
TR-CS-02-06

Fast Garbage Collection without a
Long Wait

Stephen M Blackburn and
Kathryn S McKinley

November 2002

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports
Department of Computer Science
Faculty of Engineering and Information Technology
The Australian National University
Canberra ACT 0200
Australia

or send email to:

Technical.Reports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs.anu.edu.au/techreports/

Recent reports in this series:

TR-CS-02-05 Peter Christen and Tim Churches. Febrl - freely extensible
biomedical record linkage. October 2002.

TR-CS-02-04 John N. Zigman and Ramesh Sankaranarayana. djvm - a
distributed jvm on a cluster. September 2002.

TR-CS-02-03 Adam Czezowski and Peter Christen. How fast is
-fast? performance analysis of kdd applications using hardware
performance counters on ultrasparc-iii. September 2002.

TR-CS-02-02 Adam Czezowski
Bill Clarke and Peter Strazdins. Implementation aspects of
a sparc v9 complete machine simulator. February 2002.

TR-CS-02-01 Peter Christen and Adam Czezowski. Performance analysis
of kdd applications using hardware event counters. February
2002.

TR-CS-01-02 Jeremy E. Dawson and Rajeev Gore. Mechanising
cut-elimination for display logic. October 2001.

Fast Garbage Collection without a Long Wait

Stephen M Blackburn�

Department of Computer Science
Australian National University

Canberra, ACT, 0200, Australia
Steve.Blackburn@cs.anu.edu.au

Kathryn S McKinley
Department of Computer Sciences

University of Texas at Austin
Austin, TX, 78712, USA
mckinley@cs.utexas.edu

ABSTRACT
General purpose garbage collectors have yet to combine short pause
times with fast throughput. Collectors such as reference count-
ing attain short pause times with significant performance penalties.
Pure and hybrid generational collectors can achieve high through-
put and have modest average pause times, but occasionally col-
lect the whole heap and consequently incur long pauses. This pa-
per introducesRC-hybrid, which combines copying nursery col-
lection and reference counting the older generation to achieve both
goals. Key to our algorithm is a generalization of deferred refer-
ence counting which allows RC-hybrid to safely ignore mutations
to nursery objects. RC-hybrid thus restricts copying and reference
counting to the objects for which they perform well. Copying col-
lectors’ bump pointer allocation is extremely fast, and collection
time is proportional to the live objects whose survival rates are low
and bounded in a fixed size nursery. Reference counting time is
proportional to object mutations and the number of dead objects,
both of which are typically low for older objects. We further bound
time spent reference counting with collection triggers and buffer-
ing. We compare RC-hybrid with pure reference counting, a state-
of-the-art copying and mark-sweep hybrid, and a number of other
collectors. We show that RC-hybrid combines fast throughput, and
low average and maximum pause times.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms

Keywords
reference counting, copying, generational hybrid, Java

�This work is supported by NSF ITR grant CCR-0085792, and
DARPA grant F33615-01-C-1892. Any opinions, findings, con-
clusions, or recommendations expressed in this material are the au-
thors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

1. Introduction
A long standing and unachieved goal for general purpose garbage
collectors is to combine short pause times with excellent through-
put [16]. This goal is especially important for large server and inter-
active applications. (We focus in this paper on general purpose col-
lectors as opposed to real-time collectors with hard deadlines [12,
19].) General purpose collectors [6, 12, 15, 20] that achieve consis-
tently short pause times, such as reference counting, perform much
worse than collectors such as a copying/mark-sweep generational
hybrid [5] and Beltway [8] that are tuned for high performance.
Figure 1 illustrates this point by plotting the average and maxi-
mum pause time behavior, and throughput of pure reference count-
ing (RC), variable-nursery copying generational (VGEN), mark-
sweep (MS), and a generational copying/mark-sweep hybrid (MS-
hybrid) on two benchmarks. These results demonstrate that the low
pause times of reference counting can significantly degrade total
performance, and better performing collectors have poor maximum
pause times which are due to occasional full heap collects. This di-
chotomy is also true of other collectors [6, 8, 12, 16, 20].

1.0
1.1

1.2
1.3

1.4

MS VGEN MS-hyb RC

pseudojbb

Tim
e(

rel
ati

ve
to

bes
t)

0
200

400
600

1.0
1.1

1.2
1.3

MS VGEN MS-hyb RC

_228_jack

0
100

200
300

400

Pau
se

Tim
e(

ms)

time
avg p
max p

Figure 1: Throughput and Pause Time Behavior of Four Gen-
eral Purpose Collectors.

We present a new hybrid that achieves both goals by exploiting
the different mutation and lifetime behaviors of young and old ob-
jects, and matching the best performing collectors and allocators
to each context. Most young objects die quickly (the weak gen-
erational hypothesis [24]) and most pointer mutations are among
young objects [3, 23]. These conditions favor a collection algo-
rithm proportional to the live objects that does not keep track of
pointers among young objects — fast bump-pointer allocation into
a nursery collected by tracing and copying the reachable objects.
The space overhead associated with copying is limited to just the
nursery, and the collection time is a function of the survival rate.
Objects that survive nursery collections mutate infrequently, and
are likely to live a long time. These conditions favor a space effi-
cient allocator and a collection algorithm proportional to the dead
objects and pointer mutations — a free-list allocator and a reference
counting collector.

We generalize deferred reference counting [14, 7, 18] to allow
mutations of class variables and selected heap pointers to be ig-
nored by the reference counter. This generalization provides the
key to building an efficient hybrid reference counting collector.
Previous work noticed that the reference counter should not keep
track of the frequent updates to the stack and registers. Having
excluded these pointers from the reference counts, collecting ob-
jects with a reference count of zero isdeferreduntil the collector
scans and updates the reference counts for stack and register ob-
ject referents [14]. We extend deferral to heap pointers and statics
(class variables). We do not reference count nursery objects, nor do
we count pointers from the nursery to the reference counted space.
We thus restrict the load of the reference counting collector to ob-
jects with low mutation and death rates. We use a special write
barrier which in addition to remembering pointers into the nursery,
stores increments and decrements of old-to-old pointer mutations
in buffers (Bacon et al. also use buffers [6, 7]). Consequently, if a
young object points to an old one and does not get promoted, we
never reference count it. These objects are responsible for between
89% and 99% of object mutations in typical object-oriented pro-
grams [9, 23]. During the course of a nursery collection, all live
nursery objects must be scanned. RC-hybrid exploits this phase
to adjust the reference counts of objects referred to by surviving
nursery objects. After a nursery collection, all objects are in the
old space and RC-hybrid processes all the buffered increments and
decrements, and frees garbage. We use the synchronous version
of Bacon et al.’s cycle collection mechanism to free cyclic garbage
and gain completeness [6, 7].

We achieve good throughput because the nursery performs well
on young objects, and it effectively limits the reference counter to
those objects that have relatively long lifetimes and mutate infre-
quently. This basic organization also tends to have low pause times
because the time to collect a fixed-size nursery is bounded, and the
old space is collected incrementally rather than through occasional
full heap collections. However, the cycle detection algorithm we
use is not fully incremental, and if all of the old objects are in one
large cycle, we will incur a long pause. One of our benchmarks
exhibits this behavior. For other situations, we introduce a number
of triggers and exploit buffering to limit the time RC-hybrid spends
freeing reference counted objects on any one collection, which if
needed, buffers some frees until the next collection.

Our contributions are a new copying/reference-counting hybrid,
a generalization of deferred reference counting which makes this
hybrid possible, and a write barrier that provides correctness and
efficiency. After we review related work, Section 3 describes this
algorithm in detail. We use the Jikes RVM and JMTk, a new mem-
ory management toolkit for Java. JMTk contains implementations
of all of the collectors we study. Hybrid collectors share implemen-
tations with their non-hybrid counterparts, and all collectors share
common mechanisms (e.g., free lists, remembered sets). Our ex-
periments thus truly compare policies rather than implementation
subtleties. We evaluate and compare RC-hybrid with a number of
other collectors in Section 5, and show that it is able to couple
performance comparable to a state-of-the-art copying/mark-sweep
generational collector on throughput (on average 5% worse), with
much lower (up to a factor of 10) maximum pause times on the
SPEC JVM benchmarks and a fixed workload variant of SPEC
JBB. RC-hybrid actually has shorter pause times than a pure refer-
ence counting algorithm in many cases since it filters the reference
counting load. We also present write barrier and other collector
statistics that show how we achieve these results.

2. Related Work

This section explains deferred reference counting and its perfor-
mance in detail, and then overviews other incremental approaches
and high throughput collectors.

Reference counting tracks the number of pointers to each object
by continuously monitoring pointer mutations [13, 16]. Each time
a mutation overwrites a reference tooold with a reference toonew,
it incrementsonew’s reference count, and decrementsoold’s. If an
object’s reference count becomes zero, the collector reclaims it. Its
work is proportional to the number of object mutations and dead
objects. Its main advantage is that the work of garbage detection
is spread out over every mutation, and it is thus very incremental.
However, if a lot of objects become unreachable at once, the incre-
mentality of reference counting suffers unless the collector bounds
the number of objects it collects at once bybufferingsome of the
processing [16] for the next collection, or performs collection con-
currently. The main disadvantage of reference counting the entire
heap is that the total cost of tracking all the pointers is expensive
and seriously degrades mutator performance.

Deferred reference counting avoids monitoring certain heavily
mutated pointer sources by occasionally checking their contents [14].
It thus does less work and finds garbage later. For example, it can
safely ignore register and stack operations if object deletion is de-
ferred until it examines the contents of the registers and stacks.
Deutch and Bobrow achieve this via azero count table(ZCT),
which records objects with reference counts of zero [14]. Occa-
sionally, they scan the stacks and registers, and any object in the
ZCT which isnot pointed to by the registers and stacks, and still
has a reference count of zero is safely freed.

Bacon et al. [6, 7] build on this idea in a concurrent collector
by buffering increments and decrements, and updating reference
counts only during periodic collections. Instead of using a ZCT,
their collector periodically examines the stacks and registers and
applies temporary increments for each stack pointer into the heap.
For each temporary increment, a matching decrement is applied in
the next collection. To avoid race conditions, Bacon et al. used
epochsto ensure that increments are always applied before decre-
ments.

Previous work only applies deferral to registers and stacks. We
generalize deferral to include other pointer sources such as heap
objects and statics (class variables). We use buffering and only ap-
ply reference counts after examining and including deferred pointer
sources. Specifically, we ignore mutations to nursery objects and
are able to account for pointers from this space by exploiting the
scan of live nursery objects that occurs as part of each nursery col-
lection.

Other incremental collectors include MOS and concurrent col-
lectors. The mature object space (MOS) collector traces and copies
objects, incrementally packing connected objects together [15]. It
achieves completeness without full heap collections and can be
configured to be highly incremental, yielding low pause times. How-
ever, this comes at a performance cost, with objects potentially un-
dergoing numerous collections before being identified as garbage.
Concurrent tracing collectors [10] use a special write barrier to ac-
commodate interference by the mutator in the tracing phase. The
significant overheads of concurrent tracing has been addressed by
dedicating a separate CPU to the task of collection [6, 7, 20]. We
consider solutions that do not require additional CPUs to combine
short pause times with good performance.

Generational algorithms exploit the low rate of object survival
for the newnursery objects using tracing [5, 8, 16, 24].Trac-
ing identifies dead objects indirectly—by tracing the live objects
and excluding those that it did not trace [16]. The cost of trac-
ing algorithms is thus proportional to the number of live objects.

The two broad approaches to tracing are copying and mark-sweep.
A copying collector copies all live objects into another space. A
mark-sweep collector marks live objects, identifies all unmarked
objects, and frees them. Copying collectors use monotonic (bump-
pointer) allocation, and mark-sweep collectors usefree-listalloca-
tion. Bump-pointer allocation is fast, but copying collectors pay a
space penalty because they must hold an equal space in reserve for
copying. Free-list allocation is slower, but needs no copy reserve.

Because of the high mortality of nursery objects [24], genera-
tional collectors copynurserysurvivors to an older generation [5,
8, 16]. They repeatedly collect the nursery, and only collect the
older generation when the heap is full. The older generation may be
either a copied space (classic generational), or a mark-sweep col-
lected space (MS-hybrid). Beltway collectors [8] generalize over
classic copying generational collectors by adding incremental col-
lection in independentbelts (analogous to generations). Beltway
configurations outperform generational collectors [8]. (We plan to
have performance comparisons to Beltway in the final paper, but
the current implementation of JMTk is just weeks old and does not
yet include Beltway configurations.)

In this paper, we compare performance with MS-hybrid which
combines the best of copying and mark sweep, using bump-pointer
allocation but storing long-lived objects in a space efficient mark-
sweep space. Previous work shows that it performs very well in
practice [5], and several commercial JVMs use it. Generational
collection on average tracks the time to collect the nursery, but it
does not remove the need for full heap collection. In the worst
case, all these collectors must pause while the collector traces the
entires, full heap.

3. The RC-Hybrid Collector
The RC-hybrid is a generational collector. In the nursery, it uses
a bump pointer allocator and a copying collector with collection
costs proportional to the number of live objects. It performs well
on nursery objects, since most are short-lived, and since the nurs-
ery is relatively small, the copy reserve overhead is limited. It uses
a free-list allocator with a reference counting collector on the old
generation with collection costs proportional to the number of dead
objects and pointer updates. Since old objects have low object mor-
tality and few pointer updates, it performs well. Since both compo-
nents are incremental, it can recover garbage promptly and attain
short pause times.

This section first presents generalized deferred reference count-
ing. We then describe our collector organization, mechanics, and
our write barrier that remembers pointers into the nursery and ref-
erence counts older objects. To control worst case pause times, we
propose and implement a number of techniques.

3.1 Generalized Deferred Reference Counting
Reference counting shifts much of the load of collection onto the
mutator by continuously monitoring pointer updates. Deferred ref-
erence counting limits the mutator load to changes to heap objects,
avoiding the heavily mutated registers and stacks. We generalize
this idea, and exclude pointers in class variables and selected heap
objects from the mutator reference counting load.

The correctness of deferred reference counting depends on scan-
ning stacks and registers before deleting any objects. More gener-
ally, deferred reference counting must enumerate and account for
all live pointer fields ignored by the mutatorbefore any reference
counted object can be deleted, whether those pointer fields are in
the registers, stacks, class variables or heap objects.

Jikes RVM stores class variables in a single array and the trac-
ing collectors routinely enumerate them as part of the root scan.

It is therefore easy to extend deferral to ignore mutations to class
variables.

The efficient enumeration of ignored pointer fields in heap ob-
jects is less obvious. There are two clear possibilities: perform a
traversal to identify those objects containing pointers which were
ignored, or use a remembered set to record all such pointer fields
which contain references to the reference counted heap. Both of
these approaches could be quite expensive.

In RC-hybrid, we ignore pointer fields in nursery objects. By
piggy backing the nursery collection, we enumerate the pointers
within the surviving (live) nursery objects for free. Thus RC-hybrid
removes the heavily mutated nursery objects from the mutator ref-
erence counting load, while cheaply maintaining the invariant of
generalized deferred reference counting.

3.2 Organization and Mechanics
We organize RC-hybrid as follows. We have two generations: the
youngnurseryspace and the old reference counted space. We have
a special write barrier to track pointers into the young space and
reference count the old that we describe in detail below.

The mutator allocates into a nursery using a bump pointer. This
type of allocator is faster than any of the alternatives. We defer ref-
erence counting the registers, stacks, class variables and the nurs-
ery. The old space uses a free-list allocator. It divides blocks of
memory into size classes [17, 25] and keeps a free list for each
block. (We list the sizes in Section 4.4.) The old space allocator
puts objects in the smallest size class possible. It allocates a block
to a size class when no block contains a free object of the right size.
It changes the size class for a block only if the block is completely
free.

When the nursery is full, the collector traces the live objects
which are reachable either from the root set or from the old space,
and copies (allocates) the survivors into the old, reference counted
space. Each time an old space object is encountered in the root set,
we follow Bacon et al.’s approach and generate a temporary incre-
ment, which is offset by a decrement during the next collection.
When the nursery collection is complete, all objects are in the old
space, and all the reference count updates are in the increment and
decrement buffers. RC-hybrid then applies all of the increments,
followed by the decrements. It frees objects with reference count
zero, and decrements their children. During the decrement phase,
we identify cyclic garbage candidates and collect them using Bacon
et al.’s algorithm [6, 7], which we summarize in Section 3.4.

3.3 Write Barrier
The write-barrier records pointers into the nursery from the old
space and records increments and decrements for reference count-
ing. Figure 3 shows the Java code for our barrier. Its fast path
ignores all pointers from the nursery. It uses a remembered set
to record the source of old space to nursery pointers. It reference
counts old objects by storing the new target in the increment buffer
and the old target in a decrement buffer. Boot image objects are not
reference counted so do not accrue decrements or increments. By
not recording nursery to nursery pointer mutations (similar to the
classic generational barrier), it eliminates 90% to 99% of pointer
stores depending on the nursery size, as others have shown [9, 23]
and as we demonstrate even for small nursery sizes in Section 5.
For this same reason, we inline the fast path which does not record
pointers and make a method call for the slow path. This selective
inlining makes the code itself run slightly faster, and reduces the
load on the JIT compiler [9].

We arrange memory such that the nursery is in high memory, the
old space in middle memory, and the boot image in low memory,

NurseryBoot Image RC − space

Bump pointer

StacksRegisters

remsetRC++
RC++

(a) During mutator activity

NurseryBoot Image RC − space

StacksRegisters

Bump pointerRC++ RC++ RC++

RC++

(b) During GC

Figure 2: The Organization of the RC-hybrid Collector

as shown in Figure 2. If the pointer source is in the nursery (line
4 in Figure 3), we do not remember it. Otherwise, if the source
points into the nursery from either the old space or the boot image,
we remember it (line 11). If the pointer that this store overwrites
(old , line 14) points into the old space, we insert a decrement. If
the target is points into the old space we insert an increment. (See
Section 4.5 for a discussion of the boot image.)

1 private void writeBarrier(VM_Address src,
2 VM_Address tgt)
3 throws VM_PragmaInline {
4 if (src.LT(NURSERY_START))
5 writeBarrierSlow(src, tgt);
6 }
7 private void writeBarrierSlow(VM_Address src,
8 VM_Address tgt)
9 throws VM_PragmaNoInline {

10 if (tgt.GE(NURSERY_START)) {
11 remset.insert(src);
12 } else {
13 VM_Address old = VM_Magic.getMemoryAddress(src);
14 if (old.GE(RC_START) && old.LT(NURSERY_START))
15 decBuffer.push(old);
16 if (tgt.GE(RC_START))
17 incBuffer.push(tgt);
18 }
19 }

Figure 3: The RC-hybrid Write Barrier

3.4 Cycles
RC-hybrid also collects cycles. We follow the synchronous algo-
rithm from Bacon and Rajan [7]. On every collection, the algorithm
creates a candidate set of potential cycle roots from the decrements
which do not go to zero. It colors these objects purple and puts
them on a list. At the end of a collection, if the purple object is still
live, it computes a transitive closure coloring the root and all reach-
able objects gray and decrementing their reference counts. It then
finds all of the gray roots with reference count zero (cyclic garbage
headers) and recursively frees them and their children with zero
reference counts. For non-garbage objects, it restores the reference
counts.

3.5 Controlling Pause Times
Nursery collection and reference counting times combine to deter-
mine pause times. We can simply control the nursery component
by keeping the nursery size small. Since copying collection is pro-
portional to the amount of live objects, we must not make it too
small or more objects will survive, placing unnecessary load on the
old generation. We show both these behaviors in Section 5.5. In
the worst and pathological case, the bound on the pause must ac-
commodate all nursery objects surviving.

The worst case for the reference counting space is that it is com-
pletely full and all of the objects die at once. For cycle detection,
we can limit the number of potential root cycle (purple) objects
we process at once. However, if the entire old space is one dead
cycle, we will not be able to guarantee a short pause unless we
abandon cycle collection, perform concurrent cycle detection [6,
7], or design an incremental cycle detection algorithm. One of our
benchmarks exhibits this behavior.

To control pause times in other situations, we experiment with
a trigger and buffering of deletions. The trigger computes the vol-
ume of meta data which sums the size of the remembered sets, the
increment buffer, the decrement buffer, and the purple set. When
this sum crosses a limit, we prematurely trigger a collection. We
experiment with fixed size limits in Section 5.5. Another choice is
to make the limit proportional to the heap size.

The final mechanism buffers the decrements and object deletions
until the next collection. During the reference counting phase, we
must first process all of the increments. As we then process the
decrements, find dead objects, and delete them, we can bound the
additional time we spend freeing by simply not processing all the
decrements, leaving them in the decrement buffer for the next col-
lection. We call this mechanism a pause time guideline. It works
for cyclic and non-cyclic garbage. We implement it by examining
a timer after we delete some threshold number of objects in the
reference counting phase.

4. Methodology
This section first describes the Jikes RVM and the characteristics of
the PowerMac G4 on which we do all experiments. We then briefly
overview the range of collectors we study and how they work. As
we pointed out in the previous section, all of these collectors share a
common infrastructure, and reuse the same components unless oth-
erwise noted. We then describe some features of the benchmarks
we use in our experiments.

4.1 The Jikes RVM
We use the Jikes RVM (formerly known as Jalape˜no) for our exper-
iments with a new memory management tool kit JMTk (see Sec-
tion 4.4). Jikes RVM is a high performance VM written in Java
with an aggressive optimizing compiler [2, 1]. Jikes RVM offers
three compiler choices:baseline, a quick non-optimizing compiler
for all methods;optimizing, an aggressive optimizing compiler for
all methods; andadaptive, it initially uses baseline and adaptively
recompiles hot methods with the optimizing compiler [4]. The
adaptive compiler uses sampling to select optimization candidates,
and thus tends to make slightly different choices for each execution
which are influenced by changes in the collector and write barrier.
This non-determinism can make the adaptive compiler a difficult
platform for any detailed study, but we use it for this study because
it places the most realistic load on the system. This introduces vari-

ations in the load on the garbage collector because the write bar-
rier for each collector is part of the runtime system as well as the
program and induces both different mutator behavior and collec-
tor load [9]. Jikes RVM can be configured with various levels of
ahead-of-time compilation. A minimal configuration only precom-
piles those classes essential to bootstrapping the VM (which does
not include the optimizing compiler). We use the configuration
which precompiles as much as possible, including key libraries and
the optimizing compiler. We also turn off assertion checking for
our experiments.1

4.2 Experimental Platform
We perform all of our experiments on a 1 GHz PowerMac G4, with
32KB on-chip L1 data and instruction caches, a 256KB unified L2
cache, 2MB L3 off-chip cache, and 512MB of memory, running
PPC Linux 2.4.19. We run each benchmark five times and use the
fastest of these.

4.3 Collectors
In addition to RC-hybrid, we use four collectors in our study (VGEN,
MS, MS-hybrid and RC). We include two others (SS and FGEN) in
our discussion below for clarity. We first summarize each collector
and then discuss them in more detail.

SS: The semi-space collector uses one policy on the whole heap:
bump-pointer allocation with a collector that traces and copies
live objects.

FGEN: The fixed-size nursery generational collector uses the SS
policy in a fixed-size nursery and an old space.

VGEN: The variable-size nursery generational collector [3] is the
same as FGEN, except that the nursery size varies based on
the size of the old generation, so it triggers collections at
different points.

MS: The mark-sweep collector uses one policy on the whole heap:
a free-list allocator and a collector that traces and marks live
objects, and then reclaims unmarked objects.

MS-hybrid: The generational mark-sweep hybrid uses a SS policy
in a fixed-size nursery, and a MS policy in the old space. It
copies nursery survivors into the old space.

RC: The deferred reference-counting collector uses one policy on
the whole heap: a free-list allocator and a collector that pe-
riodically processes mutator increments and decrements and
deletes objects with reference count of zero.

RC-hybrid: The generational reference counting hybrid uses SS
on a fixed-size nursery, and a RC policy on the old space. It
copies nursery survivors into the old space. See Section 3.

We use several categories to describe these collectors further. The
generationalcollectors divide the heap into a nursery and old gen-
eration and collect each independently. They are FGEN, VGEN,
MS-hybrid, and RC-hybrid. Thewhole heapcollectors, SS, MS,
and RC, scavenge the entire heap on every collection. Purecopying
collectors, SS, FGEN, and VGEN, only ever copy objects, and the
purenon-copyingcollectors are RC and MS. For each collector, we
now describe the collection triggering mechanisms, the write bar-
rier, space overhead, and time overhead. We use the same mech-
anisms to scan objects and enumerate the stack and static pointers
into the heap for all the collectors, although the actions taken on

1This build-time configuration is known asFast.

the enumeration vary. We fix the heap size in our implementation
to insure fair comparisons, and for the purposes of this discussion.

SS:A semi-space collector [11] divides the heap in half,to-space
andfrom-space, reserving half for copying into (since in the worst
case all objects could survive) and half for allocation. It allocates
using a bump pointer into the to-space until it is full. It then swaps
to-space and from-space, scans all of the reachable objects in from-
space, copies them to new to-space, and begins allocating into to-
space again. It does not have a write barrier. Collection time is
proportional to the number of survivors. Its performance suffers
because it repeatedly copies objects that survive for a long time,
and its pause time suffers because it collects the entire heap every
time.

Each of the four generational collectors (FGEN, VGEN, MS-
hybrid and RC-Hybrid) use the same allocation and collection mech-
anisms (and code!) for the nursery with the same resultant space
and time overheads.

FGEN: The fixed-sized nursery two generational collector uses
the SS policy in the nursery and old space. Filling the nursery of
sizeN triggers a collection that copies the survivors to the old gen-
eration. Filling the entire usable heap triggers a whole heap collec-
tion in which FGEN copies survivors into the old generation. To
collect the nursery independently of the higher generation, FGEN
tracks pointers from the older generation into the nursery. We use
a standard generational write barrier [9] that tests if the source is
beyond the fixed nursery limit. Because object lifetimes typically
follow the weak-generational hypothesis, it performs well. Its aver-
age pause time is also good because it is proportional to the nursery
survivors, but its worst case pause time is proportional to collecting
the entire heap.

VGEN: The variable-nursery generational copying collector [3]
makes efficient use of memory by allowing the nursery to grow
to consume all usable memory not consumed by the older genera-
tion. It collects the nursery only when both generations consume
all usable memory. When the older generation consumes all us-
able memory, it collects the entire heap. (In practice, if the nursery
size drops below some small fixed threshold, the heap is considered
full.) This collector has better throughput than the fixed-nursery
generational collector [8]. Its write barrier records old-to-nursery
pointers by testing if the source is beyond the current nursery limit.
Its throughput is even better than FGEN because it utilizes the heap
more fully, but its average pause times suffer because of the nursery
variability. Maximum pause times are similar to FGEN.

MS: A mark-sweep collector organizes the heap space using a
free list. Our implementation partitions blocks of memory into size
classes [17, 25], and allocates an object into the first available slot
in the block of the smallest size class in which it fits. MS allocates
a new block of the requested size class if no memory is available. It
recycles blocks to different size classes only if the block becomes
completely free. It triggers collection when the heap is full. The
collector scans the reachable objects, marks them as reachable by
setting their mark bit in a block table, and reclaims all unreachable
objects. It then flips the sense of the mark bit. The time to collect is
proportional to the number of live objects. The space requirements
include the live objects and fragmentation due to both mismatches
between object sizes and size classes (internal fragmentation), and
distribution of live objects among different size classes (external
fragmentation). Since MS is a whole heap collector, its maximum
pause time is poor and its performance suffers from repeatedly trac-
ing old objects.

MS-hybrid: This hybrid generational collector uses a fixed-size
nursery and a mark-sweep policy for the older generation. When
the nursery fills up, it triggers a nursery collection. If after a nurs-

allocation write barrier RC increments RC decrements
benchmark alloc SS min MS min alloc:SS fast slow ref cnt pure hybrid % pure hybrid %

201 compress 130M 18M 10MB 7:1 118K 6.2% 3.2% 73K 773 1.0% 173K 9K 5.3%
202 jess 296M 18M 10MB 16:1 26M 0.1% 0.4% 26M 38K 0.1% 34M 428K 1.2%

205 raytrace 168M 18M 10MB 9:1 2M 0.3% 2.6% 1M 59K 3.6% 8M 161K 2.0%
209 db 94M 23M 14MB 4:1 33M 0.1% 9.1% 33M 2M 9.0% 36M 3M 8.3%

213 javac 531M 28M 19MB 19:1 21M 2.5% 12.1% 18M 1M 8.3% 29M 2M 9.1%
227 mtrt 182M 21M 21MB 9:1 3M 0.3% 2.3% 1M 59K 3.0% 8M 159K 1.8%
228 jack 650M 16M 18MB 41:1 13M 6.3% 1.6% 10M 80K 0.7% 25M 735K 2.9%

pseudojbb 622M 28M 30MB 35:1 22M 2.3% 18.8% 16M 1M 11.2% 35M 3M 10.2%

Table 1: Benchmark Characteristics

ery collection the entire heap is full, it performs a full heap MS
collection over the old space. The write barrier thus only remem-
bers pointers from the old space to the nursery. By exploiting the
generational hypothesis, MS-hybrid mitigates the drawbacks of MS
for throughput and average pause times, but full heap collections
drive up maximum pause times. It uses space more efficiently than
FGEN and VGEN because it has a non-copying old space.

RC: The pure deferred reference-counting collector organizes
the heap using the same free-list allocator as MS. The write bar-
rier remembers all new pointers to an object in an increment buffer,
and over-written pointers to objects in a decrement buffer. Collec-
tion time is proportional to number of dead objects, but the mutator
load is significantly higher than the generational collectors since it
records one or two entries for every heap pointer store.

4.4 JMTk
Together with researchers at IBM Watson, we recently developed a
new composable memory management framework (JMTk) for ex-
ploring garbage collection and memory management algorithms.
JMTk separates allocation and collection policies, then mixes and
matches them. It also provides a number of mechanisms shared be-
tween algorithms such as write barriers, pointer enumeration, and
sequential store buffers for storing remembered sets, increments,
etc. The heap it manages includes all dynamically allocated ob-
jects, inclusive of the program, compiler, and itself (e.g., the col-
lector meta data such as remembered sets). It contains implemen-
tations of all of the collectors we study, and hybrids share the non-
hybrid components. Because of the shared mechanisms and code
base, our experiments truly compare policies.

For our free-list allocators, we use a range of size classes similar
to but smaller than the Lea allocator [17]. We selected size classes
with the goal of worst case internal fragmentation of 1/8. The size
classes are arranged in 4, 8, 16, 32, 256, and 1024 byte steps, so
small, word-aligned objects get an exact fit. All objects 8KB or
larger get their own block.

JMTk implements the large object space (LOS) as follows. For
pure free-list allocators (MS and RC), we just allocate large objects
directly. For hybrid collectors with a free-list in the older genera-
tion, we allocate (pretenure) objects that are 64K or larger directly
onto the free-list in the old space. For SS, FGEN, and VGEN, we
add a MS space only for these objects. During full heap collections,
we scan and collect the large objects.

4.5 Boot Image
There is one limitation in our implementations of RC and RC-
hybrid with respect to the Jikes RVM boot image. The boot im-
age contains various objects and precompiled classes necessary for
booting Jikes RVM, including the compiler, classloader and other
essential elements of the virtual machine. None of the Jikes RVM
collectorscollect the boot image objects. Jikes RVM’s tracing col-
lectors (including SS, VGEN, FGEN, MS, and MS-Hybrid) trace
through the boot image objects whenever they perform a full heap

collection. We have not implemented reference counting of boot
image objects.2 Since none of the reference counting collectors
ever scan the entire heap, they do not scan the boot image, and thus
dead boot image objects that point into the heap cause excess re-
tention (our write barrier records increments from those pointers).
Bacon et al. have this same limitation in their reference counting
algorithms, which we discovered by examining the publicly avail-
able source code [6].

4.6 Benchmarks
Table 1 shows key characteristics of each of our benchmarks. We
use seven taken from the SPEC JVM benchmarks, andpseudo-
jbb, a slightly modified variant of SPEC JBB2000 [21, 22]. Rather
than running for a fixed time and measuring transaction throughput,
pseudojbb executes a fixed number of transactions. This modi-
fication made it possible to compare running times under a fixed
garbage collection load.

For these results, we compile each benchmark with the Jikes
RVM adaptive compiler. For all of the generational collectors, we
inline the write barrierfast pathwhich filters out stores to nurs-
ery objects and thus does not record between 93.7% to 99.9% of
pointer updates. Depending on the collector, theslow-pathmakes
the appropriate entries into the remembered set, increment buffer,
and/or decrement buffer. The semispace and pure mark-sweep col-
lectors have no write barrier. Since the write barrier for the pure
reference counter is unconditional, it is fully inlined.

The ‘alloc’ column in Table 1 indicates the total number of bytes
allocated for each benchmark. The next two columns indicate the
minimum heaps in which the benchmarks can run with the SS and
MS collectors respectively (this heap size is inclusive of the mem-
ory requirements of the adaptive compiler compiling the bench-
mark). The fourth column indicates the ratio between total allo-
cation and SS minimum heap size, giving some indication of the
garbage collection load for each benchmark.

The write barrier columns show for RC-hybrid with a 4MB nurs-
ery: the number of times the write barrier is invoked (‘fast’), the
frequency with which the slow-path is taken in order to remem-
ber pointers into the nursery (‘slow’, line 11 of Figure 3), and the
frequency with which RC-hybrid executes the reference counting
portion of its write barrier (‘ref cnt’, lines 13–17). The final six
columns indicate the number of increments and decrements per-
formed by RC and RC-hybrid respectively for each of the bench-
marks.

These results show that the nursery effectively reduces the load
on the reference counter, and that their overall contribution is low
with respect to all pointer stores.

5. Results
2This implementation would require statically establishing correct
reference counts for all boot image objects, and then writing appro-
priate initial values into the headers of those objects at boot image
writing time.

We now compare RC-hybrid with other collectors. We discuss
throughput and pause time. For pause time, we present average,
maximum, and minimum mutator utilization results. We study
in detail the influence of cycle garbage detection on213 javac,
which contains a lot of cyclic job. For two sample programs, we
explore many variations in heap size in Section 5.4. As our de-
fault RC-hybrid configuration, we use a nursery size of 4MB, a
pause time guideline of 40ms, and a meta-data limit of 512K (see
Section 3.5). Section 5.5 shows the sensitivity of total time and
maximum pause times to variations in these parameters.

We begin by comparing RC-hybrid and MS-hybrid. Figure 4
compares throughput, average pause time, and maximum pause
times for the heap sizes shown in Figure??c). We choose a pro-
gram specific, relatively large heap size in which MS-hybrid would
execute at least one full heap collection. For205 raytrace and
227 mtrt this was not possible.

We then compare with VGEN, MS, RC as well as MS-hybrid.
These experiments were done at different heap sizes because sev-
eral of the collectors, which are not as space efficient as MS-hybrid,
cannot complete in the same heap sizes. Table 2 shows through-
put and pause times for the VGEN, MS, RC, MS-hybrid, and RC-
hybrid collectors, along with the heap sizes we used in that experi-
ment. A number of the collectors that must by design perform full
heap collections do not, which misrepresents a typical maximum
pause time for them.

5.1 Throughput
RC-hybrid gives throughput comparable to MS-hybrid and VGEN,
the high throughput collectors. Figure 4 shows that with the excep-
tion of 213 javac (discussed in Section 5.3), RC-hybrid is within
10% of MS-hybrid, and often within 3%. Comparing against pure
MS and RC, Table 2 shows that RC-hybrid matches or outperforms
MS and RC on all benchmarks, outperforming each of them by
more than 50% in some benchmarks.

This result is not surprising, because generational collectors such
as MS-hybrid and VGEN are also designed to exploit the typical
space and time behavior of young and old objects. The space and
allocation-time advantages of a bump-pointer / freelist hybrid ben-
efit both MS-hybrid and RC-hybrid. The collection-time advan-
tage of generational collection also benefits both hybrids, as well
as VGEN. A comparison of MS and RC in Table 2 confirms the
conventional wisdom that the trade-off between lower collection
time and higher mutator overhead inherent in reference counting
leads to an overall reduction in throughput. However, RC-hybrid
dramatically limits its exposure to this trade-off by using reference
counting only with the low-maintenance older objects (Table 1).
The performance of RC-hybrid is also impacted by a 4 byte per
object overhead required by the reference counter. We have not
yet implemented the obvious optimization of excluding that header
from nursery objects.

5.2 Pause Times
RC-hybrid has very good average and maximum pause times, with
the exception of 213 javac (discussed below). In fact, Table 2
shows that it has better average and maximum pause times than
pure RC because it is exposed to less load. Figure 4 shows that MS-
hybrid performs full heap collections for most of the benchmarks,
and attains the expected poor maximum pause time behavior due it
its mark-sweep of the full older generation. On two of the bench-
marks, 205 raytrace and 227 mtrt, MS-hybrid did not perform
a full heap collection at the selected heap size and could not run to
completion at the next smaller heap size. Hence for these bench-
marks MS-hybrid’s maximum pause time reflects the modest cost

0.0

0.5

1.0

1.5

2.0

_ 2 01
_ c o

mp
re

s s

_ 2 02
_ je s

s

_ 2 05
_ ra

y tr
a c e

_ 2 09
_ db

_ 2 13
_ ja v

a c

_ 2 27
_ mt

r t

_ 2 28
_ ja c

k

p s e
u do

jbb

Tim
e(

rel
ati

ve
to

bes
t)

MS-hybrid

RC-hybrid

(a) Throughput.

0

100

200

300

400

500

600

_ 2 01
_ c o

mp
re

s s

_ 2 02
_ je s

s

_ 2 05
_ ra

y tr
a c e

_ 2 09
_ db

_ 2 13
_ ja v

a c

_ 2 27
_ mt

r t

_ 2 28
_ ja c

k

p s e
u do

jbb

Pau
se

Tim
e(

ms)

MS-hybrid

RC-hybrid

(b) Pause time.

heap best MS-hybrid RC-hybrid
used time norm pause ms norm pause ms

benchmark MB sec time avg max time avg max

201 compress 27M 95.4 1.01 84 233 1.00 12 37
202 jess 7M 21.3 1.00 4 257 1.03 5 34
205 raytrace 8M 28.6 1.00 4 36 1.03 5 35
209 db 12M 38.4 1.00 18 338 1.09 7 62
213 javac 60M 26.9 1.00 20 418 1.21 38 555
227 mtrt 11M 29.1 1.00 4 53 1.07 4 52
228 jack 18M 30.6 1.00 6 245 1.03 6 37

pseudojbb 11M 47.5 1.00 20 455 1.05 27 45

(c) Tabulated results.

Figure 4: A comparison of MS-hybrid and RC-hybrid, showing
normalized execution time, average pause time and max pause
times.

of a nursery collection. In Table 2 some of the heap sizes are larger,
so MS-hybrid is less exposed to full heap collections. However, the
substantial cost of full heap collections is clear in the pause time
results for MS, and to a lesser extent in VGEN, which performs
full heap collections in a number of the benchmarks, and suffers
the maximum pause time consequence.

Although maximum pause time is an important measure of re-
sponsiveness, a tight cluster of short pauses may be just as damag-
ing to an application’s progress as a single longer pause. Minimum
mutator utilization (MMU) characterizes pause time behavior with
respect to the percentage of time in an interval in which the mu-
tator does useful work. The intuition behind MMU is to consider
responsiveness with respect to a certain minimum CPU utilization
requirement of the application. The MMU curve then identifies
the maximum period that the application’s requirement will not be
satisfied. For example, in Figure 5a), an application that required
at least 50% of the CPU (MMU= 0.5) would experience a pause
of around 10msec from RC and RC-hybrid, and a pause of around
40msec from MS-Hybrid and VGEN. Thex-intercept of an MMU
curve reflects maximum pause time while the asymptoticy-value
reflects total mutator utilization. These MMU graphs illustrate that
RC-hybrid performs very well, both in terms of responsiveness,

heap best MS RC VGEN MS-hybrid RC-hybrid
used time norm pause ms norm pause ms norm pause ms norm pause ms norm pause ms

benchmark MB sec time avg max time avg max time avg max time avg max time avg max

201 compress 27 95.4 1.00 167 394 1.00 3 14 1.01 102 265 1.01 84 233 1.00 12 37
202 jess 10 20.5 1.77 151 394 1.62 53 59 1.05 5 314 1.00 5 37 1.02 6 37

205 raytrace 13 28.2 1.21 174 395 1.17 51 161 1.00 4 37 1.00 7 57 1.02 7 58
209 db 20 37.2 1.09 207 395 1.37 46 99 1.00 50 419 1.00 16 78 1.07 28 74

213 javac 78 25.8 1.19 289 395 1.88 57 478 1.00 41 492 1.02 19 39 1.19 42 555
227 mtrt 23 28.7 1.15 212 395 1.20 42 52 1.00 7 53 1.01 10 56 1.02 11 59
228 jack 18 30.5 1.35 156 395 1.35 45 50 1.01 7 298 1.00 6 246 1.03 6 37

pseudojbb 110 46.1 1.13 431 609 1.44 56 59 1.00 43 618 1.03 20 457 1.08 27 45

Table 2: A comparison of MS, RC, VGEN, MS-hybrid and RC-hybrid, showing normalized execution time, average pause time and
max pause times.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 100000 1e+06 1e+07 1e+08

M
M

U

Granularity (usec) (log)

RC-hybrid
MS-hybrid

RC
VGEN

(a) 228 jack

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 100000 1e+06 1e+07 1e+08

M
M

U

Granularity (usec) (log)

RC-hybrid
MS-hybrid

RC
VGEN

(b) pseudojbb

Figure 5: Minimum mutator utlization (MMU).

where it matches or exceeds RC, and in terms of throughput, where
it is competitive with MS-hybrid and VGEN. This mixing of the
best of throughput and responsiveness is quite clear in Figure 5a),
where the RC-hybrid curve follows RC’s good response time curve
and then ‘jumps’ to the MS-hybrid/VGEN curve to achieve good
throughput.

5.3 Cycle Detection
In our initial implementation of RC-hybrid we implement a sim-
ple, synchronous cycle detection algorithm [7] which we describe
in Section 3.4. Table 3 shows that for213 javac, this algorithm
slows RC-hybrid down and leads to very large pauses.213 javac
generates a large amount of cyclic garbage [6]. The very large
pause is a result of the non-incremental nature of the synchronous
cycle detection algorithm we use (any graph of potentially cyclic
garbage must be traversedcompletelybefore the mutator can re-

sume).

213 javac time avg p max p

With cycle detection 1.17 43 557
Without cycle detection 1.05 23 40

Table 3: Performance of RC-hybrid with and without cycle de-
tection.

As we point out in Section 3.5, this problem could be addressed
either through the implementation of an incremental or concurrent
cycle detection [6]. Because RC-hybrid reduces the load on the
reference counting system by 89%–99% (see Table 1) we expect
concurrent cycle collection mechanism to impact the performance
of RC-hybrid much less than in a pure reference counting system.
RC-hybrid’s 58% performance advantage over RC on213 javac
confirms this view (see Table 2).

5.4 Sensitivity to Heap Sizes
In Figure 6 we see the impact of heap size on both throughput and
responsiveness for RC-hybrid, MS-hybrid and VGEN. The impact
on throughput is unsurprising—as heap space diminishes, each of
the collectors must do more work and so the total throughput de-
grades until they are unable to satisfy the application’s requests.
Both of the hybrids are able to operate in smaller heaps, most
likely because their free-list older generation is more space efficient
that the copying older generation of VGEN. We speculate that RC-
hybrid is able to run in a smaller heap that MS-hybrid on this bench-
mark because the continuous reclamation of the reference counter
leads to less fragmentation in the free list, as compared to long pe-
riods of allocation followed by occasional freeing in a full heap
collect.

The impact of heap size on maximum pause time is more inter-
esting. VGEN and MS-hybrid suffer sudden and massive degrada-
tions in pause time behavior when they perform full heap collec-
tions. With small, short running, benchmarks such as those in the
SPEC JVM suite, full heap collections can be avoided by simply
making the heap bigger. The pause time behavior of VGEN grad-
ually degrades as the heap becomes much larger. This is because
VGEN has a variable size nursery, which can be as large as half of
the heap. Although much lower survival rates mean that full-heap
nursery collections are much cheaper than full heap older genera-
tion collections, the maximum pause for VGEN will nonetheless
grow as the heap size grows. Interestingly RC-hybrid’s maximum
pause times shrink as the heap gets smaller. This is because the
nursery gets smaller, and as it does so, reference counting collec-
tions become more frequent, but shorter. So although maximum
pauses are better, more frequent, shorter, collections degrade over-
all mutator utilization.

5.5 Collection Triggers

1

1.05

1.1

1.15

1.2

1.25

1.3

1 2 3 4 5 6

21

22

23

24

25

26

6MB 12MB 18MB 24MB 30MB36MB

T
ot

al
 ti

m
e

re
la

tiv
e

to
 b

es
t r

es
ul

t (
lo

w
er

 is
 b

et
te

r)

T
ot

al
 ti

m
e

in
 s

ec
on

ds

Heap size relative to minimum heap size (log)

RC-hybrid
MS-hybrid

VGEN

(a) Throughput

100

1 2 3 4 5 6

6MB 12MB 18MB 24MB 30MB 36MB

M
ax

im
um

 p
au

se
 ti

m
e

in
 m

se
c

(lo
g)

Heap size relative to minimum heap size (log)

RC-hybrid
MS-hybrid

VGEN

(b) Pause time

Figure 6: Varying heap sizes for 202 jess .

For Table 4, we experimented with settings for the collection trig-
gers described in Section 3.5 to explore their effects on total time
and the maximum pause time. Our base line configuration uses a
nursery size of 4MB, a pause time guideline of 40ms, and a meta-
data limit of 512K.

Except forpseudojbb, smaller nursery sizes change total exe-
cution time by very little, and even speed it up by 1 or 2% in a few
cases. Inpseudojbb, a 1MB nursery, which is below 1% of the
total heapsize degrades total performance by 9%. The small nurs-
ery is the most effective mechanism for reducing maximum pause
times (and average).213 javac does not run in small nurseries,
and we believe the large number of promoted cycles with the pause
time guideline prevents reference counting from making progress.

The pause time guideline trigger and the meta-data limit hardly
change total time (except for213 javac). Since we apply the
pause guideline after the nursery collection and the first set of decre-
ments, a small value enables only a small set of deletions, and very
little cycle detection. For213 javac with a small trigger value,
it again fails to find enough free memory to execute. Its relative
performance actually increases when we disable the trigger be-
cause it reclaims dead cycles more efficiently in larger increments.
pseudojbb shows the most value from this trigger, and its maxi-
mum pause times are directly correlated with the guideline. The
maximum pause times of the other programs remains exactly the
same. Varying the meta data limit also changes the pause times
for 213 javac and pseudojbb. 213 javac runs out of control
without this limit; its total time increases by 30% and its maximum
pause time by a factor of 10 as it reclaims cycles and tries to re-
claim cycles that are not yet dead. The smaller 256K meta data

limit actually increases the max pause time forpseudojbb. We
hypothesis that it triggers collections too often and promotes more
nursery survivors that die in the reference counting space. s

6. Conclusion
The tension between responsiveness and throughput has been long-
standing in the garbage collection literature. Until now, collectors
have either exhibited good throughput performance or good respon-
siveness, but not both.

We describe RC-hybrid, a new garbage collector that by care-
fully matching allocation and collection policies to the behaviors of
older and younger object demographics, delivers both good through-
put and good responsiveness. Key to our algorithm is a general-
ization of deferred reference counting which allows mutations to
nursery objects to be safely ignored, reducing the reference count-
ing load by around 90%.

7. Acknowledgements
We want to thank IBM Research and in particular Perry Cheng with
whom we designed and implemented the JMTk. Without JMTk and
the Jikes RVM, this work would not have been possible. We also
thank Michael Hind and David Grove for supporting this work.

8. REFERENCES
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and
M. Mergen. Implementing Jalape˜no in Java. InProceedings
of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications, OOPSLA
’99, Denver, Colorado, November 1-5, 1999, volume 34(10)
of ACM SIGPLAN Notices, pages 314–324. ACM Press, Oct.
1999.

[2] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalape˜no
virtual machine.IBM System Journal, 39(1):211–238,
February 2000.

[3] A. W. Appel. Simple generational garbage collection and fast
allocation.Software Practice and Experience,
19(2):171–183, 1989.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalape˜no JVM. InOOPSLA’00
ACM Conference on Object-Oriented Systems, Languages
and Applications, Minneapolis, MN, USA, October 15-19,
2000, volume 35(10) ofACM SIGPLAN Notices, pages
47–65. ACM Press, October 2000.

[5] C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A
comparative evaluation of parallel garbage collectors. In
Languages and Compilers for Parallel Computing, 14th
International Workshop, LCPC 2001, Cumberland Falls, KY,
USA, August 1-3, 2001, Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[6] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and
S. Smith. Java without the coffee breaks: A nonintrusive
multiprocessor garbage collector. InProceedings of the ACM
SIGPLAN’01 Conference on Programming Languages
Design and Implementation (PLDI), Snowbird, Utah, May,
2001, volume 36(5) ofACM SIGPLAN Notices. ACM Press,
June 2001.

[7] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in
reference counted systems. InProceedings of 15th European

Nursery Size Pause Time Guideline MetaData Limit
default 1MB 2MB ∞ 20ms 80ms ∞ 256K 2MB ∞

benchmark time max time max time max time max time max time max time max time max time max time max
201 compress 1.01 37 1.00 18 1.00 29 1.00 43 1.01 37 1.01 37 1.01 37 1.01 37 1.01 37 1.01 37

202 jess 1.01 34 1.00 18 1.02 29 1.01 34 1.01 34 1.01 34 1.01 34 1.01 34 1.01 34 1.01 34
205 raytrace 1.01 35 1.00 19 1.00 32 1.01 35 1.01 35 1.01 35 1.01 35 1.01 35 1.01 35 1.01 35

209 db 1.00 62 1.01 41 1.02 38 1.00 70 1.00 62 1.00 62 1.01 62 1.00 62 1.00 62 1.01 62
213 javac 1.12 556 1.00 363 1.12 358 1.08 235 1.12 299 1.42 3062 1.32 883
227 mtrt 1.00 52 1.02 18 1.00 32 1.00 54 1.00 52 1.00 52 1.00 52 1.00 52 1.00 52 1.00 52
228 jack 1.02 37 1.05 18 1.02 29 1.00 43 1.02 37 1.02 37 1.02 37 1.02 37 1.02 37 1.02 37

pseudojbb 1.04 45 1.13 45 1.07 44 1.00 259 1.04 37 1.04 87 1.04 115 1.03 218 1.03 44 1.04 67

Table 4: Sensitivity to variations in collection triggers (defaults are 4MB nursery, 40ms pause time guideline, and 1M meta data
limit).

Conference on Object-Oriented Programming, ECOOP
2001, Budapest, Hungary, June 18-22, 2001.

[8] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock.
In Proceedings of SIGPLAN 2002 Conference on
Programming Languages Design and Implementation,
PLDI’02, Berlin, June, 2002, volume 37(5) ofACM
SIGPLAN Notices, Berlin, Germany, June 2002. ACM Press.

[9] S. M. Blackburn and K. S. McKinley. In or out? Putting
write barriers in their place. InProceedings of the Third
International Symposium on Memory Management, ISMM
’02, Berlin, Germany, volume 37 ofACM SIGPLAN Notices.
ACM Press, June 2002.

[10] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel
garbage collection.ACM SIGPLAN Notices, 26(6):157–164,
1991.

[11] C. J. Cheney. A non-recursive list compacting algorithm.
Communications of the ACM, 13(11):677–8, Nov. 1970.

[12] P. Cheng and G. Belloch. A parallel, real-time garbage
collector. InProceedings of the ACM SIGPLAN’01
Conference on Programming Languages Design and
Implementation (PLDI), Snowbird, Utah, May, 2001, volume
36(5) ofACM SIGPLAN Notices, pages 125–136. ACM
Press, June 2001.

[13] G. E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655–657, Dec. 1960.

[14] L. P. Deutsch and D. G. Bobrow. An efficient incremental
automatic garbage collector.Communications of the ACM,
19(9):522–526, September 1976.

[15] R. L. Hudson and J. E. B. Moss. Incremental garbage
collection for mature objects. In Y. Bekkers and J. Cohen,
editors,Proceedings of the First International Workshop on
Memory Management, IWMM’92, St. Malo, France, Sep,
1992, volume 637 ofLecture Notes in Computer Science.
Springer-Verlag, 1992.

[16] R. E. Jones and R. D. Lins.Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley, July
1996.

[17] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[18] R. D. Lins. Cyclic reference counting with lazy mark-scan.
Information Processing Letters, 44(4):215–220, 1992. Also
Computing Laboratory Technical Report 75, University of
Kent, July 1990.

[19] S. Nettles and J. W. O’Toole. Real-time replication garbage
collection. InProceedings of SIGPLAN 1993 Conference on
Programming Languages Design and Implementation, pages
217–226, Albuquerque, NM, June 1993.

[20] T. Printezis and D. Detlefs. A generational

mostly-concurrent garbage collector. InProceedings of the
International Symposium On Memory Management (ISMM),
Minneapolis, U.S.A, 15-16 October, 2000. ACM Press, 2000.

[21] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03 edition, March 1999.

[22] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001.

[23] D. Stefanović. Properties of Age-Based Automatic Memory
Reclamation Algorithms. PhD thesis, University of
Massachusetts, 1999.

[24] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm.ACM SIGPLAN
Notices, 19(5):157–167, April 1984.

[25] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and critical review. In
H. Baker, editor,Proceedings of International Workshop on
Memory Management, IWMM’95, Kinross, Scotland, volume
986 ofLecture Notes in Computer Science. Springer-Verlag,
Sept. 1995.

