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Abstract

This paper describes an implementation of Level 3 of the Basic Linear Algebra Sub-

program (BLAS-3) library and the LINPACK Benchmark on the Fujitsu AP1000. The

performance of these applications is regarded as important for distributed memory ar-

chitectures such as the AP1000. We discuss the techniques involved in optimizing these

applications without signi�cantly sacri�cing numerical stability. Many of these techniques

may also be applied to other numerical applications. They include the use of software

pipelining and loop unrolling to optimize scalar processor computation, the utilization of

fast communication primitives on the AP1000 (particularly row and column broadcasting

using wormhole routing), blocking and partitioning methods, and `fast' algorithms (using

reduced 
oating point operations). These techniques enable a performance of 85-90% of

the AP1000's theoretical peak speed for the BLAS Level 3 procedures and up to 80% for

the LINPACK benchmark.

1 Introduction

The Basic Linear Algebra Subprogram (BLAS) library is widely used in many supercomputing

applications, and is used to implement more extensive linear algebra subroutine libraries, such

as LINPACK and LAPACK. To take advantage of the high degree of parallelism of architectures

such as the Fujitsu AP1000, BLAS Level 3 routines (matrix-matrix operations) should be used

where possible.
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The LINPACK Benchmark involves the solution of a nonsingular system of n linear equations

in n unknowns, using Gaussian elimination with partial pivoting and double-precision (64-bit)


oating-point arithmetic. The performance of the LINPACK Benchmark and the BLAS-3 are

both regarded as good indicators of a parallel computer's potential in numeric applications.

The AP1000 2,3) is a distributed memory MIMDmachine with up to 1024 independent SPARC

processors which are called cells, connected via a toroidal topology using wormhole routing.

Each processor has a 128KB direct-mapped copy-back cache, 16MB of memory and a FPU of

theoretical peak of 8.3 MFLOPs (single precision) and 5.6 MFLOPs (double precision). Details

of the AP1000 architecture and software environment are discussed elsewhere in this issue.

High level design issues, most importantly the distribution of matrices over the AP1000,

are discussed in Section 2. Techniques for the optimization of matrix computations on single

AP1000 cells are given in Section 3. Section 4 describes the implementation of parallel matrix

multiply-add operations on the AP1000, discussing issues such as communication, cache, non-

square matrix shapes, and so-called `fast' multiplication methods. The implementation of the

LINPACK Benchmark is discussed in Section 5, emphasizing the need for `blocking' together

small computations into larger ones. The application of this and techniques from Section 4 to

the similar problem of BLAS-3 triangular matrix update is given in Section 5.3. Conclusions are

given in Section 6.

1.1 The BLAS Level 3

The BLAS Level 3 4) implement matrix-matrix operations, which, for n � n matrices, involve

O(n3) arithmetic operations on O(n2) data items. This yields is a higher ratio of arithmetic

operations to data than for the BLAS Level 2 (BLAS-2) 5), although degenerate cases of the

BLAS-3 routines yield all BLAS-2 routines. The use of BLAS-3 is attractive on parallel machines

such as the AP1000 because the cost of a data transfer may be amortized over the cost of O(n)

arithmetic operations.

The BLAS-3 perform multiply-add operations of the form:

C  � ~A ~B + �C

where ~A can be either A or AT (and similarly for ~B); multiply-add operations for symmetric
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matrices, eg.:

C  �AAT + �C; C  �ATA+ �C

where C is symmetric; and triangular matrix update operations of the form:

B  � ~AB; B  �B ~A

where A is triangular and ~A can be A, AT , A�1 or A�T . Matrices may be general rectangu-

lar, symmetric or triangular but there is no special form of \packed" storage for symmetric or

triangular matrices.

1.2 The LINPACK Benchmark

The LINPACK Benchmark involves the solution of a nonsingular system of n linear equations

in n unknowns, using Gaussian elimination with partial pivoting and double-precision (64-bit)


oating-point arithmetic. Three cases are considered:

1. n = 100 { the original benchmark.

2. n = 1000 { gives more opportunity for vector pipeline machines (and to some extent parallel

machines) to exhibit high performance.

3. n as large as desired { gives maximum opportunity for vector pipeline and parallel machines

to exhibit high performance.

We are only concerned with the cases 2 and 3 here, since case 1 is trivial to solve on a machine

as powerful as the AP1000.

1.3 Conventions and Restrictions

We use the C language for implementation, as it permits better access to the low-level details of

the AP1000, which is useful for optimizations. Thus, we use C conventions for matrices, stored in

row-major ordering with indices starting from 0. Associated with the row-major storage scheme

for an m�n (cell sub-) matrix A is the last dimension of A, denoted ldA, where n <= ldA. This

enables A to be identi�ed as a sub-matrix of a larger m0 � ldA matrix A0, where m <= m0. Let

Ai: denote the ith row and A:j denote the jth column of the matrix A.
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Let Nx (Ny) be the number of cells across a row (column) of an AP1000 con�guration, and

P = NyNx be the total number of processors. Our algorithms are will be �rst described for a

square (Nx�Nx) AP1000, and then generalizations to other AP1000 con�guration will be given.

A minor restriction is that for an m�n matrix to be distributed over the AP1000, we must have

Nyjm and Nxjn (if necessary, matrices can be padded with `dummy' rows and columns to satisfy

this restriction).

2 High-level Design Issues

On non-distributed memory machines, calls to the BLAS-3 and LINPACK routines reference

global matrices; to achieve the same e�ect on a distributed memory machine, we must have all

AP1000 cells calling, in SPMD mode, the corresponding routine with references to the cell's

respective sub-matrix of the global matrix. This unfortunately means that uniprocessor codes

involving these routines cannot be directly ported to AP1000 cell programs.

To consider the optimal matrix distribution strategy, let us �rst consider what communi-

cation patterns are needed for these applications. These include, most importantly, (grouped)

row/column broadcasts, row/column send/receive (for pivot row interchange for LINPACK and

matrix rotation for `systolic' matrix multiply) and �nally row/column scan (eg. vector maximum

for LINPACK).

For reasons of symmetry, high bandwidth for the row and column broadcasts, and good load

balancing (especially for operation on triangular matrices and contiguous sub-blocks of larger

global matrices), matrices are distributed over AP1000 cells by the cut-and-pile or scattered

strategy, rather than storage by rows, by columns, or by contiguous blocks. In the scattered

strategy, in which matrix element ai;j is stored in cell (i mod Ny; j mod Nx), assuming that there

are Ny �Nx cells in the AP1000 array.

A generalization of all these distribution strategies is the `blocked panel-wrapped' strategy,

which is su�cient for all dense linear algebra applications in practice 6). We have not implemented

our algorithms for this more general strategy, as it introduces considerable coding di�culties.

Also, due to the the relatively low communication startup overheads on the AP1000, it would

not yield signi�cantly better performance.
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3 Optimizing Computation on SPARC processors

To optimize 
oating point computation on AP1000 cells, we have implemented kernels which

are essentially a subset of uniprocessor BLAS-2 and BLAS-3 routines, optimized for the SPARC

architecture used in AP1000 cells and written in SPARC assembly language. For this purpose,

the following techniques were used:

1. write SPARC \leaf" routines to minimize procedure call overheads 16).

2. keep all variables and array elements in registers, to re-use as much as possible; this enables

a low load/store to 
oating point operation ratio (denoted R).

3. use software pipelining, ie. separate loads, multiplies, adds, and stores which depend on

each other by a su�ciently large number of instructions so that their operands are always

available when needed.

Techniques 2 and 3 were achieved by using typically a 4 � 4 (for single precision) and a 4 � 2

(for double precision) loop unrolling.

The most important of such kernels was the Level 3 UpdateRect() routine which, for single

precision, involves a matrix multiply-add C  C + AB where A is 4 � k and B is k � 4. This

routine would initially load C into the FPU registers, and, upon the ith iteration, update it using

A:iBi:, 0 � i < k.

UpdateRect() has R = 0:375 (double precision) and R = 0:25 (single precision); the latter

can be e�ectively reduced further to R = 1=6 using the SPARC load double word instruction.

When used to perform an n�n matrix multiplication (with a `warm' cache), UpdateRect() can

sustain 7.7 MFLOPs (80 � n � 160) for single precision, and 5.1 MFLOPs (56 � n � 120) for

double precision.

The next most important kernel is the Level 2 Rank1Update(), which implements the multiply-

add C  C + ab where a is m� 1 and b is 1� n. A naive implementation would have R = 1:5;

however, for single precision, using a 4�4 loop unrolling, this can be reduced to 1.125, again e�ec-

tively reducible to slightly less than unity using the load double word instruction. Rank1Update()
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can sustain 5.9 MFLOPs (64 � n � 128) for single precision, and 4.0 MFLOPs (48 � n � 100)

for double precision.

The other Level 2 routines, vector-matrix multiply and matrix-vector multiply, can sustain

7.3 MFLOPs (single precision) and 5.0 MFLOPs (double precision) for matrix multiplication.

These routines can achieve about the same percentage of the theoretical peak on the SPARC

Station 1+ and SPARC 2 processors. An exception is Rank1Update(), which operates about

25% slower on these architectures, due to their `write-through' caches.

The implications of these results for the following sections are as follows:

� use UpdateRect() wherever possible, even if it requires re-organization of the algorithm.

� using UpdateRect() to perform C  C + AB means that only A and B are signi�cant

with respect to the cache. This make good cache utilization much easier. For parallel

algorithms, it is better to chose an algorithm not involving the communication of C, as

message receipt of C may then displace either A or B from the cache.

4 Implementing BLAS-3 Parallel Matrix Multiply-Adds

In this section, parallel matrix multiply-add operations, eg. C  C + AB where A;B;C are

matrices distributed over the AP1000 cells, are considered, �rstly for an Nx �Nx AP1000, and

then for a general AP1000 con�guration (Section 4.4). The simplest parallel matrix multiplication

algorithm, which we call the `non-systolic' method, is as follows:

for (k = 0; k < Nx; k++)

y-broadcast B cell sub-block from row k;

x-broadcast A cell sub-block from column k;

perform local cell sub-block multiplication;

A variation is the `semi-systolic' method 14) where B cell sub-blocks are broadcast from the kth

diagonal (instead of from the kth row), and each A cell sub-block is shifted right one unit (instead

of broadcast). A third variation is the `full-systolic' method (also known as Cannon's algorithm)

in which both A and B sub-blocks are rotated at each step; this however has the overhead that

both A and B must be initially `aligned'.
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Table 1 indicates the relative e�ciency of each method for single precision. The overhead of

the initial matrix alignment of the `full-systolic' method makes it the slowest.

To compute C  C + ATB without using explicit transposition, variations of the `semi-

systolic' and the `systolic' methods can be used where C's cell sub-blocks are communicated in

place of those of B (similarly for C  C+ABT ). This has a small overhead in extra disturbance

of the cache, as explained in Section 3.

For explicit matrix transposition, the simplest method of exchanging matrix sub-blocks be-

tween cells appears to be the most e�cient. The bottleneck for this algorithm is at the diagonal

cells, through each of which Nx� 1 messages must pass and change direction, so that the time is

expected to be proportional to Nx � 1 (for constant n=Nx). Transposition has a communication

rate of 1.4MB s�1 per cell for an 8�8 AP1000 (64 � n=Nx � 256), which implies a small relative

overhead (for n=Nx � 128, the overhead is about 0.5%).

Table 1 indicates that for square matrices, there is little di�erence between the explicit and

implicit methods, except for small matrices, which favour the implicit method. This is due

to the high relative speed of the AP1000 communication routines, which make the choice of

communication patterns less critical.

4.1 E�ect of Communication

Comparison of Table 1 with the results of Section 3 shows that the e�ect of communication on

performance is appreciable, at least for moderate matrix sizes.

In the AP1000's xy communication routines, copying of matrices is avoided on message send;

however, upon message receipt, messages are copied from a `ring bu�er' to user space. Message

copying creates a twofold overhead, since message transfer (in hardware) on the AP1000 is almost

as fast as a corresponding memory transfer, and message copying may disturb the cache. We

made slight modi�cations to the xy routines so that the A and B cell sub-blocks were accessed

directly from the ring bu�er, thus avoiding the copy.

The performance of this optimization was tested for the non-systolic multiply-add method,

and generally halved the communication overhead. Thus, for n=Nx = 128, a performance of 7.5

MFLOPs/cell (single precision) was achieved, 90% of the theoretical peak.
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C  C +AB by C  C +ATB by
(-systolic) method: (-systolic) method:

n=Nx full- semi- non- semi- (implicit) non- (explicit)
16 4.2 4.4 4.4 4.3 4.1
32 5.8 6.0 6.0 5.9 5.8
64 6.5 6.7 6.8 6.7 6.7
96 7.0 6.9 7.0 6.9 6.9
128 7.1 7.2 7.2 7.1 7.1
160 7.1 7.2 7.1 7.1 7.1

Table 1. Speed in MFLOPs/cell of parallel multiply-add methods on an 8�8 AP1000 with n�n
matrices (single precision)
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4.2 Optimizing Cache Utilization and Partitioning

BLAS-3 routines generally operate on sub-blocks of larger matrices, rather than whole matrices

as such. Using the scattered distribution strategy, these sub-blocks are generally not contiguous

in memory when mapped to the AP1000 cells, which is inconvenient for both message passing

and cache management. Furthermore, the matrix multiply-add operation may involve scaling by

constants � and �. Finally, distributed implementations of the BLAS-3 C  �AAT +�C imply

copying of A cell sub-blocks, even if � = 1.

These problems can be most easily overcome by copying (parts of) the A, B and in some

cases C sub-blocks into contiguous blocks in a BLAS-3 `workspace' area, where they may then

be scaled if necessary. However, the workspace need not be O(n2) for n� n matrices; below we

present an `outer product'-based O(n) workspace partitioning method, capable of high asymp-

totic performance by full utilization of the cache.

Consider an m � n global matrix A having an m0 � k0 (sub-) matrix A0 on a particular

AP1000 cell, where m0 = m=Ny; k
0 = k=Nx. Partition A0 into k0 � k0 sub-blocks denoted A0

ij

where 0 � i � dm0=k0e, 0 � j � dk0=k0e and the optimal block size k0 = 128 (for single precision)

is chosen from Table 1. Let B be a k � n global matrix partitioned in a similar way.

The method involves at step l copying the `block-column' A0

0l; A
0

1l; : : : ; A
0

(m0
�1)l into a contigu-

ous workspace, for l = 0; : : : ; k0=k0 � 1. On the jth sub-step (j = 0; : : : ; n0 � 1), B0

lj is copied to

the workspace and is multiplied by each of the k=k0 A
0 sub-blocks already there. The layout of

these sub-blocks in the workspace is shown in Figure 1. Here, one can see that A0

il and B
0

lj map

into di�erent areas of the AP1000's 128KB direct-mapped cache. For this reason, almost half of

the workspace is unused. The total size of the workspace is k0(m
0 + n0 � 1) words per cell, and

it can be seen that the cost of copying (with scaling, if needed) a sub-block into the workspace

is amortized over the k=k0 times it is used to perform a multiply-add.

This idea can easily be integrated into the parallel `non-systolic' multiply-add, thus amortizing

communication costs. The performance of this partitioning method is given in Table 2. As the

maximum matrix size corresponds to 4MB, results for a 4 � 4 AP1000 are given; however the

results for an 8 � 8 AP1000 appear identical for the corresponding matrix sizes. These results
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A0

0l B0

lj A0

1l A0

2l : : : A0

(m0=k0�1)l

Fig. 1{ The workspace for a partitioned multiply-add operation
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indicate the performance achievable for the BLAS-3 general multiply operation C  �AB+�C,

over 90% of the theoretical peak on the AP1000.

It is possible to use partitioning without workspaces, where the overall matrix multiply is

split into a series of sub-multiplications that minimize cache con
icts 15). However, with a

direct-mapped cache this cannot always yield maximum performance (eg. a k�n matrix B with

kldB exceeding the cache size will mean that some elements in a single column of B will map

into the same place in the cache).

4.3 `Fast' Methods

The above implementations are all based on standard (O(n3)) matrix multiplication algorithms;

however, with an `acceptable' loss of numerical stability (in terms of the BLAS-3 error bounds 8)),

it is possible to implement matrix multiply algorithms with a reduced number of arithmetic

operations. One such algorithm, Strassen's method 8), has asymptotically O(n2:81) operations.

In Strassen's method, matrices are split into 4 sub-matrices; products of the sums and di�er-

ences of these sub-matrices may be combined in such a way that only 7 (instead of 8) sub-matrix

multiplies need be computed. Thus, considerable workspace area is needed. If the matrix di-

mensions are powers of 2, this process can be easily repeated recursively. However, for n � n

matrices, we have found it more e�cient to apply only the �rst log2(n=(Nxk0)) stages of the

method, where k0 is de�ned in Section 4.2, and hence it is only appropriate for large matrices.

Table 2 gives the results of our implementation; in parentheses are the MFLOPs rating if 2n3

arithmetic operations are assumed. The actual e�ciency decreases primarily because the FPU

can operate at no more than half speed during the matrix addition and subtraction operations.

4.4 Adaption to a General AP1000 Con�guration and the BLAS

Level 2 Limit

We now describe an implementation of C  C + AB, where C is m � n, A is m � k and B is

k � n, for a general Ny � Nx AP1000 con�guration; this implementation is also e�cient in the

cases where a matrix becomes a vector, hence the term `BLAS Level 2 limit'.

In these cases, it is important to communicate the smaller of the matrices, so as to reduce
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partitioning Strassen's
n=Nx yes no method
128 7.18 7.23 7.2 (7.2)
256 7.44 5.4 6.9 (7.9)
384 7.52 5.7 |
512 7.58 5.5 6.8 (8.8)
640 7.60 | |
728 7.59 | |
896 7.63 | |
1024 7.65 | 6.7 (10.0)

Table 2. Speed in MFLOPs/cell of parallel C  C + AA using the non-systolic method on an
4� 4 AP1000 with n� n matrices (single precision)
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communication costs. This may require transposition of the matrix beforehand (cf. the implicit

transpose operations of Section 4). An e�cient matrix transpose operation A0  AT is nontrivial

if Nx 6= Ny, and involves blocking and permuting matrix segments 15). Our implementation, for

a 1000� 1000 matrix, achieves speeds on a 4� 8, 7� 8 and 8� 8 con�gurations of (respectively)

1.02, 0.59 and 1.30 MB s�1 per cell.

The following three algorithms, based on the `non-systolic' multiply-add of Section 4, are

each suited to particular matrix shape:

A (for small k) perform k rank-1 updates to C, ie. C  C +
P
A:jBj:. The cells in col-

umn j mod Nx of the AP1000 broadcast A:j horizontally, the cells in row j mod Ny of the

AP1000 broadcast Bj: vertically. Each cell accumulates a moderate number ! of these

broadcasts and then performs a single rank-! update. The 2k broadcast startup overheads

involved here can be reduced by grouping if GCD(Ny; Nx) > 1.

B (for small n) transpose B, then broadcast each row of BT . Each cell computes a local

matrix-vector product, and the vector results are summed horizontally.

C (for small m) is simply the dual of B.

In Table 3 we give speeds for the combination of methods A, B and C on three di�erent con�gu-

rations. The speed exceeds 50 percent of the theoretical peak speed (8.33 MFLOPs/cell) except

for the case min(m;n; k) = 1.

5 Implementing the LINPACK Benchmark

Suppose we want to solve a nonsingular n by n linear system:

Ax = b (5:1)

on an Nx�Nx AP1000. The augmented matrix [Ajb] is stored using the scattered representation.

It is known 11,13) that Gaussian elimination is equivalent to triangular factorization. More

precisely, Gaussian elimination with partial pivoting produces an upper triangular matrix U and

a lower triangular matrix L (with unit diagonal) such that:

PA = LU (5:2)
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m k n 4� 8 7� 8 8� 8
1 1000 1000 4:1 3:5 3:8
10 1000 1000 4:8 4:6 4:6
1000 1 1000 3:1 3:0 2:9
1000 10 1000 5:7 5:4 5:5
1000 1000 1 4:2 3:5 3:8
1000 1000 10 5:0 4:6 4:5
1000 1000 1000 6:2 6:4 6:8

Table 3. Speed (MFLOPs/cell) of matrix multiply-add on rectangular AP1000 con�gurations
(single precision)
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where P is a permutation matrix. In the usual implementation A is overwritten by L and U (the

diagonal of L need not be stored). If the same procedure is applied to the augmented matrix

�A = [Ajb], we obtain

P �A = L �U (5:3)

where �U = [U j�b] and (5.1) has been transformed into the upper triangular system

Ux = �b (5:4)

In the following we shall only consider the transformation of A to U , as the transformation of b

to �b is similar.

If A has n rows, the following steps have to be repeated n� 1 times, where the kth iteration

completes computation of the kth column of U :

1. Find the index of the next pivot row by �nding an element of maximal absolute value in

the current (kth) column, considering only elements on and below the diagonal.

2. Broadcast the pivot row vertically.

3. Exchange the pivot row with the kth row, and keep a record of the row permutation.

4. Compute the \multipliers" (elements of L) from the kth column and broadcast horizontally.

5. Perform Gaussian elimination (a rank-1 update using the portion of the pivot row and the

other rows held in each cell).

We can estimate the parallel time TP involved:

TP ' �n3=N2
x + �n2=Nx + 
n; (5:5)

where the �rst term is due to the 2n3=3+O(n2) 
oating point operations, the second term is due

to the total volume of communication, and the third due to the communication startup (eg. O(n)

row/column broadcasts). The terms are additive as it is di�cult to overlap computation with

the AP1000's xy communication. As we would expect the time on a single cell to be T1 ' �n3,

the e�ciency EP is:

EP '
1

1 + (1 + �
=n0) ��=n0
'

1

1 + nhalf=n
; (5:6)
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where �� = �=� is proportional to the ratio of communication to computation speed, �
 = 
=�

measures the importance of the communication startup time, n0 = n=Nx, and nhalf = ��Nx is the

problem size giving e�ciency 0.5 (this approximation is valid if �
 is negligible). >From (5.6), the

e�ciency is close to 1 only if n0 � ��.

We omit details here of the \back-substitution" phase, ie. the solution of the upper triangular

system (5.4), because this can be performed in time much less than (5.5) (see 9,12)). For example,

with n = 1000 on an 8� 8 AP1000, the back-substitution phase takes 0.1s as opposed to the LU

factorization phase, which takes 3.5s. A generalization of the back-substitution phase (with the

vector b becoming a matrix) will be discussed in Section 5.3.

To adapt this algorithm to an Ny � Nx AP1000 with Ny = 2Nx, our ad hoc solution was

to simulate a Ny �Ny AP1000 by each physical AP1000 cell simulating two virtual cells in the

x-direction. This ensured full processor utilization and optimal communication speed, but due to

the signi�cant costs of context switching on AP1000 cells, the simulation was hard coded rather

than using two tasks per cell.

5.1 The Need for Blocking

As discussed in Section 3, peak performance cannot be reached using rank-1 updates. It is

possible to reformulate Gaussian elimination so that most of the 
oating-point arithmetic is

performed in matrix-matrix multiplications, without compromising the error analysis. Partial

pivoting introduces some di�culties, but they are surmountable. The idea is to introduce a

\blocksize" or \bandwidth" parameter !. Gaussian elimination is performed via rank-1 updates

in vertical strips of width !. Once ! pivots have been chosen, a horizontal strip of height ! can

be updated. At this point, a matrix-matrix multiplication can be used to update the lower right

corner of A. The optimal choice of ! is best determined by experiment, but

! ' n1=2

is a reasonable choice, with ! a multiple of Nx.

Here, we take advantage of each AP1000 cell's relatively large memory (16 MB) and save the

relevant part of each pivot row and multiplier column as it is broadcast during the horizontal
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and vertical strip updates. The block update step can then be performed independently in each

cell, without any further communication. Each cell requires working storage of about 2!n=Nx


oating-point words, in addition to the (n2 + O(n))=N2
x words required for the cell's share of

the augmented matrix and the triangular factors. If 2!n=Nx exceeds the cache size, partitioning

methods for the matrix multiply need to be employed (see Section 4.2).

The e�ect of blocking is to reduce the constant � in (5.5) at the expense of increasing the

lower-order terms. Thus, a blocked implementation should be faster for su�ciently large n, but

may be slower than an unblocked implementation for small n. This is what we observed { with

our implementation the crossover occurs at n ' 40Nx.

5.2 Results

The benchmark programs perform Gaussian elimination with partial pivoting (and check the size

of the residual). All results are for double-precision. Single-precision is about 50 percent faster.

As discussed in Table 3 of 1), a gain in e�ciency of up to 40% is achieved by blocking over

non-blocking for large matrices. Also, a version the blocked algorithm was implemented where

the AP1000's hardware-supported row/column broadcast and scan operations were simulated in

software. This version ran 7% slower even for large matrices, indicating the need for hardware

support for these operations.

The results in Table 4 are for n = 1000 and should be compared with those in Table 2 of 7).

The results in Table 5 are for n almost as large as possible (constrained by the storage of 16

MB/cell), and should be compared with those in Table 3 of 7). In Table 5:

nmax is the problem size giving the best performance rmax,

nhalf is the problem size giving performance rmax=2, and

rpeak is the theoretical peak performance (ignoring everything but the speed of the 
oating-

point units).

The results for the AP1000 are good when compared with reported results for other distributed

memory MIMD machines such as the nCUBE, Intel iPSC/860, and Intel Delta, if allowance is

made for the di�erent theoretical peak speeds. For example, the 1024-cell nCUBE 2 achieves
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Time for cells time speedup e�ciency
one cell (sec)
160 512 1:10 147 0:29
160 256 1:50 108 0:42
160 128 2:42 66:5 0:52
160 64 3:51 46:0 0:72
160 32 6:71 24:0 0:75
160 16 11:5 13:9 0:87
160 8 22:6 7:12 0:89
160 4 41:3 3:90 0:97
160 2 81:4 1:98 0:99

Table 4. LINPACK Benchmark results for n = 1000
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2.59 sec for n = 1000 and 1.91 GFLOPs for n = 21376 7) with rpeak = 2:4 GFLOPs. Our

results indicate that a P -cell AP1000 is consistently faster than a 2P -cell nCUBE 2. The 512-

cell Intel Delta achieves 13.9 GFLOPs but this is less than 70 percent of its theoretical peak

of 20 GFLOPs 10). The 128-cell Intel iPSC/860 achieves 2.6 GFLOPs, slightly more than the

512-cell CAP, but this is only 52 percent of its theoretical peak of 5 GFLOPs. For large n the

AP1000 consistently achieves in the range 79 to 82 percent of its theoretical peak (with the ratio

slightly better when the number of cells is a perfect square, e.g. 64 or 256, than when it is not).

An encouraging aspect of the results is that the AP1000 has relatively low nhalf . For example,

on the 64-cell AP1000 at ANU we obtain at least half the maximum performance (i.e. at least

145 MFLOPs) for problem sizes in the wide range 648 � n � 10000. (On the 64-cell Intel

Delta, the corresponding range is 2500 � n � 8000 10).) As expected from (5.6), nhalf is roughly

proportional to P 1=2.

Because of the in
uence of the cache and the e�ect of blocking, the formula (5.5) gives a good

�t to the benchmark results only if n is su�ciently small and ! is �xed (or blocking is not used).

5.3 Optimizations for BLAS-3 Triangular Matrix Updates

If B is an m�n matrix, to form B  A�1B, where A is an m�m upper triangular matrix with

unit diagonal, we can perform the corresponding (parallel) rank-1 updates:

B  B � ~A:jBj:; for j = m� 1; :::; 1

where ~A = A�I. A straightforward (`unblocked') implementation on the AP1000 uses row/column

broadcasts and rank-1 updates. However, performance can be improved by grouping w updates

together, as described in Section 5.1.

Table 6 gives results for this computation for single precision, with ! = 4Ny

q
n=(2Ny). For

the unblocked algorithm, the performance does not even approach that of Rank1Update(), due

to communication overheads (for small n) and the fact that rank-1 update is a Level 2 operation

and hence makes poor use of the cache (for large n). For the blocked algorithm, performance is

better but still does not approach that of UpdateRect(), due to the fact that the optimal ! is

a tradeo� between seeking a higher proportion of the computation in UpdateRect() (needing a

low !) and seeking a high number of iterations in each call to UpdateRect() (needing a high !).
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cells rmax nmax nhalf rpeak rmax=
GFLOPs order order GFLOPs rpeak

512 2:251 25600 2500 2:844 0:79
256 1:162 18000 1600 1:422 0:82
128 0:566 12800 1100 0:711 0:80
64 0:291 10000 648 0:356 0:82
32 0:143 7000 520 0:178 0:80

Table 5. LINPACK Benchmark results for large n
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A value of ! ' k0 (Section 4.2) is optimal for UpdateRect(). The tradeo� mentioned

above can be overcome by recursively applying the blocking process described in Section 5.1, for

! ' k0; k0=2; k0=4, etc. As larger values of ! are now used, the partitioning methods of Section

4.2 must also be employed. The performance for moderate sized matrices of this `super-blocked'

scheme is given in Table 6; for larger matrices, performance steadily improves up to 7.3 MFLOPs

for n=Nx = 1024. These results indicate that the AP1000 can perform BLAS-3 triangular matrix

updates at 85% of the its theoretical peak speed.

While the coding of such a recursive blocking scheme is complex, it could be similarly applied

to the more complex LINPACK benchmark, with similar improvements in performance to be

expected.

6 Conclusions

In this paper, we have described implementations of the BLAS-3 and the LINPACK Benchmark

on the Fujitsu AP1000. Many of the techniques presented, such as the design of SPARC BLAS-2

and BLAS-3 kernels (Section 3), partitioning methods for direct-mapped caches (Section 4.2),

and blocking (Sections 5.1 and 5.3) are also applicable to the implementation of other linear

algebra applications, on the AP1000 and on similar architectures.

The LINPACK Benchmark and BLAS-3 results show that the AP1000 is a good machine for

numerical linear algebra, and that on moderate to large problems we can consistently achieve

close to 80% of its theoretical peak performance, for the former, and 85-90% for the latter. They

signify that the AP1000 architecture is well balanced on all levels, with respect to 
oating point

computation. The main reason for this is the high ratio of communication speed to 
oating-point

speed compared to machines such as the Intel Delta and nCUBE. The high-bandwidth hardware

row/column broadcast capability of the AP1000, extremely useful in linear algebra applications,

and the low latency of the send/receive routines are also signi�cant. As shown in Table 1, the

speed of the former make the use of 'systolic' versions of linear algebra algorithms unnecessary.

The large, direct-mapped cache, while requiring extra e�ort for full optimization, and the large

cell memory are also very important features.
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n=Nx unblocked blocked super-blocked
Nx=1 2 8 Nx=1 2 8 Nx=1 2 8

32 4.6 3.8 3.8 4.0 3.8 4.0 4.2 3.6 3.7
64 5.4 5.0 5.0 5.6 5.6 5.6 5.8 5.3 5.5
128 5.2 5.1 5.1 6.3 6.4 6.4 6.6 6.4 6.5
180 5.5 5.4 5.4 6.5 6.4 6.6 6.8 6.7 6.8
256 4.3 4.2 4.3 6.7 6.8 6.2 6.8 6.8 6.9
360 3.8 3.7 3.7 6.8 6.9 6.5 7.1 7.1 7.2

Table 6. Speed in MFLOPs/cell for B  A�1B for n � n matrices on the AP1000 (single
precision)
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