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Abstract

We show that the maximum Sharpe ratio obtained via the Markowitz optimization pro-

cedure from a sample of returns on a number of risky assets is, under commonly satisfied

assumptions, biased upwards for the population value. Thus investment advice, decisions

and assessments based on the estimated Sharpe ratio will be overly optimistic. The bias in

the estimator is shown theoretically and illustrated using a data set of Spiders and iShares.

We obtain bounds on the difference between the sample maximum Sharpe ratio and its

population counterpart and show that the sample estimator is consistent for the popula-

tion value; thus the bias disappears asymptotically, under some reasonable assumptions.

However, the bias can be significant in finite samples and persist even in very large sam-

ples. We demonstrate this with simulations based on portfolios formed from normally and

t–distributed returns. As expected, the over-optimistic risk-return tradeoff predicted by

the procedure is not reflected in corresponding good out-of-sample portfolio performance

of the Spiders and iShares.

Keywords: Sharpe Ratio, Portfolio Allocation, Markowitz Theory, Bias, Consistency,

Performance, Simulations.
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1. Introduction

The Sharpe Ratio (Sharpe, 1966; 1994) is a basic tool in Finance, especially for per-

formance evaluation. Its use as a summary measure of the (excess) return achieved by a

portfolio, as compared with the risk taken, is well established among theorists and prac-

titioners (see, e.g., Wu and Xiao (2002) for a recent review and Emmer at al. (2001) for

typical applications). The maximum Sharpe Ratio plays an even more fundamental role

in the portfolio optimization problem, in which it can be used to locate an optimal point

on the efficient frontier – the tangent point – which determines the constitution of that

portfolio of risky assets which, in equilibrium, will be held in some proportion by any

investor. This mutual fund or separation theorem (Tobin, 1958) is a consequence of the

seminal work of Markowitz (Markowitz, 1952), and, ultimately, provides the justification

for the Capital Asset Pricing Model (CAPM) (Sharpe, 1964).

These aspects of the Sharpe Ratio are extensively used in empirical studies for the out-

of-sample evaluation of portfolio performance. In this regard it is now well recognized that

a portfolio of risky assets determined by Markowitzian allocation on historical data often

performs rather poorly when used out-of-sample. There are various reasons for this, and

here we add to them a fundamental consideration, by showing that the maximum Sharpe

Ratio obtained from data – a sample of asset returns – will commonly be biased upwards,

as an estimator of the true, unknown, population version. Thus the Markowitz allocation

is over-optimistic in the sense that the sample maximum Sharpe Ratio overestimates the

true maximum Sharpe Ratio. We will demonstrate theoretically that this bias disappears

in large samples – or, at least, the sample Sharpe Ratio is consistent for its population

value – if consistent estimators are used (as is usual) for sample mean excess returns and

their covariance matrix. However, the bias may be large, and persist even in samples of

size of the order of 1500 days, as we will show by simulations based on the returns from

some exchange traded shares. So the consistency property may provide small comfort in

practical situations. Our technology in this regard is related to, though with a different

focus from, the work of Jorion (1992) on the simulation of portfolio allocations by the

Markowitz method.

The paper is set out as follows. In Section 2, we outline the portfolio optimisation

procedure, prove, under some mild assumptions, that the sample maximum Sharpe ratio is

biased (Proposition 1), find bounds for the bias (Proposition 2), and establish the consis-

tency result for the maximum Sharpe ratio (Corollary to Proposition 2). Section 3 reports

on the simulations. In a discussion, Section 4, we mention some related results. Section 5

concludes. Proofs and technicalities are in the appendices.

2. Analysis

Given a population of N risky assets with excess return vector µ (an N -vector) and

covariance matrix Σ (an N × N positive definite matrix), we form portfolios of the assets
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with allocations as specified by an N -vector x. The maximum Sharpe Ratio achievable in

the population is the maximized value of the function

f(x) =
x′µ√
x′Σx

(1)

obtained over variations in x. Here x′µ is the expected excess return from a portfolio

consisting of the N assets combined according to the components of the vector x, with√
x′Σx being the standard deviation of that return. The ratio of these two quantities

is the Sharpe ratio of that portfolio – but then we vary x over a range of possibilities to

obtain the portfolio with optimal (maximum) Sharpe ratio. A usual requirement (to which

we shall adhere) is that the components of x sum to 1 (the total allocation constraint).

The maximization of (1) is carried out under the possible extra constraint that x is also

to lie in a specified subset C of N–dimensional space. In practice, C reflects restrictions

placed by the investor on the portfolio, such as disallowing short sales (all components of

x non-negative), or, more generally, restricting above and/or below the amounts of certain

assets allowed in the portfolio. But in general, the set C need not be compact or even

bounded, in fact it may be the whole of N–dimensional space, in which case there is no

constraint at all on the portfolio allocations (other than the total allocation constraint).

This is the situation, in particular, when short sales are allowed.

Denote the maximum value of f(x) thus obtained by SR, the population maximum

Sharpe Ratio. SR is no longer of the form of a mean return divided by its standard

deviation; in general, there is no explicit expression available for it.

Suppose µ̂T and Σ̂T are estimates of µ and Σ based on a sample of size T . The

corresponding sample maximum Sharpe Ratio is the maximized value, for x in C and

satisfying the total allocation constraint, of the function

f̂T (x) =
x′µ̂T√
x′Σ̂T x

. (2)

Call this maximum value ŜRT , and the portfolio allocation which makes it up, x̂T . Note

that x̂T and ŜRT depend on the sample estimates µ̂T and Σ̂T , hence have to be treated as

random. Practical investment decisions regarding the composition of the optimal portfolio,

as well as further theoretical developments, are often based either explicitly or implicitly

on ŜRT and x̂T . Given the nature of the estimate ŜRT it is not surprising that it is biased,

even when µ̂T and Σ̂T are unbiased estimates of µ and Σ. What we will show in fact is that

ŜRT is commonly biased upwards for SR, which is the worst (non-conservative) position

from a practical point of view.

Proposition 1. Suppose that µ̂T and Σ̂T are independent, unbiased estimators of µ

and Σ, based on a sample of size T ≥ 2, and that SR > 0. Then, for any collection C of

N–vectors, E
(
ŜRT

)
> SR.
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In Proposition 1, “E” denotes expectation. The proof of the proposition is in Appendix

A. The case SR ≤ 0, which we exclude in Proposition 1, is of little interest in practice,

since it implies no or a negative risk premium for the risky assets, at least for portfolios in

C; if it appeared to be the case in a practical situation, allocation would not proceed by

this method anyway.

The assumption of independence of sample mean and covariance matrix in Proposition

1 is of course satisfied if the excess returns are normally distributed. To assess the magni-

tude of the bias, we carried out some simulations using normally distributed returns, with

“true” parameters based on data from iShares and Spiders. It is however well accepted in

practice that returns tend to be non-normal, with skewed, heavy-tailed leptokurtic distri-

butions. So we also carried out some simulations using a t–distribution with 4 degrees of

freedom. The simulations are reported in the next section.

To complete this section, we observe that, while Proposition 1 demonstrates the up-

ward bias in the sample estimator of the maximum Sharpe ratio, it gives no idea of the

magnitude of the bias. In view of the complicated nature of the estimator it seems dif-

ficult to give explicit estimates of this. We can, however, obtain bounds on the absolute

difference between the sample statistic and its population counterpart. These can be used

to assess the size of the bias in practice, and we also use them to show that the estimator

is consistent, provided it is based on consistent underlying estimators of the mean vector

and covariance matrix.

Proposition 2. Under the conditions of Proposition 1, the following bound holds for

any sample values µ̂T and Σ̂T , and any collection C of N–vectors:

|ŜRT − SR| ≤
√

(µ̂T − µ)′Σ̂−1

T
(µ̂T − µ) +

√
µ′Σ−1µ ||Σ 1

2 Σ̂−1

T
Σ

1

2 − I||. (3)

In Eq. (3), ||A|| denotes the largest in absolute value of the eigenvalues of a symmetric

matrix A, and Σ
1

2 is the symmetric square root of Σ. See Appendix B for the proof of

Proposition 2.

With some further assumptions and analysis, Proposition 2 enables us to find easily

calculable upper bounds for the magnitude of the bias in ŜRT . Suppose the returns are

normally distributed, with µ̂T independent of Σ̂T . Using the Cauchy-Schwarz inequality,

the expectation of the first term on the righthand side of Eq. (3) is bounded above by

√
E

(
(µ̂T − µ)′Σ̂−1

T
(µ̂T − µ)

)
=

√
(T − 1)N

T (T − N)
∼

√
N

T
, for large T. (4)

This follows because the expectation in (4) is of T times a Hotelling’s T 2 random variable,

under the normality and independence assumptions. A slightly more involved calculation,

omitted here, shows that the median value of the random variable on which the second

term on the righthand side of Eq. (2) is based, is bounded above for large T by the quantity
√

µ′Σ−1µ

T
. (5)
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This bound depends on the unknown parameters µ and Σ. In the data analysed in the

next section, we estimate the values of (4) and (5), and it turns out that (4) gives by far

the dominant contribution. We suggest that this will usually be the case, and further, that

(4) provides a conservative over-estimate of the magnitude of the bias in ŜRT .

We conclude this section with the following consistency result, which follows from

Proposition 2. We remark that the consistency of ŜRT does not follow directly from (1),

the consistency of µ̂T and Σ̂T , and the fact that the supremum functional, when taken

over a compact set, is continuous – because in general we are required to maximise (1)

over an unbounded set. This is the case for example when short sales are allowed and

the only constraint on the portfolio allocations is that they sum to 1. Indeed, there are

cases where the supremum of (1) occurs at infinite values of x. Nevertheless, due to the

“self-normalised” nature of the Sharpe ratio, it remains bounded for all x and the next

Corollary, as mentioned, can be deduced from (3).

Corollary to Proposition 2. Suppose µ̂T and Σ̂T are consistent estimators of µ

and Σ, based on a sample of size T , that is, as T → ∞ they converge (in probability, or

almost surely) to their population values. Then, for any collection C of N–vectors, ŜRT

is consistent for SR as T → ∞.

3. Simulations

To provide empirical support for the two propositions, we consider an international

portfolio optimization situation utilizing data on assets readily available to investors. This

approach both addresses an allocation problem that is of interest to investors and also

provides a tractable number of assets for our simulations.

The simulations are based on statistics calculated from the daily continuous excess

returns of “Spiders”, which are index shares designed to replicate the S&P 500 index, and

the 17 “iShares”, which are assets designed to track Morgan Stanley Capital International

country indices. Information is available on these for the period beginning April 1 1996

and ending March 31, 2002. These N = 18 assets are directly tradable on the American

Stock Exchange whereas the share indices they mimic normally cannot be traded. A good

description of Spiders may be found in Elton et al. (2002), and Olienyk et al. (1999)

provide background information concerning iShares. We do not repeat their details here,

other than to mention that Spiders and iShares are traded in the same time zone and thus

we can validly calculate correlations between their returns without introducing bias due to

cross-country lead/lag relationships in the underlying indices. Such properties mean that

iShares are attractive to international finance researchers, and they have recently been

used in studies of international portfolio diversification (e.g., Olienyk et al., 2001). The

US Treasury cash middle rate is used as our risk free rate. All of our data was obtained

from Datastream.

We considered the data on a daily basis, quarter-by-quarter over the period, for a total

of 24 quarters. For each quarter, the sample means and covariance matrices of the daily
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continuously compounded returns among the 18 assets were used to find that portfolio with

the highest Sharpe ratio, obtained by maximising the function in (2). Returns included

any dividends received during the period. Short-sales were prohibited, so a quadratic

optimisation was performed in each quarter.1 For simulation purposes, the resulting Sharpe

ratios and corresponding portfolio allocations obtained at this stage were designated as

the “true” Sharpe ratios and allocations, respectively. Each of these quantities is based on

approximately 60 observations (daily returns over a quarter).

In the simulations, 10,000 random realizations of the return vectors were generated for

each quarter. The parameters (means and covariance matrices) of the generated returns

were set equal to the observed means and variances for that quarter. It was assumed, for

a first set of simulations, that returns follow a Gaussian distribution and, for a second set,

that they follow a t–distribution with four degrees of freedom. Taking two distributions

in this way means that we encompass the usual “baseline” multivariate normal setup and

also allows a comparison with results obtained when returns follow a very heavy-tailed

distribution.

From each of the 10,000 realizations, in each quarter and for each assumed distri-

bution, the portfolio with the greatest Sharpe ratio was determined, and these 10,000

maximum Sharpe ratios and the accompanying allocations formed the basis of the analy-

sis. In contrast to Jorion (1992), we evaluated the Sharpe ratios of the generated portfolios

with respect to the generated (random) parameters, whereas Jorion evaluated the Sharpe

ratios of the generated portfolios with respect to the original (true) parameters (with re-

spect to which they are always suboptimal, of course). This distinction is because we

wish to assess bias in estimation of the maximum Sharpe ratios, rather than the extent to

which a particular portfolio (e.g., the world index, or a US bond index) is suboptimal by

comparison with the portfolio of maximum Sharpe ratio.

Following this extensive simulation of quarterly data, we also grouped the daily returns

annually for portfolio formation, and, in a coarser categorisation, took the entire set of

daily data as a unit for portfolio formation. This allowed us to examine the effect of

increasing sample size from approximately 60, to 250, then to 1,500. Then, further, we

repeated the entire-period analyses using monthly and quarterly rather than daily returns;

the monthly and quarterly returns are progressively less variable than the daily, but there

are (progressively) fewer of them.

To demonstrate the extent of the bias, Table 1 shows the value of the true maximum

Sharpe ratio compared with the mean and median of the generated maximum Sharpe

ratios, for each of the sub-periods (quarterly, annual, overall). In Table 1, Panel A reports

quarterly simulations calculated using daily data for portfolio formation, Panel B gives

1 iShares and Spiders permit short selling, so we could also realistically have considered

the (easier) optimisation problem with short sales allowed. In practice, however, many

funds prohibit short selling so we decided to focus on this situation.
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annual simulations using the daily data (although, for 1996, we have only three quarters

of data) and Panel C reports the simulation for the entire sample period, again using the

daily data for portfolio formation. Panels D and E of Table 1 show the results for the

entire sample period, using monthly and quarterly returns for portfolio formation.

[INSERT TABLE 1]

The simulations clearly illustrate the effect predicted by Proposition 1. In no instance

is the true Sharpe ratio greater than the average Sharpe ratio. Some skewness can be

detected in the distributions of the estimated Sharpe ratios, but there is no instance of a

true maximum Sharpe ratio exceeding the median of the 10,000 simulations. To illustrate,

we reproduce the histogram of simulated Sharpe ratios from the first quarter of the study

(Quarter 2, 1996) (the other quarters gave qualitatively very similar results):

[INSERT FIGURE 1]

Table 1 also provides evidence consistent with the Corollary to Proposition 2. As we

increase the sample size from quarterly to annual and then to the entire study period,

we find that the bias falls. The average difference between the true and mean Sharpe

ratios obtained from quarterly simulations based on portfolios formed from daily returns

is 0.1169, whereas it is 0.0539 when obtained from annual simulations and 0.0179 from

simulations over the entire period. Nevertheless, these differences are large and remain

significant by comparison with the standard deviations of the simulated maximum Sharpe

ratios. The comparable figures when portfolios were formed from monthly or quarterly

returns were 0.0421 and 0.0729 (for simulations over the entire period).

The upper bound in Eq. (4) for the expected bias takes the value
√

18/1500 = 0.11

when evaluated relevant to the “entire period” analysis reported in Table 1. This is very

conservative by comparison with the bias of 0.0344 − 0.0165 = 0.0179 estimated from the

simulations. The additional bound in Eq. (5) takes the value 0.0004 in this situation, so

(4) is by far the dominant term. We expect this to be the case fairly generally, as Eq. (5)

is of the order of magnitude of the Sharpe ratio itself, divided by
√

T , whereas Eq. (4) is

of the order of the square root of N , the number of stocks in the portfolio, divided by
√

T ,

a much larger quantity in general.

Simulations based on a t-distribution with 4 degrees of freedom produced results

consistent with those reported in Table 1. In each instance, the mean and median simulated

maximum Sharpe ratios were greater than the true maximum Sharpe ratios. Consistent

with the Corollary to Proposition 2, the average difference between the true and mean

Sharpe ratios decreased from 0.1146 using quarterly simulations, to 0.0649 for annual

simulations and to 0.0189 for the entire period (results based on daily returns). Since

these results were qualitatively very similar to those for the normal distribution, we omit

further details of them here (results are available on request from the second author).

We conclude this section with some related comments. In general, the sample portfolio

allocations (the x̂T , in our notation) are biased estimators of the true optimal allocations

with high variability. This was apparent in our simulations both for the normal and the

t–distributions, and is consistent with literature demonstrating that portfolio composition
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is highly sensitive to the inputs (Black and Litterman, 1992), so we omit further discussion.

Finally, it is natural to ask about the out-of-sample performances of the portfolio

generating the true maximum Sharpe ratio by comparison with those of the simulated

portfolios. We carried out the following analyses. For each simulated optimal portfolio

formed in quarter t (as determined by its allocations x̂T ), we examined its performance

in quarter t + 1 (and similarly, for the annual simulations, for each portfolio formed in

year t, we examined its performance in year t+1) by calculating average returns and their

standard deviations over the 10,000 simulations. Again we will omit details, but it was

clear that the performances of neither the “true”, nor other portfolios selected according to

various criteria, were significantly different from the average performance of all the random

portfolios.

4. Discussion

Our results accord with, and extend, those of Miller and Gehr (1978) and Jobson

and Korkie (1981), who investigated the Sharpe ratio of an individual asset or portfolio

of assets; in other words, the ratio of a single mean excess return (asset or portfolio) to

its standard deviation. (Thus, no optimisation was involved in their estimations.) They

also demonstrated a theoretical upward bias in this measure, when estimated as the ratio

of the usual unbiased sample mean and standard deviation estimators, compared with its

true value. The Sharpe ratio of an individual portfolio is a much easier statistic to analyse,

however, than the maximum Sharpe ratio achievable from a portfolio of assets combined

in an optimal manner, which is the object of our attention, because, in general, there is no

explicit expression for the latter, which has to be obtained by some numerical procedure.

Nevertheless, as we showed in Proposition 1 and the simulations, it is possible to prove

the existence of the bias both theoretically and in a practical example.

5. Conclusion

The paper has presented two propositions relating to the bias and consistency of the

maximum Sharpe ratio. Proposition 1 implies that a sample Sharpe ratio can be expected

to be greater than the true Sharpe ratio, on average. The Corollary to Proposition 2 sug-

gests that this bias disappears asymptotically. Empirical evidence, using simulations based

on Spiders and iShares, instruments that may be readily incorporated in an internationally

diversified portfolio, shows however that bias persists in very large, finite, samples.

Somewhat surprisingly, our results for the t–distribution did not differ greatly from

those for the normal. This may be attributed perhaps to the “self-normalizing” property

of the Sharpe ratio (familiar already in regard to the usual t–statistic), whereby extreme

fluctuations in the sample tend to cancel as a result of dividing sample mean by sample

standard deviation. This robustness property of the portfolio allocation procedure deserves

further exploration.

We have noted that the bias in the maximum Sharpe ratio has important ramifications

both for investors and for financial econometricians. Correcting the bias is important, but

requires further research.
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Appendix A

Let C be any subset of IRN . Then argue as follows:

E
(
ŜRT

)
= E sup

x∈C



 x′µ̂T√
x′Σ̂T x



 ≥ sup
x∈C

E



 x′µ̂T√
x′Σ̂T x





= sup
x∈C

E (x′µ̂T ) E



 1√
x′Σ̂T x



 (by independence)

= sup
x∈C

E



 x′µ√
x′Σ̂T x



 (since µ̂T is unbiased for µ).

Since we assumed SR > 0, there is an x in C for which x′µ > 0, and C′ = C∩{x : x′µ > 0}
is nonempty. Then

E
(
ŜRT

)
≥ sup

x∈C′



 x′µ

E

√
x′Σ̂T x



 (by Jensen′s inequality)

≥ sup
x∈C′

(
x′µ√
x′Σx

)
(Jensen′s inequality again)

= SR.

Jensen’s inequality for convex/concave functions was used twice in the above chain of

inequalities: to deduce E(1/X) ≥ 1/EX , and to deduce E(
√

X) ≤
√

EX, for a positive

random variable X . The inequalities are strict as long as µ̂T and Σ̂T are not degenerate

at the constant values µ and Σ, as we implicitly assume. This proves Proposition 1.

Appendix B

Let x ∈ IRN and write

x′µ̂T√
x′Σ̂T x

=
x′µ√
x′Σ̂T x

+
x′(µ̂T − µ)√

x′Σ̂T x

=
x′µ√
x′Σx

+

x′µ

(√
x′Σx −

√
x′Σ̂T x

)

√
x′Σx

√
x′Σ̂T x

+
x′(µ̂T − µ)√

x′Σ̂T x
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=
x′µ√
x′Σx

+ AT (x) + BT (x), say. (A.1)

Now, for each x ∈ IRN ,

AT (x) =
(x′µ) x′

(
Σ − Σ̂T

)
x

√
x′Σx

√
x′Σ̂T x

(√
x′Σx +

√
x′Σ̂T x

) . (A.2)

Some routine calculations show that

A2
T (x) =

(u′Σ− 1

2 µ)2 (u′ (I − DT ) u)
2

u′DT u
(
1 + u′DT u + 2

√
u′DT u

) , (A.3)

where u = Σ
1

2 x/
√

x′Σx is a unit vector, and DT = Σ− 1

2 Σ̂T Σ− 1

2 . Since sup|u|=1(u
′Σ− 1

2 µ)2 =

µ′Σ−1µ, and

sup
|u|=1

(u′ (I − DT )u)
2

u′DT u
= sup

|z|=1

(
z′(D−1

T
− I)z

)2
= ||D−1

T
− I||2,

we see that AT (x) is no larger in modulus than

√
µ′Σ−1µ ||Σ 1

2 Σ̂−1

T
Σ

1

2 − I|| = AT , say, (A.4)

uniformly in x ∈ IRN . Similarly, BT (x) is no larger in modulus than

√
(µ̂T − µ)′Σ̂−1

T
(µ̂T − µ),

uniformly in x ∈ IRN . Then (3) follows from

|ŜRT − SR| ≤ AT + BT .

Remarks: (i) From (3), ŜRT − SR ≤ AT + BT , which together with Proposition 1 gives

0 ≤ E(ŜRT ) − SR ≤ E(AT ) + E(BT ), (A.5)

provided the expectations on the right exist. In principle, (A.5) can be used to give bounds

on the bias of ŜRT . We did this in Eq. (4) for E(BT ), but E(AT ) seems difficult to evaluate

except in simple cases, so we gave the bound (5) for the median of AT .

(ii) In going from (A.3) to (A.4) we neglected the term in brackets in the denominator

of (A.3), which, since DT

P→ I, is of the order of 4 in large samples. Thus (taking the

square root) we can expect our overestimate to be too big perhaps by a factor of 2, from

this source at least.
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(iii) If the consistency assumption is strengthened to µ̂T = µ + OP (1/
√

T ) and Σ̂T −
Σ + OP (1/

√
T ), as commonly hold, then we can deduce from (3) that

√
T (ŜRT − SR) =

OP (1), as T → ∞, giving a
√

T–rate of convergence of ŜRT to SR.

(iv) Given our consistency result, and the preceding remark, it’s natural to ask also

if there is a central limit theorem for the empirical maximum Sharpe ratio; is it approx-

imately normally distributed, in large samples? This question is of course important for

hypothesis testing and other purposes. See for example Whitelaw (1997) for some empir-

ical evidence in this respect. We can show in fact that the empirical maximum Sharpe

ratio is asymptotically normal in some situations but not in others. We defer details of

this analysis to another time.
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Table 1
Comparison of "True" and Simulated Maximum Sharpe Ratios - Normal Distribution

Sharpe Ratio of True 
Maximum Sharpe Ratio 

Portfolio

Mean of 10,000 Simulated 
Maximum Sharpe Ratios

Median of 10,000 Simulated 
Maximum Sharpe Ratios

Standard Deviation of 
10,000 Simulated Maximum 

Sharpe Ratios

Q2-1996 0.2213 0.3695 0.3631 0.1253
Q3-1996 0.0994 0.2242 0.2194 0.1133
Q4-1996 0.3104 0.4576 0.4520 0.1286
Q1-1997 0.0919 0.2621 0.2567 0.1126
Q2-1997 0.4669 0.6169 0.6103 0.1409
Q3-1997 0.1193 0.2474 0.2434 0.1167
Q4-1997 0.0537 0.1312 0.1276 0.1139
Q1-1998 0.4464 0.5186 0.5125 0.1363
Q2-1998 0.1785 0.2491 0.2452 0.1217
Q3-1998 -0.1401 -0.0105 -0.0037 0.1198
Q4-1998 0.3341 0.4495 0.4456 0.1294
Q1-1999 0.1624 0.2605 0.2552 0.1227
Q2-1999 0.3420 0.4592 0.4533 0.1301
Q3-1999 0.0950 0.1648 0.1605 0.1128
Q4-1999 0.3853 0.5202 0.5141 0.1321
Q1-2000 0.0897 0.2000 0.1959 0.1138
Q2-2000 0.0655 0.2188 0.2144 0.1142
Q3-2000 -0.0715 0.0907 0.0853 0.1018
Q4-2000 0.1005 0.2138 0.2087 0.1120
Q1-2001 0.0436 0.1374 0.1326 0.1085
Q2-2001 0.1918 0.2883 0.2824 0.1197
Q3-2001 0.0032 0.0975 0.0937 0.1071
Q4-2001 0.3028 0.4268 0.4208 0.1288
Q1-2002 0.2816 0.3864 0.3817 0.1273
Total Observations 24 24 24 24
Average over 24 Quarters 0.1739 0.2908 0.2863 0.1204

1996a 0.1410 0.2111 0.2091 0.0680
1997 0.0883 0.1375 0.1372 0.0575
1998 0.0669 0.1112 0.1102 0.0580
1999 0.1491 0.1987 0.1979 0.0600
2000 -0.0062 0.0500 0.0487 0.0516
2001 0.0142 0.0679 0.0660 0.0515
Average over 6 Years 0.0755 0.1294 0.1282 0.0578

Q2-1996 to Q1-2001 0.0165 0.0344 0.0344 0.0242

April 1996 to March 2002 0.1447 0.1868 0.1833 0.1139

Q2-1996 to Q1-2001 0.2269 0.2998 0.2878 0.2170
aConsists of only 3 quarters of data from the 1996 period 

Panel E: Entire period - quarterly returns

Panel B: Annual  Formation Periods - daily returns

Panel C: Entire period - daily returns

Panel A: Quarterly Formation Periods - daily returns

Panel D: Entire period - monthly returns
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Fig. 1. Histogram of 10,000 Maximum Sharpe Ratios Simulated under Normally Distributed Returns 
 


