
The Australian National University

Computer Science Technical Report

Technical Report TR-CS-93-02June 1993

Data Shader Language and Interface Specification

Brian Corrie
Paul Mackerras

Department of Computer Science
The Faculties

Computer Sciences Laboratory
Research School of Physical Sciences and Engineering

Joint Computer Science Technical Report Series

Data Shader Language and

Interface Speci�cation

Brian Corrie Paul Mackerras

Department of Computer Science

Australian National University

Abstract

The process of visualizing a scienti�c data set bene�ts from an extensive knowledge of

the domain in which the data set is created. Because an in-depth knowledge of all scienti�c

domains is not available to the creator of a visualization system, a
exible and extensible

system is essential in providing a productive tool to the scientist. One approach to providing

this
exibility is through a shading language that enables users to write programmable data

shaders that determine how scienti�c data sets are rendered.

This paper describes the implementation of such a shading system. The system consists

of two parts, a shader library and a shader compiler. The shader library does not provide

a shading model directly, but instead provides a means of loading and binding externally

created shaders to a rendering engine which uses the library. The shader compiler is used to

compile a shader description, written in the shading language, into a form that the shader

library can load. The shader library has been used in both a ray-tracing geometric renderer

and a ray-casting volume renderer.

1 Introduction

Programmable shading models and shading languages are used to provide the user of a rendering

system with a
exible and extensible means of describing how visible surfaces in a scene are

shaded. This
exibility is necessary because of the vast number of subtle surface characteristics

that are required to create a realistic image. Such
exibility is also important in a volume

rendering system, as no single shading and classi�cation model can display the myriad of subtle

interactions that take place in a three-dimensional scienti�c data set. The system presented in

this paper provides this
exibility through the use of a programmable shading system, enabling

the user of a volume renderer to describe how data sets are to be rendered.

Volume rendering is one of several rendering techniques that can be used to visualize three-

dimensional data sets. Volume rendering is the process of generating an image directly from

such a data set without the generation of an intermediate geometric model. Ray-casting is a

common technique for volume rendering [17, 11, 16]. It is an image space algorithm which

determines the entire volume's contribution to a given pixel before processing the next pixel in

1

the image. A volume's contribution to a pixel is determined by casting a simulated light ray

through that pixel and into the volume. As a ray traverses the volume, it is sampled at regularly

spaced intervals. Each sample value is interpolated and mapped to a color and opacity. These

colors and opacities are then integrated along the ray to determine the �nal color for the ray and

therefore the pixel. The color and opacity at each sample point is determined by the shading

model used by the volume renderer.

To date, most volume renderers apply a single, monolithic shading model to the volumes

being rendered. Even with a highly parameterized shading model and
exible mappings of data

to color and opacity, a single model can be overly restrictive. If the provided parameterization

is not adequate for all volumes being rendered a renderer with a di�erent shading model must

be used or a new renderer that can produce the desired visualization must be developed. The

creation or modi�cation of such a renderer requires an in-depth knowledge of the rendering

technique being used as well as a high level of skill in programming techniques. Clearly, this is

an unreasonable requirement to place on the general user. A more
exible method is to allow

the users of the system to describe how they want to visualize the data set, through the use of

a programmable shading system.

The shading system implementation described in this paper provides a
exible framework for

the exploration of three-dimensional data sets. Data shaders, a new class of shader developed

in this research, are similar in functionality to RenderMan surface shaders [19], except that

they are applied at a sample point within a volume, rather than at a point on the surface of

a geometric primitive. The data shader attached to a volume is responsible for shading the

subvolume around each sample point within that volume. The shader used for each volume

need not be the same, and need only be as complex as the visualization requires. The
exibility

provided by such a shading system allows users to apply their domain speci�c knowledge to the

design of new and powerful shaders and to the creation of new ways of exploring and analyzing

their data sets.

This paper is structured as follows. Section 2 brie
y discusses the history of shading lan-

guages, focusing on the RenderMan shading language. Section 3 describes our extension to

the RenderMan shading language to incorporate data shaders. Section 4 describes an imple-

mentation of a shader library that enables a rendering system to use the shading language and

programmable shaders. Section 5 brie
y describes our experiences using the shader library with

two di�erent rendering systems. Section 6 discusses areas that require further research.

2 Shading languages

Shading languages were developed as a powerful and
exible method of specifying a shading

model for rendering geometric primitives. They were introduced to the graphics community by

Cook's paper on shade trees, in which he described a
exible, tree-structured shading model

capable of representing a wide range of shading characteristics [2]. Perlin [14] extended Cook's

shade tree language to include general control
ow structures. Both Perlin [14] and Peachey [13]

introduced the concept of procedural solid textures at this time.

2

2.1 The RenderMan shading language

The RenderMan shading language [15, 19, 8] is an extension of Cook's shade trees, providing a

small set of high level data types, a full set of
ow control structures, and a rich set of math-

ematical and shading related functions. The RenderMan interface speci�es that six classes of

programmable shaders (light source, surface, volume, transformation, displacement, and imager

shaders) can be used within the RenderMan framework. The six classes of shaders provided by

the RenderMan shading language are distinguished by their class variables. The class variables

de�ne the environment in which a shader executes, and provide the key interaction mechanism

between the rendering and shading domains.

The RenderMan shading language simpli�es the task of writing shaders by providing a li-

brary of support functions for commonly used shading operations. Two high level data types

(points and colors) are also provided. Points are de�ned as three-dimensional position or di-

rection variables, while colors are de�ned as multi-channel variables with an arbitrary number

of channels. Arithmetic operations work on points and colors, as well as
oating point values.

These operations operate on a coordinate by coordinate or channel by channel basis. If a scalar

oating point value is used in an expression involving a point or color data type, it is promoted

to that data type by duplicating the scalar value in each channel of the data type. Color and

point variables can not be used in the same expression.

Shader de�nitions are similar to function de�nitions in the C programming language [10],

except that the instance variables (the variables in the function's parameter list) are given

default values. These instance variables are set when an instance of the shader is created,

and can be di�erent for each instantiation. A shader of a given class is declared by using the

appropriate keyword (light, surface, volume, transformation, displacement, or imager) instead

of a return type for the shader. Because shaders return the result of their computation in their

class variables, no return value is given for a shader. Local variables in a shader are analogous

to those in C.

Control structures in the RenderMan shading language are similar to those in C (while, for,

if-then-else). It also provides special constructs (illuminate, solar, and illuminance) for spatial

integration of light that is emitted from light sources and light that is incident on a surface.

Functions can be declared in the RenderMan shading language, and are declared as a function

is declared in C, except that the extended data types (points and colors) can be used as return

types. Parameters to functions in the shading language are passed by reference.

2.2 Surface shaders

In the RenderMan speci�cation, surface shaders are used to determine the color of the light

re
ected in a given direction from a point on the surface of a geometric primitive. It uses the

location of the point, the orientation of the surface, the light sources in the scene, and other

information to compute this color. With respect to visualization, this functionality can be very

useful for mapping parameters, such as temperature or stress, to colors on the surface of an

object described by geometric primitives.

3

Variable Meaning Variable Meaning

Cs, Os Input color and opacity P Surface position

N, Ng Surface normal and geometric normal dPdu, dPdv Change in position with u, v

I Incident light ray E Position of the camera

L Direction from surface to light1 Cl Light color1

u, v Surface parameters du, dv Change in u, v across surface

s, t Surface texture coordinates Ci, Oi Output color and opacity

Figure 1: Surface shader class variables

Variable Meaning Variable Meaning

Cs, Os Input color and opacity Vn Number of channels in the volume

P Sample position Ds Distance to sample

I Incident light ray Din Distance to volume entry

E Source point of incident ray Dout Distance to volume exit

Cl, L Light color and direction to light1 Dunit Unit distance for opacities

Ci, Oi Output color and opacity Dstep Distance between samples

u, v, w Parameterized sample location Du, Dv, Dw Volume size in u, v, and w dimensions

Figure 2: Data shader class variables

3 Language description

The shading language described in this paper is a subset of the RenderMan shading language,

with the extensions necessary to support data shaders. These include an extension to the basic

data types, a new set of class variables for the data shader class, extensions to the built-in

functions, as well as an extension to the method in which a shader's instance variables are used.

These extensions are described in detail below.

3.1 Class variables

The class variables provided to a data shader de�ne the state in which the shader executes.

To e�ectively shade volumetric data, these variables must describe the volumetric state at the

sample point. The class variables de�ned for data shaders are similar to those de�ned for

RenderMan surface shaders, and include variables such as the input color and opacity (Cs and

Os), the surface point (P), and the incident ray along which the computed light will be returned

(I), as well as an assortment of others. To extend the set of variables to deal with volumetric data,

it is necessary to specify volume sampling information, information about how the incident ray

interacts with the volume data set, and three-dimensional sample location parameters. Complete

lists of the class variables for surface and data shaders are given in Figures 1 and 2.

The extended class variables used for data shaders de�ne the geometric and volumetric state

of the sample point relative to the volume data set that is being sampled. The class variable Vn

0Usage is only valid within an illuminance statement

4

speci�es the number of channels in the data set. For scalar data sets, there is only one channel

(Vn = 1), while for vector data sets or data sets that have multiple scalar values for each sample

point Vn speci�es how many channels exist. Access to sample values of the volume at a given

point is provided by the sample built-in function. This function is described in Section 3.3. Ds

speci�es the distance from the sample point P to the source point of the incident light ray. Din

and Dout specify the distance from the source point of the incident light ray to the points at

which the ray enters and leaves the volume being sampled. Dstep gives the distance between

sample points in the volume. Dunit de�nes the distance over which opacities are de�ned. For

example, a subvolume with an opacity of 0.5 attenuates �fty percent of the light that passes

through the subvolume if the distance the light travels in the subvolume is Dunit units in length.

If the light travels more or less than Dunit units in a subvolume of a speci�ed opacity, then

the computation of the attenuation is more complicated. The built-in attenuation function,

described in Section 3.3, performs this computation. The class variables u, v, and w specify

the three-dimensional parameterized location (between 0 and 1) of the sample point within the

volume. The variables Du, Dv, and Dw specify the size (in the world coordinate system) of the

volume in the u, v, and w dimensions.

3.2 Data types

To make the use of transfer functions relatively simple, a new data type is added to those

provided by the RenderMan shading language. A map has one or more channels, each of which

represents a function which is de�ned on the real interval [0,1]. The functions take values in the

range [0,1]. Typically, a function would be represented by a set of knot points used for linear

or cubic interpolation. The colormap built-in function is used to obtain the value of a mapping

function at a given point.

3.3 Built-in functions

Several built-in functions have been added to the RenderMan shading language. The sample

and gradient functions provide access to the multiple channels of a data set. The sample

function returns the sample value at the speci�ed point in the given channel of the data set.

The gradient function returns the gradient at the speci�ed point in the given channel. For

example, the second component of a vector data set at the sample point P can be obtained

through the shading language statement float y = sample(P,1). Similarly the gradient at

point P for the same channel can be obtained with the statement point N = gradient(P,1).

Note that these functions use 0 based indexing to identify a channel.

The colormap built-in function is similar to the traditional RenderMan texture statement,

except the mapping that is performed is one dimensional rather than two dimensional. A value

is retrieved from a map by specifying a map, a map channel, and a mapping value (between

0 and 1) to the colormap function. The function returns either a color or a
oating point

value. If a color is returned, the �rst channel of the color is obtained from the channel of the

map supplied by the channel argument. Subsequent channels of the color are obtained from

5

float attenuation(float value)

{

return (1 - pow(1-value, Dstep/Dunit));

}

Figure 3: The attenuation function

subsequent channels in the map. The behavior is unde�ned if there are not enough channels in

the color map.

The attenuation function provides a simple way to compute a commonly used expression

in volume rendering. It computes the amount light is attenuated as it travels a distance through

a subvolume of a speci�ed opacity. The function is called with a single parameter that speci�es

the opacity of the subvolume. It uses the class variables Dstep and Dunit to calculate this

attenuation. The implementation of the attenuation function, as it would be written in the

shading language is given in Figure 3. The user can implement a user-de�ned attenuation

function if desired.

3.4 Instance variables

In the RenderMan speci�cation, all variables have either a uniform or varying storage class.

Uniform variables remain constant throughout the life of a shader, while varying variables can

have di�erent values each time the shader is invoked. In the RenderMan speci�cation, all

instance variables are assumed to be uniform variables [15]. This restricts a shader from keeping

any global state between invocations. If this restriction is relaxed, and varying variables are

allowed as instance variables, then global state can be maintained by assigning values to these

variables. This can be important in implementing some shading techniques that require global

knowledge about past calculations in a given volume. It should be noted that making use of such

state information in a shader often requires a knowledge about the renderer's internal operation,

and may make that shader less portable.

3.5 An example shader

A simple example of a data shader is given in Figure 4. The threshold data shader renders

the data samples between the thresholds mint and maxt as opaque and renders all other data

samples as transparent. The opaque data values are assigned the color given in the c instance

variable. The threshold surface is shaded by using the built-in functions ambient and diffuse,

which are scaled by the ka and kd instance variables respectively. On completion, the shader

returns a color and an opacity to the graphics environment through the class variables Ci and

Oi. To change the characteristics of the shader, new values can be supplied for the instance

variables mint, maxt, c, ka, and kd when an instance is created. For more details on writing

shaders in the RenderMan shading language the reader is referred to [15] or [19].

6

data threshold(float mint = 0.5, maxt = 0.6, ka = 0.5, kd = 0.5; color c = 1)

{

float Vs = sample(P,0);

/* If it is an opaque sample, shade it like an opaque surface. The color */

/* returned in Ci is computed by compositing our color behind the previous */

/* samples along the incident ray. */

if (Vs >= mint && Vs <= maxt) {

Oi = 1;

Ci = Cs + c * (1-Os) * (ka*ambient() + kd*diffuse(gradient(P,0)));

}

else { /* Transparent sample, no change to color and opacity */

Oi = Os;

Ci = Cs;

}

}

Figure 4: The threshold data shader

4 Implementation

The implementation goal of the shading system is not only to create a
exible and extensible

volume rendering system, but also to provide a general purpose shading library that enables

creators of other rendering systems to have access to the
exibility provided by programmable

shaders. This functionality is provided through the implementation of a shader library and a

shader compiler. The shader library does not provide a shading model directly, but instead

provides the framework for binding externally created shaders to the geometric engine that the

renderer provides. This work is based on an early implementation of a shader library, which is

in turn is based on research into realistic image synthesis [3]. This section gives implementation

details for the shader library and the shader compiler.

The shader library maintains a table of shaders that are available for use by a renderer.

Shaders can be created and added to the system dynamically, with no changes to the renderer

itself. The renderer binds a shader to a primitive at run time by asking the shader library to

provide an implementation for the shader. Shaders are written in the shading language, and

are compiled by the shader compiler into a form that can be loaded and executed by the library

on behalf of the renderer. Once the shaders have been bound to their respective primitives,

the renderer determines the points at which the shading calculations are to be performed. At

each of those points the renderer invokes the appropriate shader. The shader applies its shading

model and returns a result of that computation to the renderer.

Because our research focuses on the shading of objects for scienti�c visualization, only a sub-

set of the RenderMan shading language is supported at this time. Priority has been placed on

implementing features that are required for visualization, in particular data shaders. Currently,

only the RenderMan surface shader class and our data shader class are supported. Despite this

restriction, it is still necessary for our implementation to support most of the RenderMan envi-

ronment and almost all of the programming functionality. It supports all of the RenderMan data

types, all of the programming constructs except functions, 25% of the mapping functionality,

and 85% of the built-in RenderMan function library. Of the RenderMan mapping function-

7

ality (texture, bump, shadow, and environment mapping), only texture mapping is currently

supported in the implementation.

The remainder of this section describes the interactions between the renderer and the shader

library. It describes in detail both how a renderer interacts with the shader library and how a

renderer interacts with a shader. It also describes how shaders are created and compiled with

the shader compiler. It is important to note that the typical user of the shader compiler is

the end user of a visualization system, whereas the user of the shader library is typically the

developer of a rendering system.

4.1 Library interaction

The shader library provides a framework for an extensible shading system. This framework

provides the functionality that enables a rendering system to use programmable shaders. The

shader library provides the renderer with a set of services. These services include: the initial-

ization of the shader library, the binding of shader names to shader implementations, and the

ability to provide the library with advanced capabilities that shaders can use. Examples of the

type declarations and function interfaces to the shader library are given in Appendix A.

4.1.1 Initialization

To initialize the shading system, the renderer calls the SLInit function. This function takes one

parameter, a null-terminated string which contains a colon-separated list of UNIX directories.

These directories specify where the shader library should look to �nd the compiled form of any

required shaders.

4.1.2 Binding shaders

To gain access to a shader, the renderer calls the SLBindShader function. Given a shader name

(as a character string), the SLBindShader function returns a set of shader interface functions

that provide the renderer with a means of interacting with that shader. These functions are

described in detail in Section 4.2. When called, the SLBindShader function �rst checks the

shader table to see if the desired shader already exists in the system. If the shader exists in

the shader table, the function returns a success code and a set of shader interface functions to

the renderer. If the shader does not exist in the shader table, SLBindShader searches for the

shader implementation in the list of directories speci�ed in the call to the SLInit function. If

the shader implementation is found in one of the shader directories, the shader library loads

the shader, enters it into the shader table, and returns the shader interface functions to the

renderer. A shader implementation is created by the shader compiler, and must reside in a

�le named shader.slo, where shader is the name of the shader passed to the SLBindShader

function. Creating a shader is described in detail in Section 4.3.

To �nd out which shaders have already been loaded, the shader library provides two func-

tions: SLNumShaders and SLShaderName. The SLNumShaders function returns the number of

shaders that are currently maintained in the shader table. The SLShaderName function returns

8

Capability Name Token String Capability Name Token String

Ambient \ambient" Trace \trace"

Illuminance \illuminance" Illuminance Init \illuminanceinit"

Sample \sample" Gradient \gradient"

Read Color Map \readmap" Write Color Map \writemap"

Read Texture \readtexture" Write Texture \writetexture"

Figure 5: Capabilities and their token strings

the name of a shader, given an index number between 0 and N � 1, where N is the number

of shaders returned by the SLNumShaders function. Once the user of the shader library has

acquired the name of a shader, its shader functions can be obtained through the use of the

SLBindShader function.

4.1.3 Capabilities

Shaders know nothing of the internal structure of the renderer which is using them. For a shader

to complete a shading operation, it is necessary for the renderer to provide some geometric

capabilities. For example, it is often necessary for a shader to know the positions and colors

of the light sources in the scene. In this implementation, such information is supplied through

a set of call back functions which are registered with the shader library after initialization.

If a renderer cannot provide the required functionality, the shader library supplies a default.

Capabilities are registered with the shader library through the SLRegisterCapability function.

It is called with a textual name for the capability being registered and a pointer to a function

that implements that capability. The function implementing a capability can be retrieved by

using the SLGetCapability function. Capabilities provide a method for the renderer to extend

and tailor the shader library. They also provide an easy way to extend the rendering system as

more and more of the RenderMan interface is implemented.

The shader library capabilities that can be set by the renderer are: the ability to compute

the ambient light falling on a point, the ability to compute the light falling on a point from a

particular direction, the ability to compute the light falling on a point over a given illuminance

cone, the ability to compute the sample value at a point in a volume, the ability to compute

the gradient at a point in a volume, the ability to read and write color map �les, and the

ability to read and write texture map �les. The names and the functionality of each of these

capabilities is described below. The token strings that are passed to the SLRegisterCapability

and SLGetCapability functions for each of the capabilities are given in Table 5. Example

declarations for each capability are given in Appendix A.

Ambient

The ambient capability provides a shader with a means of determining the amount of ambient

light that is falling on a given point. Unless a radiosity solution [20] is performed by the renderer

to determine how the di�use light interacts in the given environment, most rendering systems

9

will simply return a constant for the ambient light. The default action provided by the shader

library for this capability is to return no ambient light (black). This capability is implemented

as a function that takes a point and a color as parameters and returns the ambient color that

falls on the given point in the second parameter.

Trace

The trace capability provides a shader with the ability to compute the color of the incident

light reaching a point from a given direction. This light is usually light that is re
ected from

other objects in the graphics environment, and determining this color is usually implemented

through ray tracing [7]. The default action provided by the shader library is to return black.

The trace capability is implemented as a function that takes three parameters. The �rst two

give the point that the incident light hits and the direction that the incident light is coming

from. The third parameter is the returned color that falls on that point.

Illuminance

The illuminance capability provides a shader with a means of computing the amount of

light that reaches a point in the illuminance cone. In the shading language, a shader uses the

illuminance programming construct to determine this information by iterating through each

light source that falls within this cone. For each light source in the the cone, two shader class

variables, L and Cl are de�ned. These class variables are accessible for use within the block of

code that is de�ned by the illuminance construct itself, and de�ne the color and the direction of

that light source. Thus, the illuminance construct behaves like a while loop that iterates over

the light sources in the environment. The renderer provides this capability to the shader library

by providing two call back functions, illuminance and illuminanceinit. The illuminance

call back function takes �ve parameters. The �rst parameter de�nes the base of the cone over

which the integration takes place. The second is a vector that gives the axis of the cone. The

third parameter speci�es the inclusive angle in radians. The next two parameters are the return

values of the illuminance call back function, and give the location of the light source and the

color of the light emitted from the light source. This function is called once for each light source

in the de�ned cone, and it is responsible for keeping track of the state that it requires to process

each light source de�ned within that cone. Each time that it is called, it either returns TRUE

or FALSE. It returns TRUE while the information that it returns is for a light source within the

cone, and returns FALSE when all light sources have been processed. The illuminanceinit

function takes no parameters and returns no value. It is used to reset the state that the renderer

is maintaining so that the renderer can process the light sources consistently. For example,

if there are N light sources in the environment within the de�ned illuminance cone, a typical

calling sequence for the illuminance capability would be; �rst a call to illuminanceinit to

reset the renderer's internal state, followed by N + 1 calls to illuminance to obtain the light

information for the N light sources. On call N +1, illuminance returns FALSE indicating that

all light sources have been processed. The default action provided by the shader library is to

10

have no light sources, so every call to illuminance returns FALSE and the block of code within

the illuminance construct is never executed.

Sample

The sample capability provides a shader with the ability to compute the value of a sample

point in a given channel of the volume data set to which the shader is bound. This capability

can only be used by a data shader. The default action provided by the shader library is to return

0. The sample capability is implemented as a function that returns a
oating point value. The

function takes two parameters, the point at which to perform the sample and the channel of the

volume data set to use. The function should return a sample value between 0 and 1. It is the

responsibility of the renderer's implementation of the sample capability to map the data values

within a volume into this range. It is also the responsibility of the renderer to maintain enough

internal state so that the sample call back function can determine which volume it is sampling.

If the sample point is outside of the volume data set or the channel given is not valid then the

sample value returned is unde�ned.

Gradient

The gradient capability provides a shader with the ability to compute the local gradient

at a point in a given channel within a volume data set. This capability can only be used by a

data shader. The default action provided by the shader library for this capability is to return

a gradient of (0; 0; 0). The gradient capability is implemented as a function that takes three

parameters. The �rst parameter gives the point at which the gradient is to be computed, while

the second parameter gives the channel of the volume data set to use. The third parameter

returns the calculated gradient. If the sample point falls outside the volume or the channel

number is invalid then the gradient vector returned is unde�ned. It is the responsibility of

the shader writer to insure that the sample point is inside the volume to obtain well de�ned

behavior.

Color map

The color map capabilities provide the ability to read and write color maps to and from

external �les. The default actions provided by the shader library are to read and write �les in

a simple �le format. Such a �le should contain two integers, c and n, followed by c� n double

precision
oating point values in the interval [0,1]. The �rst integer in the �le (c) gives the

number of channels in the color map, while the second integer (n) gives the number of values

in each channel. The �rst n
oating point values represent the �rst channel of the color map,

followed by n
oating point values for the second channel, and so on. Values are stored in binary

using the host machine's byte ordering, so these �les may not be portable.

The readmap and writemap functions use a map data type (de�ned by the shader library)

which contains the information required by the shader library to implement color maps. The

readmap function takes two parameters, a �le name and a pointer to a map data structure. The

11

�le name gives the function the path name of the �le to be opened. The pointer to the map

data structure points to an allocated map data structure that is empty (all �elds of the data

structure must contain zeros). The readmap function opens the �le and �lls in the map data

structure. The writemap function takes a pointer to a map data structure, and writes that data

structure to an external �le. The map data structure contains the name of the �le that the color

map is written to.

Texture map

The texture map capabilities provide input and output operations for the two-dimensional

texture maps used by surface and data shaders. The default actions provided by the shader

library read and write �les in a simple �le format, which contains a header that describes the

texture map, followed by the texture map data itself. The header contains an integer giving

the number of channels in the texture map (c), followed by two integers (s and t) giving the

dimensions of each channel of the two-dimensional texture map. This data is followed by two

bytes (swrap and twrap) which de�ne how the texture map is extended outside the unit square

in the s and t dimensions. There are three possible wrap modes supported by the shader library,

black, clamp, and periodic. Black speci�es that any reference to the texture map outside of the

unit square results in the color black being returned. Clamp speci�es that all texture coordinates

outside of the unit square will be clamped to the range [0,1] and the appropriate texture value for

the clamped texture coordinates is returned. Periodic speci�es that texture coordinates outside

of the unit square will be mapped into the unit square by subtracting the largest integer less

than or equal to the texture coordinate. The header information in the �le is followed by the

texture map data, which consists of c � s � t bytes of data, each in the range 0 to 255. The

texture data is stored a channel at a time, with the �rst s � t bytes giving the �rst channel.

Each channel is stored with the s dimension varying fastest in the data �le.

The readtexture function has six parameters. The �rst gives the �le name to read the

texture map from. The next three parameters are pointers to integers, in which the function

returns the number of channels and the s and t dimensions of each channel. The next two

parameters are pointers to unsigned bytes in which the function returns the wrap modes for

the s and t dimensions of the texture map. The function should allocate a block of memory to

contain the texture map data stored as c � s � t double precision
oating point values. The

data in this block of memory should be laid out in the same manner as the texture map data

was laid out in the �le. The function should return a pointer to this block of memory. The

writetexture function has seven parameters, the �le name to write the texture map to, the

number of channels, the s and t dimensions of each channel, the wrap modes in s and t, and a

pointer to a block of memory that contains the texture map data. The texture map data should

be in the same format as that returned by the readtexture function.

12

4.1.4 Closing the library

To free up the resources maintained by the shader library, the SLClose function is used. Calling

this function empties the shader table, frees up the resources required by the shader library, and

resets the capabilities to their default actions. After a call to this function, the shader library

may be reinitialized by calling SLInit.

4.2 Shader interaction

The interface between a shader and a renderer is provided through a set of �ve interface functions:

the constructor, instance set, instance get, print, and shader functions. The constructor creates

an instance of a shader, and returns it to the renderer. The shader instance is the object that

the renderer uses to perform shading, and it is the responsibility of the renderer to keep track of

which shader is to be applied to each rendering primitive. When the constructor is called, the

renderer can supply values for the shader's instance variables by passing an array of instance

variable type-token-value triples to the constructor. The variable type should be one of the

following:
oat, point, color, string, or map. A token is a string giving the name of the variable.

The value contains the value of the variable. A
oat value is passed as a pointer to a double

precision
oating point value. A point value is passed as an array of 3 double precision
oating

point values. A color is passed as an array of n double precision
oating point values, where

n is the number of channels for colors in the current environment (the number of channels is

three by default). A string is passed as a pointer to a null-terminated string of bytes. A map

is passed as a pointer to a map data structure (the map data structure is de�ned by the shader

library). If a type-token pair matches a type-token pair of an instance variable of the shader

being created, then the value is copied into an internal representation for that instance variable.

If any type-token pairs do not match an instance variable, the instance of the shader is not

created and an error code is returned.

The instance set function sets the value of an instance variable. Its parameters are a shader

and a type-token-value triple that represents the instance variable to be set. If the type-token

pair matches one of the instance variable type-token pairs, then the value provided is copied

into the internal representation of that instance variable. Values are provided to this function

in the same form as they are provided to the constructor function. If a match is not made, then

no change is made to the shader and an error code is returned.

The instance get function gets the value of an instance variable from a shader. It is passed

a shader and a type-token-value triple also. The type-token pair designates the variable to be

accessed. The value is passed as a pointer to a pointer, in which the value of the instance

variable is read. A pointer to a pointer is passed to the function so that it can allocate the

required memory for the instance variable's value and return a copy of the variable, rather than

the actual data itself. A copy of the data is returned in order to maintain the integrity of the

shader library. It is the caller's responsibility to free this memory when it is no longer needed.

The print function is passed a shader, and prints out a textual representation of that shader

to the standard output stream. The textual representation includes the name of the shader and

13

the type, name, and value for each of the shader's instance variables.

The shader function performs the shading calculation which a shader implements. The

function is passed an instance of a shader and the class variables for that shader class. The

shader class variables must be initialized by the renderer to de�ne the environment in which the

shader executes. The class variables provided to the shader depend on the class of the shader

being invoked, and it is up to the renderer to provide the correct class variables for the given

shader type. Class variables are passed to a shader through a data structure provided by the

shader library. The class variables for surface and data shaders are given in Figure 1 and 2.

4.3 Creating shaders

A shader written in the shading language is compiled by the shader compiler into a form that

can be used by the shader library. In this implementation, the compiler converts the shading

language description of a surface or data shader into an implementation of the shader's interface

functions, written in the C programming language [10]. C was chosen for the language of

implementation because of its widespread use and its portability across a wide range of hardware

platforms. This intermediate form is then compiled with a standard C compiler into a relocatable

object module. This relocatable object module is the �le that is loaded by the shader library.

The shader object �le is given the name of the shader being compiled with a .slo �lename

extension.

The shader library uses the DLD package [9] to load a shader. This package provides a means

of adding and removing compiled object code to and from an executing process. The strategy of

compiling a shader to native object code, executed directly by the renderer, was chosen over an

interpretive approach because its execution speed is much higher. It is important to note that it

is necessary to call the DLD initialization function (dld init) before any calls are made to the

SLBindShader function. If this is not done, DLD will not be able to load the shader object �les

successfully. The DLD initialization is done outside of the shader library so that the renderer

can use the DLD library for other purposes if desired. The DLD system is part of the GNU

software distribution under the Free Software Foundation's General Public License. Given the

wide range of machines for which C compilers are available, this implementation strategy is very

exible and portable, with the major limiting factor being the number of platforms that have a

DLD implementation.

4.4 Using the shader library

To use the shader library system with a renderer is quite simple. There are four major com-

ponents of the system, the shader library, the shader compiler, the DLD library, and a suite

of shaders. The shader compiler is a stand alone system, and converts a shader description,

written in the shading language, into an object �le suitable for loading by the shader library.

The suite of shaders typically includes the standard RenderMan surface shaders, as well as a set

of standard data shaders.

To convert a renderer from using a single shading model to using the shader library, two

14

steps must be taken. First, the renderer must determine a way of binding shaders to primitives.

That is, the renderer must be able to identify which shaders are attached to which rendering

primitives. This can be done by changing the scene description format that is accepted by

the renderer to (1) describe each shader instance and (2) describe which shader instances are

attached to which rendering primitives. Note that it is not necessary to create a new instance

of a shader for each primitive unless the instance variables change. A new instance of a shader

is created with the shader's constructor function, which is obtained with the SLBindShader

function.

The second step is to determine when a shader should be invoked. In a typical geometric

rendering system, this would be immediately after a point on the surface of a geometric primitive

has been identi�ed as requiring a shading operation. For the rendering of volumetric primitives,

this would be when a sample position has been identi�ed as requiring classi�cation and shading.

At these points in the renderer code, the renderer initializes the class variables for the shader

that is attached to the rendering primitive, and invokes that shader. The shader returns the

result of the shading operation in the class variables. The renderer must initialize both the

shader library (SLInit) and the DLD library (dld init), and it must be linked with both.

5 Results

To date, the shading language, the shader library, and the shader compiler have been used by

two separate renderers. The initial use of the shader library was in a traditional ray-tracing

renderer for geometric primitives, using surface shaders only [3]. The RenderMan standard

shaders described in the RenderMan Companion (constant, matte, metal, and plastic) have

been implemented [19], as well as shaders similar to the granite, marble, and wood shaders

described in that text.

Data shaders were created to circumvent the limitations of having a single, monolithic shad-

ing system in a volume renderer. The volume renderer used to test data shaders was initially

developed to investigate the issues involved in rendering very large data sets on massively par-

allel architectures [4, 12]. Data shaders were �rst used to reimplement the original renderer's

shading model, which includes features similar to those presented by Levoy [11] and Upson and

Keeler [17]. Other volume shading techniques, such as Sabella's HSV color mapping [16], Foley

and Lane's value probes [6], and several experimental techniques have also been implemented

using data shaders. Each of these data shaders is implemented in less than 75 lines of shading

language code. Although the number of shaders that have been written thus far is small, the

exibility and power of data shaders is evident in the relative ease with which new shading and

classi�cation techniques can be implemented.

6 Future work

The driving force behind the development of the shader library is its use as a visualization tool.

For that reason, most of the work invested in the shader library in the short term will be in

15

exploring the library's functionality in areas that are pertinent to visualization. These include

the mapping of arbitrary parameters, such as heat or stress, across the surface of an object

de�ned by geometric primitives, the exploration of the potential of data shaders for visualizing

complex data sets in new and innovative ways, and the investigation of the model de�ned for

data shaders to determine if more, less, or di�erent information should be provided to data

shaders.

In the longer term, applying data shaders to other volume rendering techniques, such as

projection [5] and splatting [21], should be investigated. Another important area of research is

in the production of an easy to use graphical user interface (GUI) for the system. The GUI

should not only provide control over the instance variables for the shaders, but it should also

present the user with an intuitive means of programming shaders. A system similar to that

created by Abram and Whitted [1] would be very useful. And �nally, integrating a rendering

system that uses the shader library into a modular visualization environment, such as AVS [18],

would enhance the functionality and
exibility of both the visualization environment and the

rendering system itself.

References

[1] Abram, G., and Whitted, T., \Building Block Shaders," ACM Computer Graphics, 24(4),

August 1990.

[2] Cook, R., \Shade Trees," ACM Computer Graphics, 18(3), July 1984.

[3] Corrie, B. \A Workbench for Realistic Image Synthesis," MSc. Thesis, Department of Com-

puter Science, University of Victoria, Victoria, B.C., Canada, 1990.

[4] B. Corrie and P. Mackerras, \Parallel Volume Rendering and Data Coherence on the Fu-

jitsu AP1000," Technical Report TR-CS-92-11, Department of Computer Science, Australian

National University, August 1992.

[5] Drebin, R., Carpenter, L., and Hanrahan, P., \Volume Rendering," ACM Computer Graph-

ics, 22(4), July 1988.

[6] Foley, T., and Lane, D., \Multi-Valued Volumetric Visualization," Proceedings of Visualiza-

tion '91, pp. 218-225, October 1991.

[7] Glassner, A., ed., An Introduction to Ray Tracing, Academic Press, Toronto, 1989.

[8] Hanrahan, P., and Lawson, J., \A Language for Shading and Lighting Calculations," ACM

Computer Graphics, 24(4), August 1990.

[9] Ho, W., and Olsson, R., \An Approach to Genuine Dynamic Linking," Software|Practice

and Experience, 21(4), April 1991.

[10] Kernighan, B., and Ritchie, D., The C Programming Language, Prentice Hall, Englewood

Cli�s, New Jersey, 1988.

16

[11] Levoy, M., \Display of Surfaces from Volume Data," IEEE Computer Graphics and Appli-

cations, 8(3), May 1988.

[12] Mackerras, P., and Corrie, B., \Visualizing 3-Dimensional Data on the AP1000," Fujitsu

Scienti�c and Technical Journal, 29(1), March 1993.

[13] Peachey, D., \Solid Texturing of Complex Surfaces," ACM Computer Graphics, 19(3),

July 1985.

[14] Perlin, K., \An Image Synthesizer," ACM Computer Graphics, 19(3), July 1985.

[15] Pixar, The RenderMan Interface | Version 3.1, September 1989.

[16] Sabella, P., \A Rendering Algorithm for Visualizing 3D Scalar Fields," ACM Computer

Graphics, 22(4), July 1988.

[17] Upson, C., and Keeler, M., \V-BUFFER: Visible Volume Rendering," ACM Computer

Graphics, 22(4), July 1988.

[18] Upson, C., Faulhaber, T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R.,

and vanDam, A., \The Application Visualization System: A Computational Environment

for Scienti�c Visualization," IEEE Computer Graphics and Applications, 9(4), July 1989.

[19] Upstill, S., The RenderMan Companion, Addison Wesley, 1990.

[20] J. Wallace, M. Cohen, and D. Greenberg, \A Two-Pass Solution to the Rendering Equation:

A Synthesis of Ray Tracing and Radiosity Methods," ACM Computer Graphics, 21(4), July

1987.

[21] Westover, L., \Footprint Evaluation for Volume Rendering," ACM Computer Graphics,

24(4), August 1990.

17

A Shader library interface

This appendix contains a list of the de�nitions provided by the shader library to a renderer. It

gives the C type de�nitions and the function prototypes for the shader library functions and

the shader interface functions. It also presents example declarations of shader library capability

functions.

A.1 Type declarations

This section lists the basic type declarations that a renderer requires to use the shader library.

It de�nes the basic data types (
oats, points, colors, maps, and strings), the tokens that are

passed to the shader interface functions to denote these data types, and the data types that

contain the class variables for the data and surface shader classes. These type de�nitions are

provided by the shader library in the include �le SLType.h.

#define MAXCHANNELS (3)

/* Basic type definitions */

typedef double SLT_Float;

typedef SLT_Float SLT_Point[3];

typedef SLT_Float SLT_Color[MAXCHANNELS];

typedef char* SLT_String;

typedef struct slt_map

{

char* name;

int channels;

int size;

SLT_Float* map;

} SLT_Map;

typedef void (*SLT_VoidFunc)();

typedef SLT_Float (*SLT_FloatFunc)();

typedef int (*SLT_IntFunc)();

/* Types of variables allowed to be passed to a shader */

typedef enum {SLFLOAT,SLCOLOR,SLPOINT,SLSTRING,SLMAP,SLINVALIDTYPE} SLType;

/* Structure that is returned by the constructor of the shader. It contains */

/* the relevant information that one might need to change and describe the */

/* shader to the outside world. */

typedef struct sl_shader_t

{

char* name; /* The name of this shader */

char* description; /* A description of the shader */

int numvars; /* The number of instance variables */

char** names; /* The names of the instance variables */

SLType* types; /* The types of the instance variables */

void* instance; /* Private data for this shader */

18

} SLShader;

/* The Surface Shader Variables defined by the interface */

typedef struct sl_surface_vars_t

{

/* Colors needed for shading */

SLT_Color SLCs ; /* Surface color */

SLT_Color SLOs ; /* Surface opacity */

/* Geometry information */

SLT_Point SLP ; /* Surface position */

SLT_Point SLdPdu ; /* Derivative of P along u */

SLT_Point SLdPdv ; /* Derivative of P along v */

SLT_Point SLN ; /* Surface normal */

SLT_Point SLNg ; /* Geometric surface normal */

/* Surface parameterization information */

SLT_Float SLu,SLv; /* Surface parameters */

SLT_Float SLdu,SLdv; /* Change in the surface parameters */

SLT_Float SLs,SLt ; /* Surface texture coordinates */

/* Incoming light information. The following are only allowed/make */

/* sense inside the illuminance statement */

SLT_Point SLL ; /* Incoming light ray direction */

SLT_Color SLCl ; /* Color of incoming light ray */

/* Information about the incident light ray that we are computing */

/* the color for. */

SLT_Point SLE ; /* Position of the eye */

SLT_Point SLI ; /* Incident ray direction */

/* Output color and opacity for the shaded ray */

SLT_Color SLCi ; /* Ray color (output) */

SLT_Color SLOi ; /* Ray opacity (output) */

} SLSurfaceShaderVars;

/* The Data Shader Variables defined by the interface */

typedef struct sl_data_vars_t

{

/* Colors needed for shading */

SLT_Color SLCs ; /* Input color */

SLT_Color SLOs ; /* Input opacity */

/* Volume geometry information */

SLT_Float SLVn ; /* Number of sample values at location SLP */

19

SLT_Float SLDs ; /* Value of t at sample location SLP */

SLT_Float SLDunit; /* Unit distance within the volume */

SLT_Float SLDstep; /* Step size within the volume */

SLT_Float SLDin; /* T value where the ray enters the volume */

SLT_Float SLDout; /* T value where the ray leaves the volume */

SLT_Point SLP ; /* Sample position */

/* Surface parameterization information */

SLT_Float SLu,SLv,SLw; /* Parameterized sample location */

SLT_Float SLDu,SLDv,SLDw; /* Volume size in u, v, and w */

/* Incoming light information. The following are only allowed/make */

/* sense inside the illuminance statement */

SLT_Point SLL ; /* Incoming light ray direction */

SLT_Color SLCl ; /* Color of incoming light ray */

/* Information about the incident light ray that we are computing */

/* the color for. */

SLT_Point SLE ; /* Origin of the incident ray */

SLT_Point SLI ; /* Incident ray direction */

/* Output color and opacity for the shaded ray */

SLT_Color SLCi ; /* Ray color (output) */

SLT_Color SLOi ; /* Ray opacity (output) */

} SLDataShaderVars;

A.2 Function declarations

This section contains the declarations for the functions that the shader library provides to the

renderer. They are described in more detail in Section 3.3. These function prototypes are

provided by the shader library in the �le SLFunctions.h.

/* Initialization and shader binding functions */

extern void SLInit(char *shaderdirs);

extern void SLClose();

extern int SLRegisterCapability(char *name, void (*func)());

extern SLT_VoidFunc SLGetCapability(char *name);

extern int SLBindShader(char *name,

SLShader *(**constructor)(),

int (**instanceget)(),

int (**instanceset)(),

void (**shade)(),

void (**print)());

/* Access functions to the state of the shader table */

extern int SLNumShaders();

extern char* SLShaderName(int index);

20

/* Access functions to read and write SLT_Map data structures */

#define SL_WRAP_BLACK 0

#define SL_WRAP_CLAMP 1

#define SL_WRAP_PERIODIC 2

extern int SLWriteMap(SLT_Map *map);

extern int SLReadMap(char *name, SLT_Map *map);

extern SLT_Float* SLReadTexture(char *file, int *channels,

int *ssize, int *tsize,

char *swrap,*twrap);

extern int SLWriteTexture(char *file, int channels,

int ssize, int tsize,

char swrap, char twrap,

SLT_Float *tex);

A.3 Shader interface function declarations

This section contains an example declaration of the shader interface functions for the matte

surface shader. These functions would be returned to the renderer when SLBindShader is invoked

to bind the matte shader. The declarations would be similar for a data shader, except that the

SLSurfaceShaderVars passed to the shading function would be replaced by SLDataShaderVars.

The data type SLmatte is an opaque data type created by the shader compiler and is not meant

for use by the user of the shader library.

extern void SLmatteInstancePrint(SLShader *p);

extern SLShader *SLmatteInit(int n, SLType tylist,

char **names,**values, int *err);

extern int SLmatteInstanceGet(SLShader *p, char *name,

SLType *type, char **value);

extern int SLmatteInstanceSet(SLShader *p, char *name,

SLType type, char *value);

extern void SLmatteShade(SLmatte *SLp, SLSurfaceShaderVars *SLVars);

A.4 Capability declarations

This section provides example declaration of call back functions that the render might provide

to the shader library.

extern void AmbientCallBack(SLT_Color ambient);

extern int TraceCallBack(SLT_Point point, SLT_Point direction,

SLT_Color color);

extern int IlluminanceInitCallBack();

extern int IlluminanceCallBack(SLT_Point point, SLT_Point direction,

SLT_Point angle, SLT_Point L, SLT_Color Cl);

extern SLT_Float SampleCallBack(SLT_Point point, int channel);

extern void GradientCallBack(SLT_Point point, int channel,

SLT_Point gradient);

21

