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Abstract

A rich variety of phenomena is displayed by solid state systems undergoing correlation-induced
metal-insulator transitions. In a large class of these materials, the instability of the normal metallic
state is ascribed to a peculiar topology of its Fermi surface. Such systems can support charge- or
spin-density waves.

An important theoretical model of these systems is provided by the excitonic insulator. One
of the most interesting predictions of this model is the appearance of ferromagnetic order in the
system due to the interference of charge- and spin-density waves. This state is the so-called
excitonic ferromagnet.

The coexistence of superconductivity with charge- and spin-density waves has been observed in
a diverse range of materials. In many of these compounds, the superconductivity has an unusually
high critical temperature. Theoretical studies of the coexistence of these two phenomena have
worked within the simple framework of the excitonic insulator model.

In contrast to the coexistence with density waves, the simultaneous appearance of superconduc-
tivity and ferromagnetic order is both rare and poorly understood. The study and characterization
of systems in which the two phenomena coexist is an important and challenging problem.

In this thesis, we present the results of an investigation into the appearance of superconductivity
in the excitonic ferromagnet. We find that such a coexistence is possible at zero temperature within
the self-consistent Hartree-Fock approximation.
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Chapter 1

Introduction

1.1 Overview

It was not long after the development of quantum mechanics that theorists first became interested
in applying the “new physics” to solid state systems. The success of the pioneering efforts of Bloch
and Wilson is most eloquently testified to by the continuing practical importance of their quantum
band theory of solids [1].

In spite of the enormous success of the Bloch-Wilson theory, it was not until the late 1950s
and early 1960s that the quantum theory of solids actually came of age. In this period, the newly-
developed techniques of quantum field theory allowed spectacular progress to be made upon the
outstanding problems of the 1930s and 1940s. Two defects of the traditional band theory were
of greatest interest: the lack of an explanation for the phenomenon of superconductivity; and
the inability to accurately predict the conducting and insulating states of certain oxides. The first
problem was remedied in 1957 with the publication of the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity [2-4]; Mott’s concept of the correlation-induced metal-insulator transition
provided a solution to the second [5,6].

The BCS theory of superconductivity was soon recognized as a particularly special achievement:
it was the first soluble non-perturbative theory of a many-body system. The BCS solution was
quickly found to be of a very general character, and its basic form has been applied in a wide variety
of contexts [7]. One such application has been to the excitonic instability in semimetals, where
the spontaneous formation of excitons (electron-hole pairs) causes a metal-insulator transition to
occur [8]. This new state is the so-called excitonic insulator. Due to the rich variety of phenomena
that it is predicted to display, the excitonic insulator has proved to be of importance in the
description of many condensed-matter systems. Of particular note is the appearance of electron-
density waves, and the possibility of a ferromagnetic ordering of the band electrons (the excitonic
ferromagnet).

The excitonic insulator played a conspicuous role in early efforts to raise the critical temperature
of superconductors [9]. This was in part motivated by the observation that the highest temperature
superconductors known prior to 1986, the A15 and C15 compounds (Laves phases), exhibited a
density-wave phenomenon [10]. Indeed, the most successful theoretical models of these materials
have utilized an approach based upon the realization of a state closely related to the excitonic
insulator [11]. There are several features of the excitonic insulator state itself that suggest the
possibility of a critical temperature enhancement; such an effect has been verified theoretically
[12,13]. Modifications of the excitonic insulator scenario have been proposed in order to study
more realistic systems; the results have given good agreement with experiment.

Contemporaneous with the development of the BCS theory of superconductivity was the recog-
nition that the absence of ferromagnetic superconductors was an experimental fact of some sig-
nificance [14,15]. It soon became apparent that the phenomena of ferromagnetism and supercon-
ductivity were fundamentally antagonistic. In order to better understand both, much effort was
directed at finding examples of their coexistence, which was rewarded in the mid-1960s with the
discovery of the first ferromagnetic superconductors [16]. In the majority of these materials, how-
ever, the ferromagnetism and superconductivity appear in non-overlapping regions of mesoscopic
dimensions; in the rare cases where both phases are uniformly realized throughout the material,
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2 Introduction

one (or both) of the coexisting phases often cannot be characterized by traditional theories. The
study of these systems is therefore the subject of great interest [17-19].

1.2 Aim and Motivation

In this thesis, we aim to investigate a system simultaneously displaying spatially uniform ferro-
magnetism and superconductivity. We believe that an ideal candidate for such a study is provided
by the excitonic ferromagnet. The reason for this is two-fold: the basic mechanism responsible for
excitonic ferromagnetism is known not to be inconsistent with BCS superconductivity; and the
peculiar characteristics of the excitonic ferromagnet make it less likely to hinder superconductivity
than other possible mechanisms for ferromagnetism.

Some motivation is also provided by the recent discovery of weak ferromagnetism in the
impurity- and vacancy-doped alkaline earth hexaborides CaBg, SrBg and BaBg [20,21]. Attempts
were made to explain the observed ferromagnetic behaviour of these materials in terms of the exci-
tonic ferromagnet, sparking renewed interest in this state [22,23]. Although further experimental
and theoretical work have cast doubt upon the validity of the excitonic scenario, it remains the
most convincing interpretation [24]. In spite of some suggestive hints, superconductivity has not
been observed in these systems. We do not aim, therefore, to explicitly apply our results to the
hexaborides, but rather to broaden the current understanding of the excitonic ferromagnet.

1.3 Thesis Plan

We commence in chapter 2 with an introduction to the quantum field theory of many-body systems.
In this chapter, we summarize the most important features of the Green’s function approach to
the study of the many-body problem. We include discussions of the approximations used in the
rest of the work, and the theory of phase transitions in Fermi systems.

In chapter 3 we apply these methods for the first time to the simplest system considered here:
the BCS superconductor. Simple variations on the analysis developed here will be used repeatedly
in the rest of the work. We shall follow this chapter with a review of important concepts in
magnetism in general and ferromagnetism in particular (chapter 4).

The excitonic insulator and ferromagnet will be considered in detail in chapter 5. We combine
the results of this chapter and chapter 3 in the following study of superconductivity in an excitonic
insulator (chapter 6). These three chapters provide the essential background for chapter 7, where
we present a detailed original analysis of the superconducting excitonic ferromagnet state. Due
to the relative obscurity of their topics, chapters 5, 6 and 7 all include a review of experimental
evidence for the states they are each concerned with.

We conclude with an appraisal of our work and a discussion of possible directions for future
efforts in chapter 8. We attach a detailed mathematical appendix.

1.4 Note on Notation

The reader will probably note the absence of & in the following work; we adopt the standard
notation and set i = 1 throughout [25]. This is done in the interests of clarity, so as not to
clutter the formulas. We also note the standard dual usage of 3: as a subscript, it is a spin-index;
appearing elsewhere in formulas it is the inverse temperature 8 = (kpT)~!.



Chapter 2

Quantum Field Theory of
Many-Body Systems

The study of the physics of many-body systems was revolutionized in the mid-1950s by the appli-
cation of the techniques of quantum field theory. Originally developed for the study of elementary
particles, the remarkable success of these methods has made them indispensable to the theoreti-
cal study of condensed-matter physics [25-30]. Central to the unified and elegant quantum field
theoretic approach is the Green’s function.

All the most important physical properties of a many-body system can be determined from its
Green’s functions. Although a bewildering variety of these functions have been developed for the
study of the many-body problem, we shall work almost exclusively with the single-particle Green’s
function. It may be interpreted as a generalized scattering amplitude, detailing the ‘propagation’
of a particle through the system. Not only is this Green’s function particularly simple to work
with, it also gives the physics of greatest interest, such as the electronic excitation spectrum, the
macroscopic thermodynamics and the ensemble average of any single-particle operator.

In this chapter we present the basic theory of the single-particle Green’s function in the
Matsubara finite temperature formalism. We commence in section 2.1 with a review of the grand
canonical ensemble and the rudiments of the Matsubara formalism. We proceed in section 2.2
to a definition of the single-particle temperature Green’s function and an examination of its
properties. In particular, we shall consider its equation of motion (subsection 2.2.2) and its
relation to observables (subsection 2.2.3). We also introduce the many-particle Green’s function
(subsection 2.2.1). This is followed by a discussion of Wick’s theorem (section 2.3) and the
approximations that we have used in our work (section 2.4). We conclude with a brief outline of
important concepts in the theory of phase transitions in Fermi system (section 2.5).

2.1 The Grand Canonical Ensemble

The grand canonical ensemble provides the most versatile statistical-mechanical description of equi-
librium many-body systems. It is used to study situations where only the volume V', temperature
T and chemical potential p are known, and therefore allows for the possibility of small fluctuations
in the total energy of the system, and the number of particles in it.

The grand canonical ensemble of a many-body system is the set of the system’s microscopic
states consistent with the given V, T and p. Each of the states in the ensemble is assigned a
statistical weight corresponding to the probability of its occurrence: if |¢) is a possible state of the
system, its statistical weight is proportional to (¢|e™? (H-uN) |t)) where N is the number operator,
H is the system’s Hamiltonian and § = (kgT)~'.

We define the grand canonical partition function Zg as the sum of these statistical weights:

Ze = Tr{e—ﬁ(ff—ﬂm} (2.1)

3



4 Quantum Field Theory of Many-Body Systems

The trace in 2.1 is taken over the states in the ensemble. Zg is related to the thermodynamic
potential Q by the relation
Q = —kpTln(Zg) (2.2)

and so we may, in principle, determine the macroscopic equilibrium thermodynamic behaviour of
the system from the grand canonical partition function. Equations 2.1 and 2.2 enable us to define
the grand canonical statistical operator
pa = ZG—le—ﬂ(ﬁ—MN) — POQ—H+uN) (2.3)

The inner product {¢|pc|) gives the probability that the system will be found in the state |¢).

We consider an observable O of the system. O is associated with the operator O. We imagine
making a large number of independent measurements of this quantity O, thus obtaining an average
value O. If the system can be studied in terms of a grand canonical ensemble, this value O may
be determined by averaging the value of O across all the states in the ensemble in such a way
that each value is weighted according to the probability that the corresponding state is realized.
The weighted average of these different values of O is the so-called ensemble average (O) of the
operator O. Tt is defined

) = Tr{ﬁgé} -0 (2.4)

where the trace is again over all the states in the ensemble.

2.1.1 The Matsubara Formalism

The grand canonical Hamiltonian K for a system with Hamiltonian H is defined by
K = H—uN (2.5)

The grand canonical Hamiltonian allows us to significantly simplify the expressions for the partition
function (equation 2.1) and the statistical operator (equation 2.3):

Zg = Tr{e—ﬁf‘} po = Zo leBK — BO-K) (2.6)

In the Matsubara formalism, K is also used to define the ‘modified’ Heisenberg picture: for any
Schrédinger operator Og(r) we define the ‘modified’ Heisenberg operator

Ox(r,7) = X" Og(r)e K~ (2.7)

where 7 is considered to be real. The operator @ k (r,7) obeys the equation of motion

A

601{(1‘, T)
or

- [K Ok (r, T)] (2.8)

It is readily apparent that the equations 2.7 and 2.8 follow from the corresponding relations for
the original Heisenberg picture, with the replacements H-S K ,it = 7. We note that 7 is real,
however, and so the identity i¢ = 7 implies that the time ¢ is an imaginary quantity. Thus, the
Matsubara finite temperature formalism is often referred to as the ‘imaginary-time’ approach.

We almost exclusively utilize the ‘modified’ Heisenberg picture in what follows. Thus, for
simplicity, we henceforth suppress the subscript K. We assume, unless stated to the contrary, that
the presence of a T-argument indicates that the operators are in the ‘modified’ Heisenberg picture;
the absence of a T-argument indicates that the operators are in the Schrédinger representation.
When we speak of operators in the Heisenberg picture, we shall always refer to operators in the
‘modified’ Heisenberg picture introduced above.

We limit ourselves to the study of systems which may be described by a grand canonical
Hamiltonian consisting of the sum of single-particle (Ko) and two-particle interaction (K;) terms.



§2.2 Green’s Functions 5

Explicitly, we have

K = K+K (2.9)
= Z (ek’ - /»’/)&Llya/k’l/
k',v
1 St At A o
+—V Z Z UVUW'V' (kl, k2; kl2, k'l)aliwaltwakén: akllyl (2.10)

ki1,k],ko.kb vov' mm’

where V' is the volume of the system. The function Uy, (ki,ka; k5, k]) in the second term in
equation 2.10 is the two-body interaction potential. Note that the the operators appearing in the
expression for the grand canonical Hamiltonian are in the Schrédinger representation: referring to
equation 2.8, we immediately see that K is T-independent.

2.2 Green’s Functions
The single-particle temperature Green’s function is defined as
Gas k1,112, ) = =Tr {paTy [0 (r)al, ()] |

6
- <TT [akla )al, 4 (r ]> (2.11)

where the trace is over the same states as in equation 2.1 and the dxq (7), &La (1) are the Heisenberg
field operators for a fermion with momentum k and spin a. The super-operator T is the imaginary-
time Wick’s chronological ordering operator. The ‘r-product’ T [A(71)B(72)...C(73)] of the Fermi
operators A(71), B(m2),...,C(73) is the product of these operators such that those with greater
values of 7 are written to the left of those with smaller values (so-called ‘chronological order’),
multiplied by the factor (—1)? where p is the number of transpositions of the Fermi operators
required to transform the original product A(r)B(72)...C(73) into chronological order. Thus for
the 7-product in 2.11 we have

N ~1
N N axc; 0 (1) Gy 5 (T2) T > T2
T & T G/T T — 1 ko 2.12
rliia(71)81,5(72)] { —&L2B(Tz)dk1a(ﬂ) T > T (2.12)

and so we may re-write equation 2.11 as
Gap(ki,T1;ke,72) = —0(11 —72) <&k1a(7—1)d;r<25(7_2)> +6(r2 — 1) <@L25(72)&k1a(71)> (2.13)

Gap(k1,71; ko, ) is undefined when 71 = 7. We may regard equation 2.11 as defining the elements
of a 2 x 2 matrix in the spin-indices: the so-called matrix Green’s function is defined as

Gki,miks, ) = |:g‘r1*(k1;7_1;k2;7—2) gu(kl,Tl;kz,Tz)]

2.14
Gir(ky,115ko, 1) Gyy(ke, 715ke, 72) (2.14)

It is frequently convenient to assume (if only for computational tractability) that the system
is spatially infinite and homogeneous. Since the real system may be considered to be enclosed
within a macroscopic volume V where V'/3 is much larger than the characteristic length scale of
the system, taking the limit V' — oo is reasonable. We note that this limit is usually taken at
the end of the analysis (see section A.1 of the mathematical appendix). The latter assumption,
however, is substantially more radical. It ignores the periodic potential produced by the crystalline
lattice in a solid, essentially treating the system as an interacting Fermi gas in free space. As
such, the assumption of homogeneity can only give a qualitative description of the behaviour of a
real solid state system. Nevertheless, this assumption is commonly utilized and gives remarkable
agreement with experiment for the systems considered here. We shall therefore adopt both of
these assumptions. All succeeding results are for spatially infinite and homogeneous systems,



6 Quantum Field Theory of Many-Body Systems

unless explicitly stated otherwise.
We have assumed that the systems that we shall study are invariant under spatial translation.
Hence, by Noether’s theorem, the total momentum operator

P = 3 kil i (2.15)
k,a

commutes with the grand canonical Hamiltonian K. It is therefore possible to choose the trace
in equation 2.11 to be over the simultaneous eigenstates of P and K. Since the action of the
operator axq (7) (&La (7)) is to lower (raise) the total momentum of the system by k for all ‘times’
T, it follows that the trace in equation 2.11 will vanish unless k; = ko = k [28]. Furthermore, for
the T-independent systems considered here, only the 7-difference 7 = 73 — 73 has an unambiguous
interpretation. Thus, the single-particle temperature Green’s function may be re-written as

Gap(k,) = —(T; |axa(r)al5(0)] ) (2.16)

It is customary to assume that Gog(k, 7) is diagonal in its spin indices.
It is convenient to regard the Green’s function 2.16 as an antiperiodic function in 7 with
periodicity 8. That is, for any integer n

Gap(k, 7 +n8) = (=1)"Gap(k,7) (2.17)

This allows the expansion of Gag(k,7) in a Fourier series

Gap(k,7) = % D e T Gap(k,wn) (2.18)

n=—oo

where w, = "’7" and the Fourier coefficients G,s(k,wy) are given by

s
Gaplk,wn) = %/_ﬂ dre*""Gop(k, T) (2.19)

These Fourier coefficients may themselves be interpreted as Green’s functions in the conjugate w-
space. It may be shown that G,g(k,w,) vanishes whenever n is odd (see [26]), and so the Fourier
representation of G, 5(k, T) may be re-written

Gap(k,7) = % D e Gop (K, wn) (2.20)

n odd

The Fourier coefficients of the Green’s functions are of particular importance as their poles
give the single-particle excitation spectrum of the system. That is, if the conjugate matrix Green’s
function G(k,w) is of the form

M
P, (k,w)
Gk,w) = — (2.21)
mzzl iw — ep(k)
where the ®@,,(k,w) are holomorphic matrix functions of w, then the dispersion relations for the
electronic excitation spectrum are given by the €,,(k). A demonstration of this important property

is beyond the scope of this brief discussion: the reader is referred to [26,27].

2.2.1 Many-Particle Green’s Functions

It is possible to generalize the concept of the Green’s function to more than one particle. The many-
particle Green’s function ‘propagates’ several particles through the system, taking into account the
correlations between them. This allows the study of collective effects in a many-body system.



§2.2 Green’s Functions 7

For time-independent, homogeneous and spatially infinite systems, the n-particle Green’s func-
tion G is defined as

g(gr.b.).ﬁa"y’.../_?’ (k1T17 s 7kn7—n; k2,7—217 ) anTnl)
— (<1)" <TT [akla(n) et 5(ra)al g () .l ()i o (0)] > (2.22)

where k = k; +ks...+k, —ky'—ks'...—k,,’. A Fourier representation in each of the 7-variables of
the many-particle Green’s function may also be developed, and a conjugate many-particle Green'’s
function thereby defined.

2.2.2 The Equation of Motion

The single-particle Green’s function obeys an ‘equation of motion’ in its 7-variable. More precisely,
it is the first in an infinite hierarchy of coupled differential equations for the n-particle Green’s
functions. Although these equations of motion cannot therefore be used to exactly solve for the
Green’s functions, the hierarchy may be truncated to admit their approximate calculation. Such a
method is particularly easy to employ when calculating the Green’s function in the self-consistent
Hartree-Fock approximation and is further discussed in section 2.4.

From equation 2.16, we have for the single-particle Green’s function

Gas(k;7) = —0(r) (inca(r)if5(0)) +6(=7) (al5(0)icalr)) (2.23)

Taking the derivative of G,pg(k, T) with respect to 7, we obtain

%gag(kﬂ-) - —0(7’)<8&1(;7¢;(T)&LB(0)>+0(—7) <af(5(0)7‘9d‘g’;(7)>
~50) ([na(ra )], ) (2.24)

Note that the ‘derivative’ of the Heaviside step function 6(7) is (7). We consider the last term
on the RHS of equation 2.24. Since this term vanishes except when 7 = 0, it is necessary only to
calculate the trace for this case. The anticommutator evaluates

[aka(o),&Lﬂ(O)L - [aka,aLﬂL = bap (2.25)

Since (6ag) = 0ap, We may therefore re-write equation 2.24 as

_%gaﬁ(k, 7) = 8(7)das + <TT [8&276;(7)&1'43(0)” (2.26)

After a simple but tedious calculation yields the equation of motion for the annihilation operator
Gxa(T), we obtain for equation 2.26

D Guplle7) = 8(P)bas + (e = 1) (k)

1
+W Z Z [Unan’V’(k%k;klmkIl) _Uann’l”(kak2;klzakl1)]
kll,k27kl2 V',TIJII

x (T [y (s (T argo (1)l 5 0)] ) (2.27)

Note that we have interchanged the order of the sum and the trace on the RHS of 2.27: this is
possible as the trace and sum are both convergent.

We consider the 7-product on the RHS of equation 2.27. We see that the 7-product of
af, (T) ey (7)o (1)L 5 (0) will be equal to the 7-product of iy (), (T, , (T)afs(0), as
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the two products differ by an even number of transpositions of Fermi operators. Thus, we see that

af Q Q al - A 5 ot ~t
<TT [am (1)t (7)o (7t 5 (0)] > = <TT [ak; o (N (Nal,, (1)l (o)] >
= 5kk’1+k'27k2g,,(ﬁ,),rﬂn(k127',kllT(_l);sz(TZ)) (2.28)

where un and T(z) are interpreted respectively as lims, ,o- (7 + 01) and lims, ,o- (7 + d2) where
01 > 8. This notation reminds us that we must always write the product

Gy (7)o (1), (7)

in this order. Substituting equation 2.28 into equation 2.27 and rearranging, we obtain the equation
of motion for Gup(k, 7):

—%gaﬁa«n) = ()0 + ek — 1)Gas (K, 7)

Z Z nan'v’ +k12 - k7k7kl27k11) - Uann’l/’(kakll + kl2 - k7k127k11)]
kl,k2 v ,7777

xQn 'v'Bn (kIZTa kllT(_l) ) kll + kl2 - kT(_Q)) (229)

where we have used the Kronecker-delta in equation 2.28 to eliminate the summation over ks.

In order to solve equation 2.29 for G,p(k,7) we must have the two-particle Green’s function. An
expression for the two-particle Green’s function may be obtained by solving its equation of motion,
which may be derived by following a procedure essentially identical to that outlined above. In
general, however, this will involve both single- and three-particle Green’s functions. We therefore
require the three-particle Green’s function: its equation of motion, however, involves the four-
particle Green’s function. Continuing this argument, we obtain an infinite hierarchy of coupled
differential equations for the Green’s functions, with the differential equation for the n-particle
Green’s function coupled to those of the (n — 1)- and (n + 1)-particle Green’s functions. It is,
however, possible to truncate the series in a controlled and well-defined manner at, say, the m-
particle Green’s function G™). This yields a finite set of coupled differential equations for the
one-, two-, three-,...m-particle Green’s functions [30].

2.2.3 Relation to Observables

For a homogeneous, spatially infinite and time-independent system, an arbitrary single-particle
operator J may be written in the Schrédinger picture as

= Y Jsa®ifgixa = Y. Jpa(k)ils(0)ira(0) (2-30)

k,a,8 k,a,8

where Jg o (k) is the operator in first-quantization representation. The ensemble average of J is
given by equation 2.4:

= D Jsalk <akﬁ )aka(0)> (2.31)

k,o,3

From equation 2.16 it is easy to see that
Gap(k,07) = lim Gupk,7) = <&Lﬁ (O)dka(0)> (2.32)
70~

Substituting equation 2.32 into equation 2.31, the ensemble average (f ) is rewritten as

= Y Jsa(K)Gap(k,0” ZTr{J 07)} (2.33)

k,a,3
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where G(k,7) is the single-particle matrix Green’s function of the system and J(k) is the first
quantization operator as a matrix in its spin-indices.

The ensemble average of any n-particle operator may be calculated from the n-particle Green’s
function via a natural extension of the method outlined above for the single-particle case.

2.3 Wick’s Theorem

For operators with 7-dependence as given by the Heisenberg picture (equation 2.7), Wick’s theorem
holds only for non-interacting systems (i.e. K, = 0). In the following, the subscript ‘0’ will denote
that the expression refers to the non-interacting system. The theorem concerns the evaluation of
expressions of the form

Tr { ol [A(TA)B(TB)G(TC) . F(TF)] } (2.34)

where pgo = exp(B[Q — KO]) and the A,B,C’, .. .,ﬁ’ are a set of an even number of creation
and annihilation operators, each with its own 7-variable. The contraction of two such operators is
defined by

AB = Tr{ﬁGOTT [AB]} (2.35)
Of particular note are the results
da(r)ap(r') = al, () aLg(r) = 0
(2.36)
—bna(T) il () = ap(T) tka(T) = GawGos(k, T —7')

where G° ap 18 the single-particle Green’s function of the non-interacting system.
The generalized Wick’s theorem states that equation 2.34 is equal to the sum of all possible
contractions of the operators A B,C,. , L.e.

= ABCD .. B+ ABCD . B+ ABC DL Bt (2.37)
BB

where the terms of the form A'BC". are to be interpreted as (—1)?A'C'B"E" ... ™
vyhAe{e pis thq numbAerA ngtran§p0s1t10ns of the operators required to transform the ordering
ABC...E...Finto ACBE...F.

2.4 The Self-Consistent Hartree-Fock Approximation

Although much important information about a many-body system may be extracted from its single-
particle Green’s functions, the exact calculation of these functions for even the simplest interacting
systems is very difficult. It is therefore common to make some simplifying assumptions regarding
the interactions between the particles. The most basic of these is the self-consistent Hartree-Fock
(SCHF) or ‘mean field’ approximation.

In a non-interacting system, each particle occupies a definite single-particle state. In an inter-
acting system, however, the notion of each particle having an individual state is no longer strictly
tenable: the interactions may correlate the behaviour of groups of particles, causing them to act
collectively. Despite this, the single-particle picture provides a remarkably good description of
many condensed-matter systems. Such systems are typically well characterized by the SCHF ap-
proximation, which neglects all dynamical correlations between individual particles [25,26]. The
SCHF approximation retains the single-particle picture by treating the inter-particle interactions
as producing an effective single-particle potential in which the individual particles move. This
potential (the so-called ‘mean field’) constitutes the average interaction experienced between a
particle and the rest of the system.



10 Quantum Field Theory of Many-Body Systems

In the SCHF approximation, a particle propagates through the system essentially independently
of the other particles. We may therefore expect to be able to express the two-particle Green’s func-
tion in terms of the single-particle Green’s functions. We do this by assuming that we may apply
Wick’s theorem to the interacting system; that is, we may replace pgo in the formulas 2.34, 2.36
and 2.37 by the interacting system’s statistical operator pg. Therefore, by the definition of the
two-particle Green’s function, we have

G stkim Jomi k) = Tr{paTy [ana(r)ns ()il s ()al, 4, 4,,(0)] }
CAlluoc('rl)- kzﬂ(T2)-&ng(Té)"&}t(1+k27k'27(0)"

)
)

Q

_&k1a(7—1 L’zg(Té).dkgﬁ(7—2)"&1;14_1(2_1(’27(0)"
ik (11) 8, ey gy (0) Giap(72) ", 5(75)” (2.38)
O1coic, Gary (K1, 71) G5 (Ko, T2 — 73)

—dklk;gaa(klaﬁ - Té)gﬂ“r(k%ﬁ) (2.39)

‘a
‘a

X

where we have used the results 2.36 in going from 2.38 to 2.39. The importance of the relation 2.39
lies in its use to decouple the equation of motion for G,s(k, ) from the hierarchy: substituting
equation 2.39 into equation 2.29 we obtain a linear differential equation in 7 for the single-particle
Green’s function.

2.4.1 The High-Density Approximation

The density of a system is characterized by the dimensionless parameter rs, defined by

vV = gw(rsao)3N (2.40)
where ag is the Bohr radius and N is the number of particles in the volume V. It is clear from 2.40
that the distance rsag may be interpreted as the interparticle spacing. The SCHF approximation
yields asymptotically correct results in the high density limit r, — 0. Although correlation effects
might be expected to be of great importance in this limit, screening by the other particles reduces
the range of the two-body interactions to ~ rsap [31]. As particles separated by more than the
average interparticle distance interact only very weakly, the correlations in their motion should be
correspondingly small. This may be illustrated by the homogeneous electron gas: assuming only
Coulomb interactions between the electrons, the interaction energy in the SCHF approximation
goes as r; !, whereas the corrections introduced by considering interparticle correlations are of
order In(r,) [26,28]. We therefore see that correlation effects are still significant at high density,
but their contribution to the total energy of the system is dominated by the SCHF contribution.
The SCHF approximation must accordingly be expected to give good results in the limit of very
high densities only.

The high density limit may also be interpreted as equivalent to the limit of very short-range
two-body interactions. As mentioned above, screening effects limit the range of the interparti-
cle potentials to approximately the interparticle spacing. The limiting case of infinite density
therefore corresponds to d-function interaction potentials in coordinate-space. This greatly re-
duces the complexity of the interaction Hamiltonian K], as the two-body interaction potential
Uvniy v (K1, ko; ki, k!) is constant in its momentum-arguments. Treating the two-body interactions
as having zero range constitutes the so-called high-density approximation. Unfortunately, the value
of r, typically ranges between 2 and 6 in metals, and so the limit r;, — 0 gives a poor description
of the band-electron density in realistic systems [1]. In spite of this objection, the results of cal-
culations in the high density approximation give remarkably good agreement with experiment for
the systems here considered. In what follows, we shall therefore always work in the high-density
SCHF approximation.
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2.5 Phase Transitions in Fermi Systems

The work that follows will be exclusively concerned with systems that differ radically from the
free electron gas (the so-called normal phase). Such systems arise from the normal phase due to
the presence of interactions which cause the normal phase to become unstable. As a result of this
instability, there is a phase transition to a new stable phase. The new phase is fundamentally
different to the original: it cannot be obtained from the normal phase by any order of perturbation
theory [30]. Rather, the system is said to be ‘rebuilt’ by the phase transition [27]. The nature of
this ‘rebuilding’ gives rise to the important differences between the two phases.

The study of phase transitions in many-body systems has a long and distinguished history,
touching every aspect of condensed-matter physics. A summary of the major results of this field
is therefore beyond the scope of this work. We instead introduce the reader to three concepts of
importance to the following analysis: the order parameter; the determination of the energetically
stable phase in a system; and the 7" = 0 limit.

2.5.1 The Order Parameter

The transition from the normal phase to each of the phases studied below are all examples of
second-order phase transitions. It was first realized by Landau that such phase transitions are
characterized by the breaking of some symmetry of the system [32]. This is best illustrated by
the paramagnet-ferromagnet transition, the classic example of a second-order transition (see also
chapter 4). In the paramagnetic (normal) phase, the microscopic spins in the system are randomly
oriented; the appearance of ferromagnetism may be characterized at the microscopic level by the
alignment of these spins in one direction, breaking the translational symmetry of the system.
We note that the symmetry broken by the phase transition can be much more abstract, such as
time-reversal or gauge-invariance.

The symmetry exhibited by a system is a purely qualitative feature: it cannot be broken grad-
ually, but only abruptly at some fixed values of the relevant thermodynamic variables. Landau’s
achievement was to demonstrate that second-order transitions could also be characterized by the
so-called order parameter. This parameter is only non-zero in the symmetry breaking phase, van-
ishing continuously as the boundary with the normal phase is approached in the phase diagram.
It may be a microscopic or macroscopic property of the system, and is not limited to directly
observable quantities. For example, in the macroscopic description of the paramagnet-ferromagnet
transition, the order parameter is the magnetization; for the BCS superconductor, it is a feature of
the ‘rebuilt’ electronic excitation spectrum (see chapter 3). The order parameter concept may also
be generalized to a set of different quantities, each of which must be non-zero for the new phase
to be realized.

2.5.2 Energetic Stability

In order to determine whether a particular phase is realized or not, it is necessary to assess its
stability relative to all other possible phases. As the system always attempts to adopt the state
which minimizes its free energy F', the new phase will be realized as an energetically stable state
if its free energy is less than that of any other possible phase.

We modify the definition 2.9 of the grand canonical Hamiltonian by introducing a variable
coupling constant 0 < A < 1 which controls the strength of the two-body interaction:

K(\) = Ko+ \K; (2.41)

When A = 0 in equation 2.41 we have the simple non-interacting case; when A = 1 we recover the
grand canonical Hamiltonian for the fully-interacting system. Thus, increasing A from zero to one
gradually “turns on” the interaction. By the finite-temperature Feynman-Pauli theorem [26, 28]

we have R
aF)‘ _ 1 <AK1>)\
T (242)
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where (.. .), is the ensemble average and F) the free energy per unit volume for the system described
by K(A). Integrating equation 2.42 with respect to A, we obtain
oF = X 1 d/\(/\f{) (2.43)
=V 1A .
where §F = F} — Fy is the free energy change per unit volume of the system produced by “turning
on” the interaction term K;. The new phase will be stable relative to the old if 6 F < 0.

2.5.3 The Zero Temperature Limit

In the preceding discussion we have developed the Matsubara finite-temperature formalism for
the quantum field theory of the many-body problem. A distinct zero temperature formalism
may also be developed, but for obvious reasons it is much less versatile than the finite temperature
equivalent [26]. Although we shall utilize the (simpler) finite temperature formalism in the following
work, we shall restrict our analysis to the limit of zero temperature (3 = (kgT)~! — o).

This dichotomous approach is motivated by the nature of the ‘rebuilt’ phases considered, and
also economy in calculation. In all cases, the ‘rebuilt’ phases are due to purely quantum effects,
which are disrupted by thermal fluctuations at finite temperature. Above a certain critical tem-
perature, these thermal fluctuations dominate, and the systems undergoes a phase transition into
the normal phase. In order to study the ‘rebuilt’ phase at its most stable, therefore, it is necessary
to study it at zero temperature: if it is not realized in this limit, it is highly unlikely to be realized
at all. Because of the absence of thermal fluctuations, the physics of the ‘rebuilt’ systems is most
transparently revealed in the zero temperature limit. Hence, the motivation for working in the
(unphysical) zero temperature regime. The motivation for using the finite-temperature formalism
in our calculations is due to considerations of economy: not only can we easily recover the zero
temperature behaviour by simply taking the f — oo limit, we may also later return to our cal-
culations in order to study the finite temperature behaviour of the system, instead of having to
recalculate from first principles.



Chapter 3

Superconductivity

Since its discovery by Kamerlingh Onnes in 1911, superconductivity has provided a constant chal-
lenge to theories of the solid state. A successful microscopic explanation for the remarkable proper-
ties of the superconductor was only arrived at in 1957 with the publication of the Bardeen-Cooper-
Schrieffer (BCS) theory. The behaviour of most low-temperature superconductors is excellently
accounted for by the BCS scheme. We will only be concerned with such ‘traditional’ super-
conducting systems in this work. The mechanism responsible for the amazing properties of the
high-temperature superconductors and the so-called heavy-fermion systems is still yet to be found:
what is certain is that the BCS theory in its original form cannot provide it [29].

Below a certain critical temperature Ty ~ 1K, the behaviour of a superconductor exhibits many
remarkable features which distinguish them from normal conductors. The most striking of these
are

e superconductivity: a superconductor can carry DC currents less than some critical current
Js without electrical resistance.

e perfect diamagnetism: in the presence of a magnetic field of strength less than some critical
value Hg, a superconductor carries a surface current that precisely cancels the field in the
bulk. Above the critical field, superconductivity disappears.

e energy gap: there is a ‘gap’ in the spectrum of allowed one-electron levels centred about the
Fermi energy ep. It is evidence that superconductivity arises only from electrons within a
thin shell about the Fermi surface, the “superconducting shell” [30].

In the ensuing discussion, we will only address the third point; the other (more familiar) two
require a prohibitively sophisticated treatment. The implications of the second point, however,
will be considered in chapter 4. In this chapter, we provide an elementary review of the BCS
theory (section 3.1) before considering the quantum field theoretic treatment of the model BCS
superconductor (sections 3.2, 3.3 and 3.4).

3.1 Elementary BCS Theory

The basic mechanism responsible for traditional superconductivity is the attractive interaction
between the band electrons and the positive ions in the crystal lattice. As an electron moves
through the solid, it attracts the nearest ions towards it, creating a region of enhanced ion charge
density. This polarization of the lattice tends to attract other electrons, producing an indirect
attractive electron-electron interaction. This interaction may be modelled as the exchange of
a “virtual” phonon between the two electrons, a process described by the well-known Frolich
Hamiltonian [26]. For our purposes, the most important feature of the Frolich Hamiltonian is
that the exchange of a “virtual” phonon yields an attractive interaction between two electrons
with kinetic energies differing by less than ~ wp (the characteristic phonon or Debye energy). Of
course, the net interaction between two electrons includes repulsive terms, such as the screened
Coulomb interaction. In non-superconducting substances, these dominate. For superconductors,
however, the inter-electron interaction due to “virtual” phonon exchange is unusually strong. In

13
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particular, for the very small energy differences between electrons within the “superconducting
shell”, the net interaction is attractive [31].

The presence of attractive interactions between electrons sufficiently near the Fermi surface
suggests the possibility of forming bound electron pairs. In his famous 1956 paper, Cooper demon-
strated that this was indeed true for two interacting electrons just above the Fermi surface [2].
By the Pauli exclusion principle, the two interacting electrons cannot scatter into states below the
Fermi energy, limiting them to energy states > er. For arbitrarily weak attractive interactions,
however, the binding energy of the two electrons is lower than the Fermi energy, and so the bound
state is realized. This bound pair is most stable when the constituent electrons have opposite
momenta and spins. Such a “quasimolecule” is known as the Cooper pair.

The connection between Cooper’s two-body problem and superconductivity was made by
Bardeen, Cooper and Schrieffer in the following year [3,4]. The authors extended Cooper’s idea
to the entire “superconducting shell”, constructing a new ground state of the system on the as-
sumption that all these electrons formed Cooper pairs in the superconducting phase. By a simple
variational calculation, it was determined that this new ground state had a lower energy than
the original. The BCS ground state is characterized by the macroscopic occupation of a single
Cooper pair energy state, in analogy to Bose-Einstein condensation. This Cooper pair ‘conden-
sate’ carries the supercurrent, and it is ultimately responsible for the many remarkable properties
of superconductors.

In the detailed quantum field theoretic description of the BCS system that follows, we will
not utilize the approach adopted in the original BCS papers. The authors’ use of a canonical
transformation to construct the BCS ground state is cumbersome and difficult to generalize to
more complicated systems. Rather, we employ the elegant approach due to Gor’kov, which is
based upon the methods outlined in chapter 2 [33].

3.2 The Model System

Although the exact form of the effective interaction for electrons near the Fermi surface is unknown,
it may be well approximated by a negative constant, A\ < 0 say. We therefore may describe the
system by the model Hamiltonian [29]:

v K k" v

K = Z&k’&LV&k’u + i Z a/LIV&tk/,,Idk”u’&—k”u (31)
k', v
where & are the single-particle (kinetic) energies in the normal phase. It is convenient to define
the Fermi energy by & = 0. As electrons with energies lying outside the narrow “superconducting
shell” do not participate in the Cooper-pairing, we regard A as vanishing for processes where
|éx|, [&x| > @, some “cut-off” on the order of wp.

It is quite obvious that Cooper-pairing must cause the motion of the electrons involved to
become highly correlated. As such, it would seem that the SCHF approximation is fundamentally
unsuitable for a description of a superconductor. This difficulty may be overcome, however, by
dividing the system into two components: the Cooper pair condensate, for which correlation effects
are of essential importance; and the ‘uncondensed’ part, consisting of the unbound electrons, to
which the SCHF approximation may be applied. In modelling the behaviour of the uncondensed
part, we consider the Cooper pair condensate as acting like a reservoir into and from which two
electrons with opposite momenta and spins are scattered upon the formation or destruction of a
Cooper pair respectively. To account for this, the so-called Gor’kov Green’s functions [27,33] are
introduced in addition to the standard one-particle Green’s functions:

Fas(,7) = (T [ia(r)a 5(0)]) (3.2)
(T, [a! kMl 0)] ) (3.3)

T,
iy
=
2

I

Fap(k, ) and }"lﬁ (k,7) describe the scattering of an electron pair into and out of the reservoir
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respectively. They are therefore off-diagonal in their spin-indices. In the normal phase, these
functions are vanishing as there is no Cooper pair reservoir.

3.3 The Equations of Motion

After a straightforward calculation, the equation of motion of the Green’s function G4 (k,7) for
the model system 3.1 is obtained:

0
—5, 91k, 1) = 8(7) + &Grr(k, 7)
A _ _ _ _
+—= [gﬁ)ﬁ, k", —k”T(l); —k'r(Q)) gm” (K'T, —k”T(l); —kT(Q)) (3.4)
k'

We consider the decomposition of the two-particle Green’s functions in equation 3.4. The standard
SCHF decomposition, however, does not account for the presence of the Gor’kov Green’s functions.
In order to do so, we retain the extra term in the decomposition 2.38:

gz(jg’yd(kl’rl’ k27—2; kl27_£) ~ 5k1+k20f0tﬂ (klaTl - 7—2)'7:;7(_1(127 T2I)
+0uo1c, Gps (K2, T2 — 79)Gany (ki, 1)
—5k1k'2ga6(k1771 - Té)gﬂw(k% T2) (3.5)

The extra term describes the coupling of the normal part to the Cooper pair condensate: it is
only present when the system is in the superconducting phase. Following convention [27,29,33],
we keep only this term in the expansion of the two-particle Green’s functions in 3.4. Including the
other terms leads to a renormalization of the single-particle excitation spectrum. This contributes
very little to the physical description of the superconductor, whilst significantly complicating the
equations, obscuring the important differences between the superconducting and the normal phases.
We therefore have

0 A
—ggﬁ(kﬁ) = (1) + &Gk, 7) + o

5 D [P, 0%) = Fu ", 09)] FLk,r) - (3.6)

kll
We define the BCS gap ¥ as

A
S = -y [Fry(K',01) — Fip(K',07)] (3.7)
Kk’

As is standard for this simple analysis, we assume that ¥ is real [26]. The gap ¥ is the order
parameter for the superconducting state. We therefore have for the equation of motion of Gy4(k,7)

(—% - fk) Grr(k,7) + SFL(k,7) = &(r) (3.8)

In order to solve 3.8, we must obtain the equation of motion for ]—'IT(k, 7). This is carried out
in precise analogy to that for the standard Green’s function in subsection 2.2.2:

oal (r
D) = —6<r)<[a*_k¢(7),aLT<o)]+>—<TT l"#ﬂ)am)b 59)

The anticommutator of course evaluates to zero; we therefore have

;’T k) = —aFl (k) - WZ{( [ak,i il V(T(;))ak,(T(;))aLT(o)D
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—(T; oL, (Ml (75 e (7)), )] )} (3.10)

We use Wick’s theorem to decompose the 7-products into products of the single particle and
Gor’kov Green’s functions:

(1 [al (Mal s, () e (75)l 0)] )

(Tr [al, (1" 4o, (75 (5)alg ()] ) & =FL (=K, 01)Gur (k) + ...

Q

—F,(-K,01) G (k) + ...

As before, we keep only the term which describes the coupling to the Cooper pair condensate.
Substituting these decompositions into the equation of motion 3.10 and using the identities

flﬂ(_k70+) = <aLa&T_kﬂ> = _<&T_kﬂair<a> = —fga(kao—")
(3.11)
Flae0h) = (algals) = (i)’ = (Foalk,01)’
we obtain
8 A * *
_EfIT(kaT) = _gk]:IT(kaT)'i‘Wz[(.7'-¢¢(kl,0+)) —(fiT(kI,O-i_)) j|gﬂ~(k,7') (3.12)
k/

We recognize the coefficient of G44(k, 7) in equation 3.12 as the negative complex conjugate of the
BCS gap. But ¥ is assumed real, and so ¥* = X. We hence have for the equation of motion of
fIT(k, T) in more compact form

0
(_E + gk) FlLk,7) + 301k, 7) = 0 (3.13)
We therefore have a set of coupled differential equations for G+ (k, 7) and fIT(k, 7) (equations 3.8
and 3.13). Coupled differential equations may also be obtained for G, (k,7) and }'; 1 (k,7) which,
up to sign of X, are identical in form to the above equations.

The coupled differential equations 3.8 and 3.13 are solved by taking the Fourier transform to
the conjugate w-space in order to obtain the algebraic system

(iwn — &) Grr(k,wn) + SF) (k,wn) = 1
(3.14)
(iwn + &) ffr(ka Wn) + EQTT(kawn) =0

These, and the equivalent expressions for G, (k,w,) and }'; 1 (k,wp), may easily be solved to obtain
the Green’s functions for the BCS system:

iwn + &k

gaﬁ(k;wn) af (iwn)2 — §k2 _ 2 (315)
Flo(kwy) = io? = (3.16)
p P (iwn)? — &° — 2

where o ; is the (o, 8) element of the Pauli y spin matrix.

3.4 The ‘Rebuilt’ System

The Green’s functions 3.15 and 3.16 have simple poles at

iwn = £\ &2 +352 = +E, (3.17)
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Figure 3.1: The electron and hole excitation spectrum of the ‘rebuilt’ system (solid line) compared to
the original system (dashed line). The hole excitation spectrum is given for { < 0, the electron excitation
spectrum for £ > 0. Note the appearance of the gap of width 23 separating the lowest-energy electron and
hole states in the superconducting phase. (b) The DOS 75 in the superconductor (solid line) compared to
the DOS in the normal phase (dashed line). For the superconductor, the DOS is zero between er — ¥ and
er + 2.

These poles define the ‘rebuilt’ electron (& > 0) and hole (& < 0) excitation spectra of the
uncondensed part. The most notable feature of the ‘rebuilt’ spectrum is the disappearance of the
Fermi surface with the opening of a gap of width 2% about the Fermi energy (see figure 3.1). This
is the energy gap mentioned earlier. Another interesting feature of the rebuilt system concerns the
behaviour of the density of states (DOS) 7 near the Fermi energy. The DOS in the superconductor
7s is related to the DOS of the normal phase 7y by

L. J S (3.18)
T’S_nNdE—nNm .

The square-root divergence at £ = £ is an important characteristic of the BCS state. We
illustrate it in figure 3.1(b). We note that this DOS-enhancement is responsible for the well-known
Josephson effect [29].

The BCS gap ¥ may be linked to the interaction strength A. From the expression for the
Gor’kov Green’s functions (3.16), the definition of ¥ (3.7) and the identity 3.11, we have

A —iw
D = gy & [Fheen ~Filewn] e o

— A Z 2 : 1 _ 1 e—z’wno
28V — Ex |iwn, — B iw, + B

(3.19)

We ignore the trivial solution ¥ = 0 to equation 3.19. Thus, after cancelling ¥ from both sides
and performing the Matsubara sums (see section A.2 of the Mathematical Appendix), we have

_ A 1 ﬂEk _,BEk
1 = Wzk:E—k[l—tanh<T>—1+tanh( 5 )]
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where we have converted the sum over k to an integral over the energies of the normal phase £
(see section A.1 of the Mathematical Appendix). Taking the limit of zero temperature (8 — o)
in 3.20, we obtain the so-called self-consistency equation

17 de 2w
“s =y v =2 (5) 2

where we make the standard assumption that @ > ¥ > 0 in evaluating the integral in 3.21 [26].
Solving for ¥, we obtain the well-known result

Y = 2wexp( (3.22)

@)
Anx(0)
We note that ¥ increases with increasing values of |\|, as we expect. We also note that ¥ # 0 for
all A # 0: this shows that the BCS state forms no matter how weak the interactions are.

We conclude this section by considering the energetic stability of the BCS state relative to the
normal phase. At zero temperature, we have by the Feynman-Pauli theorem

= 2V2/ dAI Ik” I<ak, aT k/,/ak”u’a k/l”>x (323)

Following the analysis of Fetter and Walecka [26], we consider the ensemble average to be the
7 — 0T limit of a 7-product; this may be decomposed using Wick’s theorem as follows:

N _ st A A
<aklya7klul ax’ a_k,/,,>/\, = Tli{{)l <T-,- [ak,y(r)aik,y, (T(l))akllyl (7(2))a—k"u(0)] >)\,
~ FIN (=K, 0N FN, (K", 07) + ... (3.24)

FiX af and }'QIB are the Gor’kov Green’s functions for the system with interaction constant X'. We
neglect the other terms in the expansion 3.24 for the same reasons as in the decoupling of the
equations of motion. Therefore,

1 A i ’r/\ I A+ N " a+
§F =~ W/o ax' - wa, —k',0t)F), k", 0M) (3.25)
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Using the identities 3.11 and the result .7-";( L= —fIT (equation 3.16), the expression 3.7 may be

re-written ) \
Y o= _szlT(k70+) = vZf¢T(k,0+)
k k

Letting X' be the gap for the system with interaction constant \’, we have for § F, after accounting
for the sum over spin indices,

¥ 1
SF = /0 Fd,\' = —EnN(O)EQ (3.26)

where the integral was evaluated using the expression 3.22. We see that §F' < 0: we conclude that
the superconducting state is stable towards the normal phase.



Chapter 4

Ferromagnetism

The study of magnetic solid state systems is a subject of vast scope and dazzling complexity. The
range and diversity of magnetic materials is matched only by the models developed to explain
their often remarkable properties. In this chapter, we can offer only the briefest of introductions
to the field. In section 4.1, an overview of the theory of magnetism is presented with a discussion
of important phenomenological and theoretical concepts in ferromagnetism; in section 4.2, the
traditional Stoner ferromagnet is studied; this aids in an understanding of the generally antagonistic
relationship between ferromagnetism and superconductivity (section 4.3).

4.1 Basic Concepts

In this section, the fundamentals of the theory of magnetism are summarized. We introduce
the major classes of magnetic behaviour via the concept of long-range magnetic order (subsec-
tion 4.1.1), with a special focus upon the phenomenology and theory of ferromagnetic materials
(subsections 4.1.2 and 4.1.3 respectively).

4.1.1 Magnetic Order

In a solid, the band electrons, and sometimes also the atoms in the crystalline lattice, carry a
microscopic magnetic moment. In the case of electrons, this is due to the spin angular momentum;
atomic moments stem from the orbital motion of the shell electrons, or incompletely filled inner
shells. It is important to note a significant difference in character between these moment-carriers.
The atoms, and therefore also their moments, are localized at the crystal lattice points. The band
electrons, however, propagate through the crystal as Bloch waves, and are regarded as delocalized.
Consequently, it is necessary to consider a density of their spins, which is a continuously varying
function of position.

In a non-magnetic material there is no long-range ordering of the microscopic magnetic mo-
ments: over sufficiently large distances, the orientation of the localized moments on the atoms
varies randomly, and the departures from the band-electron’s average spin density of zero are un-
correlated. Thus, in both cases, the magnetization M (the average moment per unit volume) is
zero. The application of an external magnetic field H has two effects: to align the microscopic
magnetic moments in the direction of the field; and to induce anti-aligned moments due to the
orbital response of the electrons. When the former process is dominant, the material is paramag-
netic; dominance by the latter leads to diamagnetism. In both cases, the external field induces a
magnetization, assumed proportional to H:

M = yH (4.1)

x is the magnetic susceptibility of the material and is positive for paramagnets, negative for
diamagnets. For both materials, the magnetization vanishes when the external field is removed,
the system returning to its original disordered state.

In a magnetic material there exists a spontaneous long-range ordering of the microscopic mo-
ments. This is due to so-called exchange interactions between the moment-carriers. There are
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two major classes of magnetic materials exhibiting spontaneous order: ferromagnets and antifer-
romagnets. In ferromagnetic materials, the exchange interactions tend to align the moments in
one direction, giving the material a non-zero magnetization. The favoured direction of alignment
(the so-called easy axis) is determined by secondary coupling to the crystal field (e.g. spin-orbit
effects) [34]. In contrast to ferromagnets, the exchange interactions in antiferromagnetic materials
tend to periodically order the moments in such a way that there is no overall magnetization of the
system. In both ferromagnets and antiferromagnets the tendency of the exchange interactions to
order the moments is counteracted by thermal fluctuations; in the limit of zero temperature, the
thermal agitations which destroy the ordering vanish, and the degree of order is limited only by
quantum effects.

4.1.2 Ferromagnetism: Phenomenology

The characteristic property of a ferromagnet is the spontaneous magnetization produced by the
exchange interactions. This magnetization is not necessarily uniform across the specimen: a fer-
romagnet may be divided into macroscopic volumes called domains, each possessing a randomly
orientated magnetic moment. The application of an external magnetic field results in an expan-
sion of the domains with moments aligned with the field at the expense of those with anti-aligned
moments. This process is irreversible and so leads to a permanent increase in the magnetization
of the sample (hysteresis effect). The magnitude of the spontaneous magnetization of a domain
obtains a maximum in the limit of zero temperature. This maximum magnetization is referred to
as the saturation magnetization of the material.

Due to the dominance of thermal fluctuations, the spontaneous magnetization of a ferromagnet
disappears above a certain critical temperature, the Curie point Tr. Generally, a ferromagnetic
material becomes paramagnetic above its Curie point, but certain rare-earth elements exhibit
antiferromagnetic ordering at temperatures higher than Tp [34]. The phase transition from the
ferromagnetic to the paramagnetic phase (the ‘normal’ phase) is the classic example of a second-
order phase transition [7].

4.1.3 Ferromagnetism: Theory

Theoretical attempts at a microscopic theory of ferromagnetism generally regard either the mag-
netic ordering of the lattice atoms or the band electrons as of primary importance. Such models
are classified as ‘localized’ and ‘itinerant’ respectively. Although in any real system, both localized
and itinerant effects are likely to be present to differing degrees, it is usually possible to expect one
to dominate the other. For example, the rare-earth ferromagnets and their ionic compounds (such
as EuO and GdCl,) are regarded as good examples of localized systems, whereas the ferromag-
netism of the 3d transition metals (iron, nickel and cobalt) and a number of alloys of non-magnetic
elements (e.g. ZrZny and ScsIn) is best explained by the itinerant scheme [34,35].

Theoretical study of itinerant electron models began in 1929 with the pioneering efforts of Bloch.
His work indicated that ferromagnetism was only likely to appear in the homogeneous electron
gas at very low densities, rs ~ 6; more sophisticated studies have proved that the homogeneous
electron gas is not ferromagnetic at typical metallic densities [35]. This has been confirmed by
computational studies which predict the onset of ferromagnetic ordering only at extremely low
densities ry ~ 50. There is, however, much disagreement about the precise density range, and the
physicality of these low density regimes should be regarded with caution [36,37].

More sophisticated models of itinerant electron systems have met with considerably better
success than the naive homogeneous electron gas approximation. These models have demonstrated
the crucially important role played by the band structure in determining whether or not itinerant
electron ferromagnetism will appear in a material. Of particular note is the so-called Stoner model,
which gives a criterion for the appearance of ferromagnetism in terms of the DOS at the Fermi
energy. The Stoner model gives a very basic phenomenological description of an itinerant system,
and considerable improvement has been made upon it [7,38]. Nevertheless, it has provided a useful
starting point for the study of itinerant electron ferromagnetism.
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4.2 The Stoner Ferromagnet

The molecular field concept was first developed in 1907 by Weiss to explain the ferromagnetic
ordering of localized spins [1]. It was generalized in the 1930s by Slater and Stoner to accommodate
the itinerant description [39,40]. The resulting Stoner model is extremely crude, but it nevertheless
captures the essential physics of the traditional itinerant ferromagnet.

4.2.1 The Molecular Field

The exchange interactions between the moment-carriers in a ferromagnet are in general very com-
plicated, and several distinct exchange interactions may be present in the material to differing
degrees of importance. We therefore ignore the details of these interactions and instead consider
the overall effect of their presence in the system. We assume that the exchange interactions be-
tween the microscopic magnetic moments causes them to behave as if they had been placed in an
intense magnetic field. This imaginary field is referred to as the molecular field.

The molecular field H,; experienced by each moment-carrier in the system is assumed to be
the same, and it is considered to be proportional to the overall magnetization of the system M.
We therefore write

Hy = ¢M (4.2)

where ¢ is referred to as the molecular field constant. The assumed homogeneity of Hjys implies
that the short-range ordering of the moment-carriers, apart from that which follows from the long-
range ordering, is neglected. Hence, any local deviation of the spin-density from its mean value is
ignored. Molecular field theory cannot therefore be supposed to give a rigorous treatment of the
system: it should be regarded as at best a semi-quantitative phenomenological analysis.

4.2.2 The Stoner Model

We consider a metallic system in the absence of the exchange interactions between the band
electrons. In such a material, the one-electron energy states are degenerate in the electron spin,
as dictated by the Pauli exclusion principle. The DOS of each spin species therefore coincides; the
DOS of electrons with spin o, 1, (€), is related to the total DOS n(e) by

no(e) = 3u(e (43)

We treat the exchange interactions between the electrons as a perturbation on this system. These
interactions are modelled by a molecular field Hj;s. In addition to the molecular field, we assume
that there is also an external magnetic field present, so that the electrons move in an effective
internal magnetic field

H;, = H+¢M (4.4)

Neglecting the orbital response of the electrons to this internal field (i.e. assuming the electron to
have spin magnetic moment but no charge), and taking the electron’s gyromagnetic ratio g = 2,
the interaction with the internal magnetic field lowers (raises) the energy of an electron with spin-
orientation parallel (anti-parallel) to the field by upH;, where pp is the Bohr magneton. We shall
henceforth refer to the parallel spin orientation as ‘spin-up’ and the anti-parallel spin orientation
as ‘spin-down’.

All spin-up and spin-down electrons experience the same shift in energy. The effect of H;
is therefore to lift the degeneracy of the one-electron states, by uniformly lowering (raising) the
energy of the spin-up (spin-down) states by ugH; (see figure 4.1). The DOS of the spin-up (+)
and spin-down (—) electrons is therefore given in terms of 5 by

ne(e) = gnle upHy) (45)

To first approximation the chemical potential y does not change upon shifting of the sub-bands; the
shifting may therefore lead to a net increase (decrease) in the number of one-electron spin-up (spin-
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Figure 4.1: The band structure of a Stoner ferromagnet in its non-magnetic (a) and magnetic (b) phases.
Note the excess spin-up electron population in figure (b), illustrated by the dark shading.

down) states below the chemical potential. This may create an imbalance in the spin-populations,
giving the system a net magnetic moment. Such a situation is illustrated in figure 4.1(b).
The magnetization of the system is given by the relation

M= [ 4@ = n-(@) fleThae (4.6)

where f(e,T) is the Fermi-Dirac distribution at temperature 7. In the limit where the magnitude
of the internal field approaches zero, we may expand 74 (€) and 7_(€) in a Taylor series:

on(e)
Oe

We substitute the Taylor expansion 4.7 into 4.6 and solve for the susceptibility x, obtaining

2n1(e) = nletupH;) = nle) £ upH; +... (4.7)
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We observe that the susceptibility diverges when gu%I = 1. This defines the onset of ferromagnetic
order. For qu%I(T) > 1, the susceptibility is negative; this indicates that the system is in the
ferromagnetic phase.

The expression for the susceptibility provides a simple condition for the appearance of ferro-
magnetic order in the system. For the system to be ferromagnetic at finite temperatures, we require
that its Curie point be greater than 0K, i.e. qu%I(0) > 1. At zero temperature, the Fermi-Dirac
distribution in the integral I is a step function with discontinuity at ep. Thus, the derivative
of f(e,0) with respect to € is given by a d-function at ep. The condition for the appearance of
ferromagnetism at finite temperature may therefore be written in the more succinct form

qupn(er) > 1 (4.9)

This is the famous Stoner condition for itinerant ferromagnetism.
Although the Stoner condition appears to give a practical test of the possibility of any material
to show itinerant ferromagnetic order, the presence of the molecular field constant g in 4.9 severely
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limits its utility, as q is difficult to accurately determine. Detailed comparison of the Stoner model
with experiment is also made problematic by the critical dependence upon the density of states,
which is generally an extremely complex function of the energy. Computational studies of realistic
band-structures using approximate values of ¢, however, have revealed good agreement with the
Stoner model in the iron-group 3d transition metals and a number of their alloys [38].

4.3 Ferromagnetism and Superconductivity

The coexistence of ferromagnetism and superconductivity is a challenging problem for experimen-
tal and theoretical condensed-matter physicists alike. Of the many thousands of materials known
to superconduct or possess magnetic order, only a very small fraction fall into both categories.
This may be strikingly illustrated by the following statistic: by 1976, 36 elements were known
to superconduct, and 17 elements had been found to display ferromagnetism; only one of these
elements, cerium, exhibited both phenomena, and only under very special conditions [1]. This
picture remains basically the same today: the recent discovery of superconductivity in iron under
intense pressure reinforces the conclusion that superconductivity and magnetism are fundamentally
incompatible phenomena [41]. The basic mechanism behind this antagonism is two-fold: the elec-
tromagnetic behaviour of the superconductor, and the effect of exchange correlations in hindering
Cooper-pairing. We briefly describe both mechanisms below.

In the presence of sufficiently weak magnetic fields, superconductors exhibit perfect diamag-
netism: there is zero magnetic flux through the bulk of the superconductor. This is due to the
appearance of currents on the surface of the superconductor which completely cancel the magnetic
field in the interior. As the magnetic field is increased, the surface currents required for the screen-
ing of the interior also increase. Above a critical magnetic field, Hs, the surface currents exceed
the critical current at zero temperature; superconductivity is completely suppressed. This is the
well-known Meissner-Oschenfeld effect. Its importance in preventing the coexistence of ferromag-
netism and superconductivity has long been understood [14]: for most ferromagnets, the surface
currents required to screen the bulk from the spontaneous magnetization well exceed the critical
currents; the possibility of coexistence with superconductivity is therefore limited to very weak
ferromagnets.

In itinerant-electron systems, the spin-splitting of the electronic spectrum due to the presence
of exchange interactions between the band-electrons also has a deleterious effect upon supercon-
ductivity [15,42]. This may be understood with reference to the Stoner model. In the Stoner
ferromagnet, the interaction of the electrons with the internal field H; lowers (raises) the energy of
the spin-up (spin-down) electrons by upH;; thus, the spin-up electrons at the Fermi surface have
kinetic energy er + ppH; whilst the spin-down electrons have kinetic energy er — upH;. In order
to Cooper-pair, two electrons must have kinetic energy within ~ wp of ep. Although assumed
to be small, the “exchange-potential” ppH; is typically much larger than the Debye energy; this
essentially forbids the Cooper-pairing of electrons in the standard spin-singlet configuration. In
localized systems, the (non-magnetic) conduction electrons may also couple to the exchange field,
leading to a similar effect.

In spite of these objections, the coexistence of ferromagnetism and superconductivity has been
observed since the late 1960s. In the majority of these systems, however, the ferromagnetism is
localized in nature, or the system is divided into non-overlapping ferromagnetic and supercon-
ducting regions of mesoscopic dimensions [16,43]. Examples of the coexistence between spatially
uniform superconductivity and itinerant-electron ferromagnetism are particularly rare. The recent
discovery of two such systems, UGey and ZrZns, has therefore been the cause for great excitement
in the solid state physics community [17,18]. The mechanism responsible for superconductivity
in these systems is generally regarded as exotic: the possibility of spin-triplet Cooper-pairing has
been raised to describe the apparently cooperative coexistence between superconductivity and fer-
romagnetism in the weak Stoner ferromagnet ZrZns [44]; the behaviour of UGez has been studied
from a much more radical perspective [19].
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Chapter 5

Excitons in Semimetals

The study of correlation-induced metal-insulator transitions has long been of intense interest to
solid state physicists. The staggering wealth of possible mechanisms, and the practical applications
to semiconductor technology, has made this a major field of endeavour [6]. In this chapter, we
describe an exciton-mediated metal-insulator transition that is predicted to occur in semimetals
with a peculiar topology of the Fermi surface (sections 5.1 and 5.2). A quantum-field theoretic
description of this state is then developed (sections 5.3 and 5.4). The possibility of ferromagnetic
ordering of the band-electron spins as a result of this transition is discussed in detail (section 5.5).
We conclude with a survey of experimental evidence for the existence of this state (section 5.6).

5.1 The Nested Semimetal

The concept of a semimetal is best introduced via the more familiar notion of a semiconductor. In a
semiconductor, the (filled) valence band and the (empty) conduction band are separated by a band
gap Eg > 0; the Fermi energy (which defines our energy zero as in chapter 3) lies within the range
of forbidden energies. The width of the energy gap is typically ~ 1eV. At finite temperatures,
electrons may be excited from the valence band into the conduction band, leaving a hole behind
them in the valence band. In the limit of zero temperature, however, the thermal energy of the
electrons in the valence band is not sufficient to induce a transition to the conduction band and so
the system behaves like an insulator: at 0K there are no excited electrons in the conduction band,
and no holes in the valence band.

A semimetal may be profitably regarded as a semiconductor with a negative band gap, i.e.
the valence and conduction bands overlap by an amount Eg. The Fermi energy lies within the
range of energy overlap, and so there is a Fermi surface. The Fermi surface in the conduction
band is referred to as the electron Fermi surface; in the valence band we have the hole Fermi
surface. The occupied states at the bottom of the conduction band behave like excited electrons
in a semiconductor; the empty states at the top of the valence band like holes. As such, there is
always a population of electrons and holes in a semimetal, even at absolute zero.

We confine our attention to semimetals where the energy spectra of the conduction and the
valence bands, ¢ (k) and ey (k) respectively, satisfy the condition

ec(k) = —ev(k-Q) (5.1)

for some set of energies about the Fermi surface. When 5.1 is satisfied, the conduction and valence
bands are said to be ‘nested’, i.e. some portion of the electron and hole Fermi surfaces are identical
and separated by the constant nesting vector Q in the reciprocal lattice.

We consider the simple case where the conduction band minima and valence band maxima are
isotropic (i.e. dependent upon |k| only) and parabolic. We further assume the effective masses of
the valence band holes and the conduction band electrons to be equal. The nesting condition 5.1
thus requires that

colk) = —ey(k—Q) = & = kz—%EG (5.2)

This model spectrum is plotted in figure 5.1. For the Fermi energy at ec = ey = 0, this situation is
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Figure 5.1: The model system of the nested semimetal. The conduction and valence bands overlap by
an amount Eg; their respective minima and maxima are separated by a vector Q in the reciprocal space.
At perfect nesting, the Fermi energy corresponds to the dashed line; adding electrons to the system raises
the Fermi energy to du (dot-dashed line)

referred to as “perfect” nesting. Although useful as a limiting case, “perfect” nesting of parabolic
bands is too simplistic a scenario to be realized in any real system - there will always be departures
from the condition 5.2 due to band anisotropy, differing electron and hole effective masses, etc.
Taking these effects into account does not lead to significant qualitative revisions of the predictions
based upon the model band structure 5.2 [45,46].

The simplest case of ‘imperfect’ nesting corresponds to the addition of excess particles (electrons
or holes) to the system, so that the Fermi energy no longer corresponds to & = 0. We may
characterize this change in the Fermi energy by the parameter du (see figure 5.1). It is convenient to
consider these excess particles as being introduced by impurity doping (n-type for excess electrons,
p-type for excess holes). As the concentration of impurities in the system is constant, du is
determined by the condition that the number of electrons in the system is conserved. The value
of dp is therefore determined by the form of the electronic excitation spectrum and the electron-
hole concentration difference én. Since doping with electrons must raise the Fermi level whilst
hole-doping lowers it, dx must be an odd function of én and wvice versa. We shall only consider
electron-doping below.

5.2 The Exciton Instability in the Nested Semimetal

Due to the attractive Coulomb interaction between the electrons and the holes, it is possible for
stable bound states of the two particles to be formed. The bound electron-hole pair is a well-
known example of a “quasimolecule”, the exciton. Excitons bear a superficial resemblance to the
Cooper pairs of the BCS superconductor. They can freely propagate through the system, playing
an important role in energy transport. The Coulomb attraction between the electron and hole
in an exciton makes these “quasimolecules” much more robust than the tenuously-bound Cooper
pairs. Again in contrast to Cooper pairs, the constituent electron and hole of the exciton may bind
in both the spin-singlet and spin-triplet configurations.

The formation of excitons is central to the description of the optical behaviour of semiconduc-
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tors; they also occupy a position of importance in the physics of the metal-insulator transition,
first discussed by Mott in 1961 [5]. In this pioneering work, the possibility of a transition to an
insulating state due to exciton-mediated hybridization of the conduction and valence bands in a
semimetal was first raised. Using the simple model adopted here, the instability of the semimetallic
state was rigorously demonstrated by several authors in the mid-1960s. Although not appreciated
until later, the nesting of the electron and hole Fermi surfaces is essential for the appearance of
this instability [8,47-49].

In the scenario outlined in these papers, the presence of arbitrarily small attractive interactions
between the conduction band electrons and valence band holes in the semimetal results in the
spontaneous formation of a macroscopic number of excitons, ‘rebuilding’ the system. The new
phase is called the excitonic insulator (EI). As we shall see below, the term ‘insulator’ is actually a
misnomer, as electrons may be doped into the ‘rebuilt’ conduction band, causing the EI phase to
exhibit metallic behaviour. In complete analogy to the BCS system, the characteristic properties of
the EI phase are due to the excitons condensating into a single exciton energy state. In the ensuing
work, we follow the approach of Keldysh and Kopaev to the study of the EI phase [8]. Generalizing
the Gor’kov analysis of the BCS state, they divided the system into the exciton condensate and the
uncondensed part, consisting of the unbound electrons and holes. The exciton condensate acts as
a reservoir into and from which particles in the uncondensed part of the system may be scattered.
This allows a simple application of the techniques introduced in chapter 3.

5.3 The Green’s Functions

The form of the Hamiltonian used to describe the excitonic insulator is given by

K o= 3 |60 — ol anes + (~60 — )by, dne |
k', v

+ % Z Z (gséuu’(sgg’ + gtO',iV:UEC/) &Ikl,,&2k’u’a;kll€&lk”g’ (53)
k' k" v, (¢
The subscripts 1 and 2 refer to the different bands: the operators dIka and &;ka create electrons
in the conduction and valence bands respectively. These band indices are to be treated as a
new quantum number of the system. The annihilation and creation operators are assumed to
anticommute in their band indices, i.e.

I:Elz'ka, &Iklﬁ] + = 61] 5kk’ 60{5

For the sake of clarity, we adopt the simplifying notation of measuring the momentum in the
valence band from the valence band maxima at Q. Thus, d;ka should be interpreted as creating
an electron in the valence band with spin a and momentum k + Q. Obviously, this does not affect
the form of the anticommutator above.

Creating an electron in the valence band is equivalent to destroying a hole; we may therefore
interpret d;ka as annihilating a hole with momentum —k — Q and spin —« in the valence band.
The second term in equation 5.3 therefore represents the interaction between a conduction-band
electron and a valence-band hole; the coupling constants gs, g < 0 describe the strength of the
interactions that lead to singlet and triplet electron-hole pairing respectively. The term o7 5 in the
expression for the spin-structure of the triplet-pairing interaction refers to the (o, ) element of
the Pauli z spin matrix.

There are four Green’s functions to consider in the excitonic-insulator phase: the two intraband
Green’s functions

k) = =bap (Tr [a1a(r)iljs (0)] ) (5.4)

2067) = —das (Tr [daxa(7)ilis 0)]) (5.5)
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which are present also in the normal phase; and the interband Green’s functions

G250k, 7) = =bas (T; [a2ka(T)alis 0)] ) (5.6)
1B067) = —bas (T [a1ka(n)idis 0)] ) (5.7)

which are only present in the ‘rebuilt’ state. As Gaxq(7) annihilates a hole in the valence band at
‘time’ 7, we see that the interband Green’s functions G.3 and G are essentially analogous to the
Gor’kov Green’s functions in the description of a traditional BCS superconductor, scattering an
electron-hole pair into and out of the exciton reservoir respectively.

As in the analysis for the BCS superconductor, a gap is opened in the excitation spectrum
by the presence of the exciton condensate. This gap fulfils the role of order parameter(s) for the
‘rebuilt’ state. The presence of singlet excitons is indicated by the gap Ag; triplet excitons by A;.
These gaps may be defined in terms of the interband Green’s functions:

A, = Z{g (k,0M) + G2 (k,0M)} (5.8)

Ay = Z{g (k,0%) — G7(k,0M)} (5.9)

Both the singlet and the triplet order parameters are assumed to be either purely real or purely
imaginary [49,50]. We shall only consider the case of real order parameters: the physical systems
corresponding to imaginary order parameters have apparently not yet been observed [44].

We obtain the equation of motion of the intraband Green’s function Gi1(k,7) after a simple
but tedious calculation:

o Glr) = 0 + (6 - oG ()

1 . . . .
o Z Z (950101 8¢cr + 9105, 0% 1) <Tr [a2ku’ (T)a;k,,g(T)(hk”c (T)GIkT(O)]> (5.10)
kl’ VI,C,CI

In line with the SCHF approximation adopted, we decompose the 7-product in equation 5.10
keeping only the terms describing the coupling to the exciton reservoir:

<TT [&2ku’ (T)&;kuc('r)&lk”(’ (T)&Ik']‘(o)] > = —gégc (k”, 0+) 3'1ﬁ (k, T) + ... (511)

Replacing the 7-product in equation 5.10 by its expansion 5.11, we obtain

0
—5 G 0aT) = 8(1) + (G — IwGH K 7)
1 !
v Z Z (gs5Tu'5cC' + 905, Ufgf) gé?g(k ,07) 3/1¢(k77) (5.12)
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Using the definition of the order parameters, equations 5.8 and 5.9, we rewrite equation 5.12 as
0
(_E — &+ 5,u> Gk, 7) = 8(r) + Z (Agbyyr + Avo%,) GOl (K, T) (5.13)

We may regard the coefficient of QE,IT in 5.13 as an element of the ‘matrix order parameter’

A Ag + Ay 0 _ Ay 0
A_[ ! Arm]_[o L] (5.14)

The simplifying notation for the non-zero elements of A introduced here will be frequently utilized
in the following analysis. The elements A} and A_ have important physical meaning; this will be
discussed in detail in section 5.5. Recognizing the second term on the RHS of 5.13 as the matrix
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product of the diagonal matrices G2! and A, we obtain

(~5 6+ 0u) G r) - 2,630 ) = 600 (5.15)

Taking the Fourier transform of 5.15, we obtain the simple algebraic equation

(iwn — & + 0p) Gt (K, wn) — AL G (K, wy,) = 1 (5.16)
An essentially identical analysis for the interband Green’s function G2! gives

(iwn + & + 6p) G4 (K, wn) — A4 Gt (k,wn) = 0 (5.17)

The equations of motion for G} and G7| are identical to 5.16 and 5.17, with the replacement of
Ay by A_. We may without difficulty also construct similar expressions connecting G2% and G 5.
Solving these equations, we obtain the Green’s functions of the system in the conjugate w-space:

iwn + (1) "6+ dp

I (k,wn) = da 5.18
s wn) = Gaa(k,wn) = dap Bap (5.19)

(iwn +0p)? — &* — A2y

where j = 1,2 in 5.18.

5.4 The Excitonic Insulator

We examine first the case where only one species of exciton is present in the system. For definite-
ness, we shall only consider a singlet excitonic insulator (sEI) in detail. The analysis for the triplet
excitonic insulator (tEI) is identical mutatis mutandis.
The Green’s functions of the sEI are given by
. iwn + (=1)77 & + 6
i (k = n . 5.20
aﬁ( »Wn) af (i, + Op)2 — Eﬁ ( )
A,
0ap 7 2
(iwn + 007 — B}

wwn) = Giakw,) = (5.21)

where j = 1,2 in 5.20. For the tEI, A, is simply replaced by A; in the expression for E, and the
interband Green’s functions acquire o* spin-structure:
z Ay
g r
B (i + 6p)? — B2

i}? (k,wn) = gé%’ (k,wn) = (5.22)

From the spin structure of the interband Green’s functions, it is straightforward to verify that the

RHS of the expression for the triplet order parameter vanishes in the sEI state and vice versa.
The poles of the Green’s functions define the electron excitation spectra:

—SputEx = —0pt4/& + A2 (5.23)

where the ‘rebuilt’ conduction (valence) band is defined by +Ex (—Ex) in equation 5.23. The
‘rebuilt’ band structure is plotted in figure 5.2. We see that the exciton condensation dramatically
alters the excitation spectrum of the system - the nested bands are hybridized and an ‘insulating’
gap 2A,; K Eg is opened. Like the BCS superconductor, the sEI phase also exhibits a square-root
divergence in the DOS 7, at the edge of the insulating gap:

E

Ner = Mn 7\/@ (5.24)
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Figure 5.2: (a) The form of the ‘rebuilt’ spectrum: note the band hybridization and the opening of
the gap A; = 0.006Eg. We note that the ‘rebuilt’ valence band is to be translated by an amount Q in
the reciprocal space, as in figure 5.1. (b) Detail of figure 5.2(a) illustrating the region in k-space of least
separation of the hybridized bands. Note the chemical potential du due to doping with excess electrons.

where 7y is the DOS in the normal phase. This is illustrated in figure 6.1(b).

Due to the obvious parallels in our treatment of the EI phase with the calculation for the
BCS superconductor presented in chapter 3, it is interesting to consider whether or not the EI
phase exhibits any kind of ‘superphenomena’. In particular, the importance of excitons to energy
transport in normal condensed-matter systems has lead some authors to suggest that the EI phase
might display “super-thermal-conductivity” [48]. The apparent similarity to the BCS system is,
however, misleading. The exciton condensate is an example of so-called Diagonal Long-Range
Order (DLRO) as opposed to the Off-Diagonal Long-Range Order (ODLRO) that characterizes
superfluid systems. As such, it may be unambiguously demonstrated that the EI phase displays
no ‘superphenomena’ [51,52].

Before deriving an expression for the singlet order parameter A, we relate the shift in the Fermi
level 0 to the (constant) difference in the concentration of conduction band electrons and valence
band holes and the form of the ‘rebuilt’ excitation spectrum. The concentration of electrons in the
conduction band, n., is given by

- L al, — lim L 11 —iwn 0~
ne = o gj(alkaalka) = lim, ﬂVkZTr{G (k,wy) e (5.25)

and similarly for the valence-band hole concentration np

1 LAt . 1 22 —iwn 0
= — (axa = lim ——— Y Tr{G?(k,wn)}e " 5.26
np % ka<a2k Gy Jim BV 2 r{G*(k,wp)}e (5.26)
We therefore have for dn
om = ne—mnp = lim =S E E lr{ij(k,o.;n)}e_(_l)j’"""0+ (5.27)

m eV
Boo f§ kn j=1,2
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Evaluating the Matsubara sums and converting the sum over k to an integral with respect to the
semimetal energy spectrum &, we obtain

on

%Mmligbﬂﬁm(ﬂggﬂ)+g&mm(&g;@ﬂ
21~ (0) /0 ) d¢ [1 + Jim tanh (M)]

The ‘cut-off’ @ is assumed much larger than either A, or du. The 8 — oo (zero temperature)
limit in 5.28 allows us to distinguish two cases

(5.28)

e p < Ay: the Fermi energy lies within the insulating gap.
e 6u > Ag: the Fermi energy lies in the ‘rebuilt’ conduction band.

In the former case, the limit of the hyperbolic tangent in 5.28 evaluates to —1 for all £ > 0. The
integrand of 5.28 therefore vanishes and we have dn = 0, i.e. equal electron and hole concentrations.
It is convenient to assume that du = 0 in this case. When the Fermi energy lies within the ‘rebuilt’
conduction band, however, the 8 — oo limit of the hyperbolic tangent in 5.28 has a discontinuity

at E = du:
(2o _ {1 mmE <

lim tanh 2 1 6p—E>0

B—o0

(5.29)

The integrand of 5.28 is easily seen to vanish for £2 < 6u? — A,%; we hence have for én

on = 4nN(0)/ " dé = 4n(0)y/op® — A2 (5.30)

0

It is conventional to express the concentration difference dn in ‘energy units’ [53]

on

41 (0)

The quantity n is the Fermi energy in the semimetal (normal) phase due to doping. Rearranging
in equation 5.30 for the Fermi level du in the ‘rebuilt’ sEI phase, we thus obtain

op = A2 +n? (5.31)

We now proceed to examine the expression for the singlet order parameter, equation 5.8. Ex-
pressed as an integral with respect to &, we obtain the self-consistency equation

A, = _gsng(O) /Ow " % [1  Jim tanh (M )] (5.32)

When dp = 0 (equal electron and hole concentrations), we may evaluate the integral

2
Ignoring the trivial solution, we solve for A:
A Ay = 2we ( ! ) (5.34)
s = s0 = 2mwexp| ———== .
’ P\(0)

The constant A,y and the triplet equivalent Ay (obtained via the replacement g; — g; in 5.34)
provide useful energy parameters for the description of the EI and related phases. As will be
shown below, they are the maximum value of the energy gap for any particular choice of coupling
constants g, and g;.
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In the case of unequal electron and hole concentrations (du > Ay), we have from 5.29

@ d¢ 2w
A, = —gan(O)As/ —— = —gsn(0)A;In (5.35)
Ver—a.2 /€ + A7 Sp+ Vot — A
Using the relations 5.31 and 5.34, we easily solve 5.35 for Ay
As2 = ASO(ASO - 2”) (536)

We see that by increasing n from zero, we decrease the value of A, from its maximum of Agy. At
a critical electron-hole concentration difference
AsO

ne = — (5.37)

the order parameter A; vanishes. Since we assume that Ag is real, we see that for n > n. the
formation of the sEI phase must be forbidden. This result illustrates the importance of the closeness
to ‘perfect’ nesting for the appearance of the sEI phase. The sensitive dependence upon the nesting
imperfection explains the scarcity of known excitonic insulators.

Finally, we consider the energetic stability of the excitonic state relative to the normal phase.
By an identical analysis to that performed for the BCS superconductor, we find that the free energy
change per unit volume upon entering the sEI state d F.g; is given by

s A2 1

§Fex = / —5dgs = —5m(0) [A — 2n)° (5.38)
0 s

Since §F.z; < 0, the transition to the sEI phase liberates free energy. As such, the sEI phase is

energetically stable relative to the normal phase below the critical doping concentration.

5.4.1 Density Waves in the Excitonic Insulator

The appearance of a density wave in a condensed-matter system implies a phase transition to
a new state characterized by a periodic spatial modulation of the electron density of the normal
phase. Density waves can be classified as either charge-density waves (CDWs) or spin-density waves
(SDWs). In a system displaying a CDW, the total electron density displays a spatial modulation
on top of that in the normal phase (figure 5.3(a)). In a real system, this change in the electron
density is accompanied by a deformation of the lattice, perhaps leading to ferroelectricity. In the
SDW state, each electron spin species exhibits a periodic modulation of its density such that the
total electron density remains unchanged; this causes the appearance of antiferromagnetic ordering
of the band electrons (figure 5.3(b)).

Nesting of a portion of the Fermi surface is essential for the realization of a density wave state
[54]. In particular, the simple model of the excitonic insulator considered above is an important
example of a system displaying a density wave, providing a successful quantitative description of
many materials exhibiting a CDW or SDW state (see section 5.6). As we demonstrate below, the
important distinction between the singlet and triplet EI phases is the appearance of a CDW and
SDW in these systems respectively.

We define ¢,k (r) to be the Bloch function of an electron in the j-band with momentum k, and
define the electron-density corresponding to this state to be pjk(r) = |p;k(r)|*>. The local charge
density @(r) and the local magnetic moment M (r) may then be written as

Q(r) = —%Z 2Re (p1k(r)@ak (r) Tr {G* (k, 0%)} + Y pjac(r)Tr {G¥ (k,0%)} | (5.39)
k

7j=1,2

M) = —%322Re (P11(1) Pose (1)) Tr {7 G2 (k, 0) } (5.40)
k

where pp is the Bohr magneton and e the charge on the electron [55]. The matrix Green’s functions
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are in their 7-representation. In the normal phase, the local magnetic moment is always zero, and
the expression for the local charge density involves a sum over the densities p;i(r) only. We see
that the presence of the interband Green’s functions in the EI phase introduces ‘interference’ terms
of the form 1k (r)@ax(r) into the expressions for Q(r) and M(r). These ‘interference’ terms are
indicative of the formation of a density wave in the system [48,49]. Referring to equations 5.21
and 5.22, we see that in the sEI phase the ‘interference’ terms appear only in the expression for
the local charge density; in the tEI phase they are only present in the local magnetic moment.
Thus, the transition into the sEI state involves the formation of a CDW, whereas the tEI state is
characterized by the appearance of a SDW.

Figure 5.3: (a) The CDW state in a one-dimensional system: the normal state electron density pn
(dashed line) undergoes a periodic modulation (solid line). (b) The SDW state: the spin-down and spin-
up electron densities (blue and red respectively) exhibit a periodic modulation such that the total electron
density remains as in the normal phase. The local spin-density is indicated by the arrows: note the
appearance of antiferromagnetic order. (c) Interference of CDW and SDW: the local spin-density exhibits
ferromagnetic order.

5.5 The Excitonic Ferromagnet

It has been demonstrated by Volkov et al. that when both singlet and triplet electron-hole pairing
occurs in the system, the spin-degeneracy of the excitation spectrum is lifted leading to a ferro-
magnetic state [55-57]. This may be qualitatively understood by the interference of the CDW and
SDW associated with the singlet- and triplet-pairing respectively. As illustrated in figure 5.3(c),
this interference produces a spin-up and spin-down density wave of differing amplitudes, thus lead-
ing to a partial polarization of the band-electrons in the system. The resulting ferromagnetic state
is referred to as the excitonic ferromagnet (EF).

In the EF phase, the singlet and triplet order parameters A; and A; are simultaneously present
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in the system. From 5.18 and 5.19 we therefore have the Green’s functions in the EF phase

iwn + (=171 4+ 6p

I (K, wp) = Oa 5.41
Blown) = SapTm oS (5.41)
A
2Lk,wy) = GE(kwy) = dg 7 5.42
ap( ) as( ) 8 (i + 01)2 — By (5.42)

where 7 = 1,2 in 5.41. The label ¢ is either + or — corresponding to af =11 and af =]
respectively. The poles of the Green’s functions define the ‘rebuilt’ electron excitation spectra,
with different expressions for the two spin-species:

—dut By, = —Opt\/&°2+A2 (5.43)

where the subscript o is + for spin-up electrons and — for spin-down electrons and the sign of
Ejx defines the ‘rebuilt’ valence and conduction bands as before. The presence of both singlet
and triplet order parameters therefore lifts the spin-degeneracy of the ‘rebuilt’ spectrum 5.23 by
opening different insulating gaps A and |A_| in the spin-up and spin-down subbands respectively
(figure 5.4(a)). The DOS of the ‘rebuilt’ excitation spectrum for spin-o electrons is

E

Nere = nNJ\/ﬁ
=1

where 7y, = 57 is the spin-o DOS in the normal phase. The DOS in the EF phase is plotted in
figure 5.4(b). We note that ngry is higher near the edge of the spin-up gap than 7zr_ a comparable
distance from the edge of the spin-down gap.

(5.44)

-14.4 -14.2 -14 0 1 2
(a) k (b) nny

Figure 5.4: (a) Comparison of the excitation spectrum in the EF phase (red line spin-up, blue-line spin-
down) to the EI phase (black dashed line) over the same range as in figure 5.2(b). In the EF phase we
take As = 2A; = 0.005E¢. Note the position of the chemical potential for weak ferromagnetism du. and
strong ferromagnetism du.. The rest of the excitation spectrum does not significantly differ from that for
the EI phase (figure 5.2(a)). (b) The DOS of the spin-up and spin-down excitation spectra, compared to
the DOS in the normal phase for one spin-species 7~. Note the enhancement of the spin-up DOS relative
to the spin-down.
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We obtain the self-consistency equations for Ay and A; from the definitions 5.8 and 5.9 respec-
tively; we present them in integral form:

_ gan . Bop — E,)
A, = 0_2_; / d§ [1 —ﬁh_)rr;o tanh (f (5.45)
Ay = gt"N / d§ [1 — lim tanh (Mﬂ (5.46)
B—o0 2
The difference in electron and hole concentrations in energy units is also readily obtained:
. IB((SN - Ea')
= G_Z:JF / de [1 + Jim tanh (f (5.47)

We see by reference to equation 5.29 that the 8 — oo limit in 5.47 defines three distinct cases:

o dp < |A_|,A : the Fermi energy lies within the insulating gap for both spin subbands. As
for the EI phase, this corresponds to zero doping.

o |A_| < dp < A : the Fermi energy lies inside the spin-down conduction band but also within
the spin-up insulating gap. As such, the conduction-band electron population is completely
spin-polarized, so-called strong ferromagnetism.

o |A_|,A}; < 6p : the Fermi energy lies inside both the spin-down and spin-up conduction
bands, and so the conduction band electron population is only partially spin-polarized. This
is referred to as weak ferromagnetism.

We shall consider the case of the doped and undoped systems separately.
The ferromagnetic state is characterized by the appearance of a spontaneous magnetization M,
here defined
M = pp(ni +nl —ny —nl) (5.48)

where n!  is the concentration of j-band electrons with spin o and up is the Bohr magneton. We
therefore have for M in integral form

M = 2upny(0) ) / d¢ [1+ﬂli_>rr;o tanh (M)] (5.49)
o=—,+

It is curious to note that for du = 0, the system exhibits no magnetization. This is due to the
enhanced DOS at the edge of the filled spin-up valence band, which compensates for the spin-
splitting. Therefore, in the model considered we only obtain a ferromagnetic state if Ag, Ay # 0
simultaneously in the presence of impurity doping. We shall continue, however, to refer to the
coexistence of the two order parameters at zero doping as the EF phase.

5.5.1 The n =0 System

At equal electron and hole concentrations, the equations 5.45 and 5.46 may be evaluated

A, = —%N(O)[Agn(ii>+A In (|Z—w|)] (5.50)
Ay = —gt";(o) [A+1n (Z) A_ln (Ii—wlﬂ (5.51)

To consider the coexistence phase (i.e. Ay Ay # 0), it is convenient, however, to recast the
equations 5.50 and 5.51 in the form

AtO 1-— 22 1+2
In = —In
Ago 2z 1-2

1+2

(5.52)

A
, 21n<A30> = 1n|1—z|+z1n
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Figure 5.5: The phase diagram of the system at equal electron and hole concentrations. The EF phase
is metastable, with the boundary between the tEI and sEI phases given by d Fig1 = 0 Fig1.

where z = A;/A; is a parameter which takes all values in the range (0,00). The system of
equations 5.52 only has a nontrivial solution when the condition |In(As/Ase)| < 1 is fulfilled.
This corresponds to the region between the lines

Ay = eAso, Ay = 671A50 (553)

in the (Asg, Ag)-plane. These boundaries correspond to the limits z — 0 (A; = 0) and 2 — oo
(As — 0) respectively. The remaining regions of the phase diagram (figure 5.5) correspond to the
sEI and tEI phases, determined by energetic stability analysis.

The behaviour of the singlet and triplet gaps in the coexistence regime found above exhibit
a curious dependence upon the coupling constants gs and g; respectively: as the magnitude of
the coupling constant increases, the value of the corresponding gap decreases. Indeed, the singlet
(triplet) order parameter vanishes as the boundary with the sEI (tEI) phase is approached, precisely
the opposite of what is expected (see section 2.5). This ‘anomalous’ behaviour suggests that the
coexistence regime only occurs as a metastable state, i.e. it liberates less free energy upon formation
than the pure EI phases [9, 53].

This is confirmed by calculating the free energy per unit volume of the EF phase relative to
the normal phase, 6 Fzr. By a straightforward generalization of the Feynman-Pauli theorem to the
case where two interactions are present, we have for the free energy per unit volume of the EF
phase for some point (Al,, A};) within the region of predicted coexistence

A2 A2
§Fee = / - dgs + —5dg; (5.54)
c gt

s

The contour C joins the given point (A’,, A},) with the origin, and lies entirely within the region

of coexistence. It is convenient to choose a contour such that the ratio z is constant along the
path of integration. After lengthy calculation (summarized in section A.3 of the mathematical
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appendix), we have
0Fee = f(z)éF‘sEI = f(z_l)(sREI (555)
where ) N .
+ 2z +z
In(f(z)) = In T2 —zln‘ —, (5.56)

and z is as defined above. It may be shown that In (f(z)) < 0 for all z > 0. Therefore 0 > §Fyr >
0F g1, 0F 5 in the region of coexistence, and so we conclude that the coexistence phase is always
unstable towards the pure phases at zero doping. Thus, only the sEI and tEI phases are present
in the phase diagram at du = 0, separated by the line §F.5; = §Fg;.

5.5.2 The n # 0 System

Weak Ferromagnetism

The weak ferromagnetic regime (A, |[A_| < du), is characterized by the equations

957 (0) 2w 2w
A, = IO A 1, FA In (5.57)
2 S+ /0% — A2 Sp+ \Jou? — A2 ) |
g~ (0) 2w 2w
Ay = =/~ |A;In —A_In (5.58)
2 S+ \/ou — A2 Sp+\/op? — A2
— L 2 2 2 2
no= s (\/5u NN (5.59)
M = 2usn(0) (\/&f — A% - fout - A2 ) (5.60)
Strong Ferromagnetism
The strongly ferromagnetic regime (A4 > du > |A_|) is specified by the equations
A, = IO A (Z—w) +A_In 2w (5.61)
2 ] + Sp+/op® — A2
2 2
A, = _%(0) Ay ln <A—w> ~A_In “ (5.62)
| + Sp+/op® — A2
1
no= g ou? — A2 (5.63)
M = —2upne(0)4/6p* — A2 = —4upne(0)n (5.64)

We see from 5.64 that in the strongly ferromagnetic regime, the excess electrons in the system are
completely spin-polarized. For any choice of n, this is the maximum magnetization exhibited by
the EF phase. Since n is limited by equation 5.37, this maximum magnetization is expected to be
small.

The Phase Diagram

The phase diagram of the system is presented in figure 5.6. We have constructed it in terms of the
dimensionless variables Az /2n and Ay/2n. We note that for Agg, Ay < 2n, the excitonic state
is not possible, as the electron-hole concentration difference exceeds the critical level. Hence, the
normal phase is realized in this region.

The boundary between the sEI and the EF phases is determined as follows. The transition into
the EF phase from the EI phases is second order; therefore as the sEI-EF boundary is approached
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Figure 5.6: The phase diagram for the system at unequal electron and hole concentrations. Note the
region of weak ferromagnetism wEF and strong ferromagnetism sEF. The boundary between the weak and
strong ferromagnetic regimes is given by the dashed line; the diagonal Ayo/2n = A4 /2n by the dot-dashed
line. Note that the normal (N) phase is realized for Agg, Ao < 2n.

from inside the EF phase, the triplet order parameter A; — 0 whilst A; and du (continuously)
approach their values in the sEI phase (equations 5.36 and 5.31 respectively). Sufficiently close to
the boundary A, > A;: the EF phase near the boundary is in the weakly ferromagnetic regime.
We consider the equation 5.58. Expanding the RHS as a Taylor series in A; to first order, and
setting du and Ay to their values in the sEI phase, we obtain

1 1 Ago(Ago — 2
Ay - 0(As0 — 2n) ) (5.65)

915~ 90(O0) " (n 4 /B, — 20+ )

Ignoring the trivial solution A; = 0, equation 5.65 implies the relation

A,
Aw = Ay exp (2— n") (5.66)

where Ay > 2n. The relation 5.66 thus defines the boundary between the weakly-ferromagnetic
regime of the EF phase and the sEI phase . We similarly have for the boundary between the tEI
and the weakly-ferromagnetic EF phases

A
Ay = Agexp (2 - %) (5.67)

which holds for Ay > 2n. A more sophisticated analysis shows that the region where the EF phase
occurs is defined by replacing the equality with > in equations 5.66 and 5.67 [55].

The boundary between the weak and strong regimes is defined by the equality du = |AL].
Referring to equations 5.59 and 5.63, this allows us to define the spin-up and spin-down insulating
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gaps in terms of a real parameter ¢:
A4 = 2ncosh(¢), A_ = 2nsinh(¢) (5.68)

where —0o < ¢ < oo. Using 5.68, we may obtain parametric equations in ¢ for the boundary
between weak and strong ferromagnetism on the phase diagram:

A2;0 = exp (e’ (cosh(¢) In (cosh(¢)) + sinh(¢) In (cosh(¢) + 1))
(5.69)
2—;? = exp (€% (cosh(¢) In (cosh(¢)) — sinh(¢) In (cosh(¢) + 1)))
We note the dependence of Asp/2n upon the parameter ¢ > 0 in the limits ¢ — 0, co:
A 1+In(2)p+0(4?) 0<op <1
2;" = (5.70)

le?+1+06€?) o¢>1

An identical expansion is obtained for A4 /2n for ¢ < 0. The point Asg/2n = Ay /2n = 1 therefore
corresponds to ¢ = 0; as ¢ is increased (decreased), we move along the weak-strong boundary close
to the sEI-EF (tEI-EF) phase boundary (see figure 5.6).

The free energy per unit volume released upon entering the EF state is calculated using the
formula 5.54. Instead of taking the contour C from the origin as in the undoped case, however, it
is more convenient to start from the point Ay /2n = Ay /2n = 1 on the phase diagram figure 5.6,
where all phases are equally stable. Using standard methods [58], we have the result

1 .
0Fee = —5nx(0) [A% + A% — 45un + 4n?] (5.71)
It has been demonstrated numerically that the EF phase is more stable than the EI phases in the

region where it is predicted to occur by the self-consistency equations [55].

Two Analytic Solutions

In general, it is not possible to derive an analytic expression for the value of the order parameters
A and A; for given Agy, Ay and n. There are, however, two important cases where an analytic
solution is possible: the solution on the boundary between the weak and strong ferromagnetic
regimes, and along the diagonal Asy/2n = A4g/2n (see figure 5.6). We examine these solutions in
detail below.

The solution on the boundary separating the weak and strong ferromagnetic regimes has already
been stated (5.68). Because of the proximity of the line 5.69 to the boundary of the EF and EI
phases, it is interesting to compare the behaviour of the two phases along this line on the phase
diagram. We consider the case ¢ > 0, so that we examine the behaviour of the EF phase close to
the boundary with the sEI phase. In figure 5.7(a) we plot the gaps A, and A_ as defined by 5.68,
as well as A; in the sEI phase for the given values of A /2n.

Approaching the point Agy/2n = Ay/2n = 1, we see that the difference between A, and A,
becomes increasingly pronounced. Since the increase in A, over its value in the sEI phase (Aj)
occurs within the small region where the weak regime is realized, the change in its value is very rapid
upon entry into the EF phase from the sEI. Similar considerations apply for A_. An interesting
feature of the solution 5.68 is the ¢ — 0 limit. We see from 5.68 that at Ag/2n = Ay /2n = 1, the
spin-down gap |A_| vanishes whilst A = 2n. This is the only point on the EF boundary where
the order parameters do not converge to their values in the EI phases.

On the boundary between the weak and strong regimes, the free energy per unit volume of the
EF phase relative to the normal may be expressed in terms of the parameter ¢ as

0Fzr = —2n%ny(0) cosh (¢) (cosh (¢) — 1) (5.72)
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Figure 5.7: (a) The variation of the gaps along the ¢ > 0 branch of the weak-strong boundary. The red
line is A4, the blue A_. The black line is A, in the sEI for the corresponding values of Aso/2n. All the
gaps are expressed in multiples of 2n. (b) The difference in free energy per unit volume between the sEI
and EF phases along the ¢ > 0 branch of the weak-strong boundary. Since § Fig1 — 6 Fgr > 0, the EF phase
is the most stable for the given range of Aso/2n.

For ¢ > 0, we plot in figure 5.7(b) the difference between the free energy per unit volume of the
sEI and EF phases as a function of Asy/2n. For all ¢ > 0, the EF phase is energetically favoured
over the EI phases. This may be analytically verified in the limits ¢ < 1 and ¢ > 1 where we
have the asymptotic expansions

n205(0) (1-2(m(2))°) ¢ + O(*), ¢ <1
0Fg — 6Fer = (5.73)
+=n2nx(0)e 3¢ + O(e1?), p>1
The EF phase is therefore realized everywhere along the weak-strong boundary.

The solution on the diagonal Asg/2n = A4g/2n may be regarded as complementing the analysis
on the boundary between the weak and strong regimes, affording an insight into the behaviour of
the EF system far away from the boundary with the EI phases (see figure 5.6). The diagonal lies
entirely within the strong regime; after some manipulation of equations 5.61 and 5.62, we find that
the solution for the gaps A, and A_ is determined by the relations

A_ [ln (2n+ \/4n? +A2_> —ln(Aso)] =0, Ay = Ay (5.74)

These equations exhibit two distinct solutions: for Agy/2n > 1,
A_ = 0, AL = Ay (5.75)
for Ayo/2n > 2 the solution
A% = Ay (Ayp —4n), Ay = Ay (5.76)

is also possible. We note that for Ago/2n > 2, the solution is not unique. This is a characteristic
feature of the system and occurs when the inequality AyAs > 16n? is satisfied [59]. The physically
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Figure 5.8: (a) The variation of the gaps along the diagonal. As in figure 5.7, the red line is A, the blue
A_, and the black line is A, in the sEI for the corresponding values of Agq/2n. All the gaps are expressed
in multiples of 2n. (b) The difference in free energy per unit volume between the sEI and EF phases along
the diagonal.

realized solution in this region is determined via appeal to energetic stability. We have for the free
energy per unit volume relative to the normal phase for the two solutions 5.75 and 5.76

6FEF = _%"']N(O) [Ago - 4’)12] s A2_;zQ > 1
(5.77)
Foe = —3m(0) [(Bo—20)?+207], 4w >2

It may be easily verified that for As/2n > 2 the solution 5.76 is the most stable.

In figure 5.8(a) we plot the solutions to the equations 5.74 and the value of A; in the singlet
EI phase for the corresponding values of Asg/2n. We note the absence of the spin-down gap for
2 > Ayo/2n > 1. In figure 5.8(b), we also plot the difference between the free energies of the EF
and EI phases. It is clear that the EF phase is the most stable along the diagonal.

5.6 Experimental Evidence

The model of the nested semimetal considered here is much too simplistic to closely resemble
any physical system; many improvements have accordingly been made upon it, most importantly
the inclusion of non-nested portions of the Fermi surface which are not subject to the excitonic
instability [60]. Although the qualitative picture of the EI phase as described above remains intact
in such a system, the non-nested portions of the Fermi surface remain “ungapped” by the excitonic
condensation, and so the system does not undergo a transition to an insulating state.

The topology of the Fermi surface in many physical systems displaying density wave phenom-
ena is well-described in terms of a nested and a non-nested portion. An excellent example of this
is provided by the itinerant antiferromagnetism of chromium and some of its alloys, which has
attracted much interest since the mid-1960s (for reviews, see [61,62]). The basis for the theoretical
description of these systems is the so-called Rice model, which attributes the SDW to an exciton-
mediated hybridization of imperfectly nested portions of the Fermi surface. Notable examples of
other systems to which the EI model has been applied with success are the vanadium dichalco-
genides (in particular V3S, and V3Ses) and the semiconductors of the A4Bg group (e.g. PbTe and
SnTe) [61,63]. The latter systems are well modelled as nested semimetals in which the critical
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temperature of the excitonic state lies above the melting point of the crystal itself.

The EI model has not been applied to any of these materials without reservation. Therefore, the
discovery of what appears to be a pressure-driven transition to the ‘classic’ EI state in the narrow
band-gap semiconductors TmSeg 45Teg 55 and Smq 75Lag.25S came as an exciting development [64,
65]. The situation in TmSeq 45Teq 55 is of particular interest, as the temperature-pressure phase
diagram has been determined, displaying an excellent agreement with the theoretical predictions
[49]. Several other candidates for a realization of the EI phase have been identified, most recently
FeSi and CaPd3;0y; these interpretations are, however, still subject to dispute [66,67].

Experimental evidence for the EF phase has proved much more elusive. Although the original
papers of Volkov et al. suggested that the magnetic behaviour of the narrow-band semiconductor
HgTe could be explained in terms of the excitonic scenario, more convincing mechanisms which
do not involve exciton condensation have since been proposed [57,68]. A major reason for this
rarity is the destructive effect that non-nested portions of the Fermi surface, which act like particle
reservoirs, have been shown to exert upon the EF phase [69].

The EF scenario has most recently been invoked to explain the high-temperature weak ferromag-
netism of the lanthanum- and vacancy-doped alkaline earth hexaborides Ca; _,La,Bg, Ca;—_;Bg,
Sry_;La;Bg and Ba;_,La;Bg. When very weakly doped with lanthanum impurities or vacancies
(x ~ 0.005), these materials have been found to exhibit a weak magnetization that persists up to
remarkably high temperatures, often in excess of 700K [20,21,70]. Band structure calculations have
revealed that the alkaline earth hexaborides are semimetals with very small band-overlap [71,72].
This has led several authors to propose the alkaline earth hexaborides as examples of excitonic
ferromagnets [22,23,73]. More recent experiments, however, have shed doubt upon this conclusion,
and the situation is currently somewhat confused [24,74]. Nevertheless, the EF model remains the
most convincing theoretical explanation for the exciting properties of these materials.



Chapter 6

Superconductivity in Semimetals
with an Excitonic Instability

In its original form, the BCS theory of superconductivity was explicitly formulated for a homoge-
neous electron gas. In the years following its publication, much work was devoted to the application
of the BCS scheme to more realistic systems. The predictions of BCS theory were found to be in
excellent qualitative (and sometimes even quantitative) agreement with experiment; in all exten-
sions to the theory, the original concept of phonon-mediated electron-pairing was retained. The
extraordinary success of their theory was recognized by the award of the 1972 Nobel Prize for
Physics to Bardeen, Cooper and Schrieffer.

Part of the effort to verify the BCS scheme was directed towards the appearance of supercon-
ductivity in metals with overlapping bands [58,75,76]. Although for the majority of such systems
the BCS theory was highly successful, surprisingly high critical temperatures (Ts > 10K) were
found in several compounds in which a density wave instability was known to occur. Indeed, the
highest critical temperatures known prior to 1986 were found in the so-called A15 compounds
(Laves phase), some of which exhibit a phase transition to a CDW at higher temperatures [10].

The possibility of raising T as a result of a transition to a density wave state naturally aroused
much interest in the condensed-matter community [9,44]. It was observed that the excitonic
insulator model of the density wave state discussed in chapter 5 offered a natural mechanism
for such an increase: the enhancement of the DOS about the insulating gap [77]. In the finite
temperature BCS theory of superconductivity, the critical temperature is sensitively dependent
upon the DOS near the Fermi energy, 7(0):

Ts o exp [(An(0)) '] (6.1)

The increased DOS around the insulating gap in the EI phase (see figure 6.1(b)) might therefore
be able to support, and perhaps even enhance, Cooper-pairing. On the other hand, the presence
of the insulating gap should be expected to have a negative impact upon the appearance of super-
conductivity in the EI phase. As the width of this gap is generally much smaller than the Debye
energy, however, Cooper-pairing between electrons on both sides of the gap might still be possible
(we assume Eg > wp > Ay, 0p).

The results of theoretical studies have reflected this expected competition between the DOS
enhancement and the opening of the insulating gap. The latter effect dominates for most choices of
coupling parameters, leading to the suppression of Cooper-pairing in the system; modification of the
normal BCS Hamiltonian in order to account for the exciton-mediated band hybridization, however,
does allow an increase in Ty to be observed [12,53,78]. In both cases a new superconducting
excitonic insulator (SEI) phase is predicted.

In the published literature, the situation where there is only one spin-species of exciton in
the system is always assumed. In the following, we only consider the original case of spin singlet
exciton-pairing (sSEI phase). The case of spin triplet exciton-pairing (the tSEI phase) has also been
studied: neglecting the effects of the antiferromagnetic ordering, it is identical mutatis mutandis
to the singlet case [79]. We shall follow closely the approach of Rusinov et al. in our analysis of

43
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the sSEI phase [53]. After constructing the equations of motion for our model system (sections 6.1
and 6.2), we proceed to examine its predictions for two different choices of parameters (sections 6.3
and 6.4). These illustrate both the competition and co-operation between excitons and Cooper
pairs in the system. We conclude with a brief review of density wave superconducting systems,
and their relation to the model SEI state (section 6.5).

6.1 The Model Hamiltonian

The Hamiltonian describing the coexistence of Cooper-pairing with singlet exciton-binding in a
semimetal with nested electron and hole Fermi surfaces is given by

K = Z I:(é-k/ - 5/,¢) &Ik,,}fllk/,, + (_é-k’ — (SIJ,) @Ek/,,fmk/y]
k',v

1
At oA At A
v Z Z Igs&””'(SCC'alk’uam"V’azk”galk”C’
K k" v (¢

+% Z Z Z Aijdzklya/;_k'y’&jk”ll'&ifk”ll (62)

k' k" v’ 4,j=1,2

The first two terms we recognize as the Hamiltonian used to describe the sEI phase. The last term
is a generalization of the BCS Hamiltonian to a two-band system, accounting for both intraband
(¢ = j) and interband (7 # j) Cooper-pairing. The intraband electron-electron coupling constants
Aii = A are assumed to be negative, corresponding to a BCS-like attraction. The interband
term accounts for the effect of the exciton-mediated band hybridization upon Cooper-pairing;
the interaction constants A\;2 = A2; may therefore be either positive or negative. In general the
coupling constants g, and \;; have different cut-offs, w and @’ respectively. We shall assume for
simplicity that they are equal. Relaxing this assumption does not introduce any essentially new
physics, whilst significantly complicating our analysis.

There are 8 distinct Green’s functions to consider in the description of the SEI phase. The
necessary single-particle intraband and interband Green’s functions gjjﬁ were introduced in chap-
ter 5. In order to describe the coupling to the Cooper pair reservoir, we define the Gor’kov Green’s
functions for the system:

Fk,m) = ([ana(r)dj—1s(0)]) (6.3)
flg(k’T) = <|:a’}—ka(7-)a’;kﬁ(0):|> (6.4)

where 7,j = 1,2 as above. The intraband Gor’kov Green’s functions (i = j) are present both in
the purely-superconducting semimetal (S phase) and SEI phase; the interband Gor’kov Green’s
functions (i # j) are only present in the SEI phase. They account for the effect of the exciton-
mediated band hybridization. Both intraband and interband Gor’kov Green’s functions are off-
diagonal in their spin indices. We note the useful identities connecting the functions .7-";]3 and
Fli,
af
fl’é(—k,O*) = <d;[kaAj'—k,6> = - <&;—k5&;rka> = —féif(k;O*)
. (6.5)
F0,07) = (alaihg) = (anstioa)” = (Fiak,0M)

These are generalizations of the identities 3.11 to a two-band system. As in chapter 3, they are
useful in the construction of the equations of motion for the Green’s functions.
To describe the Cooper-pairing, we have four order parameters Y11, Yog, Y12 and ¥oq, defined

1 i ji
Sy = —Wz[,\,-jfTi(k',oﬂ—AﬁffT(k',oﬂ] (6.6)
kl
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The order parameter for the singlet exciton binding, Ay, is as defined in chapter 5. For our simple
analysis, we adopt the standard assumption that all the order parameters are real. The gaps of
the S phase and the sEI phase at perfect nesting,

Yo = 2wexp( Ay = 2wexp< (6.7)

o) )

respectively, are frequently used in the following analysis as characteristic energy parameters.

6.2 The Equations of Motion

We consider the equations of motion of the Green’s functions of the system. We present the detailed
calculations for gﬁ only; the calculations for the other Green’s functions differ in minor details
only and so are not presented here.

After tedious and unenlightening calculation, the equation of motion for the intraband single-
particle Green’s function G} is given by

9 : T
—5 Ok T) = 8(0) + (6 — WG (k,7) - 2ng (T [t (M), (D (Nl (0)] )
A
+ 55 2 (T [l e Marer (e (Ml 0)])
k'v

— (7 [l (a1 —ien(Naner (Dl 0)] )}
+ % {A21 (T [} 10 (7)1 047z (D) 0)] )

=2 (T [ s (Miren(Miner (Ml O] )} 68)

We decompose the 7-products in 6.8 using Wick’s theorem, keeping only terms that describe the
coupling to the Cooper pair and exciton reservoirs as in chapters 3 and 5. We thus have for g%%’s

equation of motion

0
<_§ — &+ 5u) Gii(k,T)

/\
() + o 2 Gua0, 0N 0 m) + 5 3 {FHL(K,0°) = 7R, 00} £ (e )
k' ,v
QVZ{AH P, 0%) = A F (K, 07)} 12 (k,7) (6.9)
= 0(r) + AGH (k1) — SuFlH (k) — S F 2 (K, 0T) (6.10)

where we have used the definition of the order parameters to obtain 6.10 from 6.9. By entirely
similar arguments, we obtain the equation of motion of gﬁ, fﬁl and Tgl:

d
(_E + &+ 5u> Ghk,7) = AGHKT) - SnFlt (k1) - SnFl(k,7)  (6.11)

d
(_E + & — 6u> Fitk,7) —AF (k1) - SuGH (K, T) — S G (k,7)  (6.12)
0 121 111 11 21
“or & — op ‘7:“ k,7) = _As]:“ k,7) — Y1203 k,7) — Y2053 (k,7) (6.13)

To obtain the equations of motion of .7-"1%1 and }'ﬁl, the identities 6.5 and the assumption that
the order parameters are real are utilized in much the same way as in the chapter 3. We may
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similarly derive the equations of motion for G|}, G7|, .7-"111 and ]—";fl. These may be obtained with
the replacement of ¥;; by —X;; in equations 6.10, 6.11, and 6.13 respectively.

In order to solve the system of equations 6.10, 6.11, 6.12 and 6.13, we take their Fourier
transforms into the conjugate w-space to obtain an algebraic system. It is convenient to express
this algebraic system in matrix form:

[ iwn — G —A, Y S ][ GHkwn) [ 1]
—A, iwn — G2k Y01 Yoy gz% (k,wn) _ 0 (6.14)
Y Yo iwn + C1k A ‘7'1%1 (k,wy) 0 '

L T2 Yoo A iwn + G || Tfil(k,wn) | [ 0

[ iwn — G SAR X1 —Yo1 ] [ gﬁ(k,wn) ] [ 1]
_As iwn - C?k _212 _222 g (k wn) — 0 (6 15)
—211 —212 iwn + Clk As % k wn) 0 ’

L =Y -2 JAWS Wy + Qx| L (k, wn) | | 0 ]

where (jx = (—1)7 " 1& — dp. Similar matrix equations of motion can be obtained for the other
Green’s functions gaﬂ, Qaﬂ, ]—'l? and fl}f by making the replacements (1x < (ok, X11 ¢ Xa2
and Y12 < Yo; in 6.14 and 6.15.

The solutions of these equations were classified in [53,80]. These authors made the simplifying
assumptions that |X11| = |X22| and |X12| = |Z21]. The former condition follows from the assump-
tion that the difference from perfect nesting is small: the superconducting gaps in the two bands
do not therefore appreciably differ. There appears to be no physical situation under which the
latter condition would be violated. It may be shown that there are only two solutions of the above
matrix equations satisfying these criteria:

e ‘antisymmetric’ solution: 17 = —X¥92 = X and X152 = 0.
° ‘symmetric’ solution: 211 = 222 =Y and 212 = 221 = 22.

We shall consider the antisymmetric and symmetric solutions separately. We note that 15, = 0
in the antisymmetric case does not imply that the interband Gor’kov Green’s functions are also
vanishing.

6.3 The Antisymmetric Solution

For the antisymmetric solution, the matrix equations of motion are re-written

i iwn — Clk —As b)) 0 [ g%% (kawn) 1
A 0 -3 G3 (k Wn) _]o (6.16)
b)) 0 iwn + (i Ag ]:H (k, wn) - 0 )
L 0 -3 A iwn + G | | }'Ifl(k,wn) | [ 0
[ iwn — G =g =) o 1] G (k wn) ] Bl
—As iwn — C?k 0 by k wn _ 0
-3 0 iwn + Cix A, %“ kw,) | — |0 (6.17)
L0 by A, iwn + Cox }“T2l(k W) | 0
Solving these equations, we obtain
. 2 2\ /- 22 . _
i)lg (k7 wn) — éaﬁ ((lwn) (C2k) )(an :_ Clk_),’_ 5 - (7/&)7; + Cll_()2 (ZUJTJ, CQk) (618)
((iwn)? — wy %) ((iwn)? — wyc ©)
A ((iwy, — 6p)? 2_A24 32
25 (K, wn) (G = 010" — & = A, + ) (6.19)

T (iwn)? = wif %) (iwn)? — wy 2)
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2 (22 = A = (iwn)? + B)
(Gon)? =t ) (i) =)

t21 . 20,3 (iwp, + Gk + 6p)
Fap (on) = =100 (G5 ol ) (iwon)? — w0 9)

Fl(kwa) = —ioly

«,

(6.20)

(6.21)

The poles of the Green’s functions give the electron and hole excitation spectra; when both ¥ and
A, are non-zero, there are four distinct poles at the points iw, = j:wl‘(|r , fwy . For perfect nesting
(6p = 0), the poles are defined

wE? = £+ (T4’ (6.22)

Note that this excitation spectrum is identical to the undoped excitonic ferromagnet with the
replacement A; — Y. For the case of imperfect nesting, the poles have the form

wi? = (Betop)’+32, B = g+A? (6.23)

where the so-called ‘effective’ gaps f], &s are defined

- 2 - 2
22 = 32 (1— (SA;), A2 = A2 (1+§—2) (6.24)
1 Iz

We plot the electron excitation spectrum for imperfect nesting about the insulating gap (fig-
ure 6.1(a)); the rest of the EI spectrum is only insignificantly affected by the appearance of
Cooper-pairing. Note the opening of the superconducting gap about the Fermi energy and the
role of the ‘effective’ gaps.

The Green’s functions G2%, G13, }'22; and F, l}f are obtained from the expressions for G, G2},
F 121 and .7-"];261 respectively with the replacement (1 <> (ok; the Gor’kov Green’s functions .7:(‘;252

«,

and f;? also acquire a factor of —1.
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Figure 6.1: (a) Detail of the ‘rebuilt’ electron excitation spectrum in the sSEI phase, over the same
range as in 5.2(b). The rest of the excitation spectrum does not significantly differ from that plotted in
figure 5.2(a). We took ¥ = 0.3A, in this plot. (b) The DOS in the sEI phase: note the increase in 7 near
the edge of the band gap. The sensitive dependence of Ts upon 7(0) means that even a modest change (as
at du) can cause a significant increase in the critical temperature.
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6.3.1 Important Integrals

We introduce some important integrals which will frequently appear in the following analysis:

-~ , @ d¢ [E+6 put E-§ Puw™

L&, Sa = Jim | % = “tanh( . ) + = "tanh( . (6.25)
~ = . Tdel1 w™ 1 wt
~ - _ “ dE [E+6 But E-4¢ Bw™

For the sake of clarity, we shall use the abbreviated expressions Z; instead of explicitly writing
the integrals. The important properties of these integrals are presented in section A.4 of the
mathematical appendix, to which we shall often refer the reader. A particularly important property
is the asymptotic form of the integral Z» in the limit 3 — 0:

"~ o~ 1 40py/op® — A2
(A, S = 0,00) ~ In (6.28)
Vo' —A2 |z <5u +1/ou® — Ag)

We shall frequently utilize this expression in the following analysis.

6.3.2 The Self-Consistency Equations

Using the derived expressions for the Green’s functions, we obtain for the equations for the order
parameters

~ ~ 2 ~ ~
S = nOF [BEL S0 + (- £ BEE ) (6.29)
1
S w2
Ay = —gsn(0)Ag [Il(AS,E,(Su) - EIZ(AS,E,JM)] (6.30)

The trivial solution (X = A; = 0) to the self-consistency equations 6.29 and 6.30 is ignored in the
following analysis.

As in the EI and EF phases studied in chapter 5, the chemical potential du is determined by
the structure of the ‘rebuilt’ spectrum and the impurity doping. Thus, in order to derive the self-
consistent solution to equations 6.29 and 6.30 for a fixed electron-hole concentration difference, it is
necessary to determine the relationship between the nesting imperfection du and the electron-hole
concentration difference n. We have

5n 1 1 .. Js +
n = = lim —— Tr { G k,wn e*(fl) iwn 0
417(0) B—o0 4 (0) BV g j;; (G (k, wn) }
~ 3 AT\ L o
= BnE0m+ (5= ) To(As 2, 0p) (6.31)

It is straightforward to verify that the integrals 7o and 73 are always nonnegative for du > 0.
For ¥ # 0, substitution of the du Laurent-series expansions of the integrals (see mathematical
appendix) into 6.31 demonstrates that n ~ du as du — 0. Thus, when the superconducting order
parameter is nonzero, strict equality of electron and hole concentrations is only realized for o = 0.
This condition allows us to easily discuss the coexistence regime in both the absence and presence
of impurity-doping. The general relationship between dp and n in the coexistence regime does not
admit an analytic expression.
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6.3.3 The n =0 System
In the limit 6 = 0, the gap equations 6.29 and 6.30 have the analytic form

5 = _A"NT(O) [(2 + Ay (Aff_2> +(Z—Ayn (ﬁ)] (6.32)
A, = —%N(O) [(As +3)In (Aff2> +(Ay—%)In (ﬁ)] (6.33)

where we assume that Az, ¥ > 0. Referring to the gap equations for the EF phase at equal
electron and hole concentrations, we see that they are identical to the system 6.32 and 6.33 upon
the replacement of A; by X. All the results of subsection 5.5.1 are therefore readily applicable
here upon making this replacement. In summary, the gap equations predict the existence of a sSEI
phase in the region of the (Agg, Xo)-plane between the lines

Ay = eXo, Ay = 67120 (634)

In this sSEI phase, however, the order parameters exhibit ‘anomalous’ dependence upon the cou-
pling constants, indicating that the sSEI phase is metastable. This may be directly verified by
calculating the free energy per unit volume relative to the normal phase: although more stable
than the normal phase, the sSEI phase is less stable than the sEI and S phases.

6.3.4 The n # 0 System

In the case of unequal electron and hole concentrations, the self-consistency equations 6.29, 6.30
and 6.31 cannot be solved to obtain an analytic expression for the parameters Ay, ¥ and dp in
the sSEI phase. In the limit of weak Cooper-pairing (X¢ < Asg), however, an expression for the
variation of ¥ in the sSEI phase of asymptotic validity may be derived. We are also able to obtain
the phase diagram of the system.

In the SCHF approximation considered here, the critical temperatures of the S and sEI phases,
Ts and T.g; respectively, are related to the gaps 3¢ and A,y by the ratio

T, S
TEEI AsO

(6.35)

Typically, Ts ranges between 0.01 — 1K. The EI phase is generally much more robust, with T},
lying between 10 — 1000K. The study of the system when the inequality Yg <« Ay is satisfied is
therefore most relevant to physical reality. This is, of course, the weak Cooper-pairing regime.

In the weak Cooper-pairing regime, the integral Z» has a logarithmic divergence (see equa-
tion 6.28). Thus, the RHS of the self-consistency equation 6.29 is of order In|¥|, and so has no
solutions for ¥ = 0 when XA # 0. Thus, the presence of excess electrons or holes in the system
always makes the sEI phase unstable to arbitrarily weak attractive electron-electron interactions.
We may regard this as evidence that the DOS increase near the edge of the insulating gap allows
the sEI phase to support Cooper-pairing.

For the integrals 7; and T3, the lowest order corrections to their ¥ = 0 values are ~ X 1n |3
(see section A.4 of the mathematical appendix). To first order in X, therefore, we may neglect the
influence of the Cooper-pairing on the insulating state: that is, for ¥ — 0, we may approximate
A and n by their values in the equilibrium EI phase (refer to section 5.4). Using the expression
for ¥y, we therefore have for 6.29 in the limit of weak Cooper-pairing

2w 2w n An(Aso — m)
2wy i 1 .
In (EO) In <A30> * Ag—n " ( |E|A30 ) (6 36)

Solving for ¥ (assumed positive), we have

_ 4n(Ag —n) Aso—n Aso
Y = T exp |: n In ( EO (637)
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Figure 6.2: (a) The variation of ¥ with Ay /2n in the weak Cooper-pairing regime. The blue line is for
3o0/2n = 0.1, the red line for ¥y/2n = 0.001. (b) The phase diagram for the antisymmetric solution. The
bold line OAB is the contour used for the evaluation of the free energy.

This expression is valid provided that ¥ <« 4n(Az —n)/Aso: in this limit, the second term on the
RHS of 6.36 dominates the other small-% corrections. In figure 6.2(a), we plot the variation of X
inside the sSEI phase for two values of ¥o/2n. We note that the rapidity of the decrease in ¥ in
the sSEI phase increases with decreasing ¥g.

The result 6.37 illustrates the importance of a non-zero electron-hole concentration difference
to the appearance of superconductivity in the sEI phase: for n < Ay, the superconducting order
parameter Y. is exponentially small. This is consistent with the conclusions of subsection 6.3.3
that demonstrated the impossibility of an equilibrium coexistence phase in the absence of electron
doping. Treated as a function of Ay, the expression for X also evidences the inhibiting effect that
the insulating gap has on Cooper-pairing, with ¥ vanishing as Ay — oo.

The above results for the weak Cooper-pairing regime indicate that although Cooper-pairing
is never completely extinguished by the appearance of an insulating gap, it is, however, strongly
suppressed. This evidences the competition between the two effects of DOS enhancement and
energy gap opening. The deleterious effect that the insulating gap has upon Cooper-pairing is
clearly demonstrated by 6.37; it is apparently mitigated, however, by the increase in the DOS near
the edge of the band gap, so that Cooper-pairing is always possible for A < 0.

This competitive coexistence between the S and sEI phases is also characteristic of the general
case (X € A;). This is demonstrated by the phase diagram in the (Ayg/2n,%o/2n)-plane. It is
clear from the above discussion that only two phases will be realized on a set of nonzero measure:
(i) the S phase (X = X, n = du, Ay = 0) and (ii) the sSEI phase (X, Ay, du # 0). The boundary
between these two phases is obtained by expanding the RHS of 6.30 to zeroth order in A,:

1
gan(O)

22
Il (07 EO) ’I’L) - 7012 (07 207 TL)

2 2 2 2 2
- 1n(w)—V"+ °1n<"+ nt 0) (6.38)

2_0 n 20

Using the relations 6.7, we may, after some re-arrangement, place these equations in the form

In(z) = In(y) + /1 + 42In <1+7 *’21y+4y2> (6.39)
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where the variables z = Ay /2n and y = ¥¢/2n. This line is plotted in figure 6.2(b). For fixed
concentration difference between the conduction band electrons and valence band holes, we see
that as Xy increases, the value of Ay for which the sSEI phase is possible increases monotonically.
That is, as the interaction responsible for Cooper-pairing becomes stronger, the minimum value of
|gs| required for simultaneous electron-hole binding also increases. Thus, the presence of Cooper-
pairing in the system tends to impair the formation of excitons. The reverse conclusion can also
be drawn from this result.

We conclude the analysis of the antisymmetric solution by calculating its energetic stability.
Relative to the normal phase, the free energy per unit volume of the sSEI state, § F.sg;, is for some
choice of parameters Alj, 3j,n' given by the expression

A2 w2
6-Fs5EI = /cg?dgs + Vd)\ (640)

where C is a contour joining the point (AL,/2n',3q/2n') to the point (1,0) where all the possible
phases are equally stable energetically. An analytic expression for §F,sg may be obtained in the
weak Cooper-pairing limit. It is particularly convenient to choose C to be the line OAB (see
figure 6.2(b)). Integrating along OA, we obtain the free energy per unit volume of the sEI phase
for the given values of Ay and n. Continuing the integration along AB, we need only consider the
integral with respect to A: using the expression 6.37 we obtain after lengthy calculation

1 I

0F e = 0Fm — §7IN( )T

2 < 6Fm (641)

where §F,g; is the free energy per unit volume of the sEI phase relative to the normal phase and
¥' is the value of the superconducting order parameter at the point (A’;/2n',X(/2n'). We see
that the sSEI phase is therefore always stable towards the sEI phase. This confirms the earlier
result that the sEI phase is unstable to arbitrarily weak attractive electron interactions. Numerical
calculations confirm that the sSEI phase is also more stable than the S phase [53].

6.4 The Symmetric Solution

The matrix equations of motion for the symmetric solution are written as

i — Gk A, s 2 1 9Hkwa) ] (1]
—As twpn, — Cox DI b g? (k Wn) . 0 (6.42)
b)) >, iwn + Cix A ‘7:J,T (k,wn) o 0 )
D2 X A iwn + Gk }'ﬂl(k, Wn) L 0]
[ — (1 -4 =X %y ] gu(k,wn) | (1T
—AS iwn — C2k —22 ) g (k wn) _ 0 (6 43)
=X _22 'iwn + Clk As fTL (k wn) B 0 ’
_22 X As iwn + C2k i f;il(k, wn) L 0 i

Solving these equations, we obtain

ilﬁ(ka wp) =
5 ((iwn)? = (C1)?) (iwn + Cire) + 2oTA, — T2 (iwn + Cind) — T3 (iwn + Gor) — A2 (iwn — (ox)
b ((zwn)2 — 1'("2) ((zwn) —wy )

(6.44)
A ((iwn — 6p)? — & — A2 — 52 — 52) + 255, (iw, — Op)
21 _ k 2
Fanlloin) = o (o) — o2 ™) (G - ) .
5 (22 4 A2 — 53 — (iwn)? — () + 250,
Fillkw,) = —io?, (22 + 25 = 35 — (wn)” = Ge) +2XalsCin (6.46)

((iwn)2 — wl'(" 2) ((iwn)2 — Wy 2)
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Ty (33 + A2 — 52 — (iwy, + &)? + 0p®) — 24,Zp

((“‘)n) - wff 2) ((i(f‘)n)2 — Wy 2)

The poles of the Green’s functions iw, = fw;", w, define the ‘rebuilt’ electron and hole excitation
spectra. These excitation spectra are identical in form to those for the antisymmetric case:

Fio (kwn) = —ioy

(6.47)

wi? = (B2+op)’+%2, B = &+A? (6.48)
where the effective gaps Es, ¥ and chemical potential dz are defined

(5,U/AS + X3, i _ (5,[1/2 — A Y5

A= s R T

, O’ = ou’+ %2 (6.49)

The Green’s functions Qaﬁ, o8 fl? and FI12 .5 are obtained by the replacement ik <> Cax in the

expressions for aﬁ, aﬁ, .7-"“1 and F12! ap Tespectively.

6.4.1 Important Integrals

As for the antisymmetric case, it will frequently be impossible to analytically evaluate the integrals
occurring in the gap equations. These integrals are of the same form as those introduced in
subsection 6.3.1 but with the symmetric solution’s definition of E and w®, and the chemical
potential du replaced by the effective chemical potential dx > 0. We shall therefore employ the
notation 7;, Z, and 73 in what follows, but will regard these integrals as functions of the effective
gaps and the effective chemical potential defined in 6.49. We note that in the limit IS 0, the
integral 7> has the asymptotic form as given by equation 6.28

6.4.2 The Self-Consistency Equations

From the expressions for the Green’s functions, we obtain the equations for the order parameters
¥, X5 and A, and the electron-hole concentration difference n

o = =0 (RaE0m) + i (.5, 07) (6.50)
ﬁj(m = —%13 (B,.%,60) + g—giﬁs@ (3..%,07) (6.51)
_ngs(O) = AT (3,.5.07) - 551, (K, 5,07) (6.52)

n = 2_5[13 (8..5.00) + (22 -5 2, (K,.5,07) (6.53)

The doping n must be an odd function of du and vice versa. Therefore, the term in square brackets
in equation 6.53 must be an even function of du; it is clear that this requires the integrals Z, and
73 to be even in du. Studying the form of the integrands, the only place where a sign change in
op could make an important difference is in the values of the effective gaps ¥ and A,: for the
integrands to be even in du, these must either be even or odd. If we assume that ¥ and A, are
both even in du, whilst 32 is an odd function of du, the effective gaps are then odd functions of
ou. It is easily verifiable that this is consistent with the gap equations 6.50, 6.51 and 6.52, as
the integral Z; is therefore also even in du. We hence see that when ¥ is non-zero, the condition
o = 0 guarantees equal electron and hole concentrations in the system. Again, therefore, it is
straightforward to discuss the coexistence in both the presence and absence of impurity-doping.
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6.4.3 The n =0 System

Setting dp = 0, the Green’s functions take the simplified form

iwn = (=1)7 16k

I (k,wn) = dap o — o (6.54)
. A
12 _ 21 — s
apkwn) = Goglk,wn) = 55,@(2.%)2_“)2 (6.55)
. by
Figlown) = FiFlw) = —iolym—r—s (6.56)

where 5 = 1, 2 in the expression for the intraband Green’s functions. The interband Gor’kov
Green’s functions are zero. Unlike the general case, the Green’s functions have only two simple

poles at the points +w, where
w = /& + A2+ 32 (6.57)

Note that the general form of the ‘rebuilt’ spectrum is identical to that characterizing the sEI or
S phases, with effective gap /A2 + X2,
In the limit of zero doping, the gap equations 6.50 and 6.52 may be placed in the simple form

2w 2w
Y = -2(0)EIn| ———— |, Ay = —gsm(0)AgIn | —— 6.58

When Ag, ¥ # 0, we may with the aid of the definitions 6.7 rewrite the self-consistency equations
2In(Ay) = 2In(Ey) = In(A}+%?) (6.59)

It is clear that the coexistence occurs only upon the line ¥y = Ay in the (Ag, Xg)-plane. On this
line, the order parameters A; and ¥ are connected by the relationship

A2 3% = 32 = A% (6.60)

The free energy change per unit volume upon formation of the sSEI phase is easily calculated by
the methods outlined in the mathematical appendix (section A.3) to be

Fo = —%nN(O) (A2 4 52) (6.61)

From the relation 6.60, we observe that the S, sEI and sSEI phases are all equally stable upon the
line ¥g = Ayp. These results were originally arrived at in [81].

We plot the phase diagram of the n = 0 system, including the metastable antisymmetric so-
lution, in figure 6.3. The physicality of the solution 6.60 is apparently questionable, as it would
appear to be destabilized by small perturbations. This is, however, an artifact of the simplistic
model adopted here: the inclusion of interband transition terms in the Hamiltonian 6.2 or alter-
natively the relaxation of the condition that the exciton-binding and Cooper-pairing cut-offs are
equal yields a coexistence region on a set of non-zero measure in the (A, Xo)-plane [9,82].

6.4.4 The n # 0 System

As for the antisymmetric solution in the case of unequal electron and hole concentrations, the self-
consistency equations for the symmetric solution cannot be solved to yield analytic expressions for
the parameters Ay, 3, 32 and du in the sSEI phase. As before, however, we are able to study
the system in the physical limit of weak Cooper-pairing, although the analysis is complicated by
the presence of ¥5. We may also utilize the self-consistency equations to obtain the general phase
diagram of the system.

The equation for ¥ only involves the integrals 7, and Zs; unlike 7, their integrands do not
diverge for large values of £. Referring to 6.51, this implies that in the physical ‘weak coupling’
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Figure 6.3: The phase diagram in the absence of doping. Between the two solid lines Yo = eAgo and
3o = Aso/e a metastable antisymmetric sSEI (AsSEI) phase is predicted. A stable symmetric sSEI (SsSEI)
phase is realized along the dotted line (Xo = Ayo).

limit |A12|mn(0) <€ 1, we have Xo ~ Ajann(0). Thus, for A, gs > A2, we may regard X, as
vanishing. In the limit of weak Cooper-pairing, however, this simplification is inappropriate. We
demonstrate the failure of this assumption by expanding the RHS of 6.51 to zeroth order in 3o
and letting ¥ — 0. Using the asymptotic expression for 7Z», we have

hI
b))

AsO In 4(6/1/2 - Ag)
\/ou® — A2 E(é,u%—\/é;f—Ag)

Due to the diverging logarithm, the RHS of this expression may not be small when ¥ < A, dpu.
This result demonstrates the necessity of including ¥, in the analysis of the weak Cooper-pairing
regime.

~ —A12x(0) (6.62)

As for the antisymmetric case, in the limit of weak Cooper-pairing the parameters A; and du
are, up to corrections of order ¥ 1n |Z|, equal to their values in the EI phase. As before, we consider
only the limit |X| < 4n?/Ao: thus, the RHS of the equations 6.50 and 6.51 are dominated by the
integral Z,. Letting A, ~ A, and O & du, we have for the asymptotic form of the equations for
the gaps ¥ and ¥,

AsO -—n & An’
YIn| = 6.63
nlin(Ag /o) <|E|Aso> (662
Ago(Aso — 2n) 4n®
Yo & Aa2nn(0 YIn| = 6.64
2 127 ( ) n |E|ASO ( )

In the weak coupling limit, the effective superconducting gap ¥ is related to the gaps X and ¥s by

i ~ Y ASO(ASO - 2n)

Y .
R (6.65)
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Substituting 6.63 and 6.64 into this expression and solving for ¥ # 0, we have

~ 4n? no,
A.<>‘0 ASO (ASO B 2”) A.5:0 -
= 1 1 — Apgre(0) 220250 — 27) .
I ! ( Yo > [ Hawl0) (Aso —n)? "\ % (6.67)

Examining 6.67, we see that if \j5 > 0, (repulsive interband electron interactions), the denominator
of g* has a zero for the values of Ay /2n = z and ¥g/2n = y satisfying the relation

. 1 (22 —1)2
Yy = Texp [— Mame(0) 42 (@ = 1)] (6.68)

Approaching this line on the (z,y)-plane, the argument of the exponential in 6.66 diverges toward
—oo: the effective gap Y. therefore vanishes. The line 6.68 is thus the boundary between the sSEI
and sEI phases. In this region, therefore, the interband electron-electron interactions are more
important to Cooper-pairing than the intraband: since for A;o > 0 these interband interactions
are repulsive, Cooper-pairing in the system vanishes.

Away from the line 6.68, we may neglect the term in g* involving Aq2, i.e. we have g* ~
In(A40/%0). Regarded as a function of the concentration difference n, the effective superconducting
gap |3| then has a maximum at

Ay JA 1 Ago
= 241 =) — /1 s 24+ -1 s 6.69
Aso +n(20> \/n(EO)[+4n(Eo (6.69)
For eAg9 > o, this maximum lies in the physical region (As > 2n). In the weak Cooper-pairing
limit considered (i.e. Ay/Zo > 1), |X| exceeds the value of the S-phase gap Yo at this point by

- 2
S 4 Ao

~

) A, o
0 eln (E_OO) 0

> 1 (6.70)

We see that the increase in |§~3| over its value in the equilibrium S-phase can apparently become arbi-
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Figure 6.4: (a) The variation of ¥ with A, /2n in the weak Cooper-pairing regime. The blue line is for
o/2n = 0.1, the red line for ¥o/2n = 0.001. (b) The phase diagram for the symmetric solution. The sEI
phase only appears for A1z > 0. We took A127n(0) = 0.2; for clarity, the line 6.68 is multiplied by 10.
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trarily large as X decreases. For A\12 > 0, this increase saturates for g ~ Ao exp[—(A12mx(0))71];
there is no apparent limit to this growth for A;5 < 0. We plot the variation of || in the sSEI phase
in figure 6.4(a). We note that the superconducting critical temperature is directly dependent upon
¥: this behaviour is therefore indicative of a significant T increase. Unfortunately, these results
have been arrived at using the weak Cooper-pairing approximation; they therefore should be re-
garded not as rigorous but rather as suggestive of the actual behaviour of the system. Numerical
methods are required for the study of the co-operative coexistence [12, 78].

The co-operative coexistence found above is actually rather robust and extends outside of the
weak Cooper-pairing regime. We consider the phase diagram in the (A /2n,¥¢/2n)-plane. By
an analysis entirely identical to that performed for the antisymmetric case above, we find the
boundary between the SEI and S phases:

In(z) = ln(y)+ \/leme (” V21y+4y2> 6.71)

The lines 6.68 and 6.71 thus determine the phase diagram (figure 6.4(b)). We note an important
change in the behaviour of the line 6.71 at X = 0.66n: for Xy > 0.66n, equation 6.71 defines a
monotonic increasing function of Agg; for ¥y < 0.66n, the opposite is true. In this latter region,
the co-operative coexistence occurs: near the boundary 6.71 there is an increase in ¥ over its value
in the S phase. This has been rigorously confirmed by a “very cumbersome” calculation of the
variation of ¥ to second order in A, [53].

6.5 Density Waves in Superconductors

Superconductivity has been found to coexist with both SDWs and CDWs in a wide variety of
substances, ranging from metallic alloys to organic salts [10,83]. In many of these systems, the
density wave is believed to be driven by an excitonic-instability of nested portions of the Fermi
surface. We give a brief survey of these materials below.

The A15 and C15 compounds (Laves phases) are the most well-known examples of a CDW-
superconductivity coexistence. The remarkably high critical superconducting temperatures of some
of these materials (e.g. Nb3gSn where Ty = 18K) is thought to be connected with a coexisting CDW
phase which induces a lattice instability. The theory of these compounds is based upon the Bilbro-
McMillan model, which is closely related to the SEI state studied here [11]. Similar models have
also been applied to several superconducting organic salts [9].

The appearance of superconductivity in the alloys Cr;_,Re, for z > 0.18 is a good example of
the SDW-superconductivity coexistence in which the SDW state arises from an excitonic instability
(Rice model). In spite of the significant differences between the Rice model and the EI state studied
in chapter 5, it is interesting to note that the triplet version of the SEI phase studied above gives
good qualitative agreement with the observed Re doping-Ts curve [79]. The recently discovered
SDW-superconductivity coexistence in the quaternary borocarbides RNisB,C where R = Lu, Y,
Th, Er, Ho, Gd and Tm offers the exciting prospect of the study of the coexistence when the SDW
critical temperature is ~ T, i.e. outside the weak Cooper-pairing regime [84].

The near-equiatomic vanadium-ruthenium alloys, although not known to exhibit density wave
phenomena, are also examples of systems in which an excitonic instability is thought to coexist with
superconductivity. Of particular interest is the apparent correlation between the superconducting
and excitonic-instability transition temperatures, perhaps indicating a co-operative coexistence
over a very narrow composition range [12,85].

In concluding, we note the coexistence of SDWs and superconductivity in both the heavy-
fermion and high-temperature superconductors. The relationship between the SDW state and the
superconductivity in these materials is currently unclear, although some authors have suggested
that it is of great importance to the physics of these systems [44]. It is also interesting to note
the possible role of Fermi surface nesting in the recently discovered (traditional) superconductor
MgB,, which has the incredibly high critical temperature Ts = 39K [86,87].



Chapter 7

Coexistence of Superconductivity
and Excitonic Ferromagnetism

The model of the SEI state discussed in chapter 6 has been considerably extended and embellished.
For example, the coexistence of Cooper pairs and triplet excitons has been studied [79]; the effects
of non-nested portions of the Fermi surface have been taken into account [11]; the coexistence in
a non-homogeneous system (i.e. k-dependent excitonic and superconducting order parameters)
has been examined [88,89]; and the possibility of Cooper-pairing in the spin-triplet configuration
investigated [90].

A natural generalization of the SEI model is the inclusion of both singlet and triplet electron-
hole binding. In chapter 5, it was shown that the simultaneous presence of both singlet and
triplet excitons in the EI phase may cause the system to exhibit ferromagnetic ordering of the
band electrons. From the remarks at the end of chapter 4, the appearance of Cooper-pairing in
such a system may seem unlikely. The exotic properties of the EF phase, however, makes such a
judgement premature:

e magnetization: the magnetization displayed by our simple model of the EF phase is strictly

limited by the critical excess-electron concentration. As this must be very small, the magne-
tization of the system is unlikely to exceed the critical field.

e spin-splitting: the objection to superconductivity in a Stoner ferromagnet does not apply
here, as the spin-splitting of the bands is comparable to the insulating gap in the EI phase,
and so is much smaller than wp. This should be expected to impede Cooper-pairing in the
system, but not prevent it.

Although not ruled out by ‘traditional’ reasons, the appearance of superconductivity in an exci-
tonic ferromagnet should also be hindered by the presence of the insulating gap. We note, however,
that the increase in the DOS at the edge of this gap might, as in the EI phase, allow the coex-
istence of the two phenomena. As was found in the symmetric solution studied in section 6.4,
the increased DOS of the EI phase can actually lead to an enhancement of Cooper-pairing in the
system. The possibility of a similar situation in the coexistence of excitonic ferromagnetism with
superconductivity provides strong motivation for the study of this system.

In the following analysis, we neglect the coupling of the Cooper pairs to the magnetic field
produced by the partial spin-polarization of the band electrons in the EF phase. Rigorously
accounting for this effect requires an extremely sophisticated treatment of the system, which does
not introduce any physics peculiar to the EF state. Rather, we concentrate our attention upon the
effect that the unique excitation spectrum of the EF phase has upon the appearance of Cooper-
pairing.

We begin by presenting an extension of the simple model outlined in chapter 6 to include
both singlet and triplet electron-hole binding (section 7.1). By constructing the equations of
motion of the Green’s functions, we demonstrate that the classification of the solutions of the SEI
model may be adopted here (section 7.2). We proceed to examine these solutions in sections 7.3
and 7.4 for both equal and unequal electron-hole concentrations. For the antisymmetric solution at
unequal electron and hole concentrations, we demonstrate the existence of a coexistence between
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superconductivity and excitonic ferromagnetism at zero temperature. We refer to this as the SEF
phase. In section 7.5 we conclude with an evaluation of experimental evidence for this new phase.

7.1 The Model Hamiltonian

In order to describe the coexistence of excitonic ferromagnetism with superconductivity, we sim-
ply add a triplet electron-hole coupling term to the Hamiltonian utilized in the description of
superconductivity in the sEI phase (equation 6.2):

K = Z I:(é-k' - 6”) afL(ll,aflk’u + (_é-k/ - 5/1/) a/;k,‘/d2kly]
k', v

1 At s . R
T ka: XC: o (95001 0cc + 9105, 0%¢r) @i, ety i
b V7V AR

+% YD D Mgl b aiowey (7.1)

k' k' v 4,j=1,2

The first two terms are recognizable as the Hamiltonian used to describe the (perhaps simultaneous)
appearance of singlet and triplet exciton binding in an impurity-doped semimetal; the last term is
the BCS Hamiltonian for a two-band system.

We do not introduce any new Green’s functions to describe the system, requiring only those
appearing in chapter 6. Nor is it necessary to define any new order parameters. We also retain
the simplifying assumptions that |X11| = [¥22| = ¥ and ¥2; = £15 = ¥5. The former is again a
statement of our assumption that the difference from perfect nesting is small. When the singlet and
triplet order parameters are simultaneously nonzero, it will be convenient to utilize the notation
AL = Ay £ A, for the spin-up and spin-down insulating gaps as introduced in the description of
the EF phase.

We will frequently use the pure phase gaps

1 1 1
Ago = 2wexp| ——= ], Ay = 2wexp|{—=], ¥ = 2wexp| —=
’ b (ganm)) “ ’ (gtnNm)) ’ ’ (Aan))

in our analysis. We remind the reader that the coupling constants g5, g; and A are supposed
negative; the cut-off energy w is assumed equal for all coupling constants.

7.2 The Equations of Motion

The only difference between the calculations of the equations of motion in chapter 6 and here is
the simple necessity of taking triplet electron-hole pairing into account. With only very minor
modification of the procedure outlined above, we obtain the system of differential equations for

the Green’s functions Gi1, G21, .7-':[%1 and .7-"1?1

)

(—5—&#5#) Gk, 7) = (1) +ALGH(k,7) - SuF (k1) — S (k,7) (7.2)
)

(_§+£k+6u> Gitk,r) = AGr(k) = S F (k1) = TP k) (73)
9 Sp ) Fillk = —A,F?k Y116 (k Y0162 (k 7.4

_EJF&‘_ p)Fly k1) = —ALF (k1) - Bk, 1) — B21G55(k, 7) (7.4)
4 Sp) FIP (k = A, F Mk Y12GM (k Y90G (k 7.5

_E_gk_,u ¢T(7T) = = +¢T(77—)_ 12 TT( 77—)_ 22 TT( 77—) ()

The equations of motion for G{|, G/, }';il and }';fl may be obtained by the replacement of A
with A_ and ¥;; with —X;; in equations 7.2, 7.3, 7.4 and 7.5 respectively.
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As usual, we solve the above system of equations by taking the Fourier transforms into the
conjugate w-space. In matrix form, we have

-G —Ay Y S 1 gH(k’w") [ 1]
—-Ay dwy — Gk Y01 Y99 g3 (k Wn) _ 0 (7.6)
Y1 o1 iwn + Cix Ay ‘7:¢T (k, wn) N 0 '
312 PP Ay iwn + Gk | fIil(k, Wn) L 0 ]
[ = Cix —-A_ -2u —%o1 ] [ gﬁ(k,wn) | 1]
-A_ twn — (oK Y12 —Y2 g (k Wn) _ 0 (7.7)
—211 —212 iwn + Clk A_ % k wn) o 0 ’
-1 -9 A_ iwn + ok | ! (k,wn) L 0 ]

We recall that (jx = (—1)77'& — du. The equations for aﬂ, aﬂ, fT and }'CT:; are obtained by
making the replacements (1x < (x, Y11 ¢ X22 and Y12 <> Yo in equations 7.6 and 7.7 . From
the form of the matrix equations of motion, it is clear that the classification of the solutions to the
equations of motion for the sSEI phase still holds. We shall therefore investigate the equations in
the two cases

e antisymmetric coexistence: Y11 = —Xg9 = X; Y1o = Y91 =0
e symmetric coexistence: Y11 = Yoo = X; Y1g = Yoy = .

As in chapter 6, we shall allow X5 to be either vanishing or non-vanishing in the symmetric
coexistence phase. We note that the sign of the triplet order parameter in the matrix equations of
motion 7.6 and 7.7 is consistent with previous studies of the tSEI phase [79].

For our purposes, the most important feature of the matrix equations of motion is that different
spin-components of the same Green’s function are defined in terms of different insulating gaps AL.
This implies that when |A| # |A_|, the poles of the different spin-components will not coincide,
leading to spin-splitting of the excitation spectrum as seen previously in the EF phase.

7.3 The Antisymmetric Solution

Solving the equations of motion 7.6 in the antisymmetric case, we have for the Green’s functions

k) = 5aﬂ((iwn)2—(Czk)2)(lwn+C1k) 2 (iwn + Gue) — A% (iwn — Cx)

((i0n)? = ) (o) — i, 7) (7%
i -
Fll(kw,) = —io¥, ((iSQ_gT?) ((233;21:%&12) (7.10)
AR = i (o ) =

The subscript o takes the value +(—) for a8 =11 (JJ) in 7.8, 7.9 and o =1 (1) in 7.10, 7.11.
In the general case, the poles of the Green’s functions are spin-dependent. This indicates that
the spin-degeneracy of the excitation spectra is lifted in the ‘rebuilt’ system. For perfect nesting
(6p = 0), the poles are
wi? = £+ (Z+A,) (7.12)

In the general case du # 0, the poles take the form

vt = (B £0p)° 32, Bu, = +A2 (7.13)
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where the spin-dependent effective gaps are

- A2 - 2
2 o= 32 (1——> A2 = A2 (1+ ) (7.14)
ou’ ou’

It is easy to see that when one of the order parameters is vanishing, we recover the spectrum of
either the sSEI, tSEI or EF phases. This is of course encouraging, as it implies that our calculations
are congsistent with previous work, as they should be. As in the sSEI phase, the eight poles define
both the electron and hole excitation spectra.

The Green’s functions gaﬁ, gaﬁ, F %2 and F ‘L}; are obtained from the expressions for G11 B> g2 5>

.7-'(1 and F 121 by replacement (ix < (ox; F, 26 and F12 of also acquire a factor of —1.

7.3.1 The Self-Consistency Equations

Using the expressions for the Green’s functions, we obtain after long calculation the self-consistency
equations for the order parameters and the electron-hole concentration difference

/\77N A2
Yy = Z YT (A,,E,6pm) + [ 0p— =2 ) Th(A,, S, 6p) (7.15)
o=—,+ 6'”
gsnn (0 o 2~ 5
As = _TIT() Z Aa |:II(A¢772;6/J/)_ 512(A072;6N):| (716)
J:—,+
2
a = 0O 5o, [Il(AmE o) - 518, 6u)] (7.17)
o=—,+

S
Il

1 ~ = AN~ =~
5 Z IB(A07275/1‘)+( 6#) I2(A0'7276H) (718)

o=—,+

The integrals Z; where j = 1,2,3 are as defined in subsection 6.3.1. Note that here their first
argument is 5,, as opposed to 53.

Examining equations 7.15, 7.16, 7.17 and 7.18, we see that in the limit |A;| = |A_| we recover
the gap equations for the sSEI or tSEI phases. Thus, the derived gap equations are consistent with
previous work. Referring to 7.18 we see that the conclusions drawn in section 6.3 regarding the
relationship between the nesting imperfection du and the electron-hole concentration difference n
in the sSEI phase are also applicable here. For ¥ # 0, strict equality of the electron and hole
concentrations is therefore only realized when du = 0.

Since we shall be considering a system with spin-dependent excitation spectra, we may obtain
a net magnetic moment M. This is defined

1 2 1 2
M = uB (neT + neT - nei. - neJ,)

2unmn(0) Y

o=—,+

-~ AN\ L o
o | BB, 5w+ (T ) BB, 500 (7.19)

where nJ_ is the concentration of j-band electrons with spin o. We note immediately that in the
case of equal electron and hole concentrations we have M = 0. This is consistent with the earlier
result for the EF phase (see section 5.5).

7.3.2 The n =0 System

In the special case of equal electron and hole concentrations (perfect nesting), the integrals in 7.15,
7.16 and 7.17 may be evaluated to yield the analytic forms
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+@—A4m(5?%7)—@+A4m(E%%TN (7.20)
A = —%(0) [(z —Ay)n (IEELAA) —(E+ A0 (IEiiwAH)

~(®—A)In (PZELAJ) +(S+A ) (IEiLA-l)] (7.21)
s = M%Qkz-Agm(E%%ﬂ>+@+Agm(E%%ﬂ>

+H(E—A)In (IEELAI) +(E+A)In (IEiLAl)] (7.22)

When all three order parameters are non-zero, we obtain after some rearrangement a simplified
form of these equations

1 (1—21)2 — 22 (1—20)2—22] 20, |(z1—22)%—1
4In(2Y) = - =1 1 - =1 7.23
H(Zl) (Zl 21> n (1 =+ 21)2 — z% + 22 (]. 212)2 — Z% z1 o (21 =+ 2’2)2 -1 ( )

1 (1—29)2 — 22 (1—21)2 — 22 21 (21 —2)% -1
4In(29) = —— 1 —1 7.24
n(zs) (zz Zz) n‘(1+zz)2_z% + 21 In T2y =2 o n Gt )1 ( )

where the dimensionless parameters 0 < 21,29, 2,29 < 0o are defined
As Aso At AtO

zZ1 = E, Z(l) = ZO , R2 = E 2(2) = E—O (725)

The equations 7.23 and 7.24 are in a particularly convenient form for the investigation of the phase
diagram in the (29, 29)-plane.

We consider first the boundary between the SEF and sSEI phases. Approaching this boundary,
A; vanishes whilst A, and ¥ remain non-zero. We must therefore take the limit 2o — 0 in 7.23
and 7.24 with the condition z; # 0. Taking this limit for the former equation is trivially easy; that
for the latter involves several applications of I’Hopital’s rule (we refer the reader to section A.5 for
several important limits utilized in this analysis). We then easily obtain parametric equations for
the phase-boundary:

ﬁ—l 1—t t
z?:exp( ‘ ), zg:exp<1+§ln

1+1¢ 1+1¢

1_t> (7.26)

where t = A, /¥. The argument is basically the same for the SEF and tSEI boundary, except that

we let z; — 0 whilst 25 # 0. This gives the parametric equations

1—t¢ 0 t2—1 1—¢
-—° - 2
1+t> 72 eXp( ‘1+t) (7:27)

z?zexp(1+2ln

where t = A;/X. Approaching the boundary between the SEF and EF phases, we have ¥ — 0
whilst A;, A; # 0. Thus, in equations 7.23 and 7.24 we must let z; and 2z, simultaneously diverge
such that their ratio z; /2 is finite. We accordingly obtain a set of parametric equations describing
the boundary:

-t ) (7.28)

z?zexp( 1—— ‘1+t) z%:exp( 1——1n Tt

with ¢ = A;/A;. The gap equations 7.23 and 7.24 predict that the SEF phase nowhere borders
upon the pure phases.

We complete the description of the phase diagram by stating the boundary between the double
coexistence and pure phases in the (29, 29)-plane. These are as follows: the sSEI phase is predicted
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Figure 7.1: The phase diagram of the antisymmetric solution at equal electron and hole concentrations.
The different phases are denoted using the standard abbreviations. The region where the SEF phase is
predicted is divided into four distinct sections: SEF1 where the SEF phase is less stable than all ‘pure’
phases; SEF2 where the SEF phase is more stable than the S phase but less stable than the sEI and tEI
phases; SEF3 where the SEF phase is more stable than the tEI phase, but less stable than the S and sEI
phases; SEF4 where the SEF phase is more stable than the sEI phase but less stable than the S and tEI
phases.

between the lines

2) =e, =el (7.29)
the tSEI phase is bounded by

2) =e, 29 =e (7.30)

and the EF phase is possible only between

2Y = e2), 2 =e129 (7.31)
Using the above results, we draw the phase diagram as predicted by the gap equations 7.20, 7.21
and 7.22 in figure 7.1 We note that when two metastable double coexistence phases are possible,
we only indicate the most stable phase as predicted by the calculated free energy change. In the
interests of clarity, we also do not illustrate a double coexistence regime if it is possible in a region
where neither coexisting phase is the most stable in its ‘pure’ form.

In order to evaluate the free energy per unit volume of the SEF phase relative to the normal
phase, 0 Fygr, we employ the same basic method as utilized in subsection 5.5.1 to calculate § Fy.
Generalizing equation 5.54 to the case of three order parameters, we have for the free energy per
unit volume of the SEF phase for some choice of characteristic gaps ALy, A}y, X§

A2 32

Ldgy + S5 dA (7.32)

A2
6FEF :/_sdgs+ -
S c 2 22

9s QT

where C is a contour joining the point (AL;, A}y, Xp) to the coordinate origin in (A, A, Xo)-
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space, and lying entirely within the region of predicted SEF coexistence. It is convenient to choose a
contour along which the ratios z; and z» are constant: referring to the gap equations 7.23 and 7.24,
we see that this requires the ratios z) and 23 to be constant, defining our path C as the straight
line from the origin to (Aly, A}y, ). Integrating along this contour, we obtain the result

5FSEF = f(Zl,Zg)(SFS = f (la é) (5}7‘5131 = f (la ﬂ) 6EEI <0 (733)

21 21 22 22

where the function co > f(z,y) > 0 is defined

. 1 l—-z—y
1 = In(1 2 2y 4 = In|—~ ¢
n(f(z,v)) n(l+z +y)+2 [(x+y) n 1+$+y‘
1—-z+y 2 2 2 22
- 17—1|1—2 -2 - ‘ .34
+ (z y)nl-l—m—y‘ n 2 =2y + (2% —y?) (7.34)

where x, y > 0 are real. The important details of the calculation leading to the expression 7.33
are presented in section A.3 of the mathematical appendix.

From equation 7.33, we see that the SEF phase will be more stable than the S phase whenever
f(z1,22) > 1. This, however, is of significance only if the S phase is the most stable of the
pure phases in this region: if the S phase is the most stable pure phase, then the SEF phase
will be energetically favoured over all the other possible states of the system; if the S phase is
not the most stable, then the SEF phase will only be realized as a stable state if the inequality
0F ey < 0F.,5;,0F g is also satisfied somewhere in this region. It is a simple task to show that
for some (z1,22), the relation f(z1,22) > 1 is satisfied. Hence, there exists a region of the phase
diagram in which the SEF phase is more stable than each of the pure phases. Further numerical
analysis, however, reveals that these regions do not overlap (see the phase diagram figure 7.1). It
is therefore clear that the SEF phase cannot be realized except perhaps as a metastable state.

7.3.3 The n # 0 System

In the presence of an excess electron population, the self-consistency equations cannot be ana-
lytically solved for the order parameters and du. In particular, this prevents us from obtaining
the phase diagram of the system. We may, however, utilize the ¥ — 0 asymptotic form of Z» to
study the behaviour of the superconducting order parameter in the weak Cooper-pairing regime.
We hence show that the EF phase is unstable in the presence of arbitrarily weak electron-electron
interactions.

As in the sSEI analysis, the corrections to the A = 0 values of the excitonic order parameters
and dp in the limit of weak Cooper-pairing may be disregarded to order X 1n |X|. This therefore
requires us to distinguish between the two regimes of weak and strong ferromagnetism in the
following analysis. We note that this also implies that the magnetization is therefore only slightly
affected by the appearance of weak Cooper-pairing.

The general phase diagram of the system may be constructed in the (Aso/2n, Ao /2n, X0 /2n)-
space. In the weak Cooper-pairing limit (¥/2n < 1), we may take a “slice” through this phase
diagram at constant ¥o/2n; such a “slice” is presented in figure 7.3. In line with our assumption
that the parameters A;, A; and du may be approximated by their A = 0 values in the weak
Cooper-pairing regime, the boundaries of the phases in this “slice” are defined by the boundaries
of the corresponding phases at 3¢ = 0 (i.e. figure 5.6).

The Weak Ferromagnet Regime

The weakly ferromagnetic EF phase is characterized by the inequality A;, A < du. When this
condition is satisfied in the weak Cooper-pairing regime of the SEF phase, the excitation spectrum
of the two spin-species each has the form of that for the sSEI phase, but with differing effective
excitonic and superconducting gaps A4 and ¥4. We note that in the limit Ay — du—, the effective
gap §1+ vanishes; this is due to the disappearance of the spin-up Fermi surface. We consider this
point further below. In figure 7.2(a), we plot the electron excitation spectra about the insulating
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gap; the rest of the EF excitation spectrum is insignificantly affected by the appearance of Cooper-
pairing in the system.

Since Ay, A_ < dpu, the integral Zo(A,, X, du) has a logarithmic singularity for both A_ and
A with the asymptotic form as introduced in subsection 6.3.1. Thus, the system of equations 7.15,
7.16, 7.17 and 7.18 have no ¥ = 0 solution when A, A, du, and A are all non-vanishing. That
is, the presence of arbitrarily weak attractive electron-electron interactions causes the spontaneous
formation of Cooper pairs in the weak EF phase. We may derive an expression for ¥ of asymptotic
validity in this regime. Disregarding the trivial solution to equation 7.15, we have in the limit of
weak Cooper-pairing

\/ou® — A2 Spr/ou® — A2
21n(2_w)~ Z 2w % 7, 4pn/op p
o=—+ Sp+/op? — A2 on ) (@ +1/6u% — Ag)

0
Solving for ¥, we have

2
=3
+
=]

(7.35)

¥ = exp

5 . 52
Vot =A%+ Jopt - a2\ (o - A2 [ou? - A2
o=+ \/5u2—Ai+\/6u2—A2_ 6u+\/ﬂ '

Equation 7.36 reduces to the expression for the sSEI (tSEI) phase upon setting A; =0 (A; = 0).

\ 2/

+
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-14.4 -14.2 -14 -14.4 -14.2 -14
@ K, (b) K,

Figure 7.2: (a) Detail of the ‘rebuilt’ electron excitation spectrum in the weak ferromagnet regime, over
the same range as in figure 5.2(b). The rest of the excitation spectrum does not differ significantly from that
plotted in figure 5.2(a). As usual, the red line denotes the spin-up spectrum; the blue line the spin-down.
Note the role of the effective gaps 3, and A,. (b) Detail of the ‘rebuilt’ electron excitation spectrum in
the strong ferromagnet regime. Note the absence of the superconducting gap in the spin-up spectrum. In
both (a) and (b), A; and A; as in figure 5.4; X = 0.3A,.
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The Strong Ferromagnet Regime

In the strong EF phase, the spin-down and spin-up insulating gaps satisfy the inequality |A_]| <
o < Ay. Referring to the expression for the effective gaps 7.14, we see that ii is therefore
negative. This does not imply a complex energy spectrum; rather, it indicates the disappearance
of the spin-up Fermi surface. The resulting electron energy spectrum about the insulating gap is
plotted in figure 7.2(b); note the absence of the superconducting gap in the spin-up spectrum.

The disappearance of the spin-up Fermi surface dramatically alters the asymptotic form of the
integral Zo (A4, X, du), as the integrand no longer has a singularity in the range of integration when
Y =0 (see equation A.39). The ¥ — 0 behaviour of the integral Zo(A_, X, du), however, remains
unchanged: this ensures that a ¥ = 0 solution is impossible in the strong regime so long as A # 0.
We therefore have in the limit of weak Cooper-pairing for equation 7.15

01 (2w> , 2w O (2w>+,/6u2—A21 48pr/6u® — A2
n|{ — ~ In n

n

%o b+ fon® — A2 A o = (0 fou" - 22)
A2 —5p” | o A% — o
—T 5 — arctan T (737)
Solving for ¥, we obtain
[¢ 2 2 .
¥ = omyon — A ex on In %%

p
sutfon—az |\ for—az | a, (5“,/5,& —A2)
A?'_ —ou® [ n \/ Aa- — oy
-/ —5— | 5 —arctan | ——F—— (7.38)
du® — A%\ 2 o

We note that on the boundary between weak and strong ferromagnetism, du = Ay, the two
expressions 7.36 and 7.38 are equal.

Energetic Stability

It is a simple task to calculate the free energy per unit volume of the SEF phase in the weak Cooper-
pairing limit. We employ a simple generalization of the method adopted in subsection 6.3.4. We
consider some set of parameters X, ALy, A}, and n' such that X{/2n' < Al,/2n',A},/2n'. We
choose for the contour C in expression 7.32 the path OAB in (A /2n, Ay /2n, X0 /2n)-space. The
segment OA lies in the ¥y/2n = 0 plane joining the point (1,1,0) to (A%y/2n', A}y/2n',0): it
is the free energy per unit volume of the EF phase for these choice of parameters, § Fzr. The
segment AB runs perpendicular to the ¥o/2n = 0 plane, connecting (AL,/2n', A},/2n’,0) and
(ALy/2n', ALy /20", 30 /2n"). We therefore have for 7.32

A2 A? ¥2
Fow = [ Zidget g+ [ Tiix
oA 9%

2
E an A

SiZ AZ+\/opT AT
b (O) VPSRV S AL A <o
§Foe — (7.39)
/6 27A2
%WN(O)%EQ |A_| <ép <Ay

It is clear that §Fgpp < §Fgp, confirming the instability of the EF phase towards the appearance
of Cooper pairing when A # 0. It is not obvious, however, that the SEF phase will always be more
stable than the sSEI or tSEI phases.
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Figure 7.3: 3o/2n = constant < 1 slice through the n # 0 phase diagram in the weak Cooper-pairing
regime. The phase boundaries are identical to those in figure 5.6. The abbreviations wSEF and sSEF refer
to the weak and strong SEF regimes respectively.

Two Analytic Solutions

It is interesting to study the above equations in the two cases where an analytic solution exists to
the gap equations of the EF phase: on the boundary between the weak and strong ferromagnet
regimes; and on the diagonal Ayy/2n = Asg/2n. The details of these solutions were presented in
subsection 5.5.2.

On the boundary between the weak and strong ferromagnet regimes, the spin-up and spin-down
insulating gaps have the parametrization

A, = 2ncosh(¢), A_ = 2nsinh(¢), —o00o< ¢ < o0

Substituting these expressions into equation 7.36 or 7.38, we obtain for the variation of ¥ along

the boundary
Y 4cosh(¢) (20/2n)?
2n 1+ cosh(g) P [COSh(@ In (cosh(¢) (i + cosh(¢)))] (7.40)

We plot log;((2/2y) for two values of ¥¢/2nas a function of Agy/2n along the ¢ > 0 branch of the
curve defining the weak-strong boundary (figure 7.4). We compare with the results for the sSEI
phase.

The most striking feature of figure 7.4(a) is the different behaviour of the two curves near
Ago = 2n. This is to be explained in terms of the variation of the insulating gaps in the two
phases along the weak-strong boundary. In the weak Cooper-pairing regime, the insulating gap
A, vanishes in the sSEI phase in the limit Ayy — 2n. Thus, ¥ approaches its value in the
pure S phase. For the SEF phase, we must consider the behaviour of the spin-up (spin-down)
insulating gap in the EF phase as ¢ — 0: the significant increase (decrease) in its value over that
in the EI phase was noted in chapter 5 (see figure 5.7(a)). Thus, in the weak Cooper-pairing
limit, we expect a pronounced spin-splitting of the excitation spectrum of the SEF phase when
Ayw/2n, Ag/2n ~ 1. This has the expected effect upon Cooper-pairing, with the value of ¥ in
the SEF and sSEI phases differing by a factor ~ ¥o/2n < 1 in this regime. Considering how close
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the weak-strong boundary is to the boundary between the EF and EI phases, the large differences
in ¥ indicate a very rapid suppression of Cooper-pairing upon entry into the SEF phase from the
SEI phases. This suppression increases with weakening Cooper-pairing.

The behaviour for 0 < Az /2n —1 < 1 is, however, complicated by considerations of energetic
stability. As ¢ — 0, the free energies per unit volume §F.z; and § Frr also vanish; the free energies
per unit volume of the SEF and SEI phases will therefore be dominated by the contribution from
Cooper-pairing for ¢ < 1. Expanding the free energy per unit volume of the SEF and sSEI phases
on the ¢ > 0 weak-strong boundary to second order in ¢, we have

4 4
i - 4G ) [ (Peroe  ow
OF. e 1/%\° %0\*, (o 1, o (%) 2 A

#? + O(¢°) (7.42)

+21n(2)1n @—2) —In(2)*In @—2) — 41n(2)*In (?—2)21

We use equations 7.41 and 7.42 to solve § Fgpp = 0F g5, for ¢ to first order in Xo/2n. We find that
equality obtains at

\/2—4n(2)% » b A )
¢ = _7()_0 ~ 7.15=2 RPN 1+4.962—2 (7.43)

e & . = ~
1-2In(2)> 2n * 2n 2n

This result implies that just within the SEF phase and for Az/2n, Ay /2n = 1, the SEI phases
are actually more stable in the weak Cooper-pairing limit.

For A4y > n, the spin-splitting of the bands becomes increasingly unimportant, as is clearly
evidenced by the apparent convergence of the sSEI and SEF curves in figure 7.4(a). For sufficiently
large Aso/2n, the two curves actually intersect. We cannot offer a convincing explanation for this
behaviour. We note that as ¥ < ¥ in this region, its physical significance appears to be slight.

Along the diagonal Agy/2n = Ayo/2n, the (energetically favourable) solution to the EF gap
equations is

Ay = Ay, A =0, 2n < Ay < 4n
(7.44)
A-i- = Ay, Az_ = Ay (ASO - 4”)5 an < Ay

Substituting these values of the spin-down and spin-up insulating gaps into 7.38, we obtain

»2 Ao )2 s As0)2 As
2 exp [ln(m)—,/(MO) _1<5—arctan( (2n0) —1>)] 1< 50 <2

HAs0—2n) o |:Ason—2n In (&) _  [Aw-n (% _ arctan (2\/n(Aso—n)>>:| 9 < Asx

Aso AsO n Aso —2n
(7.45)

Using these results, we plot log;,(X/Xo) along the diagonal, comparing the SEF result (equa-
tion 7.45) with that already derived for the sSEI phase.

We consider first the behaviour of equation 7.45 for 1 < A4 /2n < 2. Upon entry into the SEF
phase, ¥ discontinuously drops to a factor of £o/2n its value in the S phase, as predicted by the
¢ — 0 limit of equation 7.40. After this initial drop, however, ¥ decreases less rapidly in the SEF
than in the sSEI phase. The two curves eventually intersect at some point 2 > Asx/2n > 1.5,
beyond which ¥ is always larger in the SEF phase than in the sSEI. The spin-splitting of the
SEF spectrum makes this an unexpected result. We tentatively interpret the variation of X as
demonstrating the central role that the insulating gap plays in suppressing Cooper-pairing: in
contrast to the sSEI phase, there is no insulating gap in the the SEF phase as A_ = 0 throughout
this region. Spin-splitting of the spectrum appears comparatively unimportant. For Ay /2n > 2,
the solution 7.44 is characterized by the presence of both a spin-up and spin-down insulating gap.
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Figure 7.4: The variation of ¥ in the SEF (solid lines) and sSEI phases (dashed lines) along (a) the
boundary between the weak and strong ferromagnet regimes and (b) the diagonal A4 /2n = Ago/2n. The
blue lines correspond to Xo/2n = 0.1, the red lines to Xo/2n = 0.001.

The opening of the spin-down gap clearly has a negative impact upon X, which now decreases at
approximately the same rate as in the sSEI phase. This provides further evidence of the dominant
effect that the insulating gap has upon the ability of the system to support Cooper-pairing.

The interpretation of the SEF curve for As/2n — 1 < 1 is subject to the same reservations
attached to the ¢ — 0 limit of equation 7.40, viz the SEI phase may be more stable than the SEF
in this region. We therefore consider the free energy per unit volume of the two phases around
Ago/2n = 1. Expanding to first order, we have

1 (3¢ =t A 1/2
F - _Z 20 4 20 /5 L
OFser 2nN(0) 4n? + 2" ( 2n )
Eg 2 2 AsO
1 [ 2:0 AsO
OF g _ET’N(O) _23 +4%21n <%) ( 5 1) +.. ] (7.47)
Solving the equation 0 Fsgr = F.sg1, we find that equality holds at
AsO (Eg/Zn)2 1 Eo 2
=1 oo 1+ — 4
2n t T (Se/2n)2In(S0/2n) T AT (7.48)

This result indicates that the region along the diagonal where the SEF phase is less stable than
the sSEI is extremely small. The result 7.48 complements 7.43, together indicating the presence of
a narrow region on the SEF phase boundary where the SEF phase occurs as a metastable state.

For Ago/2n = A4y /2n, the boundary between the SEF and S phases may be determined in the
general case. From equation 7.15 and 7.16 we obtain after some manipulation

Ay A Ay 22
21n ( EUO) = _A_: (Tiy —Tho) + A—:m (Toy —Ir-)
ou? + X2 1
g AT )+ — (A2 Ty + ATy ) (7.49)

o o

where we have introduced the simplifying notation Z;, = Z;(A,, %, 6u). Approaching the boundary
with the S phase, the two exciton order parameters vanish continuously; du and ¥ converge to
their values in the S phase, n and ¥y respectively. Taking the limit A;, A; — 0 in 7.49 and noting
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the asymptotic relations (see subsection A.4.2 of the mathematical appendix)
Tir —Ti— ~ O(AA,), Tox —Tom ~ O(AA,) (7.50)

we obtain the relation

ln<At0/2n> W (A30/2n> _ 1+4(20)21n<1+,/1+4(20/2n)2> (751)

%o/2n %o/2n 2n 2(%/2n)

We immediately recognize that the projection of the line 7.51 onto the (As/2n,¥q/2n)-plane
((A¢o/2n,30/2n)-plane) defines the boundary between the sSEI (tSEI) phase and the S phase.
This is the only line in (Az/2n, Ay /2n,¥q/2n)-space upon which the SEF phase borders with
the S. Thus, except upon this line, the SEF phase is separated from the S phase by a region in
which an SEI phase is realized.

7.4 The Symmetric Solution
The solution to equation 7.6 for the symmetric coexistence gives the results

géb(kawn) =
((iwn)z - Cgk)(zwn + Clk) + ZEEZAG - Ez(iwn + Clk) - E%(iwn + C2k) - A?f(iwn - C2k)

o
’ ((wn)” = wif,?) (wn)? = wi,”)
(7.52)
Ay ((iwn — 6p)? — & — A2 — %2 — 2) — 285, (iw, — Op)
21 o n k o 2
Ss(k,wn) = daup - - — (7.53)
’ ((iwn)? = wif,”) ((iwn)? = wi,”)
T (22 + A2 - 22 — (iwn)? — (3) — 2804, Cox
Fillkw,) = —io? A Y — (7.54)
g g ((1wn)? = wily”) ((iwn)? — wie,”)
¥y (82— 22 + A2 — (iw, iwn — Gox)) — 240,568
F kyw,) = —io¥, = (28 =2 + A; — (iwn + Gl — Gu0) a (7.55)

((iwn)2 — wl'f{f) ((iwn)2 — wl:{f)

The subscript o takes the value +(—) for af =11 ({{) in 7.52, 7.53 and af =}1 (1{) in 7.54, 7.55.
The Green’s functions G22, G'2, F122 and F112 are obtained by making the replacement (i3 <+ (ox
in the above expressions.

In the general case, the poles of the Green’s functions 7.52, 7.53, 7.54 and 7.55 are spin-
dependent:

v, = (B £00)°+%;, B, = &+4; (7.56)
where the effective gaps ¥ and A, and chemical potential o are defined

~ YTYAVIESD 3) IR oy — A%y 2 2
A, = —2 —°2 VN = - 2 4§ =4 by .
(e 6/7 Y 6/7 ’ I’L /1/ + 2 (7 57)

It is simple to verify that these Green’s functions are consistent with those for the symmetric sSEI
and tSEI phases.

7.4.1 The Self-Consistency Equations

Using the derived expressions for the Green’s functions, we obtain, after lengthy calculation, the
following self-consistency equations for the symmetric system

Y = —MNT(O) 3 [EL (ﬁa,ia,au)w,ﬁa@ (&,,i,,,au)] (7.58)

S}
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5 = -0 2 (K50 - 58K (B Snaw)] 9
a, = G0 ;[M (R, 50.00) = 55,7 (B, 5,0 (7.60
A = _%@;’X[Agg (R, 5000) 225, (B, 5,0 (7.61)
0= g &[5 (BT « (5 5) 7 (35t (7.62)

where the integrals 7; where j = 1,2,3 are as defined for the symmetric SEI analysis.
As in the antisymmetric case, it is clear that the expressions 7.58, 7.59, 7.60, 7.61 and 7.62 are
consistent with the gap equations for the symmetric sSEI (tSEI) solution when A; = 0 (A; = 0).
In particular, the inference drawn in section 6.4 as to the dependence of the order parameters upon
O still holds. Thus, when ¥ # 0, the condition dz = 0 ensures that the concentrations of electrons
and holes in the system is equal.
Finally, we present an expression for the magnetization of the system
M = 2uBnN(0)§—Z _Z o [13 (Aa, 20,5@ + (22 - 2?,) T (A,,,E(,,éu)]

(7.63)

3

In the case of perfect nesting, equation 7.63 exhibits the characteristic disappearance of the mag-
netic moment.

7.4.2 The n =0 System

Letting 6 = 0, we obtain the simplified expressions for the Green’s functions

93 = _iwn = §jk
A
12 — 21 — a
aﬁ(kawn) - aﬂ(kJUJ’n) - 5(1/3 (an)2 _ wiz(a (7-65)
D)
Fig kwn) = FlZ(kw) = —iol, (7.66)

(iwn)? — wi,

where j = 1,2 in equation 7.64. At perfect nesting, the eight distinct poles of the general case

reduce to only four at *wke:
\/ b + A2 432

These poles define only the electron excitation spectrum in the ‘rebuilt’ system.

Evaluating the integrals in equations 7.58, 7.60 and 7.61 in the 6 = 0 limit, we have the
self-consistency equations

(7.67)

Wke =

Ay

Al (0
2

2

~

_ 9t~ (0)

_ 95 (0)

2

Yln

AJ'_ In

A+ In

2w

/A2 4 %2

2w

\/ A% + X2

2w

\/AZ + 32

2w

\/AZ 432

2w

2w

VA2 + %2

+XIn

+A_In

—A_ln

(7.68)

(7.69)

(7.70)

After some rearrangement, we have in the general case when all three order parameters are non-zero
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the simple expressions

4In(2d) = 2

4In(2)) = 2 1n p;
2

ZI [(zl + 29)% + 1] 7 (7.71)

S [M}

(21 — 22)2 +1

where the dimensionless parameters 21,2, 22, 29 are as defined in equation 7.25. Using the equa-
tions 7.71, we determine the boundary of the SEF phase in the (27, 29)-plane.

We first investigate the boundary with the sSEI phase. Approaching this boundary, z2 vanishes
whilst z; remains finite. Taking this limit in equations 7.71, we obtain the parametric expressions
for the boundary

t2
0 0
-1 — 7.72
2 , 2 exp (t2 n 1) ( )
where the parameter 0 < ¢t = A,/¥ < co. This defines the segment of the straight line 2¥ = 1
lying between zJ = 1 and 29 = e. We similarly have for the boundary between the SEF and tSEI
phases the parametric equations

2
2) = exp (—), 2z =1 (7.73)

where 0 <t = A;/X < co. The boundary between the SEF and EF phases is obtained by letting
both z; and 2o diverge in 7.71 such that their ratio z1/2z2 remains finite. We easily obtain the
following relations

1 1-—t t
2 = exp (—2—tln‘1—+t), 29 = exp (—Eln

1-1¢

— ) (7.74)

1+¢

where 0 <t = A;/A; < co. We complete the description of the phase diagram by including the
double coexistence phases: the sSEI and tSEI phases are realized upon the straight lines z) = 1

3.5 EF T
3+ 4
tEl
25F !
=3
Wl SEF il
<
1.5 EF B
tSEI
1 — — = — — — 4
|
|
|
0.5 S | SSEI SEI 1
|
|
0 1 | 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4

Figure 7.5: The phase diagram of the symmetric solution at equal electron and hole concentrations. The
different phases are denoted using the standard abbreviations.
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and zJ = 1 respectively; a metastable EF phase is bounded by the lines 2¥ = ez9 and 29 = e 129.

Adopting the simplifying scheme used for the antisymmetric solution, we obtain the phase diagram
for the symmetric solution as presented in figure 7.5.

We consider the stability of the SEF phase. Arguing as in the antisymmetric case, we find the
free energy per unit volume of the symmetric SEF phase relative to the normal phase to be given

by
zZ1 2 z9 Z9
where the function f(z,y) is defined
_ 2, .2y, % (1-2)*+y?
In(f(z,y)) = In(1+2°+y°)+ 5 In [7(1 s R
1
—5 I [((1=2)” +9*)((1 +2) + 7] (7.76)

where z, y > 0 real. It is easy to verify that the equation f(z,y) > 1 is never satisfied for any
non-zero values of z or y: in the region where it is predicted by the gap equations, the SEF phase
is always less stable than the sEI and tEI phases. Thus, for perfect nesting, the SEF phase is never
realized except perhaps as a metastable state.

7.4.3 The n # 0 System

Despite our best efforts, the self-consistency equations for the symmetric solution at unequal elec-
tron and hole concentrations proved stubbornly resistant to analytic investigation. A purely nu-
merical approach, which we did not have time enough to implement, appears to be required for the
study of this system. This is particularly frustrating as the symmetric SEI phases display a region
of co-operative coexistence between the S and EI phases; a similar situation might be realized
in the symmetric SEF phase. As such, the numerical study of the symmetric system should be
regarded as a priority of any future work.

7.5 Experimental Evidence?

As there is currently no unambiguous experimental realization of the EF phase, we are of course
unable to point to any examples of the SEF phase. Nevertheless, it is interesting to speculate
on the significance of certain anomalies in the low-temperature transport properties of the most
promising EF candidates, the alkaline earth hexaborides. At very low temperatures (T' < 0.4K),
a large reduction in the resistivity (~ 50%) has been observed in both CaBg and SrBg. This is
accompanied by anomalies in the specific heat and the NMR spectra [91-93]. The former effect is
somewhat reminiscent of the lambda transition in BCS superconductors. Application of magnetic
fields is observed to suppress these effects, which disappear completely above a field of 7.5kOe.
Similar phenomena have been observed in samples of Ca;_,La,Bg as well [93]. All these effects
bear at least a superficial resemblance to the situation in a so-called “dirty” superconductor [94].
We emphasize, however, that this is the speculation of a non-specialist; more work needs to be
done before the precise nature of the low-temperature transport properties of these materials is
comprehended.



Chapter 8

Conclusions

This thesis presents an original investigation of the possibility of superconductivity in an excitonic
ferromagnet (SEF phase) in the limit of zero temperature. We have demonstrated that the usual
classification scheme for the solutions to the SEI phase equations of motion is valid also for the SEF
phase equations of motion. The derived self-consistency equations in both the antisymmetric and
symmetric cases were accordingly shown to be consistent with those for the SEI and EF phases.
We were able to completely characterize the system in the n = 0 case, showing that the SEF phase
could only occur as a metastable state. Phase diagrams for both the antisymmetric and symmetric
cases were obtained. In the n # 0 antisymmetric case, we were able to present a detailed study of
the behaviour of the superconducting order parameter ¥ in the weak Cooper-pairing regime. The
results were compared to those for the SEI phase: the spin-splitting of the excitation spectrum in
the SEF phase had the predicted effect, generally suppressing superconductivity. Unexpectedly,
the value of ¥ in the SEF phase was found to significantly exceed that in the SEI phase in
certain circumstances. The n # 0 symmetric case did not admit analytic study: we believe that a
computational approach may be required. We have also discussed possible experimental evidence
for the SEF phase.

In addition to this work, we have also presented a detailed development of the BCS super-
conductor, excitonic insulator, excitonic ferromagnet and superconducting excitonic insulator. In
these chapters, we have adopted the approach most consistent with the quantum field theory of
many-body systems outlined in chapter 2. Throughout the thesis, the relation of the examined
models to experimental reality has been considered.

8.1 Future Directions

The study of the SEF phase has by no means been exhausted by our efforts this past year. There
is wide scope for future work within the framework of the model presented here, as well as many
possible improvements and alterations that can be made upon it.

As mentioned at the end of section 7.4, we were unable to make any headway in the analytical
study of the symmetric solution in the n # 0 case. This failure presents the most obvious opportu-
nity for future workers. The computational study of the self-consistency equations 7.58-7.62 might
potentially yield rich dividends, in light of the co-operative coexistence found for the symmetric
case in the sSEI phase (section 6.4). A computational analysis of both the antisymmetric and sym-
metric self-consistency equations also appears to us the only possible way to determine the general
phase diagram in (Xo/2n, Aso/2n, Ayw/2n)-space. The study of the system at finite temperature
is also of interest; this may be possible to address analytically.

There are several directions in which one could move beyond the simple model adopted here.
We list below what we consider to be the clearest points of departure from our analysis:

e the inclusion of interband transition terms has been demonstrated to change the form of
the n = 0 symmetric sSEI phase diagram, allowing a region of coexistence of non-zero
measure. [9]. It would be of interest to include such a term in the general case.

o the relaxation of the assumption of equal electron and hole effective masses in the overlapping
bands in the model semimetal spectrum should be a simple but interesting improvement.

73
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This would allow a more detailed comparison of the systems considered here with available
experimental data.

e the effects of non-nested portions of the Fermi surface should be addressed. This presents
a much more challenging problem, as the behaviour of these portions of the Fermi surface
as particle reservoirs [60] must be reconciled with the appearance of Cooper-pairing in these
regions [11]. It is not at all obvious how this would be achieved.

In considering which to pursue, we wish to draw the attention of future workers to the difficulty in
obtaining analytic results in any but the simplest cases considered in this thesis. It might therefore
be most profitable to (first) apply these suggestions to the EF or SEI phases. Even here, recourse
to computational methods might eventually prove necessary.



Appendix A

Mathematical Appendix

A.1 The Homogeneous Electron Gas and the
Infinite-Volume Limit

The normal phase is always regarded as a spatially infinite and homogeneous non-interacting
electron gas. Mathematically, such a system may be profitably regarded as the limiting case of N
non-interacting Fermions confined within a volume V. In the thermodynamic limit, we allow N
and V to diverge such that their ratio, the particle concentration N/V, is constant. This limit is
always taken at the end of the calculation.

For simplicity, we consider the confining volume to be a cube of side L. Under the assumption of
periodic boundary conditions, the single-particle wave-functions are plane waves with wave-vector
k. The components of these wave-vectors are

27 T; .
ki = I i = T,Y,2 n; = 0,£1,£2,... (A1)
Regarded as points in momentum space, the ‘distance’ between two nearest-neighbour wave-vectors
is 7/ L: in the infinite volume limit (L — 00), therefore, the allowed wave-vectors form a dense set.

We consider some macroscopic extensive property of the system, H say. To calculate H, we

must evaluate the sum "

1
Ho= o= ﬁzk:h(k) (A.2)

where h(k) is some continuous function in momentum space and the summation extends over all
occupied states as indexed by the allowed wave-vectors k, and H is the value of H per unit volume:
in the V' — oo limit, it is only sensible to speak of the value of extensive properties per unit volume.

We consider the expression A.2 in the limit L — co. We may regard each allowed wave-vector
as being a centre of a cube in momentum-space of ‘volume’ (27/L)3: these boxes partition the
space. In the infinite-volume limit, therefore, the RHS of A.2 converges to (27) 2 times the integral
of h over the region R of momentum-space in which the set of occupied wave-vectors is dense:

. _ o 1 1 3
lim % = lim L3zk:h(k) = @ /R hd®k (A.3)

L—oo L—oo

As is well known, the region R is a sphere with radius k. (the Fermi wave-vector) centred at the
origin.

In this work, we assume that we may ignore the contribution to H from states with energies
lying outside some narrow range about the Fermi energy p. In order to evaluate the integral
in A.3, therefore, it is most convenient to convert to an integral over the excitation spectrum e.
We assume that the range of integration is so narrow that the DOS may be regarded as constant,
with value as defined at the Fermi surface (e, = p):

1 [.,dk
0 = & A4
T’ (0) 27r2 |:k dek:| - ( )
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We therefore have

2n)3d*k = 4nk*(2m)73dk ~ 14 (0)de (A.5)
Hence, A.3 becomes
ptw
lim H = nN(O)/ hde (A.6)
L—oxo p—w

where w is the ‘cut-off’ energy. We regard the expression A.6 as exact.

A.2 Matsubara Sums

When performing the inverse Fourier transform between the w- and 7-spaces in the Matsubara
finite-temperature formalism, we frequently encounter sums of the form

1 )
li n A7
it X;d Wy — s (A7)

where the w,, = nr /S are the Fourier frequencies of the Green’s functions and z is a real constant.
Note that without the convergence factor k, the sum would diverge logarithmically: x <  must
therefore remain nonzero until after the sum is evaluated. We outline a procedure for evaluating
this summation below. The approach utilized is based upon that presented in [25,26].

For the case k > 0, we consider the integral of the meromorphic function

_Benz

P& = @69

(A.8)

along the contour C,,, the circle of radius 2mm/f > x centred at the origin, where m is a natural
number. The analytic structure of F'(z) and the contour C,, are illustrated in figure A.1. By

Figure A.1: The contour for the evaluation of the Matsubara sums. The (simple) poles of the function
F(z) are indicated by crosses.
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Cauchy’s theorem, we have

L[ roa = 3 L e B (A.9)
2mi Je,. R efr 4+ 1 '

We consider the contour integral on the LHS in the limit m — oo. The asymptotic behaviour of
the integrand as |z| — oo whilst arg(z) remains constant is given by

1 ene 2| exp[—(B8 — K)R(2)] R(2) >0
Prrle—a (4.10)
|z| ! exp[kR(2)] R(z) <0
Thus, by Jordan’s lemma, the integral along C vanishes in the considered limit. It immediately
follows from A.9 that

1 . ﬂenz

—ent = ———— A1l
Z Wy, — ;L-e eBz +1 ( )

n odd

Taking the limit k — 0% and using the identities we hence find the analytic expression for A.7
: 1 B px

1 —e™"® = — |1 —tanh( — A12
HE&Z iwn—me 2 [ tan (2)] ( )

n odd

In the case that k < 0in A.7, the analysis and final result A.12 are identical, with the exception

that F'(z) is to be defined
—BelB+r)z

PO = @ he-a

A.3 Evaluating the Free Energy at n =0

A.3.1 EF and SEI Phases

We consider only the evaluation of the free energy of the EF phase at n = 0; the calculation for
the antisymmetric case follows immediately.

We evaluate the integral

A2 A2
0Fy = / £ dgs + —d A.13
e Sl (A.13)

where the contour C is the contour joining the point (Al,, A},) with the origin, lying entirely within
the region of coexistence. We choose the contour such that z = Ay/A; = k is constant. Referring
to the self-consistency equations 5.52, we see that this contour is equivalent to the straight line on
the phase diagram zp = Ay /Ao = constant = kg. We therefore have

A _ kA
As B kOASO

Hence, we have for A.13

A2 A2
—dgs + —-d
/c gs® g 94> o

8

A2 22A2
/ —2ng + 2 dgt
c gt

A\ Ay’ <k Ato)2 A2
dg, + [ — d
/c (Aso) 952 g ko Aso) 942 9t
A\ Ay’ <k As)QAtOQ
dgs + ( — d A.14
/c (Aso) 952 g ko Asgo 9:2 9t ( )

From the self-consistency equations, we see also that the ratio As /A, is constant along the contour
of integration. The coefficients of dg,; and dg; are therefore functions only of g, and g; respectively;
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we therefore split the integral and easily evaluate

A\ 2 A2 A\ Ag? v [ (AN 2 [k AN, 2
s s d X e s d - _ s AI L s AI
/c (Aso) 95> 95 (ko Aso) g¢* 9t 2 (Aso) 0 7+ (ko AsO) r0
_ O e (AN (ALY
2 50 Ago ko AL,

(A.15)

A\ AN
— 6F;;EI (A—so> ll + (A_s>

The coefficient of 6 F.g; in equation A.15 is the function f(2); its logarithm is

v = (&) [ (3)])
= (5] (14 (£)) (116

= —In[1-2*-2zIn +i‘+ln(1+z2) (A.17)
1+ 22 1+2
= ln m —zln‘l e (A18)

where we have used definition of z and the self-consistency equations 5.52 in going from A.16
to A.17. We plot In (f(2)) in figure A.2 for 0 < z < 5. We see that In(f(z)) < 0 for all z in
this range. The z — oo limit of In(f(z)) is —2, as suggested by figure A.2. A more rigorous
analysis, which we do not present here, also demonstrates that In (f(z)) < 0 for all z > 0. Thus,
0 Fzr < 0F.5; throughout the region in which the EF phase is predicted.
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Figure A.2: The logarithm of f(z). Note the behaviour in the limits z — 0 and z — oo.
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A.3.2 SEF Phase

We present only the calculation for the antisymmetric SEF phase; the calculation for the symmetric
SEF phase does not significantly differ. The method of calculation is largely based upon that
presented above.

For the SEF phase, we must evaluate the integral

A2 A2 »2
O0Fser = ‘/C T;dgs + gt—2dgt + Fd)\ (A.lg)
where C in the contour joining the point (Alg, Ajy, X)) to the coordinate origin in (Agg, Ato, Xo)-
space such that the ratios 21 = A;/X = ky and 22 = A/ = ko are constant along it. It is easy
to see from equations 7.23 and 7.24 that this corresponds to z? = Ayo/Xo = constant = k? and
29 = Ayo/X0 = constant = k9. We therefore have the relations

A, _hdw A kA
s WY, X K8 %o
We hence have for the integral A.19
A? A2 ¥2
/C g?dgs + gt—zdgt + Fd)\
2312 232 2
278 252 b
= dgs + ~2—-d —d\
/C s> 9s ¥ gt? ge A2
B ki Ay \? %2 ks Agg\” %2 T\ %2
a /c (k? %o ) !)s2dgs - k3 o !)t2dgt * o) A aA
ke T\ A2 ky \° A% ¥ \? 52
— = = dgs —— | —2td — | —=dA A2
/c(k? EO) 9,2 ¥ - k3 %0) g4 gt o) A (4.20)

(1 —1)*—23
(21 4+1)2 =23

(20 —1)* — 27

(22 +1)% — 27

From equation 7.22, we may without difficulty obtain the expression
+ 291n —In|((z1 — 22)> = 1)((21 + 22)> — 1)

by
41n (E_o) =z11ln
(A.21)

Thus, the ratio ¥/% is constant along the contour of integration. As before, the coefficients of
the dg,, dg; and dA in equation A.20 are functions only of g,, g; and A respectively. Arguing as in

the EF case, we hence obtain
AN (AN
1 = =
“(5) -5

2
6FSEI = 6Fs (ZEO)
where the coefficient of §F in A.22 is the function f(z,y). Using the relation A.21 it is a simple
matter to obtain the expression 7.34 for In(f(z,y)).

In figure A.3, we plot the line f(21,22) = 1 in the (21, 22)-plane. We note that there is a region
where the inequality f(z1,22) > 1 is satisfied. Mapping this line into the (z?,29)-plane using
equations 7.23 and 7.24, we obtain the boundary between the SEF1 and SEF2 regions in the phase
diagram figure 7.3.

(A.22)

A.4 Important Integrals

In chapters 6 and 7, we frequently utilize the integrals 7; where 5 = 1,2,3. For the sSEI phase,
these are defined

TS e “dE [E+on Bw™ E - Bw™
(A, 2, 0pm) = /3h—>néo | ﬁ[ = tanh( 5 + e tanh 5 (A.23)
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10

f(zl,22)<l

f(zl,zz)zl

Figure A.3: The line f(z1, 22) = 1 in the (21, 22)-plane. Note the region where the inequality f(z1,22) > 1
is satisfied.

~ = ) “deT1 Bw™ 1 BwT
v = . “déE TE+dn wt E -6 w™
To(A,, 5, 00) = ﬂ1gr;o/0 % [ - E tanh (ﬂ2 > - K tanh (52 )] (A.25)

where E and wy are as defined in chapter 6. We let 6z = dp in the antisymmetric case. In this
section we present several important properties of these integrals that we have made reference to
in the body of the thesis.

We list the values of these integrals in some special cases. For Z; we have the following useful
identities

Ti(A, = A,,0,00 = op) = ln< 2@ )
(A.26)
7:(0,£ = £,0) = In (2—w>

~ 5 .
b \/W(Su2 o
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for Z, we have

(A, = A,,0,0) = Z,(0, = X,0) = 0

) — (A.27)
(0,8 = 5,65 = 6p) = OBy (Bt +E
VE2+0p? op

and finally for 73

(A, = A,,0,0) = T,(0,£ =%,0) = 0

Ti(A, = A,,0,00 = op) = /o> — A2 (A.28)

,(0,% = X,0f = op) = op

When du # 0, the integral Zo(Ag, 0, du) does not exist: we are able, however, to obtain an asymp-
totic expression in the limit ¥ — 0 (see subsection A.4.1).

Before considering special properties of these integrals, we first examine the behaviour of their
integrands in the £ — oo limit. Expanding as a Taylor series in £, we obtain

integrand of Z; : 267! — (S + A,)E3 + O(E9)
integrand of Tp : 20ué~2 + O(£79) (A.29)
integrand of Tp : 28a2263 4+ O(£79)

Because of the £~! behaviour of the integrand of 7; as £ — 00, it is necessary to keep the cut-off
w finite in this integral; for the integrals 7o and Z3 we may let w — oo.

A.4.1 The ¥ — 0 form of 7,

In the general case when all three of its arguments are non-zero, we may express Z» as follows

L@ = [ g — S
0 \/(E—éﬁ)2+22 \/(E+5ﬁ)2+22

We change the variable of integration to E:

I2 (537 ia 6/7/)

- / " dE ! - ! (A.30)

A, \/<E2 - A2) (B - o2 +52) \/(E2 - A7) ((B +o0)2 + 52)

Examining the first term in the square brackets, we see that in the limit ¥ — 0 it has a simple
pole the point E = dpi. As this point lies within the limits of integration, the integral 7, has a
logarithmic divergence in the limit ¥ — 0. We therefore seek an asymptotic expression for 7o
in this limit. The second term in the integrand clearly does not have this problem; it may be
analytically evaluated in the limit ¥ — 0.

We consider the first term in equation A.30 as an integral in its own right. Because of the
square-root divergence at E' = A, we may discard the integration in the range E > dp. Integrating
therefore over the range A; < E < 01, we may write the result as an elliptic integral of the first
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kind [95]:
on 1 1 4A2
/ (2arctan ,5”(‘0-’_(1
\/ A2 E S7)2 + 22) Rz Vp
(A.31)
where the terms p and ¢ are defined
=(n—A)2+3%2, @ =(h+A,)+32 (A.32)

In the limit ¥ — 0, the modulus of the elliptic integral in equation A.31,

1 [(p+q)? —4A2
k=4 ———%,
2 pq

converges to unity. For k close to one, we have the asymptotic expansion (8.118.1 in [96]) of the
elliptic integral of the first kind:

Flo k) = %K Inftan (£ + 7)[+001 - 1) (A.33)

where K' = K (v/1—k?) is the complementary complete elliptic integral of the first kind. For
k — 1, we therefore have for K’ the Taylor expansion 8.113.1 in [96]:

K' = 5 [1 + 4(1 -k + 694(1 — k)% + ] (A.34)

Keeping the first term in this expansion and discarding higher order terms in equation A.33, we
have therefore

dE
lim
X—0 ~
\/ E 572 + 22)
~ &8
R —————1In|lim tan | arctan q(&,uiN) +Z (A.35)
\/(m —A2 T |=o p(Oi—A,) 4
using the elementary relation
m\ _  1+tan(0)
tan (0 + Z) - 1-—tan(d)

and letting DR o, 53, we have for the tangent in equation A.35

qOR-A,) = \/(5N + A)\VE2 + (6p — Ay)2 + /o2 — AZ
tan | arctan ﬁ + 1 ~
Pom= \/(5N+As) 52 4 (0 — A,)? — /o2 — AZ
8(0u? — A2)
U (4.36)

where we have also assumed that 6f &~ du and A, &~ A, in deriving A.36. We thus obtain

8(p” — AY)

i S dE 1
m =
S2(6p + A,)?2

w0 JA, \/<E2 - 12) (B - o) + 52) T Ve A

(A.37)
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To obtain the full expression for 7 in the ¥ — 0 limit, we must include the integral of the other
term in equation A.30. After some unenlightening manipulation, we hence obtain the result

1 4(0p® — A2
To(Ag, 2 = 0,6p) ~ In (O :)

\V ou* — A |3 ((M—}-\/&uz —Ag)

In the case of the strong SEF phase, the integral Zo(A,0,du) may be evaluated exactly; there
is no singularity of the integrand when we convert to an integral over E , as E, > du by definition.
We therefore obtain the exact result

\/AZ —Spu?
Ty(Ay,0,60) = ——2 | T e (A.39)

— — arctan
A2 —op? 2 op

(A.38)

We further note that Z; and Z3 also may be written as elliptic integrals in the general case.
Although they do not diverge in the limit ¥ — 0 as Z», determining the small-¥ corrections requires
an analysis similar to that above, although much more complicated. As demonstrated in [82], the
lowest-order corrections are ~ X 1n X.

A.4.2 Asymptotic Relations for the Antisymmetric Case
Laurent Series in §y for Z, and 7;

In the general case when ¥ # 0, we may obtain Laurent series expansions for the integrals Z, and
T3. Performing the expansions upon the integrands, and evaluating, we have

~ = 1 A+ 5
T5(As,3,0p) = A,XIn A5_25—1+c9(5) (A.41)
3 5524, O - s As"f—E M 1% .

Substituting these relationships in the equation for n (equation 6.31), it is simple to see that
n ~ O(0u) in the dp — 0 limit.
The A;, Ay — 0 limit of 71, — 71 and Toy —Zo

When A, and A; simultaneously approach zero, we may expand the integrands of Z;4 — Z;— and
IQ+ - Iz_i

. _ n? £+ p £—du
wtegrand of Ly ~ Tz 2 {W (€ +0m2 +352)*% (602 + 22)3/2]

_ 1+z_22 (€ + 6p)? N (€ —op)?

O ) €2 ((€+0m2+32)°%  e2((€—op)? +52)°?
6;1, (S,U 2A2
_ AyA + O(A2A
TeJEronr e EE-opr } O
(A.42)

ntegrand of Iy — T {W E(E+0m)2 + 322 €((6 - o2 +32)°°

i (€ +0p)° B (€ —op)?
+ + ) 2 2 2)3/2 2 2 213/2
B ) &2 ((E+0p)? +X22) E2((§—o0p)* +%2)
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1

1
TEJEr o T /Pt

} AsA; + O(A2AY)
(A.43)

These expansions demonstrate that the integrals 7y, — 71 and Zo4 — 7> vanish as the boundary

between the SEF and S phases is approached.

A.5 Important Limits

We state here some important limits utilized in the study of the phase diagram of the n = 0 SEF
phase.

_ 2 _ 2
m l|EW T 4 (A.44)
ys0 1+y)2 -2 2 —1
z#0

_ _ 2
lim lln 1-(@-y" - A (A.45)
yoo Y 1-(z+y)? 1— g2
z#0

2

lim Lm|itEry ) 4z (A.46)
yoo Y 1+ (z+y)? 1+ 22

z#0
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