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Abstract

The continuous variables regime offers much promise for quantum information and com-

putation protocols. In particular, the continuous variable polarisation teleportation is of

great interest, both theoretically and experimentally, at the moment.

In this thesis three schemes for continuous variable polarisation teleportation are anal-

ysed and their performance is rated. The double teleporter setup, the quantum nondemo-

lition teleporter scheme and the biased entanglement teleporter setup are each discussed

and evaluated. Two methods are employed for the evaluation of the teleportation success.

The TV diagram which stresses the usefulness of the experimental design and the fidelity,

which measures the quantum input to output state preservation. It is later shown that

these two independent assessments, which consider physically different attributes, yield

contradicting conclusions. Further it is shown that it is important to decide whether the

objective of the polarisation teleportation is the transfer of information or the quantum

state recreation before meaningful analysis using TV or fidelity can be made.

Finally, a study of a special cloning limit for a particular input state is made, related

to the two of the above polarisation teleportation schemes. A new cloning fidelity limit is

derived for these cases and TV cloning limits of information transfer and correlations are

discussed.
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