamental binary DFE output equation describing non-adaptive operation,
from Fig.3.2 and Fig.3.3, is given by

âk = sgn(
∞∑
i=0

hiak−i −
N∑
i=1

diâk−i + nk). (2.1)

Remarks:

(i) The size of N is chosen sufficiently large so as to model adequately the ISI present
in the channel in the sense that

∑∞
i=N+1

∣∣hi∣∣ needs to be sufficiently small. This
ensures the problem is well-posed.

(ii) We refer to a decision of the form âk = sgn(hδ) ak−δ as correct with the agreed
convention that δ is some well defined and fixed delay. The conditions under
which all this makes sense will be given later. Note that this delay should not
be confused with a bulk delay representing gross propagation effects and the like,
which (without loss of generality and as is standard) has been implicitly removed.

We introduce a vector convention to simplify the presentation. Let W represent a
vector in IRN+1. Then W ∈ IRN is derived from W ∈ IRN+1 by deleting the first
component (i.e., by projection). For example, if we define the truncated channel
impulse response vector as H

∆= (h0, h1, . . . , hN )′ ∈ IRN+1, then by convention
H

∆= (h1, h2, . . . , hN )′ ∈ IRN (where v′ denotes the transpose of v). We also define
the vector of time-varying tap weights at time k as Dk

∆= (d0, d1, . . . , dN )k′ ∈ IRN+1
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along with its associated vector Dk ∈ IRN . Further, the vectors representing the past
and present data and data estimates are Ak

∆= (ak, ak−1, . . . , ak−N )′ ∈ IRN+1 and
Âk

∆= (âk−1, âk−2, . . . , âk−N )′ ∈ IRN+1, respectively. In our analysis, we will also be
using Ak ∈ IRN and Âk ∈ IRN , representing the past only data and data estimates,
respectively.

With these definitions, (2.1) can be written succinctly as

âk = sgn(Ak′H − Âk
′Dk +Qk) (2.2a)

where

Qk
∆=

∞∑
i=N+1

hiak−i + nk. (2.2b)

represents a perturbation to the ideal DFE system. Typically, in the high signal to
noise ratio case and where N is sufficiently large, Qk will be small except for infrequent
intervals of time when the noise is significant. The form of (2.2a) with Qk ≈ 0 will
make the partition of Dk-space, reviewed in §3.3, more transparent.

3.2.2 Blind Adaptation Schemes
Our emphasis in this chapter is with how error propagation in a DFE interacts with and
distorts the stochastic dynamics of adaptation. The simplest blind adaptation scheme
(Fig.3.3) that can be employed which updates the taps Dk, effectively identifying the
channel, takes the form

Dk+1 = Dk + γ εk Âk (2.3a)

where
εk

∆= Ak
′H − Âk′Dk. (2.3b)

This is a blind algorithm because we use past decisions from {âk} rather than the true
data {ak} as the components in the regressor vector, and also in the error signal. The
scalar error εk represents the discrepancy between the input and the renormalized
output of the slicer (see Fig.3.3). The scalar γ in (2.3a) represents a small (time-
invariant) adaptive gain.

Denote by ψDFE(·) the memoryless non-linearity which maps the slicer input ck to
the adaptation error signal εk, in Fig.3.3. It is given by

ψDFE(x) = x− d0
. sgn(x). (2.4)
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By way of comparison we introduce the better studied DDE in Fig.3.4 (restricting
attention to the binary case). The algorithms [2-4,8,9,18] which have been investigated
for this case take the form

Dk+1 = Dk − γ εk Bk (2.5a)

where
εk

∆= ψLE(ck). (2.5b)

Fig.3.4 Blind Adaptive Decision Directed Equalizer.

Here Bk
∆= (bk, bk−1, . . . , bk−N )′ is the regressor of channel outputs, ck is the linear

equalizer output. (The slicer input ck and output âk, and error εk in Fig.3.4 differ
from those of Fig.3.3.) The Sato algorithm for binary communication in the DDE case
is precisely (2.5) with ψLE(·) defined as

ψLE(x) = x− sgn(x). (2.6)

So the close parallel between (2.4) and (2.6) is noted. Further the regressors in both
cases (2.3a) and (2.5a) are the tapped delay line inputs. However the DFE has a
computational advantage in this respect because âk is binary. M -ary generalizations
exist [2,18] although questions regarding normalization of the input power to the
quantizer need to be addressed and incorporated into the adaptation scheme [9].

Whilst the development here is fresh and in a classical setting let us briefly review
the major findings in the DDE case. Benveniste, Goursat and Ruget, [2], have shown
that the convergence properties of blind DDE adaptation depend on the distribution of
the channel input ak. In particular they showed that whenever the channel input dis-
tribution is subgaussian then a family of ψLE(·) (which generalize and include the Sato
non-linearity (2.6)) yields ideal global convergence properties, i.e., convergence occurs
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only to parameter settings leading to perfect equalization up to a delay. However
for binary inputs leading to a Bernoulli input distribution (rather than subgaussian)
Verdú [9] has shown that for a very large class of memoryless non-linearities ψLE(·),
including those in [2], convergence to non-equalized local minima is always possible
for large classes of channels. This throws into doubt the usefullness of [2], at least for
small alphabets where the subgaussian approximation is poor.

Concerning the analysis of Sato algorithms for DFEs, we are interested in demon-
strating the interplay between (2.2) and (2.3) given the presence of error propagation
(in this respect it is a problem quite different to the DDE case). Some tools which
come to our aid are averaged equations describing the mean tap trajectory of Dk (over
the ensemble of input sequences), and finite state Markov processes. On the result
side we will see that, like the Verdú DDE analysis (which cannot be used directly
here), convergence to unequalized tap settings is possible for some channels. How the
channel parameters explicitly determine some of the convergence properties is also
studied. (Modifications to possibly improve the robustness of the algorithms for both
decision directed and decision feedback equalization will be presented in Chapter 5.)

3.3 Parameter Space Partition
In this section we quickly generalize our results of Chapter 2 regarding the relationship
between regions in parameter space and finite state Markov processes (FSMPs). We
define the following hyperplanes in Dk-space (note d0 is unconstrained):{

Dk ∈ IRN+1: Ak′H = Âk
′Dk

}
. (3.1)

as we vary across all possible values taken by Ak ∈ ZZN+1 and Âk ∈ ZZN (here
ZZ denotes the integers). From (2.2) it is clear that whenever Qk is small these
hyperplanes define the manifolds in IRN+1 for which the argument of the signum
function in (2.2) is potentially small. These planes act as switching surfaces in the
following sense. Define an atomic state

Xk
∆= (Ak

′, Âk
′)′ ∈ ZZ 2N . (3.2)

Then from (2.2a) whenever the channel parameters satisfy (3.1) there exists an atomic
state Xk and current input ak such that an arbitrarily small perturbation in Dk (d0

has no effect) can change a âk = +1 to a âk = −1 (or vice-versa). Before describing
the significance of these hyperplanes to the stochastic modelling we give an example.
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Example: Let N = 2, h0 = 1, h1 = 4, and h2 = 3. The 4N = 16 lines which

partition Dk-space are given by d1 ± d2 = ζ, for ζ ∈ {0,±2,±6,±8} according to

(3.1). These lines are depicted in Fig.3.5. In this figure the point (4, 3), representing

the location of the channel tail, has been indicated by a small cross (the shading

can be ignored for the moment). Notice that due to the degeneracy in this example

(ζ can take the value 0) we really only have only 14 distinct lines rather than the

generic 16. We will return later to consider this example in more detail.

Fig.3.5 Polytopes for the H=(1,4,3)′ Channel.

Remarks:

(i) The effect of Qk non-zero (2.2) is to blur the boundaries defined in (3.1). This
means our modelling when the parameters are near the boundaries is non-ideal
given the presence of channel noise or the effects of an undermodelled channel
tail.

(ii) The remaining analysis will assume Qk = 0 to simplify the presentation keeping
in mind the significance of a non-zero Qk.
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The hyperplanes above partition Dk-space into a collection of polytopes which differ
in definition from those given in Chapter 2 (naturally the generating mechanism is
the same). The property of polytopes which we need here (from Chapter 2) is that
one cannot distinguish between any two DFE Dk parameter settings within a given
polytope based on observations of the output {âk} alone. (Nor, therefore, can any
blind adaptation algorithms, including the Sato one (2.3), which uses âk.) Next we
move on to some statistical modelling.

Assumption: The input binary sequence {ak} forms an equi-probable independent

and identically distributed (i.i.d.) binary sequence.

Then we have a finite state Markov process describing the stochastic dynamics of the
DFE, with 4N states given by all possible values of Xk (3.2), see Chapter 2 and [15].
One can verify there is a one-to-one correspondence between polytopes and sets of
FSMPs. So the conceptual picture is that as we drift through parameter space the
underlying FSMP, which governs the full joint statistics of the input ak and output âk,
changes (abruptly) only when we cross polytope boundaries. Inside a given polytope
we model the {âk} process by the stationary behaviour of its associated FSMP. When
the input independence assumption above does not hold and we have input correlation
it is possible to still use a FSMP as an approximation device [13,14]. Alternatively we
may, in most cases, extend the Markov state space and retain an exact description.
Both paths could only distract our main aim to describe gross properties of DFE blind
adaptation on the simplest non-trivial system.

Note that in principle the FSMP provides sufficient information to calculate, in
our case, stationary entities of the form

R
∆= E{ÂkÂk′} and C

∆= E{ÂkAk′} (3.3)

which are expressible in terms of an invariant probability measure via an unilluminat-
ing calculation. (Here, R is non-negative definite, C is upper triangular by causality,
and both are Toeplitz by stationarity.) Uniqueness of the invariant probability is not
guaranteed, and this raises some interesting questions, but this takes us too far afield.
What is important here is that we will see quantities like (3.3) provide us with suf-
ficient information to characterize the gross convergence properties of the Sato blind
adaptation algorithm (2.3).
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3.4 Equilibria and Averaging Analysis
3.4.1 Wiener-Hopf Solution

Our first task is to determine the locations of the attraction points (equilibrium points)
in Dk-space for the weights when the algorithm (2.3) seeks to minimize some error
criterion implicit in the Sato formulation. We show that, unlike the DDE case, the
criterion is locally but not globally a least squares one and this is a peculiar conse-
quence of both the DFE structure (Fig.3.3) and the stationarity assumption on the
underlying FSMPs.

Consider Fig.3.6 which simply redraws a portion of Fig.3.2 and Fig.3.3. (The
definitions of the symbols in Fig.3.6 are identical to those in Fig.3.2 and Fig.3.3.)
This figure suggests that âk can be interpreted as an input sequence and that yk can
be interpreted as a noiseless desired response. Thus the problem now looks classical
(but actually the statistics of âk depend on Dk). As is well known, the objective of
the “LMS” algorithm (2.3a) is to minimize the mean square error defined by ξ(Dk) =
E
{
ε2k(Dk)

}
which is a quadratic function of Dk and hence uni-modal. The tap weight

setting, DEQ (equilibrium), which gives the minimum mean square error is the classical
discrete time Wiener-Hopf formula [21] and is given by

DEQ

∆= E
{
ÂkÂk

′}−1
E
{
Âkyk

}
(4.1a)

where, from (3.3) we have assumed det(R) 6= 0. Note, from this point on we consider
only the case when R is non-singular. We will see that this restriction is justifiable
when we come to §3.5.5.

Fig.3.6 Equivalent Wiener Filter Problem.

In reality, yk is not a user supplied sequence but simply the noiseless channel
output which in our case is identified with yk

∆= Ak
′H (Fig.3.2). Hence (4.1a) may be
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expanded to

DEQ

∆= E
{
ÂkÂk

′}−1
E
{
ÂkAk

′} H (4.2a)

= R−1C H. (4.2b)

This formula for DEQ makes a qualitative and quantitative analysis more accessible.
Specifically, it is clear that DEQ = sgn(h0) H only under special circumstances and this
highlights a major problem of blind adaptation with DFEs, i.e., sgn(h0) H (which we
will see is the desired tap weight setting [11]) need not be a global attraction point for
the adaptation algorithm.

The mean square error surface is quadratic with R = I in the training sequence
case, because the input is i.i.d., thus uncorrelated. With blind adaptation we will see
that locally the mean square error surface is quadratic (although R 6= I in general)
given stationarity of the output {âk} process. The above analysis assumes matrices
R and C are constant. We qualify this assumption for the blind DFE case later, but
first we move onto another result.

3.4.2 Averaged Equation Trajectory
To characterize the attraction points for the blind algorithm (2.3) it is sufficient to
define the error function implicit in the Sato formulation. A close parallel exists here
with the work of Verdú [9], except he treats the DDE, in this regard. However because
of the conceptual aid which it affords it is desirable to complement this error surface
analysis with averaging theory to describe the mean drift of the Dk parameters.

In this section we will derive an expression for the mean trajectory for the tap
weights Dk as they drift towards the equilibrium DEQ given by (4.2b), assuming R and
C are constant for the moment. The mean is over the ensemble of input sequences
{ak}. However, the mean trajectory is also informative in that individual realizations
will tend to cluster closely about this mean, at least for sufficiently small gain γ as we
will see from an example.

We now analyze the adaptation update equations (2.3). Substituting the expres-
sion for the error εk (2.3b) into the LMS tap weight update equation (2.3a) we obtain

Dk+1 =
(
I− γ ÂkÂk′

)
Dk + γ ÂkAk

′H. (4.3)

If γ is sufficiently small, then the increment in going from Dk to Dk+1 will also be
small (noting that all quantities in (4.3) are bounded). Further, we might anticipate
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that the matrices ÂkÂk′ and ÂkAk′ take on a large number of (statistically) different
values whilst {Dk} evolves very little with time. Hence we might predict that the
deterministic equation describing the mean tap trajectory, {D̃k}, takes the form,

D̃k+1 =
(

I− γE
{
ÂkÂk

′}) D̃k + γE
{
ÂkAk

′} H +O(γ2) (4.4a)

= (I− γR) D̃k + γC H +O(γ2). (4.4b)

The formal justification that (4.4b) is indeed the correct equation as γ → 0 may be
found in the literature [22-24]; this general idea has also appeared in [2] (somewhat in
disguise) and in [8]. Further study shows that the trajectories of (4.3) cluster closely
about the solutions of (4.4b), e.g., see [22,24]. This property is apparent in our later
example in §3.5.2.

We make some observations regarding (4.4b). It is straightforward to verify that:
(a) DEQ (4.2b) is indeed the equilibrium of the averaged (mean) equation (4.4b); and
(b) the mean equation (4.4b) is stable if and only if γ λMAX (R) < 2, where λMAX (R) is
the maximum eigenvalue of R.

3.5 Tap Trajectories During Adaptation
3.5.1 Piecewise Constant Behaviour
With this section we bring together our previous, largely disconnected, results re-
garding the polytopes (§3.3), finite state Markov processes (§3.3 and §3.4.1, see also
[15]), and the averaging analysis (§3.4.2). We will demonstrate that the blind LMS
algorithm (2.3a) can be (but is not necessarily) attracted to undesirable regions of
Dk-space where the channel is not correctly equalized and the error rates are unac-
ceptably high (even in the absence of noise). Analogous results are of course known
for the DDE [9].

The parameters which determine the dynamics of the mean equation (4.4b) are
the covariance matrices R and C. We also met these matrices earlier in §3.3 and
we showed they could be evaluated with the assistance of FSMPs. Now, recall our
one-to-one correspondence between the polytopes and FSMPs (or more generally state
transition diagrams, §3.3). Hence, in Dk-space the matrices R and C will be constant
only whilst the tap setting Dk remains inside any one of the Dk-space polytopes
(assuming steady state of the underlying FSMP). Therefore, we have shown (albeit
informally):
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Proposition 3.1: In steady state, the matrices R and C are piecewise constant

functions of Dk, where the “pieces” are precisely the Dk-space polytopes bounded

by the hyperplanes (3.1).

Remarks:

(i) By steady state we are specifying that the underlying FSMP has transitions only
between recurrent atomic states.

(ii) To emphasize R and C are functions only of the polytope P for which Dk ∈ P ,
we write R(P) and C(P).

(iii) Within each polytope the mean trajectory (4.4b) is determined by a constant
coefficient, linear, deterministic difference equation. Hence, over the whole Dk-
space, the averaged trajectory describing the complete adaptation is determined
by a piecewise constant coefficient, linear, deterministic difference equation (see
the example in §3.5.2), possibly with boundary conditions.

The next property is an embellishment on Proposition 3.1.

Proposition 3.2: The error surface ξ(Dk) ∆= E
{
ε2k(Dk)

}
is a piecewise (polytope-

wise) quadratic function of Dk given by

ξ(Dk ∈ P) = E{y2
k} − 2E{Âkyk}′Dk +Dk

′E{AkAk′}Dk (5.1a)

= H ′H − 2H ′C(P)′Dk +Dk
′R(P)Dk. (5.1b)

Proof: This is a trivial modification of a standard result in adaptive least squares,

filtering, i.e., (5.1a) may be found in [21, eqn (2.31)]. To obtain (5.1b), we substitute

both yk = Ak
′H and E{Âkyk} = C(P)H into (5.1a), and invoke the uncorrelat-

edness of the input sequence. Of course, we emphasize that for blind adaptation

of DFEs, C(P) and R(P) are constant only within a polytope P, and generally

these matrices vary from polytope to polytope. Therefore, the quadratic surface is

different for different polytopes, i.e., piecewise quadratic and discontinuous at the

boundaries.
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Remarks:

(i) The local minimum of the mean square error ξ
(
DEQ(P)

)
associated with a poly-

tope P, in terms of H, can be written ξMIN (P) = H ′
(
I−C(P)′R(P)−1C(P)

)
H.

However, if DEQ(P) lies outside P then this minimum need not be achievable.

(ii) Whenever h0 6= 0 we will see in §3.5.3 that the global minimum mean square error
is zero at DOPT ∆= sgn(h0) H for the polytope which contains DOPT, and is locally
attainable, in the sense described in the following paragraph.

(iii) The training sequence adaptation error surface has a unique minimum. Blind
DFE adaptation has potentially as many equilibria as there are polytopes!

In review, with each polytope P we have associated an equilibrium (potential attrac-
tion point for the blind adaptation algorithm) given by

DEQ(P) = R(P)−1C(P) H.

It is natural to classify two types of equilibria according to whether or not the following
property holds:

Definition: DEQ(P) is locally attainableif DEQ(P) ∈ P .

If DEQ(P) is locally attainable then {Dk} will tend to move towards and settle down
around it, whenever Dk ∈ P . Otherwise, {Dk ∈ P} will tend to move towards the
boundary ∂P of P nearest to DEQ(P) and thus head on into an adjacent polytope. So
all locally attainable equilibria are real attraction points for the blind algorithm. The
example in the next subsection best illustrates these ideas. This is not necessarily
a channel to be expected in practice and serves merely to illustrate the concepts
introduced.

3.5.2 Example of Adaptation and the Averaged Trajectory
As in §3.3 we choose the example h0 = 1, h1 = 4 and h2 = 3. In Fig.3.7 we have plotted
a large number of averaged trajectories according to (4.4b) with γ = 0.01, noting that
the R and C matrices are now dependent on the polytopes (pictured in Fig.3.5). Note
Fig.3.7 is a two-dimensional projection of Dk-space, therefore some of the averaged
trajectories only appear to cross. The starting d0-component for all trajectories was
arbitrarily selected at zero. Naturally the mean evolution of d0 during adaptation
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Fig.3.7 Refracting Averaged Trajectories.

cannot be discerned in such a figure. Clearly a predictable refraction phenomenon is
indicated as we pass across polytope boundaries.

Figure 3.8 shows the precise sense in which to interpret Fig.3.7. It shows an insert
of Fig.3.7 with a single (bold) averaged trajectory (plucked from Fig.3.7) and four
realizations initialized from (0, 7, 0)′ (i.e., simulations according to (4.3) generated via
a random number generator) which appear to cluster about the averaged trajectory.
Note for this example there are only three locally attainable equilibria at (1, 4, 3)′,
(4, 3, 0)′ and (3.792, 4.833, 3.292)′. In Fig.3.7 the 2D projections of these equilibria
(depicted as small circles) are given by (4, 3)′, (3, 0)′ and (4.833, 3.667)′ and these
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appear as (local) attraction points for the mean trajectories. The last equilibrium
shows blind adaptation based on the Sato algorithm may be flawed in the sense that
it does not correspond to an equalized system as we will see later (whereas the first
two do—at the first, âk = ak, and at the second, âk = ak−1).

In Fig.3.7 we have aggregated polytopes from Fig.3.5 whenever adjacent polytopes
have the same correlation statistics (more precisely when neighbouring polytopes have
isomorphic sets of recurrent atomic states). In a sense this indicates that aggregations
of polytopes are more important objects than the polytopes themselves for investiga-
tion and this is a lead in to some of our later results.

Fig.3.8 Averaged Trajectory with 4 Realizations.

3.5.3 Approximate and Exact Locally Attainable Equilibria
The equilibria predicted by the theory developed are implicitly based only on mean
behaviour (4.4b). However we note that part of the driving term of the adaptation
equation (2.3a) is given by εk (2.3b). Error εk in turn is only identically zero (for
all k) when Dk = DOPT ∆= sgn(h0) H (given h0 6= 0; the proof is straightforward
and omitted). So we say that only DOPT is an exact equilibrium in the sense that
εk(DOPT) = 0. All other locally attainable equilibria are termed approximate equilibria
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and the physical manifestation of a locally attainable equilibrium with εk
(
DEQ(P)

)
> 0

is that the sequence {Dk} is observed to jiggle about (but generally stay in the vicinity
of) DEQ(P). This phenomenon is apparent in the lower left of Fig.3.8. The questions
arise [8]:

(a) Regarded as a small noise can the variations in εk (estimating the gradient) drive
{Dk} away from DEQ(P) such that {Dk} hits the boundary ∂P?

(b) What is the expected time to do so?

In the stochastic process literature [22,25,26] this is known as an exit problem. These
are crucial questions because if the DFE hangs at an equilibrium DEQ(P) corresponding
to high error rates, e.g., DEQ = (4.667, 5.333, 3.667)′ in Fig.3.7, then an unacceptably
high exit time has serious practical consequences. On an equal footing we may ask
about exit times from regions of correct equalization and consider the consequences.
Also channel noise can have precisely the same effect as εk as is well known, so the
above questions actually are relevant also for an exact equilibrium. These questions
are the subject of current research and answers are not presented in this thesis.

3.5.4 Delay-type Equilibria Local Attainability
In this section we consider those aggregations of polytopes in Dk-space which yield a
decision sequence which is a delay of the input (with an associated possible sign change)
under steady state, i.e., âk = sgn(hδ) ak−δ, ∀k. We derive necessary (and conjecture
sufficient) conditions for attainability of the attraction points of these groups of poly-
topes for Sato algorithms in terms of the channel parameters. (Note in the following
development all the results leading up to Theorem 3.8 are independent of the blind
algorithm employed because they relate to non-adaptive properties.)

Let σδ
∆= sgn(hδ), then rewriting (2.1) we have,

âk = sgn
(
hδak−δ + Uk(δ) + Vk(δ)

)
, 0 ≤ δ ≤ N (5.2a)

where

Uk(δ) ∆= σδ

N∑
i=δ+1

di−δ(ak−i − σδ âk+δ−i) (5.2b)

Vk(δ) ∆=
δ−1∑
i=0

hiak−i +
N∑

i=δ+1

(hi − σδ di−δ)ak−i −
N∑

i=N−δ+1

diâk−i. (5.2c)
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We also define an upper bound on (5.2c)

VMAX (δ) ∆=
N∑

i=δ+1

∣∣hi∣∣+
N∑

i=δ+1

∣∣hi − σδ di−δ∣∣+
N∑

i=N−δ+1

∣∣di∣∣. (5.3)

The reason for the curious decomposition given by (5.2a) will become clearer later. We
will see that δ corresponds to a nominal time delay and σδ ∈ {−1,+1}, corresponds
to an associated sign change of the channel-DFE combination.

We define two subsets of the set Ω of 4N atomic states Xk (3.2) parametrized by
0 ≤ δ < N . (The case δ = N needs to be treated separately but fortunately is easily
disposed of.) Define

ω+(δ) ∆=
{
Xk ∈ Ω: âk−i = +σδ ak−δ−i, i = 1, 2, . . . , N − δ

}
ω−(δ) ∆=

{
Xk ∈ Ω: âk−i = −σδ ak−δ−i, i = 1, 2, . . . , N − δ

}
both of which consist of collections of 2N+δ atomic states where (precisely) the N − δ
most recent decisions are of the form âm = +σδ am−δ and âm = −σδ am−δ, respec-
tively.

Remarks:

(i) Note the definitions of ω±(δ) simply express that the member atomic state vectors
have their N + ith component equal to ±σδ times the δ + ith component for
i = 1, 2, . . . , N − δ, and thus these subsets are in effect independent of k (as the
notation suggests).

(ii) We will see that whereas in the DDE case [2] âk = +ak−δ, ∀{ak} and âk = −ak−δ,
∀{ak} are both possible for some δ for a fixed channel, the situation for the DFE
is different because only âk = +σδ ak−δ, ∀{ak} will be possible (σδ being fixed by
the channel).

We are aiming for conditions under which only the atomic states in ω+(δ) ∈ Ω are
recurrent. The standard notion of a closed subset of Ω will considerably simplify
development.

Definition: A subset of Ω is closedif any transition from any one atomic state in

the subset is only to another atomic state within the subset.
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The following statements are equivalent: (a) Suppose Xk ∈ ω±(δ), then all future
(m ≥ k) decisions are of the form âm = ±σδ am−δ; and (b) ω±(δ) is closed. Hence to
investigate channel-DFE combinations yielding simple time delay behaviour we need
only to determine when a set ω±(δ) is closed and reachable from arbitrary states
within Ω. The following proposition narrows our investigations by showing a DFE
can never behave consistently according to the law âm = −σδ am−δ when in a steady
state stochastic environment, and it also gives necessary and sufficient conditions for
ω+(δ) closure.

Proposition 3.3: (a) ω+(δ) is closed if and only if

∣∣hδ∣∣ > VMAX (δ). (5.4)

(b) ω−(δ) is never a closed subset.

Proof: Suppose ω±(δ) is closed and that the system has been in ω±(δ) for some

time. Then âk−i = ±σδ ak−δ−i, i ∈ {1, 2, . . . , N}. Substituting into (5.2b) and

(5.2c) we obtain

U−k (δ) ∆= 2σδ
N∑

i=δ+1

di−δak−i; U+
k (δ) ∆= 0 (5.5)

and

V ±k (δ) ∆=
δ−1∑
i=0

hiak−i +
N∑

i=δ+1

(
hi − σδ di−δ

)
ak−i ∓ σδ

N+δ∑
i=N+1

di−δak−i. (5.6)

Consider first ω+(δ). If
∣∣hδ∣∣ > VMAX (δ) with U+

k (δ) = 0 then this implies∣∣hδ∣∣ > ∣∣V +
k (δ)

∣∣ for all V +
k (δ), hence âk = +σδ ak−δ by (5.2a). Then note that

the ak in (5.6) are distinct and therefore the supremum of V +
k (δ) over {ak} is just

VMAX (δ), so (5.4) is also necessary.

Now consider ω−(δ). In this case we have âk = sgn
(
hδak−δ +U−k (δ) +V −k (δ)

)
,

where by (5.5) and (5.6), U−k (δ) + V −k (δ) is independent of ak−δ; and has a distri-

bution symmetric about 0. Hence Pr
(
âk = +σδak−δ

)
≥ 1

2 , contradicting closure

(noting if ω−(δ) were closed then Pr
(
âk = +σδak−δ

)
= 0).
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If (5.4) holds, then contriving an input sequence which visits all atomic states in ω+(δ)
when the initial state is in ω+(δ) is straightforward. This shows no proper subset of
ω+(δ) is closed assuming ω+(δ) itself is closed (i.e., ω+(δ) is a set of recurrent states).
We formulate this as:

Proposition 3.4: ω+(δ) is indecomposable.

The inequality (5.4) can only hold for at most one value of δ. To prove this one
assumes at least two inequalities of the form (5.4) are simultaneously satisfied (say for
δ1 and δ2) then an application of the triangle inequality establishes a contradiction.
The details of the proof are omitted. We state this result as Proposition 3.5.

Proposition 3.5: ω+(δ) is closed for at most one δ ∈ {0, 1, . . . , N}.

Proposition 3.5 can be viewed as a special case of a more general problem, now con-
sidered. Having established that only under suitable conditions ω+(δ) is closed and
indecomposable, the crucial question arises as to whether it can be reached from an
arbitrary atomic state Xk ∈ Ω \ω+(δ) by at least one input sequence. Then there are
a number of side issues related to this, e.g, (a) the expected capture time by ω+(δ),
and (b) which channels have an acceptable capture time, etc., (see [15]). A full answer
to this question is not yet known. We present the following result (Proposition 3.6)
and important conjecture (Conjecture 3.7).

Proposition 3.6: Let
∣∣hδ∣∣ > VMAX (δ) for some 0 ≤ δ < N . Then the following

alternative conditions are sufficient to guarantee that there exists an input sequence

such that N − δ consecutive âm = +σδ am−δ decisions are made:

(i) δ = 0, 1, N − 2, N − 1, N (and thus cases N = 1, 2, 3, 4).

(ii) η sgn(d1) = η2 sgn(d2) = . . . = ηN−δ sgn(dN−δ) for η ∈ {+1,−1}.
(iii) η sgn(hδ+1) = η2 sgn(hδ+2) = . . . = ηN−δ sgn(hN ) for η ∈ {+1,−1}.

We prove this result for δ = 0 and δ = 1. The remaining cases are easier to prove and
the proofs have been omitted.

Proof: Let Fk = σ(ak, ak−1, . . . , âk, âk−1, . . .) denote the sigma algebra

generated by data and decisions up to and including time k.

(a) δ = 0: From (5.2b) we note Uk(0) is Fk−1-measurable, hence selecting ak =
+σ0 sgn

(
Uk(0)

)
gives âk = +σ0 ak by (5.4) with δ = 0. Apply this rule for N
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consecutive k.

(b) δ = 1: Suppose that for some fixed k, the DFE has been driven by the homing

sequence {ak−1 = +σ1; ak−j = +σ1 sgn(di−j), i = 2, 3, . . . , N}. (We shall

explain how ak, ak+1, etc., are to be chosen, so that âk+j = +σ1 ak+j−1, ∀j ≥ 0.)

Then from (5.2b) we have

Uk(1) =
N∑
i=2

∣∣di−1

∣∣− N∑
i=2

di−1âk+1−i ≥ 0

Thus âk = +1 independent of ak because substituting into (5.2a) we have: (i)

h1ak−1 +Uk(1) ≥
∣∣h1

∣∣; and (ii)
∣∣h1

∣∣ > ∣∣Vk(1)
∣∣ from (5.4). Note that the âk decision

satisfies âk = +σ1 ak−1 (with ak−1 = +σ1), i.e., is one decision of desired form.

We need to make the next N − 2 also of this form. Now since âk = +σ1 ak−1 is

guaranteed independent of ak, we conclude Uk+1(1) is Fk−1-measurable. Thus we

may set ak = +σ1 sgn
(
Uk+1(1)

)
showing h1ak + Uk+1(1) = sgn

(
Uk+1(1)

)(∣∣h1

∣∣ +∣∣Uk+1(1)
∣∣) which dominates Vk+1(1), by (5.4), leading to âk+1 = sgn

(
Uk+1(1)

)
=

+σ1 ak, independent of ak+1. Following this we conclude Uk+2(1) is Fk-measurable,

etc., and the recipe is clear.

Conjecture 3.7: Let
∣∣hδ∣∣ > VMAX (δ) for some 0 ≤ δ < N . Then there exists at least

one input sequence such that N − δ consecutive decisions are made of the form

âm = +σδ am−δ.

Remarks:

(i) With (5.4) satisfied, and the hypothesis of Proposition 3.6 fulfilled, ω+(δ) is closed,
indecomposable and reachable, so that Pr

(
Xk ∈ ω+(δ)

)
→ 1 exponentially fast

as k → ∞. Hence under stationarity the channel-DFE combination produces
decisions of the form âm = +σδ am−δ if and only if

∣∣hδ∣∣ > VMAX (δ) with ω+(δ)
reachable. Note that the output forms an independent sequence under such con-
ditions.

(ii) Given a time-invariant channel H, define the following regions (at least one does
exist) of Dk-space, by rewriting (5.4):

J (δ) ∆=
{
Dk ∈ IRN+1: ρδ >

N∑
i=δ+1

∣∣hi − σδ.di−δ∣∣+
N∑

i=N−δ+1

∣∣di∣∣} (5.7a)
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where

ρδ
∆=
∣∣hδ∣∣− δ−1∑

i=0

∣∣hi∣∣, 0 ≤ δ ≤ N. (5.7b)

(These regions for δ > 0 generalize a condition derived by Jennings [10].) Then
âm = +σδ am−δ under steady state conditions only if Dk ∈ J (δ) and sometimes if
(according to the reachability of ω+(δ) and the initial conditions). Note this region
may also be written ρδ >

∥∥Dk − σδ S δ
N H

∥∥
1
, where Si denotes an i × i matrix

of super-diagonal ones. Hence the projection of J (δ) onto Dk-space defines an
l1-ball with centre σδ S δ

N H and radius ρδ. (Note the d0 component of Dk does
not play a role in the constraint in (5.7a).) Region J (δ) is non-empty only if
ρδ > 0. Note for our example in Fig.3.6, J (0) and J (1) are non-empty because
ρ0 =

∣∣h0

∣∣ = 1 > 0 and ρ1 =
∣∣h1

∣∣ − ∣∣h0

∣∣ = 3 > 0, but J (2) is empty because
ρ2 =

∣∣h2

∣∣− ∣∣h1

∣∣− ∣∣h0

∣∣ = −2 < 0

(iii) It can be shown that each region J (δ) is a union of polytopes whose sets of
recurrent FSMP states are isomorphic.

(iv) In the case δ = N , it is readily apparent that condition (5.4) is necessary and
sufficient for every decision to be of the form âm = +σN am−N .

Now we state the main result, which shows it is simple to check for the existence of
delay-like attraction points for the Sato blind algorithm for the adaptive DFE.

Theorem 3.8: A necessary condition for the Sato “LMS” blind adaptive algorithm

Dk+1 = Dk + γ εk Âk

where

εk
∆= Ak

′H − Âk′Dk

to have a locally attainable equilibrium corresponding to the channel-DFE combi-

nation producing decisions of the form âm = +σδ am−δ under steady state is

ρδ
∆=
∣∣hδ∣∣− δ−1∑

i=0

∣∣hi∣∣ > 0.

Further, this equilibrium is given by DEQ(P) ∆= + σδS
δ
N+1H, i.e., a simple shift of

H with a possible sign flip. The condition is also sufficient when ω+(δ) is reachable

(from all atomic states in Ω \ ω+(δ)).



96 Chapter 3 Stochastic Dynamics of Blind Adaptation

Proof: Suppose âm = +σδ am−δ ∀m under steady state. Then it follows ω+(δ)
is closed (by definition). With ω+(δ) closed it is necessary that

∣∣hδ∣∣ > VMAX (δ) by

Proposition 3.3. In particular, this implies∣∣hδ∣∣ > δ−1∑
i=0

∣∣hi∣∣
by (5.3). Hence ρδ > 0 (5.7b).

Now suppose ρδ > 0. Then by (5.7a) J (δ) is non-empty. Let Dk ∈ J (δ) in

which case ω+(δ) is closed. Now only if ω+(δ) is reachable from all initial atomic

states (Proposition 3.6) can we say that transitions within ω+(δ) completely define

the steady state behaviour, i.e., only if ω+(δ) is the only closed subset of Ω (Con-

jecture 3.7). Therefore only with ω+(δ) reachable does it follow from the closure

property that âm = +σδ am−δ ∀m (given ρδ > 0). So if we assume ω+(δ) is reach-

able, then it remains to be shown that there is an equilibrium for {Dk} which is

locally attainable (it turns out to be unique). Now because âm = +σδ am−δ ∀m it

follows that: (i) R(P) = I; and (ii) C(P) = +σδ S δ
N+1. Hence from (4.2b) we have

DEQ(P) = +σδ S δ
N+1H for all polytopes P which make up J (δ). Then it is trivial

to show from (5.5) that DEQ(P) ∈ J (δ). (Indeed in a very real sense DEQ(P) is the

“centre” of J (δ), see Fig.3.7.) Hence there exists a (particular) polytope P∗ ∈ J (δ)
(say) such that DEQ(P∗) = DEQ

(
P ∈ J (δ)

)
∈ P∗, i.e., DEQ(P∗) is a locally attainable

equilibrium.

Remarks:

(i) For δ = 0, DEQ(P) = DOPT ∆= + σ0H is always locally attainable whenever h0 6= 0
and achieves the global minimum mean square error of zero, i.e., is an exact
equilibrium. (If h0 = 0 then trivially DEQ(P) = +σ1 SN+1H is always locally
attainable and exact, and so on for more degenerate cases.)

(ii) The “LMS” qualifier in the theorem statement is superfluous. The same result
holds for any adaptation algorithm which seeks to minimize the mean square error
(2.3b) by searching for a Wiener-Hopf solution. Hence the result holds also for
blind regressor algorithms based on NLMS, RLS, etc.

3.5.5 White Equilibria
As we have earlier commented, when âk = +σδ ak−δ, the {âk} process is composed of
a sequence of independent equi-probable binary random variables. Let us term any
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equilibrium with the {âk} process white a white equilibrium. In this subsection, we
shall present further results on this class and indicate some open problems.

We now give two closely related propositions which imply that adaptation should
be restricted to a well defined region of Dk-space.

Proposition 3.9: Suppose {âk} forms an independent, equi-probable binary random

sequence (under steady state). Then

Dk ∈
{
Dk ∈ IRN+1:

∥∥H∥∥
1
>
∥∥Dk

∥∥
1

}
. (5.8)

Proof: If {âk} is an independent, equi-probable binary random sequence then

the subsequence {âk = −1; âk−i = − sgn(di), i = 1, 2, . . . , N} occurs with non-

zero probability (for some input sequence). In (2.1) this implies −1 = sgn(Ak′H +∥∥Dk

∥∥
1
) and so (5.8) follows, noting

∥∥H∥∥
1
≥
∣∣Ak′H∣∣, ∀Ak.

Remarks:

(i) Taking our previous example, this region (5.8) is shown shaded as a diamond in
Fig.3.5. Here H = (1, 4, 3)′ and we need

∣∣d1

∣∣ +
∣∣d2

∣∣ < 8; the output of the DFE
can be independent only whilst (d1, d2)′ lies within this diamond.

(ii) The expression
∥∥H∥∥

1
is the peak excursion of the noiseless channel output when

driven by an independent binary input. Hence we can estimate
∥∥H∥∥

1
by channel

output measurements and thus impose during adaptation the requirement that
{Dk} not leave (5.8).

(iii) Closely related to the above is the following. Clearly, by the earlier definition of
DOPT as sgn(h0)H, we have DOPT =

∥∥H∥∥
1

(and
∥∥H∥∥

1
can be adaptively estimated).

It is obvious, yet has not been suggested in the literature, that adaptation algo-
rithms should constrain {Dk} only to move on the l1-ball given by

∥∥Dk

∥∥
1

=
∥∥H∥∥

1

(or progressive estimates thereof).

Proposition 3.10: If det(R(P)) = 0 then P ⊂
{
Dk ∈ IRN+1:

∥∥Dk

∥∥
1
>
∥∥H∥∥

1

}
.

Proof: If det
(
R(P)

)
= 0 this implies there exists x

∆= (x0, x1, . . . , xN )′ 6= 0
such that x′R(P)x = 0, i.e., E

{
(x′Âk)2

}
= 0. Therefore, under steady state, we

have

x0âk + x1âk−1 + x2âk−2 + . . .+ xN âk−N = 0 (5.9)
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where at least two xi’s are non-zero. In particular, (5.9) implies {âk} is periodic

because Âk can take on only a finite number of values.

Now to obtain a contradiction, suppose that
∥∥Dk

∥∥
1
<
∥∥H∥∥

1
and consider

the two input subsequences {ak−i = + sgn(hi)} and {ak−i = − sgn(hi)}. Then in

the two cases Ak
′H = +

∥∥H∥∥
1

and Ak
′H = −

∥∥H∥∥
1

imply (by hypothesis) that

âk = +1 and âk = −1, respectively. However, this contradicts the periodicity of

{âk}. Therefore
∥∥Dk

∥∥
1
>
∥∥H∥∥

1
as claimed.

Remarks:

(i) This justifies the earlier restriction that we should only consider polytopes P
satisfying det(R(P)) 6= 0, because otherwise we would be considering a region
of Dk-space which is complementary to the l1-ball which, by Proposition 3.9,
contains the only polytopes of interest and to which adaptation is sensibly con-
strained. There is some evidence which leads to the conjecture that condition
(5.8) implies the stationary atomic distribution of the FSMP is unique. (For ex-
ample, if (5.8) holds and hi > 0 for all i, then it is provably unique). However,
the general conjecture (which incidentally implies Conjecture 3.7) remains open.

(ii) When N = 1 and N = 2, or when all di are zero (which occurs in decision directed
equalization), we can show that the only way the output {âk} can be white is for
the DFE to produce decisions of the form âm = +σδ am−δ, for some δ (only one).

Our analysis leads to the following conjecture:

(DFE) Conjecture 3.11: Let {ak} be an independent sequence of random variables

taking values in {−1,+1} with equal probability. Suppose that

âk = sgn(
N∑
i=0

hiak−i −
N∑
i=1

diâk−i)

and the {âk} is independently distributed. Then for some δ ∈ {0, 1, . . . , N}, there

holds

âk = +σδ ak−δ, ∀{ak}

where σδ
∆= sgn(hδ).

If the conjecture held we would have a way of statistically testing the output of a
DFE to prove it was correctly equalizing the channel up to a delay. The corresponding
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question for the simpler DDE is solved in Chapter 5 where these issues are investigated
further.

3.5.6 Equilibria Classification
Here we summarize our findings into the tree diagram shown in Fig.3.9. It also incor-
porates cases which we have not considered because they have yet to be observed in
any examples, i.e., are hypothetical. These hypothetical cases will be treated in this
section.

Fig.3.9 Tree Diagram for Blind DFE Equilibria.

The familiar adjectives can be found in Fig.3.9 under the first major class called
“regular” which are all equilibria describable through the discrete time Wiener-Hopf
formula DEQ(P) = R(P)−1C(P)H: “locally obtainable” corresponding to DEQ(P) ∈
P; “locally unobtainable” corresponding to DEQ(P) 6∈ P (therefore not really equilibria
at all); “white” when {âk} is i.i.d.; and “coloured” otherwise. We also have “delay”
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equilibria describable by DEQ(P) = +σδS δ
N+1H; “exact” when εk

(
DEQ(P)

)
≡ 0; and

“approximate” otherwise. Note Conjecture 3.11 claims that the branch of the tree in
Fig.3.9 leading to the hypothetical white and undetectable equilibria (naturally highly
undesirable) does not really exist.

Fig.3.10 Boundary Irregular Equilibrium.

The second major class is labelled “irregular” and we can imagine two broad
categories: “boundary-type” where DEQ ∈ ∂P because of the mechanism depicted in
Fig.3.10 (requiring two locally unattainable equilibria such that DEQ(P2) ∈ P1 and
DEQ(P1) ∈ P2); and “limit-cycles” where mean adaptation settles down to a well-
defined stable closed trajectory via a mechanism analogous to that found in Fig.3.11
(requiring at least three locally unattainable equilibria). These irregular equilibria
are hypothetical constructs and given enough time one could conceivably contrive
channels which support these strange behaviours. Some roughly analogous results
which depict these properties are known in the adaptive filtering literature when the
error signal in the adaptation is quantized [27]. (We can demonstrate that “boundary-
type” equilibria do exist when the error signal in blind DFE adaptation is quantized,
see §3.6.)

3.5.7 Noise Considerations
With the addition of channel noise (Fig.3.2) additional issues come to light. Firstly we
note that it is standard in the DDE literature dealing with blind adaptation to work
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Fig.3.11 Limit-Cycle Equilibrium.

with the noiseless situation. (This is despite the realization that at frequencies where
the channel attenuation is high a DDE will result in excessive noise enhancement [1].)
The problem remains, of course, that even the noiseless case is not completely under-
stood and is very difficult to analyze [2]. So our digression for the analytically more
intractable DFE case will be brief.

When at a delay δ equilibrium, and assuming sufficient correct decisions have
been made (in a delay sense) we obtain from (5.2) the equation

âk = sgn(hδak−δ +
δ−1∑
i=0

hiak−i + nk). (5.10)

where nk is some zero-mean, additive channel noise (Fig.3.2). Then taking the worst
case of past decisions {ak−i, i = 0, 1 , . . . , δ − 1} we see that one measure of the
worst case signal to noise ratio is

(
∣∣hδ∣∣−∑δ−1

i=0

∣∣hi∣∣)2

E{n2
k}

=
ρ2
δ

E{n2
k}

(5.11)

showing the delay equilibria with the largest domain of attraction (l1-norm radius
ρδ) is also the best in terms of margin against noise induced decision errors (and
subsequent error propagation). Thus with noise present the exact equilibrium need not
be the best delay equilibrium, but rather the delay equilibrium with the largest domain
of attraction is preferable by (5.11). Heuristically, we could argue that adaptation
initialized near the origin would tend to select the equilibrium with the largest domain
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of attraction as in Fig.3.7. Not only is it a larger target for the drifting taps but it is
also closer to the origin for increasing δ because its centre is at an l1-norm distance of∥∥DEQ

∥∥
1

=
∑N
i=δ

∣∣hi∣∣ (Theorem 3.8).

3.6 Sign-Error Algorithms
3.6.1 Problem Reformulation
Our objective here is to say something about the convergence properties of modifica-
tions of the standard blind LMS algorithms where the Sato error signal εk is quantized
for reasons of numerical advantage. Further, the analysis we now present is a more
algebraic description of blind convergence behaviour to complement the previous de-
velopment. The model of the communication channel remains as in Fig.3.2.

When the Sato error εk is replaced by its sign, the non-linearity ψ′DFE(·) generating
the error from the decision device input ck in the standard blind algorithm

Dk+1 = Dk + γ ψ′DFE(ck) Âk (6.1)

takes the particular form

ψ′DFE(x) = sgn
(
x− d0

. sgn(x)
)
. (6.2)

The analysis techniques we will develop for the sign-error case can also be applied to
algorithms where ψ′DFE(·) is generated by

ψ′′DFE(x) = S
(
x− d0

. sgn(x)
)

where S(·) is a (non-trivial) sign preserving, memoryless non-linearity, and thus in-
cludes the class of standard quantizers. However to keep things specific we treat the
sign case (6.2) only in detail.

A diagram of the sign-error adaptive DFE is given in Fig.3.12. It differs marginally
from that given in Fig.3.3. Figure 3.12 shows the error signals, εk and ηk

∆= sgn(εk),
that may be used to adapt the taps di. The sign-error ηk, from (2.3b) may be repre-
sented in various ways by

ηk
∆= ψ′DFE(ck) (6.3a)

= sgn(Ak′H − Âk′Dk) (6.3b)
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Fig.3.12 Sign-Error Adaptive Decision Feedback Equalizer Model.

where H ∆= (h0, h1, . . . , hN )′, Dk
∆= (d0, d1, . . . , dN )k′, Ak

∆= (ak, ak−1, . . . , ak−N )′

and Âk similarly, as before. Recall that the introduction of the d0 tap in Fig.3.12 is
essential if we are to null εk because it compensates for a non-unity magnitude h0 (or
a non-unity magnitude hδ if we are near a delay equilibrium).

An attractive property of (6.1) is that to update Dk no multiplications are nec-
essary, as ηk Âk is a vector of ±1’s; thus (6.1) is ideal for practical implementation
from the viewpoints of lack of complexity and speed. However letting

∥∥ · ∥∥ denote the
l2-norm, it is clear that ∥∥γ ηk Âk∥∥ =

√
N + 1.γ

implying the mapping Dk → Dk+1 cannot have a fixed point, leading to a modified
concept of convergence [28]. The effect of quantizing the error signal as in (6.3)
is to cause a degree of insensitivity of the incremental properties of the algorithm
to the parameter values Dk. Predictably this insensitivity is manifest by regions
in parameter space not unlike the polytopes encountered earlier in §3.3. To avoid
confusion, because as we will see there are two sets of superimposed polytopes, we call
the polytopes generated by the previous mechanism in §3.3, âk-polytopes. Also we
reserve the symbol P for a typical âk-polytope.

3.6.2 New Parameter Space Partitions
We begin by introducing some further notation. Let IB ∆= {−1,+1}, then IBN+1 is
the set of all vectors with N + 1 binary entries. Our intention here is to give a direct
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comparison between the polytopes generated by the quantization effect present in
forming decisions (§3.3) and the polytopes generated by the quantization effect due
to taking the signum function of the error signal εk (6.3a). This is straightforward
because the set of switching hyperplanes for the sign-error (6.3b) is almost identical
to the familiar âk-polytope equation (3.1) and clearly takes the form

{
Dk ∈ IRN+1: Ak′H = Âk

′Dk

}
. (6.4)

The set of switching hyperplanes is generated as we vary across all possible values
taken by Ak and Âk in IBN+1. Note this time d0 is constrained unlike (3.1). Let
us designate as ηk-polytopes the resulting disjoint regions in Dk-space. (Recall this
parameter space is the same space in which the âk-polytopes are found.) These regions
have the following fundamental property:

Property ofηk-polytopes: Let D1, D2 ⊂ N where N ∈ IRN+1 is an arbitrary ηk-

polytope. Then

ηk(D1, H,Ak, Âk) = ηk(D2, H,Ak, Âk) ∀Ak ∈ IBN+1, ∀Âk ∈ IBN+1. (6.5)

The modified notation makes it clear on which quantities ηk depends, see (6.3b). We
reserve the symbol N for a typical ηk-polytope.

Remarks:

(i) The signal ηk = sgn(εk) is a fixed function of Ak and Âk for the ηk-polytope N ,
for a given channel.

(ii) If Âk is given, then ∀Dk ∈ N the increment direction and magnitude in (6.1) is
fixed.

(iii) Despite their superficial similarity, the two sets of hyperplanes (3.1) and (6.4) are
quite distinct.

The next step is straightforward. We now consider the regions of Dk-space called
F -polytopes (fine polytopes) which are generated by both sets of hyperplanes (3.1)
and (6.4). Naturally, each âk-polytope is a disjoint union of F -polytopes as is each
ηk-polytope. Within each F -polytope the FSMP is fixed and the sign of the error is
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independent of Dk ∈ F . This leads, as we will see, to a very simple picture of the
mean behaviour of the blind adaptation of the sign-error DFE (simpler indeed than
unsigned error adaptation).

3.6.3 Averaging Theory of Blind Sign-Error Adaptation
From (6.1) we can generate of an averaged equation, as we have for the unsigned error
case, describing the mean tap evolution {D̃k} when the adaptation gain γ is small.
(The mean is in the sense of the ensemble of input sequences.) We formally write the
averaged equation as

D̃k+1 = D̃k + γ∆AVG(Dk, H) (6.6)

where ∆AVG(Dk, H) acts as the average of ηkÂk = Âk sgn(Ak′H − Âk
′Dk) in (6.1)

according to the statistics of Ak and Âk. The statistics of Ak and Âk are completely
determined by the relevant FSMP. In turn, the FSMP is a function only of the âk-
polytopes §3.3.

Our quest to calculate ∆AVG(Dk, H) is eased by the finiteness of the number of
Markov states. Given the right initial distribution across the Markov states, corre-
sponding to stationarity, we have,

∆AVG(Dk, H) =
∑

(X,Y )∈IBN+1×IBN+1

sgn(X ′H − Y ′Dk)Y .Pr(Ak = X ∩ Âk = Y
∣∣ Dk). (6.7)

This formula is easily explained. The first non-probabilistic portion under the double
summation represents a specific value taken on by ηk Âk when Ak = X and Âk = Y .
The second (probabilistic) portion weights the first according to the joint relative
frequency (calculable from the FSMP). The conditioning simply recognizes the coarse
Dk-dependence of the FSMP.

Now as alluded to above, ∆AVG(Dk, H) will actually be constant for extended
regions of Dk-space and will not vary continuously with Dk. To see this let D̂ ∈ F be
arbitrary, where F is the F -polytope containing Dk. Note both sgn(X ′H − Ŷ ′D̂)Y
and Pr(Ak = X ∩ Âk = Y

∣∣ D̂) are fixed for all D̂ ∈ F because by construction F is
wholly contained within an âk-polytope and an ηk-polytope, respectively. We rewrite
(6.7) as,

∆AVG(Dk ∈ F , H) =
∑

(X,Y )∈IBN+1×IBN+1

{
sgn(X ′H − Y ′D̂)Y .Pr(Ak = X ∩ Âk = Y

∣∣ D̂)
}

(6.8)

for all D̂ ∈ F , i.e., the mean adaptive update for all points in an F -polytope is a fixed
vector (invariant in F). Thus:
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Property ofF -polytopes: With each F -polytope we associate a unique fixed vector

(6.8) which when scaled by γ represents the mean adaptive tap update in (6.1) in

the sense of (6.6).

Remarks:

(i) This is very similar in appearance to the “Quiver Diagram” concept found in [27].
However, the difference in our analysis is that we use an informal argument leading
to stochastic averaging and the regions (polytopes) in our problem are generated
by two mechanisms: (i) the blind regressor generating a coarse parameter space
dependence of the FSMP; and (ii) the quantized error which causes the mean
parameter update direction to be a coarse function of the parameter space. In
[27] only the second mechanism is present.

(ii) Mean adaptation takes place in piecewise linear sections rather than the “steepest
descent” curves of standard (unsigned error) blind LMS.

(iii) In blind sign error LMS (6.1) we can regard the taps as moving along a mean
square error surface composed of hyperplanes rather than the piecewise quadratic
surface arising in the Sato blind unsigned-error LMS (2.3), or the unimodal
quadratic surface in standard (training sequence) LMS [21]. Hence any “equi-
librium” for {Dk} must lie on the boundary between F -polytopes. For similar
considerations including: the presence of chattering, limit cycles, etc., see [27].

(iv) The stationarity assumption on the FSMP is essential for tractability of the anal-
ysis when looking at case studies. Without it the amount of computation required
is substantial. Also it would be a nightmare trying to justify any other assump-
tion. See our example in §3.6.4 where we use the stationarity assumption.

(v) It is possible (as a later example shows) for the stationary distribution of the
FSMP to be initial condition dependent in the sense that there may be more than
one closed subset (i.e., the unity eigenvalue of the probability transition matrix
is not simple [15]). Therefore the stationary probability distribution (invariant
probability measure) need not be unique, a possibility overlooked in (6.8). In
this situation we would expect to associate two or more ∆AVG(Dk ∈ F , H) vectors
with each F -polytope with only one being appropriate for a given set of initial
conditions (and subsequent input {ak}).
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(vi) For stationarity to hold we are really requesting that a certain time-scale con-
straint be satisfied—with any transients (of the distribution) having died away.
This time-scale for securing stationarity must be necessarily shorter than any
time-scale that is associated with the evolution {Dk} if our analysis is to be valid.
That the time-scale for stationarity is closely related to the largest non-unity
magnitude eigenvalue of the FSMP probability transition matrix can be inferred
from the work in [15].

3.6.4 Example of Sign-Error Adaptation

Our illustration is with the simplest possible example. We take N = 1 and let h0 >

h1 > 0. Figure 3.13 actually displays the case where h0 = 4 and h1 = 1 (it can be
shown, but it is not obvious, that all cases where h0 > h1 > 0 are “isomorphic” to
this). Despite the low order the example is a good demonstration of the ideas that
we have presented. Incidentally this channel is minimum phase; equally well we could
have selected a non-minimum phase example.

Fig.3.13 F -Polytopes and Quiver Arrows for H=(4,1)′.
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Let us explicitly label the elements of IB2 when N = 1 as follows,

α1 =
(
−1
−1

)
, α2 =

(
+1
−1

)
, α3 =

(
−1
+1

)
, α4 =

(
+1
+1

)
,

i.e., IB2 = {α1, α2, α3, α4} (or simply IB2 = {1, 2, 3, 4}). (This ordering scheme is
slightly different to that seen in Chapter 2, but is necessary to avoid non-standard
indexing of matrix entries.) Now we have the following: (i) Xk

∆= (ak−1, âk−1)′, the
state representing past information at time k, (ii) Ak = (ak, ak−1)′, and (iii) Âk =
(âk, âk−1)′, i.e., each of Xk, Ak and Âk take values in IB2.

Now there are 5 âk-polytopes in this example, whose boundaries (3.1) are the 4
horizontal lines in Fig.3.13, being given by d1 = −5, d1 = −3, d1 = +3, and d1 = +5.
Let us concentrate on one such âk-polytope, specifically the one satisfying −5 < d1 <

−3 (lightly shaded in Fig.3.13). The 4 × 4 probability transition matrix P for this
region is defined by Pij

∆= Pr(Xk+1 = αi
∣∣Xk = αj), i, j ∈ {1, 2, 3, 4} and is explicitly,

P =


1
2

1
2

1
2 0

1
2 0 0 0
0 0 0 1

2

0 1
2

1
2

1
2

 (6.9)

This matrix defines the FSMP for this âk-polytope (see also Fig.3.14, which we will
explain later). The corresponding stationary probability density πs, defined by πs =
Pπs, is πs = ( 1

3 ,
1
6 ,

1
6 ,

1
3 )′ and is unique. For the general N = 1 matrix P, we represent

the components of πs by (π1, π2, π3, π4)′. To compute the averaged equation (6.8)
we assume stationarity. The joint probability density function Pr(Ak = αi ∩ Âk =
αj), i, j ∈ {1, 2, 3, 4} used in (6.8) can be represented by a 4 × 4 matrix U with
components Uij

∆= Pr(Ak = αi ∩ Âk = αj). Without proof we give U expressed
in terms of the general N = 1 state transition matrix P and its invariant probability
measure πs:

U =


P11π1 P31π1 P13π3 P33π3

P21π1 P41π1 P23π3 P43π3

P12π2 P32π2 P14π4 P34π4

P22π2 P42π2 P24π4 P44π4

 (6.10)

which for our example (where −5 < d1 < −3 and P is given by (6.9)) leads to

U =


1
6 0 1

12 0
1
6 0 0 1

12
1
12 0 0 1

6

0 1
12 0 1

6

 . (6.11)
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Again this is understood only in the sense of stationarity.
The boundaries of the ηk-polytopes in Fig.3.13 are those eight 45◦ lines given

by d0 ± d1 = ±h0 ± h1, see (6.4). This leads to 25 ηk-polytopes. The F -polytopes
are those regions resulting from both the horizontal lines (âk-polytopes) and 45◦ lines
(ηk-polytopes), and total 57.

Now for every F -polytope in our shaded âk-polytope we give an expression for
∆AVG(Dk, H), see (6.8). Incorporating the numbers found in (6.11) we can evaluate
(6.8), after taking into account symmetry, as

∆AVG(Dk, H) =
1
6

{
2 sgn(−5 + d0 + d1) + 2 sgn(3 + d0 + d1)

+ sgn(−3 + d0 + d1)
} (−1
−1

)
+

1
6

sgn(5− d0 + d1)
(

+1
−1

)
. (6.12)

Then, as an example, substituting d0 = 8 and d1 = −4 gives

∆AVG(Dk, H) = (− 1
3 , 0)′,

and we can find this “left arrow” at point (8,−4)′ in a rhombus shaded F -polytope in
Fig.3.13. The remaining 10 F -polytopes inside our given shaded âk-polytope can be
evaluated similarly using (6.9). The 4 remaining âk-polytopes can be treated similarly
and clearly the calculation is quite tedious.

In Fig.3.13, in each of the 57 F -polytopes, we have placed a scaled arrow repre-
senting ∆AVG(Dk, H) which is an invariant for all Dk ∈ F . Those regions with a dot
instead of an arrow have ∆AVG(Dk, H) = 0, i.e., adaptation undergoes a random walk.
Naturally these arrows scale through γ when forming the true mean update in (6.6).

In Fig.3.14 we have shown the 5 FSMPs for the âk-polytopes in Fig.3.13 (which
has been symbolically indicated). Further explanation of Fig.3.13 and Fig.3.14 will be
covered in a series of remarks.

Remarks:

(i) Note that in Fig.3.13 the F -polytopes only weakly affect ∆AVG(Dk, H) in the sense
that crossing a boundary need not necessarily lead to a change in it. This is not a
deficiency in the theory but just the stationarity assumption coming into play. If
transient stochastic dynamics were to be analyzed (a grotesque problem) then all
boundaries indicated, and no more, would be important. The fact that we clearly
have properties common to many regions under stationarity (thus facilitating an
aggregation) is implicitly studied in §3.7.2.
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Fig.3.14 The 5 FSMPs and Their Associated̂ak-Polytopes.

(ii) Observe from Fig.3.13 that the desired tap setting (assuming h0 > 0) lies on the
boundaries of 4 ηk-polytopes, a fact obvious from (6.4), setting Dk = H (valid
for general N).

(iii) In Fig.3.14 we have indicated 5 FSMPs whose transitions between states Xk ∈ IB
which occur with probability 1

2 .

(iv) The FSMP associated with the bottom âk-polytope, where d1 < −5, has two
closed subsets, i.e., the stationary probability density is non-unique, a possibility
discussed earlier. When in this particular region we have either âk = +1 ∀k (states
{α3, α4}) or âk = −1 ∀k (states {α1, α2}), i.e., deterministic behaviour once given
the initial conditions. Remarkably this dichotomy, as discussed earlier, does not
carry over to ∆AVG(Dk, H) which is the same in the two cases. More generally we
would not expect this.

(v) The top âk-polytope, where d1 > +5, leads to a deterministic behaviour (once
given the initial conditions) where the {âk} sequence alternates.
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In Fig.3.15, which is an insert of Fig.3.13, we have tried to clarify the meaning of the
averaged trajectory equation (6.6). It shows the (discrete) evolution of the DFE taps
Dk beginning from d0 = 10 and d1 = −4 for a single input sequence {ak} realization,
with γ = 0.01. The averaged equation (6.6), along with (6.8), implies that adaptation
tends along a straight line until it hits an F -polytope boundary and then it abruptly
changes direction. This behaviour is confirmed in Fig.3.15. We make some further
observations regarding Fig.3.15:

Fig.3.15 Single Adaptation Realization and Polytopes.

Remarks:

(i) For this initial starting position we have convergence to the desired tap setting.
For almost all other initial conditions this is also true, see Fig.3.13. That bad
behaviour occurs for

∣∣d1

∣∣ > 5 is not of great concern because, as discussed in
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§3.5.5, adaptation is sensibly constrained to the region

{Dk ∈ IRN+1:
∥∥Dk

∥∥
1
<
∥∥H∥∥

1
}.

(ii) A chattering phenomenon is taking place along some boundaries.

(iii) The averaged trajectory not only makes sense in terms of the mean over the en-
semble of input sequences but also in terms of a single realization as this example
shows. This is true when γ is small and the details are concerned with the law of
large numbers [22].

(iv) To avoid confusion we have not drawn-in the averaged trajectory (6.6) in on
Fig.3.14. It is clearly that piece-wise linear path parallel to the arrows which the
single realization so nearly follows.

3.7 Local Convergence of Blind Sign-Error LMS
3.7.1 Sign-Error Training Sequence Adaptation
Here we quickly review the simple standard training sequence adaptation case because
we can utilize this calculation later in a different context. With a training sequence
in sign-error adaptation the tap update takes the form,

Dk+1 = Dk + γ sgn
(
Ak(H −Dk)

)
Ak, (7.1)

when h0 > 0. In terms of the analysis in §3.6.3 this is equivalent to setting Âk =
Ak ∀k along with a suitable modification of the joint probability density function
term. Hence, it can be shown that the mean update akin to (6.8) takes the form,

∆AVG(Dk ∈ N , H) =
1

2N+1

∑
X∈IBN+1

sgn((H − D̂)′X).X, ∀D̂ ∈ N (7.2)

where: (i) Pr(Ak = X) = 1
2N+1 replaces Pr(Ak = X ∩ Âk = Y

∣∣ D̂ ∈ F), and
(ii) we have D̂ ∈ N rather than D̂ ∈ F because the tapped delay line is artificially
fed with the known training sequence, equal to {ak}. Hence the âk-polytopes play no
role in training sequence adaptation. (Indeed, (7.1) is completely independent of âk.)
However, with the ηk-polytopes, we see that the maximum number of partitioning
hyperplanes reduces from 22N+1 to 2N+1, as setting Âk = Ak in (6.4) shows. This
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leads to an aggregation of (the old) ηk-polytopes into coarser (new) ηk-polytopes, i.e.,
N above can and should actually be understood as an aggregation of ηk-polytopes.
This then aligns with some known results—our coarser ηk-polytopes are isomorphic
to the “cones” described in [8], and also derived in [5] (arising in the simpler decision
directed equalizer context).

3.7.2 Local Stability of Blind Sign-Error Adaptation
Our aim in this section is to show that the sign-error algorithm (6.1) has the right
dynamical properties in the vicinity of the desired tap setting where Dk = H (h0 > 0
is assumed). In particular we wish to show that if the tap weights are perturbed away
from Dk = H then there is a general restoring force back to the desired tap setting.

Our first task will be to show that the stochastic dynamics of the DFE in the
vicinity of the desired tap setting H take a particularly simple form if we impose
stationarity, allowing us to draw on the results in §3.7.1.

In §3.5.4 it was shown that the region in Dk-space given by

J (0) ∆= {Dk ∈ IRN+1: h0 >
N∑
i=1

∣∣hi − di∣∣} (7.3)

has the following properties which are easily verified: (i) it is a union of âk-polytopes,
(ii) every FSMP identified with each âk-polytope in J (0) has precisely one closed
subset. In this closed subset all decisions will be correct, i.e., of the form âk = ak.
This says all the FSMPs in J (0) share a common substructure. This closed subset
property means that the stationary behaviour is characterized by âk = ak, ∀k > K,
for some finite K a.s. Hence under stationarity we have Âk = Ak, ∀Dk ∈ J (0). Thus
we see that (6.8) degenerates to (7.2) when Dk ∈ J (0).

We have shown that, under stationarity and for Dk ∈ J (0),

∆AVG(Dk, H) =
−1

2N+1

∑
X∈IBN+1

sgn(X ′(Dk −H))X (7.4)

by drawing on (7.2). Then we observe from (7.4) that

∆AVG(Dk, H)′(Dk −H) =
−1

2N+1

∑
X∈IBN+1

sgn
(
X ′(Dk −H)

)
X ′(Dk −H)

=
−1

2N+1

∑
X∈IBN+1

∣∣X ′(Dk −H)
∣∣ < 0, Dk 6= H (7.5)
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where the last line follows from the IRN+1 spanning property of IBN+1 (this is actually
a persistence of excitation condition, see [29]).

Result (7.5) says that the euclidean distance of Dk from H decreases in the mean
∀Dk excluding a neighbourhood of H (which scales in proportion to γ). Thus the
mean behaviour of {Dk} will be to close in on H until it is roughly within an euclidean
distance of

√
N + 1.γ (§3.6.1) where the fixed step size disrupts further convergence,

see [28]. This is a simple geometric argument which shows the sign-error algorithm
has a form of local convergence, at least in J (0) centering on H. Note J (0) (7.3) can
typically be quite large, e.g., for those channels in [20].

Remarks:

(i) Taking up a suggestion in [30] any switching from unsigned error LMS to sign-
error LMS inside J (0) will tend to maintain Dk ∈ J (0) and thus âk = ak, ∀k > K

for some finite K a.s. The effect of taking the sign of the error εk in forming ηk
(6.3b) is effectively to increase the adaptive gain relative to unsigned error LMS
and thus presumably provide superior tracking of H if it is slowly time varying
(for fixed γ).

(ii) The analysis shows that when Dk ∈ J (0) the blind adaptation is identical to
training sequence adaptation apart from some stochastic transient which exists
before the FSMP achieves steady state or stationarity. The equivalence between
blind and training sequence adaptation whenever Dk ∈ J (0) is independent of
the adaptive algorithm employed because it is a manifestation only of equation
(2.2).

(iii) Let N = 1, then J (0) (7.3) is
∣∣h1 − d1

∣∣ < h0, i.e., −3 < d1 < 5, and we can
identify this in Fig.3.13 as the union of two âk-polytopes. Note the form taken
on by the two FSMPs (see Fig.3.14) alluded to above (existence of an invariant
closed subset, i.e., {α1, α4} which is reached in finite time a.s.).

(iv) Consider the case where ηk = sgn(εk) in (6.3c) is replaced by S(εk) where S(·) is
any (saturating) memoryless non-linearity, not necessarily a quantizer, which pre-
serves the sign of εk. Then (7.5) will still hold with obvious scaling modification,
implying local convergence for the algorithm,

Dk+1 = Dk + γ S(εk)Âk.

This property was eluded to in §3.6.1.
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3.7.3 Local Stability of Delay-Type Equilibria
Up to this point we have concentrated on the local properties of sign-error adaptation
when in the vicinity of the desired tap setting Dk = H. This is the most important
case for our application in mind [20]. This desired tap setting is an attraction point for
all reasonable algorithms, blind or otherwise. However, with blind unsigned error LMS
algorithms (2.3) multiple equilibria are possible having typically non-ideal properties
§3.5.6. Of these the so-called “delay-type equilibria” are the most interesting and
of greatest practical interest. Here we wish to study the corresponding delay-type
equilibria (if they exist) for the sign-error LMS algorithm (6.1).

In unsigned error LMS (2.3), when the tap weights move within a vicinity of a
delay-type equilibrium all decisions âk will be of the form âk = +σδ ak−δ (for some
delay parametrized by δ ∈ {0, 1, . . . , N}) under stationarity. The desired tap setting
is such an equilibrium when we set δ = 0. This delay type behaviour is only a
consequence of the non-adaptive properties of the DFE, i.e., equation (2.2), and hold
independent of the adaptive algorithm employed. (It is a property only of the âk-
polytopes and is independent of the ηk-polytopes.) We now show that the delay-type
equilibria will have the same local convergence properties as has the desired tap setting
where δ = 0 provided an additional inequality involving the hi parameters is satisfied.

In §3.5.4 it was shown that a necessary condition for âk = +σδ ak−δ ∀k ∀{ak} is

J (δ) ∆= {Dk ∈ IRN+1:
∣∣hδ∣∣ > δ−1∑

i=0

∣∣hi∣∣+
N∑

i=δ+1

∣∣hi − σδ.di−δ∣∣+
N∑

i=N−δ+1

∣∣di∣∣}. (7.6)

To simplify proceedings we assume that this condition is also sufficient when we have
stationarity. (This is true for δ ∈ {0, 1} as well as for many channels of interest, and is
the basis of Conjecture 3.11.) One thinks of (7.6) as defining and generalizing a region
in Dk-space like J (0) (7.3). Indeed (7.6) is a domain of attraction for an equilibrium
located at

DEQ(δ) = σδ (hδ, hδ+1, . . . , hN , 0, . . . , 0)′. (7.7)

in the unsigned error case (2.3), see §3.5.4. (Note with Dk = DEQ(δ) the last two
summations in (7.6) are identically zero.) We now show that with the sign-error blind
algorithm there is always a general restoring force if the taps are perturbed away from
a small region containing DEQ(δ).

We begin by studying (6.8), when (7.6) is in force. Then whenever

X = Ak
∆= (ak, ak−1, . . . , ak−N )′
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we have
Y = Âk = σδ (ak−δ, ak−δ−1, . . . , ak−δ−N )′

under stationarity. It is clear that X and Y are highly correlated because they share
N − δ + 1 components. Under these conditions we can simplify (6.8) to

∆AVG(Dk, H) =
1

2N+1+δ

∑
IBN+δ+1

sgn
(
X ′H − Y ′Dk) Y (7.8a)

noting

X ′H − Y ′Dk =
δ−1∑
i=0

hiak−i +
N∑
i=δ

(hi − σδ.di−δ)ak−i − σδ
N∑

i=N−δ+1

diak−δ−i(7.8b)

where IBN+δ+1 is the set of all possible values of {ak, ak−1, . . . , ak−δ−N}, noting∣∣IBN+δ+1
∣∣ = 2N+1+δ, and Pr(Z) = 1

2N+1+δ , ∀Z ∈ IBN+δ+1. In analogy with §3.7.2
we examine the following projection

∆AVG(Dk, H)′
(
Dk −DEQ(δ)

)
(7.9)

and attempt to show it is strictly negative, thus implying convergence in the appro-
priate sense. First we define H(Z ∈ IBN+δ+1) ∆= Y ′

(
Dk −DEQ(δ)

)
, i.e.,

H(Z ∈ IBN+δ+1) ∆= −
N∑
i=δ

(hi − σδdi−δ)ak−i + σδ

N∑
i=N−δ+1

diak−δ−i (7.10a)

and

G(Z ∈ IBN+δ+1) ∆=
δ−1∑
i=0

hiak−i. (7.10b)

So substituting (7.8a) into (7.9) and utilizing (7.10) we obtain

∆AVG(Dk, H)′
(
Dk −DEQ(δ)

)
=

1
2N+1+δ

∑
Z∈IBN+δ+1

sgn
(
G(Z)−H(Z)

)
H(Z) (7.11)

noting (7.11) reduces to (7.5) when δ = 0. However when δ > 0, we need to be
concerned with when H(Z) dominates G(Z), i.e., with the argument of the sgn(·)
function in (7.11). This leads us to consider a region in Dk-space, an inequality
alluded to earlier, defined by the following condition,

inf
{ak}

∣∣ δ−1∑
i=0

hiak−i
∣∣ > N∑

i=δ

∣∣hi − σδ.di−δ∣∣+
N∑

i=N−δ+1

∣∣di∣∣ (7.12a)

=
∥∥Dk −DEQ(δ)

∥∥
1

(7.12b)
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noting, to make things clearer, that the left hand side of (7.12) is the minimum value
achievable by G(Z) in (7.10b), whilst the right hand side is the maximum value achiev-
able by H(Z) in (7.10a).

Now suppose (7.12) is satisfied, then by construction it follows that sgn
(
G(Z)−

H(Z)
)

= sgn
(
G(Z)

)
∀Z ∈ IBN+δ+1 which means (7.11) becomes ∆AVG(Dk, H)′

(
D −

DEQ(δ)
)

= 0 by the independence of H(Z) and G(Z). In fact ∆AVG(Dk, H) in this case
just becomes

∆AVG(Dk, H) =
1

2N+1+δ

∑
Z∈IBN+δ+1

sgn
(
G(Z)

)
Y (Z) = 0

because G(Z) and Y (Z) are independent. This shows that for a small l1-ball region
about DEQ(δ), i.e., (7.12), the adaptation performs a random walk. We might say that
the error surface is flat within an l1-ball (7.12) around a delay equilibrium.

Now suppose (7.12) is not satisfied, i.e., Dk is exterior to the l1-ball (7.12) and its
boundary (the boundary is excluded because of our general disclaimer regarding the
unlikely occurrence of zero arguments in sgn(·) functions). Then it is straightforward
to verify there exists Z ∈ IBN+δ+1 with non-zero probability such that

sgn
(
G(Z)−H(Z)

)
= − sgn

(
H(Z)

)
= − sgn

(
G(Z)

)
and ∣∣H(Z)

∣∣ =
N∑
i=δ

∣∣hi − σδ.di−δ∣∣+
N∑

i=N−δ+1

∣∣di∣∣ > 0.

This implies that −H(Z) agrees in sign or dominates G(Z) for more than half of the
elements of Z ∈ IBN+δ+1, whence we have the desired strict inequality in (7.9):

∆AVG(Dk, H)′
(
Dk −DEQ(δ)

)
< 0.

This shows that the Dk-taps converge towards the l1-ball (7.12) which is centered on
DEQ(δ) and within which the adaptation performs a random walk. This analysis hinges
on hypothesis (7.6) being satisfied. This then raises the question of whether (7.12) is
wholly contained within region (7.6). The condition under which this can only occur
is the inequality: ∣∣hδ∣∣− δ−1∑

i=0

∣∣hi∣∣ > inf
{ak}

∣∣ δ−1∑
i=0

hiak−i
∣∣ (7.13)
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To prove this we first rewrite (7.6) as

∣∣hδ∣∣− δ−1∑
i=0

∣∣hi∣∣+
∣∣hδ − σδ d0

∣∣ > ∥∥Dk −DEQ(δ)
∥∥

1

and then compare this with (7.12) in the form,

inf
{ak}

∣∣ δ−1∑
i=0

hiak−i
∣∣ > ∥∥Dk −DEQ(δ)

∥∥
1
.

Equation (7.13) is then a direct consequence when we have the critical case hδ =
+σδ d0.

Recapitulating, when δ > 0 the region (7.6) acts as a domain of attraction for the
sign-error algorithm (6.1) if and only if (7.13) holds. (Condition (7.13) automatically
holds for δ = 0.) This is in contrast with the unsigned error case (2.3) where (7.6) is
the unconditional domain of attraction. Violation of (7.13) means that it is possible
the taps Dk undergo a (zero-drift) random walk which may take it out of region (7.6),
i.e., with little effort. Of course even with (7.13) in force the taps may leave (7.6),
since (7.13) is only a condition on average behaviour. However, to do so it would be
a rare event (analyzable through large deviations theory) and it is this distinction we
wish to draw when we refer to convergence.

Finally, we note an even more detailed analysis than that carried out in this
section necessitates the introduction of the polytope ideas of §3.6.2. Indeed, it is
possible to see that the fundamental region (7.12) has boundaries precisely of the
form (6.4) which define the ηk-polytopes. In other words the l1-ball (7.12) is a union
of ηk-polytopes, as we must expect.

3.8 Conclusions
3.8.1 Summary
We itemize some contributions:

(i) The parameter space partition which was shown to be useful in the study of
error recovery for DFEs (whose parameter settings matched those of the channel,
Chapter 2) has been extended to the case where we do not have matching to cover
the case where the taps are being adapted.
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(ii) The effect of using a blind regressor was shown to cause the DFE parameter space
to be tiled where each tile is a polytope and within each tile the error surface is
a quadratic function of the DFE parameters. This error surface is discontinuous
at the boundaries in general.

(iii) A general mechanism whereby the blind adaptive algorithm may get hung at an
undesirable setting of the DFE parameters was shown. We also gave an example
where this behaviour is demonstrated.

(iv) A discrete averaged equation which provides information about the mean drift of
the DFE taps was given and this verified our predictions regarding the behaviour
of the DFE as the boundary of a polytope is traversed. A predicted refraction
phenomenon was observed.

(v) The various convergence points for the blind DFE algorithm were classified, fo-
cussing on the most important δ-delay equilibria where the DFE output sequence
is a δ time sample delay of the input with an associated possible sign inversion.
These results differ from the blind DDE case where all possible delays are possible
and both signs are possible. With a DFE only a finite number of delays (generally
well less than the number of tap parameters) are possible and only one sign is
associated with each delay.

(vi) The conditions under which delay equilibria exist were presented in a theorem
and are interpreted as a simple condition on the channel impulse response values.

(vii) A signum quantization of the error signal (and standard coarse quantization) leads
to an additional set of polytopes to characterize blind DFE adaptation which need
to be superimposed on those polytopes originating from the FSMP classification.

(viii) An averaging theory was developed for sign-error blind adaptation and this lead
to accurate predictions of the behaviour of the evolving DFE taps as shown by
an example.

(ix) A local stability analysis was performed when the DFE taps are in a well-defined
vicinity of a delay equilibrium. When a sign-error is used in blind adaptation
one obtains a dead region (where the taps perform a random walk) in a small
neighbourhood of a delay equilibrium which may disrupt convergence. This dead
region is not related to the well-known effect where the taps cannot converge
because a minimum step size (both effects are present).
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3.8.2 Discussion

We have demonstrated that an analysis of blind adaptation in decision feedback equal-
ization is possible—the principal difficulty being how to incorporate the effects of deci-
sion errors into the picture. We have shown it is possible to build a conceptual model
for the behaviour of the equalizer during blind adaptation, and based on this we can
understand why the taps may hang at equilibria leading to poor performance. These
investigations more than anything build and aid our intuition, for example, we can
view standard blind adaptation as evolving on a mean square error surface composed
of a tiling (the polytopes) of quadratic functions. When it so happens that the mini-
mum of one of these quadratic functions for a given tile lies within the tile we have a
locally attainable minimum, i.e., an attraction point for the adaptation. Also we can
use our theory to predict with sufficient precision the adaptive behaviour of a blind
DFE on a given channel, via tedious calculations.

However the difficulty remains of extracting useful practical information from
these sorts of investigations. Here we have limited success, e.g., a simple condition on
the channel parameters provides information on the possibility of the algorithm being
found at an equilibrium giving delay-like behaviour. Still, the likelihood of obtain-
ing broad sweeping statements relating to the guarantee of ideal blind convergence
attributes seems a distant goal (and the same problem exists for linear equalization,
although we have the remarkable results in [2] for a special case). Our work has value
in showing just how difficult such a general theory giving useful practical information
would need to be, and perhaps in highlighting what simplifying assumptions might be
valid.

The results in this chapter stand in contrast to the simplicity of the systems and
algorithms proposed and under study. In fact it becomes apparent from our work
that if one tries to simplify the algorithm from a practical viewpoint, e.g., use the
sign of the error (rather than full precision), then the theory can very easily get more
complicated (and obscure). Our useful results in this case show that there is a general
tendency for the adapting taps to stay in the vicinity of a delay equilibrium (for both
the standard and sign-error algorithms).

We note that to secure our theory we need to make a stationarity assumption
on the underlying FSMPs. This is a reasonably strong assumption. It is equivalent
to a time-scale separation idea, meaning that given an non-ideal initial starting dis-
tribution of the FSMP (arbitrary initial conditions in the DFE) we need to stipulate
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that the adapting taps not move too far before the invariant distribution is established
(with reasonable probability). So the fast time-scale is associated with the transient
dynamics of the FSMP and a slow time-scale is associated with the adaptation algo-
rithm, i.e., the adaptive gain γ needs to be sufficiently small. Clearly a theory which
could deal with both timescales being of comparable orders would be ambitious, to
say the least.

Finally, we have some comments on the system under study. Our general aim
was to show how decision errors, which may be common, distort adaptation relative
to the training sequence case. To achieve this understanding we chose, sensibly, the
simplest non-trivial system. This system can be used on channels exhibiting limited
pre-cursor intersymbol interference, and has limited but non-empty practical applica-
tion. A more general DFE structure requires the use of a linear equalizer as the first
stage and its taps may be simultaneously (blindly) adapted with the simpler structure
we have studied. This is a different, more complicated problem and our techniques
may be partially employed in performing an analysis of this more complex system.
We are confident such an analysis is possible but we have made no attempt in this
direction. A second comment is that blind adaptation has restricted practical applica-
tion. In the case of rapidly time-varying channels training sequences would appear to
be indispensable, and more robust techniques of channel identification perhaps using
coding, etc., would be required.
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CHAPTER

4. NON-ADAPTIVE DFE
PASSIVITY ANALYSIS

Aim: To determine sufficient conditions on the channel frequency
response that guarantee the rapid error recovery of non-
ideal decision feedback equalizers via a stability analysis.

4.1 Introduction
Decision feedback equalizers (DFEs) have been seen to be simple hardware devices
designed to cancel intersymbol interference (ISI) generated by a distorting channel.
However, the major problem identified with their non-adaptive operation was error
propagation [1] which we have analyzed in a stochastic setting in Chapter 2.

We saw in Chapter 2 that the presence of error propagation means that DFE
operation in practice may be unsatisfactory, in the sense that the time for the DFE to
recover from any error condition may be unacceptably long [2,3]. In fact, we showed
that over the class of all finite impulse response (FIR) channels of length N the mean
error recovery time may be of order 2N data periods (even for some which are minimum
phase or near minimum phase), which evidently is totally impractical. Our previous
analysis established the problem of identifying stronger hypotheses on the channel
model for which the error recovery time is sufficiently short, as judged by practical
standards. For these channels we can say then that a DFE is a practical option.
Determining such a class of channels is the aim of this chapter. (Some generalizations
of the notion of error recovery prompted by the investigations into adaptation found
in Chapter 3 are also treated.)

In general we can classify two classes of channel which are acceptable from a prac-
tical point of view—the distinction is not great. The first class needs some statistical
model of the input sequence for its definition. To define the class, one then simply
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requests that the expected or mean time for error recovery for all initial error states
is sufficiently short—this was the approach of Chapter 2. However, this leaves open
the possibility of the existence of pathological input sequences [2,4] for which errors
are made after any arbitrary length of time even in the absence of noise. In a well
defined sense, however, these sequences are probability zero events [2,4]. The second
class of channels are those for which the error recovery time is finite for all possible
input sequences and initial conditions. In this case the statistical model of the input
is largely irrelevant. Further, this means that pathological input sequences are non-
existent, i.e., one can never be so unlucky as to have an input sequence for which the
DFE never performs satisfactorily—a most attractive property. In this chapter we
find a broad and robust class of channels for which the error recovery time is finite.
As such we are defining a class of channels suffering from significant ISI for which a
DFE may be effectively used. This class captures a range of practical channels as we
will see from an example.

In the literature there has been very little written about the error recovery prop-
erties of DFEs. In fact only in [2,5,6] has it been indicated theoretically that there
are some non-trivial channels for which the DFE operates satisfactorily. In contrast,
the two prominent early references analyzing error propagation in DFEs [1,4] both
give no comfort to the practicing engineer who finds the practical simplicity of DFEs
appealing. In [1,4] the given bounds on recovery time and error probability actually
correspond to the worst realizable channel models as was demonstrated in Chapter 2
(reported in [2,3]). Because the DFE has such deplorable performance when operat-
ing on channels with these bounds, the results are not very useful in practice (but of
theoretical importance and interest). We note here also the work in [7,8] which strives
to reduce these bounds given explicit, i.e., specific, knowledge of the channels. In con-
trast, here we give a broad general condition on the channel parameters—specifically
the coefficients satisfy a passivity constraint or equivalently a simple frequency re-
sponse condition—to ensure good DFE error recovery performance. This condition is
satisfied by a class of practical channels as we will show.

The major sections are organized as follows. In §4.2 we define the DFE system of
interest and we define our finite error recovery time problem. In §4.3 we use Lyapunov
techniques to show that exponential impulse response channels have a quantifiable
maximum recovery time. In §4.4 we give the necessary background on the passivity
theorem, sufficient for our needs. It also gives our basic main result which establishes
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that whenever the channel satisfies a simple frequency domain constraint, the error
recovery time of an ideal DFE is always finite. We also include four applications
of this theorem including analysis of a real channel. In §4.4 we move away from
purely existential results to establish convergence rates and explicit bounds given an
exponential overbound on the channel impulse response. It also contains the results
of serious practical interest because we relax most of the major idealized assumptions
to be found in Chapter 2 and those of §4.2. We also give the result for M -ary data
and relate the error recovery time bound back to the binary case. For high signal to
noise ratio channels satisfying a passivity constraint we give a formula for the error
probability, §4.5. In §4.6 we examine a timing phase problem. The conclusions as well
as a useful summary are given in §4.7.

4.2 Problem Formulation and Definitions
A communication channel and general non-adaptive decision feedback equalizer (DFE)
are shown in Fig.4.1. The communication channel is modelled as a linear, time-
invariant filter with impulse response,

h
∆= {h0, h1, h2, . . .} (2.1)

of possibly infinite dimension. This channel is driven by an input binary sequence
{ak}, where k is the discrete time index. No statistical model of {ak} is assumed nor
needed. The M -ary {ak} case will also be treated in a later section. We note that in a
more general context h could be thought of as the cascade (convolution) of the linear
channel and a linear equalizer preceding the DFE.

The distorted output of the linear channel is bk and is assumed noiseless. By
studying the noiseless case we are creating a pointer to the important practical situ-
ation of a high signal to noise ratio channel. (In a later section we will introduce an
additive noise signal into the analysis but only treat the asymptotic case as the noise
variance tends to zero.) At the receiving end we have a DFE consisting of a tapped
delay line with impulse response

d
∆= {0, d1, d2, . . .} (2.2)

fed by a binary output decision sequence {âk} as described by Fig.4.1.
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Fig.4.1 Channel and Decision Feedback Equalizer Models.

The algebraic formulation of the system depicted in Fig.4.1 is given by

âk = sgn(h0ak +
∞∑
i=1

hiak−i −
∞∑
i=1

diâk−i); h0 ≥ 0 (2.3)

where ideally we would like di = hi, ∀i > 0. Note also that we assume without loss of
generality that h0 ≥ 0 (if h0 = 0, see §4.4.5). Hence the study of error propagation
under these ideal conditions leads to the equation,

âk = sgn(h0ak + rk) (2.4a)

where

rk
∆=
∞∑
i=1

hiek−i (2.4b)

and

ek
∆= ak − âk. (2.4c)

Most of the ideal assumptions represented in (2.4) will be relaxed in §4.4.5. Here it is
convenient to treat the ideal case first so that we may focus on the technique employed
and not get lost in a labyrinth of unimportant detail.

We now define what we mean by error recovery:

Definition: The DFE has recovered from errorat time K if

âk = ak , or equivalently, ek = 0 ∀k ≥ K, ∀{ak}.
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This definition is the most natural one but differs from the definition of error
recovery time given in Chapter 2. The condition in Chapter 2 is stronger than what is
actually needed—it is sufficient but not necessary for guaranteed error free behaviour.
Explicitly, the definition in Chapter 2 identifies error recovery with an error vector
Ek

∆= (ek−1, ek−2, . . . , ek−N )′ being identically zero. Clearly in terms of error re-
covery what is more important is that rk in (2.4b) is sufficiently small (rather than
Ek = 0) and this is precisely what the new definition attempts to reflect. In both
cases the definitions are convenient for the style of analysis being performed.

Now if we rewrite (2.4) as

âk = sgn
(
(h0 + rkak) ak

)
then it is clear that h0 >

∣∣rk∣∣ ensures h0 + rkak > 0 and thus a sufficient condition
for DFE recovery at time K is

h0 >
∣∣rk∣∣ ∀k ≥ K, ∀{ak}. (2.5)

However, this condition (2.5) is also necessary because the definition for error recovery
stipulates no errors can be made when we consider all possible input sequences. So
that particular input sequence which is generated by ak = − sgn(rk) ∀k ≥ K must
give no errors, and the desired conclusion follows.

From (2.5) it is clear that the ISI term rk is crucial in understanding the error
propagation and error recovery mechanisms. We investigate this signal further. We
complete this section with a simple but fundamental lemma which is a mild general-
ization of the above analysis and so we omit a proof (if ever one were needed).

Lemma 4.1: Let rk in (2.4b) denote the ISI and h0 the cursor. Then:

(i)
∣∣rk∣∣ < h0 or ak = + sgn(rk) ⇒ âk = +ak ⇐⇒ ek = 0.

(ii)
∣∣rk∣∣ > h0 and ak = − sgn(rk) ⇒ âk = −ak ⇐⇒ ek = −2 sgn(rk).

The next two sections investigate two different approaches to providing quantitative
and qualitative statements on the times to recovery for DFEs—we begin with a Lya-
punov analysis in §4.3 and follow this by a passivity analysis in §4.4.
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4.3 Exponential Impulse Response Channels
As a preliminary to the more general passivity analysis, which is to follow, we examine
the special situation where the channel impulse response is exponential [6]. Thus we
consider channels of the following form:

hm = βm cos(ωm), m ≥ 0 (3.1)

where 0 ≤ β < 1 and 0 ≤ ω < 2π. We may represent this channel by

hm =
1
2
(
αm + (α∗)m

)
(3.2)

where α ∆= β exp(jω) ∈ C/ (the complex plane), and α∗ denotes the complex conjugate
of α. From (3.2) we will focus on a quantity Bk, closely related to rk (2.4b), defined
as follows

Bk
∆=
∞∑
m=1

ek−mα
m (3.3)

where ek
∆= ak−âk, as usual. We will see that {

∣∣Bk∣∣} is a candidate Lyapunov function.
Writing the DFE output equation in terms of Bk we get

âk = sgn(ak +
∞∑
m=1

βm cos(mω)ek−m) (3.4a)

= sgn(ak +Re(Bk)) (3.4b)

noting rk
∆= Re(Bk) for this special channel. However {Bk}, by the nature of the

exponential character of the channel, evolves in time according to

Bk+1 = α.(Bk + ek) (3.5)

as is easily verified from (3.3).

In view of Lemma 4.1 we see:

Bk+1 =


α.Bk, if âk = ak;

α
{
Bk − 2 sgn(Re(Bk))

}
, if âk 6= ak,

in either case we claim {
∣∣Bk∣∣} is a Lyapunov function, explicitly:
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Lemma 4.2: Let the channel {hm} be given by (3.1) and Bk be given by (3.3), then

∣∣Bk+1

∣∣ ≤ β.
∣∣Bk∣∣, ∀k ≥ 0 (3.6)

Proof: From (3.5) if âk = ak then (3.6) is automatic recognizing
∣∣α∣∣ = β. In the

case âk = −ak one is led to conclude
∣∣rk∣∣ > 1 (Lemma 4.1) which is the same as

the statement
∣∣Re(Bk)

∣∣ > 1. By symmetry we need only to consider Re(Bk) > 1,

then Bk+1 = α(Bk − 2). Whence

∣∣Bk+1

∣∣2 = Im2(Bk+1) +Re2(Bk+1) =
∣∣α∣∣2((Re(Bk)− 2)2 + Im2(Bk)

)
=
∣∣α∣∣2(Re2(Bk)− 4Re(Bk) + 4 + Im2(Bk)

)
<
∣∣α∣∣2 ∣∣Bk∣∣2

which completes the proof.

Remarks:

(i) {
∣∣Bk∣∣} → 0 at least as fast as

∣∣α∣∣k = βk, i.e., decays to zero at a rate commensu-
rate to the channel parameter β.

(ii) The result is independent of the modulation parameter ω in (3.1).

We complete the analysis by determining an explicit upper bound on the error recovery
time using a worst case analysis. This involves finding a bound on

∣∣B0

∣∣ which models
an initial, arbitrary error state. From (3.3) we see that

∣∣B0

∣∣ ≤ 2
∞∑
i=0

∣∣α∣∣i =
2β

1− β . (3.7)

Then to determine a bound on the worst case recovery time we need to find the least
integer K which satisfies

∣∣BK∣∣ < 1 (guaranteeing âk = ak from (3.4b)), since then
the monotonicity of

∣∣Bk∣∣ with respect to k (3.6), implies all decisions for k ≥ K are
correct. The calculation is simple. Using (3.6) and (3.7) we obtain

∣∣BK∣∣ ≤ βK .∣∣B0

∣∣ ≤ 2.βK+1

1− β < 1 (3.8)
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noting
∣∣Bk∣∣ < 1 guarantees âk = ak (3.4b). After a little manipulation on (3.8) we

obtain K as the least integer satisfying

K > logβ

{
1− β

2β

}
,

1
3
< β < 1 (3.9)

noting whenever 0 ≤ β < 1
3 the ISI can never be large enough to ever cause an error.

It is possible to relate the bound K with a number J which we interpret as a
measure of the channel time constant [6]. Define J as the number for which βJ = 0.01,
i.e., the period of time that it takes the impulse response to die to a hundredth of its
initial peak. Thus

J
∆= logβ{0.01}

which may be compared with (3.9). Figure 4.2 shows a plot of K versus J as β ranges
from 0.33 through 0.99. It shows that for exponential impulse response channels where
β < 0.99, the time required for error recovery is less than the order of the channel
time constant. Note that because one can find initial conditions and a suitable input
sequence {ak} which realizes the worst case recovery, then, in this sense, the error
recovery time bound is tight.

Remarks:

(i) Paradoxically, the calculation leading to Lemma 4.2 shows that the slowest error
recovery results when the output sequence consists entirely of correct decisions.
With decision errors, recovery is sped.

(ii) The above results may be generalized to M -ary symbols rather than binary sym-
bols using the same style of analysis. Later, for a more general class of channels,
we will derive results for the M -ary case using passivity ideas.

4.4 General Passivity Analysis
4.4.1 Background
The idea of reformulating the error recovery problem as a stability problem originated
with Cantoni et al., [4]. Our analysis in this chapter takes up this concept and it
is natural to investigate the use of stability ideas in proving that under certain con-
ditions a DFE has a finite recovery time (for all initial conditions and for all input
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Fig.4.2 Recovery TimeK vs Channel Time ConstantJ .

sequences). The ideas we need have their origins within circuit theory. Our main
result uses Passivity Theory [9] to give an easily checked frequency domain condition
that guarantees a finite recovery time [10].

We begin our passivity analysis by re-examining Lemma 4.1 from §4.2. Lemma 4.1
is significant because it characterizes the error propagation mechanism. Figure 4.3 is a
pictorial representation of Lemma 4.1. The upper block in Fig.4.3 is just a block repre-
sentation of equation (2.4b). It is modelled by a strictly causal convolutional operator
H which maps the error sequence e ∆= {ek, k ≥ 0} to the ISI sequence r ∆= {rk, k ≥ 0}
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in accordance with (2.4b), i.e., r = He ∆= h ?© e where h
∆= {0, h1, h2, . . .} (which

differs from (2.1)). The lower block L in Fig.4.3 consists of two parts. The first is a
stochastic multiplier, to account for the stochastic input ak, defined by,

mk
∆=

 1 if ak = − sgn(rk);

0 if ak = + sgn(rk),
(4.1)

whose function is clear from Lemma 4.1(i), i.e., if mk = 0 ⇒ ak = sgn(rk) ⇒ ek = 0.
Otherwise mk does nothing, i.e., mk takes the value unity (4.1). The second part of the
lower block is a time-invariant non-linearity which maps {mkrk} into the sequence z ≡
−e. Note whenever the input mkrk is less in magnitude than h0 the output zk = −ek
is zero (as in Lemma 4.1(i)). Otherwise the output conforms to Lemma 4.1(ii). Note
that in this block the stochastic multiplier and the non-linearity may be commuted.
The point of introducing the summation block to perform the inversion of z to e is
that the blocks then form the standard arrangement of a feedback system suggesting
the use of stability arguments.

Fig.4.3 Error Propagation (Feedback) Block Diagram.

A significant observation we make concerning the lower block L in Fig.4.3 is that
it is a memoryless (stochastically time-varying) sector-bounded non-linearity. We see
that whenever the output is non-zero it preserves the sign of the input and therefore
is a passive operator in the circuit theoretic sense [9] (when h0 = 0 or indeed is just
very small then our analysis in §4.4.5 applies). Our first task will be to transform the
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system in Fig.4.3 such that the upper block H becomes a strictly passive operator
whilst the lower block L remains passive. Then we utilize some standard results from
input-output stability to show the DFE has a (quantifiable) bounded recovery time.
In the next section we present the minimal set of definitions and notation needed to
develop the general input-output (passivity) stability result.

4.4.2 Definitions and Passivity Theorem
We begin with some definitions which are standard in input-output stability theory [9].
We focus on a Hilbert space structure composed of real valued sequences indexed by
k ∈ ZZ+ (non-negative integers). Then if we have two sequences x ∆= {x0, x1, . . .} and
y

∆= {y0, y1, . . .} their inner product will be defined as

〈
x, y
〉 ∆=

∞∑
i=0

xiyi. (4.2)

where it is clear that
〈
x, y
〉

=
〈
y, x
〉
. This inner product (4.2) induces a natural

euclidean norm defined by

∥∥x∥∥ ∆=
〈
x, x

〉 1
2 =

( ∞∑
i=0

xi
2
) 1

2
. (4.3)

We define the discrete function space l2 which consists of all sequences satisfying

x ∈ l2 ⇐⇒
∥∥x∥∥ <∞. (4.4)

Similarly we have the space l1 which consists of all sequences satisfying

x ∈ l1 ⇐⇒
∥∥x∥∥

1

∆=
∞∑
i=0

∣∣xi∣∣ <∞.
The space l2 is generally too restrictive an arena for deriving results, so we introduce
the standard concept of an extended space le2 [9], defined by

x ∈ le2 ⇐⇒
∥∥PTx∥∥ <∞, ∀T ∈ ZZ+ (4.5)

where PT is a truncation operator parametrized by T ∈ ZZ+ in turn defined by

(PTx)(k) ∆=

{
xk, if k ≤ T ;

0, if k > T .
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Note (4.5) just says that x ∈ le2 if and only if
∣∣xk∣∣ < ∞ ∀k, i.e., x does not have a

finite escape time. So for example if x ∆= {xk = 2k, ∀k ∈ ZZ+} then x ∈ le2 but clearly
x /∈ l2.

From definitions (4.4) and (4.5) it is apparent that l2 ⊂ le2. In our work all signals
considered will lie in the extended space le2 (because we stipulate only that h ∈ l1).
However it is of great interest to show that particular signals also lie in the subset
l2. For example with the error signal, it is our aim to show e ∈ l2. Then because
ek ∈ {−2, 0,+2} we have the following fundamental observation,

e ∈ l2 ⇐⇒ ek = 0, ∀k ≥ K K <∞ (4.6)

i.e., by our previous definition, the DFE has recovered from error at time K.

Now define xt
∆= PTx and

∥∥x∥∥
T

∆=
∥∥PTx∥∥. In relating l2 and le2 we note the

following important properties of the inner product and its induced norms which we
will use later without explicit reference:

(i) ∀x ∈ le2, the mapping T 7→
∥∥x∥∥

T
is monotonically increasing.

(ii) ∀x ∈ l2, lim
T→∞

∥∥x∥∥
T

=
∥∥x∥∥.

(iii) ∀x, y ∈ le2, ∀T ∈ ZZ+, we have
〈
xT , yT

〉
=
〈
xT , y

〉
=
〈
x, yT

〉 ∆=
〈
x, y
〉
T

.

This nomenclature leads to the crucial definitions of passivity.

Definition: An operator H: le2 7→ le2 is passiveif ∃ constant β such that

〈
Hx, x

〉
T
≥ β, ∀x ∈ le2 ∀T ∈ ZZ+. (4.7)

If H were linear then β could be taken as zero [9].

Definition: An operator H: le2 7→ le2 is strictly passiveif ∃δ > 0 and ∃β such that

〈
Hx, x

〉
T
≥ δ.

∥∥x∥∥2

T
+ β, ∀x ∈ le2 ∀T ∈ ZZ+. (4.8)
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Again if H were linear then β could be taken as zero. We label δ as the degree of
passivity.

As an example of passivity (but not strict passivity), which will be important
later, let us check the claim at the end of §4.4.1 concerning the lower block L of
Fig.4.3. Suppose x ∈ le2 is the input to an operator Ĥ with output y ∆= Ĥx, which
satisfies ykxk ≥ 0, ∀k ∈ ZZ+ (a sign preserving operator). Then trivially

〈
Ĥx, x

〉
T

=
T∑
k=0

ykxk ≥ 0, ∀x ∈ le2 ∀T ∈ ZZ+, (4.9)

showing Ĥ is passive according to definition (4.7) with β = 0. That is, if Ĥ is a
non-linearity constrained to the first and third quadrants then it is passive (even if it
is time-varying or has memory).

Our second example which we state as a lemma will be important later and relates
to the definition of strict passivity (4.8) applied to linear operators.

Lemma 4.3: Suppose the linear operator G: le2 7→ le2 defined by Gu = g ?©u, where

g
∆= {g0, g1, . . .} ∈ l1. Let the input u ∈ le2. Then〈
Gu, u

〉
T
≥ δ.

∥∥u∥∥2

T
, ∀u ∈ le2 ∀T ∈ ZZ+ ⇐⇒ Re

(
g̃(ejθ)

)
≥ δ, ∀θ ∈ [0, 2π] (4.10)

where g̃(z) ∆=
∞∑
i=0

giz
−i is the Z-transform of the impulse response g, and δ > 0.

The proof follows from Parseval’s Theorem (see [9]). Lemma 4.3 says that a linear
convolutional operator is strictly passive if and only if its Nyquist plot belongs to

{z ∈ C/: Re(z) ≥ δ}.

We now come to the main passivity theorem. Figure 4.4 defines the signals and
operators of interest. In it e and v are the input sequences to the operators H1 and
H2 and y = H1e and z = H2v are the respective output sequences. There is a single
external signal u. All signals shown are assumed to lie in le2. The following theorem
and proof are an adaptation of a more general result in [9,p.182].

(Passivity) Theorem 4.4: Suppose: (i) Operator H1 is linear and strictly passive,

i.e., 〈
H1e, e

〉
T
≥ δ1.

∥∥e∥∥2

T
, ∀e ∈ le2 ∀T ∈ ZZ+ (4.11)
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Fig.4.4 Passivity Theorem Block Diagram.

where δ1 > 0; and (ii) operator H2 is a non-linearity confined to the first and third

quadrant, implying

〈
H2v, v

〉
T
≥ 0, ∀v ∈ le2 ∀T ∈ ZZ+ (4.12)

by (4.7), and is thus passive. Then u ∈ l2 ⇒ e ∈ l2

Proof: We show e ∈ l2 by determining upper and lower bounds on
〈
H1e, e

〉
T

+〈
H2v, v

〉
T

which may be thought of as the total energy dissipated by the system in

Fig.4.4 from time 0 to time T . First we determine a lower bound. Using (4.11) and

(4.12) we clearly have

〈
H1e, e

〉
T

+
〈
H2v, v

〉
T
≥ δ1.

∥∥e∥∥2

T
∀T ∈ ZZ+ (4.13)

where, recall, δ1 > 0 is the constant associated with the degree of passivity of the H1

operator. An upper bound on (4.13) follows from the following simple calculation,

using Fig.4.4,

〈
H1e, e

〉
T

+
〈
H2v, v

〉
T

=
〈
H1e, e

〉
T

+
〈
− e, v

〉
T

=
〈
− e, v −H1e

〉
T

=
〈
− e, u

〉
T
≤
∥∥e∥∥

T
.
∥∥u∥∥

T
, ∀T ∈ ZZ+ (4.14)

where the last line is an application of the Cauchy-Schwartz inequality. Then com-

bining (4.13) with (4.14) we obtain
∥∥e∥∥

T
≤ δ−1

1

∥∥u∥∥
T
∀T ∈ ZZ+ whenever

∥∥e∥∥
T
> 0.

Letting T →∞ we find ∥∥e∥∥ ≤ δ−1
1

∥∥u∥∥ (4.15)

i.e., u ∈ l2 ⇒ e ∈ l2 as desired.
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4.4.3 Sufficient Conditions for a Finite Recovery Time
In this section we transform the system in Fig.4.3 so that we may apply the general
passivity theorem of the last section. This involves two steps. The first step is to
apply a feedforward path around the upper block in Fig.4.3 to attempt to turn it
into a strictly passive operator, which currently it is not. To compensate for this
distortion we need also to apply an identical feedback path about the lower block.
The second step is to model the effects of initial conditions at time k = 0, i.e., an
initial (arbitrary) error state, by an external signal u as in the passivity theorem. This
latter point, which will be treated in more detail later, is based on the equivalence of
non-zero initial conditions and zero external input in Fig.4.3 to zero initial conditions
and non-zero external input in Fig.4.5 at time k = 0.

Fig.4.5 Loop Transformation.

We apply a loop transformation [9] to the system in Fig.4.3 to obtain the new
system shown in Fig.4.5. Note that the effect of the newly introduced feedforward and
feedback paths with gains h∗0 is to cancel exactly. The upper block labelled H1 has
impulse response given by

{h∗0, h1, h2, . . .} (4.16)

where h∗0 is a finite gain associated with the feedforward path. For the passivity
theorem to apply we need (4.16) strictly passive, i.e., h∗0 sufficiently positive, and we
have available Lemma 4.3 as a test in the frequency domain.
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In the lower block labelled H2, which includes the positive feedback of gain h∗0,
we need to be concerned that we have not destroyed the passivity of the original lower
block (Fig.4.3). The following lemma with proof now applies. The symbol definitions
are given in Fig.4.5.

Lemma 4.5: If 0 ≤ h∗0 ≤ h0
2 then H2 (Fig.4.5) is passive.

Proof: The H2 block has input vk and output zk ∈ {−2, 0,+2}. We attempt to

show vkzk ≥ 0, ∀k which is known to ensure passivity. From Fig.4.5 the input wk

to the sector non-linearity within the H2 block is given by wk = mk(vk + h∗0zk)
from which we have after multiplying through by zk,

mkvkzk = (wk −mkh
∗
0zk)zk, ∀k ∈ ZZ+. (4.17)

We have three cases according to the values taken by zk ∈ {−2, 0,+2} (see Fig.4.5):

(i) zk = +2 ⇒ mk = 1 and wk ≥ h0, which implies from (4.17) that vkzk =
2(wk − 2h∗0) ≥ 2(h0 − 2h∗0) ≥ 0, given 0 ≤ h∗0 ≤ h0

2 , i.e., vkzk ≥ 0; (ii) zk = −2 ⇒
mk = 1 and wk ≤ −h0 leading to vkzk ≥ 0 by symmetry; and (iii) zk = 0 which

gives vkzk = 0 because v ∈ le2, i.e.,
∣∣vk∣∣ < ∞ ∀k. Therefore vkzk ≥ 0 ∀k in every

case, implying H2 is passive by (4.9).

Another condition which needs to be fulfilled in Theorem 4.4 is u ∈ l2. This condition
will necessitate some hypothesis on the channel h to be fulfilled. The signal u for
our application will model the effects of initial conditions in the H1 block since all
our sequences are defined only for k ≥ 0, whereas the real system may have been
operating from the distant past, i.e., k = −∞. Note that this signal u, as shown in
Fig.4.5, is unaffected by the introduction of h∗0. From Fig.4.3 we use superposition
on the upper H linear operator of impulse response {0, h1, h2, . . .} to represent the
effects of arbitrary initial conditions, i.e., an arbitrary initial error state via the signal

uk
∆=

∞∑
i=k+1

hiek−i, k ∈ ZZ+ (4.18)

where values e−1, e−2, e−3, . . ., taking values in {−2, 0,+2} define the initial state at
time k = 0. To ensure u ∈ l2 we impose some sufficient conditions on the channel h.
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Lemma 4.6: Suppose h ∈ le2 satisfies
∣∣hm∣∣ = O(m−η) as m → ∞ where η is

constant. Then:

(i) η > 1 ⇒ h ∈ l1, (4.19a)

(ii) η >
3
2
⇒ u ∈ l2. (4.19b)

Proof: (i) Is elementary. (ii) By using continuous approximations to the sum-

mations it is easy to show that from (4.18)
∣∣uk∣∣ ≤ 2

∑∞
i=k+1

∣∣hi∣∣ = O(k−η+1) as

k → ∞. Then pk
∆= u2

k = O(k−2η+2) as k → ∞. However, u ∈ l2 if and only if

p ∈ l1. Using part (i) on p this implies 2η − 2 > 1, i.e., η > 3
2 .

We state our first main DFE result.

Theorem 4.7: Suppose a channel h
∆= {h0, h1, . . .} used for binary transmission of

symbols {ak} satisfies
∣∣hm∣∣ = O(m−

3
2−ε) as m→∞ where ε > 0. Suppose ∃δ > 0

such that

Re
(
h̃(ejθ)− h0

2

)
≡ h0

2
+
∞∑
m=1

hm cos(mθ) ≥ δ, ∀θ ∈ [0, 2π]. (4.20)

where h̃(z) denotes the Z-transform of h.

Given an ideal DFE output sequence {âk} generated through

âk = sgn
(
h0ak +

∞∑
i=1

hi(ak−i − âk−i)
)

then for some K <∞, we have âk = ak, ∀k ≥ K.

Proof: By Lemma 4.6(i) the constraint on the channel implies h ∈ l1, thus h̃(ejθ)
exists, and we can use Lemma 4.3. Set h∗0 = h0

2 in Fig.4.5. By Lemma 4.3 we

have Re
(
h̃(ejθ) − h0

2

)
≥ δ, ∀θ ∈ [0, 2π] if and only if operator H1 in Fig.4.5 is

linear and strictly passive. Operator H2 in Fig.4.5, on the other hand, is passive

by Lemma 4.5. By Lemma 4.6(ii) the constraint on the channel implies u ∈ l2,

therefore Theorem 4.4 applies and we deduce e ∈ l2. However by (4.6) e ∈ l2 if and

only if ek = 0, ∀k > K for some K <∞, which proves the result.

A somewhat clearer and conceptually simpler result takes the form:
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Corollary 4.8: DFEs with weights correctly adjusted to match the coefficients of

an exponentially stable channel h whose frequency response h̃(ejθ) satisfies

Re
(
h̃(ejθ)

)
>
h0

2
∀θ ∈ [0, 2π]

have finite error recovery times, regardless of the initial conditions and regardless

of the input sequence.

An explicit bound on the error recovery time is the subject of §4.4.4. Note, a finite
recovery time means there are not any pathological input sequences [2,4]. Now we
look at some applications of Theorem 4.7.

Example (i) Suppose (4.19b) is satisfied, ∃δ′ > 0 and

h0

2
≥
∞∑
i=1

∣∣hi∣∣+ δ′. (4.21)

Then it follows that (4.20) is satisfied. In fact condition (4.21) is equivalent to

h0 >
∣∣rk∣∣, ∀k ∈ ZZ+. In this case the DFE has always recovered by equation (2.5),

i.e., it never makes errors (in the absence of noise).

Example (ii) Let the channel be FIR with impulse response {h0, h1, h2, 0, 0, . . .}
(such that h0 > 0). Then condition (4.20) is simply

h0

2
+ h1 cos θ + h2 cos 2θ ≥ δ, ∀θ ∈ [0, 2π]. (4.22)

This defines a region as δ → 0 in (h1, h2)-space shown shaded in Fig.4.6 (see [11]).

Note this ice-cream cone region consists of two straight boundaries which are tan-

gent to an ellipse at points (± 2
3h0,

1
6h0). This region is shown sandwiched between

two other regions: (i) an inner diamond which is (4.21); and (ii) an outer triangle

which is the region which defines the necessary and sufficient conditions for a finite

recovery time (demonstrated in [2], see Chapter 2 also). This highlights that the

converse of Theorem 4.7 is false (for more on this, see §4.4.6).

Example (iii) As in §4.3 let h
∆= {hm = βm cos(mω), ∀m ∈ ZZ+}, where 0 ≤ β < 1

and ω ∈ [0, 2π]. Then g̃(z) ∆= h̃(z)− 1
2 is given by

g̃(z) =
1
2 (z2 − β2)

z2 − 2β cosω z + β2
.
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Fig.4.6 3 Tap FIR Channel Regions.

We need g̃(ejθ) to have positive real part and this can be shown to be equivalent

to checking

Re
(
(ej2θ − β2)(e−j2θ − 2β cosω e−jθ + β2)

)
≥ δ̃, ∀θ ∈ [0, π], (4.23)

for some δ̃ > 0 which is not the same as but is related to the δ which appears in

(4.20). But the left hand side of (4.23) can be decomposed as follows:

1− 2β cosω cos θ + 2β3 cosω cos θ − β4 = (1− β2)
(
(1− β)2 + 2β(1− cos θ cosω)

)
≥ (1− β2)(1− β)2 > 0

Thus all decaying exponential channels with impressed sinusoidal oscillation (of the

appropriate phase) have a finite recovery time. This is essentially the same result

as that which can be found in §4.3 (and [6]). Note that one can extend this result

to h
∆= {hm = βm cos(mω + φ), ∀m ∈ ZZ+} to conclude that one can trade-off

β against φ and maintain g̃(z) strictly passive provided φ remains close to zero,

see §4.6.

Example (iv) Figure 4.7 shows the measured impulse response of a 3km twisted

pair copper cable which is the line between a subscriber and a local exchange [12].

Figure 4.8 shows the Nyquist plot of the same channel. Since the closed Nyquist
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Fig.4.7 3km Twisted Pair Cable Response.

curve lies completely to the right of the line Re
(
h̃(ejθ)

)
= h0/2 (shown dashed) then

Theorem 4.7 establishes any error recovery time is finite. Also shown in Fig.4.8 is a

geometrical interpretation of δ in Theorem 4.7. With some further analysis we will

indicate that this type of channel is ideal for the use of a DFE.

Fig.4.8 Nyquist Plot for Twisted Pair Cable.

4.4.4 Convergence Rates and Explicit Bounds
Theorem 4.7 gives no indication of the maximum time one needs to wait before the
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DFE returns to an error-free mode. Intuitively the more dissipative the upper block
H1 is in Fig.4.4, i.e., the greater is δ1, the more rapidly the error signal should go to
zero. We investigate this intuitive insight further.

Consider Fig.4.9 which shows the use of multipliers [9] to transform Fig.4.4. The
signals ek, yk, uk, vk and zk are identical to those in Fig.4.4, being unaffected by the
introduction of the multipliers. We will be applying Theorem 4.4 to the new starred
system where H∗1 maps e∗k = ρkek to y∗k = ρkyk, and H∗2 maps v∗k = ρkvk to z∗k = ρkzk.
The new external signal is now u∗k = ρkuk. We take the multiplier ρ > 1.

Now since we take ρ > 1 we trivially have sgn(vk) = sgn(v∗k) and sgn(zk) =
sgn(z∗k). Thus H∗2 is passive since H2 is so. To check that H∗1 is strictly passive is
simplified by linearity. It is an elementary calculation to show that the Z-transforms
of H∗1: e∗k 7→ y∗k and H1: ek 7→ yk are related through

h̃∗1(z) = h̃1(z.ρ−1). (4.24)

This implies that more stringent conditions need to be enforced on the channel h than
those given by Lemma 4.6 if the starred signals are to belong to l2 and then other
conditions need to be checked for passivity. Appealing to Lemma 4.6, the most natural
and only sensible condition for stability takes the following form:

Fig.4.9 Convergence Rates via Multiplier Transformation.

Assumption: For some 0 < γ < 1,
∣∣hi∣∣ < B.γi, ∀i ∈ ZZ+. (4.25)
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This assumption ensures h̃∗1(z) has an impulse response in l1. Then H∗1 is strictly
passive if and only if

Re
(
h̃∗1(ejθ)− h0

2

)
≥ δ∗1 , ∀θ ∈ [0, 2π] (4.26)

for some δ∗1 > 0. This shows how the degree of passivity trades off against the degree
of exponential stability because if we increase the ρ in (4.24) too far then (4.26) will
only hold if δ∗1 is negative, and then we cannot use the stability theorem.

The main stumbling block remaining before we can invoke the Theorem 4.4 is to
show u∗ ∈ l2. Using (4.25) we may prove the following, noting u∗k = ρkuk,

∥∥u∗∥∥2 ∆=
∞∑
k=0

{
ρ2k
∣∣ ∞∑
i=k+1

hiek−i
∣∣2} ≤ 4B2

∞∑
k=0

{
ρ2k

∣∣ ∞∑
i=k+1

γi
∣∣2}

=
4B2γ2

(1− γ)2

∞∑
k=0

(ργ)2k

=
4B2γ2

(1− γ)2(1− (ργ)2)
(4.27)

provided
∣∣ργ∣∣ < 1, i.e.,

∥∥u∗∥∥ <∞. Thus with an exponential overbound of the channel
and

∣∣ργ∣∣ < 1, Theorem 4.4 applies to the starred system in Fig.4.9 and we conclude
from (4.15) that

∥∥e∗∥∥2 ∆=
∞∑
k=0

∣∣e∗k∣∣2 ≤ δ∗−2
1

∥∥u∗∥∥2

≤ δ∗−2
1

4B2γ2

(1− γ)2(1− (ργ)2)
(4.28)

i.e., e∗ ∈ l2 (provided
∣∣ργ∣∣ < 1). This provides an exponential rate of decay on

∣∣ek∣∣ =
ρ−k

∣∣e∗k∣∣ ≤ ρ−k∥∥e∗∥∥. However ek is restricted to the set {−2, 0,+2} and therefore must
be zero after some time K(ρ) ∈ ZZ+ which is the least integer satisfying

2 >
2Bγ
δ∗1

ρ−K(ρ)

(1− γ)
√

(1− (ργ)2)
, (4.29)

i.e., the least integer such that,

K(ρ) ≥ logρ(Bγ)− logρ
(
δ∗1(1− γ2)

)
− 1

2
logρ(1− (ργ)2); K(ρ) ∈ ZZ+. (4.30)
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This K(ρ) is an explicit error recovery time bound that we desired. We will not
elaborate further but rather give an example which makes the above analysis clearer
and shows how to determine a suitable multiplier ρ, at least in principle.

We consider the special case of the third example given in §4.4.3 by setting ω = 0,
i.e., hi = γi, ∀i ∈ ZZ+ for some 0 < γ < 1 (this case is very similar to Fig.4.7). This
channel trivially satisfies (4.25) with B = 1. For this channel it can be shown using
elementary analysis that

Re
(
h̃∗(ejθ)− 1

2

)
=

1
2

(
1− (ργ)2

)
1− 2ργ cos θ + (ργ)2

(4.31)

where ρ is chosen such that γ < ργ < 1. (Note also h∗i = (ργ)i, ∀i ∈ ZZ+, by (4.24))
From (4.31) the δ∗1 associated with strict passivity of H∗1 is given by δ∗1 = 1

2 (1−ργ)/(1+
ργ), being the minimum of (4.31) achieved when θ = π. We can now use (4.30) to
compute the bound on the error recovery time for various ρ > 1. To obtain the tightest
bound we can optimize over 1 < ρ < 1

γ , noting K(ρ)→∞ whenever ρ→ 1
γ or ρ→ 1.

We give three numerical examples: (i) γ = 0.50 then using (4.30) we can determine an
optimum ρ ≈ 1.642 yielding δ∗1 = 0.0492 leading to Kopt ≈ K(1.642) = 8; (ii) γ = 0.81
with optimum ρ ≈ 1.194 yielding δ∗1 = 0.0083 leading to KOPT ≈ K(1.194) = 43; and
(iii) γ = 0.95 with ρ ≈ 1.047 yielding δ∗1 = 0.0014 leading to KOPT ≈ K(1.047) = 258.

Table 4.1: Error Recovery Time Bounds

Analysis Technique γ = 0.50 γ = 0.81 γ = 0.95

Passivity Theory (5.7) 8 43 258

Exponential Results [6] 2 11 71

Markov Processes [1-4] 6∗ 4094∗ 5× 1021∗

* These bounds are on the mean not the maximum recovery time.

These bounds are conservative by the nature of the analysis. In §4.3 equation
(3.9), for the cases examined here, it is shown that tighter bounds on the maximum
error recovery times are 2, 11 and 71, respectively. It is interesting to compare both
sets of bounds (see the first two rows of Table 4.1) with mean error recovery time
bounds which can be deduced from the DFE literature based on Markov Processes [1-
4]. Of course being statistical bounds we need a statistical model of the input sequence
{ak}—an independent, equiprobable binary distribution being standard. This does
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not invalidate the comparison because the error recovery time bound K(ρ) in (4.30)
always overbounds the true mean error recovery time.

To compute the mean error recovery time bounds based on the work in [1] we
define an effective channel length n for the exponential channel, Chapter 2 §2.6.1.
This is given by the minimum n such that

2
∞∑

i=n+1

γi =
2γn+1

1− γ < 1. (4.32)

The meaning attached to the quantity n is simply that the DFE needs to make n

consecutive correct decisions to recover from any error state with âk−1 6= ak−1 (k
being the present instant of time). Equation (4.32) has the simple interpretation: the
LHS is the maximum residual ISI (2.4b) given n consecutive correct decisions have
been made; the RHS is just the amplitude of the cursor h0 = 1. Now for the worst case
channels implicitly considered in [1-4], subject to (4.32), the probability of making an
error is precisely 1

2 for every decision before recovery (i.e., before n consecutive correct
decisions have been made). By the theory of success runs [4] the mean recovery time is
given by 2(2n−1). Looking at our three examples we have: (i) γ = 0.50 implying n = 2
and thus a mean recovery time of 6; (ii) γ = 0.81 implying n = 11 and thus a mean
recovery time of 4094; and (iii) γ = 0.95 implying n = 71 and thus a mean recovery
time of 5× 1021. These three bounds are displayed in the third row of Table 4.1.

Remarks:

(i) Table 4.1 shows that using the theory of Markov Processes one may get ridicu-
lously conservative results, even though we have (minimally) exploited some struc-
tural assumptions (4.32). Also note that here the Markov techniques are incapable
of telling us directly that the recovery time is finite. (In principle, however, one
could answer this by examining the topology of an infinite dimensional graph
associated with the Markov Process.)

(ii) Equation (4.32) is identical to (3.8), noting γ is identifiable with β. Thus for
exponential channels (without ω-modulation) we see that the worst case error
recovery time bound K (3.8) is identical to the effective channel length n (4.32).
This coincidence is easily explained. We know that if n consecutive correct deci-
sions are made then the DFE recovers. However from §4.3 we also know that for
exponential impulse response channels, with the worst case initial conditions, a
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sequence of correct decisions characterizes the slowest recovery, and so the result
is not so surprising.

(iii) The mean bounds in Table 4.1 can presumably be improved on by the techniques
in [7,8]. However the amount of computation that would be necessary looks
formidable (also the IIR channel would need to be approximated).

4.4.5 Error Recovery Under Imperfect Equalization
This subsection represents a threefold generalization of the previous results. These
modifications involve, in part, relaxation of some of the previous assumptions regarding
the model of the system under study. The analysis we perform here will be carried out
up to the point where it is obvious the same techniques as before can be used. This
saves repetition. The generalizations are as follows: (i) the DFE tapped delay line is
assumed to be FIR of length N rather than IIR, whilst the channel may be IIR; (ii) the
assumption that di = hi, ∀i ≥ 1 is relaxed to a condition which stipulates the di are
sufficiently close but not necessarily equal to some ideal values (how close and what
the ideal values are will be precisely defined); and (iii) the results are generalized to the
situation where error-free behaviour is characterized by âk = sgn(hδ)ak−δ, ∀k ≥ K

for some fixed delay δ ∈ {0, 1, . . . , N} rather than âk = ak, ∀k ≥ K (which is the
special case where δ = 0, recalling h0 > 0). All these generalizations will be treated
in parallel. A key feature of the analysis performed in this subsection is showing
explicitly the close relationship between eye diagrams and rates of error recovery.

As some motivation to studying delay-type behaviour, alluded to above, consider
the situation where a DFE has its taps adapted blindly, i.e., without a training se-
quence. In this case, it was shown in Chapter 3 that the DFE taps may adapt not
only to an (ideal) equilibrium where di = hi, i ∈ {1, 2, . . . , N} but also to a delay
equilibrium where di = sgn(hδ)hi+δ, i ∈ {1, 2, . . . , N} provided certain conditions
are met. We will show that when in the vicinity of a delay equilibrium, after some
finite time K, all decisions will be of the form âk = sgn(hδ)ak−δ ∀k ≥ K, hence the
terminology.

To analyze non-ideal behaviour we take (2.3) and set di = 0 for i > N , i.e., the
tapped delay line is FIR of length N rather than IIR. Define

σδ
∆= sgn(hδ).
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We can decompose (2.3) as follows:

âk = sgn
( ∞∑
i=0

hiak−i −
N∑
i=1

diâk−i
)

(4.33a)

= sgn(hδak−δ + rk(δ) + sk(δ) + tk(δ)) (4.33b)

where

rk(δ) ∆=
N+δ∑
i=δ+1

hi(ak−i − σδ.âk+δ−i) (4.33c)

sk(δ) ∆=
δ−1∑
i=0

hiak−i + σδ

N+δ∑
i=δ+1

(hi − σδ.di−δ)âk+δ−i (4.33d)

and

tk(δ) ∆=
∞∑

i=N+δ+1

hiak−i. (4.33e)

In (4.33): (i) rk(δ) acts as the basic residual ISI term (note if we let δ = 0 and N →∞
then (4.33c) becomes (2.4b)); (ii) sk(δ) is a term which generally gets smaller as the
taps (d1, d2, . . . , dN )′ approach the δ-delay equilibrium +σδ(hδ+1, hδ+2, . . . , hδ+N )′,
and includes any precursor; and (iii) tk(δ) is that part of the tail of the channel which
cannot be modelled by the DFE because the tapped delay line is FIR.

Beginning with tk(δ) in (4.33e), it is clear that we need

∣∣tk(δ)
∣∣ ≤ ∞∑

i=N+δ+1

∣∣hi∣∣ ∆= Φ, ∀k ∈ ZZ+ (4.34)

with Φ sufficiently small else the DFE problem is not well-posed, i.e., N , the number
of DFE taps, needs to be chosen large enough in the first place so that the DFE can
effectively cancel the ISI.

Now when in the vicinity of a delay equilibrium we claim âk = +σδ.ak−δ, ∀k ≥ K
provided certain conditions are met, which we now determine. Define new (delay)
errors

ek(δ) ∆= ak−δ − σδ.âk (4.35)

then the basic residual ISI term rk(δ) (4.33c) may be written

rk(δ) ∆=
N+δ∑
i=δ+1

hiek+δ−i(δ) (4.36)
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and will be zero whenever we make N consecutive correct δ-delay decisions. Now
suppose

∆MIN (δ) ∆=
∣∣hδ∣∣− δ−1∑

i=0

∣∣hi∣∣− N+δ∑
i=δ+1

∣∣hi − σδ.di−δ∣∣− ∞∑
i=N+δ+1

∣∣hi∣∣ > 0. (4.37)

Then some perusal will show that whenever N consecutive correct decisions are made,
all future decisions will be correct (in the delay sense) because rk(δ) = 0 and hδ

is larger in magnitude than sk(δ) + tk(δ) can ever be, see (4.33b). This defines a
new form of error recovery, i.e., (4.37) is a sufficient condition for all decisions to be
(delay) correct whenever N consecutive δ-delay decisions have been made. Note that
if all decisions are to be of the form âk = σδ.ak−δ for all input sequences, given N

consecutive correct decisions have been made, then condition (4.37) is also a necessary
condition (see [13] which treats a similar problem).

Define ∆k(δ) ∆=
(
hδak−δ + sk(δ) + tk(δ)

)
σδ.ak−δ, noting ∆k(δ) ≥ ∆MIN (δ) > 0 by

(4.37). We can write (4.33b) as âk = sgn
(
σδ.ak−δ ∆k(δ) + rk(δ)

)
. Then clearly the

analogue of Lemma 4.1 is:

Lemma 4.9: Suppose condition (4.37) holds. Then

(i)
∣∣rk(δ)

∣∣ < ∆k(δ) or ak−δ = +σδ. sgn(rk(δ)) ⇒ âk = +σδ.ak−δ.

(ii)
∣∣rk(δ)

∣∣ > ∆k(δ) and ak−δ = −σδ. sgn(rk(δ)) ⇒ âk = −σδ.ak−δ.

Thus we have the picture in Fig.4.10 which differs marginally from Fig.4.3. Note the
lower block is sector bounded within the 1st and 3rd quadrants whilst ∆MIN (δ) > 0.
The critical value at which rk(δ) causes a change from zk = 0 to zk = +2 is ∆k(δ) and
is thus time-varying (but bounded below by ∆MIN (δ))—we have depicted this behaviour
by a shading or fuzziness of the switching value in the non-linearity in Fig.4.10. The
generalization of Theorem 4.7 is then clearly:

(Imperfect Equalization) Theorem 4.10: Suppose a channel h
∆= {h0, h1, . . .} and

the DFE tapped delay line d
∆= {0, d1, d2, . . .} satisfy

∆MIN (δ) ∆=
∣∣hδ∣∣− δ−1∑

i=0

∣∣hi∣∣− N+δ∑
i=δ+1

∣∣hi − σδ.di−δ∣∣− ∞∑
i=N+δ+1

∣∣hi∣∣ > 0. (4.38)
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Fig.4.10 Imperfect Equalization Error Propagation Block Diagram.

for some (at most one) delay δ ∈ {0, 1, . . . , N} and σδ
∆= sgn(hδ). Further,

suppose ∃ξ > 0 such that

∆MIN (δ)
2

+ σδ

N∑
m=1

hm+δ cos(mθ) ≥ ξ, ∀θ ∈ [0, 2π].

Given a non-ideal DFE output sequence {âk} generated through

âk = sgn
( ∞∑
i=0

hiak−i −
N∑
i=1

diâk−i)
)

then for some K <∞, we have âk = +σδ.ak−δ, ∀k ≥ K.

Remarks:

(i) The asymptotic condition on h in the previous Theorem 4.7, in reality, controls
the behaviour of the tail of the ideal DFE tap setting, not the tail of the channel.
That is why such a condition does not appear in Theorem 4.10. (It is implicit in
the sense that (4.38) implies h ∈ l1.)

(ii) Note condition (4.38) stipulates that the di need to be sufficiently close to the
σδ.hi+δ (in an l1-norm sense) if a certain operator is to be strictly passive. Note
that the worse the mismatch, the less ∆MIN (δ) will be. This forms a convenient
geometrical picture to replace the messy algebra.
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(iii) Note ∆MIN (δ) may be interpreted precisely as the amount that a certain eye dia-
gram is open (after recovery). Thus the wider the post-recovery eye can be, the
more rapid one can expect recovery to be. Theorem 4.10 is saying that given the
eye is initially closed (an arbitrary error state) it will always open after at most
some finite time K (again this is quantifiable).

4.4.6 Comparison with the Exact Theory
An exact theory treating error recovery capable (in principle) of providing necessary
and sufficient conditions on the system parameters for finite error recovery times and
related problems can be found in Chapter 2, (see also [2]). One conclusion of Chapter
2 is that if inclusion in a certain region of the channel parameter space is a necessary
and sufficient condition for a (guaranteed) finite error recovery time then that region
is, without exception, a union of a (countable) number of polytopes, i.e., the region
is bounded by hyperplanes. In contrast, the region determined in Theorem 4.7 has in
general some curved boundaries (see Fig.4.6). Thus we can see immediately that The-
orem 4.7 can only be a sufficiency result—a conclusion we arrived at earlier. However,
it is quite easy to strengthen Theorem 4.7 such that the region appearing in (4.22)
is replaced by a suitable union of polytopes (of the form defined in Chapter 2) which
contains the region (4.22). For example in Fig.4.6 the passivity analysis ice-cream
cone region can in fact be replaced by the outer triangle in the theorem statement.
The reason is the following. The property which defines the polytopes in [2] is that
all points interior to a given polytope have indistinguishable error recovery properties
(a manifestation of the sgn(·) quantization in (2.3)). Let us refer to all points inside
a given polytope as isomorphic, then we have the following straightforward extension
of Theorem 4.7:

(Extended) Theorem 4.11: All channels h which are isomorphic to at least one

channel satisfying the passivity constraint in (4.20) have a guaranteed finite recovery

time.

Remarks:

(i) For example in Fig.4.6 the outer triangle is composed of five polytopes (see also
[2]) each of which intersect with the passivity region in (4.22). Therefore, e.g.,
h = {2, 1.5, 0.75} violates (4.22) (e.g., at θ = 135◦) but is isomorphic to h =
{2, 1.1, 0.5} which satisfies (4.22).
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(ii) The degree of passitivity δ1 > 0 that we can associate with any channel h can be
maximized by searching over all channels which are isomorphic to h, thus giving
a tighter overbound on the error recovery rate, e.g., h = {2, 0, 0.9} has δ1 = 0.1
but is isomorphic to h = {2, 0, 0} with δ1 = 1. This may explain why the
passivity theory does not give the tight result of [6] in Table 4.1.

(iii) For FIR channels with less than four parameters, Theorem 4.11 provides both
necessary and sufficient conditions for a guaranteed finite recovery time. It is not
known whether this property holds for higher dimensions.

4.4.7 M-ary Results
The theory developed for binary systems can be extended to larger alphabets where
M symbols are used. We outline some of the important differences. For brevity we
restrict attention to zero delay systems. Let {ak} ∈ {1 −M, 3 −M, . . . , M − 1}
where M is positive and even. The standard decision function QM (·) which replaces
sgn(·) in the binary analysis is defined by

QM (x) ∆=
M/2−1∑
k=1−M/2

sgn(x+ 2k). (4.39)

The M -ary version of (2.4a), where we have ideal equalization, becomes

âk = QM (h0ak + rk), h0 > 0 (4.40)

where rk is as in (2.4b) with the exception that ek ∈ {0, ±2, . . . , ±2(M − 1)}. Now
suppose we had no residual ISI, i.e., rk = 0, then (4.40) reduces to

âk = QM (h0ak) (4.41)

from which it is clear that (with M ≥ 4) we need h0 ≈ 1 for error-free behaviour.
(This differs from the binary case, M = 2, where it was only necessary that h0 > 0.)
Elaborating, we have

Lemma 4.12: Given ek−i = 0, ∀i ∈ ZZ+, and M ≥ 4 even, then

âk = ak, ∀ak ⇐⇒
M − 2
M − 1

< h0 <
M − 2
M − 3

. (4.42)
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Proof: (Outline): If h0 exceeds the upper bound in (4.42) then ak = M − 3 gets

decoded as âk = M − 1 in (4.41). Similarly if h0 is less than the lower bound in

(4.42) then ak = M − 1 gets decoded as âk = M − 3. These symbols define the

critical cases.

So, in summary, we require the right-hand condition in (4.42) to be in force if the
M -ary error recovery problem is to be well-posed. (Note, with an obvious redefinition
of ek an analogous result for h0 < 0 can be generated.)

Consider the error propagation mechanism for the well-posed M -ary problem.
We now verify that the operator L which maps r to z = −e (the residual ISI to the
negative of the errors) is passive, indeed sector bounded.

We will adopt a slightly different approach to the M -ary analysis from the binary
analysis. In the binary analysis, recall, we included a stochastic multiplier to compen-
sate for the event where the residual ISI rk and data ak had the same sign (leading to
zero error). It is possible, and preferable in the M -ary case, to include the stochastic
effects of the input ak into the sector non-linearity as a time variation. Lemma 4.13
provides the mathematical details. However, before presenting Lemma 4.13 let us
determine the conditions on residual ISI rk and data ak which lead to ek = 0 in the
M -ary case.

Zero error simply means âk = ak which may be written

âk = QM (h0ak + rk) = ak.

This implies in view of the quantizer definition (4.39)

ak − 1 < h0ak + rk < ak + 1, ∀ak ∈ {3−M, . . . , M − 3}

ak − 1 < h0ak + rk, for ak = M − 1

and

h0ak + rk < ak + 1, for ak = 1−M.

Therefore the conditions under which the residual ISI rk is harmful vary according to
ak, and are most lax with the extreme symbols. Now onto the lemma statement and
proof.
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Fig.4.11 M-ary ∆′(h0) Function.

Lemma 4.13: Let rk
∆=
∑∞
i=1 hiek−i and zk

∆= − ek = âk − ak. Then the operator

L: r 7→ z is sector bounded according to

0 ≤ zk
rk
≤ 2

∆′(h0)
(4.43)

where (see Fig.4.11)

∆′(h0) ∆=

 (M − 1)h0 − (M − 2) if h0 ≤ 1;

−(M − 3)h0 + (M − 2) if h0 ≥ 1,
(4.44)

provided the M -ary error recovery problem is well-posed, i.e., h0 satisfies

M − 2
M − 1

< h0 <
M − 2
M − 3

.

Proof: That zk/rk is non-negative will be implicit in the following develop-

ment. To compute the upper bound we search over all possible values of zk ∈
{0, ±2, . . . , ±2(M−1)}. Note we can restrict attention to the set {2, 4, . . . , 2(M−
1)} by symmetry (and discarding the zero error case). We begin with zk = 2. By

definition this implies

zk = 2 ⇐⇒ âk = QM (h0ak + rk) = ak + 2
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which in turn implies

ak + 1 < h0ak + rk < ak + 3, ∀ak ∈ {1−M, . . . , M − 5} (4.45a)

and

ak + 1 < h0ak + rk, for ak = M − 3. (4.45b)

With zk = 2 fixed, the two critical inequalities which minimize rk (in the light

of (4.43)) are: (i) the LHS of (4.45a) with ak = 1 − M ; and (ii) (4.45b) where

ak = M − 3. Imposing further that rk > 0 (i.e., stipulating that the non-linearity

lies in the 1st quadrant) leads to the two line segments which define ∆′(h0) (4.44),

shown in Fig.4.11. (Note that the condition in (4.42) is equivalent to the condition

rk > 0 whenever zk = 2.) However we need to verify that other values of zk do not

yield higher values for zk/rk. Let us consider zk = 4. By definition this implies

zk = 4 ⇐⇒ âk = QM (h0ak + rk) = ak + 4

which in turn implies

ak + 3 < h0ak + rk < ak + 5, ∀ak ∈ {1−M, . . . , M − 7} (4.46a)

and

ak + 3 < h0ak + rk, for ak = M − 5. (4.46b)

The two critical inequalities which minimize rk are: (i) the LHS of (4.46a) with

ak = 1 − M ; and (ii) (4.46b) where ak = M − 5. However it is easy to check

geometrically that these two inequalities do not yield higher values for zk/rk. This

conclusion holds true for zk ≥ 4 as a tedious calculation shows (ordering arguments

can be employed here). Thus when zk = 2 we can achieve the maximum zk/rk.

Then (4.44) arises from (4.45a) with ak = 1−M and (4.45b) where ak = M − 3.

Figure 4.11 shows the function ∆′(·) versus h0. At a conceptual level ∆′(·) may be
thought of as an effective cursor replacing h0. Note ∆′(M−2

M−1 ) = 0, ∆′(M−2
M−3 ) = 0 and

∆′(1) = 1 (the maximum). Figure 4.12 shows the error propagation diagram for the
M -ary case, noting it depicts the sector bound property of Lemma 4.13 in the block
L. Then in analogy to Theorem 4.7 (and Fig.4.3), we have the M -ary result where
M ≥ 4 is even:
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Fig.4.12 M-ary Error Propagation Block Diagram.

(M-ary) Theorem 4.14: Suppose ak ∈ {1−M, 3−M, . . . , M − 1} is the input to

a linear channel h
∆= {h0, h1, . . .} which satisfies

M − 2
M − 1

< h0 <
M − 2
M − 3

(to be well-posed) and
∣∣hm∣∣ = O(m−

3
2−ε) as m→∞ where ε > 0. Suppose ∃δ > 0

such that
∆′(h0)

2
+
∞∑
m=1

hm cos(mθ) ≥ δ, ∀θ ∈ [0, 2π] (4.47)

where ∆′(h0) is given by (4.44) (Fig.4.11). Given an ideal DFE output sequence

{âk} generated through

âk = QM
(
h0ak +

∞∑
i=1

hi(ak−i − âk−i)
)

then for some K <∞, we have âk = ak, ∀k ≥ K.

Remarks:

(i) Theorems relating the rates of convergence and robustness for the M -ary case
can be generated by analogy with the binary case.

(ii) The error recovery rate is most rapid with h0 = 1 which implies ∆′(h0) = 1
because this makes (4.47) the most strictly passive, which is in accord with in-
tuition. If h0 differs from 1 there will be a diminishing of passivity and hence



Sec. 4.4.7 M-ary Results 159

a drop in the rate of error recovery (this is represented graphically in Fig.4.11).
This highlights the crucial role that gain compensation plays in the M -ary case
(not a consideration for the binary case).

(iii) Normalized channels where h is scaled such that h0 = 1 (e.g., if we had ideal
gain compensation in the DFE), which result in a finite recovery time for bi-
nary symbols will also have a finite recovery time for the M -ary case because
then conditions (4.47) and (4.20) are identical. The explicit error recovery times,
however, will be different as we now indicate. Letting KM (ρ) denote the error
recovery time bound for the M -ary case, in analogy to (4.30), then this is related
to the binary error recovery time bound K(ρ) via

KM (ρ) = K(ρ) + logρ(M − 1).

To prove this note that in a calculation which mimics (4.27) the factor of 4 (the
maximum binary error squared) is replaced by 4(M − 1)2 (the maximum M -ary
error squared).

4.5 Noise and Asymptotic Error Probability Bounds
In Chapter 2 §2.5.3 (see also [3]) it is shown how the mean error recovery time is
related to the error probability in the most important case of a high signal to noise
ratio channel. This material, in fact, showed the close relationship between the two
fundamental early contributions to the analysis of error propagation, [1,4]. To calculate
an error probability bound we include additive channel noise with variance σ2

n into
the analysis, and following [1] we define the fully open eye error probability as

ε
∆= Pr(âk 6= ak

∣∣ rk = 0)

where rk is the residual ISI (2.4b), and ε = O(σ2
n) (see Chapter 2 §2.5.3 and [3]). (For

this calculation it is not necessary to assume the noise forms an independent sequence,
as is done for simplicity in [3].) We can then use the techniques in [3] to bound the
stationary error probability PE

∆= Pr(âk 6= ak) for channels satisfying the conditions
(4.25) and (4.26), via

PE <
ε

2
.(K(ρ) + 2) as σ2

n → 0, (5.1)
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where K(ρ) is the passivity analysis error recovery time bound which appears in (4.30).
From Table 4.1, bound (5.1) may be anything up to a factor of 1020 tighter than the
oft-cited result in [1] which says PE ≤ ε.2n (effectively derived by replacing K(ρ)
in the above formula by 2(2n − 1) which is the worst case mean error recovery time
implicit in [1]).

Rather than derive (5.1), we will give a simple heuristic which demonstrates the
concepts involved that lead to a proof. To compute the probability of error PE we
will consider two distinct phases of DFE operation corresponding to before and after
recovery.

In the limit as σ2
n → 0 the probability of significant, i.e., harmful, noise becomes

increasingly rare. Consequently for channels satisfying (4.25) and (4.26) the time
taken to recovery from a worst case error approaches that of the noiseless calculation,
i.e., K(ρ) (4.30). The probability of error during this phase we take as 1

2 , the upper
bound. Once in the post-recovery phase only noise can induce an error and, given
the asymptotics on the noise variances, we see that the interval of time one must wait
typically will be exceedingly long. During this time the ISI will continue to decrease
(exponentially) in accordance with the exponential overbound (4.25) on the channel
tail. Thus when the rare noise induced error event does occur it almost always will be
when the ISI is effectively zero and we can say that the post-recovery error probability
will be effectively ε (the zero residual ISI error probability). Also by elementary
considerations the time we will need to wait before such an error will have asymptotic
mean approaching 1

ε .

So in summary, the ratio of time spent before:after recovery will be asymptotically
K(ρ) : 1

ε , and the corresponding error probabilities 1
2 : ε (asymptotically). Here it is

useful to note that ε = O(σ2
n). Hence an overbound of the overall error probability

takes the form:

PE ≤
K(ρ). 1

2 + 1
ε
.ε

K(ρ) + 1
ε

as ε→ 0

=
ε

2
.
(
K(ρ) + 2

1 + ε.K(ρ)

)
as ε→ 0,

and this is compatible with (5.1). Naturally, our result is tighter than that given in
[1] because we are imposing stronger structural assumptions on the channels to be
subject to equalization.
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4.6 Timing Phase Sensitivity Analysis
4.6.1 Background

An important question which arises in practice concerns determining the best (con-
tinuous) time instant to serve as the discrete time reference point for the sampling.
Naturally it is of interest to determine the penalty incurred when the optimum sam-
pling is not achieved. An analysis of these problems can take several directions. In [14]
Salz studies a DFE timing phase problem where a particular phase is determined in
the sampling operation to optimize the mean square error between the quantizer input
and the actual data. However to implement this analysis it is necessary to assume
that all decisions are correct. (This incidentally turns the problem into a linear one.)
In comparison, the problem we study concerns the effects on error recovery with vari-
ations in the timing phase (a non-linear problem). Our approach to this problem will
be to analyze a relatively simple class of channels which appear to represent reasonable
models of some communications channels [12]. We formulate a precise statement of
our problem in the next subsection.

4.6.2 Problem Formulation and Solution

We analyze the following somewhat idealistic problem. Suppose the discrete time
representation of the communication channel is generated by a sampled impulse dis-
cretization [15] leading to

hm
∆= βm cos(mω + φ) (6.1)

i.e., the continuous time representation of the channel is an exponentially decaying
sinusoid. In (6.1), −π < ω ≤ π and 0 < β < 1 are parameters relating the time
constant of the channel to the discrete sampling interval, and −π2 < φ < π

2 is some
sampling phase perturbation which ideally should be zero. (Note also that a zero-
order-hold discretization [15] of the same continuous time channel leads to (6.1). In
this case φ also represents in a complicated way the delay implicit in the hold circuit.)
Note for our analysis we will just consider delay δ = 0 systems where ek

∆= ak − âk
requiring h0 > 0 (the condition on φ ensures this). We pose the question:

How do perturbations in the sampling phase φ trade off against β and ω when
one stipulates that the error recovery time is to remain finite?
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For the unperturbed system where φ = 0 the error recovery time is indeed finite,
§4.4.3. To apply the passivity results (Theorem 4.7) one simply needs to ensure, as a
function of φ, the following holds:

Re
(
h̃(ejθ)− cosφ

2
)
> 0 ∀θ ∈ [0, 2π] (6.2)

where h̃(z) denotes the Z-transform of (6.1) and h0 = cosφ is the cursor. We now
evaluate (6.2) for the channel (6.1).

Noting the following Z-transforms,

{
βm cos(mω)

}
↔ z(z − β cosω)

z2 − 2β cosωz + β2
,

{
βm sin(mω)

}
↔ β sinωz

z2 − 2β cosωz + β2
,

one obtains, after a simple calculation

h̃(z)− cosφ
2

=
cosφ 1

2 (z2 − β2)− sinφ (βz sinω)
z2 − 2β cosωz + β2

. (6.3)

The poles of (6.3) are inside the unit circle thus the denominator of (6.3) is bounded
away from zero on the unit circle. Thus realizing the denominator of (6.3) then taking
the real part, when computing (6.2), leads to the equivalent condition

cosφ
(1− β2)

2

(
(1− β)2 + 2β(1− cos θ cosω)

)
+ sinφ β sinω

(
2β cosω − (1 + β2) cos θ

)
> 0, ∀θ ∈ [0, 2π] (6.4)

noting we recover the result of the third example in §4.4.3 as a special case when φ = 0.

Now clearly the cosφ term in (6.4) is positive for all parameter values, recalling
−π2 < φ < π

2 . The sinφ term, on the other hand, is negative or zero for at least one
value of θ. Indeed it is easy to see that (6.4) takes its extreme values when θ = 0 or
θ = π. In view of this we define, from (6.4),

u±
∆=

(1− β2)
2

(
(1− β)2 + 2β(1∓ cosω)

)
> 0 (6.5a)

v±
∆= − β sinω

(
2β cosω ∓ (1 + β2)

)
, (6.5b)
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the subscripts indicating whether or not cos 0 = +1 or cos π = −1 applies. It is not
difficult to see also v+v− ≤ 0. Now (6.4), in the two cases of interest and for the
threshold of passivity (positivity), takes the form

cosφu+ − sinφ v+ = 0,

cosφu− − sinφ v− = 0.

Then viewing β and ω as parameters we can determine the critical values of φ in the
two cases as

φ1 = tan−1

(
u+

v+

)
and φ2 = tan−1

(
u−
v−

)
where one of these φ’s lies in −π2 < φ < 0 and the other in 0 < φ < π

2 . In fact
φ1 = −φ2, allowing us to concentrate on just φ > 0. Figure 4.13 plots these functions
of β vs φ for various ω (note the curves for ω, −ω, π − ω and ω − π are identical, up
to symmetry). As is suggested by the figure the worst case choice of ω appears to be
ω = π

2 for φ > 0. This is easy to verify analytically. Further comments based on this
figure and the above analysis will be covered in a series of remarks.

Remarks:

(i) Figure 4.13 shows lines corresponding to the thresholds of passivity. For a given
ω it is the values of β > 0 below and φ ≥ 0 to the left of the line for which a finite
error recovery time is guaranteed.

(ii) The case ω = π
2 for φ > 0 leads to the following algebraic relationship

φ = tan−1

(
1− β2

2β

)
(6.6)

mapping φ ∈ [0, π2 ) from β ∈ (0, 1].

(iii) The opposite extreme for the choice of ω which allows the greatest slop in φ > 0
for a given β is clearly ω = 0. This is clear from (6.1) because then (whenever
φ < π

2 ) we recover the results of §4.4.3. Letting instead φ < 0 admits ω = π as
the most attractive case by similar arguments.

(iv) Globally the results indicate that the DFE exhibits a great deal of robustness
to phase timing errors. Figure 4.13 forms a neat summary and (6.6) defines the
worst case.
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Fig.4.13 Timing Phase Sensitivity.

(v) The results are not restricted to clean channel models of the form (6.1). In
principle the passivity results permit a similar analysis (numerical in the simplest
manifestation) of timing phase sensitivity for more general parametrized classes
of models.

4.7 Conclusions
4.7.1 Summary
We make a list of the main contributions of this chapter:

(i) Any channel satisfying the Nyquist condition in Theorem 4.7 (or its variants
Theorem 4.10 and Theorem 4.14) will have a finite recovery time regardless of the
initial conditions and regardless of the particular input sequence. These channels
possess no pathological input sequences.
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(ii) The maximum time to recover from error can be bounded in terms of the degree
of strict passivity of a operator derived from the channel parameters. This degree
of passivity is intimately related to a post error recovery eye diagram opening and
an overbound on the rate of recovery.

(iii) With imperfect equalization this (post recovery) eye closes in proportion to an
l1-norm measure between the ideal DFE tapped delay line parameters and the
actual values. The eye also closes when we use too few tap parameters in the
DFE.

(iv) In the absence of ideal equalization, it is possible for the DFE to exhibit nice error
recovery properties in a delay sense, i.e., the DFE output always settles down in
a finite time to a fixed delay of the input with a possible (fixed) sign inversion.
The conditions under which this behaviour is possible are stringent and have been
determined.

(v) The techniques extend naturally to M -ary systems. Under ideal gain compensa-
tion (scaling of h such that h0 = 1) any channel which behaves satisfactorily for
binary signals will be satisfactory for M -ary signals (and vice-versa) because the
conditions for passivity will then be identical.

(vi) A bound on the error probability for high signal to noise ratio channels has been
given based on the passitivity techniques.

(vii) Passivity ideas were utilized to give an analysis of the effects of timing phase on
error recovery properties.

4.7.2 Discussion
Up until now there has been scant theoretical justification that non-trivial, non-
adaptive DFEs behave satisfactorily because of error propagation, perhaps only [5,6]
being relevant. This is in stark contrast with the purported popularity of DFEs
in practice. Previous theoretical work [1,4,7,8] concentrated on bounds which turn
out to be hopelessly conservative in the majority of cases. These latter bounds will
not be improved without relying heavily on explicit knowledge of the channel to be
equalized—this was emphasized in [2,3] and [6]. In this chapter we have determined
some non-trivial broad classes of channels for which a DFE can be effectively used
(the results in [5,6] are very narrow and are subsumed by our present analysis). This
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class, motivated by the work in [6], includes channels which have near exponential
impulse responses which may either be overdamped or underdamped—thus capable of
modelling twisted pair cable [12]. This provides some theoretical justification to the
(controlled) use of DFEs in practice.

As well as defining a non-trivial class of channels for which the DFE behaves
satisfactorily, the passivity analysis appears to provide an opportunity to clarify the
role and function of a DFE. Recently the intuition that sensibly the DFE can only be
used on minimum phase channels was shown to be misguided [2]. In [2] it is highlighted
that minimum phaseness or near minimum phaseness of

h = {h0, h1, h2, . . .} (7.1)

is not enough to imply satisfactory DFE error recovery. In comparison we have shown
that the stronger notion of strict passivity of the object (or its generalizations)

{h0

2
, h1, h2, . . .} (7.2)

is a concept which leads to a sensible decision feedback equalization problem (for
both binary and M -ary alphabets). Naturally strict passivity of (7.2) implies strict
passivity and thus minimum phaseness of (7.1) (but not vice versa). If the channel
fails the passivity condition it is our contention that a linear equalizer preceding the
DFE must be used. Note that our analysis covers the case of a cascade of a linear
equalizer with a DFE because we can interpret h as being not just the channel impulse
response but alternatively as the convolution of the channel impulse response with the
linear equalizer. We interpret the function of the linear equalizer as being to transform
the channel into a passive object which aligns well with the intuition that the linear
equalizer is needed to remove precursor ISI. We believe this may be a fruitful new
way of viewing the digital equalization problem and these investigations are a natural
extension to the present work.
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CHAPTER

5. TESTING CONVERGENCE
OF BLIND ADAPTATION

Aim: To construct testing procedures on an equalizer output to
verify correct convergence of blind adaptation, for both
decision directed and decision feedback equalizers.

5.1 Introduction
It has been established that in the case of linear equalization [1-4] and in the case of
decision feedback equalization [5] (Chapter 3) that blind adaptation may lead to con-
vergence of the filter parameters to undesirable settings where the equalizer does not
correctly compensate for the channel dispersion. This is potentially a serious problem,
so in the design of practical systems means to avoid this situation need to be addressed.
Because equalization is blind, knowledge of the true input data sequence is lacking.
Therefore a procedure testing correct operation of the equalizer using only the output
data must be devised. In certain situations testing could be quite straightforward (at
least for a human), e.g., if the input data stream were text or pictures then the repro-
duced data would immediately reflect the accuracy of equalization process—pictures
would be scrambled, words would be muddled. Often, however, the data might not
represent something to which a human could directly relate. Clearly high level subjec-
tive tests are beyond the capabilities of a simple equalizer, so the quest for a simple,
low-level procedure to detect correct equalization, despite apparent equalizer param-
eter convergence, is highly desirable. This chapter is devoted to the demonstration
that suitable testing procedures exist.

The general problem setting can be described as follows. The equalizer filter
parameter values are fixed in the vicinity of a local minimum of some cost function
which governs the adaptation phase of operation. The output data estimates are
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necessarily being used in lieu of the real data in implementing the equalization. The
data estimates need not correspond to the actual data (or a delay thereof), but some
form of stationarity will be assumed of the output {âk} process. The tests we propose,
and in a sense are the only sensible ones, are statistical tests on the output. These
split into two categories: (a) distributional tests, i.e., the output should have the same
distribution of symbols as the input; and (b) correlation tests, i.e., the properties of
the output sequence with respect to delayed versions of itself should mimic those of the
input. (Our usage of the terms “distribution” and “correlation” are not in the rigorous
technical senses of these words but merely reflect the general concepts we need. The
following detailed development does not suffer from this vagueness.) Foreshadowing
the analysis to follow we will see that the simplicity of the proposed tests stands in
stark contrast to the complexity of the proofs (when available).

In the literature we can see clear precursors to the present results. For the linear
equalizer case Benveniste, Goursat and Ruget [2], quote a theorem which states that
if the output distribution equals the input distribution then the linear channel-linear
equalizer combination is equivalent to an overall delay, or the symbol distributions
are gaussian. The situation where the input distribution is gaussian is practically
irrelevant—typically input distributions are discrete and finite—thus we have a test
on the output (at least when the distribution is not continuous). Unfortunately these
results do not apply to the decision directed equalizer (DDE) because the combination
of linear equalizer with quantizer is non-linear. (Indeed the results do not apply to
any non-linear filter including the decision feedback equalizer (DFE).) The quantizer
is desirable for a number of reasons, e.g., it provides tolerance to parameter variations,
and it provides a limited protection against noise.

More recently, Verdú [4] suggested that the additional information present in the
correlation of the output signal could be exploited to extend the result in [2]. This
is precisely the direction one must head if we do not have the somewhat idealistic
linearity situation as we will show. The proof of a theorem which in essence extends
the theorem in [2] to the DDE case has been proven by us in [6]. In [6] a complete
proof of the binary M = 2 case can be found, but it contains only an outline of the
M -ary proof which we present here.

The first technical section §5.2 is devoted to the M -ary DDE for which relatively
complete results have been found. In the second technical section §5.3 we look at the
binary DFE case. Proofs that certain simple tests suffice are presented only for the
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cases of low order DFEs. In principle we can extend our methods in the DFE case to
determine conclusively whether or nor the proposed tests are adequate (to conclude
correct convergence) because only a finite number of cases needs be checked for a given
order of channel. However, the sheer dimensionality of the resulting proof restricts a
demonstration to the low order cases. In §5.4 we look at some implications of our tests
for achieving the long sought after blind adaptive algorithm which converges only to
equalizing parameter settings. Finally §5.5 contains the conclusions. An appendix has
been included containing the proofs of some non-trivial properties required for our
main DDE theorem.

5.2 Decision Directed Equalizer Convergence Tests
5.2.1 Lead In
The behaviour of DDEs after adaptation, or with the adaptation mechanism switched
off, can be described as follows (see Fig.5.1). The input sequence {ak} to the channel
is a sequence of independent random variables taking values in an M -ary alphabet
with equal probability. The channel has impulse response {h0, h1, . . .} and we shall
assume that hj = 0 for j > N1. (Extensions to the infinite impulse response case
could also be considered.) The noiseless (nk = 0) channel output sequence {bk} is
accordingly given by

bk =
N1∑
i=0

hiak−i. (2.1)

This noiseless output drives the equalizer, which is a finite impulse response filter
with response {d0, d1, . . . , dN2} followed by a quantizer. (Note, in practice, one
would choose N2 sufficiently large, i.e., conservatively, on physical grounds.) Thus the
quantizer input sequence {ck} is

ck =
N2∑
j=0

djbk−j , (2.2)

and the equalizer output is
âk = QM (ck). (2.3a)

where QM (·) is the standard M -ary quantizer [7] given by

QM (x) ∆=
M/2−1∑
k=1−M/2

sgn(x+ 2k). (2.3b)
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(In (2.3b) we suppose x can only take those values such that the argument of all the
sgn(·) functions can never be zero. This assumption is not crucial; also one could
argue this situation occurs with zero probability.) Correct operation of the equalizer
is characterized by

âk = ak ∀k or âk = −ak ∀k (2.4a)

or, for some fixed integer δ > 0,

âk = ak−δ ∀k or âk = −ak−δ ∀k. (2.4b)

We note that in practical operation, noise nk must usually be added into (2.1) as in
Fig.5.1. However, one property of this form of equalizer is that it provides a certain
margin against the noise, i.e.,

QM (
N2∑
j=0

djyk−j) = QM
( N2∑
j=0

dj(yk−j + nk−j)
)

for many specific noise sequences. We defer consideration of noisy channels until
§5.2.6. Until then we will take nk ≡ 0.

Fig.5.1 Channel and M-ary DDE Models.

In DDEs, the coefficients {dj} are adjusted by an adaptive algorithm, the details
of which have been reported elsewhere [1-3]. One key property of these algorithms is
however that convergence of the {dk} can occur to an undesirable setting; finite step-
size effects in the adaptive algorithm mean that eventually such a setting should be
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left, but it would clearly be helpful to have some way of knowing whether the output
of an equalizer which had appeared to converge was or was not correct.

This leads us to formulate the following problem. Let {l0, l1, . . . , lN}, where
N = N1 + N2, be the convolution of {hj} and {dj}. Given measurements {âk}
generated by

âk = QM (
N∑
j=0

ljak−j)

where the lj are unknown but fixed, the {ak} are unmeasured, but known to be
independent and taking values in an M -ary alphabet with equal probability, is there
a test on the {âk} which would determine whether or not (2.4) held?

Obviously, if (2.4) holds, then the {âk} sequence is itself independent, so that
independence of the measurements is a necessary condition for (2.4) to hold for some
δ ∈ {0, 1, . . . , N}. Our main result is that an independence property is also sufficient
for (2.4) to hold.

Notice that independence is a property that can, at least approximately, be readily
checked. In this problem, as we will see, it is a non-trivial fact that checking just a
finite number of terms of the form Pr(âk+p = i ∩ âk = j), for some i, j, p ∈ ZZ+

implies full independence, thus considerably simplifying the testing. We also briefly
expand the ideas to consider the effects of channel noise in §5.2.6.

5.2.2 Generalized Eye Conditions
The first result we bring to bear on the DDE problem is what we call a generalized
eye condition and it takes the following form.

Theorem 5.1: Let {ak} be an input sequence taking values in an M -ary alphabet

M ∆= {1−M, 3−M, . . . , M − 1} with M even, such that all finite subsequences

have non-zero probability. Let {âk} be the DDE output sequence generated by

âk = QM (
N∑
i=0

liak−i) (2.5a)

= QM
(
lδ ak−δ + rk(δ)

)
, (2.5b)

where l0, l1, . . . , lN are constants and

rk(δ) ∆=
N∑
i=0
i 6=δ

liak−i. (2.5c)
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Then there exists precisely one δ ∈ {0, 1, . . . , N} such that

âk = sgn(lδ) ak−δ, ∀{ak}

if and only if

R(δ) <
∣∣lδ∣∣ for M = 2 (2.6a)

M − 2 +R(δ)
M − 1

<
∣∣lδ∣∣ < M − 2−R(δ)

M − 3
for M = 4, 6, 8, . . . (2.6b)

where

R(δ) ∆= max
{ak}

{
rk(δ)

}
= (M − 1)

N∑
i=0
i 6=δ

∣∣li∣∣. (2.7)

Proof: Define the quantizer intervals of (2.3b), indexed by the symbol to which

they correspond, by

I(m) ∆= (m− 1, m+ 1), ∀m ∈M\{1−M, M − 1}, (2.8a)

I(M − 1) ∆= (M − 2, ∞), and I(1−M) ∆= (−∞, 2−M). (2.8b)

These conditions are equivalent to

x ∈ I(m) ⇐⇒ QM (x) = m.

∀x ∈ IR and ∀m ∈M. The linear equalizer is operating correctly when the output

sequence is a delayed version of the input sequence, with possible inversion. This

may be characterized by

N∑
i=0

li ak−i ∈ I
(

sgn(lδ) ak−δ
)
, ∀{ak} (2.9)

where δ ∈ {0, 1, . . . , N} is some fixed delay. We see a decoding error will occur

only if (2.9) is violated. With the definition of rk(δ) in (2.5c) and letting ak−δ range

through the values in M gives the system of inequalities which must be satisfied

for correct operation of the DFE, as follows:

0 < rk(δ) +
∣∣lδ∣∣ < 2

...

M − 6 < rk(δ) + (M − 5)
∣∣lδ∣∣ < M − 4

M − 4 < rk(δ) + (M − 3)
∣∣lδ∣∣ < M − 2 (2.10a)

M − 2 < rk(δ) + (M − 1)
∣∣lδ∣∣ (2.10b)
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Firstly, for M ≥ 4, inequalities (2.10a) and (2.10b) yield the tightest bounds on∣∣lδ∣∣; it can be shown that if they are satisfied ∀{ak} then the remaining inequalities

also hold. Combining (2.10a) and (2.10b) we obtain the requirement

M − 2 + rk(δ)
M − 1

<
∣∣lδ∣∣ < M − 2− rk(δ)

M − 3
∀{ak}. (2.11)

Now inequality (2.11) must hold for all input sequences {ak}, thus in particular we

need

max
{ak}

{
M − 2 + rk(δ)

M − 1

}
<
∣∣lδ∣∣ < min

{ak}

{
M − 2− rk(δ)

M − 3

}
. (2.12)

However by (2.7) this is precisely condition (2.6b). For any
∣∣lδ∣∣ outside the interval

(2.12) an error will occur for some input sequence. The result for M = 2 only

involves a single inequality, i.e., (2.10b), which, by the same arguments, leads to

(2.6a).

Remarks:

(i) Theorem 5.1 is saying that for the output to be a δ-delay of the input, then
∣∣lδ∣∣

must be the overwhelmingly dominant li because the left hand inequality in (2.6)
implies

N∑
i=0
i 6=δ

∣∣li∣∣ < ∣∣lδ∣∣.
(ii) Note

∣∣lδ∣∣→ 1 as M →∞, i.e., the larger the alphabet the tighter the conditions
on the li parameters have to be.

(iii) As is well known [2], indeed is obvious, there is no restriction on the sign of lδ.
So if one setting of the DDE parameters leads to âk = +ak−δ ∀{ak} then the
negative of the setting leads to âk = −ak−δ ∀{ak}. This situation is at odds with
the DFE case where only one sign is possible (independent of the DFE parameter
setting) as we have seen in Chapters 3 and 4.

(iv) Theorem 5.1 holds for the case when the input is independent and identically
distributed, and the support of the distribution is all the M symbols.

Theorem 5.1 provides no clue as to how an observer of an equalizer might infer that it is
decoding correctly (in a delay sense), given only output measurements, because the li
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are not directly measurable by the observer. A means to get around this problem—by
using statistical tests on the output—is investigated in the next section.

5.2.3 Main Result Statement
Our main result is the following (we assume M is even, noting that the less interesting
case of M odd could be approached in a similar way):

Theorem 5.2: Let {ak} be an M -ary independent sequence taking values in the set

M with equal probability. Let {ak} be the input to the system given by

âk = QM (
N∑
i=0

liak−i). (2.13)

where l0, l1, . . . , lN are constants. Suppose that: (i) {âk} take values in M with

equal probability

Pr(âk = s) =
1
M

∀s ∈M; (2.14a)

and (ii) the âk are pairwise independent in the sense that

Pr(âk+p ≥ s1

∣∣ âk ≥ s2) = Pr(âk+p ≥ s1) (2.14b)

∀p ∈ ZZ+ and ∀s1, s2 ∈M. Then for precisely one δ ∈ {0, 1, . . . , N} there holds

âk = sgn(lδ) ak−δ, ∀{ak}. (2.15)

We give a brief discussion before presenting our proof (which terminates in §5.2.5).
If the output {âk} is not a trivial delay-like mapping of the input {ak}, as in (2.15),
then we claim that this will be reflected in either as a form of output correlation or
the output distribution will differ from the input distribution. This seems perfectly
reasonable. To highlight the importance of the underlying hypotheses of the theorem
we consider two examples.

Example (i) (Mazo [1]) Suppose âk = Q4(1000 ak), implying âk = 3 sgn(ak),
then {âk} is a sequence of independent random variables. However Pr(âk = −1) =
Pr(âk = +1) = 0 and Pr(âk = −3) = Pr(âk = +3) = 0.5, i.e., âk has a non-

uniform distribution. Thus (2.14b) holds but (2.14a) does not. Then Theorem 5.2

tells us, as we know, that (2.15) does not hold.
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Example (ii) Suppose instead of (2.13) the system was âk = Q2(ak ak−1) where

M = {−1,+1}. Then {âk} is an independent sequence and the output distribution

is uniform, i.e., both (2.14a) and (2.14b) hold. However, (2.15) does not hold for any

δ. (Theorem 5.2 does not apply here because the system is not described by (2.13).)

This example will be important later because it indicates structural assumptions

need to be employed in proving the validity of any convergence test.

For didactic purposes the reader may prefer to see the proof of the binary (M = 2)
result in [6] before proceeding further with the full M -ary proof presented here.

5.2.4 Preliminary Results
To prove Theorem 5.2 we need a number of preliminary results which extract the
subtle way correlation is reflected in the output when (2.13) is not a simple overall
delay system.

Define integers I ≤ J ∈ {0, 1, . . . , N} by the following requirements:

QM (
J∑
i=I

liak−i) = QM (
N∑
i=0

liak−i)
∆= âk, ∀{ak} (2.16a)

QM (
J−1∑
i=I

liak+J−I−i) 6= âk+J−I , for some {ak} (2.16b)

QM (
J∑

i=I+1

liak−i) 6= âk, for some {ak} (2.16c)

In terms of the problem statement in §5.2.3 one can regard l0, l1, . . . , lI−1 as very
small precursors, and lJ+1, lJ+2, . . . , lN as very small postcursors in the combined
channel-equalizer impulse response. Equations (2.16b) and (2.16c) guarantee that
âk+J−I and âk depend nontrivially on ak−I , and that ak−I is the only symbol on
which both âk+J−I and âk can depend. Because of this we expect that there is some
correlation between âk+J−I and âk. Observe that if I = J in (2.16a) then

âk = QM (lIak−I), ∀{ak} (2.17)

and we have:
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Lemma 5.3:

Pr(âk = M − 1) =
1
M

âk = QM (lIak−I), ∀{ak}

 ⇒ âk = sgn(lI) ak−I ∀{ak} (2.18)

Proof: Suppose
∣∣lI ∣∣ < M−2

M−1 , then substituting ak−I = sgn(lI) (M − 1) into (2.17)

implies âk < M − 1. Therefore Pr(âk = M − 1) = 0 (regardless of the distribution

of ak−I). On the other hand if
∣∣lI ∣∣ > M−2

M−3 then both ak−I = sgn(lI) (M − 1) and

ak−I = sgn(lI) (M − 3) give âk = M − 1, and consequently Pr(âk = M − 1) ≥ 2
M

(by the uniformity of the input distribution). Hence Pr(âk = M − 1) = 1
M implies

M − 2
M − 1

<
∣∣lI ∣∣ < M − 2

M − 3
. (2.19)

From (2.17), Theorem 5.1 may now be applied with R(δ) ≡ 0 (because (2.17) is a

special case of (2.5b) where rk(δ) ≡ 0) to show the desired delay behaviour.

In what follows it will be shown that, assuming the output distribution is uniform
(2.14a), I < J contradicts the pairwise independence of the {âk} sequence, by evalu-
ating the conditional probability denoted by

ξ(s1, s2) ∆= Pr(âk+J−I ≥ s1

∣∣ âk ≥ s2) (2.20)

when symbols s1 and s2 take carefully selected values s∗1 and s∗2, respectively.
Applying Bayes’ rule to (2.20) yields

ξ(s1, s2) =
∑
m∈M

Pr(âk+J−I ≥ s1

∣∣ âk ≥ s2 ∩ ak−I = m).Pr(ak−I = m
∣∣ âk ≥ s2).

(2.21)
The conditioning âk ≥ s2 in the first term of (2.21) is redundant given ak−I = m

because âk+J−I and âk only have ak−I in common. To see this more clearly consider
the following. The conditioning in question is equivalent to the event

{
âk ≥ s2 ∩ ak−I = m

}
≡
{ J∑
i=I

liak−i ≥ s2 − 1 ∩ ak−I = m
}

≡
{ J∑
i=I+1

liak−i + lIm ≥ s2 − 1 ∩ ak−I = m
}
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and this first event is independent of âk+J−I .
We can further simplify (2.21) by reversing the second term in the following sense.

Define the function f :M 7→ ZZ+ by f(m) ∆= 1
2 (M + 1 −m) which gives the number

of symbols in the M -ary alphabet greater than or equal to a given symbol m, e.g.,
f(1 − M) = M and f(M − 1) = 1. Thus Pr(ak ≥ m) = Pr(âk ≥ m) = f(m)

M .
Therefore we may write

Pr(ak−I = m
∣∣ âk ≥ s2) =

Pr(ak−I = m ∩ âk ≥ s2)
Pr(âk ≥ s2)

= M .Pr(ak−I = m ∩ âk ≥ s2)
f(s2)

=
1

f(s2)
.Pr(âk ≥ s2

∣∣ ak−I = m)

because Pr(ak = s2) = Pr(âk = s2) = 1
M , and so (2.21) may be re-expressed more

simply as

ξ(s1, s2) =
1

f(s2)

∑
m∈M

Pr(âk+J−I ≥ s1

∣∣ ak−I = m).Pr(âk ≥ s2

∣∣ ak−I = m). (2.22)

We aim to show that ξ(s1, s2) in (2.22) is not equal to

Pr(âk+J−I ≥ s1) =
f(s1)
M

(2.23)

for a certain s1 = s∗1, which would be the case if {âk} satisfied a pairwise indepen-
dence property (2.14b) (implying the conditioning in (2.20) could be dropped, yielding
(2.23)). With this in mind, the following definitions are made:

For all m ∈M, and ∀s1, s2 ∈M

Pr(âk+J−I ≥ s1

∣∣ ak−I = m) ∆=
f(s1)
M

(
1 + sgn(lJ) ε(m, s1)

)
(2.24a)

Pr(âk ≥ s2

∣∣ ak−I = m) ∆=
f(s2)
M

(
1 + sgn(lI) η(m, s2)

)
(2.24b)

for suitable functions ε(·, ·) and η(·, ·) whose domain is M×M. Note any departure
from pairwise independence will be reflected in ε(m, s1) or η(m, s2) being non-zero.
We now establish the existence of symbols s∗1, s

∗
2 ∈M such that four crucial properties

regarding the functions ε(·, s∗1) and η(·, s∗2) hold. The proofs of these four properties
are relegated to an appendix. (Note the symbols s∗1, s

∗
2 ∈ M defined by the first

property are the same symbols used in the remaining three properties.)
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Property 5.4: ∃s∗1, s∗2 ∈M such that ε(M − 1, s∗1) > 0 and η(M − 1, s∗2) > 0.

Property 5.5: ∀m1 < m2 ∈M, ε(m1, s
∗
1) ≤ ε(m2, s

∗
1) and η(m1, s

∗
2) ≤ η(m2, s

∗
2).

Property 5.6:
∑
m∈M ε(m, s∗1) = 0 and

∑
m∈M η(m, s∗2) = 0.

Property 5.7:
∑
m∈M ε(m, s∗1) η(m, s∗2) > 0.

For our purposes in what follows we need only Property 5.6 and Property 5.7. However
the first two properties are needed for the proof of the last two, and in this sense are
implicitly used.

5.2.5 Proof of Main Result
With the previous results in hand the remainder of the proof of the main result,
Theorem 5.2, is straightforward.

Proof: From (2.22) along with definitions (2.24a) and (2.24b), setting s1 = s∗1 and

s2 = s∗2, we get

ξ(s∗1, s
∗
2) =

1
f(s∗2)

∑
m∈M

f(s∗1)
M

f(s∗2)
M

(
1 + sgn(lJ) ε(m, s∗1)

)(
1 + sgn(lI) η(m, s∗2)

)
=
f(s∗1)
M2

{
M + sgn(lJ)

∑
m∈M

ε(m, s∗1) + sgn(lI)
∑
m∈M

η(m, s∗2)

+ sgn(lJ lI)
∑
m∈M

ε(m, s∗1) η(m, s∗2)
}

(2.25)

In (2.25) the middle terms in the brackets vanish by Property 5.6, and Property 5.7

guarantees that the sum of the products ε(m, s∗1) η(m, s∗2) is non-zero. We therefore

have

ξ(s∗1, s
∗
2) ∆= Pr(âk+J−I ≥ s∗1

∣∣ âk ≥ s∗2) 6= f(s∗1)
M

= Pr(âk+J−I ≥ s∗1) (2.26)

which contradicts the pairwise independence of the output sequence (2.14b). It

follows that the hypothesis I < J is flawed and thus we must have I = J . However,

by Lemma 5.3 with δ = I, equation (2.15) is implied, and this ends the proof of

Theorem 5.2.
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Remarks:

(i) The converse of Theorem 5.2 is trivial, for if the output sequence {âk} satis-
fies (2.15), then both the input and output sequences have the same statistical
properties.

(ii) We only require the pairwise independence of the âk over a finite interval because
âk and âk+N+i for i > 1 are independent by (2.5).

(iii) In effect the equivalence of the following has been established: (a) âk, âj pairwise
independent for 1 ≤

∣∣k−j∣∣ ≤ N , and âk ∈M equi-probable; (b) âk = sgn(lδ) ak−δ
some δ ∈ {0, 1, . . . , N}; and (c) generalized eye conditions are satisfied (Theo-
rem 5.1).

(iv) A slightly simpler test than that indicated by (2.26) takes the form

Pr(âk+J−I = t∗1 ∩ âk = t∗2) 6= 1
M2

= Pr(âk+J−I = t∗1).Pr(âk+J−I = t∗2) (2.27)

for some t∗1, t
∗
2 ∈ M, not necessarily equal to s∗1, s

∗
2 ∈ M, respectively. To derive

this from (2.26) involves a trivial manipulation with Bayes’ Rule and is therefore
not presented.

5.2.6 Additive Noise Effects
We turn our attention now to the behaviour of the DDE with additive channel noise.
To avoid needless complications we will treat only the binary case (and our develop-
ment will be partly heuristic). We consider the system

âk = sgn(
N∑
j=0

ljak−j + nk) (2.28)

where {nk} is the extraneous noise (Fig.5.1).

Initially, we shall assume that {nk} and {ak} are individually independent se-
quences which are mutually independent. More realistically if nk is correlated over
time, as is the case for a moving average signal

nk =
N2∑
i=0

diνk−i
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with {νk} independent, then the independence of {âk} will be violated by dint of
this mechanism. We shall return to consideration of such noise signals later as they
represent a typical class of noise arising in the output of an equalized channel.

We constrain our attention to the situation where occasional noise bursts are ca-
pable of altering the equalized signal but this signal is more usually decoded correctly.
To analyse this case we repeat the arguments of the preceding subsections, suitably
amended.

Denote by Fk the sigma-algebra of events generated by {ak, ak−1, . . .} and
define the integers I (maximal) and J (minimal), subject to I < J , by the following
conditional distributions:

Pr
(

sgn(
J∑
i=I

liak−i + nk) = +1
∣∣ A) = Pr

(
âk = +1

∣∣ A) ∀A ∈ Fk, (2.29a)

Pr
(

sgn(
J−1∑
i=I

liak+J−I−i + nk) = +1
∣∣ B) = Pr

(
âk+J−I−i = +1

∣∣ B) (2.29b)

for some B ∈ Fk+J−I−i, and

Pr
(

sgn(
J∑

i=I+1

liak−i + nk) = +1
∣∣ C) = Pr

(
âk = +1

∣∣ C) (2.29c)

for some C ∈ Fk. To avoid a degenerate problem we make the mild assumption on the
amplitude of the noise:

Pr(
N∑
i=0

∣∣li∣∣ > ∣∣nk∣∣) > 0. (2.30)

Then an identical argument to that of the previous section leads to the conclusion
that the above definition of I and J , I < J and âk, âk+p being pairwise independent
∀p ∈ ZZ+ \ 0 are incompatible. To recapitulate, we have:

Theorem 5.8: Let {ak} be an independent sequence of random variables taking the

values ±1 with equal probability. Let {nk} be a sequence of independent random

variables independent from {ak}. Suppose that for some constants l0, l1, . . . , lN

âk = sgn(
N∑
j=0

ljak−j + nk) (2.31)
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and further that the distribution of {nk} satisfies (2.30) and is such that the occur-

rence of a zero argument of the sign function in (2.31) is a probability zero event.

Then, if {âk} defined by (2.31) is itself composed of pairwise independent ran-

dom variables, then there holds

Pr(âk = +1
∣∣ A) = Pr(sgn(lδ ak−δ + nk) = +1

∣∣ A), ∀A ∈ Fk. (2.32)

for some δ ∈ {0, 1, . . . , N}.

This theorem demonstrates that the non-noisy result carries over to the case
of additive independent noise, subject to a mild condition (2.30). That is, uncorre-
latedness of {âk} implies that its distribution is centered on sgn(lδ) ak−δ for some
δ ∈ {0, 1, . . . , N}.

Unfortunately, as remarked earlier, the more realistic assumption for an equalized
channel is that {nk} is not independent but a moving average (or m-dependent) process
of order N2, i.e., with a correlation length given by the number of taps in the equalizer
component. In a well-designed system, the channel noise should be well below the
signal level for a great proportion of the time. Thus the probability of noise-induced
decision error will be small. The moving average nature of nk will, however, cause
these noise-induced errors to persist for periods of the order of the equalizer length
as the infrequent event of a large noise sample shifts through the tapped-delay line
structure.

The net effect of small additive channel noise will be not to affect the decision
and therefore not to affect the correlation test for convergence except in infrequent
intervals where bursts of errors, and therefore presumably correlated decisions, occur.

5.3 Decision Feedback Equalizer Convergence Tests
5.3.1 Lead In
The behaviour of DFEs after adaptation, or with the adaptation mechanism switched
off, has already been studied in detail (Chapters 2 and 4). As in the DDE case
we wish to indicate that convergence tests exist, at least for low order DFEs. The
more general problem, of finding tests for arbitrary order DFEs, remains open. The
principle differences between the DFE and DDE cases constitute the source of the
technical difficulties and so it is appropriate to foreshadow these now.
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The DFE is a recursive device; therefore, to obtain an understanding of the statis-
tics of the output {âk} one must unravel the subtleties of error propagation. The exact
description of the output process is conveniently provided by FSMPs. However, gen-
erally these are high dimensional and become unwieldy. Further, to obtain a sensible
problem formulation one needs to impose stationarity assumptions on the output pro-
cess because, for example, the statistics of the output process during say error recovery
(non-stationary behaviour) are typically entirely different to those after recovery. How-
ever, to characterize the stationary behaviour corresponds to determining closed sets
of non-transient atomic states of the FSMP which describes the stochastic dynamics
of a given channel (polytope of channels), and this problem is entirely non-trivial. A
better understanding of some of these issues can obviously be gained by looking at
the low order proofs that we now provide. The formulation will constrain itself to the
binary case given the apparent complexity of the problem.

Fig.5.2 N=1 Binary DFE and Channel Model.

5.3.2 The N=1 Case

With N = 1 the DFE equation can be written (see Fig.5.2)

âk = sgn(h0ak + h1ak−1 − d1âk−1). (3.1)

The type of test for convergence we propose for the DFE is quantitatively similar
to that given for the DDE (2.27). It involves only a correlation type test and not a
distributional test, of which the latter is degenerate in the binary case.
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Theorem 5.9: Let {ak} be an equiprobable independent binary process, and let

{âk} be the stationary output process of an N = 1 DFE, viz.,

âk = sgn(h0ak + h1ak−1 − d1âk−1).

Then ∀α, β ∈ {−1,+1} we have

Pr(âk = α ∩ âk−1 = β) =
1
4
, ⇒ âk = + sgn(hδ) ak−δ (3.2)

for precisely one δ ∈ {0, 1}.

(The stationarity assumption ensures the FSMP governing the DFE behaviour can
only be found in recurrent and not transient atomic states. Our second proof makes
this point clearer.)

Proof: We proceed by contradiction. We assume that the channel-DFE combi-

nation cannot act as a delay δ = 0 or delay δ = 1 system. From Chapter 3 §3.5.4

we have the equivalent conditions which ensure this, viz.,

∣∣h0

∣∣ < ∣∣h1 − σ0
.d1

∣∣, (3.3a)

∣∣h1

∣∣ < ∣∣h0

∣∣+
∣∣d1

∣∣. (3.3b)

where we are defining

σ0
∆= sgn(h0), σ1

∆= sgn(h1), τ1
∆= sgn(d1).

Alternatively it is relatively straightforward to see that (3.3a) and (3.3b) deny delay

δ = 0 and delay δ = 1 behaviour for all input sequences, given stationarity, because

only a few cases need to be checked.

Beginning from the hypothesis in (3.2), consider the following calculation:

1
4

= Pr
(
âk = +1 ∩ âk−1 = −τ1

)
(3.4a)

= Pr
(
âk = +1 ∩ âk−1 = −τ1 ∩ ak = +σ0 ∩ ak−1 = +σ1

)
+ Pr

(
âk = +1 ∩ âk−1 = −τ1 ∩ ak = +σ0 ∩ ak−1 = −σ1

)
+ Pr

(
âk = +1 ∩ âk−1 = −τ1 ∩ ak = −σ0 ∩ ak−1 = +σ1

)
+ Pr

(
âk = +1 ∩ âk−1 = −τ1 ∩ ak = −σ0 ∩ ak−1 = −σ1

)
. (3.4b)
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But the argument of (3.1) can take, in general, only 4 values if we fix âk−1 = −τ1.

Then we have the following

h0ak + h1ak−1 − d1âk−1 =



+
∣∣h0

∣∣+
∣∣h1

∣∣+
∣∣d1

∣∣ ⇒ âk = +1 by positivity.

+
∣∣h0

∣∣− ∣∣h1

∣∣+
∣∣d1

∣∣ ⇒ âk = +1 by (3.3b).

−
∣∣h0

∣∣+
∣∣h1

∣∣+
∣∣d1

∣∣ ⇒ âk = +1 by (3.3a).

−
∣∣h0

∣∣− ∣∣h1

∣∣+
∣∣d1

∣∣ ⇒ âk = −1 by Theorem 3.7.

Thus in the four terms of (3.4b) the value of âk is completely determined and so

(3.4b) may be reduced to

1
4

= Pr
(
âk−1 = −τ1 ∩ ak = +σ0 ∩ ak−1 = +σ1

)
(3.5)

+ Pr
(
âk−1 = −τ1 ∩ ak = +σ0 ∩ ak−1 = −σ1

)
+ Pr

(
âk−1 = −τ1 ∩ ak = −σ0 ∩ ak−1 = +σ1

)
.

However ak is independent of ak−1 and, by causality, independent of âk−1. There-

fore the ak = +σ0 and ak = −σ0 events factor out as a multiplicative factor of 1
2

and collecting common terms we get

1
4

= Pr
(
âk−1 = −τ1 ∩ ak−1 = +σ1

)
+

1
2
Pr
(
âk−1 = −τ1 ∩ ak−1 = −σ1

)
=

1
2
Pr
(
âk−1 = −τ1

)
+

1
2
Pr
(
âk−1 = −τ1 ∩ ak−1 = +σ1

)
=

1
4

+
1
2
Pr
(
âk−1 = −τ1 ∩ ak−1 = +σ1

)
, (3.6)

showing

Pr
(
âk−1 = −τ1 ∩ ak−1 = +σ1

)
= 0 (3.7)

and by symmetry

Pr
(
âk−1 = +τ1 ∩ ak−1 = −σ1

)
= 0. (3.8)

Equations (3.7) and (3.8) imply âk−1 = σ1τ1 ak−1, ∀k under stationarity. This

is a delay δ = 0 system which contradicts (3.3a). Hence the assumption that the

channel-DFE combination cannot act as a delay is false and the theorem follows.
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Fig.5.3 The 9 Polytopes for N=1.

It is instructive to give an alternate proof of this theorem using a different approach.
We will see that the appeal in using the new approach is that, in principle, it provides
a methodology to resolve whether an analogue of Theorem 5.9 holds for general finite
N > 1. However, in practice the generalization involves too much calculation.

Proof: Without loss of generality we take h0 = +1 (because the input and output

distributions are symmetric and zero mean, and sgn(·) is insensitive to the mag-

nitude of its argument). From our work in Chapters 2 and 3 we may determine

the polytopes which define the finite set of classes to which every channel can be

assigned.

Figure 5.3 depicts the polytopes in (h1, d1)′-space which concern us. Remark-

ably, it is clear that there are only nine equivalence classes into which N = 1
channels are partitioned. Thus every channel is equivalent to precisely one of 9

channels represented in Table 5.1. The FSMPs associated with each equivalence
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Table 5.1: The 9 Channel Equivalence Classes

Class h0 h1 h2 Recurrent State Behaviour

(i) 1 0 0 âk = ak ∀k ∈ ZZ+

(ii) 1 2 0 âk = ak−1 ∀k ∈ ZZ+

(iii) 1 1 1 âk = ak ∀k > K, K <∞ a.s.

(iv) 1 0 2 âk = −âk−1 ∀k ∈ ZZ+

(v) 1 −1 1 Pr(âk = +1
∣∣ âk−1 = +1) = 1

4 ∀k ∈ ZZ+

(vi) 1 −2 0 âk = −ak−1 ∀k ∈ ZZ+

(vii) 1 −1 −1 âk = ak ∀k > K, K <∞ a.s.

(viii) 1 0 −2 âk = âk−1 ∀k ∈ ZZ+

(ix) 1 1 −1 Pr(âk = −1
∣∣ âk−1 = +1) = 1

4 ∀k ∈ ZZ+

class have state vectors

Xk
∆=
(
ak−1

âk−1

)
(3.9)

along with Markov (atomic) states

<0> ∆=
(
−1
−1

)
<1> ∆=

(
−1
+1

)
<2> ∆=

(
+1
−1

)
<3> ∆=

(
+1
+1

)
. (3.10)

The FSMPs corresponding to each of the nine cases considered above are given in

Fig.5.4. In it we see that systems (i), (ii) and (vii) all have the same recurrent

atomic state structure, i.e., transitions are only between states <0> and <3>,

with <1> and <2> being recurrent. Looking up <0> and <3> in (3.10) we see

that under the coding (3.9) the steady state behaviour is governed by âk = ak,

i.e., a delay-0 system. Continuing in this fashion we can establish the relationships

represented by the last column in Table 5.1. In it we see that only cases (i), (ii),

(iii), (vi), (vii) give {âk} as an independent process because the output is a delay

of the input (under stationarity). The polytopes corresponding to these cases have

been shaded in Fig.5.3.
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Fig.5.4 The 9 FSMPs for N=1.

5.4 Second Generation Blind Algorithms
Here we briefly reflect on some further consequences of the convergence tests for both
types of equalizer (DDE and DFE). In the DDE case, blind adaptive laws (Chapter 3,
§3.2.2) which operate in a memoryless way on the raw output ck of the DDE tapped
delay line (see Fig.5.5) take the form [2,4,9]

Dk+1 = Dk − γ ψLE(ck)Bk (4.1)

where, ψLE(·) is a memoryless non-linearity, γ some small constant (or time-varying)
gain, the regressor is Bk

∆= (bk, bk−1 . . . , bk−N )′, and Dk
∆= (d0, d1, . . . , dN )k′ with
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the remaining symbols defined in Fig.5.5. It is known that wide classes of ψLE(·),
including all those proposed in the literature [2,8] fail to have nice global convergence
properties in the binary case (presumably also in the M -ary case), i.e., there exist
non-equalizing equilibria for the blind algorithm [4]. To overcome this fundamental
problem, the possibility of incorporating more than the most recent tapped delay line
output ck as in (4.1) was suggested by Verdú [4]. In other words algorithms which
incorporate the 2-dimensional or higher {ck}-sequence distribution (e.g., correlation
information) were proposed as a means of achieving global convergence to equalizing
parameter settings (satisfying Theorem 5.1).

Fig.5.5 Blind DDE Adaptation Scheme.

Theorem 5.2 suggests that the 2-dimensional output {âk} distribution contains
sufficient information that could be exploited by a “second generation blind algo-
rithm”. Note it is the distribution of âk = QM (ck) (a simple discrete object) rather
than ck itself that contains enough information for detectability of correct equaliza-
tion. The precise form of such a new algorithm, if one exists, remains an interesting
question. A possible candidate seems to be

Dk+1 = Dk − γ ψ∗LE(âk, âk−1)Bk (4.2)

where ψ∗LE(·, ·) is some admissible class [4] of memoryless non-linear functions of âk
and âk−1. Presumably similar results are possible for the DFE but the resolution of
Theorem 5.9 for N > 1 would seem to be a necessary preliminary step.

5.5 Conclusions
5.5.1 Summary
We record here an outline of the main contributions to be found in this chapter. In
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the case of a decision directed equalizer (DDE), acting on a FIR channel driven by
equi-probable independent M -ary symbols, we have the following results:

(i) Theorem 5.1 gives necessary and sufficient conditions for a linear channel-DDE
combination to act as a simple overall delay for some nominal delay δ. These
conditions have the interpretation as eye conditions in the sense that satisfaction
of the conditions is equivalent to an eye diagram being open (and thus decoding
is error-free in a delay sense).

(ii) Theorem 5.2 shows one can detect in a statistic sense that a DDE is decod-
ing correctly (for some undetectable delay) using only output measurements.
The minimal testing procedure involves both a distributional-type test and a
correlation-type test.

(iii) A simple pairwise independence property suffices for the output to be shown to
be independently distributed and this constitutes the test.

(iv) Meaningful results were inferred for the case where additive (correlated) noise
corrupts the signal at the input of the DDE. However these results are valid only
in the small noise (small variance) limit which ensures noise-induced decision
errors are infrequent. Extension to IIR channels were also indicated, given a
suitable (e.g., exponential) bound on the behaviour of the channel tails.

Preliminary investigations were also made in this chapter towards analogous conver-
gence tests for the detection of correct operation of a decision feedback equalizer
(DFE), whose task it was to equalize a FIR channel driven by independent binary
symbols. We summarize some conclusions reached regarding this case:

(v) The recursive nature of the DFE means a considerable complication to prove
concrete results relative to the DDE case. Two proofs that a simple pairwise
independence test suffices for the N = 1 binary DFE were given.

(vi) Relative to the DDE case we need also to impose a stationarity constraint on the
output process and this is not straightforward to achieve mathematically.

(vii) In principle it was indicated that proof that pairwise independence of the output
process implies correct convergence for any finite order N is possible. The basis of
this observation was that the polytope classification of Chapters 2 and 3 indicate
that only a finite number of explicit channels needs be checked for any given N .
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5.5.2 Discussion

The current results assume the input consists of a sequence of independent random
variables. In some practical applications redundancy is introduced into the data se-
quence to implement error correction (line codes). This means the input sequence is
correlated and our previous results are not applicable. Clearly it would be desirable
to have analogous tests for the correlated input case to cover such cases, if they exist.

The introduction of noise into the analysis presents problems. It is not a sensible
problem formulation to have large noise because neither the DDE nor the DFE are
geared for this application (both are used primarily as intersymbol interference com-
pensators). However a better understanding of how correlated noise effects the tests
proposed would be desirable from both the theoretical and practical viewpoints.

The DFE results are clearly incomplete despite most of our effort being directed
to this case. (Note the DDE mathematical statement can be interpreted as a special
case of the DFE problem where the DFE tap weights are all set to zero and the
channel model is reinterpreted.) The first direction in which we can take our present
results is to prove some results for the range of N (the number of DFE taps) of
practical interest by numerical techniques, i.e., by looking at explicit channels and
computing stationary probabilities and their output statistics. (This has been done
for the N = 2 case where it has been shown that pairwise independence tests do indeed
exist as hoped. However, this involves a very long and tedious calculation coupled with
a computer check and cannot be reproduced here, and certainly not in the margin.)
This approach is anticipated to escalate in computational effort as N increases in the
same way that the FSMP approach of Chapter 2 became difficult to work with. One
advantage of a numerical search though is that counterexamples may be found which
indicate suitable output statistical tests need not exist. A general theoretical proof is
greatly desired (including generalization to the M -ary situation) but necessarily these
will need to incorporate structural assumptions and further difficulties remain.

The existence of convergence tests for blind adaptation clearly has important
practical consequences. For the case of linear equalizers, arguably the simplest case
(over the class of equalizer structures), the results in [2,3] appear to be a sufficiently
general characterization and classification to exhaust one’s theoretical interest. Of
greater practical utility and interest are the non-linear equalizers of which the DDE
and DFE are examples. That in general one can show that statistical convergence tests
do not exist for arbitrary non-linear equalizers is afforded by the simple binary example
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given in §5.2.3, i.e., âk = ak ak−1. Hence the existence of simple tests for the DDE
[6] may come as a surprise, at least when viewed form this direction. Similarly the
low order result for DFEs may register surprise. Of course where these results depart
from the more general non-linear results is in structural properties incorporated as
assumptions. Specifically despite being non-linear both the DDE and DFE have a
linear substructure.

In a global setting one can see that it is necessary to abandon broad general proofs
that might appear in the standard mathematical literature, particularly information
theoretic varieties, and concentrate on proving results on an equalizer by equalizer
basis (which is less attractive but apparently necessary). We stress here, as we have
before, that the difficulties one encounters in proving various results is largely irrelevant
to the practical consequences because the tests we seek are intrinsically simple and
easy to implement.
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APPENDIX A
Proofs of Properties 5.4 to 5.7

This appendix contains the proofs of the four properties stated in §5.2.4 required in
the proof of the main DDE convergence test Theorem 5.8.

Proof: (Property 5.4) Let {a∗j} be defined as any sequence for which

âj = QM (r∗j (δ) + lδa
∗
j−δ) 6= QM

(
r∗j (δ)

)
(A1)

where a∗j−δ > 0 without loss of generality (by symmetry). (The existence of at least

one such sequence will be verified later.) By the monotonicity of QM (·) one can see

that if a∗j−δ were to increase to the maximum value M − 1, and r∗j (δ) were to stay

the same, then inequality (A1) would still hold. In view of this, we restrict attention

to the following conditional probability density Pr
(
âj = s

∣∣ aj−δ = M − 1
)

where

the conditioning ensures that (A1) comes into play at least for some realizations.

This density can be rewritten

Pr
(
âj = s

∣∣ aj−δ = M − 1
)

=
Pr
(
âj = s ∩ aj−δ = M − 1

)
Pr
(
aj−δ = M − 1

)
= M .Pr

(
QM (rj(δ) + (M − 1)lδ) = s ∩ aj−δ = M − 1

)
= Pr

(
QM (rj(δ) + (M − 1)lδ) = s

)
where the last step uses the independence of {aj} recalling the definition of rj(δ)
in (2.5c). The corresponding conditional mean of âj is given by

E{âj
∣∣ aj−δ = M − 1} =

∑
x∈R
QM

(
x+ (M − 1) lδ

)
.Pr
(
rj(δ) = x

)
where R denotes the set of all possible values of rj(δ). From (A1) we see that

because there exists at least one x ∈ R such that QM (x+ (M −1)
∣∣lδ∣∣) 6= Q(x), and

Q(·) is monotonic, then

E{âj
∣∣ aj−δ = M − 1} 6=

∑
x∈R
QM (x) Pr

(
rj(δ) = x

)
≡ 0. (A2)

The right hand side of (A2) is identically zero because QM (·) is an odd function

and rj(δ) is a symmetrically distributed random variable. Simply, (A2) implies the

conditional probability in question is non-uniformly distributed, indeed its mass is
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biased in a direction determined by sgn(lδ). This, in turn, implies there exists at

least one s∗ ∈M such that

Pr
(
âj ≥ s∗

∣∣ aj−δ = M − 1
)

=
f(s∗)
M

(
1 + sgn(lδ) ξ

)
where ξ > 0. (To see this, note ξ ≡ 0 ∀s∗ ∈ M ⇐⇒ the random variable

âj
∣∣aj−δ = M − 1 is uniformly distributed.) We apply this result to our two special

cases: (i) j = k + J − I, δ = J , then ∃s∗ = s∗1 such that ξ = ε(M − 1, s∗1) > 0,

noting (2.16b) is equivalent to the hypothesis of the existence of a sequence with the

property (A1); and (ii) j = k, δ = I, then ∃s∗ = s∗2 such that ξ = η(M − 1, s∗2) > 0
this time with (2.16c) being relevant.

Proof: (Property 5.5) By Bayes’ Rule and the independence of {aj} we have, for

our generic symbols, s∗, δ defined in the proof of Property 5.4,

Pr
(
âj ≥ s∗

∣∣ aj−δ = m
)

= Pr
(
QM (

N∑
i=0
i 6=δ

liaj−i +m lδ) ≥ s∗
)
, ∀m ∈M.

Suppose m1 < m2, then by the monotonicity of QM (·) for lδ > 0

Pr
(
QM (

N∑
i=0
i 6=δ

liaj−i +m1lδ) ≥ s∗
)
≤ Pr

(
QM (

N∑
i=0
i 6=δ

liaj−i +m2lδ) ≥ s∗
)

(A3)

and the reverse inequality applies if lδ < 0. Choosing s∗ = s∗1, j = k + J − I, and

δ = I we can rewrite (A3), using (2.24a), as

f(s∗1)
M

(
1 + ε(m1, s

∗
1)
)
≤ f(s∗1)

M

(
1 + ε(m2, s

∗
1)
)

which demonstrates the ordering property on the function ε(·, s∗1). The same result

holds when lδ < 0, and a similar one for η(·, s∗2). (Note the ordering property holds

also for ε(·, s) and η(·, s) ∀s ∈M, not just for s∗1 and s∗2.)

Proof: (Property 5.6) Under the assumption of uniform input and output distri-

butions,

Pr(âj ≥ s∗) =
f(s∗)
M

=
∑
m∈M

Pr(âj ≥ s∗
∣∣ aj−δ = m).Pr(aj−δ = m)

=
1
M

∑
m∈M

Pr(âj ≥ s∗
∣∣ aj−δ = m)
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So from (2.24a) it is simple to see that with s∗ = s∗1, j = k + J − I, δ = J

f(s∗1)
M

=
1
M

∑
m∈M

f(s∗1)
M

(
1 + ε(m, s∗1) sgn(lJ)

)
=
f(s∗1)
M2

{
M + sgn(lJ)

∑
m∈M

ε(m, s∗1)
}

which implies the epsilon summation is zero. The eta summation is similarly proven

using (2.24b).

Proof: (Property 5.7) To simplify the notation we write εm for ε(m, s∗1) and ηm

for η(m, s∗2). Because εm and ηm are monotonic in m (Property 5.5), the theory of

rearrangement inequalities [9] tells us∑
m∈M

εmηm ≥
∑
m∈M

επ(m)ηm (A4)

where π(·) is any element of the group of permutations of the symbols in M.

Noting that the sequences {εm} and {ηm} are non-constant and monotonically non-

decreasing (Property 5.4, Property 5.5 and Property 5.6), consider the permutation

π̃(·) which only swaps symbols M − 1 and 1−M . Then∑
m∈M

εmηm =
∑
m∈M

επ̃(m)ηm +
(
εM−1 − ε1−M

)(
ηM−1 − η1−M

)
>
∑
m∈M

επ̃(m)ηm (A5)

where the last line follows from Property 5.4 and Property 5.5. Now take the coset

generated by π̃1(m) ∆= π̃(m) denoted by {π̃i(m): i = 1, . . . , M} whose elements

are just cyclic permutations of π̃(m). Then using (A4)

M
∑
m∈M

εmηm >
M∑
i=1

∑
m∈M

επ̃i(m)ηm (A6a)

=
∑
m∈M

ηm

( ∑
p∈M

εp

)
= 0 (A6b)

where the strict inequality in (A6a) is a manifestation of (A4) and (A5), and (A6b)

is just an application of Property 5.6. This establishes Property 5.7.



CHAPTER

6. CONCLUSIONS AND
FUTURE RESEARCH

Aim: To summarize the thesis contents and findings, and
highlight possible directions for future research.

6.1 Conclusions
This thesis has considered the effects of error propagation on the operational properties
of a decision feedback equalizer (DFE). Generally, error propagation as a phenomenon
affects a tuned DFE by accentuating the error probability due to noise relative to an
ideal channel (one having no intersymbol interference). Under blind adaptation er-
ror propagation in the DFE has the effect of distorting the identification (implicit in
the adaptation) leading, in the worst cases, to parameter convergence to undesirable
settings. This thesis also gave an analysis which shows how undesirable settings for
parameter convergence may be statistically detected in the case of a decision directed
equalizer (DDE) (equivalent statements about the DFE are presented but are incom-
plete). (Note that each chapter gave a point summary of its findings and in Chapter 1
a global point summary of the major results of the thesis was given.)

The above paragraph summarizes the themes in the thesis. In the remainder of
this subsection we look at some findings of the thesis. Note that this coverage in not
quite chronological in that we choose here to discuss Chapter 4 before Chapter 3. This
enables us to make a comparison by juxtaposing the discussion on Chapters 2 and 4.
These chapters are based on different analytical techniques but both treat the same
subject area of error propagation without the complication of adaptation. Chapter 3
is very close to Chapter 2 in technique but treats an adaptive DFE problem.

The analysis we performed in Chapter 2 was entirely classical in style—based on
early analyses in the literature which recognized that a finite state Markov process
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(FSMP) model exactly describes the operation of a tuned DFE [1-6]. A number of ide-
alistic assumptions came into this modelling approach: (i) the channel was modelled as
a finite impulse response (FIR) filter; (ii) the DFE tap weights precisely corresponded
to the channel impulse response tail; (iii) the input driving sequence was independent
and identically distributed; and (iv) noise if included was independent of the data
sequence and itself was independent and an identically distributed sequence. Despite
this ideal setup we showed that the usefulness of the results (which have appeared in
the literature) from a practical viewpoint were surprisingly weak, in the sense that
bounds on the performance of the DFE—error probability bounds and mean error
recovery time bounds—may be hopelessly conservative. For example, a mean error
recovery time bound of 1010 years was given on a reasonably dimensioned DFE system
(that was realizable) and this is evidently totally impractical.†

These results obtained in Chapter 2 were essentially of theoretical importance.
They highlighted that far stronger hypotheses need to be imposed on the type of
channels to be contemplated for the use of DFEs. Indeed the bounds on performance
being tight (i.e., a channel and DFE were constructed with these bounds) indicated
that DFEs are ineffective devices on a great many channels, raising the question: On
which channels is the use of a DFE effective in combatting intersymbol interference
(ISI)? Therein lay a difficulty with the theory developed. The conditions on the
channel parameters—given in terms of polytopes—were not easily characterizable in
terms of common engineering notions, e.g., the channel frequency response. However
the analysis performed did lead to a number of crucial observations being made, e.g., a
minimum phase condition or a near minimum phase condition as a channel hypothesis
was not strong enough to imply satisfactory behaviour of the DFE in an error recovery
sense. Other key results of the chapter included characterizing the possible extremes in
the behaviour of DFE as one varies over the class of all channels, and the classification
of input data sequences which yield pathological behaviour of the DFE.

In contrast, Chapter 4 used ideas from input output stability [7] to answer some
of the problems and questions raised in Chapter 2. By restricting the class to which
the channel could belong, stronger results were obtained which gave conditions on
the DFE and channel parameters under which error propagation ceases to be a sig-
nificant influence limiting the system performance. Analytically this corresponds to
guaranteeing a sufficiently low bound on the error recovery time given worst case ini-

†
Current estimates of the age of the universe place it at 1.5×109 years.
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tial conditions. This channel class was easily characterized in the frequency domain
through a strict positive real (SPR) condition, a condition which is stronger than the
notion of minimum phaseness (treated in Chapter 2). With this stability theory it
was possible to give bounds on the performance which matched better with the per-
formance found and required in practice, and thus gave some theoretical basis for the
effective practical use of DFEs. This theory avoided some the statistical modelling
difficulties of the FSMP approach and thus, for example, extends without modifica-
tion to the case of correlated data. (However, this theory required strong assumptions
on the types of channels considered.) The ideas were also extended to treat DFE er-
ror propagation when there was parameter mistuning (or undermodelling) and M -ary
symbol distributions, and generalization of the error signal definition to incorporate
delay.

Chapter 3 dealt with blind adaptation of DFEs [8]. The analysis relied heavily
on the results in Chapter 2 to account for the way the generation of errors through
error propagation distorts the blind adaptation (relative to adaptation with a training
sequence). The primary goal achieved was to describe quantitatively and qualitatively
the underlying mechanism whereby blind adaptation may lead to convergence to un-
desirable parameter settings where the error probability is high (thus unacceptable
from a practical viewpoint). To achieve this understanding we took the simplest blind
adaptive system which is subject to error propagation and performed an analysis. This
theory was complemented by computer simulations on low order models which verified
that the theory developed gave very accurate predictions.

The theory developed in Chapter 3 required the merging of the FSMP techniques
(developed in Chapter 2) with averaging theory [9] to predict the behaviour of blind
adaptation. Conditions on the DFE and channel parameters were found which implied
the blind algorithm had local equilibria corresponding to correct equalizer operation
as a function of various system delays. An example was presented which showed
non-equalizing equilibria exist, establishing a potentially serious problem for blind
adaptation. (Similar problems are known to exist for DDEs [10].) The background
theory was developed to form the basis of a deeper understanding of the problems and
potential cures for blind DFE adaptation.

The problem of using a statistical test of the output data sequence of an equalizer
to confirm whether it was operating correctly (i.e., it was at a parameter setting
leading to correct decoding of the input data, up to a time delay) was the subject of
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investigation in Chapter 5. The motivation for this work came mainly from Chapter 3.
The material in this chapter centered on the more analytically tractable DDE for which
suitable tests were established. These tests usually require both a distribution test
(needed only in the M -ary case) and a pairwise independence test.

The latter part of Chapter 5 looked at establishing output tests for the low order
DFE problem. Using the results for the DDE case as a guide, analogous tests were
found for these low order cases. The validity of these tests for higher dimensional
systems, i.e., DFEs with large numbers of taps, remains a conjecture.

6.2 Future Directions of Research
Based on the material in the thesis we propose some possibilities for future projects
which could lead to a deeper understanding of the subject of decision feedback equal-
izers and related devices.

Alternative Stability Notions

The idea of casting an error recovery time problem as a stability problem under suitable
interpretation has been well established in this thesis. (These stability ideas can be
traced back to [4].) In Chapter 4 we saw how passivity theory could be used to give
sufficient conditions on the channel impulse response coefficients for an error signal e
to belong to the space l2. Then, noting the error signal e takes integer values, one
is guaranteed any error recovery time is finite whenever e ∈ l2. However equally well
any other lp-space (p <∞) may be considered because just as in the l2 case we have:

e ∈ lp, p ∈ ZZ+ ⇒ ek = 0 ∀k > K, K <∞.

Extending or complementing the sufficient conditions given in Chapter 4 we propose
investigating non l2-spaces for stability aiming at several analytical advantages: (i)
determining weaker sufficient conditions giving the finite error recovery time property;
and (ii) tighter explicit error recovery time bounds. However conditions analogous to
the frequency domain relationships which fall out in the l2 case will not be so easily
derived in the non-l2 case since Parseval’s theorem is the crux of this relationship.

Standard functional analyses invariably involve the three main lp spaces l1, l2,
and l∞ [7]. Therefore we should consider all three and not just l2. Firstly, we note
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that e ∈ l∞ always holds and this a degenerate case because the finite error recov-
ery time property of above is not implied. So we are only (seriously) advocating the
investigation into l1-stability ideas in seeking to strengthen the results found in Chap-
ter 4. We remark here that all through the thesis l1-norms of various parameter spaces
arose naturally. (Recall, for example, the polytopic regions in parameter space which
arise as necessary and sufficient conditions for various system performance measures
in Chapter 2.) One might expect, based on these facts, that l1-stability ideas would
lead to a natural domain of investigation into stability [7] for DFEs. We remark that
passivity ideas cannot be applicable here because l1 is not an inner product space.

Admissible Blind Adaptive Algorithms

The terminology is from [10]. An admissible blind adaptive algorithm is one for which
convergence for all channels is only to equalizing parameter settings, i.e., the channel-
equalizer response corresponds to an overall delay (perhaps with associated sign, as-
suming the channel gain is known). For decision directed equalization and binary
(Bernoulli) input distributions it is not known if there exist admissible adaptive laws.
However, in some less practically relevant cases of input symbol distribution (actually
these distributions are not discrete) the admissibility of a class of algorithms can be
demonstrated [11].

In [10] for the binary DDE case, blind algorithms with a memoryless property, i.e.,
ones which act only on information based on the current channel output sample (or the
equalizer output) rather than its history, are shown never to be admissible. Therefore
algorithms which were admissible (if they exist) would need to incorporate some form
of memory, e.g., utilizing output correlation information. In Chapter 5 we established
tests which in part computed correlations to verify proper parameter convergence. So
in extending the analysis found in this thesis we propose investigating the problem
of determining an admissible blind DDE algorithm for the case of binary symbols
(Bernoulli distribution). The starting point for such investigations would be devising
algorithms whose behaviour was sensitive to the correlation content of the output
symbol estimates (which the current memoryless algorithms [11,12] are not). (Clearly
a disadvantage of such algorithms is that they will represent a complication relative to
the present simple algorithms.) That in principle such a course of investigation should
be fruitful seems guaranteed by the results found in Chapter 5. However the practical
generation of such algorithms is likely to be far from easy and a challenging problem.
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Naturally establishing the admissibility of blind algorithms (incorporating mem-
ory) for the binary DDE case appears to be the logical starting point. However, beyond
this, further extensions to the work can be contemplated, specifically: (i) results for
M -ary symbol distributions; (ii) input distributions with correlation; and (iii) the
analysis of the effects of noise on such algorithms. We can also contemplate a plethora
of similar questions for the more analytically abstruse blind adaptive DFEs.

Blind Adaptation and SPR Conditions

In this thesis it is shown that whenever the channel frequency response satisfies a strict
positive real (SPR) condition (or strict passivity condition) the error propagation
mechanism of a DFE has only ever a finite lifetime and this translates as a highly
desirable practical property. So the SPR condition on the channel impulse response has
been established as a desirable if not essential non-adaptive attribute. More typically,
outside the narrow subject area of this thesis, SPR conditions arise in the general
analysis of adaptive systems [9,13] (before this, SPR conditions had there origins in
circuit theory).

In adaptive control, SPR conditions on certain transfer functions imply conver-
gence of parameters to desired values at exponential rates (when the inputs are per-
sistently exciting) [13]. Hence it is natural to consider whether the non-adaptive SPR
conditions of Chapter 4 (which are highly desirable in the non-adaptive operational
aspects of DFEs) also imply attractive adaptive properties of the blind algorithms (in
terms of exponential convergence rates of the parameters). This would appear to be
a valuable direction for future research and a means for demonstrating a conjectured
fundamental role SPR conditions (passivity) have to play in all aspects of the opera-
tion of DFEs. However one difficulty we foresee in utilizing results like those in [13]
(which rely on linearity) is overcoming the non-linearity of the DFE structure.

Alternative Structures and the Role of Linear Equalization

For those channels naturally possessing little pre-cursor ISI the use of an adaptive DFE
structure, as we have defined it, can be contemplated [14]. More generally in practice
this purely recursive DFE structure is complemented by a preceding blind adaptive
linear transversal filter [15]. Therefore, a natural question to ask is: What is the precise
role of the linear traversal filter given it is followed by a DFE? Intuitively the purpose of
the linear part is to remove precursor ISI (without necessitating channel inversion) and



204 Chapter 6 Conclusions and Future Research

the purpose of the DFE is then to remove post-cursor ISI [15]. A crucial observation
here is that the linear convolution of channel with linear equalizer approximates a
SPR transfer function. To see this, first note under perfect inversion one has trivially
the convolved transfer function as being the identity which is automatically passive,
and secondly (less demandingly) a transfer function with sufficiently dominant direct
term is passive.

A future direction of research might seek to clarify the role of the linear equalizer
as a channel “passifier”. Techniques from control theory and signal processing should
be valuable in this regard. Wiener and Kalman filtering theories might be pursued to
illuminate the result of setting up a least squares type criterion for the adaptation of
the linear equalizer (treated in isolation). How and to what degree the channel needs
to be passified is an interesting question. Determining just how the linear equalizer
function balances against the function of the DFE (avoiding both full inversion by
the linear equalizer and error propagation in the DFE), especially in a blind context,
would be a primary goal.

Exit Problems in the Analysis of Adaptation

In adaptive DFEs a valuable performance measure is the time taken for convergence.
Averaging theory does provide information to the user about how long it takes (in
the mean) for the tap parameters to traverse various parts of the parameter space (at
least when the adaptation gain is sufficiently small). This thesis has not discussed
this aspect of the averaging theory and it is not considered an extension to our work
leading to any great analytic difficulty.

A more challenging problem that one might reasonably pursue concerns investi-
gating the (rare) large deviations of the actual tap parameter trajectories away from
the averaged (or mean) trajectory. For example, given convergence of adaptation to
some equilibrium, the effect of noise and/or imperfect tuning is to introduce a per-
turbing signal in the tap update equation capable of driving the taps away from the
equilibrium. If the equilibrium is undesirable then this perturbation mechanism is
a useful artifact which could drive the tap parameters towards a favourable setting.
(Equally well we could have the opposite situation where the taps are driven from a
desirable to an unfavourable equilibrium.) This is essentially an exit problem and is
well represented in the mathematical literature, e.g., see [18]. The theory relates times
for exits from domains for perturbed stochastic differential or difference equations to
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an optimal control problem [18-20]. The relevance of such problems to adaptive equal-
ization was first recognized by Mazo [21]. Having a rigorous mathematical theory now
available we propose computing estimates of the time it takes for the parameters to
move from one equilibrium to another. In this way the various timescales for DFE
adaptation may be determined.

We make a few comments to conclude this section and thus the thesis. We
have chosen to truncate the above list of extensions to the research to a minimal
representative set, in no way implying we have exhausted the possibilities. Our list
was also constrained to focus on the future directions of research close in theory and
motivation to the material found in the body of this thesis—projects with realistic
goals and rational expectations. Without such constraints the range of possibilities
for further research would be endless.

References
[1] P.L. Zador, “Error Probabilities in Data System Pulse Regenerator with DC

Restoration,” Bell Syst. Tech. J., vol.45, pp.979-984, July 1966.

[2] D.L. Duttweiler, J.E. Mazo, and D.G. Messerschmitt, “An Upper Bound on the
Error Probability in Decision Feedback Equalizers,” IEEE Trans. on Information
Theory, vol.IT-20, pp.490-497, July 1974.

[3] P. Monsen, “Adaptive Equalization of a Slow Fading Channel,” IEEE Trans. on
Communications, vol.COM-22, No.8, pp.1064-1075, August 1974.

[4] A. Cantoni, and P. Butler, “Stability of Decision Feedback Inverses,” IEEE
Trans. on Communications, vol.COM-24, pp.1064-1075, September 1976.

[5] J.J. O’Reilly, and A.M. de Oliveira Duarte, “Error Propagation in Decision
Feedback Receivers,” Proc. IEE Proc. F, Commun., Radar and Signal Process.,
vol.132, no.7, pp.561-566, 1985.

[6] A.M. de Oliveira Duarte, and J.J. O’Reilly, “Simplified Technique for Bounding
Error Statistics for DFB Receivers,” Proc. IEE Proc. F, Commun., Radar and
Signal Process., vol.132, no.7, pp.567-575, 1985.

[7] C.A. Desoer, and M. Vidyasagar, “Feedback Systems: Input-Output Properties,”
Academic Press, New York 1975.

[8] A. Jennings, “Analysis of the Adaption of Decision Feedback Equalizers with
Decision Errors,” Internal Report Telecom Aust. Research Lab., July 1985.



206 Chapter 6 Conclusions and Future Research

[9] B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., P.V. Kokotovic, R.L. Ko-
sut, I.M.Y. Mareels, L. Praly, and B.D. Riedle, “Stability of Adaptive Systems:
Passivity and Averaging Analysis,” MIT Press, Cambridge, Massachusetts 1986.
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