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Abstract

We examine the problem of a buyer who wishes to purchase and combine
n objects owned by n individual owners to realize a higher value. The owners
are able to delay their entry into the sale process: They can either sell now
or sell later. Among other assumptions, the simple assumptions of competi-
tion —that the presence of more owners at point of sale reduces their surplus—
and discounting lead to interesting results: There is costly delay in equilib-
rium. Moreover, with sufficiently strong competition, the probability of delay
increases with n. Thus, buyers who discount the future will face increased
costs as the number of owners increases. The source of transactions costs is the
owners’ desire to dis-coordinate in the presence of competition. These costs are
unrelated to transactions costs currently identified in the literature, specifically
those due to asymmetric information, or public goods problems where players
impose negative externalities on each other by under-contributing.



1 Introduction

Consider a situation where a buyer wishes to combine many objects that are sep-
arately owned by different sellers. These objects could be patents, land, property
rights over pollution, labor contracts, or any objects that can be combined to yield
greater value to a buyer than the sum of values of the individual sellers. Such surplus
value presents a potential problem from the buyer’s perspective: Owners may per-
ceive a strategic advantage from delaying entry into the sale process. For example, if
owners wait until their object is one of the few remaining to be sold, then they might
perceive an opportunity to extract a greater share of the buyer’s surplus. We call
this situation the holdout problem, and the purpose of our paper is to analyze this
problem.

We show that the relatively mild assumption of competition —that the payoff to a
player from sale is decreasing in the number of fellow players who are present— (along
with a weak additional assumption) is sufficient to lead to a positive probability of
equilibrium delay (see Proposition 3). Moreover, we demonstrate that if competition
at point of sale becomes severe with sufficiently large numbers of players, then an
increase in the number of players leads to an increase in the probability that parties
will delay sale (see Theorem 8). Our theory therefore derives a new source of trans-
actions costs as an endogenous phenomena: With discounting, the buyer faces costly
and increasing delay as the number of sellers increases.

Competition at point of sale is captured in a simple way in our model. Consider
Figure 1, which represents what might be called a ‘dis-coordination’ game.! Players
1 and 2 independently make a binary choice; either 1 — to sell now, or 0 — to sell
later. If both players end up selling now, they receive 4 each, thus undermining

their payoff relative to the situation where they make separate deals with the buyer.

! Binmore (1992) refers to a similar kind of game as the “Australian Battle of the Sexes”. In this
game the cooperative and noncooperative payoff regions are “upside-down ” versions of those for
the original Battle of the Sexes game.
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Figure 1: Competition at Point of Sale

Being away from the other player is beneficial, because it reduces the number of
others who strike a deal with the buyer at any one time. There are two pure strategy
Nash equilibria, (0,1) and (1,0), and a mixed strategy Nash equilibrium p* = 1. Pure
strategy equilibria have the seller’s joint payoff increase from 8 to 11 by avoiding (1,1)
in the example, and the buyer’s payoff is reduced accordingly. Our main contribution
is to show that with discounting and competition, an increase in the number of players
in such a game can lead to an increase in the equilibrium probability of delay, and
hence an increased cost to the buyer.

Our model might appear at first to be analogous to the literature on the public
goods contribution problem (Bergstrom, Blume and Varian (1986)), the problem of
the commons (Cornes and Sandler (1982)), or indeed the corporate takeover problem
(Grossman and Hart (1980)). While the inefficiency result for large n has a similar
flavor, our analysis is quite different to those problems. Figure 2 illustrates a simple
‘public goods contribution’, or ‘problem of the commons’ game. Choice 1 represents a
high contribution, and choice 0 a lower contribution. The dominant strategy equilib-
rium (0,0) is jointly inefficient as players do not account for the negative externality
they impose on each-other through their choice of 0. In contrast, the equilibria in
the inter-temporal coordination game of Figure 1 yield sellers the highest possible
joint payoff. Instead, it is the buyer who suffers a reduction in utility, because the

buyer must pay more in aggregate and suffers delay. Indeed, we derive a model in



1 0
1| (59 | (2,6)
0| (6,2 | (3,3)

Figure 2: Public Goods Contribution Game

which delay increases with the number of sellers —to the detriment of the buyer who
has a preference for consumption today. The efficient coordination between sellers
is in stark contrast to the inefficiencies generated between players who donate funds
towards public goods, or between farmers who share a common.

The paper by Segal (1999) provides an excellent benchmark against which to
distinguish our contribution from the literature on free riding in the public goods
problem. Among other things, Segal examines a very general setting that nests
a large set of papers in this area. He examines a situation in which a principal
makes bilateral contracts with N agents. The agent’s payoffs are affected by other
agents trade with the principal — regardless of whether or not they contract with the
principal. For example, the agents might own land that is to be sold to a principal who
wishes to build a shopping centre. If an agent does not contract with the principal,
then her utility might be increased or decreased due to her proximity to the shopping
centre, depending on her tastes. In Segal’s framework, the buyer in our model is the
principal, and the agents are the sellers. However, we examine a situation in which
the principal is not able to make an initial contract offer to the sellers. That is, the
sellers are able to avoid dealing with the buyer in order to gain a strategic advantage
in later contracting. Our contracting environment is harsher than Segal’s. Our buyer
cannot write contingent contracts, nor can our buyer make initial contract offers.

All the buyer can do is operate on a spot market should the sellers decide to enter



the sales process. Thus, the focus of our paper is pre-contractual strategic behavior,
rather than behavior within a contracting framework.

In their seminal paper, Mailath and Postlewaite (1990) consider a public goods
contribution game with private values and show that as the number of players in-
creases it becomes asymptotically impossible to implement the first best.? The inef-
ficiency is derived from the private information nature of the problem. In our model,
however, decreased efficiency due to delay arises from the greater difficulty that sellers
face in “dis-coordinating ” their actions when the number of sellers increases.

Although the holdout problem that we analyze is related to the literature on coor-
dination games, the questions we examine are different. The coordination literature®
examines games that exhibit multiple Nash equilibria which are Pareto-rankable (see
for example, Schelling (1960), Harsanyi and Selten (1988), Katz and Shapiro (1985),
Kohlberg and Mertens (1986)). The goal of this literature has been to examine how
players will select among the equilibria. In our model, simple competition at the
bargaining table is sufficient for the existence of a unique symmetric mixed-strategy
equilibrium in the n—player (dis)coordination game (see Proposition 4). This result
is very useful, since it avoids the multiplicity problem of the coordination literature,
and allows us to focus instead on comparative statics as a point of departure from

this literature.

2The reason is as follows. For provision, it is necessary that some agents contribute more than
their per-capita cost of provision. An agent, however, will not contribute truthfully according to
her valuation unless this agent is pivotal. In a large economy, the probability of an individual agent
being pivotal is very small and therefore, all agents net utilities must be nearly constant, which
implies the probability of provision goes to zero.

3The term was coined by Thomas Schelling (1960, ch.4) to refer to games with multiple Nash
equilibria yielding identical payoffs. A standard example incudes two automobiles approaching on
a road. Each driver must select a side on which to drive. Equilibrium obtains when they select
opposite sides. There are two such equilibria with identical payoffs.



2 Model

There are n + 1 players. Player 0, the buyer, is interested in purchasing n objects,
and realizing value from the entire set. The objects could be, for example, blocks of
land, patents, other firms, labor contracts or property rights over pollution —among
other things. The objects are owned by n players (or owners) i = 1,2, ..., n. Ideally,
the buyer would like to engage each of the sellers together, make a take-or-leave-it
offer, and realize the full value of the combination. However, an owner may find it in
her interests to avoid selling to player 0, and perhaps delaying sale for strategic ad-
vantage. Thus, each player i = 1,2, ..., n simultaneously (and independently) chooses
her probability p; € [0, 1] of selling at date A. With probability 1 — p;, player i delays
sale until date B. We assume that the buyer is passive in this process, and cannot
influence the probability that a player sells at date A. In other words, the buyer is
not strategic in this model; we leave such considerations for future work. In addition,
each player ends up selling either at date A or date B for certain. This captures the
assumption that it is not credible for player 0 to refuse to buy an item that delivers
positive value.

We make a key simplifying assumption throughout the paper: The buyer is not
able to write contracts that are contingent on the sale of any of the objects. We do
not make this assumption because we believe that it always holds. Rather, we make
it because there is an important class of circumstances in which there is at least a
subset of objects where such contracts will not be feasible. *

Let t; € {0,1} denote whether player i sells her object at date A. The value t; = 1
indicates that the player sells at date A, and 0 indicates that the player sells at date

B. The notation is chosen so that 1 indicates presence at date A, and 0 indicates

‘For example, suppose the buyer offers to pay an owner $P for object X, if the owner of object Y
accepts $Q. The actual transfer of funds between the buyer and each seller cannot be observed, so the
contract on transfer price might not be enforceable. Similarly, suppose the buyer offers to purchase
only in the event that both all owners agree to sell their objects. This may not be credible where
the objects are complex and difficult to describe; for example, such difficulties could be encountered
with labor contracts, complicated pieces of machinery, or complex combinations of assets like firms.



absence at date A, and therefore presence at date B. Thus, t; is the outcome of 7's
choice p; of the probability of selling at date A. Since we assume that players must
sell at either of the two focal dates Aor B, a player could end up selling at the same
time as a multitude of other sellers. To capture this, the payoff to player ¢ from
sale when the outcome is t = (t1,t2,...,t,) is s; : {0,1}" — R. Thus, for example,
si(1,1,...,1) is the payoff when all players present their objects for sale at date A,
and s; (0,0, ...,0) is the payoff when all players sell their objects at date B.
Let m; : {0,1}™ x [0,1]™ — R denote player i’s expected payoff. Therefore

T = Z [(1—=t1) (1= p1) +tapa] - [(1 = t2) (1 = p2) + tapy]
te{0,1}»

(U= t) (L= pa) +tapa] - 5 (Lt s ).

The expressions [(1 — ;) (1 — p;) +t;pj],J = 1, ...,n are the probabilities of outcomes
t1,ts, ..., t, respectively, and s;(t1, ..., t,,) is the corresponding payoff. For example with
probability p; - ps - py,, outcome (1,1, ..., 1) occurs, and player ¢ receives s; (1, 1,...,1).
Similarly, outcome (¢4, ..., t,) = (1,0, 1, ..., 1) delivers payoff s; (1,0, 1, ..., 1) with prob-
ability p; - (1 — p2) - p3 - - - Py ete.

A Nash equilibrium of the game is a vector of probabilities (p},ps,...,p;) that
satisfies p; € argmax m;(p;, p*;) for all . Assuming an identical payoff function s for
each 7, the set of symmetric Nash equilibria are given by consideration of the zeros
and corner solutions of the derivative of expected profit with respect an agent’s choice

of probability:

g—;l = > [ —t) (A =p)+tap] - [(1 = 1) (1 = p) + tap] (1)
t_1€{0,1}n-1

(L= t) (1= )+ tap] - [5 (1 toy e t) — 5 (0, tay o t)]

Note that this expression is the difference in expected payoff to the player from

being present at date A for certain as opposed to date B for certain (i.e., it is the



probability-weighted sum of payoff differences over all states). Clearly if the expres-
sion is positive, then p = 1; if it is negative p = 0, and the roots of (1) yield interior
solutions. In the appendix we demonstrate the existence of a symmetric Nash equilib-
rium to this general problem. This paper examines the determinants of the symmetric
Nash equilibrium p*. In particular, we wish to solve the problem of how p* changes as
the number of players increases. The highly stylized specific examples immediately

below help us understand the structure of this problem.

2.1 Examples

The following two examples (Extreme Co-operation and Extreme Competition) are
very stylized, and are for illustrative purposes only. The third case (Aggregate Count
Payoffs) is more general, and is the model we adopt to explore the question of holdout

more generally.

2.1.1 Extreme Cooperation

Suppose that whenever all of the players are present at sale, at any one time, each
individual player can extract the value V4 of her block of land at date A, and V? at
date B. This captures — in reduced form — the idea that sellers are somehow able to
collude on the sale price. When less than the full number of players are present, the
payoff is v < max(V4, VP) per player. From equation (1) p* = 1, and p* = 0 could

be pure strategy Nash equilibria.” This is straightforward, since

VA—vfort;=1,5>1
s(1,t,.yty) —s(0,ta,.ty) = v—VBfort;=0,j>1,
0 otherwise

which yields g—gi > 0 for p* = 1, and g—;ji < 0 for p* = 0. We might expect players

coordinate on the Pareto dominant equilibrium. For example, if V4 > V¥ due to

5There are other Nash equilibria, where players have no strict incentive to deviate. For example
this is true, if half the players sell at date A, and the other half sell at date B, since deviation yields
the same payoff v.



discounting, then this would be p* = 1. With this kind of extreme cooperation at

point of sale, the model predicts that there will be no holdout problem.
2.1.2 Extreme Competition

An extreme form of competition is captured by the assumption that the presence of
at least one other player at point of sale limits a player’s return to zero. It is extreme
in the sense that payoffs could come from a reduced form in which players compete
vigorously. Again note that this example is for illustrative purposes only; we do not
claim that such severe competition is necessarily applicable in practice.

Suppose that if a seller is alone with the buyer at the date A sale, then she gets
payoff S4 > 0 at date A, and payoff S? > 0 at date B. Substitution of these payoffs
into equation (1) yields

(1—p)" 154 —ptsP = 0. (2)

We get the following result:

Proposition 1 With extreme competition, the symmetric equilibrium probability of
holdout is
h=1-p=[(S*/S®)mT + 1]

Thus holdout occurs with positive probability for all n. Moreover,
(i) if SA > SB, then h is increasing in n,

(ii) if SA < SB, then h is decreasing in n, and

(iii) h converges to 3 as n — oo.

In part (i) S4 > S# — which is probably the leading case if players discount the
payoft from sale at the later date B compared to date A. Here, holdout gets worse
with n, despite the favorable payoff from date A. The intuition for this result comes

from the following thought-experiment. Suppose all other players but player 1 choose



a fixed probability p. Now add another player, who also chooses this level. The
payoff to player 1 from sale at date A falls to (1 — p)" S from (1 — p)n_1 5S4, and the
payoff to player 1 from sale at date B falls to p”S? from p* 1SE. However, S4 > SB
implies that p > % Therefore the expected payoff from date A falls proportionately
more than its counter-part for date B. As a result, player 1 finds it in her interests
to deviate from p and choose a lower value. In equilibrium all players will therefore
reduce p, leading to an increase in holdout. Result (ii) is analogous. Part (iii) follows
from a related thought experiment. Fix the choice of p by the other players. As n
increases, the probabilities (1 — p)"f1 and p" ! that a player is alone at point of sale
both shrink towards zero, and this dominates any difference in the relative payoff at
each date.

The implication of (iii) is that the value-per-object to the buyer falls. That is,
there is an increased transactions cost with the number of sellers. To see why, suppose
that the buyer gets value W per object that is combined, and only realizes the total
value nW after all objects are sold. Therefore, the buyer’s expected payoff per-object
with discount factor ¢ is W - [p™ + (1 — p™) 8]. For case (i), p falls with n. This leads
to a reduction in the buyer’s payoff per object — an increase in the transactions costs
due to increased delay as the number of sellers increases. Note that the more general
case where the buyer gets some value from objects purchased at date A, but must
discount the benefits gives similar results: As long as there is delay, the buyer’s payoff
is lower than otherwise.

One objection to the analysis of this case, is that there are pure strategy Nash
equilibria of the game that yield a higher joint surplus to the sellers. For example, if
player ¢ chooses p; = 1, and all other players j choose p; = 0, this Nash equilibrium
gives S4 as joint surplus of the sellers. Under the mixed strategy, the joint surplus

of the sellers is

n-[p(1—p)"S*+ (1 -p)p"S”

10



which is less than S4.9 However, note that such pure strategy equilibria do not Pareto
dominate the mixed strategy symmetric equilibrium of proposition 1, nor would any
non-symmetric mixed strategy equilibrium. Each player would prefer to be the one
earning the highest expected payoff, which strengthens the prediction that the mixed

strategy symmetric equilibrium will be the outcome of such a game.

2.2 Aggregate Count Payoffs

Here, we consider a more realistic simplification of the model. We assume that the
payoff to player i from bargaining when the outcome is (¢1,ts, ...,t,) depends only
on the count of the number of players present with player i, and the date of i’s sale.
Thus, s(k) is the payoff from sale when only k other players are present at date A,
and 6s (k) is the present value payoff in this situation from date B, where 6 € [0, 1]
is the discount factor. With this notation, equation (1) becomes

omy - n—1 k n—1—k
0_}3122( k )p(l_p) Ay (3)

k=0

where

Ap=s(k)—b6s(n—k—1)

is the gain that the player makes from being present at date A as compared to date
B, taking the participation outcomes (k present at date A, and n — 1 — k present at
date B) of other players as given.

Throughout the paper, we assume that there is discounting;:
Discounting The buyer and sellers discount date B payoffs by 6 € (0, 1).

Of course, discounting means that players have a preference for income today.
This assumption ensures that any equilibrium delay will generate inefficiency. Since
our goal is to examine how seller’s payoffs at point of sale affects sellers behavior, we

examine two alternatives. The first is competition:

0To see why, note that arg max,{n (1 — p)" p} = <, that the value at this maximum is ﬁl;—”:: <
1, and that SB < S4.

11



Competition s (k) is decreasing in k

Competition is the assumption that an increase in the number of players selling at
any one time, leads to a decrease in each player’s payoff. Implicit in this assumption
is that there is at least a degree of substitutability between the items being sold. The

opposite assumption is collusion:
Collusion s (k) is increasing in k

When there are more players who collude, they are able to collectively extract a
larger per-owner surplus from player 0.

Finally, we admit any profile of our (non-strategic) buyer’s benefit from sale consis-
tent with discounting. A simple case mentioned in the extreme competition example
had the buyer realize no value until all units were purchased. However we could as-
sume, for example, that the buyer receives W4 per object combined at date A, and
WP < W4 per object combined at date B; delay would cost W4 — W% per object
(due to discounting).

Note that any form of discounting implies that the first-best outcome must involve

sale of all the objects at date A. The following result is immediate:

Proposition 2 p = 1 is the Pareto Dominant Nash equilibrium under Collusion,

and yields the first-best outcome.

Proof. This is easily proved by substitution of p = 1 into equation (3), and
noting that expected surplus per seller falls with p as p falls below unity. There is
no delay in this equilibrium. m

As in the illustrative example of extreme collusion considered above, a more mod-
erate collusion assumption leads to efficiency. The results below show that the situ-
ation is quite different when there is competition at point of sale.

Understanding of the behavior of the zeros of equation (3), is crucial for analyz-

ing our problem. First note that if competition holds, then the coefficients A of

12



this expression are monotonic decreasing: By definition Ay = s(k) — és(n —k — 1)
and Agy 1 = s(k+ 1) — és(n—k—2). Competition implies s(k) > s(k + 1) and
sin—k—2) > s(n—k—1). Hence Ay > Agy1. The next result demonstrates
that relatively weak assumptions are needed to ensure that there is costly delay in

equilibrium:

Proposition 3 Assume discounting, competition and A,,_; < 0. Then neither p =0

nor p =1 can be a symmetric Nash equilibrium, and the first-best is not attained.

Proof. Substitute p = 1 into (3). This yields g—;i = A,_1 < 0, so that player
1 will deviate from p; = 1. Substitution of p = 0 into (3) gives g—gi = Ay which is
positive by competition, and player 1 will deviate from p; = 0. Since p = 1 is not an
equilibrium, the discounting assumption means the first best is not attained. m

The assumption A,,_; < 0 has a straightforward economic interpretation as a
weak additional competition assumption. The term A,,_; equals s (n — 1) — ds(0); if
it is negative’, then players get a higher return selling alone at date B, than selling
in the presence of all other players at date A. This rules out p = 1 as an equilibrium.
Competition ensures that the payoff from selling today when every other player sells
tomorrow is positive. This rules out p = 0. Since p € (0,1), and there is discounting,
the joint surplus of buyer and sellers is lowered.

While competition-like assumptions and discounting ensure that symmetric equi-
libria are inefficient, the goal of our paper is to examine not only the phenomenon
of costly delay, but to examine comparative statics, such as behavior as the number
of players increases, or behavior due to changes in the discount factor. Such analysis
is problematic if there are multiple symmetric equilibria. However, as the follow-
ing result shows, existing assumptions are sufficient for a unique symmetric Nash

equilibrium.

"Note that the assumption is an implicit restriction on the nature of competition and the discount

factor: ﬂsn(%)ll < 6.

13



Theorem 4 If A,, 1 <0, and competition holds, then there exists a unique positive

and real symmetric Nash equilibrium probability.

Proof. Since both p = 0, and p = 1 are ruled out as symmetric Nash equilibria
(SNE), we can divide equation (3) by (1 — p)” . Defining p = 155 this implies that
SNE are found from -

(") )

k=0
If the sequence A, _1,An_o,...,Ag changes sign only once, then by Descarte’s rule

of signs, there is a unique positive real root of the polynomial in (4) (Kostrikin
(1982), p. 310-331). New York: NY.). Since A,_; < 0, this sequence begins with a
negative sign, and since Ay > 0 by competition, the sequence changes sign at least
once. However, competition also implies that A,, 1, A, o, ..., Ag is strictly increasing.
Therefore, the sequence only changes sign once and there is a unique positive real
SNE. m

The assumptions of competition and A,_; < 0 are fairly weak, and yet they lead
to the very strong conclusion of a unique symmetric Nash equilibrium. As mentioned,
the advantage of this result, is that it makes comparative statics predictions much
stronger than when there are multiple equilibria. In addition, for § = 1 (i.e., no

discounting) we can show that the equilibrium probability is %, and that when 6 <

1, the equilibrium probability exceeds % These two results are important in the

construction of our results concerning the effect on p of an increase in n:
Proposition 5 When 6 =1, the unique SNE is given by p* = %

Proof. Define

o Z ( " )pk(l —p) T s(k) ~Ss(n—k -~ 1] = f(p.n)  (5)

It suffices to show that p* = % is a SNE, i.e. f (%, l,n) = 0. Substitution of p* = %

14



gives
Since

telescoping guarantees that indeed Z;:é < I ) [s(k) —s(n—k—=1)]=0. m

Below, we show that when p = % and 6 < 1 the derivative g—;i is greater than

zero. That is, the next corollary shows that for a fixed n, the equilibrium probability

of immediate sale is strictly greater than %

Proposition 6 When 0 < 6 < 1, the unique SNE s given by p* > % for any finite

n.

Proof. First we demonstrate that f, < 0. Differentiating (5) with respect to p
yields

e G LR iR (L [E Ry

n—1

R TR VT (e P E A

-1

)
;1)<n_s>p2<1—p>”‘4A2+<"3 )3p2<1‘p>"_4A3
)

1 .
p”_34(1—p)3An_3—|— ( 2_2 ) (n—2)p" (1 —p)Aps

) pn_zAn—2 + (n - 1) pn_zAn—l-
The first two terms of f, reduce to (n — 1) (1 —p)" > (A; — Ap) which is negative,

since Ay > A; by competition. In a similar fashion, the second two terms reduce to

15



(n—1)(n—2)p(1—p)" " [Ay — A]
which is negative. All such pairs of terms are negative, for example consider the next

to last pair of terms, which reduces to (n — 1) (n — 2)p" 3 (1 — p) [A, 2 — A, 3] < 0.
Thus, f, < 0.

Now consider the case of n even. It can be shown that
n_g

fp,6.m) =" ( " ! ) {s(k)[p"(1 — p)"™'7F — sp" 7R (1 — p)¥]

k=0
+s(n—1—k)[p" (1 —p)*—&p*(1 - p)" ]}
Therefore we have

-1

N3

f(%,nﬁ) = (%)H (1-90) ( ”;1 ) {s(k)+s(n—1—k)}>0.

k=0

Since f, < 0, f(%, 8,n) > 0 ensures that p = % lies below the solution to f (p,6,n) = 0.

The argument for n odd is similar. Thus, p* > % [ ]

These set of results above demonstrate that delay is an important feature of equi-
librium under competition. Delay occurs because of sellers’ desire to dis-coodinate,
that is, to minimize the impact competition has on their surplus. Under our assump-
tion of discounting, these results demonstrate that equilibrium delay is a source of
endogenous transactions cost that the buyer must face. Below, we demonstrate that

such costs are increase with the discount rate ¢, as might be expected.
Proposition 7 A rise in the discount factor leads to an increase in holdout.

Proof. Recall the definition of f(p,d,n) in equation (5) and note that for all
equilibrium values of p = p (8), f (p(6),6,n) = 0. Differentiating this identity with
respect to ¢ yields

P (0) = =[5/ fp- (6)

16



Thus we seek to find the sign of fs from (3), since f, < 0 from the proof of Proposition

(6). Differentiating f with respect to é yields

f(s:—nz_l(n;l)pk(l—p)nlk~s(n—k—1)<0.

k=0
Substitution in the expression for f, yields p' (6) < 0. m

The direct effect of a rise in 6 is to reduce the marginal profitability of p; (fs < 0).
Competition ensures that m; is concave in p; (i.e. f, < 0 as shown in the proof of
Proposition 6. Therefore, in equilibrium, p must fall. Intuitively, when ¢ rises, each
player discounts the future payoff from delay by less: If no other players were to change
their strategy, an individual player would wish to delay sale. However, every player
is aware that this incentive exists and that there is a higher likelihood of competition
from delaying sale. This diminishes the marginal profitability of holdout, although it
is still positive. Thus (1 — p) must still rise.

The main contribution of this paper is to analyze what can happen to the holdout
probability as n increases. A-priori theorizing does not suggest a strong case either
way. One might argue that the increased competition following from a rise in the
total number of players will diminish the gains from delay. If there is discounting and
the number of layers increases, it may be less likely that an individual will be alone
at point of sale today, than if that individual delays. This would suggest a fall in the
probability of holdout. However, some reflection (based on the extreme competition
example above) suggests that as the number of players increases, it will only be the
payoffs in the extreme ends of the distribution that motivate players. The result

below shows that weak conditions lead to an increase in holdout.

Theorem 8 An increase in the number of owners increases h = 1 — p, and h ap-
proaches % from above as the number of owners approaches infinity, if all of the
following conditions hold:

(1) Competition (i.e. s (k) is decreasing);
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(ii) s(-) and 6 € (0,1) satisfy , A, 1 =s(n—1)—6s(0) < 0; and

(iii) Strong Competition: s(k) diminishes sufficiently rapidly after n = M (specifi-

cally, lim,,_, EZ;JIus(k) < e, some small € > 0)

Proof. From competition and Proposition (3), for a fixed n, the equilibrium price

1
29

Noting that < " ; L ) = ( N ﬁ Ii I ), f from equation (3) can be re-written

as the sum of two terms by matching arguments in s (-) starting from k£ = 0 upwards,

belongs to the interval (1,1). Thus, we need only consider p € (4,1).

and from k = n — 1 downwards. Specifically, s(0),s(1),...,s(M — 1) can be derived
from s (k) for k = 0,..., M, and from s(n—1—k) for k =n—1,n—2,....n — M.
The sequence s (M) ,s(M +1),...,s(n — 1) is derived similarly. Thus,

f(p,6,n) =
_ +
> ("0t )smfpra - art -],

Consider the second of these sums. By strong competition for n > M, lim,, ., X7~ s(k)

< e. (This is satisfied, for example, if s(k) = A\rF with 0 < r < 1, since the sum
. . o -1 n—1—
converges to A times a finite positive number.) Note that < " 1 ) PP —p)tF

and ( " ; 1 ) p"~17%(1 —p)* are each weights of a binomial probability distribution.
The sum of each of these terms from M to n — 1 is therefore less than unity, and the
weights themselves are between zero and unity. Therefore, by choosing ¢ sufficiently
small, the second sum can be made arbitrarily small. Thus for sufficiently large n,

we can rewrite f as

fp,n) =~ Ail ( ! & ! ) s (k) [p’“ (1—p)" " =gp (1 -p) (7)



Now define

and note that for a fixed k,
g'(p)<0&p (1—p" <o (1 -p)f

That is,
1

p>—1
1 + §w1-2E

Dk
Moreover,% >0, ¢*(pr +¢) < 0 and ¢’(px +¢) < 0 Vk > j. Therefore we can

conclude that

¢ (Pyv—1) <0Vj <M —1. (8)

Replacing (8) into (7) we obtain
f(Prr-1,m, M) <0.

Since f, < 0 from proposition 7, this indicates that the equilibrium price belongs to
the interval (%,ﬁM_l). However,

_ 1
Pyv-1= m
so that as n gets larger, the interval (%, Par—1) must shrink. In particular, as n — oo,
DPym-1— % u

This is the main result of the paper. The assumption of strong competition
ensures that the states of nature in which there are many other players present have
a negligible weight in a player’s choice of p. Only states in which there are less
than M — 1 other players present determine players’ decisions. Following the thought

experiment from the extreme competition example in section 2.1.2, fix the choice of

p by all other players, and add an additional identical player. Consider the term

PP —p)" =gt (1 p)f 9)
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in equation (7) for fixed k. With§ < 1, p > 1. Therefore the term p* (1 — p)" T falls
by a proportionately smaller amount than the term 6p™ = (1 — p)k for all k. In other
words, in the comparison between the expected payoft from sale now and sale later,
the latter falls by proportionately less. The best response of the player is therefore to
choose a lower level of p; an increase in holdout. Moreover, the probability of holdout
approaches % because both terms in (9) converge to zero, and hence approach each-
other as n increases. If the buyer’s payoff suffers because of delay, then our result
can be interpreted directly as endogenous transactions costs faced by such a player

as the number of sellers increases.

3 Concluding Comments

We have modeled a situation in which a buyer wishes to purchase n objects from n
independent owners. Each owner is able to delay selling her object. If the presence
of other owners at point of sale improves the sale price, then there is no delay in
equilibrium, and hence the buyer does not face any transactions costs. This case can
be thought of as collusion at point of sale. However, if the presence of other owners
leads to a reduced sale price — competition at point of sale — then there is delay in
equilibrium. Thus, competition at point of sale imposes transactions costs on the
buyer; with discounting, the symmetric equilibrium probability of immediate sale is
pe (3 1)

The model developed is very tractable. Existence of a unique symmetric equilib-
rium is guaranteed by the relatively weak competition assumptions; that sale price
declines in the number of players, and that the sale price obtained being alone but
at a later date dominates the immediate sale price with all other players present.
The uniqueness result makes the model very amenable to comparative-statics anal-
ysis. An increase in discounting reduces the probability of delay. The main result
of the paper is to show that with sufficiently strong competition and a sufficiently

large number of players, a rise in the number of players leads to an increase in the
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symmetric equilibrium probability of delay. This provides a novel explanation for the
transactions costs that a buyer can face when purchasing from multiple owners. The
owners end up dis-coordinating in equilibrium — that is, to engage in a divide and
conquer strategy — so as to reduce the competition they generate at the two periods
in which sale takes place. But this behavior leads to an increase in equilibrium delay:
As n increases, the probability that a given player has relatively few fellow sellers
present immediately, falls more rapidly than the counter-part probability for sale in
the later period, leading each player to increase her probability of holdout.

The transactions costs identified in our paper are quite different to those present in
current literature. Our model has symmetric information, so that private information
is not a source of transactions costs. The public goods contribution problem leads to
increased costs as the number of players increases, because of a worsening negative
externality. In contrast our problem has players taking actions that are beneficial to
their fellow sellers. We do not claim that our source of transactions costs is more or
less relevant than these other sources. Rather, the aim of this paper is to develop a
formal model that explores equilibrium delay as a source of such costs.

Several areas of future research suggest themselves. The buyer in our model is
non-strategic. In practice (particularly with smaller numbers of sellers) the buyer
could take actions to increase the likelihood that an owner is present early on in the
sale process. Contractual solutions may partially solve the problem. For example, in
some circumstances the buyer may be able to make contingent-sale contracts. This
raises the more general comment that the buyer’s action of purchasing early could

affect the surplus that sellers earn in the later period.

4 Appendix

We now show that a symmetric Nash equilibrium for the general problem stated in
section 1 always exists. Note that the first order condition given by (1) is clearly a

continuous function of p. Moreover
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S Mt (L= ta) - (L= ta)] - [5 (L fy ey t) — 5 (0, t2y ey )

(t2;...,tn)€{0,1}—1

This expression is either zero or equal to [s (1,0, ...,0) — s(0,0, ...,0)] > 0.In addition,

we can evaluate the first-order condition at p = 1:

%| _
Op1 P
> [tots - - tn] - [s (1, Lo, ooy tn) — 5 (0, tg, ..., t)]

(t2,5tn)€{0, 1}

This expression is either zero or equal to [s(1,1,...,1) — s(0,1,...,1)] < 0. Therefore,

there exists a solution by the Intermediate Value Theorem.
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