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Abstract

Quantum key distribution is the first major area of quantum information science to find
practical use outside of its field. Quantum key distribution involves transmitting crypto-
graphic keys using quantum states. Any attempt to eavesdrop on the transmission will,
necessarily by the laws of quantum mechanics, disturb or destroy the states. By identi-
fying and only using keys that have not been disturbed, a perfectly secure cryptographic
system can be realised.

Discrete variable quantum key distribution was proposed in 1984. Since then attempts
to exploit this technology have been beset with the difficulties of working with the discrete
variables in question—single photon states. In the late 90’s the idea of continuous variable
quantum key distribution was developed, in which the key-carrying quantum information
states are properties of a bright, continuous wave laser beam. Bright laser beams are
relatively simple to manipulate and can carry large amounts of information even when
subject to high loss. ‘Broadband’ continuous variable quantum key distribution refers to
the large information rates obtainable by using broad laser modulation sidebands.

In 2005 the ANU Quantum Optics group published an experimental demonstration
of broadband continuous variable quantum key distribution. This thesis documents the
project work undertaken to rebuild an improved version of this experiment, and also
the work undertaken to prepare for more advanced experiments. The main goal of the
improved experiment was to increase the key distribution rate, while the advanced exper-
iments were directed towards practical implementation of the system in optical fibre.

The experiment rebuild was achieved with most improvements for higher bandwidth
successfully implemented. Some improvements were unplanned, being necessitated by
problems with the initial improvements. Although preliminary experimental data was
acquired, time constraints precluded a successful cryptographic key distribution. Pilot
design and major purchasing for future experiments was also completed.
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Chapter 1

Introduction

This thesis describes an experimental method of using the laws of quantum mechanics to
secure information. Information security is of great importance to modern civilisation,
and consequently methods of securing information have widespread application.

1.1 Communications Networks

There can be little doubt that a fundamental feature of civilisation is the communication
of information. Through communications knowledge can be shared, authority exercised
and opinion expressed. Communication is greatly facilitated by communications networks.
A network consists of the communicating entities, called nodes, and the means by which
the entities communicate, called links or connections.

A network could be as simple as a forum held in a room between people, where people
use the opportunity of being face-to-face with others to communicate with them through
speech. Or it could be as complex as a multi-continent distribution of computers connected
together with a diverse array of communications technologies (the Internet for example).
An important feature of any communications network is that a given node need not be
directly connected to every other node (Fig. 1.1).

BA

Figure 1.1: A communications network. All entities (nodes) have access to each other despite all
not being directly connected (linked) to each other. Node B will receive information at a slower rate
than the other nodes unless node A is specially equipped to relay larger amounts of information.

The advance of technology has meant that civilisation is no longer limited to face-to-
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4 Introduction

face meetings for its communications. The printing press, telephone, radio, fax, television
and now personal computers provide many different networking possibilities. Heavy in-
vestments continue to be made into Internet Protocol (IP) networking. This is due to the
flexibility of computers and the communications links connecting them: IP networks are
capable of carrying the majority of our communications—from spoken to written words,
from still to moving images.

1.2 Information Assurance

From the undisputed need for people to exchange information, it directly follows that
nodes in a network have a critical interest in the state of the information being exchanged.
How assured can a node be of the information it is receiving? Information Assurance (IA)
is defined as the measure of a network’s trustworthiness for carrying communications. IA
can be broken into the following aspects:[21]

Availability Assurance that a link will be available for data transmission when needed

Integrity Assurance that the data a node receives is in fact the data it was sent

Authentication Assurance that the data a node receives from another node was actu-
ally transmitted by that node

Confidentiality Assurance that a private communication between one node and an-
other will remain private

Non-Repudiation Assurance that a data transaction between nodes cannot later be
denied by one or more of the nodes

This thesis deals largely with methods of providing confidentiality assurance to a com-
munications network. Strong precedents of the requirement for network confidentiality
can be found throughout history, and the reasons—military, security, finance, justice,
privacy—are as valid today as ever. The problem of providing confidentiality is one of
how to secure information, either single or multiple links in a network or an entire net-
work itself (which may or may not be connected to other networks). Fig. 1.2 shows how
information security can be implemented in different situations.

Steganography, the art of hiding information, has been used in the past to secure infor-
mation. History records the story of a Greek king shaving the head of a slave, tattooing
a message on his head and then dispatching him once the hair had grown back. Lemon
juice can be used as ‘invisible ink’, as a message written with it will only become visible
once the paper is heated. In World War II whole pages of information were shrunk to the
size of a period (.) and incorporated into the sentences of other typed papers.

Recently there was a resurgence of interest in steganography after public suggestions
that terrorists were hiding information in images posted on the Internet.[54] Steganography
offers poor security, however, as once the concealment technique is known it is no longer
secure. As a technique relying on stealth and subtlety the process becomes much more
difficult when larger amounts of information must be secured. It is entirely unsatisfactory
for securing the regular information flows found in most communications networks.

Cryptography offers a solution for information security. Cryptography is the art of
changing information in such a way that it can only be understood by the intended re-
cipient. A standard cryptographic process employs both a cipher and a key. The key is
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Figure 1.2: A: The hatched line represents intra-network secured links - no other node can obtain
the information on these links. B: A ‘data-diode’ arrangement where information is allowed to
flow from network 1 to network 2, but is secured from flowing back to network 1. C: Network 3
does not allow any external connections. Isolated networks like this are usually ‘air-gapped’ - the
nodes are physically separate to other networks rather than simply being configured to disallow
external connections.

applied to the message (the plaintext) according to the rules of the cipher, resulting in a
message that is illegible to anyone but the holder of the corresponding key (the ciphertext).
An advantage of cryptography is that the ciphertext can in general be written in the same
‘alphabet’ as the plaintext.

The most important example of this today is the binary language used by computer
networks. Binary plaintext can be encrypted into binary ciphertext, meaning common
communications technologies can be used for communicating both encrypted and unen-
crypted information (it will be assumed for this thesis that all cryptography systems
produce ciphertext in the same alphabet as the plaintext). Cryptography is also able to
contribute to the authenticity of communications (section 2.2.4). It is a good candidate
for improving the IA of a communications network.

Any complete information security infrastructure should not rely solely on one par-
ticular mechanism. Cryptography is ineffective if, say, the computer screen displaying
the secret information can be read through the window by casual passers-by. While this
thesis describes an experimental demonstration of the most powerful type of cryptography
yet discovered, it must be considered in the context of a holistic approach to information
security.

1.3 Cryptology

Cryptography is one half of the broader field of cryptology, the other half being crypt-
analysis—the art of revealing information protected by cryptography without the use of
the key. This thesis is almost entirely concerned with building cryptographic systems, so
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before turning to the mechanics of cryptography a brief discussion of its adversary is due.

Taking, for example, a simple cryptographic cipher that applies a fixed substitution
for each letter in the English alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

⇓
Y W U S R Q A P O N L K Z J I H T G F V E D C X B M

Then the plaintext

A SECRET MESSAGE

will be encrypted to

Y FRUGRV ZRFFYAR

This cipher is weak since it does not change the statistical distribution of letters within
the plaintext. Fig. 1.3 shows how common English communications have a characteristic
statistical distribution of letters. E is the most common letter. Analysing the ciphertext Y
FRUGRV ZRFFYAR reveals that R is the most common letter, and unsurprisingly it decrypts
to E. Even with the spaces removed from the plaintext, it is clear that with perhaps just
a few paragraphs it could be decrypted without using the key. With a computer looking
for matches against a dictionary, the problem becomes trivial.

Figure 1.3: Frequency of letters occurring in common English communication.[109]

The cryptanalysis can be made more difficult by using an addition cipher with a
multiple-letter key. The key, some combination of letters, is added to the plaintext modulo
26. Defining this operation as ⊗,
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A SECRET MESSAGE⊗
K EYKEYK EYKEYKE

⇓
L XENWEF REFXZRJ

By poor chance the encrypt of E is still the most common letter in the ciphertext,
although the frequency of other letters has become smeared out. A occurs twice in the
plaintext but it is encrypted differently each time. Security can be improved by choosing a
longer key, as it reduces the frequency at which a particular letter is encrypted to another
particular letter.

A SECRET MESSAGE⊗
L ONGKEY LONGKEY

⇓
M HSJCJS YTGZLLE

In this ciphertext the most common letters are jointly S, J and L, which correspond
to decrypts N, E, G, Y and K. E, however, is still among the most common and with more
plaintext and some computational power the ciphertext can still be broken. For complete
security the key must be as long as the plaintext and be randomly chosen, a result that
is mathematically proven in section 2.1.3. In this case the ciphertext exhibits no patterns
and every possible plaintext is as likely as another.

A SECRET MESSAGE⊗
G KSGETS JEBPJDT

⇓
H EXJWYM WJUIKKY

Modern cryptographic systems rarely use keys that are as long as the plaintext. The
keys must be delivered in secret to the recipient of a message before it can be decrypted,
and so for modern data communications, running at Gigabits per second, the key size
would quickly become restrictive. It turns out that keys ten to twenty times larger than
those seen here can encrypt large amounts of plaintext and retain good security.

The problem of cryptanalysis then enters the domain of algebra and computer science.
Mathematicians probe for fundamental weaknesses in the algorithms, and computer scien-
tists build supercomputers to process huge numbers of possibilities. The primary goal of a
classical cryptographer is to find a cipher that is secure enough to beat the best efforts of
cryptanalysts, yet employs as small a key size as possible. The primary goal of cryptana-
lysts is to be one step ahead of the cryptographers while having them believe they are not.
Future technologies such as quantum computers[95] and quantum supercomputers[2][80]
are likely to heavily assault classical cryptographic techniques.

1.4 Quantum Key Distribution

Unbreakable cryptography is possible if the cryptographer has a means of secretly trans-
mitting fresh key at speeds paralleling the ciphertext transmission. Quantum key distri-
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bution has the potential to offer this capability.
Fundamental to quantum mechanics is the effect of measurement on a quantum state.

If some property of a general quantum state (consisting of a superposition of eigenstates)
is measured, it collapses to an eigenstate of the property and cannot be ‘rebuilt’ into
the original state.1 An indistinguishability condition follows: that some superpositions of
eigenstates cannot be perfectly distinguished from the eigenstates to which they collapse.

Information can be encoded into a general quantum state (‘quantum information’) so
that each possible eigenstate represents a character in the information language. A mea-
surement of the general state will produce a particular character only with an associated
probability; the outcome of the measurement cannot be pre-determined with complete
certainty. In this way information can be passed from one party to another, while the
measuring party alone is certain about the outcome of the measurement. Since the orig-
inal state cannot be rebuilt from a particular measurement, the interference of any third
party will be revealed by premature collapse of the state.

From these fundamental principles a cryptographic key distribution system using quan-
tum information can be built. By extracting information only from states reaching an in-
tended recipient unmeasured, a key can be built that is shared only by the transmitter and
intended receiver. The challenge for quantum cryptographers is in building such a system
that is competitive with classical key distribution systems for cost, efficiency, security and
speed.

The first quantum key distribution system was proposed in 1984 by Bennett and Bras-
sard. They showed that polarisation states of single photons could be used to carry
quantum information and ultimately establish a secure key between two parties. Work on
using single photons for quantum key distribution continues to this day. Single photons,
however, are difficult to create, fragile, and can carry only limited amounts of information.

Quantum information can also be carried in the continuous eigenstates (‘continuous
variables’) of a bright laser beam. Using amplitude and phase modulation, quantum
information can be transmitted at speeds comparative to classical communications. Con-
tinuous variable quantum key distribution holds great promise for high speed quantum key
distribution, opening the possibility for unbreakable cryptography to become ubiquitous
throughout the world’s communications networks.

1.5 Project Goals and Outcomes

In 2005 the Australian National University became the third research group in the world
to experimentally demonstrate the use of continuous variables to establish a secret key.
At the time the experiment produced the fastest key distribution yet reported. The goal
of the Honours project reported in this thesis was to advance quantum key distribution
at the ANU to second and third generation experiments.

The second generation experiment was a complete rebuild of the 2005 demonstration,
with the addition of a mode cleaning cavity for noise reduction and higher bandwidth
electronics. The experiment was not completed during the course of this project due
to time constraints, although we did show that several new approaches to running the
experiment are viable. In the near future this experiment is likely to result in the fastest
quantum key distribution yet reported, and will continue to be of use as a test-bed for
improvements to the system.

1This is the Third Postulate of Quantum Mechanics.
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The third generation experiment involves changing the laser wavelength from 1064 nm
to 1550 nm. This is to implement the experiment in an optical fibre transmission channel.
The majority of design and purchasing for the third generation experiment was completed,
and we had begun characterisation of the new laser and optics before running out of time.

1.6 Thesis Overview

This thesis begins with coverage of the two theoretical underpinnings of quantum key dis-
tribution: theories of information and of light. The chapter on information theory develops
a mathematical formalism for modelling cryptographic systems and their security. It then
uses this formalism to introduce the theory of secret key distillation, on which quantum
key distribution is based. The chapter on light encompasses both classical and quan-
tum treatments, since both are important for understanding the behaviour of continuous
variables. Theoretical underpinnings to this chapter can be found in the appendices.

Chapter 4 tells the story of continuous variable quantum key distribution, with a
review of the literature and history of the ANU work. It describes in greater detail than
Chapter 2 the secret key distillation techniques investigated by the ANU. Here the project
goals are restated with reference to its history, and the factors motivating the particular
implementation of the experiment chosen.

Chapters 5 and 6 describe the second generation experiment, as it could be broadly
considered a two-part project. The first part was the production and installation of the
mode cleaning cavity; the second part was the replication and advancement of results from
the first generation experiment.

The final chapter on future directions describes our work on the third generation
experiment and where the technology might be taken further. It finishes with a summary
of the thesis and concluding remarks.
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Chapter 2

Information Theory

This chapter covers several topics in cryptography and Shannon information theory. Fol-
lowing on from the discussion of cryptology in section 1.3, various historical and modern
techniques of cryptography are detailed. Secret key distillation (from a quantum commu-
nications channel) is introduced as an ideal cryptographic key distribution system. The
chapter ends with a brief discussion on requirements for the keys themselves.

2.1 Classical Cryptography

2.1.1 Notation

In 1949 Claude Shannon published his Communication Theory of Secrecy Systems, which
formalised various mathematical techniques for analysing cryptographic systems.[92]. In
the interests of purity, mostly his notation will be adopted when discussing the mathemat-
ics of cryptography (although his terms “encipher”, “decipher” and “cryptogram” will be
replaced by the more modern terms encrypt, decrypt and ciphertext).

Defining M (for Message) as the plaintext, K as the cryptographic key and E as the
ciphertext (Encrypted message) the process of encryption can be considered a function f
such that

E = f(M,K) (2.1.1)

In general the security of a cipher will rely on the difficulty of finding which key was used
for encryption out of the many possible keys. Poor ciphers rely jointly on the choice of key
and on the obscurity of the cipher for security. This security is similar to steganographic
security in that it can only be a matter of time before the cipher is discovered, resulting
in compromise. It follows that the most secure ciphers can be publicly known without
compromise to their security. To make the distinction between cipher and key clear,
Shannon considered an arbitrary cipher as a set of transformations Ti where the index i
corresponds to the particular key in use. That is,

E = TiM. (2.1.2)

Each Ti will specify how the jth element of the plaintext mj is to transform into the kth
element ek of the ciphertext. It follows that there must be a minimum of n transformations
available for each key, where n is the total number of elements in the plaintext language
(the size of the plaintext ‘alphabet’). The set of all keys is called the keyspace. Using
this formalism, a cryptographic system can be represented by the schematic in Fig. 2.1.
Modern cryptological literature refers to the legitimate transmitting party as Alice, the
legitimate receiving party as Bob and any illegitimate transmitting or receiving party as

11
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Eve, who are also shown on the figure.

E

MESSAGE
SOURCE

ADVERSARY

CRYPTANALYST

M

ENCRYPTER
T i

PLAINTEXT

KEY DISTRIBUTION CHANNEL

KEY SOURCE

KEY K i

ALICE

EVE

BOB

M

PLAINTEXTDECRYPTER

T i
−1

CIPHERTEXT

E

Figure 2.1: Shannon’s general cryptographic system, with reference to the modern convention of
considering an Alice/Bob/Eve system.

Each Ti will have an associated probability, pi, that it will be the one used for a par-
ticular encryption/decryption operation. This is equivalent to saying that every possible
key for a given cipher has a probability pi that it will be used. The key source will then
generate keys according to this probability distribution. It should be clear that for good
security the choice of key must be as unpredictable as possible, therefore a good key source
will have available many keys of equal probabilities.

In order that Bob can correctly decrypt the message, each Ti must have a unique
inverse T−1

i . Therefore the decryption operation can be written

M = T−1
i E. (2.1.3)

With the introduced notation Shannon’s definition of a cryptographic system is written
as follows:

A cryptographic system is a family of uniquely reversible transforma-
tions Ti of a set of possible plaintexts into a set of ciphertexts, the
transformation Ti having an associated probability pi.

2.1.2 Mathematical Definition of Security

Shannon’s 1949 paper was a continuation of another major paper in information science,
his Mathematical Theory of Communication.[91] In [92] Shannon showed that, from the
point of view of a cryptanalyst, a cryptographic system was equivalent to a noisy un-
encrypted communications system. Cryptographic systems could therefore be analysed
using the techniques presented in [91]. A fundamental idea of this paper is that entropy
can be used as a measure of information, placing the tools of statistical mechanics at the
hands of information scientists. While Shannon’s papers are quite readable, Nielsen and
Chuang [71] features a concise introduction to Shannon Entropy that forms the basis of
this section.

Consideration begins with a system having a single random variable X, with an as-
sociated probability distribution p(x). For convenience this analysis will be initially lim-
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ited to discrete systems, which can later be generalised to continuous variable systems.
In a discrete system the probability distribution becomes {p1, . . . , pn} for each value of
X{x1, . . . , xn}. The shape of this distribution determines the uncertainty of X—if there
is a high probability that X = xi and not {x1, . . . , xi−1, xi+1, . . . , xn} then one can be
fairly certain about the value of X. Conversely, if all values of X are equally likely, one
is very uncertain about the outcome of a measurement of X. It follows that making a
measurement on a fairly certain system, in order to become completely certain, results in
a smaller information gain than measuring an uncertain system for the same result.

Shannon defined information entropy as a quantitative measure of the uncertainty in
X, can therefore be used as a quantitative measure of information. When used in this
context this measure is called the Shannon Entropy H. It is defined by

H(X) ≡ H(p1, . . . , pn) ≡ −
∑

x

px log px (2.1.4)

where the convention in [91], of quantifying information with the binary system of count-
ing, means the log is taken to base 2 and the resulting entropy is in units of bits (the
log could also be taken to base 26 so that when referring to English communications the
entropy would be measured in ‘letters’). This convention should not be confused with the
binary entropy, which is the special case

Hbinary(p) ≡ −p log p− (1− p) log(1− p). (2.1.5)

This is the Shannon Entropy for an n = 2 system with p1 = p, p2 = (1− p).

Now considering a system with two independent random variables X and Y , and a
2-dimensional probability distribution

p(x, y) = {px1, . . . , pxn} {py1, . . . , pyn} . (2.1.6)

the joint entropy can be defined by

H(X,Y ) ≡ −
∑
x,y

p(x, y) log p(x, y). (2.1.7)

The joint entropy quantifies the total information content of theX,Y system. At this point
the analysis can be related to cryptography, withX = M and Y = E. The communications
M and E, in their entirety, can be considered as single variables with many possible values.
Obtaining a mathematical definition of cryptographic security requires consideration of
the information that can be obtained, about M , after measurement of E. In other words,
security can be measured by considering how much Eve can know about the plaintext after
intercepting the ciphertext. If Eve knows no more after interception than before then the
security is perfect. This means that regardless of Eve’s computational abilities she can
not access the plaintext. If she knows everything about the plaintext after interception
then the security is non-existent i.e. the plaintext was transmitted without encryption.

A useful measure is found in the mutual information of M and E. Adding H(M)
to H(E) results in the sum of the information content of M and E, with information
common to both M and E being added twice (the mutual information). Subtracting the
total information content H(M,E) leaves this mutual information, defined by

H(M : E) ≡ H(M) +H(E)−H(M,E). (2.1.8)



14 Information Theory

The security of a cipher can be defined by the value of H(M : E). It is
a measure of the amount of information available, from the ciphertext,
about the plaintext. If no information is available then the sum H(M)+
H(E) will include no common information, and after subtraction of the
total information H(M,E) the mutual information will be 0. This is
perfect security.

The analysis is more complex for ciphers such that H(E) > H(M : E) > 0. Since the
cipher is not perfect, it is breakable. The amount of time and resources required to break
an arbitrary ciphertext are dependent on how close H(M : E) is to 0. The use of such
ciphers must be risk managed with constant review on the state of the art of cryptanalysis.

2.1.3 Symmetric Ciphers

In the context of a cipher, symmetry refers to the key types (and therefore the type of
encryption/decryption transformation) employed in encryption/decryption operations. If
the same key (or a trivial transformation of the key such as a matrix inversion) is employed
for both encryption and decryption the cipher is symmetric. In the symmetric case the key
must be kept secret, a restrictive condition that means Alice and Bob must pre-share their
key using an independent, already-secure communications channel (in practice usually a
courier network).

If different keys are employed (and one can’t be easily obtained by knowledge of the
other), the cipher is asymmetric. In the asymmetric case only the key used for decryption
must be kept secret. Shannon’s paper covers symmetric ciphers in detail, but asymmetric
ciphers were not discovered until the 1970’s.[25] Asymmetric ciphers will be discussed in
section 2.1.4.

The simplest of symmetric ciphers employs a single transformation for each language
element ej . j here is the index of the element in the language alphabet between 1 and n,
the number of distinct elements in the language. In English {e1, . . . , ej , . . . , en corresponds
to the alphabet {A, . . . ,Z}. The transformation is reused each time the element reoccurs.

For example the ith available key Ki in a fixed substitution cipher is the ith dis-
tinct permutation of the language alphabet. An encryption operation becomes a constant
transformation from each distinct language element appearing in the plaintext ej to the
corresponding jth key element Kij :

Ti : ej = Kij (2.1.9)

The fixed substitution cipher is weak since every element of the plaintext will always
transform into the same ciphertext element. Therefore any pattern in the plaintext will
reoccur identically in the ciphertext. The classic example of such a pattern is the frequency
distribution of letters in the English language (see section 1.3). In binary communication
it could be a standard bit sequence in the header of a TCP/IP data packet, or a watermark
on a digital video stream.

More complex ciphers have multiple transformations for a given plaintext element, or
transformations that evolve or change depending on the position of the operation in the
plaintext or how many times a given element has occurred. This is in order to reduce
the frequency of patterns in the plaintext reoccurring as patterns in the ciphertext. An
example is the Viginère cipher, where each available key Ki consists of d letters, repeated
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to form a key series ki of length |M |, the number of letters in the plaintext. The jth
element in the key series kij is then added modulo n to the corresponding jth element in
M , Mj , to produce the jth element of the ciphertext Ej .

Ti : Ej = Mj + kij mod n (2.1.10)

Modern symmetric ciphers use transformations that encrypt multiple plaintext ele-
ments in a single operation. These are called block ciphers and they are an improvement
over single-element encryption in that element-level patterns are greatly attenuated. Block
ciphers include Rijndael [24], DES [73] and Twofish[89]. Rijndael was chosen by the US
Government to become its Advanced Encryption Standard (AES)[74] and is the current
standard symmetric cipher for government and military applications. Despite the sophisti-
cation of block ciphers, however, they still do not feature perfect security as large amounts
of plaintext may be encrypted with a single, small key. Non-perfect ciphers in current use
are generally computationally secure, which means the cipher cannot be broken without
the aid of a computer many, many orders of magnitude more powerful than available
today. Their use is risk-managed, with strict programmes for constant rekeying.

The One-Time Pad Cipher

The maximum Viginère key length is d = |M | (and therefore the key is only used once).
This choice provides the greatest security, but also the greatest inconvenience. In this case
the key distribution must be conducted using a secure communications channel of the same
capacity as the channel it is securing, which is to some extent a self-defeating exercise.
To avoid this problem the ‘Running Key’ cipher uses meaningful text such as that from
a literary novel as the key. The key need not then be distributed, only the knowledge of
which novel to use. Unfortunately the language patterns in the novel are imprinted on the
ciphertext, offering clues as to which novel was used for encryption. Only when the key
is random - completely free from patterns - is the system truly secure. Such a cipher is
known as the ‘Vernam’ system.[105]. The particular system patented by Vernam, however,
referred to a teletype machine that performed a binary Exclusive-Or (XOR) operation on
the plaintext and key bits. The binary XOR operation is analogous to modulo 26 addition
with the English alphabet (in fact it is identical to binary modulo 2 addition). Therefore
any cipher employing such an operation, with a random key of length |M | will be referred
to as a One-Time Pad (OTP) cipher. OTP ciphers make an important contribution to
the claims of perfect security in quantum cryptography, and so the OTP proof-of-security
follows.

Starting with some definitions, the plaintext M is defined as a list of elements{
M1, . . . ,M|M |

}
displaying a probability distribution {p1(M), . . . , pn(M)}. Since M con-

tains meaningful information this distribution must be non-random. The key K is defined
as a list of elements

{
K1, . . . ,K|M |

}
. The key is the same length as the plaintext, however

the distribution of language elements is random—
{
p1(K) = 1

n , . . . , pn(K) = 1
n

}
(recalling

that n is the number of elements in the language). The general encryption operation is
defined as addition modulo n. Therefore the ciphertext E will be the list {E1 = M1 +K1

mod n, . . . , E|M | = M|M | +K|M | mod n}.
It can be shown that in such a transformation there are n possible pairs of language

elements (ej , ej′) producing any other element ej′′ . Then the probability of a given ci-
phertext element Ei occurring is the sum of the probabilities of each of the n distinct
pairs occurring, which is the product of the probability distributions pj(M) and pj′(K) of
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plaintext and key elements. Therefore the distribution of ciphertext elements will be
 n∑

j

pj(M)pj′(K)


1

, . . . ,

 n∑
j

pj(M)pj′(K)


n


=


 n∑

j

pj(M)
1
n


1

, . . . ,

 n∑
j

pj(M)
1
n


n


=

n∑
j

pj(M)
{

1
n
, . . . ,

1
n

}

=
{

1
n
, . . . ,

1
n

}
.

(2.1.11)

Calculating the individual and joint entropies gives

H(M) = −
n∑
i

pi(M) logn pi(M), (2.1.12)

H(E) = −
n∑
i

pi(E) logn pi(E)

= −
n∑{

1
n

logn

1
n
, . . . ,

1
n

logn

1
n

}
= − logn

1
n
,

(2.1.13)

and

H(M,E) = −
n∑
i,j

pi(M)pj(E) logn (pi(M)pj(E))

= −
n∑
i,j

pi(M)pj(E) (logn pi(M) + logn pj(E))

= −
n∑
i

[pi(M) logn pi(M)]
n∑
j

pj(E)−
n∑
i

[pi(M)]
n∑
j

pj(E) logn pj(E)

= −
n∑
i

[pi(M) logn pi(M)]− n

(
1
n

logn

1
n

)

= −
n∑
i

[pi(M) logn pi(M)]− logn

1
n
.

(2.1.14)

Therefore the mutual information is

H(M : E) = H(M) +H(E)−H(M,E)

= −
n∑
i

pi(M) logn(pi(M)− logn

1
n

+
n∑
i

pi(M) logn pi(M) + logn

1
n

= 0

(2.1.15)
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and OTP security is proven to be perfect. Such perfect security is often referred to as
information-theoretic security. To reiterate, this perfection is only valid if the key is only
used once and is purely random (pi(K) = 1

n). In practice perfect randomness is difficult
to achieve, see section 2.3 for further discussion.

2.1.4 Asymmetric Ciphers

Asymmetric cryptography involves Bob generating two keys, a public and a private key.
The keys are designed so that the private key is not obtainable from the public key.
As a result Bob can safely distribute his public key to Alice, who uses it to encrypt her
message to Bob. Once received Bob uses his private key to decrypt the message. Therefore
secure communications can be conducted without the need for prior key distribution over
an independent, already-secure channel. A problem arises here in that Alice and Bob
have no means of identifying each other. Eve could encrypt a message with Bob’s freely
available public key and send a message to him purportedly to be from Alice. Solutions to
this problem are in the form of authentication techniques which will be discussed in 2.2.4.
Asymmetric cryptography is commonly known as ‘public-key cryptography’.

Diffie and Hellman published the first paper on asymmetric cryptography in 1976.[25]
They detailed a mathematical method by which Alice and Bob can exchange public infor-
mation in order to to generate a shared private key (see Fig. 2.2). The private key (the
session key) can then be used in a symmetric cipher to ensure the security of any follow-
ing message from Alice to Bob. The method is known as Diffie-Hellman Key Exchange.
Rivest, Shamir and Adleman extended this idea to invent the RSA Cryptosystem.[85]
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Figure 2.2: Diffie and Hellman’s redefined general cryptographic system.[25]

RSA has a broader scope in that it was designed to support a large key distribution in-
frastructure. Alice may wish to communicate with multiple Bobs on multiple occasions.
By initially exchanging RSA public keys, Alice and Bob(s) can establish different session
keys each time they communicate without any further exchange of public keys. This is in
contrast to Diffie-Hellman Key Exchange where public keys must be exchanged each time.
This is an important difference because public key cryptography is vulnerable to attack
during the public key exchange process, although the vulnerability can be minimised (see
section 2.2.4). A convenient way to highlight the difference between the two is to think of
Diffie-Hellman as a key exchange protocol while RSA is a key distribution protocol.
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The mathematics of RSA and Diffie-Hellman Key Exchange are well described in [85]
and numerous textbooks on cryptography and information systems. Briefly, the security
of both protocols is based on the computational difficulty of factoring the product of
two large prime numbers - essentially a mathematical one-way function. Such functions
allow Bob to create a public/private key pair where the public key is the ‘result’ of some
function based on the private key. The public key can be released without compromise
to the private key as it would be computationally infeasible to calculate the private key
from the public key (find the inverse of the one-way function). Through Bob’s knowledge
of the function, however, he can use the private key to decrypt any message encrypted by
the public key.

The statement that it would be computationally infeasible for Eve to obtain Bob’s
private key from his public key requires some explanation, and leads this chapter to the
concept of computational security in lieu of information-theoretic security. Any cipher
that is not perfect can be broken—that is, the plaintext can be recovered from the ci-
phertext without use of the key. Any such attack, however, requires a certain amount of
computational power, meaning the time and means to try multiple possible keys in an
attempt to find the one message, of many possible messages, decrypting correctly from
the ciphertext. For simple ciphers the computational power of a human, or a team of
humans, may suffice. For more complex ciphers computers or supercomputers are needed.
As discussed in section 2.1.3 the more possible keys a cipher features, the more secure it
is—because cryptanalysis will require more computations and therefore more time in order
to break the cipher. The overall security of the system can therefore be evaluated in terms
of the time required to break an arbitrary message with some benchmark computational
power. If the benchmark is linked to current and predicted real-world technologies then
reasonably rigorous estimates can be made about the practical security of a given cipher.
The risk of a compromise can then be managed.

A new generation of public key cryptography can be found in Elliptic Curve Cryptogra-
phy (ECC). ECC employs a one-way function based on elliptic functions but is otherwise
similar to other asymmetric systems. The advantage of ECC is that it requires more com-
putational power to break than RSA, meaning equivalent security can be obtained with
smaller keys. The driving force for this improvement is the employment of cryptography
in smaller devices such as RFID tags, where a smaller key will free more memory for other
information.[111]

Asymmetric ciphers require a significantly smaller key management infrastructure than
symmetric ciphers. Only the authentication key must be delivered secretly, as opposed to
the symmetric case where all keys must be delivered secretly. Unfortunately asymmetric
ciphers may become unusable in the future if a fast factoring algorithm for products of large
primes is discovered. It was also shown in 1997 by Shor that if a quantum computer could
be built it would be able to solve this problem very quickly.[95] Therefore symmetric ciphers
are still the best guarantor of security available for long term protection of information.

2.2 Secret Key Distillation

Quantum cryptography offers the convenience of asymmetric key distribution (small key
management infrastructure) with the strength of a symmetric cipher (in which eventually
the information-theoretic OTP will dominate). A quantum cryptographic system uses a
symmetric key delivered via quantum key distribution (QKD). Specific QKD systems will
be discussed in Chapter ch:background. What follows is a general discussion on how per-
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fectly secure methods of symmetric key distribution might compete with computationally
secure asymmetric key distribution in minimising the demand on security resources.

It was shown in section 2.1.3 that a shared secret key can be used to secure commu-
nications between Alice and Bob. The problem of symmetric cryptography lies in finding
a reliable way to share the secret in the first place. The techniques considered so far have
involved the generation of a random number which is securely passed to Bob before he can
begin to decrypt Alice’s message. This section on secret key distillation techniques shows
that it is possible to establish a shared secret between Alice and Bob using an insecure
communications channel, provided the channel has certain properties.

In 1993 Maurer published the paper “Secret Key Agreement by Public Discussion from
Common Information”,[65] where he considered a communications channel that had the
following properties:

• Some information received by Bob is different to that received by Eve

• Alice and Bob are initially unaware of which information has been received by Eve,
and which information they alone share

Maurer introduced a public discussion algorithm that enables Alice and Bob to discuss the
transmitted information and distil from it a known subset of information shared by Alice
and Bob but not Eve.1 Such an algorithm seems to be ideal for key distribution, since the
distilled secret can then be used as a symmetric key (and for a OTP cipher if it is large
enough). Two problems remain with such an approach. The discussions between Alice
and Bob, while public, must be authentic. Otherwise Eve could use a man-in-the-middle
attack to hijack the discussion and ensure she has a copy of the distilled key. This problem
can be resolved with the symmetric authentication techniques introduced in section 2.2.4.

The second problem is finding a communications channel that provably has the prop-
erties listed above (the crucial property being that some of Bob’s information be different
from Eve’s). Csiszár and Körner, whose work Maurer’s extends, considered a channel
where Eve’s information was degraded compared to Bob’s.[22]. In practice such channels
do exist - where Alice and Bob are communicating via an analogue telephone circuit, and
Eve is a wiretapper appropriating a small amount of the signal. Such circuits, however,
have limited relevance in the digital age.

Another possibility is a satellite transmitting a weak signal, so that the noise received
by Alice, Bob and Eve’s is independent, allowing Alice and Bob to use their authentic
public discussions to find a string of data known to them but not to Eve. Again, this
requires assumptions about Eve’s ability to affect the measurements taken by Alice and
Bob. In the search for practical information-theoretic security no such assumptions are
allowed. Analogue channels with classical noise are therefore not a suitable option for
secret key distillation.

Quantum communications channels (defined as channels through which quantum infor-
mation, in the form of quantum states, is transmitted) do have the properties in question
and do not require the assumptions of analogue channels for secret key distillation to be
feasible. Schemes for building these channels are presented in chapter 4 so only a brief
summary follows. If Alice can prepare a quantum state and somehow pass it to Bob, any
attempt by Eve to measure the state in transit will affect it (by Heisenberg’s Uncertainty
Principle[43]).

1Maurer’s algorithm was actually a generalisation of previous work by Bennett, Brassard and
Robert.[4][5]
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After many states are passed, a key distillation procedure can determine a bound on
how many states were lost to Eve and how many passed to Bob unread. The unread, or
secret, states can form the basis for a symmetric key. Eve is also unable to regenerate the
states she has affected since, by the No-Cloning Theorem[112], she cannot make a perfect
copy of any state sent by Alice. The distillation procedure will also determine bounds
on states that have been inserted by Eve onto the channel leaving, in theory, a perfectly
secret key. It is clear then that if the distillation procedure uses information-theoretic
authentication, then quantum communication channels offer the possibility of information-
theoretic security without the requirement for continuous key redistribution over another,
already secure, means. This is a significant result for the information assurance field.

2.2.1 Secret Key Distillation Standard Model

Numerous papers on secret key distillation (SKD) have been published since
Maurer’s.[38][98][13][61][7][17] SKD is a complex process and also somewhat dependant
on how the channel handles transmitting and receiving data. For example Post-Selection,
a subprotocol operating as a part of SKD, was designed for continuous variable quantum
channels.[98] BB84 was designed for discrete variable quantum channels.[3]

As some subprotocols encompass more of the SKD process than others, comparison can
be difficult. In order to effectively analyse competing methods of SKD a standard model
is required, in which subprotocols can be fitted as protocol layers. The layer approach
has been proven effective from its application to computer networking protocols, where
multiple technologies and ideas must converge to provide reliable communications. The
standard model adopted is taken directly from descriptions in early SKD literature of the
key agreement process having three phases.[7][17] The phases are:

Advantage distillation where Alice and Bob use authentic public discussion to obtain
an information advantage over Eve (Eve may begin with more shared information
than Bob). This layer must deliver a set of data in which the information shared
by Alice and Bob, IAB, or Alice-Bob correlations are stronger than the Alice-Eve or
Bob-Eve correlations IAE , IBE .

Information reconciliation where Alice and Bob reconcile their shared information to
determine exactly which pieces they share. This phase can also be thought of as
‘error correction’, and standard signal processing error correction techniques are
usually employed. This layer must deliver a set of data which is known exactly to
both Alice and Bob, and known partially to Eve.

Privacy amplification where Alice and Bob discard any data known to Eve, leaving
them with data known solely to them. This layer must deliver a set of data which
is known only to Alice and Bob. This is the distilled secret key which can then be
used in a symmetric cipher.

SKD protocols and subprotocols can encompass any part of the standard model (less
than one; one; or more than one layers) although most occupy one layer. The protocols
occupying more than one layer generally have subroutines corresponding to the layers.
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2.2.2 Shannon Capacity

Before examining the different protocols available for SKD it is worthwhile to set a per-
formance benchmark, against which the protocols could be evaluated.2 At this point it
is convenient to introduce the Shannon Capacity of a channel, which is a suitable such
benchmark and also happens to be fundamental to information science. The Shannon
Capacity is the mathematical limit to how much information can be reliably transmitted
over a practical communications channel (practical meaning a channel with noise and finite
bandwidth).[91]

Since noise on a communications channel leads to uncertainty of the original transmis-
sion, then entropy, as a measure of uncertainty, is ideal for generalising the effects of noise.
The value of a message before transmission, from Alice to Bob, and after transmission can
be expressed as the dependant variables X,X ′. The value of X and X ′ will be identical
unless the message has been affected by noise. Bob wishes to know X but can only mea-
sure X ′. Bob’s uncertainty about X can be quantified by the entropy of X conditional on
knowing X ′, or the conditional entropy H(X|X ′). Since X,X ′ are dependant variables,
knowledge of X ′ contributes to knowledge of X. To quantify the remaining unknown, the
known (H(X ′)) is subtracted from the total knowledge of the system (the joint entropy
(H(X,X ′)) for a definition

H(X|X ′) ≡ H(X,X ′)−H(X ′). (2.2.1)

The Shannon Information IS is defined as the amount of information remaining to
the channel, from Alice’s original transmission, after Bob’s uncertainty is subtracted (the
uncertainty resulting from the channel noise):

IS = H(X)−H(X|X ′). (2.2.2)

Substituting the conditional entropy H(X|X ′) into the definition of the mutual in-
formation H(X : X ′) reveals that the Shannon Information is simply Alice and Bob’s
remaining mutual information, after the uncertainty introduced by the noise is removed:

IS = H(X : X ′). (2.2.3)

The Shannon Capacity C is the maximum amount of information that can be trans-
mitted by the channel

C = max{H(X : X ′)}. (2.2.4)

The Shannon Information can be further quantified if assumptions are made about
the nature of the signal and noise. Both can be assumed to have white noise statistics,
a reasonable assumption in the context of distributing random keys over a noisy channel.
Shannon then showed that in such a case

C = W log
(
P +N

N

)
= W log

(
1 +

P

N

)
(2.2.5)

2Such evaluations, however, are currently scarce since the groups involved in this research have generally
invested in a single course of action and are unable to implement other protocols easily. The ANU Quantum
Optics Group recently positioned itself to compare three different types of SKD using the same experimental
set up (Reverse Reconciliation, Post-Selection and Liu’s et al Advantage Distillation. At the time of writing
no conclusive results were available.
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where W is the signal bandwidth (in Hertz), P is the average signal power and N is the
average noise power. P

N is the Signal-to-Noise Ratio (SNR) received by Bob, the logarithm
is taken in the base of the channel alphabet (base 2 for a binary channel) and C is measured
in symbols/second. The capacity increases linearly with bandwidth. Fig. 2.3 shows how
it increases logarithmically with SNR.
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Figure 2.3: Shannon Capacity against SNR, per Hertz of bandwidth, per second.

For Bob channel losses are equivalent to noise, since in both cases he loses the infor-
mation sent by Alice. The SNR is therefore able to encompass both channel noise and
loss for calculating the capacity.

The Shannon Capacity represents an ultimate limit for any SKD protocol, in that no
channel with a given loss/noise profile will be able to distil a secret key faster than the
channel’s Shannon Capacity. SKD protocols can be evaluated by observing how closely the
secret key rate compares to the channel capacity. Efficient protocols can not be expected
to waste large amounts of channel information.

2.2.3 Secret Key Distillation Protocols

It is beyond the scope of this (experimental) thesis to evaluate the performance and
efficiency of various SKD protocols. Table 2.1 presents some of the major protocols, and
how they integrate into the SKD standard model presented in section 2.2.1.

2.2.4 Authentication

In symmetric cryptography Bob can be assured of the identity of Alice by virtue that Alice
was able to encrypt her message with the secret key shared by her and Bob, and therefore
the resulting text from Bob’s decryption made sense. In asymmetric cryptography, where
anyone in the public, having Bob’s public key, can encrypt a message for Bob he has no
such assurance. Fortunately, using techniques closely related to cryptography, Bob can be
given assurances that the message is indeed from Alice. Not surprisingly authentication
techniques come in both symmetric and asymmetric flavours. Asymmetric authentication
is the more common and so will be covered first.

The mathematics of asymmetric authentication techniques (also known as digital sign-
ing) are well covered in literature from the RSA paper [85] onwards. It involves Alice
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Advantage Information Privacy
Distillation Reconciliation Amplification

Post-Selection[98](Sec. 4.3.2)
Maurer’s N -bit

Repeat Code[65](Sec. 4.3.3)
Bit-pair Iteration[28]

Direct Sliced Reconciliation[19](Sec. 4.3.1)
Reverse Sliced Reconciliation[37](Sec. 4.3.1)

Liu’s et al Advantage Distillation[61](Sec. 4.3.7)
Cascade[13](Sec. 4.3.4)

Forward error
correction[8](Sec. 4.3.7)

Various classes of
universal hashing

functions[7](Sec. 4.3.5)
Calderbank-Shor-Steane (CSS) Codes[99]

Table 2.1: Summary of major SKD protocols and their position in the standard model

‘signing’ her message with her private key in such a way that Bob, who is in possession
of Alice’s public key, can tell that the message was signed by the person in possession of
Alice’s private key. That is, the key pairs are linked in such a way that Bob’s knowledge
of Alice’s public key is enough to recognise an action taken with her private key. The
system is still vulnerable during the exchange of public keys. Eve could intercept the two
public keys and replace them with her own. She would therefore be able to pretend to be
Alice to Bob and vice versa. This is called a ‘man-in-the-middle’ attack. Current practice
for applications requiring reasonable security (such as internet banking) involve a trusted
third party holding Alice and Bob’s public keys, which have been sent on a previous oc-
casion. When Alice wants to talk to Bob securely, they each download the other’s public
key from the trusted third party. They can then be assured of the other’s identity since
they both trust the third party to give them the right public key. Eve must perform two
simultaneous man-in-the-middle attacks in order to effectively breach this system.

The most secure way of conducting asymmetric authentication, however, is to perform
the initial exchange of public keys using an already-secure means, in the same way a sym-
metric key is distributed. Although this method seems to undermine the main advantage
of asymmetric cryptography over symmetric, once established many authentications can
take place without the need for constant rekey as in a symmetric circuit. Asymmetric
authentication with secure public key exchange permits large, secure public key distribu-
tion infrastructures which use far less resources than equivalent symmetric infrastructures.
The same cautions as for public key cryptography apply: a fast-factoring algorithm may
be discovered or a quantum computer may be built, rendering all asymmetric techniques
unusable.

A symmetric authentication scheme is based on symmetric keys - if Alice and Bob share
knowledge of a pre-distributed symmetric key then that secret knowledge can form the
basis of a digital signature. The mathematics - the field of universal hash functions - were
introduced by Carter and Wegman in 1979, [18]. Naor and Yung later proposed a digital
signature scheme based on the introduced one way universal hash functions, called “One-
Time Signature” (OTS). In a manner similar to Shannon they provided a mathematical
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proof for the perfect (information-theoretic) authenticity of a OTS, based as it is on the
one-time use of a symmetric key.

Authentication is crucial to the security of asymmetric cryptography, since a standard
public key exchange, over an insecure channel, offers provides no verifiable information
about the identity of the exchangers. Either symmetric or asymmetric techniques can be
used to authenticate an asymmetric system, although asymmetric authentication is the
sensible option. There is no point paying the higher resource price for information-theoretic
symmetric authentication when the cryptography itself is only computationally secure.
And since symmetric cryptography has built-in authentication3 it is not immediately ob-
vious why symmetric authentication might be useful today. Considering the promise of
section 2.2, however, that information-theoretically secure keys can be distributed by au-
thentic public discussion of common information, the relevance of an information-theoretic
authentication system becomes clear. All public discussion during an SKD process must
be authenticated or the system becomes vulnerable to a man-in-the-middle attack. The
distilled key cannot be considered information-theoretically secure unless the authentica-
tion method was also information-theoretically secure.

Distillation-Style Authentication

Some research has been conducted on using the techniques of SKD for authentication as
well as key agreement.[60],[66]. Such a scheme would remove the requirement for Alice
and Bob to initially share a secret to authenticate their public discussions for key agree-
ment. This scheme could be considered the ultimate cryptographic system—information-
theoretic security without the need to establish any security infrastructure beyond the
communications themselves. In an era when ad-hoc networks are becoming increasingly
popular such a system would be in high demand.

Unfortunately distillation-style authentication relies on Bob having an information ad-
vantage over Eve to begin with, and using that advantage to reveal himself as the legitimate
recipient of Alice’s information. Therefore these schemes only work when Eve’s channel is
noisier than Bob’s, an assumption that is in general unreasonable for information-theoretic
security.

2.3 Random Number Generation

So far this chapter has been concerned solely with the distribution and authentication of
cryptographic keys. This final section is concerned with the keys themselves. Even if the
distribution scheme is information-theoretically secure, and the distributed key is used in
a OTP cipher, it was pointed out in section 2.1.3 that the OTP is not perfectly secure if
the key is not perfectly random. Simply, if the key is not random it has an element of
predictability, which creates patterns in the ciphertext that can be cryptanalysed.

In terms of Shannon theory, the information-theoretic security requirement is that Eve
be allowed no less than fully one bit of uncertainty for each bit of key employed. Any
less and Eve has obtained some amount of certainty about the key and therefore some

3It can be assumed that a symmetric key is only possessed by someone who has received it from the
secret distribution channel, and is therefore the legitimate recipient or originator of the message. The
legitimate recipient is authenticated by their ability to decrypt the message. Similarly, only an originator
who possesses the key is able to encrypt the message so that the same key decrypts it correctly. A legitimate
originator is therefore authenticated by their ability to encrypt the message with the right key.
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information which she can build on towards breaking it, even if the distribution scheme
is information-theoretic. Fig. 2.4 is a graph of the binary entropy against the probability
of an arbitrary key bit being ‘0’ (p) or ‘1’ (1 − p). It is clear that for perfect security an
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Figure 2.4: The binary entropy of an arbitrary key bit against the probability of it being a ‘1’ or
‘0’.

arbitrary key bit must have equal probability of being ‘1’ or ‘0’. This is consistent with
the formula pi(K) = 1

n derived in section 2.1.3.

Generating large amounts of good-quality random numbers for cryptographic keys has
historically been a difficult problem, since computers by nature are machines of determin-
istic repetition. Often designers will settle for poorer quality random numbers. A famous
example is an early version of Netscape’s internet browser. The cryptographic keys gener-
ated by the browser for secure applications such as internet banking were based on three
easily guessable values (the time of day, the application process number and parent process
number). The flaw was discovered by two Berkeley PhD students.[34]

2.3.1 Classical Random Number Generation

Since a deterministic computer cannot generate pure random numbers algorithmically it
must base its numbers on random physical phenomena. Classic examples are the decay of
a radioactive element or thermal (Johnson) noise. A more modern possibility is a direct
measurement of quantum vacuum noise. In 1999 Intel, a major manufacturer of computer
chips, introduced an onboard physical random number source.[51] The cited paper gives
an accessible explanation of classical randomness and the operation of Intel’s source.

The source is based on the thermal output of current-carrying resistors. Two adjacent
resistors are used and the signals subtracted. This is because non-random signals could
be coupled onto a single resistor (due to a stray, or not so stray, electromagnetic field) and
affect the output. The subtraction removes any signals correlated between the resistors,
leaving only the pure Johnson noise. While Intel’s random number generator (RNG) design
minimises the possibility of a coupled signal biasing the randomness, thermal signals can
still produce a bias.
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2.3.2 Quantum Random Number Generation

Quantum theory attributes to the physical universe some fundamental uncertainties.
Heisenberg’s Uncertainty Principle states that there are some circumstances where an
absolute limit to knowledge can be reached, that there are situations in which no physical
observer can precisely predict the outcome.[43] In these situations this unpredictability
manifests itself as quantum noise, where the results of a measurement will be found to
have some inherent noise despite all precautions. The quantum noise can be harnessed as
a source of truly random numbers.

Radioactive decay has quantum uncertainty and so would be a suitable process on
which to base a quantum random number generator (QRNG). Radioactive materials,
however, are hazardous and expensive. With the advance of optical detection technology,
optical QRNG is now possible. Such a device, based on the unpredictability of a single
photon being transmitted or reflected from a 50% beamsplitter, is discussed in [81]. A
faster and more robust device based on continuous variables has also been proposed,[55]
and a trial version was used in the later stages of this project (see sections 6.1.2 and 7.2.3).

QRNG offers the possibility of perfect pi = 1
n random number generation in a device

that would be very difficult to manipulate. An optical QRNG could only be biased by
optical interference, which is much easier to prevent than thermal interference as described
in section 2.3.1. With optical QRNG the final piece of an information-theoretically secure
cryptographic system can be put in place.

2.4 Summary

Cryptography is a method of securing communications, and cryptographic ciphers can be
classed as either symmetric or asymmetric. Every cipher can be ranked by how secure
it is, from insecure, to computationally secure, to information-theoretically secure. The
condition for information-theoretic security is that the cipher be symmetric and use a
perfectly random key the same size as the plaintext. The randomness condition can be
practically satisfied with an optical quantum random number generator.

Asymmetric key distribution is much simpler than symmetric key distribution and
so a problem arises if information-theoretic security is desired. The problem is that the
key, being the same size as the message, must be communicated by an independent and
already-secure channel of the same capacity as the message channel. Such a demand
on resources generally makes the establishment of information-theoretic security a self-
defeating exercise. Secret key distillation techniques offer a solution to this problem.

Using a quantum information channel an arbitrarily large key for use in symmetric
cryptography can be distributed, provided an authentic public channel is available. For the
key and the following communications to be information-theoretically secure the method
of authentication must also be information-theoretic. Such methods are available, at the
cost of initially securely distributing a (relatively) small symmetric key. A small key,
distributed by traditional symmetric distribution methods, is expanded into an arbitrarily
large key without any further need for the independently secure distribution channel.



Chapter 3

Topics in Classical and Quantum

Optics

This chapter covers several topics in classical and quantum optics that are relevant to the
project. In the first half a classical description of light is taken to simplify the theoretical
treatments. The chapter shifts to a quantum description in order to examine how light
behaves in the quantum regime, and how it can carry quantum information. Appendix A
covers some of the more fundamental topics in this area, and if the reader is unfamiliar
with optics it is recommended they read the appendix first.

3.1 Modulation

There are numerous ways in which to use a wave to communicate information. Two of
these are amplitude and phase modulation, where the amplitude and phase of the wave
are varied between levels that represent symbols in the communication alphabet (discrete
or continuous).

3.1.1 Electro-Optic Modulation

An electro-optic modulator is able to modulate the amplitude and phase of a laser beam.
It consists of an electro-optic crystal with an electric field applied to it (Fig. 3.1). The
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Figure 3.1: An electro-optic modulator, where charged plates can apply an electric field to vary
the crystal refractive index.

crystal properties are such that the electric field causes its refractive index to vary with the
strength of the field. Accordingly, the light passing through the modulator can be slowed
by a chosen amount. The change in refractive index causes the passing beam wavefronts
to slow, thus varying the phase of the beam—phase modulation (PM).[87]

27
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Amplitude modulation (AM) can be achieved by passing circularly polarised light
through a phase modulator and then a beam splitter. The electro-optic crystal’s birefrin-
gence means that only a p- or s-polarised beam (depending on the crystal orientation) will
be phase modulated. If the beam consists of both, such as in circular polarisation, the
phase difference between the components will be modulated. This will result in elliptical
light for which the ellipse shape varies with time (Fig. 3.2). The ellipse will be oriented

Z

X

Y

Propagation

Figure 3.2: Circularly polarised light before and after electro-optic modulation.

at 45◦ to the p- and s-axes, and so often the crystals are mounted at this angle when AM
is required. By examining the variance in the diagonal basis of Fig. 3.2, it can be seen
that once rotated, a beam splitter selecting either axis will produce amplitude modulated
light.[1]

3.1.2 Sidebands

The spectrum of a wave can be examined by applying the Fourier Transform.[15] The
spectrum of a single mode laser (section B.4) will have a sharp spike at the laser frequency
and be zero elsewhere. The picture changes when modulation is introduced, as it creates
other frequencies on which the information is carried. Mathematically, the modulation
process is a multiplication of the modulated wave, the carrier, and the modulating wave,
the signal. Using complex amplitude notation, the amplitude of the modulated wave’s
electric field will be

E = <

((∑
ω

aω(t) cos (ωt)

)
eıωct

)

=

(∑
ω

aω(t) cos (ωt)

)
cos (ωct)

(3.1.1)

where ωc is the carrier angular frequency.
∑

ω aω(t) cos (ωt) is the summed set of signal
waves having angular frequencies ω, and time-varying amplitudes aω(t) communicating
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the required information (which could be analogue or digital).
The spectrum of an electromagnetic wave modulated with three different frequencies is

shown in Fig. 3.3 over an arbitrary time interval ∆t. The different frequencies were given
different magnitudes, so within the space of ∆t they could potentially communicate a
message. A more complicated signal would contain more frequency components, generally
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Figure 3.3: A 100 Hz carrier modulated with a signal consisting of 5, 10 and 15 Hz waves, over
an arbitrary time interval ∆t. The signal waves were given different amplitudes to communicate
the message “1-2-3”.

using up the entire spectrum between the carrier and the difference between the carrier
and the highest modulating frequency. This band of frequencies is called the modulation
sideband. AM produces an upper and lower sideband, as seen in Fig. 3.3.

Fig. 3.3 shows the information at frequencies around the carrier frequency. Both
AM and PM will produce such sidebands, but only AM will be manifest as intensity
modulations on the carrier’s complex magnitude. Examining this intensity modulation
cannot distinguish between AM and PM information. This is achieved by demodulation,
which is the process of mixing another carrier with the signal/carrier combination.1 This
new carrier is called the local oscillator. From (3.1.1), demodulation will produce(∑

ω

aω(t) cos (ωt)

)
cos (ωct) eıωct

=
1
2

(∑
ω

aω(t) cos (ωt)

)
+

1
2

(∑
ω

aω(t) cos (ωt)

)
e2ıωct,

(3.1.2)

and after filtering out the 2ωc frequency terms the original modulating frequencies are
recovered.

Mathematically PM works in the same way, except the complex carrier magnitude is

1Technically this is modulating the signal/carrier with another carrier, however the term ‘modulation’
is usually used when referring to the imprint of information onto a wave. Modulating with a carrier adds
no information and so the preferred term is ‘mixing’.
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modulated with imaginary values

ı

(∑
ω

pω(t) cos (ωt)

)

which is equivalent to modulating with a π
2 phase shift. The information is contained in

the time varying amplitudes of the phase modulations pω(t). An electric field which is
both amplitude and phase modulated becomes

<

(∑
ω

aω(t) cos (ωt)

)
+ ı

(∑
ω

pω(t) cos (ωt)

)
eıωct

=

(∑
ω

aω(t) cos (ωt)

)
cos (ωct)−

(∑
ω

pω(t) cos (ωt)

)
sin (ωct) .

(3.1.3)

The sideband PM information remains independent of the AM (Fig. 3.4). Both can be

P
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Frequency (Hz)

Figure 3.4: A 100 Hz carrier that has been both amplitude and phase modulated with multiple
frequencies. The sequence ‘987654321’ was amplitude-encoded while the sequence ‘123456789’
was phase-encoded. A direct measurement of the spectrum such as this cannot distinguish the
amplitude and phase information.

recovered even if the modulating frequencies are identical. After demodulation the wave
becomes

1
2

(∑
ω

aω(t) cos (ωt) + ı
∑
ω

pω(t) cos (ωt)

)
+

1
2

(∑
ω

aω(t) cos (ωt) + ı
∑
ω

pω(t) cos (ωt)

)
e2ıωt.

(3.1.4)

After low-pass filtering the complex magnitude can be measured to determine the AM
signal (also called, in this context, the amplitude quadrature)(Fig. 3.5a). The PM signal
(or phase quadrature)(Fig. 3.5b) is accessible by π

2 phase shifting the local oscillator before
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demodulation2. This produces low-frequency terms

1
2

(∑
ω

aω(t) cos (ωt) + ı
∑
ω

pω(t) cos (ωt)

)
e−ı π

2

=
1
2

(∑
ω

pω(t) cos (ωt)− ı
∑
ω

aω(t) cos (ωt) .

) (3.1.5)

In this case a measurement of the complex magnitude will be a measurement of the phase
quadrature of the signal (Fig. 3.5).

Frequency

(b)(a)
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er

Figure 3.5: The carrier/signal of Fig. 3.4 after (a) AM and (b) PM demodulation. AM information
can be distinguished from PM information even if identical modulation frequencies are used.

Simultaneous measurements of both phase and amplitude quadratures are possible if
the signal/carrier is split into two, one mixed with an in-phase local oscillator and the
other with a π

2 phase-shifted local oscillator. The resulting values can be represented as a
complex number αω = aω +ıpω where αω is the complex amplitude of the wave’s frequency
component ω. The set of all such complex numbers is called phasespace.[1]

3.2 Project Lasers

A brief description of the lasers used in this projet follows. If the reader is unfamiliar with
laser operation they are referred to Appendix B before continuing with this chapter.

This project has used two different lasers, both of the solid state variety. In solid state
lasers the gain medium consists of a (usually) crystalline atomic structure, doped with
an atom chosen so that its excited state within the structure matches the required laser
wavelength. The Innolight Mephisto (Fig. 3.6a) Nd:YAG (Yttrium Aluminium Garnet
crystal doped with Neodymium ions) laser radiates at λ = 1064nm; the NP-Photonics
Scorpion (Fig. 3.6b) Er:Glass (optical fibre doped with Erbium ions) radiates at 1550nm.

The Nd:YAG laser uses a Non-Planar Ring Oscillator (NPRO) resonator (Fig. 3.7),
created within the YAG crystal itself. The non-planar design produces a very high level of

2In mathematical terms this means multiplying the signal/carrier by the imaginary part of the local
oscillator
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(a) (b)

Figure 3.6: (a) Innolight Mephisto. (b) NP Photonics Scorpion.

Figure 3.7: A Nd:YAG Non-Planar Ring Oscillator crystal. The crystal is cut so that the beam
undergoes total internal reflection throughout the path of circulation, out-coupling at the pump
entry point.
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frequency purity and stability. [52] The Mephisto is diode-pumped and capable producing
of 1.3W of optical power. Fig. 3.8 shows the relationship between optical power and pump
current, while Fig. 3.9 shows single mode temperature regimes.
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Figure 3.8: Mephisto optical power against pumping current at different crystal temperatures.

24 28 32 36
Temperature (oC)

Figure 3.9: Mephisto temperature regimes for single-mode operation.

The Er:Glass laser uses a length of optical fibre doped with Erbium ions as the gain
medium. The resonator consists of two fibre Bragg gratings, one at each end of the fibre.
A Bragg grating is a series of partially reflecting objects in the propagation direction,
ordered so that each reflected wave will constructively interfere at a desired angle or
wavelength.[87] Bragg gratings can be made from optic fibre (a Fibre Bragg Grating—
FBG) by exposing periodic sections of the fibre to a UV laser, which causes permanent
change to the refractive index in the exposed sections (Fig. 3.10).[86]

The Scorpion uses an Erbium doped fibre with a FBG fusion-spliced to each end. One
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grating is spectrally narrow, the other wide. The laser is diode-pumped through the wide
grating and out-coupled through the narrow (Fig. 3.10). The spectral properties of the
gratings are such that a resonating cavity is created across the doped fibre.
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Figure 3.10: The Scorpion uses an Erbium doped fibre cavity created by two fibre Bragg gratings,
diode-pumped from the rear.

3.3 Gaussian Beams

The light emitted from a laser can be closely approximated by a Gaussian beam, which
is a solution to the paraxial wave equation (a wave equation for waves with wavefronts
at small angles to the direction of propagation).[87] The intensity of a Gaussian beam
propagating along the Z-axis is dependent on the waist size W0, the radial distance r from
the axis and the distance along the axis z:

I(r, z,W0) = I0

(
W0

W (z)

)2

exp
(
− 2r2

W 2(z)

)
,

where

W (z) = W0

√
1 +

z

πW 2
0 /λ

2
(the beam radius at z)

(3.3.1)

At the waist the wavefronts are normal to the direction of propagation; they become
parabolic curves as a result of diffraction. Fig. 3.11 shows an intensity profile of a Gaussian
beam.

3.3.1 Gaussian Modes

A planar mirror resonator is often not satisfactory since the slightest deviation from the
normal of the beam will cause it to ‘walk off’ the mirror (Fig. 3.12). When the resonator
is required to sustain oscillations, a curved mirror design is often used. It can be shown
that a Gaussian beam, reflecting off a curved mirror matching the shape of the wavefront,
will be reflected back to form a beam with identical waist size and position (Fig. 3.13).
A standing wave of this form is called a Gaussian mode.[87] Resonators can also support
more complex solutions, called Hermite-Gaussian modes. Hermite-Gaussian modes are
described in Appendix C.
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Figure 3.11: A cross section of a Gaussian beam in the X-Z plane with λ = 1064nm and W0 =
200µm. Lighter points represent greater intensity. The lines representing the wavefronts show how
it becomes more curved far from the waist. The graph to the side shows how in any X-Y plane (Y
out of the page) the beam profile is a Gaussian curve.

Figure 3.12: Beam walk off in a planar mirror resonator.

0W

Figure 3.13: A curved mirror resonator. The curvature of the mirrors match that of the wavefront
at the points of reflection, to create a self-reproducing beam.
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3.3.2 Lenses

If a Gaussian beam is transmitted through a set of circularly symmetric optical compo-
nents, aligned with the beam axis, the beam will remain Gaussian.[87] A lens, or system
of lenses, is able to take a Gaussian beam and focus it into a new waist. This is a useful
property since many optical components have specific requirements for the beam shape. A
curved mirror resonator requires a specific waist size for the beam to be self-reproducing,
and a modulator requires the wavefronts it is modulating to be as near planar as possible.

A lens will transform a Gaussian beam so that the new waist size is

W ′
0 = W0

| f
z−f |√

1 +
(

z0
z−f

)2
, (3.3.2)

and the new waist location is

z′ =
| z
z−f |√

1 +
(

z0
z−f

)2
(z − f) + f (3.3.3)

where W0 is the beam waist before the lens, z the distance from this waist to the lens, f
the lens focal length and z0 the Rayleigh range πW 2

0
λ . Fig. 3.14 shows the transformation

graphically.

W0

z z’

W ’0

Figure 3.14: Lens transformation of a Gaussian beam.

3.4 Continuous Variables

Notation change: For the remainder of this thesis the amplitude of a side frequency
(section 3.1.2), in the amplitude or phase quadrature, will be referred to as aω = X+

ω , pω =
X−

ω , or in general the amplitude and phase quadratures as X+,X−.

3.4.1 Quantum Mechanical Quadratures

The quantum mechanical equivalents of amplitude and phase quadratures are

X̂+ = â† + â

X̂− = ı
(
â† − â

)
.

(3.4.1)
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â†, â are the creation and annihilation operators respectively. They are ladder operators
that act to increase or reduce the number of photons in a number state (section B.1) and
can be derived from the Schröedinger Equation.[1]

The non-zero commutator [X̂+, X̂−] = 2ı means the quadratures are governed by a
quadrature uncertainty principle (suitably scaled)

〈∆X̂+ 2〉〈∆X̂− 2〉 ≥ 1
2
. (3.4.2)

〈∆X̂± 2〉 is the variance of the quadratures

〈X̂± 2〉 − 〈X̂±〉2, (3.4.3)

defined in terms of the expectation value 〈X̂±〉, which is the classical complex amplitude
α. The amplitude and phase quadratures are considered continuous variables since they
do not have exact eigenstates, meaning the set of possible values are not discrete.[1]

3.4.2 Quantum States of Light

The quadrature uncertainty principle places a fundamental limit on the precision to which
a quadrature can be measured. Noise on measurements resulting from this limit is called
quantum noise, and it is present even in the vacuum. A classical vacuum, measured at
the frequency ω, is complete darkness αω = 0. The quantum vacuum |0〉ω (〈X̂±〉ω = 0),
however, is represented by a Wigner function in phasespace

Wvacuum(ω) =
e−X+2

ω−X−2
ω

π
(3.4.4)

and is plotted in Fig. 3.15a for some arbitrary ω (which will be dropped from the following
theory). The Gaussian distributions of X̂± about the expectation value 〈X̂±〉 = 0 is the
quadrature quantum noise. 〈∆X̂± 2〉 are the full-width half-maximums (FWHM) of the
Gaussians. The Wigner function represents the probability of measuring a particular value
X± in the measurement X̂±|Ψ〉 = X±|ψ〉,3[110] and its general form is (3.4.5).[108]

W
(
X+,X−) =

(
1
2π

)∫ ∞

−∞
exp

(
ıxX−)

π−
1
4 exp

(
−1

2

(
X+ +

x

2

)2
)
π−

1
4 exp

(
−1

2

(
X+ − x

2

)2
)

dx (3.4.5)

The vacuum is a minimum uncertainty state (also called a quantum-noise-limited
state). A non-vacuum (〈X̂±〉 6= 0) minimum uncertainty state is called a coherent state
|α〉. Mathematically, coherent states are the result of the displacement operator D̂ acting
on the vacuum state D̂|0〉.

The Wigner function for a coherent state is

Wcoherent =
1
π

exp
(
−
(
X+ −<{〈X̂+〉}

)2
−
(
X− −= {〈X̂−〉}

)2
)

(3.4.6)

3Therefore the Wigner function is defined in terms of X±, not X̂±, since it is the probability of a
measured quadrature and not a superposition of possible states—see standard texts on quantum mechanics.
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Semiconductor Bandgap Wavelength (nm)
Germanium (Ge) 1880

Silicon (Si) 1150
Gallium Arsenide (GaAs) 870
Indium Arsenide (InAs) 3500

Indium Gallium Arsenide (InGaAs) 900 - 1700

Table 3.1: Wavelength ranges of photodiode semiconductor materials. InGaAs bandgaps can be
chosen between the stated range by varying the ratio of InAs to GaAs, and the lattice constant.[87]

and is plotted in Fig. 3.15b. It can be seen that a coherent state is a vacuum displaced in
phasespace by α = 〈X̂+〉+ı〈X̂−〉, and is also quantum noise limited.[110] The displacement
vector can be changed with amplitude or phase modulation, enabling the the state to carry
quantum information. Coherent states are reasonably easy to produce with high quality
lasers, although not at all frequencies. More will be said on this topic in chapter 5. The
term purity is used to describe how closely the state comes to the minimum uncertainty
limit—an impure coherent state is called a thermal state.

A thermal state (Fig. 3.15c) has non-minimum uncertainty:

Wthermal =
1
π

exp
(
−e−s

(
X+ −<{〈X̂+〉}

)2
− e−s

(
X− −={〈X̂−〉}

)2
)

(3.4.7)

where the parameter s serves to expand the FWHM so that each quadrature is noisier
than the quantum limit. The extra noise is classical noise which can come from a variety
of sources. As the variance of the classical noise becomes much larger than the quantum
noise, all quantum effects are lost and the state becomes a purely classical source of light.

Since only the product of the quadrature variances is limited by the uncertainty prin-
ciple, theoretically the uncertainty in one quadrature could become 0 if it became infinite
in the other. Any state for which a quadrature’s variance has been reduced below the
vacuum quantum noise level is called a squeezed state (Fig. 3.15d). The Wigner function
for a squeezed state is

Wsqueezed =
1
π

exp
(
−es

(
X+ −<{〈X̂+〉}

)2
− e−s

(
X− −={〈X̂−〉}

)2
)
. (3.4.8)

In this case s is the squeezing parameter. In practice squeezed states are difficult to
produce, although numerous laboratories around the world have achieved them. Squeezed
states can be used to create continuous variable entanglement. Entanglement is a well-
known phenomenon unique to quantum physics and it is employed by some QKD protocols
(section 4.3).

3.4.3 Intensity Detection

Light can be detected with a photodiode, which can be made from various semiconductor
materials with bandgaps corresponding to optical wavelengths. The diode will produce a
current (the photocurrent) proportional to the intensity of light shining on it. Table 3.1
shows the bandgap wavelength of some common types of photodiodes. Photodiodes using a
particular semiconductor are sensitive, in varying degrees, to a range of optical wavelengths
about the bandgap wavelength. The exact properties depend on how the semiconductor
is engineered.[87]
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Figure 3.15: (a) Vacuum state. (b) Coherent state. (c) Thermal state. (d) Squeezed vacuum
state.
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By connecting a photodiode to a suitable amplifier, a practical photodetector can be
made. Modulations, and noise, on the intensity of the light will appear as modulations
and noise on the output of the amplifier. This is called direct detection.[1] The detection
bandwidth is dependent not only on the bandwidth of the photodiode and amplifier, but
also the response time of the photodiode (the time the semiconductor material takes to
“reset” after a detection event). A high frequency modulation may change the intensity
too quickly for the photodiode to detect it.[87]

Photodetectors exhibit dark noise, which is an output from the diode (and amplifier)
even in the absence of any light. This is mainly due to heating of the photodiode, which
can cause an electron to excite across the semiconductor bandgap (Johnson noise), and
electronic noise on the amplifier. Any signal on the beam must be larger than the dark
noise of the detector or it will not be detected.[87]

Photodetectors also have a quantum efficiency. This is the probability that a single
photon incident on the photodiode will contribute to the detector current. The quantum
efficiency is largely a property of the semiconductor in use. No semiconductor can have
perfect quantum efficiency since some incident photons will fail to be absorbed by the
semiconductor due to the probabilistic nature of the absorption process.[87]

3.4.4 Quantum Noise Detection

Balanced detection is a technique for separating quadrature quantum noise (section 3.4.2)
from quadrature classical noise. A laser is split via a 50:50 beam splitter onto two de-
tectors (Fig. 3.16). Any classical noise on the laser, say a spike at frequency ω relative

Diff

50:50

Sum

Figure 3.16: A balanced detection scheme. Vacuum noise enters the system via the unused port
(dotted line) of the beam splitter.

to the carrier, will be split onto both detectors and produce a correlated variation in the
photocurrent of each detector. The peak will therefore be present in the ‘sum’ signal of
Fig. 3.16 but not the ‘diff’ (erence) signal.

Quantum noise behaves differently since it is an individually random fluctuation of
every independent measurement. At any given time each detector will be affected by a
different quantum fluctuation. Therefore a given spike of noise on one detector will not be
correlated with the other, and the sum and difference signal will be identical. Provided
the quantum efficiency of the detectors is high enough, and the dark noise low enough,
quantum noise can be amplified and observed by a balanced detection scheme.
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3.4.5 Continuous Variable Interferometric Detection

Intensity modulations can be analysed with direct detection; such classical signals can
be distinguished from the quantum noise using balanced detection. Section 3.1.2 shows
that the techniques covered so far are inadequate for resolving phase or simultaneous
amplitude/phase information. An amplitude (and/or phase) modulated laser beam is a
signal/carrier combination, and distinguishing the two quadratures requires local oscillator
mixing at an appropriate phase difference (0◦ for AM, 90◦ for PM).

Homodyne detection is such a mixing technique for demodulating amplitude and phase
information. It is covered in [1]. Fig. 3.17 shows the layout of a homodyne detector,
along with the amplitude and phase modulators for encoding the information. The local

D1

DIFF

Error signal

Mixer

D2

PZT phase control

Local oscillator

Signal/carrier

PM AM

LASER

Locking signal Signal

Amplifier

+/−
SUM

Figure 3.17: In homodyne detection the local oscillator beam, amplitude αlo, is phase shifted by
an angle φlo. Here the phase shift is brought about by piezoelectric transducer (PZT) control of
the the local oscillator path length. The signal/carrier beam, amplitude αsig, is then mixed with
the local oscillator on the beam splitter at φlo phase angle. The angle is kept constant by active
feedback to the PZT phase controller.

oscillator αlo is mixed with the signal/carrier αsig on the beam splitter at an angle of φlo.
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The beam splitter acts on the two beams so that

αd1 =

√
1
2
αlo(t) +

√
1
2
αsig(t)

αd2 =

√
1
2
αlo(t)−

√
1
2
αsig(t)

where

αsig(t) = αsig + δX+
sig(t) + ıδX−

sig(t)

αlo(t) =
(
αlo + δX+

lo(t) + ıδX−
lo(t)

)
eıφlo

(3.4.9)

and δX±
sig,lo(t) are the instantaneous fluctuations of the signal and local oscillator quadra-

tures. This treatment is valid only if the local oscillator power is much larger than the
signal. After substitution and neglecting nonlinear terms the difference current from d1,d2
is

i−(t) ≈ 2αlo

(
δX+

sig(t) cos(φlo) + ıδX−
sig(t) sin(φlo)

)
. (3.4.10)

It can be seen that the beam splitter is an effective demodulator of AM and PM. By
adjusting the phase of the local oscillator either amplitude (φlo = 0◦) or phase (φlo =
90◦) fluctuations can be cancelled, allowing both amplitude and phase information to be
resolved.[1]

Practically, maintaining a particular value of φlo in the face of thermal and vibrational
noise requires active-feedback phase control of the local oscillator. The electronics sur-
rounding the homodyne detector in Fig. 3.17 are for this purpose. Feedback control is
introduced in section 5.5, and interferometer locking in section 6.1.2.



Chapter 4

Quantum Key Distribution

Literature Review and Project

Plan

This chapter looks at the development of quantum key distribution and its current sta-
tus. The history of the ANU work is described, leading up to the 2005 first generation
experiment which is explained in detail. Finally, plans for second and third generation
experiments are outlined, being the subject of this Honours project.

4.1 Discrete Variable Quantum Key Distribution

The history and purposes of cryptography, and cryptographic key distribution, were dis-
cussed in Chapter 2. The concept of secret key distillation was presented in section 2.2,
where Alice utilises a quantum channel to transmit information to Bob in the presence of
Eve. Due to the quantum effects of the channel, Bob’s information is not perfectly corre-
lated with Eve’s, and neither are perfectly correlated with Alice’s due to errors introduced
by noise in the channel (Fig. 4.1).

Figure 4.1: After transmission of some information I over a quantum channel Alice (purple), Bob
(blue) and Eve (red) all share partially correlated information. The blue shaded area is information
known only to Alice and Bob, and can form the basis of a secret key. The red information is known
to all three and would result in a compromise of security if used as a key.

The first such quantum channel was proposed in 1984 by Bennett and Brassard [3]
and the protocol was hence called ‘BB84’. BB84 is extensively covered in QKD literature.
Although originally proposed using four photon polarisation states (vertical, horizontal,

43
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diagonal, anti-diagonal) , [71] describes its operation for any four states such that

|ψ00〉 = |0〉,
|ψ10〉 = |1〉,

|ψ01〉 = (|0〉+ |1〉)/
√

2, and

|ψ11〉 = (|0〉 − |1〉)/
√

2.

(4.1.1)

In all practical implementations of BB84 so far these states are various properties of
photons, which at the moment are by far the most useful of particles for communication.

The |ψx0〉 basis is non-orthogonal to the |ψx1〉 basis, meaning no measurement can
distinguish the states with perfect certainty (by Heisenberg’s Uncertainty Principle). Es-
sentially, Alice sends one of these states without announcing the basis in which she en-
coded. Bob, who is randomly switching between measurement bases, announces that he
has received the state and compares bases with Alice. If the measurement bases match
then the result of the measurement, which was not announced, is kept for use as part of
a secret key. If not, it is discarded.

The obvious attack for Eve here is to intercept the state sent by Alice and resend it to
Bob after measurement. Eve, however, can not be sure of which basis Alice used to send
the original state and so can only guess which basis she should use to encode the resent
state. As a result she will introduce errors into the transmission that cannot be accounted
for by the existing noise on the channel. If Alice intersperses check bits throughout her
transmission to monitor for errors, she and Bob can identify whether the distributed secret
key was compromised by Eve or not.

Ideal BB84 quantum key distribution does not require any secret key distillation to be
performed on the transmitted data, since Eve’s information is always zero. ‘Ideal’ in this
case means that Bob has an ideal detection system and the channel is noiseless (also that
Alice indeed has a source of truly single states). This means that for a given state |ψ〉 sent
by Alice there will be one of three outcomes:

1. Bob measures in the incorrect basis and so the measurement is discarded

2. The state is lost in the channel

3. Bob correctly measures the transmitted state |ψ〉

In any case Eve’s only choice of attack is the active attack discussed above, which can be
defeated with random check bits. Any passive attack, where she measures the transmitted
state without passing it on to Bob, will fail since Alice and Bob only use the states that
actually reach Bob.

If Bob’s detection system is non-ideal, equivalently if there is noise on the channel, then
there will be some probability that despite using the same basis as Alice he will measure
a different state to the one sent by Alice. Therefore the information reconciliation layer
of secret key distillation is needed to correct the errors between Alice and Bob’s data.

An attack by Eve is only identifiable by the introduction of errors between Alice and
Bob’s data. It can be seen that Eve is free to attack their communications up to the
point of introducing the expected number of errors from the channel noise and Bob’s
detection system. Also the information reconciliation process releases more information
to Eve. Hence the privacy amplification layer is required, to take the upper bound of
Eve’s knowledge of the communication and select out the information that will reduce her
information to zero.
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Finally, quantum cryptographers do not yet have a single photon source and instead
rely on lasers attenuated to the point where the probability of transmitting a single photon
is significantly higher than the probability of a double photon transmission. With such
attenuation, of course, the probability of getting no photon at all is significantly higher
again.

Unfortunately, the probability of a double transmission is non-zero, meaning that
sometimes Alice will send a pair of photons that each carry identical states. Eve could
employ an attack where she blocks all single photons and only lets through one photon
from any pair transmitted by Alice—storing the other photon until measurement bases are
announced and then performing her own measurement in the correct basis. In this case
the majority of Eve’s measurements will replicate that of Bob’s, completely undetected.
This is called the photon number splitting attack.[14]

If Eve blocks too many single photons, however, the uncharacteristic loss on the trans-
mission line will be noticed. This attack can therefore be defeated by only operating in the
low channel loss regime, a restriction that severely limits the distance over which BB84
can operate. A more sophisticated defence against the number-splitting attack uses decoy
states where multi-photon pulses are deliberately inserted into the channel, and the loss
characterised to determine the extent of Eve’s interference.[48]

BB84 is a discrete variable protocol, in that the states transmitted by Alice are ex-
act eigenstates (qubits). Other discrete variable protocols include B92[6], Ekert’s EPR
(Einstein-Podolsky-Rosen)[27] and Ping-Pong[10]. Discussion of these protocols are be-
yond the scope of this thesis, apart from noting that they do not offer dramatically
increased key rates from BB84. A comprehensive review of discrete variable quantum
cryptography was presented in Gisin’s Reviews of Modern Physics paper.[29]

Key rate, the number of secure bits distributed per second, is a critical factor to ap-
plications for quantum key distribution. BB84’s single photon communications means
classically encrypted optical communications, using bright laser beams, are orders of mag-
nitude faster. Fig. 4.2 plots out some recently obtained experimental quantum key rates.
As a rough guide, practical (channel loss >50%) quantum key distribution currently oc-
cupies the kilobit regime while classical communications typically have Gigabit speeds.

Quantum key distribution uses the fragility of quantum states to ensure security. Un-
fortunately this fragility makes the channel very susceptible to loss, greatly reducing its
capacity to carry information. A more robust alternative to the single photon state, that
retains quantum effects, is a bright, weakly-modulated coherent state—a continuous vari-
able (section 3.4.2). In Fig. 4.2 two of the fastest experiments shown are continuous
variable systems.[56][62]

4.2 Continuous Variable Quantum Key Distribution

Continuous variable quantum key distribution (CVQKD) was first proposed during
1999.[78]. It works by using weakly modulated coherent states, containing quadrature
modulations close to the quantum noise, so that the quantum noise is the dominant source
of noise on the signal.

By nature the quantum noise is uncorrelated between all attempts to measure it (sec-
tion 3.4.4), meaning any measurement by Bob and Eve affected by noise will be uncorre-
lated (although not necessarily different). Such a channel is ideally suited to use for secret
key distillation.
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Figure 4.2: Some recently obtained quantum key rates: Bethune00[9]; Bourennane99[11];
Gobby04a[30]; Gobby04b[31]; Gordon04[32]; Grosshans03[39]; Hughes96[46]; Hughes99[47];
Jennewein00[50]; Lance05[56]; Legre05[58]; Lodewyck05[62]; Lorenz04[63]; Marand95[64];
Nambu06[68]; Nielsen01[72]; Poppe04[77]; Ribordy00a[83]; Ribordy00b[84]; Stucki02[100];
Thew05[101]; Yuan03[113], Zhao06[114]. Broad ranges of assumptions are implicit in many of
these experiments, and so the comparison is only valid to within 1–2 orders of magnitude.
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The main advantages to CVQKD are that many coherent states can be sent in the
sidebands of a laser beam, equating to potentially Gigabit-magnitude raw data rates.
Under low losses each coherent state can contain many bits. Detection efficiency is also
much higher for bright states than for single photons. The main disadvantage of CVQKD
is that the security proofs are not yet quite as strong as for BB84,[41] which has been
shown to be absolutely secure under no assumptions other than that the fundamental
laws of quantum mechanics hold.[96]. These points will be further discussed as they arise
in the next sections.

Only three groups in the world have demonstrated CVQKD experimentally: the Aus-
tralian National University Quantum Optics Group[56] (the ‘ANU group’), the Erlangen-
Nürnberg Institute of Optics, Information and Photonics[63] (the ‘Erlangen group’) and
the Orsey Laboratoire Charles Fabry de l’Institut d’Optique[39] (the ‘Orsey group’). The
groups have collaborated at various stages of the development of CVQKD, but are cur-
rently pursuing the technology individually. The history of the ANU project involves work
done at both of the other groups. A discussion of this history will therefore be illuminating
for understanding their different approaches to CVQKD.

4.3 Project Background—CVQKD at the ANU

The coherent state scheme introduced in [78] was shown in [79] to be “not very secure”. A
squeezed state protocol, also proposed in [78] and security-analysed in [79], was shown to
be comparable to discrete variable QKD. A number of theory papers followed this work,
detailing other squeezed state-[44][19] and EPR-[82] based protocols.

In 2002 it was shown that coherent states could indeed be used for CVQKD.[38] The
protocols discovered to this point, however, were only secure for channels with less than
50% loss. Giving all the loss to Eve, they were not robust enough to distil a secret key
when Eve received more raw data than Bob.

Before the year was out two protocols for CVQKD with coherent states and greater
than 50% channel loss were discovered: Reverse Reconciliation (RR)[37] and Post-Selection
(PS)[98]. The protocols were subsequently implemented in experimental demonstrations
at Orsey (RR, 2003)[39] and Erlangen (PS, 2004)[63].

The experimental setup of CVQKD was simplified by the discovery in 2004 of
the Simultaneous Quadrature Measurement (SQM) protocol (informally called the ‘No-
Switching Protocol’), from a collaboration between the University of Queensland (UQ)
Centre for Quantum Computing Technology (CQCT) and the ANU group.[106]

The ANU experimental demonstration followed in 2005, distilling secret keys for chan-
nel losses of up to 90%.[56] The initial theoretical work for SQM considered RR,[106]
however the group later chose to implement PS first, with plans to compare it with
RR on the same data. At this point Cascade[13] and Universal Hashing[7] were the
only serious contenders for information reconciliation and privacy amplification respec-
tively. The Orsey and ANU group implemented these protocols for their experimental
demonstrations[39][56]; the Erlangen group reported a “theoretically predicted” secret
key rate based on their Post-Selected data.[63]1

1Although a more recent publication from Orsey also reports secret key rates based on predictions for
“perfect” information reconciliation and privacy amplification protocols[62]
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4.3.1 Direct/Reverse Sliced Reconciliation

Secret key distillation techniques, in conjunction with proofs for information-theoretic
bounds on Eve’s information, lead to the introduction of secure coherent-state CVQKD
protocols.[104][20][38]. The direct sliced reconciliation protocol reported in [104] shows
how transmitted continuous Gaussian variables can be discretised into sets (‘slices’) of
binary strings that are partially correlated between Alice and Bob (and also possibly
Eve). The partial lack of correlation is caused by channel noise and Eve’s interference,
resulting in Bob not receiving exactly what Alice sent.

An arbitrary error correction protocol can then be used to completely correlate the
strings, although the protocol should be chosen to minimise the additional information
given to Eve. In direct reconciliation, Bob corrects the errors in his strings based on either
public interactions with Alice or additional, redundant information present in her initial
transmissions. The reconciliation process gives further information to Eve, either through
the interactions or the redundant information. To ensure secrecy the strings must finally
be processed with a privacy amplification algorithm (section 4.3.5) before use.

Privacy amplification amplifies an information advantage (more Alice-Bob correlations
IAB than Alice-Eve correlations IAE), making IAE arbitrarily small. Since all loss on a
channel is assumed to have been read by Eve, such an information advantage is only
available for channels with losses of less than 50%. Actually, this figure is smaller, since
it assumes that the remaining 50% of the channel is error-free. If the channel produces
errors then error correction must be employed, which gives even more information to Eve.
If the sum of Eve’s information is greater than 50% then a direct information advantage
is unobtainable.

Reverse reconciliation was proposed by the Orsey group to counter this shortcoming.
The sliced reconciliation is performed in reverse: Alice uses the error correction protocol
to correct her strings to match the errors in Bob’s strings. It is clear that Alice will
always be able to make a better guess than Eve as to Bob’s measurements, even with
channel loss greater than 50% (although the advantage approaches zero under very high
losses). Therefore an information advantage can almost always be leveraged—resulting in
a practical protocol for CVQKD.[37][39]

4.3.2 Post-Selection

In a collaboration between the Erlangen group and UQ, another protocol for creating a pre-
SKD information advantage with >50% channel loss was reported in 2002.[98] Essentially,
Bob calculates the states post-transmission for which his measurement was more favourable
than Eve’s. ‘Favourable’ refers to Shannon’s result that a precise measurement contains
more information than an imprecise measurement.[91] Alice and Bob then select these
states for further secret key distillation, since they have an information advantage which
can be distilled and amplified to produce a shared secret key.

The transmitted states are quadrature-modulated coherent states |α + δX+
A + δX−

A〉,
with the quadrature modulations δX±

A = x±A continuously drawn by Alice from two zero-
mean Gaussian distributions of variance V ±

A . See section 3.4.2 for a treatment of modulated
coherent states.

The optimal noncollective attack (section 4.3.8) for Eve is to replace the lossy channel
with her own lossless channel (perhaps using teleportation) and split off a fraction 1− η.
She would then pass on the remaining η to Bob, where η is the channel transmission
expected by Bob without Eve’s interference.[38]
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Alice now announces the absolute values {|x±A|} of her states, allowing Bob and Eve
to narrow down their measurements x±B, x

±
E to ±x±A. In this case the maximum possible

information IAE Eve can obtain for a given state is given by the protocol-independent
Levitin bound,[59]

IAE(X±
A) =

1
2

(
1 +

√
1− z2

)
log2

(
1 +

√
1− z2

)
+

1
2

(
1−

√
1− z2

)
log2

(
1−

√
1− z2

)
,

where

z(X±
A) = e−(1−η)X±2

A

(4.3.1)

is the quadrature overlap function.
Alice and Bob must have a prior agreement on their communication protocol—how

Bob will interpret the coherent states as binary data. A simple choice is to define positive
displacements in phasespace as the binary digit ‘1’ and negative displacements as ‘0’. The
probability of Bob’s measurement being in error is calculated in [98] as

p(X±
A,X

±
B) =

(
e−4|X±

AX±
B |
√

2η
)
/
(
1 + e−4|X±

AX±
B |
√

2η
)
. (4.3.2)

The mutual information IAB between Alice and Bob for a given transmitted state X±
A and

a given measurement X±
B can be determined by Shannon’s formula for a binary channel

with Gaussian noise (section 2.2.2),

IAB(X±
A,X

±
B) = 1 + p log2 p+ (1− p) log2 (1− p) . (4.3.3)

An information advantage over Eve exists for each element {X±
A,X

±
B} such that

∆I(X±
A,X

±
B) = IAB(X±

A,X
±
B)− IAE(X±

A) > 0. (4.3.4)

If Bob post-selects only states for which ∆I > 0 then, after interpretation, he and Alice
will share binary strings that have a greater degree of correlation than Alice and Eve’s
strings. The ∆I can be made to approach the Shannon capacity for a 4-state channel
by segmenting the phasespace into ‘banded information channels’ (BICs). This allows
different areas, having different error rates, to be post-selected with individual sets of
parameters.

After post-selection the advantage can then be leveraged by secret key distillation
techniques to create an arbitrarily secure key.[98][56]

4.3.3 Maurer’s N-bit Repeat Code

Another technique for distilling an information advantage is by Maurer’s N -bit Repeat
Code.[65] It differs from Post-Selection in that it requires Alice and Bob to possess discre-
tised data strings. It can be used to amplify ∆I from a set of post-selected data or, more
generally, to distil an advantage from the partially correlated strings resulting from any
physical communication process where Bob and Eve are affected differently by noise.

The protocol is described in detail in [65]. A basic overview is presented here. After
Bob and Eve have received their partially correlated strings, Alice randomly builds a string
CA from codewords CN , selected from the set of codewords C. Each codeword contains N
repeated elements of the communication alphabet. For example, for N = 3 and a binary
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communication alphabet, C = {000, 111}.
Now, say Alice had previously transmitted the binary string SA and Bob measured

SB. Alice performs a bitwise addition (equivalent to the Exclusive-Or, or XOR, operation)
between SA and CA and sends the result, SA ⊕ CA, to Bob via the classical channel
(requirements on the classical channel are discussed in section 2.2). Bob takes the string
SA ⊕ CA (he can assume he has received SA perfectly, since classical communications
techniques can be used to achieve an arbitrarily low probability of bit-error) and performs
the XOR operation with SB.

If SA and SB were perfectly correlated, Bob will recover CA from this operation. If
not, Bob’s string CB = (SA ⊕ CA) ⊕ SB will contain elements not in C. Bob sends the
indices of these elements to Alice and they both discard the corresponding elements of
CA, CB to produce a correlated string C. The redundant bits in each codeword are also
discarded. For example, say Alice sent

SA = 010 101 011 010 101 001 010 010 110 101

and Bob received

SB = 010 001 011 010 001 001 010 000 110 101.

Alice builds CA, performs SA ⊕ CA, and sends the string to Bob. As long as her choice
of codewords is completely random, the security of SA will be maintained (the mutual
information between SA and (SA ⊕ CA) will equal zero).

SA = 010 101 011 010 101 001 010 010 110 101

CA = 111 000 111 111 000 111 000 000 000 111

SA ⊕ CA = 101 101 100 101 101 110 010 010 110 010

Bob performs CB = (SA ⊕ CA)⊕ SB and examines the result,

(SA ⊕ CA) = 101 101 100 101 101 110 010 010 110 010

SB = 010 001 011 010 001 001 010 000 110 101

CB = (SA ⊕ CA)⊕ SB = 111 100 111 111 100 111 000 010 000 111

It can be seen that elements (CB)2,5,8 6∈ C. After Bob communicates this to Alice over the
classical channel, they discard (CA)2,5,8 and (CB)2,5,8 respectively. This leaves them with

CA = 111 111 111 111 000 000 111

= CB

= C.

And discarding the redundant bits gives

C = 1111001.

The protocol may be run over several rounds, as it can be seen that if all the bits in a
given N -length element is measured incorrectly a valid codeword will still be produced—so
errors may still be present in the final strings. Another error correction protocol may also
be employed to further correlate the strings.
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Using this protocol Alice and Bob can distil a greater information advantage over Eve.

4.3.4 Cascade

Cascade[13] is an information reconciliation protocol, designed to bring Alice and Bob’s
strings SA, SB into practically perfect correlation while disclosing as little as possible
information to Eve. Information reconciliation protocols differ from advantage distillation,
as the cost of efficiently reconciling data is a slightly decreased information advantage.

Cascade was initially the reconciliation protocol of choice for all three CVQKD
groups.[38][104][56] It is efficient to implement and at the time of publication compromised
less information to Eve than the best available standard error correction techniques.[13]
It works as follows.

Alice and Bob choose the number of passes for the protocol based on the characterised
error probability of the channel. They then choose a block size for the pass, k1, and
divide their strings into blocks of k1 bits. Alice then calculates a parity bit for each block
(protocols for calculating the parity bit, with minor variations, usually involve taking the
binary sum, modulo 2, of the block) and sends it to Bob.

Bob calculates the parities of each of his blocks, and compares them to Alice’s parities.
For every block having a non-matching parity, Alice and Bob split it in half and repeat
the process. Eventually they will locate the bit error, enabling them to correct it.

Each pass will identify blocks that have an odd number of errors. After each pass
Alice and Bob agree on a random function to select bits for the pass’s new set of blocks,
essentially scrambling the order of bits. This spreads the remaining errors in SB across
the entire string, so that fewer rounds per block are needed to find the errors.

A bound on the information compromised to Eve is given in [13]. Obviously this bound
will be dependent on the number of passes, and the number of rounds per pass required
to correlated SA and SB. This is in turn dependent on the number of errors in SB, which
is dependent on the properties of the quantum communication channel. For high loss
channels, not only are more bits initially lost due to the channel, but in the correlated
string S more have been compromised due to the reconciliation process.

4.3.5 Universal Hashing Privacy Amplification

Privacy amplification is the art of distilling highly secret shared information from a larger
body of shared information that is only partially secret.[7] Alice and Bob begin with a
perfectly correlated n-bit string S, for which Eve knows a string V containing at most
t < n bits of information about S. Privacy amplification allows Alice and Bob to decide
on a string K of r bits, of which Eve’s knowledge is arbitrarily small. It works even if
Alice and Bob do not know the details of the joint distribution PSV or Eve’s distribution
PV .

Privacy amplification was linked to the information reconciliation layer of secret key
distillation by Cachin and Maurer, who considered both the information obtained by Eve
during the initial transmission and the information leaked to Eve during the reconciliation
process. The latter is known as ‘side information’ and contributes to Eve’s knowledge via
an auxiliary string U , which gives Eve k bits of information about S.[17]

Alice and Bob obtain an initial string K ′ by applying a universal hashing function[18]
g to S. g is randomly chosen from a class of universal hashing functions G. The definition
of a class of universal hashing functions is given below. The effect of hashing S into K ′ is
to spread Eve’s uncertainty of specific bits in S over the entire length of K ′.
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Definition A class G of functions A → B is universal if, for any distinct
x1, x2 ∈ A, the probability that g(x1) = g(x2) is at most 1/|B|, when g

is chosen from G according to the uniform distribution.

The ANU group uses G = GF(q)[x], the set of all polynomials a0+a1x+a2x
2+· · ·+aqx

q,
where the coefficients ai are elements of the Galois field GF(q) (see standard algebra texts
on finite fields). The hashing function is(

Sp
0 + Sp

1x+ Sp
2x

2 + · · ·+ Sp
qx

q
)

×
(
a0 + a1x

1 + a2x
2 + · · ·+ aqx

q
)

(mod xq + xb + 1) (4.3.5)

Sp
0 , . . . S

p
q are the bits of the pth q-size block of S. Each coefficient ri is chosen randomly

from GF(q) to select g from G. The function retains the polynomial order q. The result
is then

f0 + f1x+ f2x
2 + · · ·+ fqx

q, (4.3.6)

with the new coefficients fi, dependent on every bit in Sp, forming the hashed string
K ′.[93]

Alice and Bob now bound Eve’s knowledge of the correlated string K ′ by calculating
her Rényi entropy, based on her knowledge of the initial string S and side information
U . Rényi entropy is used since the existence of eavesdropping strategies reducing Rényi
entropy significantly more than Shannon entropy was shown in [7]. It is defined (for a
binary variable X) as

R(X) = − log2 Pc(X) (4.3.7)

where Pc(X) is the collision probability, the probability that X takes on the same value
twice in two independent experiments

Pc(X) =
∑

x∈{0,1}

PX(x)2. (4.3.8)

It can then be shown that with probability of at least 1 − 2−s Eve’s total Rényi entropy
is given by

R(K ′|V,U) ≥ t− 2k − 2s (4.3.9)

where s is a chosen security parameter. Furthermore, Alice and Bob can decide on r bits
of K ′ to use as a secret key K, about which Eve’s knowledge is less than

2r−(t−2k−2s)

ln 2
bits. (4.3.10)

For absolute security s and r must be chosen such that Eve’s total knowledge of K is less
than one bit.

4.3.6 Simultaneous Quadrature Measurement

Simultaneous Quadrature Measurement (SQM), or “No-Switching”, was introduced by
Weedbrook et al in 2004, at the ANU.[106]. It involves simultaneously measuring the am-
plitude and phase quadratures, rather than randomly switching between them, to establish
Alice and Bob’s strings of ‘raw data’ for input to a secret key distillation process.
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In a switching protocol (discrete or continuous) Alice and Bob randomly switch mea-
surement bases (or state manipulation), and later discard states for which their bases were
not the same. Before the introduction of SQM this switching was thought to be essential
to security. This was shown to not be the case, and that for CVQKD the SQM key rate
was higher than for an equivalent switching protocol, approaching double for large signal
variances and high channel efficiency.[106][107]

The SQM protocol simplifies the experimental configuration, since a single phase-locked
loop can be used to continuously detect both amplitude and phase quadratures. Randomly
switching quadratures requires precise phase control of the local oscillator (which is of
course possible with good experimental design), but also time. The Orsey group recently
reported a quadrature switching time of 1 µs.[62] The Erlangen group switch between
polarisation state measurement bases and have reported an effective switching time of 500
µs. SQM is currently only used by the ANU group.

While the SQM technique causes some signal loss due to the loss of precision mandated
by the uncertainty principle, this loss is within Bob’s station and so does not need to be
attributed to Eve.

4.3.7 Second Generation Protocols

The ANU and Orsey groups are currently investigating alternatives to some of the basic
secret key distillation layer protocols presented thus far.[62][57][93] These alternatives can
be considered ‘second generation protocols’, since they have been published more recently
than the main body of SKD literature and promise higher key rates.

• Liu’s et al Advantage Distillation

• M -state Post-Selection

• Turbo codes

In 2003 Liu, Van Tilborg and Van Dijk published a protocol linking the advantage dis-
tillation and information reconciliation phases of SKD.[61] The ANU group is investigating
an implementation of this protocol. Initial results show that it may produce up to 50%
more key than the current combination of Maurer’s N -bit Repeat Code and Cascade.[93]

The Post-Selection data rate can be further increased by post-selecting states from a
M -ary Quantum Quadrature Amplitude Modulation (QAM) communication protocol.[53]
The ‘M -state’ protocol, currently being developed by the ANU group, improves on previ-
ous versions of Post-Selection by increasing the number of distinguishable coherent states
from 4 to M (M = 4, 9, 16, 25 . . .).[57]

Turbo codes are a forward error correction technique currently being used by the Orsey
group.[62] Forward error correction differs from the interactive style used by Cascade. In-
stead of Alice and Bob interactively determining a correlated substring from their shared
information, Alice includes enough redundancy in her initial transmission for Bob to cor-
rect all the errors. It was shown in [75] that Turbo codes are superior to Cascade for many
situations.

4.3.8 CVQKD Security

The security of CVQKD is a difficult area to study, beyond finding the bounds on informa-
tion explicitly compromised to Eve during a protocol’s operation. The various theoretical
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analyses have not yet been drawn together for a conclusive proof-of-security, as in Shor
and Preskill’s proof for discrete variable QKD.[96]

Various studies on CVQKD security[79][40][49][41] examine assumptions about Eve’s
inability to perform a certain type of attack. Importantly, these assumptions are distinct
from classical proofs of computational security, in that Eve is always given unlimited
(classical) computational resources. In many cases, applying stronger assumptions simply
leads to a lower secure key rate.

For example, if it is assumed that Eve has access to a quantum memory (the construc-
tion of such a device has not yet been reported by any group in the world) then a class
of attacks called ‘collective attacks’ are available to Eve. In a collective attack Eve uses
her quantum memory to store the states she has intercepted without measuring them,
until Alice and Bob have conducted their reconciliation. Grosshans examines some of the
circumstances for which coherent state CVQKD is still secure assuming collective attacks
in [41]. An analysis of CVQKD security is beyond the scope of this thesis, apart from the
following point.

Thermal State Attack

One security assumption currently relevant to the ANU group is that Alice’s transmissions
are perfect coherent states. In [56] they reported a (symmetric) quadrature variance of
1.01± 0.01 with respect to a minimum uncertainty state.

Section 3.4.2 describes how states with symmetric variances greater than one (thermal
states, or impure coherent states) contain both quantum and classical noise. Section 3.4.4
describes how when a beam is split, say between Bob and Eve, the classical noise is
correlated while the quantum noise is not.

If Alice transmits an impure coherent state, and therefore Bob expects an impure
coherent state, Eve can measure the classical noise without affecting Bob’s measurement.
Eve then gains an amount of information about Bob’s measurements that will not be taken
into account when her bounds are calculated, compromising the security of the final key.

4.4 Project Plan—Second Generation SQM

The previous section presented an overview of the ANU group’s progress in CVQKD to the
point of my Honours commencement. The experiment by Lance et al reported in [56] can
be considered the group’s first generation CVQKD-SQM experiment. After the experiment
was completed it was pulled apart and moved, in pieces, to another laboratory.

The group’s plan was to rebuild the experiment with some improvements to increase
the key rate and security—a second generation experiment. The previous experiment
had been built in the gravitational wave detection facility on a high-quality optics table,
meaning the experiment was relatively free of vibrational noise. The new lab (Fig. 4.3),
situated on the first floor of the department building and with a lower quality table,
was intended to bring experimental ambient conditions slightly closer to those present in
real-world applications.

Following the second generation experiment, the group would change laser wavelength
from 1064 nm to 1550 nm, being the optimal frequency for optic fibre transmission. A third
generation experiment would be built, using a similar design to the second generation, to
test CVQKD-SQM over long distances of fibre (20–50 km).
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Figure 4.3: The new quantum cryptography laboratory. The Mephisto laser, not quite unpacked,
can be seen in the foreground.

Features of the second and third generations are discussed in the following sections.
Ambitiously, I set out to build both experiments on the two tables in the new quantum
cryptography laboratory. While rebuilding the Lance et al experiment I undertook the
purchasing of a 1550 nm laser, 1550 nm optics, optic fibre, fibre coupling optics, mounts
and electronics.

Unfortunately (perhaps fortunately?), the 1550 laser arrived four months late. At the
same time, numerous difficulties occurred in building the second generation experiment
and so eventually I have had to pass on responsibility for building the third generation
experiment to my successor. My work on the second generation experiment is detailed in
Chapters 5 and 6; my work on the third generation experiment is reported in section 7.1
as part of my discussion on future directions for CVQKD at the ANU.

4.4.1 Optical Noise Reduction

Section 5.2 shows how a mode-cleaning cavity can increase the purity of a coherent state.
The thermal state attack discussed in section 4.3.8 can therefore be defeated by the addi-
tion of a suitable mode-cleaning cavity to the experiment.

The first generation experiment was also troubled by spikes of noise below 10
MHz.[56]Fig. 1(inset) A suitable mode cleaning cavity can reduce the laser noise to the
quantum noise limit at much lower frequencies than this.

The first milestone for the second generation experiment was therefore to design, build
and operate a high-finesse mode-cleaning cavity, in order to reduce laser noise. The meth-
ods and results for this milestone are detailed in Chapter 5.

4.4.2 Bandwidth Increase

Another way to increase the key rate for CVQKD-SQM is to increase the modulation
bandwidth, so that more raw information can be sent with the laser. The first generation
experiment used a 17 MHz modulation band from 33 MHz to 50 MHz. The signal band
was lower bounded by low-frequency detector roll-off and upper bounded by the 100 Msps
data acquisition system (the maximum frequency that can be sampled at 100 Megasamples
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is 50 MHz[76]).
For the second generation experiment the acquisition system was upgraded to 200 Msps

and detectors with a flatter response to a lower frequency were built. This meant nearly
the full 100 MHz bandwidth of the acquisition system could be used for key distribution,
approximately 5 times that of the first generation experiment.

The higher modulation frequencies brought in another problem. From approximately
80–110 MHz is the FM radio band, and significant interference could be observed in this
frequency. This inductive noise could be suppressed with good shielding. Section 5.1.2
discusses the method and results of inductive noise suppression.

The second milestone of the experiment was therefore to rebuild entirely the first
generation experiment, using the mode-cleaned beam. Similar data would then be taken,
with the increased bandwidth, to compare key rates.

4.5 Summary

This chapter has discussed the development of quantum key distribution, from its begin-
nings with BB84 to the current work in continuous variable QKD. The story of the ANU
Quantum Optics Group’s efforts in CVQKD is told, along with the major protocols in
use. The evolution of the group’s secret key distillation model is described, with some
educated speculation, in Table 4.1.

Year Measurement Advantage Information Privacy
Distillation Reconciliation Amplification

2004 Simultaneous
Quadrature
Measurement

Reverse Reconciliation/Cascade Galois polynomial
hashing

2005 Simultaneous
Quadrature
Measurement

Post-
Selection/N -bit
Repeat Code

Cascade Galois polynomial
hashing

2006 Simultaneous M -state Post-Selection/ Galois polynomial
Quadrature Liu’s et al Advantage Distillation hashing
Measurement

Table 4.1: Evolution of the ANU group’s secret key distillation model.

After the success of the first generation experiment, the group planned to rebuild
it with a mode-cleaning cavity and higher bandwidth systems. These additions should
improve the security and key rate. The goal of my Honours project is to achieve these
improvements.

I set two milestones towards achieving this goal: install and run the mode-cleaning
cavity; and reproduce the experimental results of the first generation. By repeating the
experiment in this way both the integrity of the work and the technology itself can be
advanced.



Chapter 5

Optical Noise Reduction

This chapter details the work undertaken to reduce optical noise in the quantum key
distribution experiment.

5.1 Optical Quadrature Noise

5.1.1 Definition

‘Noise’ can be defined as the uncertainty of a measurement that results from some process
interfering with the measured variable or state. If Alice prepares a quadrature variable
X±

A, Bob will measure X±
B = X±

A + δX±
B where δX±

B is a variation from X+
A due to noise.

Therefore for each measurement Bob makes he can only be certain of the value to within
±〈|δX±

B|〉 of X±
B. The noise has made him uncertain of the exact value X±

A.
For this thesis noise will be considered having separate ‘classical’ and ‘quantum’ compo-

nents. Defining ‘quantum’ noise as the uncertainty in a measurement due to Heisenberg’s
Uncertainty Principle, ‘classical’ noise is then defined as noise from all other sources.

5.1.2 Sources of Classical Noise

Thermal Noise

Thermal noise, also called Johnson or Nyquist noise, is due to random motion of electrical
current carriers which increases with temperature. The current has a mean value of 0—
it is just as likely to flow in one direction as the other.[87]. By methods of statistical
mechanics, it can be shown that at a temperature T over a resistance R the Johnson noise
power spectral density is

S (f) =
4
R

hf

exp (hf/kT )− 1
(5.1.1)

at frequency f (k, h are Boltzmann’s and Plank’s constants).
For an electrical circuit of bandwidth B, and when f,B � kT/h = 6.25 THz at room

temperature, the noise variance is spectrally flat and equal to

4kTB
R

. (5.1.2)

Thermal noise is most apparent in this project as dark noise on photodetectors. Even
without illumination of the detectors, the signal of equation (5.1.2) can be found in the
detection band. Therefore the detector circuit must be designed to amplify the quantum
noise above the dark noise (which can then be observed by the techniques of section 3.4.4).

57
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The power difference between the amplified quantum noise and the dark noise is called
the clearance.

Mechanical Noise

Mechanical noise enters the experiments as undesired motion of the optics (particularly
mirrors). The motion is caused by acoustic vibrations travelling through the building
structure, laboratory floor, optics table and ultimately through the optics mounts. These
vibrations come from many sources, from people running along the corridor outside the
laboratory to seismic sources. Mechanical noise can be minimised by isolating the optics
table with pneumatic mounts, using good quality optics mounts and screwing them firmly
to the table.

Inductive Noise

Inductive noise is the coupling of electromagnetic fields present in the laboratory into the
laser pump, modulation, locking or detection circuits. Interference can be broadband or
single-frequency, but inductive noise from a single source is usually limited to a small part
of the spectrum. We found three major sources of inductive noise in the cryptography
laboratory:

• Power supplies (50 Hz)

• FM radio (80-110 MHz)

• Modulator balun (modulation frequencies)

The 50 Hz inductive noise, being much lower than than the cryptography detection
band, has little effect on operations provided it is not too strong. The radiofrequency (RF)
noise is a different matter, since with the current acquisition system we can modulate at
up to 100 MHz. Suppression of the RF noise is crucial to obtaining maximum bandwidth.

Inductive noise and its suppression is well understood and covered in standard texts
on electrical engineering. Good grounding—having low-impedance connections from all
electrical equipment to a common zero potential—is the first step. This directs any induced
currents to the ground, rather than the acquisition equipment.

For stronger, high frequency interferences shielding is required. Using a result from
Gauss’ Law, it can be shown the electric field inside a conducting cavity is zero regardless
of external fields. If an appropriate shield of conducting material is built around a circuit,
the only fields inside the shield will be those due to the circuit itself.[36] Good circuit
design will then prevent the circuit from interfering with itself.

We suppressed the high frequency inductive noise by designing and building shields
for the detectors from copper sheet (Fig. 5.1). Aluminium foil was also used to shield the
modulator balun and cable connections. The shielding worked well, as Fig. 5.2 shows.

Laser Relaxation Oscillation

Section B.2 discusses how in a laser there are two processes producing photons. Stimu-
lated emission produces the required coherent amplification while spontaneous emission
produces photons at random, averaging at the transition lifetime τ of the laser excitation
states.
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Figure 5.1: Detector RF shielding was achieved with a combination of folded copper sheet and
aluminium foil.
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Figure 5.2: Detector spectra with and without RF shielding. The shielding was very effective at
suppressing the FM radio noise to below the shot noise. It could not be suppressed entirely, as it
can still be seen above the weaker dark noise level.
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In the frequency domain this spontaneous emission produces a Gaussian intensity
modulation about 1/τ Hz, and is called the relaxation oscillation (since it is the gain
medium de-exciting without stimulation).

The relaxation oscillation can be suppressed by feedback-controlled intensity modula-
tion, in what is called a noise-eating circuit.[1] More information on feedback control is
found in section 5.5.

5.1.3 Mephisto Noise Analysis

To examine the Mephisto’s relaxation oscillation we built a balanced detection scheme
(section 3.4.4) using low-frequency detectors. We then spectrum analysed the sum and
difference signals (Fig. 5.3). The Mephisto incorporates a noise-eating circuit which can
be switched on as required. Fig. 5.4 shows its effectiveness in suppressing the relaxation
oscillation.
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Figure 5.3: Plot showing the Mephisto’s relaxation oscillation, detected by a low-frequency bal-
anced detection system.

It is clear from Fig. 5.3 that the relaxation oscillation is classical noise since it is greatly
suppressed in the difference signal (i.e. it is correlated on the two detectors). It is also
clear that at higher frequencies the laser is approximately quantum noise-limited, since
the sum and difference signal are equal (detector noise is uncorrelated). This is the case
for all single-mode lasers.

5.2 Optical Noise Reduction Using A Resonant Cavity

Resonant cavities can filter a laser’s spectrum to the quantum noise limit at low frequen-
cies, and can also improve the purity of the subsequent coherent state (since the cavity is
free from thermal noise sources present in the laser). In this thesis such a cavity will be
designated a mode cleaner, since it cleans frequency noise from the laser mode.
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Figure 5.4: Plot showing the effect of the Mephisto noise-eater in suppressing the relaxation
oscillation.

Calculating the design parameters of the cavity requires an analysis of its effect on
the quadratures variances of an input laser beam. When operating near the quantum
noise limit the classical analysis of a cavity described in section B.3 does not suffice. The
quantum transfer function for a cavity is derived in [1]. It involves a study of the cavity
equations of motion and consideration of how fluctuations propagate through the cavity.
For a low-loss cavity and single mode input, the amplitude quadrature transfer function
can be simplified to

〈∆X±2〉t(ν) =
κ2〈∆X±2〉i + (2πν)2〈∆X±2〉v

κ2 + (2πν)2
,

where

κ =
(1− g)c

2L
and

g =
√

exp(−βL)R1R2.

(5.2.1)

The transfer parameters are described in table 5.1.
From the transfer function the mode-cleaning properties of the cavity can be examined.

Importantly, a comparison between the variance of the output beam and the quantum noise
limit can be drawn against different transfer parameters. To simplify the calculations the
quantum noise limit is set to 1—so that 〈∆X±2〉v = 1 and 〈∆X±2〉t(ν) is in units of
vacuum quanta.

The first generation QKD experiment measured a quadrature variance of 1.01±0.01.[56]
Figs. 5.5a and b show that increasing the cavity reflectivity or FSR decreases the frequency
at which this thermal state would approach a coherent state.

The physical dimensions of a two-mirror confocal cavity can be reduced by using a
half-symmetric resonator (Fig. 5.6). Further improvement to cavity properties can be
made with the triangular design shown in Fig. 5.7. The non-normal incidence of the beam



62 Optical Noise Reduction

200 400 600 800 1000
Frequency (kHz)

1

1.002

1.004

1.006

1.008

1.01

V
ar

ia
nc

e
(q

ua
nt

a)

(a)

0.99999

0.99
0.98

QNL

0.999

200 400 600 800 1000
Frequency (kHz)

1

1.002

1.004

1.006

1.008

1.01

V
ar

ia
nc

e
(q

ua
nt

a)

(b)

L

0.5 L

0.25 L

QNL

Figure 5.5: Cavity power spectra, compared to the quantum noise limit 〈∆X±2〉v = 1, for varying
transfer parameters. The QNL is produced by setting 〈∆X±2〉i = 1, showing that a quantum noise
limited input will remain at the QNL. (a) Varying mirror reflectivities R (L = 0.84m, 〈∆X±2〉i =
1.01, β = 0.003). (b) Varying cavity path length L = 0.84m (R = 0.99999, 〈∆X±2〉i = 1.01,
β = 0.003).
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Parameter Description
〈∆X±2〉t(ν) Quadrature variance of the

transmitted beam at fre-
quency ν

〈∆X±2〉i Quadrature variance of the in-
put beam

〈∆X±2〉v Quadrature variance of the
secondary input beam (for a
mode cleaning cavity this is
generally vacuum)

β Round-trip loss coefficient
R1, R2 Reflectivities of input/output

mirrors, usually both equal to
R

L Cavity path length

Table 5.1: Description of the transfer parameters appearing in equation (5.2.1).

on the mirrors causes a polarisation rotation of any non-vertical polarisation component.
A non-vertical polarisation mode will not resonate unless the sum of the rotations satisfies
the regenerative condition (a polarisation eigenstate).

The cavity therefore has two polarisation modes: a low finesse vertical mode and a
high finesse horizontal mode. In either case the output polarisation is purely vertical or
horizontal. This design is also known as a planar ring cavity.

Using schematics based on a design developed in the Ginzton Labs, Stanford [103], we
had the departmental workshop build the ring cavity shown in Fig. 5.8, in order to mode-
clean the 1064 nm Mephisto beam. The cavity design parameters are listed in table 5.2.

Parameter Value
I/O Reflectivities 0.99999
Loss (per mirror) 0.001

Path length 840 mm
Waist 525 µm
FSR 357 MHz

FWHM 343 kHz
Finesse 790

Table 5.2: 1064 nm mode cleaner design parameters. The finesse is based on a slightly more
rigorous analysis of the cavity than is presented here.[67]

5.3 Mode Matching

When a mode of oscillation in one oscillator (free space laser field) excites a mode in
another oscillator (cavity field) the two modes are said to be coupled. The quality of
coupling—how closely the modes match each other, and the extent of loss due to the
transfer mechanism—determines how much power is coupled from one to the other. To
obtain maximum transmission through a cavity, then, the free space mode must match
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L

Figure 5.6: A half symmetric resonator with effective path length 2L.

Figure 5.7: A triangular resonator.

Figure 5.8: 1064 nm mode cleaning cavity
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the cavity mode as closely as possible, causing the cavity to resonate.
Matching waists (size and position) are required for spatial mode matching - ensuring

the beams have the same shape. The lens equations (3.3.2) and (3.3.3) allow calculations
to be made for combinations of lenses that will produce the desired waist. Once the lenses
have been placed, however, the positioning must usually be fine-tuned by physically mea-
suring the beam waist, adjusting and repeating. It is essential for good cavity transmission
that the spatial modes match as closely as possible. Practical techniques of beam waist
measurement are discussed in section 5.4.

Since this is a triangular cavity, the input beam must be matched to either low or
high finesse polarisation modes. The polarisation of the input beam can be rotated with
a half-wave plate.

The cavity length can be piezoelectrically adjusted to phase-match the cavity and free
space modes. The length can be either ‘scanned’, where the mirror is moved back and
forth in sawtooth fashion in order to briefly cross a resonance, or it can be ‘locked’. In
this case electronic feedback is used to keep the cavity length locked on resonance in the
face of thermal and laser drift.

This cavity design employs a push-pull piezoelectric transducer (PZT) system
(Fig. 5.9), the first such implementation in the department. The goal of the design was to
eliminate the low frequency resonance encountered in the past with a single PZT design
(low frequency resonances adversely affect locking stability). Section 5.5.2 examines the
success of the new design.
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Figure 5.9: Piezoelectric push-pull mode cleaner design. The control voltage is reversed on one
of the PZT actuators so that one compresses as the other expands.

5.4 Spatial Mode Matching

The ability to accurately measure the size and position of a beam waist is crucial to spa-
tially mode matching a free space propagating beam into a cavity. The general procedure
for spatial mode matching is listed as follows:

1. Measure waist size and position of beam

2. Calculate position(s) and focal length(s) of lens(es) required to shape measured beam
into cavity mode

3. Repeat as necessary
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5.4.1 Beam Profiling

I used three different methods to make beam waist measurements: CCD camera beam
profiling; razor blade curve profile fitting; and razor blade 84-16 power measurement. I
settled on the 84-16 method for reasons to be made clear shortly.

Each method only measures the beam width at a particular point z along the path
of propagation. A number of such measurements must be made and the waist either
interpolated or extrapolated from the data. I wrote a Mathematica script to fit such data
points to the expression for a Gaussian beam’s width

W (z) = W0

√
1 +

(
λz

πW 2
0

)2

(5.4.1)

which produced an estimate of the waist size and position. Fig. 5.10 is example of such a
fit.
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Figure 5.10: Beam width measurements fitted to the expression for the width of a Gaussian
beam. This set of data measures a fitted waist of 29µm at z = 48mm.

CCD Camera Beam Profiling

Using a CCD camera we can examine the cross-profile of the beam at a particular point
z along the length of propagation. Software running on the computer connected to the
camera can determine the width of the beam in the X and Y axes. The problem with
the profiler we used was that it had a small dynamic intensity range at 1064 nm, and so
produced values with very high deviation from the width equation (5.4.1).

Razor Blade Curve Fitting

After discarding the CCD profiler we mounted a razor blade onto a translation stage
(Fig. 5.11). By moving the blade across the beam we can measure the change in power on
a power meter mounted behind the blade.

This process corresponds to integration of the Gaussian cross-section, and so, using a
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Figure 5.11: Razor blade mounted on a translation stage. The blade can be moved across the
beam with 10-µm precision.

Mathematica script, power measurements taken can be fitted to the Gaussian integral

P (x) =
1
2

(
1− Erf

(√
2x
W

))
(5.4.2)

where

Erf (ξ) =
2√
π

∫ ξ

0
exp

(
−t2
)
dt (5.4.3)

is the error function. The beam width W can then be determined from the fit. A sample
plot of data and fit is shown in Fig. 5.12.
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Figure 5.12: Power measurements (normalised) taken by moving a razor blade across the beam.
The solid line is the fitted curve, in this case finding a beam width of approximately 660µm.
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Once enough beam width measurements have been taken the widths can be fitted to
the width equation 5.4.1 to find the size and position of the waist. The main disadvantage
of this method is the number of data points required. A single profile measurement can
take 20-30 minutes so if five to ten profiles are taken, making a single waist measurement
can take several hours. This time is again multiplied by the number of times the waist
measurement is revisited after a lens adjustment, to a point where it could be considered
an impractical technique.

Razor Blade 84-16 Power Measurement

Substituting x = ±1
2W into equation 5.4.2 gives P = 0.841 and 0.159. Simply, as the

razor blade integrates across the beam the power will be increased to 16% and then 84%
of its full value as the blade passes the two points delineating the beam’s width. Fig. 5.13
shows these points on the integral curve.
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Figure 5.13: The distance between the points at which a razor blade blocks 84% and 16% of
beam power is the beam width.

The advantage of this method over the curve fit method is the number of data points
taken: three (100%, 84%, 16%) instead of many. With some practice we could measure a
beam’s waist using this method about as quickly as it had taken with the CCD profiler.
This method is also accurate—when I compared an 84-16 measurement to a curve fit
measurement the difference was only 0.9%.

5.4.2 Lens Placement

There are many combinations of lenses that will convert one beam shape into another.
When choosing a combination I took two factors into account:

• Total distance between existing beam source and cavity waist

• Rate of change of waist size/position due to change of lens position

The total mode-matching distance should be minimised as much as possible to avoid
taking up large amounts of space on the experiment table. Increasing the number of
lenses tends to decrease the mode-matching distance, since lenses are only available with
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set focal lengths which reduces flexibility in their placement. The rate of change of waist
size should not be too flat, otherwise large changes to lens positions are needed to fine-tune
the waist size.

I wrote a Mathematica script to calculate waist size and position for a two-lens com-
bination. There a number of parameters that can be varied to shape the beam, shown in
Fig. 5.14.

By holding f1, f2 constant I could produce graphs as shown in Fig. 5.15 to find the
optimal combination of lens positions for those focal lengths. These graphs were useful
in the fine-tuning process as well, since they give an understanding of how the beam will
behave under small lens displacements.

5.4.3 Alignment

The final step of spacial mode matching is aligning the (now correctly shaped) beam into
the cavity. We used an infrared camera while scanning the cavity to observe the output
beam while adjusting beam-steering mirrors to align the input beam. Initially the output
was a mixture of many TEM modes. With further alignment we could cause the TEM00

to dominate.
Once aligned we recorded the behaviour of the beam reflected from the cavity as the

length was scanned, in order to measure the cavity finesse. As it passes through resonance
the beam will be coupled in to the cavity, and the reflected power approach zero. Fig. 5.16a
is a wide view of the scan, showing a full FSR of the cavity. Fig. 5.16b is a close up of one
of the peaks, showing the FWHM.

Several sets of measurements were taken, the most precise being 836 ± 53, a range
encompassing the design value of 790. Cavity coupling efficiency was measured at 96%.

5.5 Feedback Control of Cavity Resonance

Producing a continuous transmitted beam from a cavity requires that it be locked on
resonance, even if the cavity length changes or the laser wavelength drifts. The 1064 nm
cavity was built from aluminium and so changes in temperature affect its length. This
thermal drift can be suppressed by building the cavity from invar - an alloy that does not
change size with temperature.

Laser drift is still unavoidable, due to minor temperature changes in the laser resonator.
To keep the cavity on resonance the end mirror must be continuously moved to adjust for
these changes. The process of continuously adjusting a parameter to achieve a constant
outcome is called control.

Control theory is covered in standard texts of electrical engineering, see for exam-
ple [33]. A summary of control theory in the context of quantum optics can be found
in [1]. There are four elements to a control system:

Plant which is the system to be controlled

Sensor which measures some property of the plant

Actuator which corrects the state of the plant in response to changes in the sensed
property

Filter which interprets the sensor signal for the actuator
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Figure 5.14: Beam shaping parameters with a two-lens combination: z0 and W0 are the waist
position and size of the beam to be shaped. z1,2 are the positions of the lenses and f1,2 the focal
lengths.
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Figure 5.15: Graphs showing the effect of two lenses (f1 = 75.6mm, f2 = 100mm) on the beam
emerging from the Mephisto laser (W0 = 225µm, z0 = −980mm from the front face of the laser)
(a) Waist size W against lens 2 position z2, with each curve representing a different position of lens
1 z1 (m). (b) Waist position z against lens 2 position z2, with each curve representing a different
position of lens 1 z1 (m).
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Figure 5.16: The cavity finesse can be measured by dividing the FSR (graph a) by the FWHM
(graph b). In (b) an Airy function was fitted to the peak to get a more precise result for the
FWHM.

In this set up the plant is the cavity length, the sensor is a split photodetector mea-
suring the reflected beam of the cavity, the actuator is the push-pull PZT system and the
filter a Proportional-Integral-Differential (PID) gain amplifier. Our work on establishing
the sensor and filter is presented next.

5.5.1 Sensor: Tilt Locking

The goal of a control sensor is to produce an error signal, called so because it indicates
how far the plant is from the desired state. An error signal is locally antisymmetric about
zero, with zero output when the plant is in the desired state.

The asymmetry means that the error signal will be positive for a disturbance of the
plant in one direction, and negative for the opposite disturbance. Thus a disturbance in
either direction—say the cavity becoming longer (shorter) than desired—can be corrected
with the appropriate action—expansion (compression) of the PZT.

There are a number of techniques for producing an error signal that is a function of
the cavity resonant condition. PDH phase locking, described in [26] and [1], is a popular
method. An alternative that requires less equipment is tilt locking [90][1] which was the
method used here.

Although the cavity can be aligned to cause almost complete domination of the TEM00

mode, a slight misalignment in the horizontal plane will cause a small amount of TEM10

circulating field. Since this mode is far off resonance it will be entirely reflected by the
cavity, and can be directed onto a split photodetector with the two lobes of the mode
aligned to the two halves of the detector (Fig. 5.17).

The split detector can produce a difference signal of the intensity measured by its two
halves. The modal interference conditions in the cavity are such that when it is resonating
on the TEM00 mode, the two lobes of the rejected TEM10 mode have equal amplitude and
the split detector difference signal is zero.

As the cavity drifts off resonance, one TEM10 lobe will decrease while the other in-
creases. The bias direction is dependent on the side of the resonance to which the cavity
drifts. The difference signal from the split detector will therefore be positive for one di-
rection of drift and negative for the other—an error signal. Fig. 5.18 is an example of the
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Figure 5.17: Tilt locking: The difference output on the split photodetector is an error signal
dependent on TEM00 resonance. The PID and High Voltage Amplifer (HVA) act as the filter to
convert the detector error signal into a PZT voltage.

error signal obtained from this cavity.

Figure 5.18: The tilt lock error signal. The top graph is the sum signal from the split detector,
with both TEM00 and TEM10 modes visible. The bottom graph is the difference signal. The
error signal as the cavity scans over its TEM00 mode is asymmetric about zero, with the zero
corresponding to mode resonance, as required. The TEM10 mode also produces an error signal,
with opposite polarity.

5.5.2 Filter: PID Controller

Once we could reliably produce an error signal from the split detector, the final step was to
ensure the PID produced a good quality control signal to the push-pull PZT actuator. The
PID is an amplifier with integrated gain at low frequencies, proportional gain at middle
frequencies and differential gain at high frequencies.

The gain must also roll off at high frequencies, be suppressed at any resonant frequen-
cies of the actuator system, and have a less than π phase shift at the unity gain point.[1]
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The unity gain point is the point in frequency space at which the gain value has decreased
to 1. The frequency-dependent nature of impedance, however, means a high frequency
signal travelling through the circuit will be phase shifted—possibly greater the π at the
unity gain frequency. Consequently, PID design is a complex process and a generic PID
must be customised to a particular system—as we discovered.

Our initial attempts to mode-lock the cavity found the locking to be unstable. To
analyse the system we built a Mach-Zehnder interferometer (Fig. 5.19) and chirped the
mode cleaner PZT (a ‘chirp’ is a sinusoidal signal with linearly increasing frequency over
time). The motion response of the mirror was recorded with the data acquisition system.
The Fourier transform of this response, divided by the Fourier transform of the chirp
signal, is called the actuator transfer function. The plot is shown in Fig. 5.20.
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Figure 5.19: Mach-Zehnder for analysing mode cleaner mirror motion. Lens L1 is placed to
counteract the diverging effect of reflecting the beam from the back of the mode cleaner mirror.
The PZT mirror was manually adjusted to keep phase lock for the duration of the chirp. The
resulting intensity variations on D1 are proportional to the mode cleaner PZT displacement.

It can be seen from Fig. 5.20 that the first actuator resonance was recorded at 17
kHz. This was a disappointing result since other single-PZT mode cleaners built in the
department have had first resonances of up to 25-30 kHz. The push-pull system was not
performing as hoped.

The next step of analysis was to measure the transfer function of the PID, to see if it
satisfied the conditions described earlier. We used a network analyser to observe amplitude
and phase response across the kHz spectrum and saw that the PID we were using, in its
current configuration, did not adequately suppress the 17 kHz resonance. This meant that
as the error signal oscillated about zero, the 17 kHz component was greatly magnified and
caused the cavity length to move out of the error signal locking region.

Elliptic Filter

Part of the PID circuit uses an elliptic filter to suppress such PZT resonances. An elliptic
filter suppresses a small part of the spectrum with a very sharp roll-off (see Fig. 5.21)—
an elliptic function. The circuit component values must be carefully chosen for the
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Figure 5.20: Frequency plot of the mode cleaner PZT motion in response to a chirp signal—the
actuator transfer function. The resonance is at 17.4 kHz.

filter to perform as desired (design and values can be found in tables from electronics
textbooks).[45][88]

We replaced the components in the PID elliptic filter with values generated from a
programme provided by James Dickson, and reanalysed the transfer function. Numerous
iterations of the filter were required before a suitable transfer function could be produced.

In the early designs we did not pay enough attention to finding precise component
values, resulting in a badly-matched filter that oscillated at 10 kHz. Later designs featured
a π phase delay before the unity gain point, also causing locking instability. Finally we
produced the transfer function shown in Fig. 5.21.

Butterworth Filter

At this point the PID suppressed the actuator resonance, but it still did not roll off
quickly enough at high frequencies for locking to be stable—a 40 kHz resonance seemed to
be causing further problems. The PID circuit design incorporates a low-pass filter which
we did not change. I built an additional low-pass Butterworth filter external to the circuit,
with roll-off beginning at 18 kHz, to suppress high frequency actuator oscillations.

The circuit design, and component values, was obtained from [45] and is shown in
Fig. 5.22 with the transfer function in Fig. 5.23. With the addition of this filter, our
cavity locking became stable enough for the experiment to continue.

5.5.3 Final Comments on Mode Locking

A number of other problems came up during our work on locking the cavity. The PID
had too much gain and so the amplifying circuits needed to be adjusted. The cavity end
cap design has a plate that is screwed to the end cap against the back PZT (Fig. 5.9). We
believe this plate was ‘rattling’, causing the 17 kHz resonance.
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Figure 5.21: Elliptic band-pass filter transfer function. ‘A Live’ shows the amplitude response,
with the maximum suppression at approximately 17 kHz. ‘B Live’ shows the phase response, with
a unity gain phase delay of approximately π/2.
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Figure 5.22: Circuit diagram for low-pass Butterworth filter, 3-pole π-configuration.
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Figure 5.23: Butterworth low-pass filter transfer function. ‘A Live’ shows the amplitude response,
with 3 dB roll-off at approximately 18 kHz and 15 dB supression at 40 kHz. ‘B Live’ is the phase
response, showing a smooth, gradual increase in phase delay along the spectrum.

We worked on tightening the back plate, although this had to be done very carefully
since uneven tension on the screws tilted the mirror, causing the beam to be clipped by the
walls of the cavity. The tightening had to be done while observing the cavity transmission
with an infrared camera.

Unfortunately, the Mach-Zehnder interferometer used to analyse the mode cleaner
transfer function had been dismantled before we tried to improve the back plate—the
transfer function of Fig. 5.20 was measured before the back plate was tightened. It is
likely that the first resonance has increased since tightening, possibly to a level higher
than can be obtained with a single-PZT actuator (this also means that the elliptic filter
in its current configuration is probably not doing very much). The verdict on the push-
pull system must remain inconclusive for the time being, since the problems we had with
this cavity put us many weeks behind schedule. Now that we could lock it, although not
perfectly, we immediately continued on to the main experiment.

paragraph on how well it cleaned the beam, graph of variances at different frequencies
against theoretical curve

5.6 Summary

This chapter has described the sources and effects of optical quadrature noise. The re-
laxation oscillation of the Mephisto 1064 nm laser was measured with and without the
noise-eating circuit. The quantum noise limit for quadrature measurement was calculated.

It was shown that resonant cavities offer the ability to mode-clean an impure coherent
state. Generally the quadrature variance of a laser will approach the quantum noise limit
with increasing modulation frequency. A cavity can speed this approach so that the beam
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becomes effectively quantum noise limited at a lower frequency. The functional behaviour
of the roll-off is determined by the cavity finesse.

To increase the purity of the laser coherent state from the previous generation QKD
experiment, a mode cleaning cavity was built by the departmental workshop. The cavity
featured the first push-pull actuator built in the department, although results proving the
advantage of this design are still inconclusive.

The techniques employed for the subsequent mode-coupling effort are described. The
coupling resulted in 96% transmission through the cavity, and a measured finesse of 836±
53, which compared well to the design value of 790.

Mode locking was undertaken with the tilt locking technique, using a departmental
PID design. Stable locking was achieved only after numerous iterations of PID circuit
component values, principally the elliptic filter design. At this point the quadrature vari-
ance was not available, as the remainder of the experiment needed to be running to make
this measurement.
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Chapter 6

Second Generation CVQKD-SQM

This chapter details the layout, conduct, results and analysis of the second generation
SQM experiment. As described in Chapter 5, the Mephisto laser was mode-cleaned with a
high finesse optical cavity. The cleaned beam was then used to rebuild the first generation
experiment with higher-bandwidth electronics.

Once the experiment was built, the beam was amplitude- and phase-modulated with
white noise from Agilent function generators. These were shown to be inadequate for the
task and a trial quantum random noise generator was used. Alice’s modulations and Bob’s
received signals were simultaneously sampled at 200 Mbps. The data was analysed with
a modified version of the analysis and post-selection code used for the first generation
experiment. Frequency division multiplexing was introduced into the analysis to counter
the effects of nonconstant gain across the spectrum.

6.1 Experimental Design and Methods

The design of the first generation experiment is broadly described in [56] and reported with
greater detail in [94]. Apart from the addition of the mode cleaner, detailed in Chapter 5,
the experiment remained largely the same. The mixing, locking and modulation techniques
described below are unchanged from the first experiment. The distance between Alice and
Bob was slightly shorter than in the first experiment (30 cm as opposed to 1 m) due to it
being built on a smaller table.

Initially the same detectors were also used. These detectors had a low frequency roll-
off from 30 MHz and a nonflat response between 33 and 50 MHz. This response meant
it was necessary for the detector transfer function to be characterised and applied to the
sampled data.[56] Halfway through the experiment we replaced the detectors with a new
design by James Dickson. The new detectors have a flat response to 400 MHz and low
frequency roll-off from 10 MHz down. Our characterisation is reported below.

The data acquisition system used in the first generation experiment had a 100 Mbps
sample rate. This was replaced with a 200 Mbps system. Thomas rewrote the LabView
acquisition programme to improve sampling performance and usability.

6.1.1 Table Layout and Optical Alignment

The layout of the experiment optics is depicted in Fig. 6.1. The electronics are described in
section 6.1.2, so the discussion in this section will be limited to the purpose and alignment
of the optics.

79
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Figure 6.1: Optics layout of the second generation experiment.
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Alice

Alice obtains laser light with the Innolight Mephisto 1200NE laser described in section 3.2.
We powered the diode with 1.8 A of current and kept a crystal temperature of 24.7◦C. This
combination is in the centre of a single-mode temperature regime for the laser (Fig. 3.9).
The beam from the Mephisto had a slightly elliptical polarisation which is linearised by
the quarter-wave plate following L1.

At 1.8 A of pump current the laser produces approximately 1 W of optical power
(Fig. 3.8). PBS1 is used to dump some of this power, since reducing the diode current any
further from the maximum of 2.4 A risks entering a regime of unstable laser operation.
Ultimately Alice only requires 40 mW of power since Bob’s detectors are in danger of
saturating past 10 mW.

The lenses L1 and L2 are used to shape the beam for in-coupling to the mode cleaner
(section 5.4). The mirrors following L2 are used to spatially align the beam to the mode
cleaner. The half-wave plate is used to align the polarisation of the beam to the the vertical
(low-finesse) mode of the cavity. Although vertical polarisation is emerging from PBS1,
minor imperfections in the table, cavity mirror mounts and PBS mean it must be adjusted
slightly for maximum transmission. The half-wave plate can also be used to access the
high-finesse horizontal mode of the cavity.

The split detector SD, measuring the reflected beam from the mode cleaner in-coupling
mirror, is used for the tilt locking (section 5.5.1). The locking loop is shown in Fig. 5.17
and again in Fig. 6.8. The characteristics and operation of the mode cleaner are described
in Chapter 5. In theory the beam exiting the cavity is quantum noise limited to relatively
low frequencies.

Lens L3 is used to re-shape the beam, in order that its new waist be between the
modulators and the beam wavefronts through the modulators be as near-planar as possible.
If the wavefronts are significantly non-planar then different parts of a given wavefront will
be modulated differently, due to the phase delay. This will in turn cause unintended
ellipticity in the beam and inefficient modulation.

PBS2 was initially used to dump more power from the beam so that Bob’s detectors
were not saturated. There are two reasons why we used a multi-PBS power-dumping
system. Firstly, changing the power entering the cavity often caused it to lose lock, and so
we required a means of changing Alice’s power without having to relock the cavity every
time. Secondly, if PBS1 was used to highly attenuate the beam, then the bad polarisation
(section A.2) becomes a significant component of the beam. By using multiple PBS to
gradually attenuate the beam this can be avoided.

After finding the Agilent noise function generators to be inadequate for modulation to
100 MHz, we installed a pair of detectors for measuring the quantum noise on the beam
exiting the mode cleaner. The flat response of the detectors and good shot noise clearance
(the power difference between detected quantum noise and detector electronic noise) made
them suitable as broadband quantum noise generators. Section 6.1.2 discusses this further.
PBS3 then became the second stage of power dumping, while detectors R1 and R2 provide
the initial white noise for Alice to send to Bob.

PBS4 is used to split the signal from the local oscillator. When distributing key, the
local oscillator contains about 38 mW while the signal contains 0.5 mW. Each day that
the experiment is run, however, it must first be aligned. Aligning the modulators requires
that the signal have full power, so during alignment it contains about 40 mW. The bad
polarisation in the signal from PBS4 is cleaned by the subsequent Glan-Thompson prism.
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The Linos Gsanger phase modulator is very sensitive to input polarisation. To align it,
a large sine modulation is applied and the sum signal from a subsequent balanced detection
is displayed on a spectrum analyser. For convenience we used Bob’s AB pair of detectors,
but in a complete implementation Alice would have to build her own balanced detection
to check her alignment. The displayed signal from the balanced detector is the amplitude
modulation being produced by the phase modulator. By adjusting the modulator mount
and input half-wave plate this signal can be minimised.

Misalignment of the modulator causes the beam to be unevenly modulated, resulting
in ellipticity and unwanted amplitude modulation. Similarly with the input polarisation
adjusted by the half-wave plate. It should be noted that in changing the input polarisation
there are two minima of amplitude modulation—one is when the beam is orthogonally
polarised to the modulation axis and very little modulation is actually occurring. The
other is when the modulator is producing as pure PM as possible, which is the required
situation for our experiment.

The beam exiting the modulator is linearly polarised and so only requires a quarter-
wave plate to create the circular polarisation required for amplitude modulation. The
amplitude modulator is identical to the phase modulator apart from a small PBS glued to
the end. As described in section 3.1 this combination is adequate for producing amplitude
modulation. The amplitude modulator cannot be immediately aligned since the homodyne
detection must be locked to distinguish between amplitude and phase. After the amplitude
modulator, the signal beam leaves Alice’s station. The local oscillator is a phase reference
for Bob and it is transmitted directly to him after being split from PBS4.

Eve

PBS5 attenuates the signal beam to simulate the channel losses of long distance com-
munication. As described in section 4.3.2, all such channel losses are given to Eve when
distilling the secret key. Therefore PBS5 also simulates Eve’s optimal noncollective attack
of replacing the lossy transmission line with her own lossless line, passing on the equiva-
lent amount of signal expected by Bob for the lossy line, and measuring the remainder to
increase her information. We do not simulate any of Eve’ noncollective active attacks since
they have been shown to be nonoptimal.[107] We cannot currently investigate a collective
attack since we do not have access to a suitable quantum memory.

Bob

Bob’s detection system is a double-homodyne for simultaneous detection of amplitude
and phase quadratures. The signal and local oscillator are equally split by BS2. The two
half-wave plates prior to BS2 are used to give the signal and local oscillator orthogonal
polarisations. The quarter-wave plate on the signal is used to linearise any ellipticity
remaining from imperfect alignment of the modulators.

The orthogonal polarisation is needed to prevent the signal and local oscillator from
mixing on BS2. Any parallel polarisation components will be demodulated in accordance
with equation (3.4.10), causing the AM component to leak onto the phase homodyne and
vice versa. The flip mirror and detector FD are used to check for mixing on BS2. By
scanning the PZT and applying equal power to the signal and local oscillator beam we
can check the maximum fringe visibility of BS2. The PZT scan allows a complete cycle of
local oscillator phase φlo. If any mixing is present then dark and bright fringes on detector
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FD will appear, as the beams cycle through constructive and destructive interference
conditions.

Despite the risk of premature mixing on BS2, this arrangement is quite efficient in
that Bob does not need a local oscillator, with individual phase control, for each homo-
dyne. Checking the BS2 fringe visibility is part of the alignment process for Bob’s station.
Concurrently we also must maximise the fringe visibilities on PBS6 and 7. It is on these
beam splitters that the quadrature demodulation occurs. Continuing to scan the PZT we
use the mirrors following it to align the local oscillator with the signal. By displaying any
DC output of the four detectors DA,DB,DC,DD we can calculate the fringe visibility by
the formula

Vmax − Vmin

Vmax + Vmin
, (6.1.1)

where V is the DC voltage on the detector. 100% visibility results when Vmin = 0, complete
destructive interference from the beams being perfectly aligned and out of phase. Typically
we could obtain 96–97% visibility, the remaining unmixed components mainly due to
imperfections in the wave plates. The quarter-wave plate before Bob’s CD detector pair
is used to create a quarter-wave phase difference between the signal and local oscillator.
Since post-BS2 the polarisations of the signal and local oscillator are still orthogonal, the
quarter-wave plate can be rotated so that only one beam is delayed. Therefore the essential
phase difference for demodulating PM information can be introduced (section 3.1). Fig. 6.2
shows how polarisation propagates through Bob’s station.

Finally, the combined but unmixed beams are rotated to 45◦ so that they are equally
split by PBS6 and 7 onto detectors DC,DD and DA,DB respectively. During alignment
the rotation angle must be checked in order to balance the detectors. This is achieved
by applying broadband noise to the amplitude modulator and viewing a large section of
spectrum of the difference signal from each detector pair (without the local oscillator).
If the detectors are balanced the difference signal will approach the quantum noise de-
tected by the pair (which can be accessed by displaying the difference signal without any
modulation). The half-wave plates prior to PBS6 and 7 must be rotated to minimise the
difference signal.

When the experiment is running, the local oscillator and signal are mixed on PBS6 and
7 so that the AB pair measure the demodulated amplitude quadrature, and simultaneously
the CD pair measure the demodulated phase quadrature.

6.1.2 Electronics and Data Acquisition

This section covers the electronics controlling and supporting the experiment, and how
data is taken.

Detector Characterisation

On receiving our new detectors we checked the linearity of their response to changes in
optical power. We did this by detecting a broadband noise amplitude modulation and
examining the DC response to changes in noise power. The resultant graphs, Fig. 6.3,
show that the detectors respond linearly to changes in optical power across a large part
of the spectrum.

We found the shot noise clearance of the detectors to be approximately 14 dB across
our spectrum of interest. The clearance can be seen in Figs. 6.5 and 6.6. High clearance
is important since Bob is detecting weakly modulated states, very close to the quantum
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Figure 6.2: Polarisation mixing for simultaneous quadrature demodulation in Bob’s station. Bob
begins by rotating the signal and local oscillator to orthogonality. They are then equally split on
BS2. For amplitude detection with the AB detector pair, the combined but unmixed beams are
rotated to 45◦ so that they are then equally split onto detectors DA and DB. The polarisation
splitting causes a component of each of the diagonally polarised beams to mix, demodulating them
prior to detection. For phase detection one of the beams is delayed by a quarter-wavelength before
a similar process occurs.
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Figure 6.3: Characterised linearity of our new detectors. We applied a broadband noise amplitude
modulation to the beam and measured the DC response to the noise power. The graphs show that
the detectors respond linearly to broadband changes in optical power. (a) AB pair (b) CD pair.
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noise level. The data rate would drop significantly if his measurements were contaminated
with the electronic noise of his detectors.

It can also be seen in Figs. 6.5 and 6.6 that the detectors have a very flat response
across our spectrum of interest.

Noise Modulation

An analysis of the post-selection information advantage equation (4.3.4) reveals that for
a particular channel transmission η, the information advantage ∆I is a function of Alice’s
noise modulation variance V ±

A . Therefore for a given η there is an optimal noise power,
shown in Fig. 6.4. In the experiment the modulation should be set to this optimal level
before sampling data.

0.2 0.4 0.6 0.8 1
Channel Transmission

0.5

1

1.5

2

2.5

3

O
pt

im
al

V
ar

ia
nc

e
of

A
lic

e
(Q

ua
nt

a)

Figure 6.4: Alice’s optimal modulation noise variance against channel transmission.

Fig. 6.5 shows the full 100 MHz acquisition spectrum of noise signal, shot noise and
detector dark noise when Alice is using an Agilent function generator to send broadband
noise on the amplitude quadrature. The flatness of the detector response to the quantum
noise is in marked contrast to the roll-off of the function generator from 30 MHz. Since
under normal operation Alice sends weakly modulated states, this 12 dB roll-off made
using the higher part of the spectrum unfeasible.

Section 2.3 describes how any cryptographic key must be drawn from a high-entropy
source. A continuous variable quantum random number/noise generator (QRNG) offers
the possibility of high-bandwidth random number generation from quantum vacuum fluc-
tuations. After trying several combinations of amplifiers we found that the quantum noise
detected by one of our new detectors could be amplified to the required levels for Alice’s
quadrature modulation (Mini-Circuits ZFL-500 preamplifier followed by a ZHL-1A high
power amplifier). We needed to put a 100 MHz low-pass filter before each amplifier since
with such wideband noise amplifier saturation is reached at relatively low powers. Fig. 6.6
shows Bob’s detected phase quadrature with Alice phase-modulating quantum random
noise.
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Figure 6.5: Bob’s detected signal while Alice modulates the amplitude quadrature with broadband
noise from the Agilent function generator. The sharp dips in power between 70 and 100 MHz are
an unwanted characteristic of a filter in the detection electronics, and can be neglected. The graph
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Figure 6.6: Bob’s detected signal while Alice modulates the phase quadrature with detected
quantum noise from the beam exiting the mode cleaner cavity. The remaining roll-off towards
higher frequency is due to the modulator. The QRNG detector was not RF shielded at the time,
and so the FM radio interference is present on the signal. Bob’s detectors are shielded and so
without the modulation (his detected shot noise), his spectrum is free of the interference.
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Interferometer Locking

Section 3.4.5 comments that vibrational and thermal noise can cause the phase of a homo-
dyne’s local oscillator to drift. Active feedback phase control is required in Bob’s station of
Fig. 6.1, to keep the signal and local oscillator in phase prior to beam splitter BS2. After
BS2 the local oscillator and signal are mixed for amplitude detection by the AB detector
pair, and simultaneously one beam is delayed by a quarter-wave for phase detection by
the CD detector pair.

Phase control of the local oscillator can be achieved by inserting an additional phase
modulation into the signal beam (recalling the electronic pictured in Fig. 3.17). The
frequency of this locking signal must be outside of the information modulation band, or
the information modulations would interfere with the locking (we used 2.1 MHz). The
phasor diagram in Fig. 6.7 describes the effect of this phase modulation over a full scan
of the phase difference between signal and local oscillator.

Phase

Phase

IntensityAmplitude

Phase

Error Signal

Figure 6.7: Phasor diagram of signal and local oscillator. For clarity the size of the signal and
locking modulation have been exaggerated. It can be seen that as the signal phasor rotates with
respect to the local oscillator, the phase difference produces a change in the DC intensity of the
detected photocurrent. More importantly, the pure PM of the locking modulation transitions to
AM, resulting in a nonzero error signal at the locking modulation frequency. The error signal can
be used to lock the signal to the local oscillator, or vice versa.

When the signal and local oscillator are out of phase the locking modulation becomes
a mixture of PM and AM. The AM is detected and becomes a modulation on the detector
photocurrent at the locking signal frequency. The phase difference also causes the DC
photocurrent to vary, as shown by the intensity plot in Fig. 6.7. Using a mixer the
original locking signal down-mixes the modulation to a DC voltage—the error signal. The
error signal is zero if the local oscillator and signal are in-phase (or a half-wave out of
phase, which for demodulation purposes is equivalent—see section 3.1). The error signal
quickly becomes asymmetrically non-zero if a phase difference is introduced. Connecting
this error signal to a suitable PID controller, Bob can use the PZT shown in Fig. 6.1 to
lock the local oscillator to the signal.

Fig. 6.8 shows the full layout of the experiment electronics linked to the systems shown
in Fig. 6.1. Once Bob’s interferometer is locked the cross-modulation suppression must
be checked. If Alice’s modulators are well-aligned then the amplitude (phase) modulator
will produce minimal PM (AM). The phase modulator can be aligned by minimising its
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output AM; the amplitude modulator requires a locked homodyne to detect the output
PM to be minimised. The cross modulation suppression can only be checked with the
interferometer locked—the last point before running the experiment.

The cross-modulation suppression must be as large as possible. If a large portion of
the information Alice was sending over the phase quadrature leaked onto the amplitude
quadrature, then it follows that the quadratures will display some correlation. In this case
the security of the key distribution is lost, since Eve can measure each cross-quadrature
without affecting the corresponding signal quadrature. With or without switching such a
situation is disastrous for performing secure QKD.

Our typical values of cross-modulation suppression are shown in Fig. 6.9. The ampli-
tude suppression of 24 dB is well below the shot noise clearance of Bob’s detectors (14
dB), meaning the dominant non-signal component of Bob’s measurement is his detectors’
own dark noise. This noise is also independent of Eve (and Alice) and so will not introduce
any unbounded correlations with Eve, as would occur if the cross-quadrature component
was significant compared to Bob’s dark noise.

Data Acquisition

For the key distillation to be successful Alice and Bob’s data must be synchronised, mean-
ing they agree on the time at which a particular bit was sent. Otherwise they will end up
trying to distil key from a highly uncorrelated set of data. The propagation delay through
Alice’s transmission and Bob’s detection systems must be taken into account, and one
party must advance or delay their data appropriately.

Since we used a single acquisition system (National Instruments PXI-5124) to record
both Alice and Bob’s data, we used a software delay combined with a physical delay box to
give the greatest synchronisation freedom possible. The acquisition software can measure
the correlation coefficient of sampled channels (Fig. 6.10). By adjusting the delay settings
we optimised the correlation coefficients of the channels to approximately 0.7 for each
quadrature.

Once all optics had been aligned we attenuated the signal beam to simulate channel
loss, applied the appropriate amount of noise to the modulators and sampled the data,
which could then be post-processed by the key distillation algorithms described in Chap-
ter 4. Our results are reported in section 6.2.

6.2 Analysis

The data analysis algorithms we used were recycled from the first generation experiment.
They consist of Mathematica notebooks for calculating the quadrature variances and sub-
sequent information advantage ∆I. Thomas made some improvements to the code and I
added a demultiplexing stage which will be explained below.

Analysing the 100% transmission data allows calculation of the system transfer func-
tions, from Alice’s white QRNG noise to Bob’s detected quadrature signals. They are
displayed in Fig. 6.11, showing slight roll-offs in gain and flat phase responses for frequen-
cies over 20 MHz.

We discovered too late that the acquisition system features a software anti-aliasing filter
that causes the acquisition gain to decrease from 60 MHz upwards. Above 80 MHz the low
signal level caused the detection resolution to be too low for effective data processing. The
filter can be removed by reprogramming the core operating software for the acquisition
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Figure 6.9: Cross-modulation suppression for Bob’s double-homodyne system. Alice is amplitude
modulating at 53 MHz and phase modulating at 57 MHz. (a) Amplitude detector showing 40 dB
suppression of phase modulation. (b) Phase detector showing 24 dB suppression of amplitude
modulation.

cards but we ran out of time to do this. So we chose to analyse the 30–80 MHz band for
key distillation.

To correctly normalise Alice and Bob’s variances required finding an accurate value for
the quadrature gains. The analysis tool assumes the transfer function is sufficiently flat
to assume constant gain across the signal band. The wider bandwidth of this experiment
meant this assumption did not hold. We decided to split the band into multiple indepen-
dent channels of 5 MHz width, over which the gain could be assumed flat. Although this
processing was conducted entirely a posteriori to the data transmission it is equivalent to
standard frequency division multiplexing (FDM) techniques in communications.

At this point the time remaining to me for data analysis was extremely short, and so at
the time of writing we were unable to produce trustworthy results. Despite working very
hard on the data analysis, using analysis code proven reliable for the previous experiment,
we could only obtain two results that seemed reasonable. It is likely that some physical
process in the experiment is yet to be understood, perhaps from the quantum random
noise generator, the phase-locking in the homodyne detection or some other source.

We took five sets of data for five different channel transmissions: 100%, 75%, 50%, 25%
and 10% transmission. The data analysis programme was not capable of analysing the
demultiplexed 100% and 10% data and we did not have time to conduct a full-bandwidth
analysis of the 10% data. Therefore we obtained four data points, three using the frequency
division multiplex analysis and one using a full bandwidth analysis.

From the 100% channel an information advantage of 0.61±0.001 bits was post-selected
using 10 banded information channels (BIC’s)(section 4.3.2). Over the 50 MHz of band-
width this produced an information advantage rate of 60.5 ± 0.1 Mbits/sec. This figure
is probably a lower bound on the actual information advantage since the analysis pro-
gramme, from a calculation of the conditional variance between Alice and Bob, determined
the channel transmission to be 80% and so unnecessarily allocated 20 Mbits/sec to Eve.

A ∆I rate of 80 Mbits/sec would be reasonable, since in the first generation exper-
iment post-selection with 10 BICs approached the Shannon capacity C (in our case 100
Mbits/sec). We would not expect to approach C too closely since the gain roll-off of our
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Figure 6.10: Screenshot of the LabView acquisition programme, showing the Alice/Bob quadra-
ture correlation coefficients.
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Figure 6.11: Transfer functions for the amplitude and phase quadrature communications channels
(smoothed). (a) X+ amplitude response (b) X+ phase response (c) X− amplitude response (d)
X− phase response. The units for the phase response should be π rad, not rad/π as shown.

system (Fig. 6.6) meant we could not modulate at optimal variance (Fig. 6.4) across the
complete 50 MHz spectrum. The 100% ∆I result, although almost certainly not accurate
to within the calculated precision, may be considered reasonably valid.

The three multiplexed data sets were beset by the problem of accurately calculating
the gain for each 5 MHz channel. Fig. 6.12 shows the post-selected information advantage
for each channel between 30 and 80 MHz (channels 7 to 16). The graphed solid line shows
the information advantage obtainable if Bob was able to decode at C for the particular
transmission. The 75% case is fairly reasonable since once again, despite using 10 BICs,
Alice’s modulated variance was not optimal and so it would not be expected that Bob
received information at C. The 50% case, however, is less reasonable since Bob regularly
receives more information than C. This may be due to the imprecise channel gains.
The 25% case is not graphed since all points are well above C, making the result quite
unphysical.

For the multiplexed data the information advantage rate is obtained by adding up the
advantage rates from each 5 MHz channel. The 75% data produces a total ∆I rate of
14.6± 0.8 Mbits/sec while the 50% data produces 7.9± 0.8 Mbits/sec. Unfortunately the
total 50% figure is above the Shannon capacity for 50 MHz bandwidth of 6.6 Mbits/sec,
and must be considered unphysical. Therefore only two data points feasibly remain from
the analysis, and they are plotted with C in Fig. 6.13. Although they do not approach
C as did the equivalent points in the first generation experiment, the larger bandwidth
of this experiment means the overall information advantage rate is greater, as shown in
Table 6.1.

One problem not discussed so far was that the noise variance on the phase quadrature
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Figure 6.12: The information advantage Post-Selected from each of the 10 demultiplexed channels
(5-MHz channels occupying 30–80 MHz) in the case of: (left) 75%; (right) 50% transmission. The
solid line is the channel Shannon capacity. The almost identical oscillations in ∆I may be due to
the acquisition system anti-aliasing filter, which has a corner frequency near 60 MHz (channel 12).
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Figure 6.13: Total information advantage rates plotted against channel transmissions: (points)
experimentally obtained values; (solid line) channel Shannon capacity.

Channel Second Generation First Generation
Transmission Post-Selected Post-Selected

∆I Rate ∆I Rate
100% 60.5± 0.1 Mbits/sec 30 Mbits/sec
75% 14.6± 0.8 Mbits/sec 7 Mbits/sec
50% 7.9± 0.8 Mbits/sec 2 Mbits/sec

Table 6.1: Post-Selected information advantage results. The 100% figure was based on a full-
bandwidth analysis, while the 75% and 50% figures were based on analysis for frequency division
multiplexing.
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was often markedly different to the amplitude quadrature. It is possible that unstable
phase locking in Bob’s homodyne detectors was adding phase noise to the signal.

We ran out of time to calculate the absolute shot noise variance of Alice’s laser and
so were unable to quantify the effect of the mode cleaner. It is, however, a reasonable
assumption that it was performing as required at the higher frequencies (poor locking
resulted in some introduced noise at lower frequencies). That is, Alice’s coherent states
in this experiment were probably more pure than the coherent states used in the first
generation experiment.

6.3 Summary

A number of improvements to the first generation experiment were made in this second
generation experiment. Some were planned while others were implemented to address
problems created by the planned improvements. The planned improvements were:

• Install mode cleaner to improve security

• Install higher-bandwidth detectors and acquisition system.

To utilise the higher bandwidth we had to:

• Shield detector circuits from FM radio interference

• Build quantum random noise generators to produce flat noise across the full band-
width

• Multiplex data communications channels

• Remove acquisition system anti-aliasing filter.

The last item on this list was not achieved, limiting us to 50 MHz of the available band-
width. Also the QRNG did not produce perfectly flat modulation, although we suspect
that some if not all of the observed frequency roll-off was due to the modulator responses.
To investigate this possibility, the 100 MHz transfer function of the modulators would
need to be characterised.

From this experiment we produced two feasible results: information advantage rates for
100% and 75% transmission. Both of these rates improved on the equivalent rates of the
first generation experiment. If, with further analysis or experimentation, stronger evidence
could be found to support these figures then (after secret key distillation processing) they
would represent the fastest quantum key distribution yet reported anywhere in the world.
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Figure 6.14: The quantum cryptography laboratory with the 1064 nm experiment in the fore-
ground.



96 Second Generation CVQKD-SQM



Chapter 7

Future Directions and Conclusion

This chapter begins by detailing the initial design, purchasing and measurement work I
undertook for the third generation SQM experiment. It then discusses some practical
applications of broadband continuous variable quantum key distribution, and possible
experiments to advance the technology towards such implementations. The chapter ends
with a summary and some concluding remarks on the project.

7.1 Third Generation SQM

As described in section 4.4, the plan for my project was to rebuild the Lance et al ex-
periment of [56] and then build the experiment again using a 1550 nm laser transmitting
over optical fibre. I began work concurrently on both tasks, working on the design and
purchasing of equipment for the third generation experiment while building the second
generation experiment.

7.1.1 Optical Fibre

The principles of fibre optics are well covered in literature (for example [87]). A single-mode
step-index fibre consists of a long glass cylinder (the core) surrounded by a cylindrical glass
cladding of differing refractive index. Maxwell’s equations for light propagation through
homogenous media with the index boundary condition can be used to show that light
will propagate through the fibre even if it is not straight. The only loss to the intensity
is caused by absorption mechanisms in the glass which, with good engineering, can be
minimised to the current accepted value of 0.2 dB per km. The 90% loss simulated in the
first generation experiment (section 4.3 and [56]) corresponds to a channel loss of 10 dB,
or 50 km of optical fibre.

The solution to Maxwell’s equations with these boundary conditions is the fibre mode.
A single mode fibre has a core diameter so small (typically 9 µm) that it will only support
one mode of propagation. Such a small aperture means that it can be difficult to couple
a free space beam into the fibre without introducing large coupling loss. Fortunately
coupling loss need not be included in the information allocated to Eve, since it is clear
that the light is lost within Alice’s station.

The standard bandwidth of classical optical fibre communications technologies is cur-
rently 10 GHz. With upgrades to the modulators, detectors and acquisition system this
experiment could quickly produce an information advantage up to twenty times larger
than the 50 MHz results reported in Chapter 6. With the implementation of the second-
generation protocols described in section 4.3.7, Mbit QKD becomes possible even under
high losses.

97
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7.1.2 Experimental Design

Bob’s homodyne detectors require a phase reference for him to demodulate both quadra-
tures, the local oscillator. The design of the third generation experiment therefore required
a solution for Alice to transmit the local oscillator. The design initially decided on by the
group is shown in Fig. 7.1. In this experiment the local oscillator and signal are polarised
orthogonally to each other before in-coupling to the fibre. Bob can then separate them,
unmixed, with a PBS for quadrature splitting and demodulation mixing in the manner of
the first two generations, described in section 6.1.1.

Stress on the fibre induces local changes to its birefringence, causing polarisation rota-
tion. Such rotation would cause premature mixing on the PBS following the out-coupler.
It is hoped that for a typical fibre transmission line installation, the stress changes will
be gradual enough that the polarisation can be corrected by feedback to an electronic
polarisation controller. For the initial experiment, manual polarisation control with the
wave plates following the out-coupler should be adequate.

An alternative to this design is to detune the local oscillator with an acousto-optic
modulator (AOM) and send it at the same polarisation as the signal. Any rotations from
fibre stress will cause them to be rotated synchronously. A cavity can then be used to
split them, followed by upconversion of the local oscillator with another AOM.

7.1.3 Preparation

After the Group decision to implement the experiment described in Fig. 7.1 I began the
purchasing, which was a time-consuming process since most of the equipment needed to
be acquired. Table 7.1 is a summary of the purchases. A number of items needed to be
built in the workshop and so they also were designed and built. This included the mode
cleaner, which for greater locking stability was made from invar, a metal alloy that does
not expand with temperature. The mode cleaner is shown in Fig. 7.2.

Equipment Vendor
1550 nm fibre laser NP Photonics
Invar mode cleaner Physics workshop
Modulators New Focus
Free space optics CVI Laser
(mirrors, lenses, wave plates, beam splitters)
Fibre optics OFR
(couplers, connectors, patch cables)
Fibre isolater ThorLabs
Optics mounts ThorLabs
SMF-28e optical fibre Corning
Electronics Mini-Circuits
(amplifiers, filters, splitters, mixers)
Additional electronics Physics electronics workshop
(detectors, PID, HVA)
Mirror mounts Radiant Dye
Additional mounts Physics workshop

Table 7.1: Summary of purchases for the third generation SQM experiment.

The final task I undertook for the third generation experiment before handing it over
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Figure 7.1: Initial design of the third generation SQM experiment. This layout couples the signal
and local oscillator into the channel fibre at orthogonal polarisations. Small polarisation rotations
over time in the fibre can be corrected by wave plates following the out-coupler.
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Figure 7.2: The 1550 nm mode cleaner, made from invar with an aluminium single-PZT end cap.

to the following Honours student, Daniel Alton, was investigate the behaviour of the OFR
CFC-2 fibre out-coupler. My goal was to see if it could be configured to produce a beam of
the required waist size for the mode cleaner (634 µm). I was successful in this, producing a
beam with waist of approximately 640 µm. Fig. 7.3 shows the beam profile measurements
and fit that I used to determine the waist size, using the technique described in section 5.4.
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Figure 7.3: Adjusting the out-coupling lens of the fibre I was able to create a beam with waist
of approximately 640 µm, 53 cm from the out-coupler.

7.2 Beyond Third Generation SQM

Quantum key distribution is without doubt the most mature of the quantum information
technologies. Commercial discrete-variable QKD systems are already available, whereas
other technologies such as quantum memory, quantum error correction, quantum logic
gates and quantum computing are in the first stages of experimental demonstration. It
is clear then that considering the immediate future of CVQKD-SQM involves moving
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beyond the realm of scientific interest and into practical applications for government,
military, business and industry sectors.

7.2.1 Practical QKD Networks

This thesis began with an introduction to communications networks and the need for in-
formation assurance within those networks. The purpose of key distribution technologies,
whether classical or quantum, is to provide this information assurance. Classical cryp-
tography is widespread and used for securing communications networks at all scales, as
shown in Table 7.2.

Scale Example Secure Networks
International Financial networks for monetary transactions

Diplomatic communications
National Government databases for immigration, road transport and

infrastructure
National security communications for threat monitoring, in-
telligence sharing, personnel tracking

Metropolitan Police communications
Mobile telephone and other wireless networks

Local Computer LAN for connecting individuals to larger-scale
networks

Personal Electronic purchasing
Biometric information

Table 7.2: Scales of secure communications networks

The 0.2 dB loss per km generally limits the range of optical fibre QKD to metropolitan-
scale networks and smaller. The likely cost (and size) of a first generation practical device
is also likely to preclude its application from local and personal networks. These networks
generally consist of large numbers of low-value terminals. There may be an exception
in biometric networks, since although the information remains local (for example access
control of a building) it has immensely high value (a person’s identity). In this case
the cost of deploying QKD into a small, low bandwidth network may be justified. In
general, however, metropolitan networks carrying large amounts of sensitive commercial,
police, military, security or government communications promise the first applications for
broadband QKD.

Like many new technologies, the first application for QKD is likely to be one-for-one
replacement of the old technology. It is often the case that novel applications for a new
technology, that take full advantage of its superiority, are only discovered after it has been
firmly established as a successor to the old. In this employ it delivers enhancement rather
than revolution.

Fig. 7.4 describes a typical metropolitan secure network (an ‘intranet’). It considers an
organisation with agencies spread across a city, or alternatively a group of agencies having
in common a particular sensitive interest. The interest could be for example intelligence,
criminal records, financial transactions or commercial operations.

The building at site S contains the intranet server. The majority of network services are
located here, such as hosting of A,B,and C’s intranet websites; voice and email services;
and database storage and access. For classical cryptography the major trunks from S to
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Figure 7.4: A metropolitan-scale secure network. While the links between offices are encrypted,
physical security measures on the building allow the inside of the office to be considered secure.
Therefore only the high-bandwidth trunks between offices require encryption, not the individual
communications of a terminal.

A,B,and C generally consist of bandwidth hired from the telecommunications company
owning the city’s physical communications infrastructure.

Information passing through the trunks is secured with a network or data encryption
device such as General Dynamics’ Sectéra In-Line Network Encrypter. Legacy data en-
cryption systems tend to use symmetric keys whereas modern systems have shifted to
asymmetric keys (see section 2.1).

Symmetric systems require much more frequent rekey, since asymmetric systems use a
different session key for each communication and only the initial authentication key must
be replaced. The infrequency of its use means that in terms of time it ‘lasts’ much longer
before compromise becomes possible. This is a great advantage for asymmetric systems,
since symmetric rekeying cannot be conducted over the network. It is generally done by
trusted courier, which is expensive and still prone to compromise.

Since the trunks themselves are unlikely to be direct optical fibre connections, a one-
for-one replacement of such classical cryptographic systems with quantum cryptography
would require the additional expense of laying optical fibre from S directly to each of the
other agencies. Beyond this expense, however, a first generation QKD application would
be competitive with classical cryptography.

The trunks would carry the reconciliation information needed for each end to distill
a secret key from their fibre, and their role of carrying encrypted information would
remain unchanged. Instead of a trusted courier network delivering the key to unlock this
information, it would instead be delivered by optical fibre. In this way an organisation can
use cryptography without needing a complex key management infrastructure, and guard
its information against the possibility of public key cryptography being compromised by
mathematical or quantum-computational analysis.
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7.2.2 Free Space QKD

The international- and national-scale networks identified in section 7.2.1 are generally no
more complex in topology than the metropolitan-scale network of Fig. 7.4. The secure
trunks linking local networks are of course much larger. Microwave repeaters, undersea
cables and satellites are the necessary components for these longer trunks. While an
undersea optical fibre cable hundreds of kilometres long is likely to introduce too much
loss for QKD, recent experiments have shown that at laser wavelengths atmospheric loss
between ground and satellite can be as little as 6.5 dB.[102]

Quantum key distribution via satellite would provide high bandwidth key distribution
for even the largest international networks. Even without the threats to public key cryp-
tography, the challenges and costs of international symmetric key management warrant
that serious consideration be given to satellite-based QKD.

Such a system would not even require mounting a laser on a satellite. Fig. 7.5 describes
how a single trunk might be encrypted with satellite QKD. If the cost of the equipment
could be brought low enough per unit of data, satellite QKD would be suitable for even
metropolitan-scale networks where, in time, the cost of laying fibre may become greater
than implementing satellite-based QKD.

Classical data

Alice Bob

Session quantum key K Session quantum key KA B

Final key K

Figure 7.5: Satellite quantum key distribution. Alice generates a binary key K. When the
satellite passes over she acquires the satellite and transmits broadband noise with her laser. She
and the satellite then use a classical radio-frequency channel to distil a secret session key KA.
Alice then transmits her final key K over the radio channel, one-time-pad encrypted with KA.
The satellite decrypts K with the session key and stores it. When it passes over Bob, he repeats
the process of distilling a session key KB which the satellite then uses to one-time-pad encrypt K.
Bob receives K and is able to use it for secure communications with Alice over any data channel.
The data channel could be the same satellite, a different satellite, an undersea cable or any method
appropriate to the physical situation.
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7.2.3 Quantum Random Number Generation

The work begun in this project on quantum random number generation also has some
future direction. The randomness of the output needs to be investigated and also methods
of converting the continuous noise into binary strings without sacrificing entropy. There
are numerous randomness tests detailed in information theory literature and available
from standards institutes. It would be interesting to see how our QRNG compares to
other RNG for randomness, if any difference exists.

To make a final link between QRNG and QKD, it would be interesting to examine
the statistics of the random numbers before and after the key distribution process. Such
an examination would make a good check for the integrity of the secret key distillation
algorithms, that no hidden bias was being introduced either from the equipment or from
bugs in the software.

7.3 Conclusion

Communication is a fundamental feature of civilisation. Methods for providing assuredness
to communications have wide application. Cryptography is such a method and crypto-
graphic technology dominates as the means for protecting communications throughout
modern networks. Historically this technology has provided practical security but rarely
perfect security. In future the current technologies may fail to provide even reasonable
security.

Quantum key distribution promises a new class of cryptographic technologies, based
on the physical laws of quantum mechanics, for which perfect security will be ubiquitous.
The initial proposals for quantum key distribution devices, based on discrete quantum
variables, have not yet shown any potential for widespread use in modern high bandwidth
communications networks. Continuous variable technologies offer greater applicability in
the short term, and are likely to continue their superiority in the long term.

In 2005 the ANU Quantum Optics group was among the first in the world to ex-
perimentally demonstrate continuous variable quantum key distribution. From this first
proof-of-principle there lies a natural progression of advances to improve the technology
for practical use. The first such advances are to reduce channel noise and increase channel
bandwidth. Later advances include optical fibre integration, miniaturisation and further
increases to the bandwidth with commercially available 10 GHz communications equip-
ment.

This thesis reports on the work undertaken thus far towards the ANU’s second and
third generation Simultaneous Quadrature Measurement CVQKD experiments. Noise
reduction and increased channel bandwidth was successfully achieved. Furthermore, radio
frequency shielding, quantum random noise generation and frequency division multiplexing
were added to the experiment with intermediate success. Unfortunately the experiment
could not be completed in the time allocated and so the results of this work cannot be
considered conclusive. Finally, design and purchasing for the third generation experiment
was completed.

Whilst this project fell short of its ambitious goals to complete both second and third
generation experiments, numerous technological advances were made towards practical
continuous variable quantum key distribution. The preliminary results from analysis of
the data taken for this experiment suggest that it is capable of running the fastest quantum
key distribution yet reported.
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Appendix A

Electromagnetic Radiation and

Polarisation

A.1 Electromagnetic Waves

The scientific fields of electricity and magnetism were unified by Maxwell in the form of
Maxwell’s Equations, (A.1.1).

(i) ∇ ·E = 0 (iii) ∇×E = −∂B
∂t

(ii) ∇ ·B = 0 (iv) ∇×B = µ0ε0
∂E
∂t

 Maxwell’s Equations (free space)

(A.1.1)
The equations can be decoupled by taking the curl of (iii) and (iv) and substituting (i)
and (ii).[36]

∇2E = µ0ε0
∂2E
∂t2

∇2B = µ0ε0
∂2B
∂t2

(A.1.2)

In this form each x, y, z component of E and B satisfies the three-dimensional wave equa-
tion,

∇2f =
1
v2

∂2f

∂t2
, (A.1.3)

where v is the wave velocity and f the displacement of the propagation medium. This
suggests electric and magnetic fields are capable of wavelike behaviour. By (A.1.3), an
electromagnetic wave has a velocity of

v =
1

√
ε0µ0

= 2.998× 108 ms−1

= c,

(A.1.4)

the measured velocity of light. Maxwell’s Equations therefore imply that light is an electro-
magnetic wave. Such waves can be visualised from the equations as transverse-propagating
electric and magnetic vector fields (Fig. A.1).

Experiments have confirmed that light can indeed be considered an electromagnetic
wave, having a wavelength of between 400 and 750 nanometres depending on its colour.
Other physical phenomena such as radiocommunications signals, microwaves and x-rays
are also electromagnetic waves, with the only difference being the wavelength. The entire
suite of electromagnetic phenomena is called the electromagnetic spectrum. In free space
the velocity is always c, so the wave relation v = fλ (f frequency, λ wavelength) shows that
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Propagation

Z

Y

X

Figure A.1: A snapshot of an electromagnetic wave at some time t. The blue arrows represent an
electric vector field, the red arrows a magnetic vector field. The fields oscillate sinusoidally, each
inducing the other, causing a wave of fields to propagate in the mutually perpendicular direction.

the wavelength and frequency of oscillation are inversely proportional λ = c 1
f . Accordingly,

frequency and wavelength are often used interchangeably when describing the different
parts of the electromagnetic spectrum.

The oscillating fields take the form of

Ẽ (z, t) = Ẽ0eı(kz−ωt) B̃ (z, t) = B̃0eı(kz−ωt)

where

Ẽ0 =
(
E0x̂i + E0y ĵ

)
eıφ B̃0 =

(
B0x̂i +B0y ĵ

)
eıφ.

(A.1.5)

E0,B0 (the real parts of Ẽ0, B̃0) are the amplitude of the wave (also, as vector quantities,
incorporating the initial directions of the fields) and k = 2π

λ is the wave number. The
wave also transports energy as it propagates. The average power delivered per unit area
is called the intensity I ≡ 1

2cε0E
2
0 . Equations (A.1.5) produce, in general, complex values

for the E and B fields. The real part is manifest as the field’s physical amplitude while the
imaginary part contains phase information. The equation for, say, E could be rewritten
as the purely real function

E (z, t) = E0 cos (kz − ωt+ φ) . (A.1.6)

In this case φ contains the phase information.

Turning now to electromagnetic waves in matter, it can be shown that for a linear,
homogeneous medium Maxwell’s Equations (A.1.1) hold apart from the substitution µε

for µ0ε0. This is replacing the permeability and permittivity of free space with the per-
meability and permittivity of the medium through which the wave is travelling. From the
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wave equation (A.1.3) the velocity of light in such matter is

v =
1

√
µε

=
c

n

where

n ≡
√

µε

µ0ε0

(A.1.7)

is the refractive index of the medium. For free space n = 1 and so v = c. In general for
matter n > 1, and so v < c meaning light slows as it travels through matter.

When light passes through the interface of two media of differing refractive indices, and
at non-normal incidence, the propagation direction changes. This phenomenon is called
refraction. It results from solutions to Maxwell’s Equations in matter, using boundary
conditions that reflect the change of medium. A simpler way of understanding refraction
is shown in Fig. A.2.

2

Zincident refracted

n n1

Figure A.2: Refraction: in this case n1 < n2 and so as the right hand side of the wavefront
reaches the interface, it slows down relative to the left hand side which is still in the n1 medium.
This causes the wave to bend, changing the propagation direction.

The field of electromagnetism enabled many outstanding 20th century technologies,
particularly communications technologies. It is well understood and widely covered in
literature ([36] is an excellent introduction), and it is beyond the scope of this thesis to
deliver a broad understanding of the field. Several classical phenomena are, however,
of particular relevance to this project and so will be discussed for the remainder of this
section.

A.2 Polarisation

Fig. A.1 shows the electric field remaining in the X-Z plane throughout the length of
propagation. If the Y-axis is defined as the vertical axis then such a wave is described
as vertically polarised. The electric field is used by convention since there is no extra
information in the position of the magnetic field - it is always perpendicular to the electric.
Fig. A.3 is an X-Y slice at an arbitrary point along the Z-axis of Fig. A.1, showing the
axis of polarisation.

The axis of polarisation, in simple cases, is determined by the source of the electro-
magnetic wave. When the polarisation stays on the same axis (in Fig. A.3 the Y-axis)
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E

Y

X

Figure A.3: An arbitrary X-Y slice in the graph of Fig. A.3, showing only the electric field vector.
The dotted vector arrows indicate other possible values of the electric field, at other points on the
Z-axis.

throughout the length of propagation the wave is said to be linearly polarised. The cases
of vertical (also called s-polarisation), horizontal (also called p-polarisation) and diago-
nal polarisation are all linear. Diagonal polarisation is no different since, like any vector,
the electric field can be separated into a linear combination of orthogonal components
(Fig. A.4).

y

Y

X

E

E

E

x

Figure A.4: Linear-diagonally polarised light can be considered a linear combination of vertically
and horizontally polarised light.

The orthogonal components can be thought of as independent waves

Ex (z, t) = E0x cos (kz − ωt+ φx) î,

Ey (z, t) = E0y cos (kz − ωt+ φy) ĵ.
(A.2.1)

In the case of linear polarisation the resultant field vector at any point is Exi +Eyj, since
the two components are in-phase φx = φy.

The Lorentz electron oscillator model can be used to describe how polarised light is
reflected. A result from the model is that there are certain situations in which s- and
p-polarisation can be physically separated. This is useful not only for resolving the x,y
components of diagonally polarised light, but also for operating on randomly-polarised
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light. Randomly polarised light has the polarisation vector changing rapidly over time.
It generally results from each atom in an emission medium transmitting at a different,
changing polarisation. The net polarisation of all the atomic transmissions, while linear
(since the atoms transmit in phase), constantly changes.

A.2.1 Polarising Beam Splitter

A polarising beam splitter cube (Fig. A.5) consists of two prisms with a thin multilayered
dielectric film between. A Lorenz treatment of such a situation can be found in [42]. The

Figure A.5: A Polarising Beam Splitter cube (PBS) resolves incident light into s- and p- polarised
beams, separated by 90◦.[70]

cube is able to take diagonally or randomly polarised light and reflect (transmit) s- (p-)
polarised light, at the convenient angle of 90◦.

The ability of the cube to do this is dependant on the quality of the dielectric multi-
layer. The reflected (transmitted) beam will always retain some portion of p (s) light. A
contemporary PBS has an extinction ratio of 1000:1, meaning unwanted polarisations will
be present in the output beams with 1

1000th of its original power. This is known as bad
polarisation.

A.2.2 Elliptic Polarisation

In the case of linear polarisation the X- and Y-components of the electric field, although
treated as independent waves, are in phase φx = φy. It is possible that φx 6= φy in which
case the polarisation will be in different planes depending on (z, t). It can be shown that
in the X-Y plane E will sweep out an ellipse (Fig. A.6a) which manifests as a helical trace
along the length of propagation (Fig. A.6b).

A special case of an ellipse is a circle. Circular polarisation is possible if E0x = E0y and
φx − φy = ±π

2 . The sign of π
2 will determine whether the helix twists in a left- or right-

handed fashion. Another special case is a straight line. By the careful introduction of a
phase difference, linearly polarised light can be rotated to change the angle of polarisation.
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(a)

X

Y

(b)

X

Y

Z

Figure A.6: Elliptic polarisation: (a) The X-Y trace of E when φx−φy = π
3 (b) Trace of E along

the length of propagation at an arbitrary time t.

A.3 Birefringence

Refringence is a legacy term meaning refraction. Birefringence refers to media having two
indices of refraction, usually depending on the polarisation of the light entering. Histori-
cally one refractive index is called the ordinary, no and the other extraordinary ne. The
difference 4n = (ne − no) is known as the birefringence of the material. The axis of the
material in which light with a parallel electric field will travel faster is the fast axis; the
axis perpendicular is the slow axis.

Since the speed at which an electromagnetic wave travels through matter is dependent
on the refractive index, a physical mechanism for creating elliptically polarised light is
apparent in birefringent materials. By slowing, say, the p-polarised component of a diago-
nally polarised beam a phase difference between the p and s components will be induced,
leading to the effects described in A.2.2.

Birefringent materials may be cut with appropriate dimensions to cause a desired p-s
phase difference for a given wavelength. A quarter-wave plate causes a π

2 phase difference
which will convert linear light into elliptical light, except in the special case of the linear
light being polarised at 45◦ to the slow/fast axes (so that E0x = E0y), when circular light
will be produced.

A half-wave plate causes a π phase difference. If linear light polarised at some angle θ
to the fast axis is passed through, the effect will be to rotate the polarisation by 2θ, back
through the fast axis. Elliptic light will be similarly flipped.

Quarter- and half-wave plates are generally manufactured in such a way as to be easily
rotated. If linear light is present in an optics experiment, for example, a quarter-wave
plate can be placed and rotated until circular light is achieved. Similarly a half wave plate
can be rotated to take linear light at a set angle and produce linearly polarised light at
any desired angle. This is a useful situation when variable-ratio beam splitting is needed.
The combination of a half-wave plate and PBS allows optical power to be split at 90◦ at
a desired ratio. The half-wave plate rotates the linear polarisation to the desired angle,
with greater or smaller x and y component values; the PBS separates out the components
to deliver the desired power-splitting ratio.

Birefringent materials themselves also present another method of separating out polar-
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isations. The Nicol, Glan-Foucault, Glan-Thompson and Wollaston polarisers/polarising
beam splitters all rely on birefringence to distinguish orthogonal polarisation components.
The Glan-Thompson prism (Fig. A.7 is of particular use to this project since it has a
much greater extinction ratio (as large as 1000,000:1) than the PBS, for use when very
pure polarisation is required.

Figure A.7: A Glan-Thompson prism for removing bad polarisation.[23]
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Appendix B

LASER—Light Amplification by

Stimulated Emission of Radiation

B.1 Photons

Experiments with very low intensity light uncovered the fact that light is quantised. Re-
ducing the intensity of a light source smoothly reduced the average power of the beam, as
expected, but it did not smoothly reduce the instantaneous delivered energy. At very low
intensities energy was delivered in packets, one at a time. Lowering the intensity further
just decreased the frequency of packets arriving - the packets themselves did not reduce
in energy. These packets are called photons, and their energy found to be dependent on
their associated frequency ν, via Plank’s constant h = 6.63× 10−34J-s,

E = hν. (B.1.1)

Photons are not to be considered as classical ‘billiard balls’, however, since all such elemen-
tary/fundamental particles are subject to the laws of quantum mechanics, where particles
are distinctly wave-like.

At high intensities the photons arrive so close together that any instantaneous measure-
ment of energy is indistinguishable from that of a smooth wave. Every possible (quantised)
value for the intensity corresponds to a state with energy

En =
(
n+

1
2

)
hν, (B.1.2)

where n is the number of photons in the state, called a number state.

B.2 Photon Emission

In section A.1 it was shown that electromagnetic radiation is the result of a changing
electric/magnetic field. In the quantum model a photon is produced by an atom relaxing
from an excited state. The frequency of the radiated photon corresponds to the energy of
the atomic transition by (B.1.1). There are two processes by which an atom can emit a
photon: spontaneous and stimulated emission.

Spontaneous emission comes about without any outside influence on the excited atom.
Timewise it occurs as an exponential decay about the transition lifetime. The transition
lifetime is dependant on the transition, the type of atom, and the number of atoms in the
material that are also in excited states.
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Figure B.1: Each dot represents a single photon’s time of arrival at a detector after being emitted
from a source of power E. The photons in this case are infrared ν = 3×1014Hz. As the (quantised)
power of the source increases, more photons arrive in the time frame, to the point where they are
indistinguishable from a continuous power source.

Stimulated emission is a result of a photon interacting with an excited atom. If the
photon’s energy is within the transition linewidth the atom will de-excite and emit a second
photon. The second photon will be identical to the first, and travelling in-phase. The two
photons are considered to be coherent. If the material contains enough excited atoms, if
most of the emitted photons are somehow recycled to stimulate more atoms, and if the
relaxed atoms can be continually re-excited (this is called pumping), then a single photon
can be amplified to numbers limited only by physical considerations. Materials that can
be pumped in this way are called gain media. The pumping process may be either optical
or electrical. figure - amount stimulated emissions vs frequency

B.3 Optical Resonators

Section B.2 described how photons within a small range of frequencies can cause stimulated
emission when encountering excited atoms. An optical resonator also has the ability to
use photons within a small range of frequencies, and in general this range can be much
smaller than the transition linewidth. It also has the convenient ability to ‘recycle’ photons
through a piece of material.

The simplest resonator consists of two plane mirrors facing one another (Fig. B.2).
This is called a Fabry-Perot etalon. Returning to Maxwell’s Equations, using the mirrors
as boundary conditions results in a system where only photons of certain frequencies will
continually bounce between the mirrors. In other words, only electromagnetic waves of
certain frequencies will form the required standing wave between the mirrors.

The solution to a lossless Fabry-Perot results in discrete values for the frequency of
the standing wave (Fig. B.3(light blue)).

νq = q
c

2d
, q = 1, 2, . . . , (B.3.1)
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Figure B.2: A planar resonator (Fabry-Perot etalon). The blue graph represents values of the
(vertical) electric field as the resonator oscillates. The red path indicates the path taken by photons
in the equivalent quantum model.

where d is the distance between the mirrors. Each wave-solution is called a mode; the
integer q is the mode number.[87]

Practically, the Fabry-Perot mirrors are not perfect reflectors and so each time the
wave oscillates it will reduce slightly in amplitude. In the quantum model this means that
each time a photon bounces between the mirrors there will be a probability that it will be
absorbed by the mirror. Using R as the amplitude attenuation factor (R = 1 a perfect
resonator) of each mirror and νF = c

2d as the free spectral range (FSR) (the spectral mode
spacing), [87] writes the formula for the intensity of the light in the Fabry-Perot as

I =
I0

(1−R)2
1

1 + (2F/π)2 sin2 (πν/νF )
,

where

F =
π
√
R

1−R
.

(B.3.2)

F is called the finesse. A perfectly reflecting resonator has infinite finesse, with the
quality decreasing as finesse decreases (good quality resonators support large oscillations
for a narrow range of frequencies). It follows that the finesse can also be defined as the
ratio of the FSR to the Full Width Half Maximum ∆ν(the width of the resonance peak
at half-height)

F = νF /∆ν. (B.3.3)

If, by a mechanism such as stimulated emission of a gain medium, photons continue
to be emitted from inside the resonator at a greater rate than they are absorbed by the
medium and resonator mirrors, then Light Amplification by the Stimulated Emission of
Radiation (LASER) is obtained. This point is called threshold.

B.4 Lasers

A simple alliance between stimulated emission and an optical resonator might look like
Fig. B.4.
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Figure B.3: Fabry-Perot modes for (a)(aqua) R = 0.99, (b)(blue) R = 0.67, (c)(red) R = 0.5,
(d)(light blue) R = 1 over modes 1-5
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Figure B.4: A simple laser, where a pumped gain medium provides a supply of photons from
within a resonator. The stimulated emission must produce more photons than are absorbed by
the gain medium and mirrors or lost through the partially reflecting output mirror in order for the
laser to operate continuously.
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The light passing through the partially reflecting mirror can only have frequencies
allowed by both the pumped gain medium and the resonating cavity (Fig. B.5). By
adjusting the resonator design and gain medium properties, the laser can be customised
to almost any application. For a given laser, the wavelength of radiation can usually
be adjusted within a small range by manipulating the resonator, gain medium or pump
with thermal and electrical effects. Two common methods of ‘tuning’ the laser is to
either thermally adjust the length of the resonator (so that each mode’s position on the
spectrum will be moved), or to thermally adjust the pump to maximise gain around a
different resonator mode.

If the bandwidth of the gain media is too wide, or the FSR too small, multi-mode
operation occurs where the laser radiates at multiple frequencies (Fig. B.5c). This situa-
tion is satisfactory for many laser applications such as welding, medicine, communications,
printing, pointing or alignment. Many scientific applications (interferometry, spectroscopy,
quantum communication) require single-mode operation where the gain bandwidth is nar-
row enough so that only one mode of the cavity dominates (Fig. B.5a).

(c)(a) (b)

Figure B.5: Gain media spectra overlaid on a resonator spectrum: (a)(red) Single-mode sta-
ble operation; (b)(blue) Mode hop during single-mode laser tuning; (c)(light green) Multi-mode
operation.

A single-mode laser is still capable of multi-mode operation. As the gain medium is
tuned there will be some bands for which two cavity modes compete and the laser will
fluctuate between the two (Fig. B.5b). The switch from the domination of one mode to
another during the tuning process is called a mode hop.
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Hermite-Gaussian Modes

The Gaussian beam is not the only solution to the paraxial wave equation. Other self-
reproducing beams can also exist in a resonator that has mirrors matching the curvature
of the wavefront at reflection. This family of solutions are called Hermite-Gaussian beams.

Il,m(x, y, z) = |Al,m|2
(

W0

W (z)

)2

G2
l

( √
2x

W (z)

)
G2

m

( √
2y

W (z)

)
(C.0.1)

where Gi (u) is the Hermite-Gaussian function

Hi(u) exp
(
−u2

2

)
, i = 0, 1, 2, . . . , (C.0.2)

and Hi(u) is one of the Hermite polynomials, which are defined by the recurrence relation

Hi+1(u) = 2uHi(u)− 2iHi−1(u).[87] (C.0.3)

The Hermite-Gaussian resonator modes are also called TEMlm (Transverse Electric
Magnetic) modes. The Gaussian mode of section 3.3.1 is the TEM00 mode, profiles of this
mode and higher order modes are shown in Fig. C.1.[87]
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Figure C.1: X-Y profiles of Hermite-Gaussian beams.



Appendix D

Demultiplexing Code

This is the Mathematica code used to demultiplex the 100 MHz of acquired data into 20
files of 5 MHz each.

Filenames and Other Constants

<< CleanSlate.m

link =
Install["C:\\Program Files\\Wolfram Research\\Mathematica\\4.2\\
AddOns\\Applications\\binary"];
Off[General::spell];
Off[General::spell1];
DataFilePath =
"C:\\Documents and Settings\\User\\My Documents\\Experimental Data

\\060502";
DataηFileName = "T100-"; (* Signal Record *)

DataSNFileName = "SN";
DataDNFileName = "DN";
ExportDataFileName = "dm"; (* < existingfilename > dm < channelnumber > *)

NumberOfRecords = 1;
DataLength = 2400000;

PhaseChannelin = 2;
AmpChannelin = 1;
PhaseChannelout = 4;
AmpChannelout = 3;

SincOrder = 200;

InitialSampleRate = 200 (* MSample/sec *);
ChannelWidth = 5; (*MHz*)

<< Statistics̀DescriptiveStatistics̀
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Functions

Sinc[x ]:=If[x==0,1, Sin[Pix]/(Pix)];

SincTable = Table[{x, Sinc[x]}, {x, (−1.5SincOrder), (1.5 SincOrder),0.01}];

SincInterp = Interpolation[SincTable];

BandPass[intab ]:=ListConvolve[BPTable, intab];

Demodulate[data , freq ]:=
Table

[√
2data[[i]] ∗ Cos[freq/InitialSampleRatePi ∗ 2 ∗ i],

{i,1, Length[data]}];

DownSample[intab , inF , outF ]:=
If[FractionalPart[inF/outF] 6= 0,√

2outF/inF
Table[Sum[intab[[i + Floor[j ∗ inF/outF]]]
SincInterp[outF/inF(i− FractionalPart[j ∗ inF/outF])]
, {i,−SincOrder, SincOrder}
]
, {j,1 + Floor[(SincOrder)outF/inF],
Floor[(Length[intab]− SincOrder)outF/inF]}
],
SincTable = Table[Sinc[outF/inFi], {i,−SincOrder, SincOrder}];
LCTable = ListCorrelate[SincTable, intab];√

2outF/inFTable[LCTable[[iinF/outF]], {i, Length[LCTable]outF/inF}]
];

PowerSpectrum[Intab , Bandwidth ]:=
Module[{FIntab, LFintab}, LFIntab = Floor[Length[Intab]/2];
FIntab = (10Log[10, Take[Abs[Fourier[Intab]]∧2, LFIntab]]);
Table[{(i− 1)Bandwidth/LFIntab, FIntab[[i]]}, {i,1, LFIntab}]];

TransfertFunction[Intab , Outtab , Bandwidth ]:=
Module[{FIntab, LFintab, FOuttab}, LFIntab = Floor[Length[Intab]/2];
FIntab = Fourier[Intab];
FOuttab = Fourier[Outtab];
Table[{(i− 1)Bandwidth/LFIntab, FOuttab[[i]]/FIntab[[i]]},
{i,1, Length[Intab]}]];

Smooth[Intab , SmoothFactor ]:=
Module[{kern},
kern = Table[Exp[−n∧2/(SmoothFactor∧2/3)]/Sqrt[PiSmoothFactor∧2/6],
{n,−SmoothFactor, SmoothFactor}];
Transpose[{Drop[Drop[Transpose[Intab][[1]], SmoothFactor],−SmoothFactor],
ListConvolve[kern, Transpose[Intab][[2]], {−1,1}]}]];
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KIRSmooth[Intab , SmoothFactor ]:=
Module[{kern, kernFactor, Intab2, temp},
kernFactor = Sum[Exp[−nn∧2/(SmoothFactor∧2/3)],
{nn,−SmoothFactor, SmoothFactor}];
kern = Table[Exp[−n∧2/(SmoothFactor∧2/3)]/kernFactor,
{n,−SmoothFactor, SmoothFactor}];
Intab2 = Drop[Transpose[Take[Intab, Length[Intab]/2]][[2]],1];
temp = Join[
Table[Sum[kern[[SmoothFactor + 1 + j]]Intab2[[i + j]],
{j,−(i− 1), SmoothFactor}]/
Sum[kern[[SmoothFactor + 1 + j]], {j,−(i− 1), SmoothFactor}],
{i,1, SmoothFactor}],
ListConvolve[kern, Intab2, {−1,1}],
Table[Sum[kern[[SmoothFactor + 1 + j]]Intab2[[Length[Intab2] + i + j]],
{j,−SmoothFactor,−i}]/Sum[kern[[SmoothFactor + 1 + j]],
{j,−SmoothFactor,−i}], {i,−SmoothFactor + 1,0}]];
Transpose[{Transpose[Intab][[1]],
Join[{Transpose[Intab][[2,1]]}, temp,
{Transpose[Intab][[2, Length[Intab]/2 + 1]]},
Reverse[N[Conjugate[N[temp]]]]]
}]];

QKD Data Import/Demultiplexing/Export

SetDirectory[DataFilePath];
Xsig = ReadListBinary[DataηFileName <> "1" <> ".dat", SignedInt16,

DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabηAmpin = Table[N[Xsig[[i]]/2048], {i, AmpChannelin, Length[Xsig],4}];
tabηPhasein = Table[N[Xsig[[i]]/2048], {i, PhaseChannelin, Length[Xsig],4}];
tabηAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabηPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
Print["XaAmp is ", Length[tabηAmpin], " points"];
Clear[Xsig];

Xsig = ReadListBinary[DataSNFileName <> "4" <> ".dat", SignedInt16,

DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabSNAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabSNPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
Print["XbAmp is ", Length[tabSNAmpout], " points"];
Clear[Xsig];

Xsig = ReadListBinary[DataDNFileName <> "1" <> ".dat", SignedInt16,

DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabDNAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabDNPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
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Print["XbAmp is ", Length[tabDNAmpout], " points"];
Clear[Xsig];

For[i = 1, i ≤ (InitialSampleRate/2)/ChannelWidth, i++,
HighFrequency = i ∗ ChannelWidth;
LowFrequency = HighFrequency− ChannelWidth;

BPTable = Table[2(HighFrequency− LowFrequency)/InitialSampleRate
Sinc[(HighFrequency− LowFrequency)/InitialSampleRatei]
Cos[Pi(HighFrequency + LowFrequency)/InitialSampleRatei],
{i,−(1 + Floor[InitialSampleRate/(HighFrequency− LowFrequency)])SincOrder,
(1 + Floor[InitialSampleRate/(HighFrequency− LowFrequency)])SincOrder}];

tabηAmpinBP = BandPass[tabηAmpin];
tabηPhaseinBP = BandPass[tabηPhasein];
tabηAmpoutBP = BandPass[tabηAmpout];
tabηPhaseoutBP = BandPass[tabηPhaseout];
Print["."];

tabηAmpindemod = Demodulate[tabηAmpinBP, LowFrequency];
tabηPhaseindemod = Demodulate[tabηPhaseinBP, LowFrequency];
tabηAmpoutdemod = Demodulate[tabηAmpoutBP, LowFrequency];
tabηPhaseoutdemod = Demodulate[tabηPhaseoutBP, LowFrequency];
Print["."];
Clear[tabηAmpinBP, tabηPhaseinBP, tabηAmpoutBP, tabηPhaseoutBP];

tabηAmpindemodds = DownSample[tabηAmpindemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabηPhaseindemodds = DownSample[tabηPhaseindemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabηAmpoutdemodds = DownSample[tabηAmpoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabηPhaseoutdemodds = DownSample[tabηPhaseoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Print["Signal channel ", i, " demultiplexed ", SessionTime[]];
ChannelDataLength = Length[tabηAmpindemodds];
Clear[tabηAmpindemod, tabηPhaseindemod, tabηAmpoutdemod,
tabηPhaseoutdemod];

ExportSig = Table[0, {ChannelDataLength ∗ 4}];
For[j = 0, j < Length[ExportSig], j = j + 4,
ExportSig[[j + AmpChannelin]] = tabηAmpindemodds[[j/4 + 1]];
ExportSig[[j + PhaseChannelin]] = tabηPhaseindemodds[[j/4 + 1]];
ExportSig[[j + AmpChannelout]] = tabηAmpoutdemodds[[j/4 + 1]];
ExportSig[[j + PhaseChannelout]] = tabηPhaseoutdemodds[[j/4 + 1]]];
WriteBinary[DataηFileName <> "1" <> ExportDataFileName <> ToString[i] <>
".dat", Round[ExportSig ∗ 2048], SignedInt16,
ByteOrder→ MostSignificantByteFirst];
Print["Signal channel ", ToString[i], " file written ", SessionTime[]];
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Clear[ExportSig, tabηAmpindemodds, tabηPhaseindemodds, tabηAmpoutdemodds,
tabηPhaseoutdemodds];

tabSNAmpoutBP = BandPass[tabSNAmpout];
tabSNPhaseoutBP = BandPass[tabSNPhaseout];
Print["."];

tabSNAmpoutdemod = Demodulate[tabSNAmpoutBP, LowFrequency];
tabSNPhaseoutdemod = Demodulate[tabSNPhaseoutBP, LowFrequency];
Clear[tabSNAmpoutBP, tabSNPhaseoutBP];
Print["."];

tabSNAmpoutdemodds = DownSample[tabSNAmpoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabSNPhaseoutdemodds = DownSample[tabSNPhaseoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Clear[tabSNAmpoutdemod, tabSNPhaseoutdemod];
ChannelDataLength = Length[tabSNAmpoutdemodds];
Print["Shot noise channel ", i, " demultiplexed ", SessionTime[]];
Print["Shot noise ds data ", Take[tabSNAmpoutdemodds,5], ", ",

Take[tabSNPhaseoutdemodds,5]];

ExportSN = Table[0, {ChannelDataLength ∗ 4}];
For[j = 0, j < Length[ExportSN], j = j + 4,
ExportSN[[j + AmpChannelin]] = 0;
ExportSN[[j + PhaseChannelin]] = 0;
ExportSN[[j + AmpChannelout]] = tabSNAmpoutdemodds[[j/4 + 1]];
ExportSN[[j + PhaseChannelout]] = tabSNPhaseoutdemodds[[j/4 + 1]]];
WriteBinary[DataSNFileName <> "4" <> ExportDataFileName <> ToString[i] <>
".dat", Round[ExportSN ∗ 2048], SignedInt16,
ByteOrder→ MostSignificantByteFirst];
Print["Shot noise channel ", ToString[i], " file written ", SessionTime[]];
Print["Shot noise written data ", Take[ExportSN,4]];
Clear[ExportSN, tabSNAmpoutdemodds, tabSNPhaseoutdemodds];

tabDNAmpoutBP = BandPass[tabDNAmpout];
tabDNPhaseoutBP = BandPass[tabDNPhaseout];
Print["."];

tabDNAmpoutdemod = Demodulate[tabDNAmpoutBP, LowFrequency];
tabDNPhaseoutdemod = Demodulate[tabDNPhaseoutBP, LowFrequency];
Clear[tabDNAmpoutBP, tabDNPhaseoutBP];
Print["."];
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tabDNAmpoutdemodds = DownSample[tabDNAmpoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabDNPhaseoutdemodds = DownSample[tabDNPhaseoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Clear[tabDNAmpoutdemod, tabDNPhaseoutdemod];
ChannelDataLength = Length[tabDNAmpoutdemodds];
Print["Dark noise channel ", i, " demultiplexed ", SessionTime[]];
Print["Dark noise ds data ", Take[tabDNAmpoutdemodds,5], ", ",

Take[tabDNPhaseoutdemodds,5]];

ExportDN = Table[0, {ChannelDataLength ∗ 4}];
For[j = 0, j < Length[ExportDN], j = j + 4,
ExportDN[[j + AmpChannelin]] = 0;
ExportDN[[j + PhaseChannelin]] = 0;
ExportDN[[j + AmpChannelout]] = tabDNAmpoutdemodds[[j/4 + 1]];
ExportDN[[j + PhaseChannelout]] = tabDNPhaseoutdemodds[[j/4 + 1]]];
WriteBinary[DataDNFileName <> "1" <> ExportDataFileName <> ToString[i] <>
".dat", Round[ExportDN ∗ 2048], SignedInt16,
ByteOrder→ MostSignificantByteFirst];
Print["Dark noise channel ", ToString[i], " file written ", SessionTime[]];
Print["Dark noise written data ", Take[ExportDN,3]];
Clear[ExportDN, tabDNAmpoutdemodds, tabDNPhaseoutdemodds];
]
Clear[tabDNAmpout, tabDNPhaseout, tabηAmpin, tabηPhasein, tabηAmpout,
tabηPhaseout];
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Data Analysis Code

This is the Mathematica code used to examine the demultiplexed data and calculate
channel information rates. Although I made a number of modifications, the majority
of this code has been reused from the first generation experiment.

Filenames and other constants

StartTime = SessionTime[];
<< CleanSlate.m

link =
Install["C:\\Program Files\\Wolfram Research\\Mathematica\\4.2\\
AddOns\\Applications\\binary"];
Off[General::spell]; Off[General::spell1];
DataFilePath =
"C:\\Documents and Settings\\User\\My Documents\\Experimental
Data\\060502";
DataηFileName = "T100-"; (* Signal Record *)

DataSNFileName = "SN";
DataDNFileName = "DN";
NumberOfRecords = 1;
DataLength = 100000;

<< Statistics̀DescriptiveStatistics̀

<< Statistics̀MultiDescriptiveStatistics̀

<< Statistics̀NormalDistributioǹ

<< Statistics̀ConfidenceIntervals̀

<< Graphics̀Graphics̀

<< Graphics̀FilledPlot̀

<< Graphics̀MultipleListPlot̀

PhaseChannelin = 2;
AmpChannelin = 1;
PhaseChannelout = 4;
AmpChannelout = 3;
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LowFrequency = 30(*MHz*);
HighFrequency = 80(*MHz*);
InitialSampleRate = 200 (* MSample/sec *);

SincOrder = 100;
GridOTXa = 201;
GridOTη = 101;

kthreshold = .02;
thresholdmin = 0;
thresholdmax = 2;

ErrorSteps = .01;

Functions

Sinc[x ]:=If[x==0,1, Sin[Pix]/(Pix)];
SincTable = Table[{x, Sinc[x]}, {x, (−1.5SincOrder), (1.5 SincOrder),0.01}];
SincInterp = Interpolation[SincTable];
BPTable =
Table[2(HighFrequency− LowFrequency)/InitialSampleRate
Sinc[(HighFrequency− LowFrequency)/InitialSampleRatei]
Cos[Pi(HighFrequency + LowFrequency)/InitialSampleRatei],
{i,−(1 + Floor[InitialSampleRate/(HighFrequency− LowFrequency)])SincOrder,
(1 + Floor[InitialSampleRate/(HighFrequency− LowFrequency)])SincOrder}];
BandPass[intab ]:=ListConvolve[BPTable, intab];
Demodulate[data ]:=
Table

[√
2data[[i]] ∗ Cos[LowFrequency/InitialSampleRatePi ∗ 2 ∗ i],

{i,1, Length[data]}];
DownSample[intab , inF , outF ]:=
If[FractionalPart[inF/outF] 6= 0,√

2outF/inF
Table[Sum[intab[[i + Floor[j ∗ inF/outF]]]
SincInterp[outF/inF(i− FractionalPart[j ∗ inF/outF])]
, {i,−SincOrder, SincOrder}
]
, {j,1 + Floor[(SincOrder)outF/inF],
Floor[(Length[intab]− SincOrder)outF/inF]}
],
SincTable = Table[Sinc[outF/inFi], {i,−SincOrder, SincOrder}];
LCTable = ListCorrelate[SincTable, intab];√

2outF/inFTable[LCTable[[iinF/outF]], {i, Length[LCTable]outF/inF}]
];
Delt[a ]:=a[[2]]−a[[1]]

2 ;
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Transfer Function Characterisation Functions

PowerSpectrum[Intab , Bandwidth ]:=
Module[{FIntab, LFintab}, LFIntab = Floor[Length[Intab]/2];
FIntab = (10Log[10, Take[Abs[Fourier[Intab]]∧2, LFIntab]]);
Table[{(i− 1)Bandwidth/LFIntab, FIntab[[i]]}, {i,1, LFIntab}]];

TransfertFunction[Intab , Outtab , Bandwidth ]:=
Module[{FIntab, LFintab, FOuttab}, LFIntab = Floor[Length[Intab]/2];
FIntab = Fourier[Intab];
FOuttab = Fourier[Outtab];
Table[{(i− 1)Bandwidth/LFIntab, FOuttab[[i]]/FIntab[[i]]},
{i,1, Length[Intab]}]];

Smooth[Intab , SmoothFactor ]:=
Module[{kern},
kern = Table[Exp[−n∧2/(SmoothFactor∧2/3)]/Sqrt[PiSmoothFactor∧2/6],
{n,−SmoothFactor, SmoothFactor}];
Transpose[{Drop[Drop[Transpose[Intab][[1]], SmoothFactor],−SmoothFactor],
ListConvolve[kern, Transpose[Intab][[2]], {−1,1}]}]];

KIRSmooth[Intab , SmoothFactor ]:=
Module[{kern, kernFactor, Intab2, temp},
kernFactor = Sum[Exp[−nn∧2/(SmoothFactor∧2/3)],
{nn,−SmoothFactor, SmoothFactor}];
kern = Table[Exp[−n∧2/(SmoothFactor∧2/3)]/kernFactor,
{n,−SmoothFactor, SmoothFactor}];
Intab2 = Drop[Transpose[Take[Intab, Length[Intab]/2]][[2]],1];
temp = Join[
Table[Sum[kern[[SmoothFactor + 1 + j]]Intab2[[i + j]],
{j,−(i− 1), SmoothFactor}]/
Sum[kern[[SmoothFactor + 1 + j]], {j,−(i− 1), SmoothFactor}],
{i,1, SmoothFactor}],
ListConvolve[kern, Intab2, {−1,1}],
Table[Sum[kern[[SmoothFactor + 1 + j]]Intab2[[Length[Intab2] + i + j]],
{j,−SmoothFactor,−i}]/Sum[kern[[SmoothFactor + 1 + j]],
{j,−SmoothFactor,−i}], {i,−SmoothFactor + 1,0}]];
Transpose[{Transpose[Intab][[1]],
Join[{Transpose[Intab][[2,1]]}, temp,
{Transpose[Intab][[2, Length[Intab]/2 + 1]]},
Reverse[N[Conjugate[N[temp]]]]]
}]];

Data and Modules Import/Data Extraction

Full Bandwidth Data Extraction

SetDirectory[DataFilePath];
Xsig = ReadListBinary[DataηFileName <> "1" <> ".dat", SignedInt16,
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DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabηAmpin = Table[N[Xsig[[i]]/2048], {i, AmpChannelin, Length[Xsig],4}];
tabηPhasein = Table[N[Xsig[[i]]/2048], {i, PhaseChannelin, Length[Xsig],4}];
tabηAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabηPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
Print["XaAmp is ", Length[tabηAmpin], " points"];
Clear[Xsig];

tabηAmpinBP = BandPass[tabηAmpin];
Print[SessionTime[]];
tabηPhaseinBP = BandPass[tabηPhasein];
Print[SessionTime[]];
tabηAmpoutBP = BandPass[tabηAmpout];
Print[SessionTime[]];
tabηPhaseoutBP = BandPass[tabηPhaseout];
Print[SessionTime[]];
Print["."];
Clear[tabηAmpin, tabηPhasein, tabηAmpout, tabηPhaseout];

tabηAmpindemod = Demodulate[tabηAmpinBP];
Print[SessionTime[]];
tabηPhaseindemod = Demodulate[tabηPhaseinBP];
Print[SessionTime[]];
tabηAmpoutdemod = Demodulate[tabηAmpoutBP];
Print[SessionTime[]];
tabηPhaseoutdemod = Demodulate[tabηPhaseoutBP];
Print[SessionTime[]];
Print["."];
Clear[tabηAmpinBP, tabηPhaseinBP, tabηAmpoutBP, tabηPhaseoutBP];

tabηAmpindemodds = DownSample[tabηAmpindemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Print[SessionTime[]];
tabηPhaseindemodds = DownSample[tabηPhaseindemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Print[SessionTime[]];
tabηAmpoutdemodds = DownSample[tabηAmpoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Print[SessionTime[]];
tabηPhaseoutdemodds = DownSample[tabηPhaseoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Print[SessionTime[]];
Print["."];
Clear[tabηAmpindemod, tabηPhaseindemod, tabηAmpoutdemod,
tabηPhaseoutdemod];
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Xsig = ReadListBinary[DataSNFileName <> "1" <> ".dat", SignedInt16,

DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabSNAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabSNPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
Clear[Xsig];

Print["."];
tabSNAmpoutBP = BandPass[tabSNAmpout];
tabSNPhaseoutBP = BandPass[tabSNPhaseout];
Clear[tabSNAmpout, tabSNPhaseout];
Print["."];
tabSNAmpoutdemod = Demodulate[tabSNAmpoutBP];
tabSNPhaseoutdemod = Demodulate[tabSNPhaseoutBP];
Clear[tabSNAmpoutBP, tabSNPhaseoutBP];
Print["."];
tabSNAmpoutdemodds = DownSample[tabSNAmpoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabSNPhaseoutdemodds = DownSample[tabSNPhaseoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Clear[tabSNAmpoutdemod, tabSNPhaseoutdemod];
Print["."];

Xsig = ReadListBinary[DataDNFileName <> "1" <> ".dat", SignedInt16,

DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabDNAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabDNPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
Clear[Xsig];

tabDNAmpoutBP = BandPass[tabDNAmpout];
tabDNPhaseoutBP = BandPass[tabDNPhaseout];
Clear[tabDNAmpout, tabDNPhaseout];

tabDNAmpoutdemod = Demodulate[tabDNAmpoutBP];
tabDNPhaseoutdemod = Demodulate[tabDNPhaseoutBP];
Clear[tabDNAmpoutBP, tabDNPhaseoutBP];

tabDNAmpoutdemodds = DownSample[tabDNAmpoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
tabDNPhaseoutdemodds = DownSample[tabDNPhaseoutdemod, InitialSampleRate/2,
HighFrequency− LowFrequency];
Clear[tabDNAmpoutdemod, tabDNPhaseoutdemod];

Transfer Function Characterisation

PtabηAmpindemodds = PowerSpectrum[tabηAmpindemodds, 50*∧6];
PtabηPhaseindemodds = PowerSpectrum[tabηPhaseindemodds, 50*∧6];
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PtabηAmpoutdemodds = PowerSpectrum[tabηAmpoutdemodds, 50*∧6];
PtabηPhaseoutdemodds = PowerSpectrum[tabηPhaseoutdemodds, 50*∧6];
ListPlot[PtabηAmpindemodds]
ListPlot[PtabηPhaseindemodds]
ListPlot[PtabηAmpoutdemodds]
ListPlot[PtabηPhaseoutdemodds]
Xsig = ReadListBinary[DataηFileName <> "1" <> ".dat", SignedInt16,

DataLength ∗ 4, ByteOrder→ MostSignificantByteFirst];
tabηAmpin = Table[N[Xsig[[i]]/2048], {i, AmpChannelin, Length[Xsig],4}];
tabηPhasein = Table[N[Xsig[[i]]/2048], {i, PhaseChannelin, Length[Xsig],4}];
tabηAmpout = Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabηPhaseout = Table[N[Xsig[[i]]/2048],
{i, PhaseChannelout, Length[Xsig],4}];
Print["XaAmp is ", Length[tabηAmpin], " points"];
Clear[Xsig];
TFamp = TransfertFunction[tabηAmpindemodds, tabηAmpoutdemodds, 50*∧6];
TFphase = TransfertFunction[tabηPhaseindemodds, tabηPhaseoutdemodds, 50*∧6];
TFamp = TransfertFunction[tabηAmpin, tabηAmpout, 100*∧6];
TFphase = TransfertFunction[tabηPhasein, tabηPhaseout, 100*∧6];
Clear[tabηAmpin, tabηPhasein];
smoothTFamp = KIRSmooth[TFamp,100];
smoothTFphase = KIRSmooth[TFphase,100];
Clear[TFamp, TFphase];
smoothTFamp = Smooth[TFamp,10000];
smoothTFphase = Smooth[TFphase,10000];
Clear[TFamp, TFphase];
absTFamp = Table[{TFamp[[i]][[1]], Abs[TFamp[[i]][[2]]]},
{i,1, Length[TFamp]}];
absTFphase = Table[{TFphase[[i]][[1]], Abs[TFphase[[i]][[2]]]},
{i,1, Length[TFphase]}];
argTFamp = Table[{TFamp[[i]][[1]], Arg[TFamp[[i]][[2]]]},
{i,1, Length[TFamp]}];
argTFphase = Table[{TFphase[[i]][[1]], Arg[TFphase[[i]][[2]]]},
{i,1, Length[TFphase]}];
Clear[TFamp, TFphase];
smoothabsTFamp = Smooth[absTFamp,10000];
smoothargTFamp = Smooth[argTFamp,10000];
smoothabsTFphase = Smooth[absTFphase,10000];
smoothargTFphase = Smooth[argTFphase,10000];
Clear[absTFamp, argTFamp, absTFphase, argTFphase]
labelfontsize = 16;
tickfontsize = 14;
tfpaa = ListPlot[Take[smoothabsTFamp, Length[smoothabsTFamp]/2],
Frame→ True, AxesOrigin→ {0,0},
FrameLabel→
{StyleForm["Frequency (MHz)", FontSize→ labelfontsize,

FontFamily→ Helvetica], StyleForm["Transfer Amplitude",

FontSize→ labelfontsize, FontFamily→ Helvetica]}, PlotRange→ {1,2.5},



141

PlotLabel->StyleForm["(a)", FontSize→ labelfontsize,

FontFamily→ Helvetica],
FrameTicks→
{{{100*∧6, StyleForm["100", FontSize→ tickfontsize,

FontFamily→ Helvetica]},
{20*∧6, StyleForm["20", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{60*∧6, StyleForm["60", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{40*∧6, StyleForm["40", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{80*∧6, StyleForm["80", FontSize→ tickfontsize,

FontFamily→ Helvetica]}},
{{0, StyleForm["0", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{0.5, StyleForm["0.5", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{1, StyleForm["1", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{1.5, StyleForm["1.5", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{2, StyleForm["2", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{2.5, StyleForm["2.5", FontSize→ tickfontsize, FontFamily→ Helvetica]}},
None, None}];

tfpap = ListPlot[Take[smoothargTFamp, Length[smoothargTFamp]/2],
Frame→ True, AxesOrigin→ {0,−π},
FrameLabel→
{StyleForm["Frequency (MHz)", FontSize→ labelfontsize,

FontFamily→ Helvetica], StyleForm["Transfer Phase (rad/pi)",

FontSize→ labelfontsize, FontFamily→ Helvetica]}, PlotRange→ {−π, π},
PlotLabel->StyleForm["(b)", FontSize→ labelfontsize,

FontFamily→ Helvetica],
FrameTicks→
{{{100*∧6, StyleForm["100", FontSize→ tickfontsize,

FontFamily→ Helvetica]},
{20*∧6, StyleForm["20", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{60*∧6, StyleForm["60", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{40*∧6, StyleForm["40", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{80*∧6, StyleForm["80", FontSize→ tickfontsize,

FontFamily→ Helvetica]}},
{{−π, StyleForm["-1", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{−π/2, StyleForm["-0.5", FontSize→ tickfontsize,

FontFamily→ Helvetica]},
{0, StyleForm["0", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{π/2, StyleForm["0.5", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{π, StyleForm["1", FontSize→ tickfontsize, FontFamily→ Helvetica]}},
None, None}];

tfppa = ListPlot[Take[smoothabsTFphase, Length[smoothabsTFphase]/2],
Frame→ True, AxesOrigin→ {0,0},
FrameLabel→
{StyleForm["Frequency (MHz)", FontSize→ labelfontsize,

FontFamily→ Helvetica], StyleForm["Transfer Amplitude",

FontSize→ labelfontsize, FontFamily→ Helvetica]}, PlotRange→ {1,2.5},
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PlotLabel->StyleForm["(c)", FontSize→ labelfontsize,

FontFamily→ Helvetica],
FrameTicks→
{{{100*∧6, StyleForm["100", FontSize→ tickfontsize,

FontFamily→ Helvetica]},
{20*∧6, StyleForm["20", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{60*∧6, StyleForm["60", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{40*∧6, StyleForm["40", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{80*∧6, StyleForm["80", FontSize→ tickfontsize,

FontFamily→ Helvetica]}},
{{0, StyleForm["0", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{0.5, StyleForm["0.5", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{1, StyleForm["1", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{1.5, StyleForm["1.5", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{2, StyleForm["2", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{2.5, StyleForm["2.5", FontSize→ tickfontsize, FontFamily→ Helvetica]}},
None, None}];

tfppp = ListPlot[Take[smoothargTFphase, Length[smoothargTFphase]/2],
Frame→ True, AxesOrigin→ {0,−π},
FrameLabel→
{StyleForm["Frequency (MHz)", FontSize→ labelfontsize,

FontFamily→ Helvetica], StyleForm["Transfer Phase (rad/pi)",

FontSize→ labelfontsize, FontFamily→ Helvetica]}, PlotRange→ {−π, π},
PlotLabel->StyleForm["(d)", FontSize→ labelfontsize,

FontFamily→ Helvetica],
FrameTicks→
{{{100*∧6, StyleForm["100", FontSize→ tickfontsize,

FontFamily→ Helvetica]},
{20*∧6, StyleForm["20", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{60*∧6, StyleForm["60", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{40*∧6, StyleForm["40", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{80*∧6, StyleForm["80", FontSize→ tickfontsize,

FontFamily→ Helvetica]}},
{{−π, StyleForm["-1", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{−π/2, StyleForm["-0.5", FontSize→ tickfontsize,

FontFamily→ Helvetica]},
{0, StyleForm["0", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{π/2, StyleForm["0.5", FontSize→ tickfontsize, FontFamily→ Helvetica]},
{π, StyleForm["1", FontSize→ tickfontsize, FontFamily→ Helvetica]}},
None, None}];

Export["tfampamp.eps", tfpaa, ImageRotated→ True]
Export["tfampphase.eps", tfpap, ImageRotated→ True]
Export["tfphaseamp.eps", tfppa, ImageRotated→ True]
Export["tfphasephase.eps", tfppp, ImageRotated→ True]
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Import Demultiplexed Data

SetDirectory[DataFilePath];
tabηAmpindemodds = Table[0, {20}];
tabηPhaseindemodds = Table[0, {20}];
tabηAmpoutdemodds = Table[0, {20}];
tabηPhaseoutdemodds = Table[0, {20}];
tabSNAmpoutdemodds = Table[0, {20}];
tabSNPhaseoutdemodds = Table[0, {20}];
tabDNAmpoutdemodds = Table[0, {20}];
tabDNPhaseoutdemodds = Table[0, {20}];
For[iChannel = 7, iChannel ≤ 16, iChannel++,
Xsig = ReadListBinary[DataηFileName <> "1" <> "DM" <> ToString[iChannel] <>
".dat", SignedInt16, DataLength ∗ 4,
ByteOrder→ MostSignificantByteFirst];
tabηAmpindemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, AmpChannelin, Length[Xsig],4}];
tabηPhaseindemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, PhaseChannelin, Length[Xsig],4}];
tabηAmpoutdemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabηPhaseoutdemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, PhaseChannelout, Length[Xsig],4}];
(*Print["tabηAmpindemodds is ", Length[tabηAmpindemodds], " points"]; *)
Clear[Xsig];

Xsig = ReadListBinary[DataSNFileName <> "4" <> "DM" <> ToString[iChannel] <>
".dat", SignedInt16, DataLength ∗ 4,
ByteOrder→ MostSignificantByteFirst];
tabSNAmpoutdemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabSNPhaseoutdemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, PhaseChannelout, Length[Xsig],4}];
(*Print["tabSNAmpoutdemodds is ", Length[tabSNAmpoutdemodds],
" points"]; *)
Clear[Xsig];

Xsig = ReadListBinary[DataDNFileName <> "1" <> "DM" <> ToString[iChannel] <>
".dat", SignedInt16, DataLength ∗ 4,
ByteOrder→ MostSignificantByteFirst];
tabDNAmpoutdemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, AmpChannelout, Length[Xsig],4}];
tabDNPhaseoutdemodds[[iChannel]] =
Table[N[Xsig[[i]]/2048], {i, PhaseChannelout, Length[Xsig],4}];
(*Print["tabDNAmpoutdemodds is ", Length[tabDNAmpoutdemodds],
" points"]; *)
Clear[Xsig];
]
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Variances and Post-Selection Information Rates

For[iChannel = 7, iChannel ≤ 16, iChannel++,
VdnAmp = Variance[tabDNAmpoutdemodds[[iChannel]]];
VdnPhase = Variance[tabDNPhaseoutdemodds[[iChannel]]];
DVdnAmp =
Delt[VarianceCI[tabDNAmpoutdemodds[[iChannel]],
ConfidenceLevel→ 0.682689]];
DVdnPhase =
Delt[VarianceCI[tabDNPhaseoutdemodds[[iChannel]],
ConfidenceLevel→ 0.682689]];
Print["Dark noise variance ", VdnAmp, ",", VdnPhase];

VsnAmp = Variance[tabSNAmpoutdemodds[[iChannel]]]− VdnAmp;
VsnPhase = Variance[tabSNPhaseoutdemodds[[iChannel]]]− VdnPhase;
DVsnAmp =√

(Delt[VarianceCI[tabSNAmpoutdemodds[[iChannel]],
ConfidenceLevel→ 0.682689]]2 + DVdnAmp2

)
;

DVsnPhase =√
(Delt[VarianceCI[tabSNPhaseoutdemodds[[iChannel]],

ConfidenceLevel→ 0.682689]]2 + DVdnPhase2
)
;

Print["Shot noise variance ", VsnAmp, ",", VsnPhase];
(*Clear[tabSNAmpoutdemodds[[iChannel]], tabSNPhaseoutdemodds[[iChannel]],
tabDNAmpoutdemodds[[iChannel]], tabDNPhaseoutdemodds[[iChannel]]]; *)

XbAmp = tabηAmpoutdemodds[[iChannel]]/Sqrt[VsnAmp]/2;
XbPhase = tabηPhaseoutdemodds[[iChannel]]/Sqrt[VsnPhase]/2;

VbAmp = Variance[XbAmp]− VdnAmp/VsnAmp;
DVbAmp =√

((VbAmpDelt[VarianceCI[tabηAmpoutdemodds[[iChannel]],
ConfidenceLevel→ 0.682689]]/

Variance[tabηAmpoutdemodds[[iChannel]]])2 +
(
VbAmpDVdnAmp

VdnAmp

)2
+(

VbAmpDVsnAmp
VsnAmp

)2
)

;

VbPhase = Variance[XbPhase]− VdnPhase/VsnPhase;
DVbPhase =√

((VbPhaseDelt[VarianceCI[tabηPhaseoutdemodds[[iChannel]],
ConfidenceLevel→ 0.682689]]/
Variance[tabηPhaseoutdemodds[[iChannel]]])2+(
VbPhaseDVdnPhase

VdnPhase

)2 +
(
VbPhaseDVsnPhase

VsnPhase

)2) ;

VaAmp = Variance[tabηAmpindemodds[[iChannel]]];
VaPhase = Variance[tabηPhaseindemodds[[iChannel]]];
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XaAmp = tabηAmpindemodds[[iChannel]] ∗ Sqrt[VbAmp/VaAmp];
XaPhase = tabηPhaseindemodds[[iChannel]] ∗ Sqrt[VbPhase/VaPhase];

VaAmp = Variance[XaAmp];
DVaAmp =
Delt[VarianceCI[tabηAmpindemodds[[iChannel]],
ConfidenceLevel→ 0.682689]];

VaPhase = Variance[XaPhase];
DVaPhase =
Delt[VarianceCI[tabηPhaseindemodds[[iChannel]],
ConfidenceLevel→ 0.682689]];

(*Clear[tabηAmpoutdemodds, tabηPhaseoutdemodds, tabηAmpindemodds,
tabηPhaseindemodds]; *)

CondVarAmp[g ]:=Variance[XbAmp− gXaAmp];
ηAmp = (g/.FindMinimum[CondVarAmp[g], {g, {0,1}}][[2]])2;
NoiseAmp = CondVarAmp [

√
ηAmp] ;

CondVarPhase[g ]:=Variance[XbPhase− gXaPhase];
ηPhase = (g/.FindMinimum[CondVarPhase[g], {g, {0,1}}][[2]])2;
NoisePhase = CondVarPhase [

√
ηPhase] ;

DNoiseAmp = Delt[VarianceCI[XbAmp− ηAmp XaAmp, ConfidenceLevel→ 0.682689]];

DηAmp =
√
((

DVbAmp
VaAmp

)2
+
(
DNoiseAmp

VaAmp

)2
+
(
VbAmp−NoiseAmp

VaAmp2
DVaAmp

)2
)

;

DNoisePhase =
Delt[VarianceCI[XbPhase− ηPhase XaPhase, ConfidenceLevel→ 0.682689]];

DηPhase =
√((DVbPhase

VaPhase

)2 +
(
DNoisePhase

VaPhase

)2 +
(
VbPhase−NoisePhase

VaPhase2
DVaPhase

)2) ;

kDC =
k/.
FindMinimum[

1
k2+ 1

k2

(√(
Variance

[
kXaAmp− XbAmp

k

]
Variance

[
kXaPhase− XbPhase

k

]))
,

{k, {0.00001,10}}][[2]];
DuansCriterion =

1
kDC2+ 1

kDC2(√(
Variance

[
kDCXaAmp− XbAmp

kDC

]
Variance

[
kDCXaPhase− XbPhase

kDC

]))
;

DDuansCriterion =
DuansCriterion

2
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√((
Delt

[
VarianceCI

[
kDCXaAmp− XbAmp

kDC
, ConfidenceLevel→ 0.682689

]]/
Variance

[
kDCXaAmp− XbAmp

kDC

])2
+(

Delt
[
VarianceCI

[
kDCXaPhase− XbPhase

kDC
, ConfidenceLevel→ 0.682689

]]/
Variance

[
kDCXaPhase− XbPhase

kDC

])2) ;

Print[
"**************************

*****"];
Print[""];
Print["Parameters summary for File " <> DataηFileName <> "1" <>

"DM" <> ToString[iChannel] <> ".dat"];
Print["Variance Xb Amp = ", VbAmp, " ± ", DVbAmp, " std"];
Print["Variance Xb Phase = ", VbPhase, " ± ", DVbPhase, " std"];
Print["Variance Xa Amp = ", VaAmp, " ± ", DVaAmp, " std"];
Print["Variance Xa Phase = ", VaPhase, " ± ", DVaPhase, " std"];
Print["Variance Noise Amp = ", NoiseAmp, " ± ", DNoiseAmp, " std"];
Print["Variance Noise Phase = ", NoisePhase, " ± ", DNoisePhase, " std"];
Print["ηAmp = ", ηAmp, " ± ", DηAmp, " std"];
Print["ηPhase = ", ηPhase, " ± ", DηPhase, " std"];
Print["DuansCriterion = ", DuansCriterion, " ± ", DDuansCriterion,

" std"];
Print[""];

(*--− IntegrationLimits--− *)

XaMax = Sqrt[2]5
√
Max[VaAmp, VaPhase];

XbMax = 5
√
Max[VbAmp, VbPhase];

(***** ∗ THEORY**** ∗ *)

(*--− ProbabilityoferrorbtwAliceandBob--− *)

Pep[x , F , η ]:=(
e−2

“
x+
√

η/2Abs[F]
”2

/

(
e−2

“
x−
√

η/2Abs[F]
”2

+ e−2
“
x+
√

η/2Abs[F]
”2))

;

Pem[x , F , η ]:=
(
e−2

“
x−
√

η/2Abs[F]
”2

/

(
e−2

“
x−
√

η/2Abs[F]
”2

+ e−2
“
x+
√

η/2Abs[F]
”2))

;

Pe[x , F , η ]:=If[x > 0, Pep[x,F, η], Pem[x,F, η]];

(*--− Probability distributions--− *)

Pae[x , F , d , η ] =
√

1
2dπ

e−
F2

2d

2

√
2
π

(
e−2

“
x−
√

η/2F
”2

+ e−2
“
x+
√

η/2F
”2)

;

Pab[Xb , Xa , Va , η ]:=
√

1
2πVae

− Xa2

2Va

√
2
π

(
e−2(Xb−

√
η
2
Xa)2

)
;

(*--− Mutual informations btw Alice, Bob and Eve--− *)

Iab[x , F , η ] = 1 + Pe[x,F, η]Log[2, Pe[x,F, η]]+
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(1− Pe[x,F, η])Log[2, (1− Pe[x,F, η])];

IaeSQM[F , η ] = 1
2

(
1 +

√
1−

(
e−2(1−η

2 )F2
)2
)
Log

[
2,

(
1 +

√
1−

(
e−2(1−η

2 )F2
)2
)]

+

1
2

(
1−

√
1−

(
e−2(1−η

2 )F2
)2
)
Log

[
2,

(
1−

√
1−

(
e−2(1−η

2 )F2
)2
)]

;

DeltaISQM[x , F , η ] = Iab[x,F, η]− IaeSQM[F, η];
ABRate[x , F , d , η ] = Pae[x,F,d, η]Iab[x,F, η];
AERateSQM[x , F , d , η ] = Pae[x,F,d, η]IaeSQM[F, η];
DeltaIRateSQM[x , F , d , η ] = ABRate[x,F,d, η]− AERateSQM[x,F,d, η];

(*--− Probability Cuts--− *)

hp[F , P , η ]:=Limit

 Log

»
4
q

1−P
P

–
Sqrt[2η] Abs[xx] , xx→ F

 ;

(*--− Optimal Threshold--− *)

Timing[
OT = Interpolation[
Partition[
Flatten[
Table[
{Xa, η, If[Xa 6= 0, Xb/.FindRoot[DeltaISQM[Xb, Xa, η] == 0,
{Xb, {0.1, XbMax}}, MaxIterations→ 300, WorkingPrecision→ 100,
AccuracyGoal→ 15],
Xb/.FindRoot[DeltaISQM[Xb, XaMax/100, η] == 0, {Xb, {0.1, XbMax}},
MaxIterations→ 300, WorkingPrecision→ 100, AccuracyGoal→ 15]]},
{Xa,0, XaMax, XaMax/GridOTXa},
{η, ηMin = Min[Max[ηAmp− DηAmp,0.00000001],
Max[ηPhase− DηPhase,0.00000001]],
ηMax = Max[ηAmp + DηAmp, ηPhase + DηPhase], (ηMax− ηMin)/GridOTη}]],
3]]];

(*----− Net Information Rate Between Alice and Eve----− *)

(*--− Optimal Threshold--− *)

IaeTheoryOTSQM[d , η ]:=
4 ∗ NIntegrate[NIntegrate[AERateSQM[x,F,d, η], {x, OT[F, η], XbMax},
Method->GaussKronrod, PrecisionGoal→ 3, WorkingPrecision→ 100,
MaxRecursion→ 50], {F,0, XaMax}, Method->GaussKronrod,
WorkingPrecision→ 100, PrecisionGoal→ 3, MaxRecursion→ 50];

IabPRLTheoryOT[d , η ]:=
4 ∗ NIntegrate[NIntegrate[ABRate[x,F,d, η], {x, OT[F, η], XbMax},
Method->GaussKronrod, PrecisionGoal→ 3, WorkingPrecision→ 100,
MaxRecursion→ 50], {F,0, XaMax}, Method->GaussKronrod,
WorkingPrecision→ 100, PrecisionGoal→ 3, MaxRecursion→ 50];

(*--− Probability of error--− *)

PeOfI =
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Interpolation[
Table[
{IRate,
Chop[Pe/.FindRoot[1 + PeLog[2, Pe] + (1− Pe)Log[2,1− Pe]==IRate,
{Pe, .25}, MaxIterations→ 50, WorkingPrecision→ 30,
AccuracyGoal→ 10]]}, {IRate,0,1, .001}]];

DPeOfI[x ] = Derivative[1][PeOfI][x];

(*--− DeltaI for one channel--− *)

IaeTheoryOTSSQM[d , η , Pmin , PMax ]:=
4NIntegrate[NIntegrate[AERateSQM[x,F,d, η],
{x, Min[Max[OT[F, η], hp[F, PMax, η]], XbMax],
Max[Min[XbMax, hp[F, Pmin, η]], OT[F, η]]}, Method->GaussKronrod,
WorkingPrecision→ 100, PrecisionGoal→ 3, MaxRecursion→ 50],
{F,0, XaMax}, WorkingPrecision→ 100, Method->GaussKronrod,
PrecisionGoal→ 3, MaxRecursion→ 50];

IabTheoryOTS[d , η , Pmin , PMax ]:=
4NIntegrate[NIntegrate[ABRate[x,F,d, η],
{x, Min[Max[OT[F, η], hp[F, PMax, η]], XbMax],
Max[Min[XbMax, hp[F, Pmin, η]], OT[F, η]]}, Method->GaussKronrod,
WorkingPrecision→ 100, PrecisionGoal→ 3, MaxRecursion→ 50],
{F,0, XaMax}, WorkingPrecision→ 100, Method->GaussKronrod,
PrecisionGoal→ 3, MaxRecursion→ 50];

∆ITheoryOTSSQM[d , η , Pmin , PMax ]:=
4NIntegrate[NIntegrate[DeltaIRateSQM[x,F,d, η],
{x, Min[Max[OT[F, η], hp[F, PMax, η]], XbMax],
Max[Min[XbMax, hp[F, Pmin, η]], OT[F, η]]}, Method->GaussKronrod,
WorkingPrecision→ 100, PrecisionGoal→ 3, MaxRecursion→ 50],
{F,0, XaMax}, Method->GaussKronrod, WorkingPrecision→ 100,
PrecisionGoal→ 3, MaxRecursion→ 50];

PaeTheoryOTS[d , η , Pmin , PMax ]:=
4NIntegrate[NIntegrate[Pae[x,F,d, η],
{x, Min[Max[OT[F, η], hp[F, PMax, η]], XbMax],
Max[Min[XbMax, hp[F, Pmin, η]], OT[F, η]]}, Method->GaussKronrod,
WorkingPrecision→ 100, PrecisionGoal→ 3, MaxRecursion→ 50],
{F,0, XaMax}, WorkingPrecision→ 100, Method->GaussKronrod,
PrecisionGoal→ 3, MaxRecursion→ 50];

(*--− Probability of error--− *)

PeOfI =
Interpolation[
Table[
{IRate,
Chop[Pe/.FindRoot[1 + PeLog[2, Pe] + (1− Pe)Log[2,1− Pe]==IRate,
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{Pe, .25}, MaxIterations→ 50, WorkingPrecision→ 30,
AccuracyGoal→ 10]]}, {IRate,0,1, .001}]];

DPeOfI[x ] = Derivative[1][PeOfI][x];

(***** ∗ POST-SELECTION******)

(*--− Optimal Threshold and slicing--− *)

InformationRateSOT[Xin2 , Xout2 , Va , DeltaVa , ηExp , DeltaηExp ,
NPe , LInit ]:=
Module[
{Xinout, XinoutPe, BitsKept, BadBits, BadBitsTable, Perror,
DeltaPerror, DeltaI, I, ITable, IaeTable, RelIabTable, DeltaIaeTable,
PerrTable, DPerrTable, RelIaeTable, RelDeltaIaeTable},

BadBits = Table[0, {i, NPe}];

BadBitsTable = Table[{}, {i, NPe}];

Xinout = Select[Transpose[Append[{Xin2}, Xout2]],
((Abs[#][[2]] < XbMax)&&(Sqrt[2] Abs[#][[1]] < XaMax))&];

XinoutPe = Table[{Pe[Xinout[[i,2]], Sqrt[2]Abs[Xinout[[i,1]]], ηExp],
Xinout[[i,1]], Xinout[[i,2]]}, {i, Length[Xinout]}];

Xinout = Sort[XinoutPe];

BitsKept =
Table[If[i==1, Length[Xinout]− (NPe− 1)Round[Length[Xinout]/NPe],
Round[Length[Xinout]/NPe]], {i, NPe}];

XinoutPe = Table[{}, {i, NPe}];
For[i = 1, i ≤ NPe, i++,
XinoutPe[[i]] = Take[Xinout, BitsKept[[i]]];
BadBitsTable[[i]] =
Table[If[Sign[XinoutPe[[i, j,2]]] 6= Sign[XinoutPe[[i, j,3]]],
BadBits[[i]]+=1;1,0], {j, BitsKept[[i]]}];
Xinout = Drop[Xinout, BitsKept[[i]]]
];
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Perror = Table[Min[If[BitsKept[[i]] 6= 0, BadBits[[i]]/BitsKept[[i]], .5],
.5], {i,1, NPe}];

DeltaPerror =
Table[If[BitsKept[[i]] > 1,
(MeanCI[BadBitsTable[[i]], ConfidenceLevel→ 0.682689][[2]]−
MeanCI[BadBitsTable[[i]], ConfidenceLevel→ 0.682689][[1]])/2,1],
{i,1, NPe}];

ITable =
N[Table[BitsKept[[i]]/LInit∗
Limit[(1 + PerrLog[2, Perr] + (1− Perr)Log[2,1− Perr]),
Perr→ Perror[[i]]], {i, NPe}]];
DeltaI =
Abs[Table[BitsKept[[i]]/LInit
If[Perror[[i]] == 0,0, (Log[2, Perror[[i]]]− Log[2,1− Perror[[i]]])
DeltaPerror[[i]]], {i,1, NPe}]];

Print["Bits Kept per slice :"];
Print[BitsKept];
Print["{PeMin,PeMax} per slice :"];
Print[Table[{XinoutPe[[i,1,1]], XinoutPe[[i, BitsKept[[i]],1]]},
{i, NPe}]];
Print["{I,DeltaI} per slice :"];
Print[Transpose[Append[{ITable}, DeltaI]]];
Print

[
"{∆IExp, Delta∆IExp} per slice :"

]
;

IaeTable = Table[IaeTheoryOTSSQM[Va, ηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]], {i, NPe}];
DeltaIaeTable =
Table[
(Max[IaeTheoryOTSSQM[Va + DeltaVa, ηExp− DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]],
IaeTheoryOTSSQM[Va− DeltaVa, ηExp− DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]]−
Min[IaeTheoryOTSSQM[Va + DeltaVa, ηExp + DeltaηExp,

XinoutPe[[i,1,1]], XinoutPe[[i, BitsKept[[i]],1]]],
IaeTheoryOTSSQM[Va− DeltaVa, ηExp + DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]])/2, {i, NPe}];
Print[Transpose[Append[{Table[ITable[[i]]− IaeTable[[i]], {i, NPe}]},
Table[Sqrt[DeltaI[[i]]∧2 + DeltaIaeTable[[i]]∧2], {i, NPe}]]]];
Print ["∆ITheo per slice :"] ;
Print[Table[∆ITheoryOTSSQM[Va, ηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]], {i, NPe}]];

Print ["〈PeEve〉Theo per slice"] ;
PaeTable = Table[PaeTheoryOTS[Va, ηExp, XinoutPe[[i,1,1]],
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XinoutPe[[i, BitsKept[[i]],1]]], {i, NPe}];
RelIaeTable = IaeTable/PaeTable;
(*RelDeltaIaeTable =
Table[
(Max[IaeTheoryOTSSQM[Va + DeltaVa, ηExp− DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]/
PaeTheoryOTS[Va + DeltaVa, ηExp− DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]],
IaeTheoryOTSSQM[Va− DeltaVa, ηExp− DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]/
PaeTheoryOTS[Va− DeltaVa, ηExp− DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]]−
Min[IaeTheoryOTSSQM[Va + DeltaVa, ηExp + DeltaηExp,

XinoutPe[[i,1,1]], XinoutPe[[i, BitsKept[[i]],1]]]/
PaeTheoryOTS[Va + DeltaVa, ηExp + DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]],
IaeTheoryOTSSQM[Va− DeltaVa, ηExp + DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]/
PaeTheoryOTS[Va− DeltaVa, ηExp + DeltaηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]])/2, {i, NPe}]; *)
PerrTable = Table[PeOfI[RelIaeTable[[i]]], {i, NPe}];
(*DPerrTable =
Abs[Table[RelDeltaIaeTable[[i]]DPeOfI[IaeTable[[i]]], {i, NPe}]]; *)

Print[PerrTable];

Print ["〈PeBob〉theo per slice"] ;
Print[
Table[
PeOfI[IabTheoryOTS[Va, ηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]/
PaeTheoryOTS[Va, ηExp, XinoutPe[[i,1,1]],
XinoutPe[[i, BitsKept[[i]],1]]]], {i, NPe}]];

I = Sum[ITable[[i]], {i, NPe}];
{I, {I−N[Sqrt[Sum[DeltaI[[i]]∧2, {i,1, NPe}]]],
I + N[Sqrt[Sum[DeltaI[[i]]∧2, {i,1, NPe}]]]}}

];
InoutSOT[Xin2 , Xout2 , ηExp , NPe , LInit ]:=Module[
{Xinout, XinoutPe, BitsTablein, BitsTableout},

BitsTablein = Table[{}, {i, NPe}];
BitsTableout = Table[{}, {i, NPe}];
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Xinout = Select[Transpose[Append[{Xin2}, Xout2]],
((Abs[#][[2]] < XbMax)&&(Sqrt[2]Abs[#][[1]] < XaMax))&];

XinoutPe = Table[{Pe[Xinout[[i,2]], Sqrt[2]Abs[Xinout[[i,1]]], ηExp],
Xinout[[i,1]], Xinout[[i,2]]}, {i, Length[Xinout]}];

Xinout = Sort[XinoutPe];

BitsKept =
Table[If[i==1, Length[Xinout]− (NPe− 1)Round[Length[Xinout]/NPe],
Round[Length[Xinout]/NPe]], {i, NPe}];

XinoutPe = Table[{}, {i, NPe}];
For[i = 1, i ≤ NPe, i++,
XinoutPe[[i]] = Take[Xinout, BitsKept[[i]]];
BitsTablein[[i]] = Table[If[Sign[XinoutPe[[i, j,2]]] == 1,1,0],
{j, BitsKept[[i]]}];
BitsTableout[[i]] = Table[If[Sign[XinoutPe[[i, j,3]]] == 1,1,0],
{j, BitsKept[[i]]}];
Xinout = Drop[Xinout, BitsKept[[i]]]
];
Append[{BitsTablein}, BitsTableout];

];

(***** ∗ OPTIMAL THRESHOLD RESULTS******)

Timing[DIabExpSOTAmpOTOpt =
InformationRateSOT[XaAmp, XbAmp,2VaAmp,2DVaAmp, ηAmp, DηAmp,10,
Length[XaAmp]]];

InOutAmp = InoutSOT[XaAmp, XbAmp, ηAmp,10, Length[XaAmp]];
IaeExpSOTAmpOTOpt = IaeTheoryOTSQM[2VaAmp, ηAmp];
DPIaeExpSOTAmpOTOpt = Max[IaeTheoryOTSQM[2(VaAmp + DVaAmp), (ηAmp + DηAmp)],
IaeTheoryOTSQM[2(VaAmp− DVaAmp), (ηAmp + DηAmp)],
IaeTheoryOTSQM[2(VaAmp + DVaAmp), Max[(ηAmp− DηAmp),0]],
IaeTheoryOTSQM[2(VaAmp− DVaAmp), Max[(ηAmp− DηAmp),0]]];
DMIaeExpSOTAmpOTOpt = Min[IaeTheoryOTSQM[2(VaAmp + DVaAmp), (ηAmp + DηAmp)],
IaeTheoryOTSQM[2(VaAmp− DVaAmp), (ηAmp + DηAmp)],
IaeTheoryOTSQM[2(VaAmp + DVaAmp), Max[(ηAmp− DηAmp),0]],
IaeTheoryOTSQM[2(VaAmp− DVaAmp), Max[(ηAmp− DηAmp),0]]];
DeltaIExpSOTAmpOTOpt = DIabExpSOTAmpOTOpt[[1]]− IaeExpSOTAmpOTOpt;
DDeltaIExpSOTAmpOTOpt =
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√
((

DPIaeExpSOTAmpOTOpt−DMIaeExpSOTAmpOTOpt
2

)2
+(

1
2(DIabExpSOTAmpOTOpt[[2,2]]− DIabExpSOTAmpOTOpt[[2,1]])

)2) ;
Timing[DIabExpSOTPhaseOTOpt =
InformationRateSOT[XaAmp, XbAmp,2VaAmp,2DVaAmp, ηAmp, DηAmp,10,
Length[XaAmp]]];

InOutPhase = InoutSOT[XaPhase, XbPhase, ηPhase,10, Length[XaPhase]];
IaeExpSOTPhaseOTOpt = IaeTheoryOTSQM[2VaPhase, ηPhase];
DPIaeExpSOTPhaseOTOpt =
Max[IaeTheoryOTSQM[2(VaPhase + DVaPhase), (ηPhase + DηPhase)],
IaeTheoryOTSQM[2(VaPhase− DVaPhase), (ηPhase + DηPhase)],
IaeTheoryOTSQM[2(VaPhase + DVaPhase), Max[(ηPhase− DηPhase),0]],
IaeTheoryOTSQM[2(VaPhase− DVaPhase), Max[(ηPhase− DηPhase),0]]];
DMIaeExpSOTPhaseOTOpt =
Min[IaeTheoryOTSQM[2(VaPhase + DVaPhase), (ηPhase + DηPhase)],
IaeTheoryOTSQM[2(VaPhase− DVaPhase), (ηPhase + DηPhase)],
IaeTheoryOTSQM[2(VaPhase + DVaPhase), Max[(ηPhase− DηPhase),0]],
IaeTheoryOTSQM[2(VaPhase− DVaPhase), Max[(ηPhase− DηPhase),0]]];
DeltaIExpSOTPhaseOTOpt = DIabExpSOTPhaseOTOpt[[1]]− IaeExpSOTPhaseOTOpt

DDeltaIExpSOTPhaseOTOpt =
√
((

DPIaeExpSOTPhaseOTOpt−DMIaeExpSOTPhaseOTOpt
2

)2
+(

1
2(DIabExpSOTPhaseOTOpt[[2,2]]− DIabExpSOTPhaseOTOpt[[2,1]])

)2) ;

(*** ∗ DISPLAY RESULTS****)

Print[
"*******************************

*****"];
Print[""];
Print["Parameters summary for Sum of all Files of record " <>

DataηFileName];
Print["Variance XbAmp = ", VbAmp, " ± ", DVbAmp, " std"];
Print["Variance XbPhase = ", VbPhase, " ± ", DVbPhase, " std"];
Print["Variance Xa Amp = ", VaAmp, " ± ", DVaAmp, " std"];
Print["Variance Xa Phase = ", VaPhase, " ± ", DVaPhase, " std"];
Print["Variance Noise Amp = ", NoiseAmp, " ± ", DNoiseAmp, " std"];
Print["Variance Noise Phase = ", NoisePhase, " ± ", DNoisePhase, " std"];
Print["ηAmp = ", ηAmp, " ± ", DηAmp, " std"];
Print["ηPhase = ", ηPhase, " ± ", DηPhase, " std"];
Print["DuansCriterion = ", DuansCriterion, " ± ", DDuansCriterion,

" std"];
Print["Max ∆IExp Amp for OT = ", DeltaIExpSOTAmpOTOpt, " ± ",

DDeltaIExpSOTAmpOTOpt, " std"];
Print["Max ∆IExp Phase for OT = ", DeltaIExpSOTPhaseOTOpt, " ± ",

DDeltaIExpSOTPhaseOTOpt, " std"];
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Print[""];
Print[
"*****************************

*****"];
StopTime = SessionTime[];
DeltaTime = ToDate[StopTime− StartTime];
Print["Time Elapsed = ", DeltaTime[[4]], " h ", DeltaTime[[5]],
" min ", DeltaTime[[6]], "sec"]

]; (* end Channel For *)


