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A PARALLEL ALGORITHM FOR THE REDUCTION TO

TRIDIAGONAL FORM FOR EIGENDECOMPOSITION

M. HEGLAND�, M. H. KAHN��, M. R. OSBORNE���

Abstract. A new algorithm for the orthogonal reduction of a symmetric matrix

to tridiagonal form is developed and analysed. It uses a Cholesky factorization

of the original matrix and the rotations are applied to the factors. The idea is

similar to the one used for the one-sided Jacobi algorithms [B. Zhou and R. Brent,

A Parallel Ordering Algorithm for E�cient One-Sided Jacobi SVD Computations,

Proc. Sixth IASTED-ISMM International Conference on Parallel and Distributed

Computing and Systems, pp. 369{372, 1994.]. The algorithm uses little communi-

cation, accesses data with stride one and is to a large extent independent of data

distribution. It has been implemented on the Fujitsu VPP 500. The algorithm is

designed to be the �rst step of an eigensolver so the procedure for accumulating

transforms for eventual calculation of eigenvectors is given.

1. Introduction

Symmetric eigenvalue problems appear in many applications ranging from compu-

tational chemistry to structural engineering. Algorithms for symmetric eigenvalue

problems have been extensively discussed in the literature [11, 9] and implemented

in various software packages (e.g. LAPACK [1]). With the broader introduction of

parallel computers in scienti�c computing new parallel algorithms have been sug-

gested [7, 2]. In the following another new parallel algorithm is suggested which is

particularly well adapted to vector parallel computers and has low operation counts.

Eigenvalue problems can only be solved by iterative algorithms in general as they

are in an algebraic sense equivalent to �nding the n zeros of a polynomial. There are,

however, two main classes of methods to solve the symmetric eigenvalue problem.

The �rst class only requires matrix vector products and does not inspect nor alter

the matrix elements of the matrix. This class includes the Lanczos method [9] and

Date: November 1995.

1991 Mathematics Subject Classi�cation. 65Y05,65F30.

Key words and phrases. Parallel Computing, Reduction Algorithms, One-sided Reductions.
�Computer Sciences Laboratory, Australian National University, Canberra ACT 0200, Australia.
��ANU Supercomputer Facility, Australian National University.
���Centre for Mathematics and its Applications, Australian National University.

1



2 M. HEGLAND�, M. H. KAHN��, M. R. OSBORNE���

has particular advantages for sparse matrices. However, in general, the Lanczos

method has di�culties in �nding all the eigenvalues and eigenvectors.

A second class of methods iteratively applies similarity transforms

Ai 7! Ai+1 := QiAiQ
T
i

with A0 = A to the matrix to get a sequence of orthogonally similar matrices which

converge to a diagonal matrix. This second class of methods consists mainly of two

subclasses. The �rst subclass uses Givens matrices for the similarity transforms and

is Jacobi's method. It has been successfully implemented in parallel [2], [12]. A dis-

advantage of this method is its high operation count. A second subclass of methods

�rst reduces the matrix with an orthogonal similarity transform to tridiagonal form

and then uses special methods for symmetric tridiagonal matrices. Both parts of

these algorithms pose major challenges to parallel implementation. For the second

stage of tridiagonal eigenvalue problem solvers the most popular methods include

divide and conquer [7] and multisectioning [9]. Here the reduction to tridiagonal

form is discussed. Earlier algorithms use block matrix algorithms, see [6, 5, 3].

However, these methods have not achieved optimal performance. One problem is

that similarity transforms require multiplications from both sides.

It was seen [12] that the Jacobi method based on one-sided transformations

Bi 7! BiQ
T
i :

allows better vectorization and requires less communication than the original Jacobi

algorithms. Assuming that A is positive semi-de�nite the intermediate matrices Bi

can be de�ned as factors of the Ai, that is,

Ai = BT
i Bi:

As will be seen in the following, the one-sided idea can also be used for the reduction

algorithm.

The algorithm will form part of the subroutine library for a distributed memory

computer, the Fujitsu VPP 500. Often the application of subroutines from libraries

allow the user little freedom in the choice of the distribution of the data to the

local memories of the processors. The one-sided algorithms allow a large range of

distributions and perform equally well on all of them.

In the next section the one and two-sided reduction to tridiagonal form is de-

scribed. Section 3 reinterprets the reduction as an orthogonalisation procedure sim-

ilar to the Gram-Schmidt procedure. This reinterpretation is used to introduce the

new one-sided reduction algorithm. In Section 4 the computation of eigenvectors is

discussed and Section 5 contains timings and comparisons with other algorithms.



REDUCTION TO TRIDIAGONAL FORM 3

2. Reduction to tridiagonal form

A class of methods to solve the eigenvalue problem for symmetric matrices A 2

R
n�n �rst reduces them to tridiagonal form and in a second step solves the eigen-

value problem for this tridiagonal matrix. The problem of �nding the eigendecompo-

sition of the tridiagonal matrix will not be discussed here but that of accumulating

transformations to be used for �nding the eigenvectors of the symmetric matrix is

investigated.

The reduction to tridiagonal form produces a factorization

A = QTTQ (2.1)

where Q is orthogonal and T is symmetric and tridiagonal. If the o�diagonal ele-

ments of T are (nonzero) positive the factorization is uniquely determined by the

�rst column of Q [9]. The proof of this fact leads directly to the Lanczos algo-

rithm. While the Lanczos method has advantages especially for sparse matrices,

methods based on sequences of simple orthogonal similarity transforms [9, p.118]

are preferable for dense matrices.

2.1. Householder's reduction. A method attributed to Householder uses House-

holder transformations or re
ections

H(w) = I � 
wwT (2.2)

with 
 = 2=wTw. In the following let �ij denote the elements of A. That is,

A =

2
6664

�11 � � � �1n

...
...

�n1 � � � �nn

3
7775 :

With w = [0; �21 � �1; �31; � � � ; �n1] and �1 = sign(�21) (�
2
21 + � � �+ �2

n1)
1=2

the

matrix H(w)AH(w) has zeros in rows 3 to n in the �rst column and in columns 3 to

n in the �rst row. The computation of H(w), or equivalently of w; 
 and �1 requires

n multiplications and n additions (up to O(1)).

Using the matrix vector product v

p = 
Aw;

the application of H(w) is a rank two update as

H(w)AH(w) = A� wpT � pwT + (
wTp)wwT

= A� wqT � qwT
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where

q = p� w(
wTp)=2:

This takes n2+nmultiplications and n2�n additions for the computation of p, 2n+2

multiplications and 2n�1 additions for the computation of q and n2 multiplications

and 2n2 additions for the rank two update. This gives a total of 2n2 + 3n + 2

multiplications and 3n2 + n� 1 additions.

In a second step, a v is found such that H(v)H(w)AH(w)H(v) has additional

zeros in columns 4 to n in the second row and in rows 4 to n in the second column

and the procedure is repeated until the remaining matrix is tridiagonal. The sizes

of the remaining submatrices decrease and at step n�k a matrix of size k has to be

processed requiring 2k2 + 4k + 1 multiplications and 3k2 + 2k � 2 additions. This

gives a total of
nX

k=3

2k2 + 4k + 1 = 2n3=3 +O(n2)

multiplications and
nX

k=3

3k2 + 2k � 2 = n3 +O(n2)

additions. The tridiagonal matrix is not uniquely determined by the problem. For

example, di�erent starting vectors for the Lanczos procedure lead to di�erent tridi-

agonal matrices. Also, di�erent matrices can be obtained if di�erent arithmetic

precision is used [9, p.123/124]. However, despite this apparent lack of de�nition,

the eigenvalues and eigenvectors of the original problem can still be determined with

an error proportional to machine precision.

In summary, the sequential Householder tridiagonalization algorithm is as follows:

For k = 1 : n� 2

Calculate (
; w) from A(k + 1 : n; k)

p = 
A(k + 1 : n; k + 1 : n)w

q = p� w(
wTp)=2

A(k + 1 : n; k + 1 : n) = A(k + 1 : n; k + 1 : n)� wqT � qwT

End

For vector and parallel processors the Householder algorithm has some disad-

vantages. Firstly, as the iterations progress, the length of the vectors used in the

calculations decreases but for e�cient use of a vector processor we prefer long vector

lengths. Secondly, in a parallel environment, if the input matrix A is partitioned in

a banded manner across a one-dimensional array of processors, the algorithm will
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be severely load imbalanced. To avoid this various authors have suggested using

cyclic [5] or torus-wrap mappings of the data [10, 3]. Also, for a parallel imple-

mentation, the rank two update of A requires copies of both vectors w and q on all

processors which leads to a heavy communication load.

2.2. One-sided reduction. A one-sided algorithm is developed to overcome the

di�culties inherent in a parallel version of the sequential Householder algorithm. In

addition, it is expected that the one-sided algorithm generates less �ll-in for sparse

matrices than the two-sided algorithms if the matrix is given in �nite element form.

Real symmetric matrices A are either given by or can be factored as

A = BTDB (2.3)

so A can be represented in factored form by D and B. If Cholesky factorization

is to be used then the spectrum of A might have to be shifted so that A � �I is

positive de�nite. The parameter � can be chosen using the Gershgorin shift. If

exact arithmetic is used for the reduction, the eigenvectors of A � �I are equal to

the eigenvectors of A and the eigenvalues are shifted by �. However, the precision

of the computations will be a�ected by the introduction of the shift.

A Householder similarity transform of A is done by applying H(w) to B as

H(w)AH(w) = (BH(w))TD(BH(w)): (2.4)

For this, a rank one modi�cation must be computed

BH(w) = B � pwT (2.5)

with p = 
Bw. The computation of p requires n2 + n multiplications and n2 � n

additions, the rank one modi�cation n2 multiplications and n2 additions giving

together 2n2+n multiplications and 2n2�n additions. In contrast to the two-sided

algorithm, the number of additions is approximately the same as the number of

multiplications in this algorithm. This is advantageous for architectures which can

do addition and multiplication in parallel as it means better load balancing.

The computation of w is more costly for this method than for the original House-

holder method. As the Householder vector w is computed from the �rst column a1

of A, this column has to be reconstructed �rst from the factored representation by

a1 = BTDb1: (2.6)

This requires n2+n multiplications and n2�n additions. Thus the computation of

the Householder matrix H(v) requires (up to O(1) terms) n2 + 2n multiplications

and n2 additions.
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Adding these terms up, one reduction step needs 3n2 + 2n multiplications and

3n2 � n additions and so the overall costs of this algorithm are
nX

k=3

3k2 + 2k = n3 +O(n2)

multiplications and
nX

k=3

3k2 � k = n3 +O(n2)

additions. The total number of operations has increased compared with the original

algorithm. But the time used on a computer which does additions and multiplica-

tions in parallel and at the same speed is the same. If the matrix A is not already

factorized, however, the time to do this would have to be taken into account as well.

In summary, the sequential version of the one-sided algorithm is as follows.

For k = 1 : n� 2

Form ak = B(:; k + 1 : n)TDB(:; k) 2 R
n�k+1

Calculate (
; w) from ak

p = 
Bw

B(:; k + 1 : n) = B(:; k + 1 : n)� pwT

End

3. The one-sided algorithm as an orthogonalization procedure

In order to develop the parallel version of the algorithm the one-sided reduction is

interpreted as an orthogonalization procedure like the Gram-Schmidt process. Let

bi denote the ith column of B, that is,

B = [b1; : : : ; bn] : (3.1)

Then the matrix A can be interpreted as the Gramian of the bi as follows,

�ij = bTi Dbj; i; j = 1; : : : ; n: (3.2)

The one-sided tridiagonalization procedure constructs

C = [c1; : : : ; cn] (3.3)

such that T = CTDC is tridiagonal and C = BQ where Q is orthogonal. As T

is the Gramian of the ci the tridiagonality is a condition on the orthogonality of

certain ci as

cTi Dcj = 0; if ji� jj � 2: (3.4)
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In a �rst step the orthogonality of c3; : : : ; cn with c1 is established by setting

c1 = b1 (3.5)

and

cj =
nX

i=2


jibi; j = 2; : : : ; n (3.6)

such that

cTj Dc1 = 0; j = 3; : : : ; n (3.7)

and
nX

i=2


ki
ji = �kj; k; j = 2; : : : ; n: (3.8)

Here �kj denotes the Kronecker delta. In a subsequent step, linear combinations of

c3; : : : ; cn are formed such that c4; : : : cn are orthogonal to c2. As the c3; : : : ; cn are

orthogonal to c1 the linear combinations are as well and so the subsequent steps do

not destroy the earlier orthogonality relations. This is the basic observation used in

the proof of this method.

The algorithm for reduction to tridiagonal form is then as follows:

c
(1)
i := bi; i = 1; : : : ; n

for k := 2; : : : ; n� 1

c
(k)
j :=

nX
i=k



(k)
ji c

(k�1)
i ; j = k; : : : ; n

end for

where the 

(k)
ij are such that the new c

(k)
j are orthogonal to c

(k�1)
k�1 . That is,

c
(k)
j

T
Dc

(k�1)
k�1 = 0; j = k + 1; : : : ; n

and the matrix
h


(k)
ij

i
i;j=k;::: ;n

is orthogonal with

nX
h=k



(k)
ih 


(k)
jh = �ij; i; j = k; : : : ; n:

That is, at each iteration k, �nd an orthogonal transformation of the c
(k�1)
i such

that c
(k)
j is orthogonal to c

(k�1)
(k�1) for j = k + 1; : : : ; n: This is equivalent to making

the o�diagonal elements �j;k�1 and �k�1;j of A zero for j = k + 1; : : : ; n:

Proposition 3.1. Let c
(k)
j be computed by the previous algorithm and

C =
h
c
(1)
1 ; : : : ; c

(n�2)
n�2 ; c

(n�1)
n�1 ; c(n)n

i
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where c(n)n = c(n�1)n : Then CTDC = T is tridiagonal and there is an orthogonal

matrix Q such that B = CQ.

Proof. The proof is based on the fact mentioned earlier that some orthogonality

relations are invariant. It uses induction. The proof is very similar to the one given

in the next section for the corresponding parallel algorithm.

Remark. The original Householder algorithm can be formulated in a similar way

treating B as an inner product. Coordinate transformations change the matrix until

it is tridiagonal.

3.1. Parallel Algorithm. In the following the single program multiple data model

(SPMD) will be used. The basic assumption is that all the processors are pro-

grammed in the same way although their actions might be slightly di�erent. Thus

an SPMD algorithm is described by the pseudocode denoting what one processor

has to do. The data in the matrix B is distributed to the processors by columns in a

cyclic fashion. This means that processor 1 contains columns 1; 1+ p; : : : , processor

2 contains 2; 2 + p; : : : and so on where p is the total number of processors. More

formally, processor q contains bi for i 2 Nq = fq; q + p; : : : ; q +
j
n�q
p

k
pg. In order

to simplify notation let Nq;k = Nq \ fk; : : : ; ng where q = 1; : : : ; p is the processor

number. Furthermore mod denotes the mod function mapping positive and negative

integers to 0; : : : ; p� 1.

c(1)i := bi; i 2 Nq

if q = 1 broadcast c
(1)
1 else receive c

(1)
1

for k := 2; : : : ; n� 1

c
(k)
j :=

X
i2Nq;k



(k)
ji c

(k�1)
i ; j 2 Nq;k

gather c
(k)
j where j = k +mod(q � k; p)

~c
(k)
j :=

k+p�1X
i=k

~

(k)
ji c

(k)
i ; j = k; : : : ; k + p� 1

end for

As before, the coe�cients 

(h)
ij and ~


(h)
ij are such that the modi�ed columns are

orthogonal to the last unmodi�ed one. Thus

c
(k)
j

T
Dc

(k�1)
k�1 = 0; j 2 fk + p; : : : ; ng \ Nq ;

and

~c
(k)T

j Dc
(k�1)
k�1 = 0; j = k + 1; : : : ; k + p� 1:
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The coe�cients also form orthogonal matrices so it follows that,

nX
h2Nq;k



(k)
ih 


(k)
jh = �ij; i; j 2 Nq;k

and
k+p�1X
h=k

~

(k)
ih ~


(k)
hj = �ij; i; j = k; : : : ; k + p� 1:

The c
(k)
j are overwritten with the ~c

(k)
j . Note that the last calculations of the c

(k)
j are

duplicated on all p processors which leaves c(k)k on all processors ready for the next

step. The only communication required for each iteration is in the gathering of at

most p vectors c
(k)
j .

Proposition 3.2. Let c
(k)
j be computed by the previous algorithm and

C =
h
c
(1)
1 ; : : : ; c

(n�2)
n�2 ; c

(n�1)
n�1 ; c(n)n

i

where c(n)n = c(n�1)n : Then CTDC = T is tridiagonal and there is an orthogonal

matrix Q such that B = CQ.

Proof. Let

C(k) =
h
c
(1)
1 ; : : : ; c

(k)
k ; c

(k)
k+1; : : : ; c

(k)
n

i
:

First show that, for k = 1; : : : ; n� 1,

1. there is an orthogonal matrix Q(k) such that B = C(k)Q(k) and

2. the linear hull of c
(k)
k+1; : : : ; c

(k)
n is orthogonal to the linear hull of the c

(1)
1 ; : : : ; c

(k�1)
k�1

and

3. T (k)(1 : k + 1; 1 : k + 1) is tridiagonal where T (k) = C(k)TDC(k).

Proposition 3.2 is a consequence of this, obtained by setting k = n� 1. The proof

uses induction over k. The statement is easily seen to be true in the case of k = 1

with Q(1) = I, the n dimensional identity matrix. In this case the orthogonality

conditions are empty and the matrix T (1) is a two by two matrix and thus tridiagonal.

The remainder of the proof consists of proving the induction step. Assume that

the three properties are valid for k = 1; : : : ; m. Then it has to be shown that it is

also valid for k = m+ 1.

>From the construction it follows that C(m+1) = C(m)G(m) for an orthogonal G(m).

Thus, with Q(m+1) = Q(m)G(m) one retrieves the �rst property. In particular, the

existence ofG(m) follows from the existence of the constructed Householder matrices.

Then the linear hull of c
(m+1)
m+2 ; : : : ; c(m+1)

n is a subspace of the linear hull of

c
(m)
m+1; : : : ; c

(m)
n and thus orthogonal to c

(1)
1 ; : : : ; c

(m�1)
m�1 . Furthermore they have been

constructed to be orthogonal to c(m)
m . From this the second property follows.
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Finally, T (m+1)(1 : m+1; 1 : m+1) = T (m)(1 : m+1; 1 : m+1) which is tridiagonal

and it remains to show that the the m+2nd column of T (m+1)(1 : m+2; 1 : m+ 2)

has zeros in the �rst m rows. But the �rst m elements of this column are just

c
(m+1)
m+2

T
Dc

(j)
j for j = 1; : : : ; m. They are zero because of the second property.

This proof can be used for both the sequential and the parallel algorithm.

In practical implementations the orthogonalisation of the c
(k)
j is achieved by form-

ing the products c
(k�1)
j

T
Dc

(k�1)
k�1 which correspond to individual elements in the up-

dated version of the symmetric matrix A. Householder transformations are then

used to zero the relevant o�-diagonal elements. At the �rst stage in each iteration

these transformations are carried out locally and after the gathering step the trans-

formation on the (at most) p formed elements of A is replicated on all processors.

Although Householder transformations are used here, it would also be possible to

use Givens transformations.

3.2. Error analysis. When using the one-sided reduction to tridiagonal as one step

in a complete eigensolver there are several possible components to the error. First

there is the Cholesky factorization. However a result in Wilkinson [11] (equation

4.44.3) shows that the quantity kA � BTBk is extremely small. Thus the error

incurred in working with the Cholesky factor B in the subsequent calculations is

minimal.

In the second step, the tridiagonal matrix C(n�2) is produced by successive re-

duction of BTB by orthogonal similarity transforms where C(k) is the transformed

matrix calculated after the k'th stage. The error in the eigenvalues of C(n�2) is

bounded by the numerical error in the transform [11]. After the k'th step this is

given by

kC(k) � B
kY

i=1

Pik

where Pi is the exact orthogonal matrix corresponding to the actual computed data

at stage i. A bound on this di�erence follows fromWilkinson [11] (equation (3.45.3)).

In fact,

kC(k) � B
kY

i=1

Pik � (12:36)n2�tkBk

where kBk =
qP

i;j B
2
ij and t is the word length. So the error introduced by the

reduction to tridiagonal is small.

The �nal stage is the calculation of the eigenvalues of the tridiagonal matrix.

These are determined to an accuracy which is high relative to the largest element

of the tridiagonal matrix. This applies for example to eigenvalues computed using
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the Sturm procedure. But this result does not guarantee high relative accuracy in

the determination of small eigenvalues so, if this is important, the Jacobi method

becomes the method of choice [4].

4. Calculating Eigenvectors

In order to calculate the eigenvectors of the symmetric matrix, the orthogonal

matrix Q de�ning the reduction is accumulated. This is achieved by starting with

the identity matrix (distributed cyclically over the processors), then updating it by

multiplying it by the same Householder transformations used to update C. Form-

ing Q explicitly is preferable to storing the details of the transformations and then

applying them to the eigenvectors of the tridiagonal matrix which is the usual pro-

cedure for sequential implementations. The reason for this is that the matrix of Q

is distributed in a way which renders multiplication from the left ine�cient. This is

discussed more fully in the following.

4.1. Calculation of Eigenvectors for One-Processor Version. The n�n sym-

metric matrix A is reduced to tridiagonal form by a sequence of Householder trans-

formations represented by the orthogonal n� n matrix Q and

QTAQ = T (4.1)

where T 2 R
n�n is tridiagonal. For the one-sided algorithm, we have actually calcu-

lated S = BQ where, A = BTB and T = STDS:

The eigendecomposition of T is given by

TV = V � (4.2)

where � is a diagonal matrix containing the eigenvalues and V 2 R
n�n is the matrix

of eigenvectors. Combining the above two equations gives

V TQTAQV = �

and so the eigenvectors of A are the columns of U = QV .

The matrix Q obtained during the rediagonalization procedure is represented by

the Householder matrices H1; : : : ; Hn�2 and

Q = H1 : : :Hn�2:

The eigenvector matrix V of the tridiagonal matrix T is represented by its matrix

elements. So in order to get the matrix element representation of U form the product

U = H1 : : :Hn�2V:
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This product can be done in two di�erent ways. The �rst method multiplies V

with the Hk. Formally, de�ne a sequence U1; : : : ; Un�1 such that

Un�1 := V

Uk := HkUk+1

for k = n � 2; : : : ; 1. Then U = U1. This method is often used, for example [8],

where it is called backward transformation.

A second method computes the element-wise representation of Q �rst by the

recursion

Q0 := I

Qk := Qk�1Hk

for k = 1; : : : ; n� 2 and then speci�cally computes the matrix-vector product U =

QV where Q = Qn�2. This is called forward accumulation in [8].

The di�erence between these two methods is that the �rst one applies the House-

holder transforms Hk from the left and the second applies them from the right. In

addition the second method requires the computation of a product of two matrices

in element form. For the sequential case when using the two-sided Householder re-

duction, the �rst method is preferred as it avoids matrix multiplication. However,

for the multi-processor version, multiplication from the left by the Householder

transformation requires extra communication when the columns of the matrix of

eigenvectors V are distributed over the processors. In fact, one purpose of the one-

sided reduction is to avoid this communication in the reduction to tridiagonal form.

There is certainly communication required for the matrix multiplication QV but

this is of fewer large blocks of the matrix so will be less demanding.

4.2. Multi-processor Version. In the multi-processor case there is an added com-

plication in that B is assumed to be cyclically distributed (although it is not explic-

itly laid out as such). So use

~B = BP

where P is the permutation that transforms B to cyclic layout.

The matrix Q is a product of 2� (n� 2) matrices formed from the Householder

transformations.

Q = H
(1)
1 H

(2)
1 : : :H

(1)
n�2H

(2)
n�2

Here, H(1)
j refers to the transformations carried out locally at each step of the reduc-

tion andH
(2)
j refers to the transformation using one column of B from each processor
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which is carried out redundantly on all processors. To �nd Q start with an iden-

tity matrix distributed cyclically across the processors to match the implicit layout

of B. This matrix is then updated by transforming it with the same Householder

transformations that are used to update B to obtain the tridiagonal matrix.

The matrix of eigenvectors V of the tridiagonal matrix is obtained in block layout

whilst the matrix Q is in cyclic layout. To �nd the eigenvectors of the original

symmetric matrix this must be taken into account so instead of U = QV , as above,

we need QPV . The cyclic ordering must then be reversed and �nally the eigenvectors

are given by

U = P (�1)QPV:

Pre-multiplication by the permutation P involves a re-ordering of the coe�cients of

the eigenvectors which is carried out locally on the processor and does not involve

any communication.

5. Timings

The parallel one-sided reduction to tridiagonal has been implemented and tested

on the Fujitsu VPP500. The VPP500 is a parallel supercomputer consisting of vector

processors connected by a full crossbar network. The theoretical peak performance

of each PE is 1.6 G
ops and the maximum size of memory for each processor is

1 Gbyte. The VPP500 is scalable from 4 to 222 processing elements but access

was available only to a 16 processor machine. Each processor can perform send

and receive operations simultaneously through the crossbar network at a peak data

transfer rate of 400 Mbytes/s each.

The one-sided algorithm is particularly suited to the architecture of the VPP500

because the calculation of the elements of the updated matrix A from the current

version of C are vectorisable with loops of length n, the size of the input matrix.

In the conventional two-sided Householder reduction the vector length decreases at

each iteration.

Table 1 shows some timings and speeds obtained on up to a 16 processor VPP500.

The two times and speed given are, �rst, for the reduction without accumulating

the transformations for later eigenvectors calculations and, second, for the reduc-

tion with accumulation. The speed is given in G
ops. The code was written in the

parallel language VPP-Fortran which is basically FORTRAN77 with added com-

piler directives to achieve parallel constructs such as data layout, interprocessor

communication and so on.

>From these performance �gures it appears that the algorithm is scalable in so far

as its performance is maintained as the size of the problem is increased along with the
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p n Secs G
ops Secs G
ops

1 512 .64 .626 .87 .775

1024 3.8 .846 5.3 1.018

2048 26 1.000 37 1.164

2 1024 2 1.534 3 1.806

2048 13 1.920 19 2.211

3072 51 1.718 77 1.897

4 1024 1.5 2.265 2.2 2.481

2048 8 3.278 12 3.611

3072 28 3.135 43 3.371

4096 60 3.455 92 3.742

8 4096 41 5.180 67 5.250

8192 272 6.157 441 6.337

16 4096 46 5.018 84 4.602

8192 236 7.447 408 7.010

Table 1. Timings and Speed for Matrices of Increasing Size

number of processors. The one-sided reduction to tridiagonal of a matrix of size 2048

using 2 processors achieves nearly 70% of peak performance and approximately 60%

for a matrix of size 4096 using 4 processors. A formal analysis of the communication

required by the one-sided algorithm gives the communication volume proportional

to p(p � 1)n2 where p is the number of processors. As the computational load is

proportional to n3, isoe�ciency is obtained when p(p� 1)n2=n3 is constant, that is,

n = O(p2): The scalability of the algorithm is evident if speeds for matrices of size n

on p processors are compared with those of matrices of size 4n using 2p processors.

For example, compare the speeds for n = 1024, p = 4 and n = 4096, p = 8 to see

the doubling of G
op rate.

It is interesting to compare these performance �gures with other published results

for alternative parallel two-sided Householder reductions to tridiagonal. The com-

parisons can only be general as the algorithms and machine architectures are very

di�erent. The most straightforward comparison is time taken to reduce a matrix of

�xed size measured on machines of similar peak G
op rate. In practice, the �rst step

of the Cholesky factorization adds an overhead of about one tenth of the time taken

for the one-sided reduction to tridiagonal. All accessible published results refer to

algorithms implemented on Intel machines.
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Dongarra and van de Geijn [5] give times for a parallel reduction to tridiagonal

using panel wrapped storage on 128 nodes of a 520 node Intel Touchstone Delta.

Equating peak M
op rates suggests that this is comparable to a 6 processor VPP500.

For a matrix of size 4000 their implementation on the Intel took twice as long as

the one-sided reduction of the same size matrix on a 4 processor VPP500.

The ScaLAPACK implementation of a parallel reduction to tridiagonal is given

by Choi, Dongarra and Walker [3]. Extrapolating from their graphs of G
op rates it

can be seen that their times taken for various sized problems are two or three times

that taken by the one-sided algorithm on the same size problems on a VPP500 of

comparable peak performance.

Smith, Hendrickson and Jessup [10] use a square torus-wrap mapping of matrix

elements to processors and tested their code on an Intel machine corresponding to

a 12 processor VPP500. Their two-sided algorithm can be inferred to have taken

about the same time as a slightly larger problem on a 16 processor VPP500 using

the one-sided algorithm. The Smith et al algorithm is more sophisticated than the

other two-sided algorithms as it uses the torus-wrap mapping and Level 3 BLAS.

6. Conclusion

A new algorithm for reduction of a symmetric matrix to tridiagonal as the �rst step

in �nding the eigendecomposition has been developed. Starting with the Cholesky

factorization of the symmetric matrix, orthogonal transformations based on House-

holder reductions are applied to the factor matrix until the tridiagonal form is

reached. This is referred to as a one-sided reduction and leads to the updating

of the factor matrix at each iteration being rank one rather than rank two as in

the conventional Householder reduction to tridiagonal. Transformations can also be

accumulated to allow for calculation of eigenvectors. This algorithm is suited to

parallel/vector architectures such as the Fujitsu VPP500 where it has been shown

to perform well. In a complete calculation of the eigenvalues and eigenvectors of

a symmetric matrix the extra time for the Cholesky factorization is observed to

be about one tenth of that required for the reduction to tridiagonal so it is not a

signi�cant overhead.
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