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Abstract

This thesis studies various effects based on the excitation of surfaces plasmons in
various plasmonic nanostructures. We start the thesis with a general introduction
of the field of plasmonics in Chapter 1. In this chapter we discuss both propa-
gating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs),
how to geometrize LSPs to make it related to SPPs through the Bohr condition,
the features of subwavelength confinement and near-field enhancement, and wave
guidance through coupled LSPs. Then after the discussion of the achievements and
challenges in this field (Section 1.3), we will outline the basic structure of the thesis
at the end of this chapter (Section 1.4).

In Chapter 2 we demonstrate a new mechanism to achieve complete spectral gap
without periodicity along propagation direction based on the coupling of backward
and forward modes supported by plasmonic nanostructures. We study the back-
ward modes in single cylindrical plasmonic structures (Section 2.2) and focus on
the two simplest cases: nanowires and nanocavities. Afterwards, we demonstrate
how to achieve spectral gaps in coupled plasmonic nanocavities (Section 2.3). A
polarization-dependent spectral gap is achieved firstly in two coupled nanocavities
which support forward and backward modes respectively (Section 2.3.1). At the
end we demonstrate a complete spectral gap, which is induced by the symmetry of
a four-coupled-nanocavity system (Section 2.3.2).

In Chapter 3 we study beam shaping in plasmonic potentials. Based on the
similarity between Schrödinger equation for matter waves and paraxial wave equa-
tion for photons, we introduce the concept of plasmonic potentials and demonstrate
how to obtain different kinds of potentials for SPPs in various modulated metal-
dielectric-metal (MDM) structures. We investigate firstly the parabolic potentials
in quadratically modulated MDM and the beam manipulations in such potentials,
including polychromatic nanofocusing in full parabolic potentials (Section 3.2.1),
plasmonic analogue of quantum paddle balls in half parabolic potentials (Section
3.2.2), and adiabatic nanofocusing in tapered parabolic potentials (Section 3.2.3).
In the following section (Section 3.3) we show the existence of linear plasmonic po-
tentials in wedged MDM and efficient steering of the Airy beams in such potentials
(Section 3.3.2) after a brief introduction on Airy beams in free space (Section 3.3.1).

In Chapter 4 we study scattering engineering by magneto-electric core-shell
nanostructures with induced electric and magnetic resonances. The introduction
part (Section 4.1) gives a brief overview on the scattering of solely electric dipole



(ED) or magnetic dipole (MD), and how the coexistence and interference of the ED
and the MD can bring extra flexibility for scattering shaping. Afterwards, we dis-
cuss the scattering shaping by core-shell nanostructures through the interferences
of electric and magnetic dipoles (Section 4.2), including two examples of broadband
unidirectional scattering by core-shell nanospheres (Section 4.2.1) and efficient shap-
ing of the scattering pattern for core-shell nanowires (Section 4.2.2). At the end of
this chapter we demonstrate polarization-independent Fano resonances in arrays of
core-shell nanospheres (Section 4.3.2).

At the end of this thesis in Chapter 5 we summarize the results and draw the
conclusions. We also discuss the challenges and possible future developments of the
field of plasmonics.



Contents

1 Introduction 0

1.1 Diffraction limit and nano-optics . . . . . . . . . . . . . . . . . . . 0

1.2 Plasmonics: go beyond the diffraction limit . . . . . . . . . . . . . . 2

1.3 Achievements and major challenges in plasmonics . . . . . . . . . . 10

1.4 Scope and outline of this thesis . . . . . . . . . . . . . . . . . . . . 17

2 Backward modes and complete spectral gaps in cylindrical plas-
monic nanostructures 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Backward modes in single cylindrical plasmonic nanostructures . . . 22

2.2.1 Plasmonic nanowires . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Plasmonic nanocavities . . . . . . . . . . . . . . . . . . . . . 26

2.3 Spectral gap in coupled plasmonic nanocavities . . . . . . . . . . . 28

2.3.1 Polarization-dependent spectral gap in two coupled plasmonic
nanocavities . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Symmetry induced polarization independent complete spec-
tral gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Beam shaping in plasmonic potentials 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Beam shaping in parabolic plasmonic potentials . . . . . . . . . . . 36

3.2.1 Polychromatic nanofocusing in full parabolic plasmonic po-
tentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Plasmonic analogue of quantum paddle balls in half parabolic
plasmonic potentials . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Adiabatic nanofocusing in tapered parabolic plasmonic po-
tentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Plasmonic Airy beam manipulation in linear potentials . . . . . . . 58

3.3.1 Photonic and plasmonic Airy beam in free space . . . . . . . 59

3.3.2 Airy beam steering in linear plasmonic potentials . . . . . . 59

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



ii Contents

4 Scattering engineering by magneto-electric nanostructures with
both electric and magnetic resonances 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Shaping the scattering of core-shell nanostructures through the in-

terferences of electric and magnetic dipoles . . . . . . . . . . . . . . 69
4.2.1 Broadband unidirectional scattering by magneto-electric core-

shell nanospheres . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Scattering pattern engineering for magneto-electric core-shell

nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Fano resonance in arrays of core-shell nanospheres . . . . . . . . . . 84

4.3.1 Fano resonance in nanostructures . . . . . . . . . . . . . . . 84
4.3.2 Polarization independent Fano resonance in arrays of core-

shell nanospheres . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusions and outlook 96

Bibliography 99



CHAPTER 1

Introduction

All the research work presented in this thesis falls into the field of plasmonics, of
which the major attractive capability is to confine light down to the nanoscale. This
rapidly expanding and promising field of plasmonics is not an isolated field but comes
from a broader background of nano-optics, which is built on the developments of
classical optics. The core of nano-optics, similar to that of the field of plasmonics, is
go gain access to the length scale beyond the diffraction limit. To put the contents
of this thesis in a clearer and wider context, before the specific introduction to
plasmonics, we start with a short introduction to diffraction limit and the field of
nano-optics.

1.1 Diffraction limit and nano-optics

The earliest record of principles of classical geometric optics dates back to the
Chinese philosopher Mozi (approximately 470 to 390 BC), who put forward un-
precedented innovative new ideas in the field of optics, including ideas like using
pinholes and camera obscura that had not been even considered until the Arab
physicists of the early 11th century AD [1]. After Mozi, although there had been a
lot of studies about geometric optics, especially those conducted systematically by
the Greek philosophers (Empredocles and Euclid), optical devices (telescopes and
microscopes) had not been built for scientific probe until Galileo Galilei in the early
17th century [2, 3]. There had been steady development afterwards especially for
the improvement of the resolution of microscopes. As more of the nature of light
was revealed, it was realized that any further improvement could not be achieved
as there was always a insurmountable limit [2, 3]. It was after the work of Abbe
and Rayleigh that such limit was accepted as the diffraction limit [2, 3].

Diffraction limit

The formulas of Abbe diffraction limit can be easily reproduced using Fourier
Optics [4], while a more intuitive and easier way to obtain them is employing the
Heisenberg’s uncertainty principle [5–7]. In optics, the principle can be expressed
as:

Δk ·Δx ≥ 1/2, (1.1)
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λ =0.633nm

(a) (b)

r = 200 nm r = 100 nm

Figure 1.1: The Poynting vector distribution for the fundamental mode of silica
nanowires of radii of (a) r = 200 nm and (b) r = 100 nm. The free space wavelength
is λ = 633 nm. After Ref. [8].

which indicates that to reduce the uncertainty of spatial position, usually the in-
crease of the uncertainty for spatial frequency is required. In homogenous and
isotropic media with refractive index n, the uncertainty in the domain of spatial
frequency is restricted by Δk ≤ 2πn/λ0 where λ0 is the wavelength in vacuum.
Then according to Eq. (1.1), the uncertainty in the domain of spatial frequency
satisfies:

Δx ≥ λ0
4πn

=
λeff
4π

, (1.2)

which is very similar to what was derived by Abbe and Rayleigh [2, 3].
The usual way to visualize the diffraction limit is to show the focal spot of

a lens, as was done in Refs. [5, 6]. Here we visualize it in an alternative way
through the basic properties of conventional waveguides. In Fig. 1.1 we show the
energy confinement of the fundamental modes of silica nanowires of two different
radii. When the wire diameter is comparable to the effective wavelength of the
light in silica (≈ 420 nm), most of the energy can be still confined within the
nanowire [Fig. 1.1(a)]. However, when we reduce the diameter of the silica wire to
be significantly smaller than the effective wavelength, most of the energy will spread
out of the nanowire, as this simple waveguide will not be able to confine the light
beyond the diffraction limit [Fig. 1.1(b)].

Nano-optics

Since the establishment of the theory of diffraction limit many techniques and
approaches have been demonstrated to be able to go beyond the diffraction limit,
which fueled the rapid development of the field of nano-optics. The central goal of
nano-optics is to gain access to the regime which is in the nanoscale and beyond
the diffraction limit, with the well known techniques as multi-photon microscopy,
near-field microscopy, and so on [3]. Nowadays, this field is developing rapidly and
attracting more interest than ever before. The prosperity in this field is firstly
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(a) (b)

SPP

Figure 1.2: Schematic illustration of (a) SPPs on the metal-dielectric interface with
well defined dispersion curves. The propagation constant of the SPPs is larger (than
that of the photons of the same frequency in free space (indicated by the dashed line).
(b) Dipolar LSPs supported by spherical metal particles. After Refs. [9, 16].

driven by what we have achieved, such as the capability of better nanofabrication
and larger simulation capacity enabled by the development of supercomputers. At
the same time it is driven by what we hope to achieve in the future: optical computer
based on the miniaturization of optical circuits and its integration with electronic
devices, microscopy with unprecedented super-resolution, data storage device with
ultra-high data density, and so on. It is also expected that some new physics can be
found in the nanoscale, as mentioned by Richard Feynman “There is plenty of room
at the bottom”. There are so many branches of nano-optics that it is impossible to
list them all, but most of them will fall into the following categories [3]: theoret-
ical concepts in the nanoscale, interaction of light with nanosystems, interactions
between nanosystems, diffraction limit and strongly focused light, resonance phe-
nomena in nanosystems and so on. As an outstanding and promising sub-branch of
nano-optics, the field of plasmonics is what the thesis is mainly about.

The field of plasmonics originates from the study of electromagnetic responses of
metals and nowadays any science and technology that are related to the coupling of
photons into the collective oscillations of electrons at the metal-dielectric interface
might be categorized into this field [3, 9–16]. The recent usual boom and expansion
has been boosted by mainly two important discoveries: extraordinary transmission
through thin metal films [17] and metamaterials [18–22], where the excitation of
plasmonic states plays a significant role.

1.2 Plasmonics: go beyond the diffraction limit

Two branches of plasmonics: propagating surface plasmon polaritons
and localized surface plasmons

The field of plasmonics can be roughly divided into two branches: propagat-
ing surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) [10,
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Figure 1.3: Schematic illustration of the Bohr condition: on the right the condition
is satisfied where the circumference of an electron contains an integral number of the
de Broglie wavelengths while on the left the condition is not satisfied. After Ref. [23].

13, 14]. SPPs is a propagating coupled state of electrons and photons and have a
well defined wave vector along the propagation direction while LSPs are localized
resonances accompanied by the collective oscillations of electrons and the radiation
into the surrounding media. At the same time, SPPs usually have broadband re-
sponse and thus are characterized by continuous dispersion curves, while LSPs are
localized resonances and are characterized by a set of discrete resonant frequencies.
In Fig. 1.2 we give schematic representations of the two states in the two simplest
structures: (a) SPPs confined at the interface of a semi-infinite metal and dielectric
layer and (b) dipolar LSPs resonance supported by spherical metal particles.

Geometrize localized surface plasmons through Bohr condition

We note here that the two branches of LSPs and SPPs are highly related to
each other. LSPs is a kind of localized resonance and is similar to most local-
ized resonances for which the Bohr condition is satisfied [23, 24]. According to the
Bohr condition, to support a well defined resonance, the length of enclosed orbit
of matter waves should contain an integral number of the de Broglie wavelengths.
Figure 1.3 shows schematically the Bohr condition and when the condition is sat-
isfied, the phase accumulated along the enclosed orbit is an integral number of 2π.
It was through Bohr condition that the quantum states of Hydrogen atom were
geometrized.

In optics the Bohr condition can be expressed as:

∮
n(r)k0dr = 2mπ, (1.3)

where n(r) is position dependent refractive index and k0 is the wavenumber in free
space and m is an integer, which usually is used to indicate the order of the mode.
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Figure 1.4: (a) Scattering spectra of modes of different orders of an infinite metallic
nanowire of radius R scattering a normally incident TM plane wave (inset). (b) The
dispersion curve of the corresponding waveguide of the infinite metallic nanowire: a
semi-infinite metal dielectric structure shown in the inset of Fig. 1.2(a). The dispersion
curve is the same as that in Fig. 1.2(a) with the wavenumber replaced by the phase
accumulation (2πRkspp) along the circum of the nanowire.

This condition basically means that to support a well defined resonance the phase
accumulation along a loop of optical path should be an integral number of 2π.

To support LSPs resonance within plasmonic structures, as the phase is accu-
mulated through the propagation of SPPs modes, the corresponding Bohr condition
is: ∮

ksppdr = 2mπ, (1.4)

where kspp is the wavenumber for the SPPs in a corresponding extended plasmonic
waveguide. To clearly explain the links between SPPs and LSPs and the above
equation, we show the simplest case in Fig. 1.4. Figure 1.4(a) shows the scattering
spectra of a normally incident TM plane wave scattered by an infinite metallic
nanowire, where the first three modes are shown. To clarify the physics, the metal
is simply characterized by the lossless Drude model with plasmon frequency ωp and
the radius of the nanowire R is R = cπ/ωp, where c is the speed of light. The
corresponding extended plasmonic waveguide of such a infinite metallic nanowire is
the semi-infinite metal dielectric structure shown in the inset of Fig. 1.2(a). The
dispersion relation of SPPs supported by this structure is:

kspp =
2π

λ

√
εmεd
εm + εd

, (1.5)

where εm and εd are the permittivities of the metal and dielectric respectively and
kspp is the effective wavenumber of the SPPs supported. The dispersion is shown
in Fig. 1.2(a) and in Fig. 1.4(b) we show this dispersion curve again but changed
the horizontal axis from kspp to phase accumulation along the circum of the cross
section of the nanowire, which equals to 2πRkspp. Figure 1.2 shows that the resonant
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Figure 1.5: (a) The dispersion curves of a three-layered metal-dielectric structure
(dark layers and light layer indicate metal and dielectric respectively as shown in
the inset). (b) The scattering cross sections of the corresponding three-layered core-
shell nanoparticle (inset) with the contributions from modes of different orders. After
Ref. [25].

frequencies of modes of different orders correspond to the frequencies where the
phase accumulation is an integral number of 2π and this tells us convincingly that
the Bohr condition can be directly applied to the analysis of LSPs.

Another noticeable demonstration of this principle is the effect of superscattering
by nanoparticles [25]. Figure 1.5(a) shows the dispersion curves of a three-layered
metal-dielectric waveguide (dark layers indicate metal and light area indicates di-
electric as shown in the inset), where a flat band exists. If we wrap the three-layered
planar waveguide, then we can get a 2D three-layered core-shell nanoparticles shown
in the inset of Fig. 1.5(b), where the scattering cross sections of such particle is also
shown. According to Eq. (1.4) and the flat band shown in Fig. 1.5(a), the resonant
frequencies of the modes of different orders (characterized by m) should be almost
the same. Figure 1.5(b)shows the scattering spectra of the three-layered core-shell
nanoparticle and the contributions from modes of different orders are also shown. It
is clear that modes of different orders are overlapped at the same frequency, which
agrees well with the analysis above.

After LSPs are geometrized, now a lot of existing scattering features can be
understood and some new scattering features are expected. Usually it is widely
accepted that within resonant structures higher order modes are supported at higher
frequencies as shown in Fig. 1.4(a). Also the resonance frequency will blueshift
with shrinking structure sizes. Now we understand that this is due to the normal
dispersion of the corresponding waveguide as shown in Fig. 1.4(b). Given that
the dispersion curves can be engineered, relative resonant frequencies of the higher
order modes can be manipulated, and the resonant frequency does not have to
blueshift for smaller particle sizes. Fan et al. demonstrated [25] that if a flat
band can be obtained, then modes of different orders can be overlapped at the
same frequency (Fig. 1.5). We can make a step further and expect that if we get
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a dispersion curve with negative group velocity (the corresponding mode is called
backward mode and more details will be given in Chapter 1 about the backward
modes in plasmonic structures), then higher order modes can be supported at lower
frequencies. At the same time we note that, if the corresponding waveguide shows
multi-band dispersions in contrast to the single band dispersion shown in Fig. 1.4(b),
we can achieve: (1) modes of different orders at the same frequencies without a flat
band and (2) several modes of the same order at different frequencies and the number
of the modes is decided by how many bands are involved in the corresponding
waveguides. For example, for the structure shown in Fig. 1.5(a) investigated by Fan
et al., there is another band below the flat band. Due to the existence of this band,
another set of modes with mode orders m = 1 : 3 are supported at the frequencies
of ω/ωp = 0.0496, 0.0929, 0.1285, respectively.

In Chapter 4 we will show the overlapping of the ED and the MD in core-
shell nanoparticles, including both nanospheres and nanowires. This is due to the
coexistence of two bands, which will accumulate phase independently to support the
ED and the MD respectively. The two modes overlap at the same frequency, where
the two bands simultaneously accumulate a phase of 2π, leading to the coexistence
of two dipoles at the same frequency. The mechanism to support modes of different
orders at the same frequency shown in Ref. [25] relies on a flat band, where the
effect of loss is devastating and the high order modes almost cannot be observed
when loss is considered [25]. However the mechanism we mention here to support
several modes of the same frequency comes from the multi-band dispersion of the
corresponding plasmonic waveguides, which can avoid the huge loss of metal at the
frequency of a flat band and thus be more promising for related applications.

Generally speaking, the Bohr condition discussed above can be applied to ge-
ometrize the LSPs. But still this model has some limitations, as is the case for the
original Bohr model in the beginning period of quantum mechanics [26]. For exam-
ple, for metal particles of the size much smaller than the free space wavelength (when
the quasi-static approximation of Maxwell equations can be applied), according to
Eqs. (1.3)-(1.5), all plasmon resonances will locate approximately at the surface
plasmon frequency when εm + εd = 0 [13, 14, 27]. This is still the case for metallic
nanowires for p-polarized normal incidence [as shown in the inset Fig. 1.4(a)] un-
der quasi-static approximation, when all the plasmon modes overlap at the surface
plasmon frequency. But for metallic spheres this is not the case any more. Under
quasi-static approximation, it is well known that the LSP modes of metal spheres
resonate when εm+(1+ 1

m
)εd = 0, where m is the mode order and should be a pos-

itive integer [13, 14, 27]. The resonance frequencies of modes of sufficiently higher
order(m � 1) will converge to the surface plasmon frequency (1 + 1

m
→ 1), but

for modes of low order, the resonance frequency will be significantly different. For
example, the resonance frequency of the fundamental mode (m = 1, dipole mode)
is the Fröhlich frequency, when εm + 2εd = 0 [27]. Other limitations include that
it is hard to apply the Bohr condition to metallic particles of arbitrary shapes, for
which it is hard to decide the length of the phase accumulation path, and hard to
explain the polarization dependence and the edge effects. Still a lot of work needs
to be done to clarify those limitations and to introduce more accurate models to
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geometrize the localized plasmonic resonances.

Subwavelength confinement and near-field enhancement within plas-
monic structures

After geometrize LSPs and thus bridge the two branches of LSPs and SPPs
through the Bohr condition, now we come to the problems how photons can be
confined down to subwavelength regime within resonant plasmonic structures. Ac-
cording to Eq. (1.1) and Eq. (1.2), to improve the confinement in spatial domain,
one has to increase the uncertainty in spatial frequency domain and/or shrinking the
effective wavelength of the state. As is shown by the dispersion curve in Fig. 1.2(a),
the effective wavelength of SPPs can be much smaller (with larger wavenumber)
than that of the photons of the same frequency in free space, leading to much bet-
ter confinement down to the subwavelength regime. While at the same time, this
also indicates that SPPs modes cannot be excited directly by photons in free space,
but rely on special techniques [9–14]. SPPs can be excited through Kretschmann
geometry, Otto geometry, SNOM tip, grating diffraction, scattering of surface rough-
ness and so on [9–14]. For better visualization of this effect, in Fig. 1.6 we show
schematically the energy confinement of the fundamental SPPs modes supported
by plasmonic waveguides with shrinking cross sections. In sharp contrast to the
dielectric waveguides shown in Fig. 1.1, plasmonic waveguides are able to confine
the fundamental guided SPPs modes to neighboring area of the waveguide, irre-
spective of the size of the waveguide. We note here that this principle holds only
for the fundamental plasmonic modes. Other modes will be cut-off at some point
with shrinking waveguide sizes and will not be able be further confined. The basic
mechanism is that as the size of the plasmonic waveguide is reduced, the effective
wavelength of the fundamental SPPs mode is also shrunk, resulting in a better
confinement than its all-dielectric counterpart [28]. For example, the widely used
MDM structure supports two modes of even and odd parity (with respect to the
transverse magnetic field) respectively [9–14]. The even mode is the fundamental
mode and Fig. 1.6 shows correctly the corresponding energy flows with shrinking
cross sections. For the odd (long range SPP) mode however, with shrinking cross
sections of the MDM structure, the energy flow shows an opposite trend in contrast
to what is shown in Fig. 1.6: the energy spread rather than become more confined.
Furthermore, beyond some critical size of the cross section, the odd mode will be
cut-off and cannot be excited anymore.

It is known that to support a localized mode, usually it is required that the min-
imum size of the particle has to be comparable to the effective wavelength. This is
because according to the Bohr condition there should be an optical path that is long
enough for sufficient phase accumulation [29]. While this is not the case for metal
particles, as metal particle even in the deep subwavelength regime can still support
LSP modes [10, 13, 14]. This is due to the fact that at the metal-dielectric interface
kspp could be much larger than its counterpart in free space. Consequently according
to Eq. (1.4) the phase accumulation within plasmonic particles can be much faster
and then a much shorter optical length is required to accumulate sufficient phase to
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Figure 1.6: Schematic illustration of the energy confinement of the fundamental
SPPs modes supported by plasmonic waveguides of shrinking sizes. After Ref. [28].

support a resonance. It is also well shown that for shrinking metal particles sizes,
the resonant frequency would blue-shift [10]. This could be easily explained through
Eq. (1.4): shrinking particle sizes also means shorter optical paths and thus larger
wavenumber (usually smaller wavelength) is required to accumulate sufficient phase
to support a resonance. Based on the same reason, for the same optical length, it
is easier to support higher order LSPs resonances than conventional photonic res-
onances. In Fig. 1.7(a) we show a silver-coated micro-disk which support a lot of
whispering-gallery modes as shown in Fig. 1.7(b). The whispering-gallery modes
supported can be roughly categorized into two branches: LSPs modes with sub-
wavelength confinement [SPP branches in Fig. 1.7(b) with mode profile shown in
the inset. We note here that those plasmonic modes demonstrated in Ref. [30] are
actually localized standing waves and thus it is better to term them LSPs modes,
rather than SPP modes as was termed in this paper.] and conventional photonic
modes without subwavelength confinement [DE branches in Fig. 1.7(b) with mode
profile shown in the inset]. It is clear that higher order LSPs modes are supported
than the conventional photonic modes at the same frequency. Also we note that the
LSPs resonance is confined at the metal-dielectric interface while the conventional
photonic modes are mainly confined within silica.

Despite the subwavelength confinement described above, there is also the generic
feature of near-field enhancement within plasmonic structures, both for SPPs modes
and LSPs resonances [3, 9–16]. As a coupled state of coherent electron oscillations
and photons, plasmonic states (for both SPPs and LSPs) are mainly confined at the
metal-dielectric interface, where the field is significantly enhanced [3, 9–14]. Such
field enhancement can be further improved by nanofocusing of SPPs modes within
in tapered waveguides [Fig. 1.8(a)] or by nanofocusing of LSPs resonances within a
chain a coupled metal particles of decreasing sizes [Fig. 1.8(b)].

Waveguiding through coupled localized surface plasmon resonances

We can categorize the field of plasmonics into to two branches by whether the
states excited are localized or propagating, with SPPs characterized by dispersion
curves and LSPs characterized discrete resonant frequencies. However the demarca-
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(a)

(b)

Figure 1.7: (a) A metal-coated whispering-gallery micro-disk and (b) the whispering-
gallery modes supported by the disk. Both LSPs (SPP branches) and conventional
photonic (DE branches) modes are supported with the corresponding mode profile
shown in the inset. After Ref. [30].

tion between SPPs and LSPs is not absolute. For example as we mentioned earlier,
when continuous plasmonic waveguides are truncated or wrapped, LSPs can be sup-
ported. At the same time, a chain of coupled LSPs resonances can be characterized
by well defined dispersion curves and thus be used for subwavelength energy guid-
ance [33–35]. In Fig. 1.9(a) we show the dispersion curves of a chain of coupled
dipolar LSPs resonances. Both the results for longitudinal and transverse dipole
orientations are shown. Figure 1.9(b) shows the experimental observation of energy
transportation through a chain of metal nanoparticles. Compared to the result of
a single metal particle, the effect of wave guidance by the chain is obvious.
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(a)

(b)

Figure 1.8: (a) Nanofocusing of SPPs modes in a tapered metallic tip through grating
coupling with experimental result shown on the right. (b) Nanofocusing of LSPs
resonances through a chain of metal nanospheres with decreasing sizes. The effect of
field enhancement is shown on the right. After Refs. [31, 32].

1.3 Achievements and major challenges in plasmonics

Nowadays the field of plasmonics (both the branch of SPPs and LSPs) is de-
veloping and expanding faster than ever before. One of the driving forces behind
this trend is the benefits of miniaturization and integration of optical circuits with
electronic ones [12, 36, 37]. To highlight the importance of plasmonic structures,
Figure 1.10 shows the typical physical limitations of different technologies based on
different materials for computing and communication. Semiconductor electronics
can operate in the nanometer regime, but the working speed is constrained by heat
generation. Conventional photonic circuits based on insulators can work with a high
operating speed, while cannot be miniaturized beyond the diffraction limit (see also
Fig. 1.1). Plasmonic structures can avoid the disadvantages mentioned above and
combine the advantages. In other words plasmonic structures can confine states
excited down to the nanometer scale and can operate with a high speed, thus are
expected to effectively bridge the field of nano-electronics and photonics. Another
driving force for the rapid development of plasmonics is the new emerging field
of metamaterials [20–22], where plasmonic items play a vitally important role to
support both electric and artificial magnetic responses.

Due to the special features of plasmonic structures mentioned above, the demon-
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(a)

(b)

Figure 1.9: (a) Dispersion curves for coupled dipolar LSPs resonances for both lon-
gitudinal and transverse dipole orientations. (b) Experimental observation of energy
guidance through a chain of metal particles. For comparison the result of a single
metal particle is also presented. After Refs. [34, 35].

stration of plasmonic circuits based on various metallic waveguides [12, 28, 37, 38] is
quite noticeable and deserves specific mention here. Figure 1.11 shows three kinds
of plasmonic circuits based on channel SPPs [12, 37] which are confined within
V-shaped grooves cut into planar metallic plates including plasmonic Y-splitter
[Fig. 1.11(a)], plasmonic Mach-Zehnder interferometer [Fig. 1.11(b)] and plasmonic
ring resonator [Fig. 1.11(c)]. More functionalities can be achieved through com-
bining those three circuits or fabricate other plasmonic structures. Based on those
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Figure 1.10: The typical size and operating speed of four different research domains,
which have different physical limitations in terms both size and operating speed and
those limitations are indicated by dashed lines. After Ref. [36].

circuits we can split and bend radiation sharply, and possibly realize ultra-compact
plasmonic components which can be integrated with nano-electronic devices, and
thus paving the way for a new class of integrated optical circuits.

The plasmonic waveguides demonstrated in Fig. 1.11 are effectively passive,
which however can be made active through incorporating gain or nonlinear materi-
als for various applications, including high-harmonic and ultra-short pulse genera-
tion, switching, loss compensation and so on [39–48]. The recent demonstration of
nanoscale plasmonic lasers is a quite significant step [49, 50]. As mentioned above, a
localized plasmonic state can be supported when the Bohr condition is satisfied and
such a state can be confined down to a region in the subwavelength regime. In this
confining region, if materials with gain are incorporated and when the threshold is
reached, lasing effect will be present. Figure 1.12 shows two platforms where lasing
effect is observed. In the first platform [Fig. 1.12(a)] the plasmonic states are con-
fined within a Fabry-Pérot cavity between the semiconductor nanowire (CdS) and
the Ag plate, where the CdS nanowire is doped, serving also as the gain material. In
the second platform [Fig. 1.12(b)] the plasmonic states are confined at the surface
of the gold core and the outmost layer is doped silica working as the gain material.
The lasing effect within the deep subwavelength cavities renders the opportunity
to study the light-matter interaction in the extreme dimension and sheds light on
many laser related applications.

Plasmonic structures are also widely used for sensing [16, 51–55], imag-
ing [56, 57], nanoantennas [58, 59], photovoltaic devices [60], and flexible phase
front engineering [61, 62]. As an example, in Fig. 1.13 we show two plasmonic sens-
ing devices based on SPPs modes and LSPs resonances respectively. It is known that
plasmonic states are confined at the metal-dielectric interface and those states are
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(a)

(b)

(c)

Figure 1.11: Experimental demonstration of three kinds of plasmonic circuits based
on channel SPPs. (a) Plasmonic Y-splitter. (b) plasmonic Mach-Zehnder interferom-
eter. (c) plasmonic ring resonator. After Ref. [37].

very sensitive to the surrounding environment close to the interface. Figure 1.13(a)
shows a protein density sensing device based on the Kretschmann geometry for
SPPs modes excitation. Different protein density in the upmost channel will lead
to different SPPs propagation constants [see Eq. (1.5)] and thus different incident
angle of the incident beam is required to excite effectively the SPPs modes. Thus
different incident angles will be used to sense the change of the protein densities.
Figure 1.13(b) shows another sensor based on the LSPs resonance supported by
the Au triangle. For different pressures, different proportions of Hydrogen will be
absorbed by the Pd disk. As the disk is close to the edge of the Au triangle where
there is a significant field enhancement and high density of states, this will lead to
scattering spectral peak shift of the sensing system. Consequently, the scattering
spectra can be used to effectively sense the change of the pressure.

It is worth mentioning that plasmonics based applications can be found not
only in different branches of physics, but also in frontier researches in chemistry,
biology and medicine [15, 60, 63, 64]. Figure 1.14 shows a proposal for breast
cancer therapy [15]: plasmonic core-shell nanoparticles resonant at the near-infrared
spectral regime (inset of Fig. 1.14) are injected into the bloodstream and then those
particles will flow mainly to the new-grown tumor. Under the illumination of a laser
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(a) (b)

Figure 1.12: Experimental demonstration of plasmonic nano-lasers in (a) the plas-
monic states are confined within the Fabry-Pérot cavity made of MgF2 between the
doped CdS nanowire and the Ag plate and in (b) the plasmonic states are confined
at the surface of the gold core and the outmost layer is doped silica working as the
gain material. After Refs. [49, 50].

of central wavelength close to the resonant wavelength of the injected particles, due
to the excitations of LSPs resonances, the particles will generate heat to kill the
tumor cells. As the particles are mainly embedded into the tumor issue, the healthy
tissue will not be harmed by this heating effect.

The research of plasmonics during the past several years has become more com-
prehensive and has rapidly spread into the quantum regime [65–73]. It is worth
noticing that in this field despite all the significant achievements, there are still
many challenges laying ahead, with the major and tough ones described below:

Although the field of plasmonics provides an effective way for us to gain access
to the regime in the nanoscale with its special feature of subwavelength confine-
ment, and many flexible functionalities based on the feature of significant near-field
enhancement, there is an inevitable trade-off between subwavelength confinement
and the intrinsic loss of metals. A well known approach proposed to compensate for
the loss is to incorporate gain materials [44, 74], while the side effects of the gain
materials on the signal processed are not clear. An example of the side effects is
the effect of gain materials on the quantum noise of the system investigated [44].
At the same time, the narrow operating spectral regime of the gain media and the
requirement of an external pump will probably further restrict the applications of
gain-assisted plasmonic devices.

Related to plasmonic structures with gain materials, the topic of lasing effect,
especially the concept and demonstration of lasing spaser currently has become
quite hot but at the same time also quite controversial [44, 49, 50, 77–83]. The
controversy is not only about the basic concepts of the lasing effect [44, 77, 79–83]
but also about the recent experimental demonstrations of such effect [49, 50]. In
Ref. [49] Noginov et al. claimed that for the first time they have demonstrated the
lasing spaser [Fig. 1.12(b)], while it is not clear what is really the lasing mechanism in
that paper. The feedback can come from a single particle as it supports well defined
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(a) (b)

Figure 1.13: (a) A protein density sensor based on the Kretschmann geometry for
SPPs modes excitation. Different protein densities will lead to different SPPs prop-
agation constants and thus different incident angles are required to excite efficiently
the SPPs modes. (b) A pressure sensor based on the resonant scattering of Au tri-
angle. Different pressures will lead to different amounts of Hydrogen to be absorbed
and thus lead to the shift of the scattering spectra. After Refs. [75, 76].

resonances, or from the random arrangement of all the particles (a random laser), or
both feedback effects can be present. To rule out the mechanism of random lasing,
a single particle lasing structure can be investigated but it is challenging to prepare
a satisfactory experimental platform for such a test. The demonstration in Ref. [50]
is quite decisive and clear [Fig. 1.12(a)], but it is argued that this demonstration is
based on propagating SPPs rather than localized surface plasmons, and thus can
only be called a plasmonic laser rather than a lasing spaser. There have been no clear
conclusions yet about the debates mentioned above, while for the demonstrations in
Ref. [49] and Ref. [50] we cannot see the fundamental differences between them. As
we mentioned earlier of the Bohr condition, the resonances of both structures come
from the integral number of 2π phase accumulation of SPPs. The only difference is
that in the former structure phase is accumulated at the spherical metal-dielectric
interface of the core-shell particle while in the latter one the phase is accumulated
in a loop in the planar Fabry-Pérot cavity. But this difference is not sufficient for
the justification of the claim that one of them is lasing spacer and the other is not.

The challenges of the field of plasmonics come not only from the intrinsic loss,
but also from other special features of metals, such as nonlocality, quantum effect,
nonlinearity and so on. To simplify the calculations of plasmonic structures, usually
we assign to the metals effective permittivities and then all the properties can be
obtained directly through solving Maxwell equations. For the effective permittivi-
ties of metals, in most classical investigations we take the experimental data of bulk
metal or simply use the Drude model, the assumption behind which is that the free
electrons show a δ-function type distribution and thus the electron pressure due to
inhomogeneous electron distribution is neglected [27]. This approach works well un-
der most circumstances when the scale of metallic items used is above the nanometer
regime. However for structures with metallic items of scales in the sub-nanometer
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Figure 1.14: Plasmonics based cancer therapy: plasmonic silica core-gold shell
nanoparticles (inset, those particles are made to be resonant in the near-infrared spec-
tral regime) are injected into the bloodstream and then those particles will mainly
be embedded into new-grown tumor tissue. Afterwards, a laser of central wavelength
close to the resonant wavelength of the injected particles is shined to the region of tu-
mor tissue. As the LSPs resonances of the particles injected are excited, the particles
will generate sufficient heat to kill the tumor cells. After Ref. [15].

regime, the nonlocal effects of metals have to be taken into consideration [27, 84–
87]. The Bloch hydrodynamic model has been widely used to address the nonlocal
effects of metals, in which an extra term is introduced to include the pressure of
the electron gas coming from inhomogeneous distribution [27]. The problem of this
model is that there is some uncertainty in regard to what should be the proper pres-
sure coefficient and after the application of this model, what should be the proper
continuity condition: continuity of the field or continuity of the current [27]. There
are still a lot of things to be done to improve this model, given that this model
will be even more complicated when the quantum tunneling effect joins to be mixed
with the nonlocal effect [70–73].

Despite the nonlocal and quantum effects of metal, another challenge comes
from the nonlinearities of metal. There is significant near-field enhancement within
plasmonic structures, which can thus be made highly active and functional when
nonlinear effects are employed [21, 22]. For this kind of applications the nonlinearity
of metal can play a significant role. However, similar to the nonlocal effect, it is
quite challenging to characterize accurately the nonlinear effects of the metals [88–
92]. This will become even more challenging in the sub-nanometer regime where
nonlocal and quantum effects are present at the same time.
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Figure 1.15: Schematic illustration of the structure of this thesis. We start the
thesis with introduction to diffraction limit and nano-optics, of which the field of
plasmonics is a promising and fast developing field. The field of plasmonics can be
roughly divided into two branches of SPPs and LSPs, depending on whether the states
excited are localized or propagating. The two sub-branches are highly related to each
other through the Bohr condition. The SPPs related work is presented in Chapter 2
on backward modes and complete spectral gap, and in Chapter 3 on beam shaping
in plasmonic potentials. LSPs related work is presented in Chapter 4 on scattering
engineering through employing magnetic dipoles.

1.4 Scope and outline of this thesis

The research work presented in this thesis attempts to attack several specific
challenges for both branches of SPPs and LSPs in the field of plasmonics as listed
below:

(1) Spectral gap is an important concept in photonics, which in general indi-
cates a spectral regime within which the electromagnetic waves cannot propagate
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through. A special and most popular kind of spectral gap is bandgap in photonic
crystals, which is playing a vitally important role for various applications, including
the suppression of the spontaneous emission, photonic crystal laser, waveguiding in
photonic crystal fibers and so on [93–95]. The realization of spectral gaps, similar
to bandgaps, usually requires complex configurations like periodicity and thus com-
plicated fabrication techniques. In Chapter 2 we demonstrate a new way to achieve
spectral gaps without periodicity in the propagation direction. The basic mecha-
nism is the coupling of backward and forward modes in plasmonic waveguides, for
which there is automatic phase matching without any extra periodicity. We demon-
strate both polarization-dependent and polarization independent complete spectral
gaps in coupled plasmonic nanocavities.

(2) To realize the effective integration of plasmonic circuits with electronic de-
vice, an important step is to achieve flexible plasmonic beam shaping and steer-
ing [12, 28, 37]. There are a number of approaches for beam manipulations, such as
employing nonlinear media [45] and bending the plasmonic waveguides [12, 28, 37].
However the drawbacks of those approaches are very clear: the nonlinear effects
are usually very weak and highly dependent on the intensity of the signal, and
bending the waveguides will induce huge extra scattering losses. In Chapter 3
we achieve various plasmonic potentials (graded index distribution) in modulated
metal-dielectric-metal structures and based on such potentials we demonstrate ef-
ficient beam shaping and steering, including polychromatic nanofocusing in full
parabolic potentials, plasmonic analogue of quantum paddle balls in half parabolic
potentials, adiabatic nanofocusing in tapering parabolic potentials and plasmonic
Airy beam manipulations in linear potentials.

(3) For many LSPs based applications, such as plasmonic nanoantennas [58, 59],
sensing with plasmonic nanoparticles [52], and photovoltaic devices [60], clock-
ing [96], control of the direction of the scattered light [61, 62] and so on, efficient
shaping of the scattering pattern is one of the most crucial issues. Nevertheless,
most approaches on scattering shaping are based on engineering of the electric re-
sponses of the nanostructures. This is because most structures have only electric
responses as there are very limited kinds of magnetic materials, which at the same
time can usually only operate in narrow spectral regimes, and are accompanied by
high losses. In Chapter 4 we introduce the artificial magnetic dipoles into plasmonic
nanostructures and manage to effectively shape the scattering pattern, through
the interferences of electric and the artificial magnetic dipoles, for magneto-electric
core-shell nanospheres and core-shell nanowires. We also demonstrate polarization
independent Fano resonances in arrays of core-shell nanospheres.

For a clear overview of the thesis, in Fig. 1.15 we give a schematic illustra-
tion of the basic structure of the thesis: firstly we put the overall introduction
of plasmonics in the broader background of diffraction limit and nano-optics; The
field of plasmonics could be roughly divided into two branches of SPPs and LSPs,
which can be unified through the Bohr condition of quantization; Chapter 2 about
backward modes and complete spectral gap in plasmonic structures and Chapter 3
about beam shaping in plasmonic potentials fall into the category of SPPs; Chap-
ter 4 about scattering engineering through employing magnetic dipoles falls into
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the other category of LSPs. The thesis is concluded in the last chapter, where we
summarize the results and give a brief outlook of the field of plasmonics.



CHAPTER 2

Backward modes and complete spectral
gaps in cylindrical plasmonic
nanostructures

The spectral gap in general means a spectral regime within which the electro-
magnetic waves cannot propagate through. One of the most well known examples
of spectral gaps is the bandgap in photonic crystals. The spectral gap can basically
block the flow of photons, and such functionality plays a central role in various pho-
tonic structures, based on which many applications can be realized, such as photonic
crystal laser, wave guidance in photonic crystal fibers, suppression of spontaneous
emission, color changing paints and so on [93–95]. However, the realization of spec-
tral gaps, similar to bandgaps, usually requires configurations like periodicity and
thus relatively complicated fabrication techniques. Moreover, such structures that
support spectral gaps are hard to be further miniaturized in the optical regimes and
thus challenging to be integrated with electronic devices. In this chapter we demon-
strate a new mechanism to achieve spectral gaps based on the coupling of backward
and forward modes. As there is automatic phase matching, no periodicity in the
propagation direction is required. We demonstrate both polarization-dependent and
polarization independent complete spectral gaps in coupled plasmonic nanocavities.
The simpler mechanism is anticipated to be widely used to simplify the structure
design for spectral gap based devices and play an important role in many possible
related applications.

2.1 Introduction

In this part of introduction, we will start from the basic mechanism of bandgaps
in photonic crystals and based on this we point out why backward modes are re-
quired to construct spectral gaps without periodicity in the propagation direction.
Then we discuss the features of backward modes and their existence in planar lay-
ered plasmonic structures.
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Figure 2.1: Schematic illustration of (a) the principle of the bandgaps in 1D photonic
crystals and (b) forward and backward modes. S1,2,3 indicates the direction of energy
flows and k1,2,3 indicates the direction of phase velocity.

Basic mechanism of bandgaps

To block the forward energy flow in one channel, there should be an extra chan-
nel coupled to the first one to transport energy backwards. To visualize this, in
Fig. 2.1(a) we show schematically the mechanism of bandgaps in one dimensional
(1D) dielectric photonic crystals. The existence of the bandgap depends on the
coupling of two modes with contra-directional energy flows indicated by S1,2 and
wave vectors indicated by K1,2. As both of the two modes are forward modes [the
direction of the energy flow and wave vector is the same, as shown in Fig. 2.1(a)],
energy flows into opposite directions also means that the two modes are not phased
matched. To make the two modes effectively coupled to each other to produce the
bandgaps, the periodicity of the photonic crystals (d) is required to provide extra
momentum (Δk = 2πm/d, where m is an integer) to satisfy the phase matching
condition (k1 − k2 = Δk). This explains intuitively and briefly why usually pe-
riodicity is required to make bandgaps. After the clarification of this point, it is
easy to figure out that, if there is a mode (backward mode) which can transport
the energy backwards while at the same time the wave vector is forward [as shown
in Fig. 2.1(b)], then this mode will couple automatically to the forward mode di-
rectly without the need of periodicity to provide extra momentum. This means that
spectral gaps can be achieved directly within systems where forward and backward
modes are supported simultaneously.

Backward modes in planar layered plasmonic structures

With contra-directional energy flow and phase velocity, the backward modes
sound quite unusual but actually they exist in our everyday life [97]. Recently
boosted by the field of metamaterials [19–22], backward modes have attracted surg-
ing interest as they play a fundamental role for many novel phenomena observed in
metamaterials, such as negative refraction, lens with super resolution, cloaking and
so on [18–22, 57, 98–104]. The backward modes are supported in various plasmonic
structures, where the negative permittivity of metals plays a central role. At the
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Figure 2.2: Backward modes (curves with a negative slope) in various planar plas-
monic structures (grey regions indicate silver and yellow regions indicate GaP with
other areas being vacuum): (a) a MDM waveguide with the GaP layer thickness
of 50 nm, (b) a metal-dielectric-vacuum waveguide with the GaP layer thickness of
50 nm and (c) a DMD waveguide with silver layer thickness of 50 nm. The curves
are plotted in lossless regime and dotted lines indicate the surface plasmon frequency.
After Ref. [105]

metal dielectric interface, due to the negative permittivity of metals, the continuity
condition requires the electric field component perpendicular to the interface in the
dielectric should be opposite to that in the metal and this usually leads to contra-
directional energy flows in the neighboring media. For a supported mode, when the
overall backward energy flows in the metal is more than those forward ones in the
dielectric, then the mode would be a backward mode.

In Fig. 2.2 we show the existence of backward modes (characterized by a
dispersion curve with a negative group velocity) in three well studied planar
structures: metal-dielectric-metal (MDM), metal-dielectric-vacuum, and dielectric-
metal-dielectric (DMD) structures. As mentioned before, the backward modes are
supported only when the overall forward energy flows is more than those backward
ones and thus for the above three kinds of structures, to support backward modes
specific structure parameters are required. We note that backward modes can also
be found in other more complicated planar structures [106].

2.2 Backward modes in single cylindrical plasmonic nanos-

tructures

In this section, we will study the simplest two cases of cylindrical plasmonic
structures: nanowires and nanocavities, which actually are just 3D DMD and MDM
structures respectively. Similar to their 2D counterparts [see Fig. 2.2(a) and (c) ],
we will show that both of them can support backward modes for specific structure
parameters. In this section, to simplify the analysis and not lose the generality, we
use the Drude model to simulate the optical properties of a metal: εm(ω) = 1 −
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Figure 2.3: Modes of different orders supported by a metal nanowire [inset of (a)].
(a) The lossless dispersion curves of modes of different orders with fixed nanowire
size α = 2.3. The light line is indicted by the black curve. (b) and (c) show the
electric field distribution (Ez component) for the fundamental and the dipole modes,
respectively.

ω2
p/ω(ω+iωτ), where ωp is the plasma frequency and ωτ is the collision frequency. At

the same time, we define two normalized quantities: loss parameter γ = ωτ/ωp, and
size parameter α = Rωp/c, where R is the radius of the the nanowire or nanocavity,
and c is speed of light.

2.2.1 Plasmonic nanowires

Compared to 2D DMD structures in which one transverse direction is uniform,
the cross section of a metal nanowire [inset of Fig. 2.3(a)] functions like a confining
potential. Similar to confining potentials in quantum mechanics which lead to
discrete states [24], plasmonic nanowires support SPPs modes of different orders
(characterized by mode order n), with 2n nodes in the field distribution at the
cross section [107–112]. Actually we can apply the Bohr condition at the cross
section [111]. In Fig. 2.3(a) we show dispersion curves of modes of different orders
with fixed nanowire size α = 2.3 (which correspond to R ≈ 50 nm for silver or gold,
with plasma frequency ωp = 1.37× 1016 rad/s) when the loss of metal is neglected
(γ = 0). We are interested in only SPPs modes and thus the radiative modes on
the left-hand side of the light line (indicted by black curve) are not shown (more
details about the features of the radiative modes can be found in Ref. [107]). In
Fig. 2.3(b) and Fig. 2.3(c) we show the electric field distribution (Ez component)
for the fundamental and the dipole modes respectively. For this relatively large
nanowire, none of the first four SPPs modes are backward modes. This means that
for all the modes shown in Fig. 2.3(a), more energy flows forward in the dielectric
background than that flows backward in the metal.

Next we change the parameters to search for backward modes supported by
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Figure 2.4: Lossless dispersion curves for (a) dipole modes supported by plasmonic
nanowires with different sizes from α = 0.1 to α = 0.7 and (b) modes of different
orders of the nanowire with fixed size α = 0.7. The black line indicates the light line
in vacuum.

plasmonic nanowires. It is known that the fundamental mode is always a forward
mode [107–110] and thus firstly we focus on the dipole mode (n = 1) and change
the size of the nanowires. We show the results in Fig. 2.4(a) and it is clearly shown
that as we shrink the size of the nanowire, part of the dipole mode will become
backward. Then we fix the size of the nanowire (α = 0.7) and change the mode
orders. As shown in Fig. 2.4(b), high order modes will become partly backward
although the dipole mode is a fully forward mode.

Up to now, we have shown only the lossless dispersion curves when the loss of
metal is ignored (γ = 0). There has been a lot of work about the effect of the loss
of metal on the dispersion curves of the modes supported [113–116] and the general
conclusion is that: when the group velocity is high, the dispersion curves will stay
more or less the same as the lossless case while at the low group velocity region, the
loss of metal will change significantly the dispersion curves. This is understandable
as the slower energy flows, the more time it will has to interact with metal and thus
more of the energy will be absorbed. In Fig. 2.5(a) we show the dispersion curves of
the dipole mode supported by a metal nanowire of size parameter α = 0.1 and the
results of both lossy and lossless metal are shown. It is clear that when the group
velocity is relatively large, the curves for the two cases are almost the same, but in
the region close to the zero group velocity point, the curve will bifurcate into two
branches.

To understand the nature of the two new formed branches, then we investigate
the overall energy flows of the two branches. In lossless cases, the direction of
overall energy flows is the same as that of group velocity [117, 118] and then it is
easy to judge whether a mode is forward or backward through checking the slope
of the dispersion curve. However, when loss is introduced in the system, the two
directions of overall energy flow and of group velocity will be different [119] and
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Figure 2.5: (a) Dispersion curves for dipole mode supported by nanowire with α = 0.1
for both lossy (γ = 0.002) and lossless cases. When loss is present, the curve will
bifurcate into two branches with forward energy flow (blue curve) and backward
energy flow (red curve). (b) The energy velocity for lossless branch (black curve) and
two lossy branches.

thus in lossy systems, to judge the direction of overall energy flow, we calculate the
energy velocity of the modes supported by nanowires, which is defined as follows:

ve =

R∫
0

2π∫
0

rSzmdrdθ +
+∞∫
R

2π∫
0

rSzddrdθ

R∫
0

2π∫
0

rWmdrdθ +
+∞∫
R

2π∫
0

rWddrdθ

, (2.1)

where Sz denotes Poynting vector component along propagation direction, W de-
notes the energy density, and subscripts d and m denote the corresponding quantity
in background dielectric and metal respectively. Energy velocity simply is the in-
tegrated energy flow divided by the integrated energy density, which is identical to
group velocity vg = dω/dk [117, 118] in lossless case, while in lossy case vg repre-
sents the velocity of the peak of a pulse which is not directly related to ve [119].
In Fig. 2.5(b) we show the energy velocity for both new formed branches. It is
clearly shown that one branch (blue curve) corresponds to a forward wave while the
other branch (red) corresponds to a backward mode, which is independent of the
group velocities of two branches. Also it is show that in the lossy case, the zero
energy velocity is not accessible any more. We note here that there is another way
based on the principle of causality together with the sign of the imaginary part of
wavenumber, which makes it rather simple to tell the overall energy flow direction
and thus the nature of the modes in lossy cases [120].
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Figure 2.6: Dispersion curves in (b) indicate different modes supported by the plas-
monic nanocavity [shown in (a)] with α = 1.2 when loss of metal is neglected (γ = 0).
(c) and (d) show the electric field distribution (Ez component) for the HE11 and TM01

modes, respectively.

2.2.2 Plasmonic nanocavities

Similar to the plasmonic nanowires, plasmonic nanocavities [schematically shown
in Fig. 2.6(a)] support modes of different orders and many types of modes ex-
ist [108, 109]. The difference is that for modes supported by nanocavities, even the
dispersion curves located on the left-hand side of the light line indicate nonradiative
modes which are well confined within the cavity. This is because light cannot escape
through the infinite metallic background. In Fig. 2.6(b) we show the lossless disper-
sion curves of different modes confined within the plasmonic nanocavity with size
parameter α = 1.2. More details about how those modes are named could be found
in Refs. [108, 121]. In Fig. 2.6(c) we show the electric field distribution (Ez com-
ponent) for the HE11 and TM11 modes, respectively, and we will give more details
below about the two modes. The HE11 mode shows a typical dipole distribution
while the TM01 mode shows an angular-invariant uniform distribution, which is a
backward mode for the parameters chosen.

The nature of the modes (forward or backward) supported by the nanocavities
is dependent on the sizes of the nanocavities, similar to the modes of nanowires
as shown in Fig. 2.4. Next we study the evolution of the HE11 and TM01 modes
with changing size parameters. Firstly we neglect the loss of metal and show in
Fig. 2.7(a) and Fig. 2.7(b) the lossless dispersion curves for HE11 and TM01 modes
respectively supported by plasmonic nanocavities of different size parameters. As
it is clearly demonstrated, it is easier to support backward modes for shrunk size
parameters, as is the case for nanowires, as shown in Fig. 2.4. Then we study the
effect of loss on the dispersion curves for HE11 and TM01 modes and the results are
shown in Fig. 2.7(c) and Fig. 2.7(d), respectively. As we claimed before, at relatively
large group velocities, the effect of loss is not significant, while in the region close
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Figure 2.7: Lossless dispersion curves for (a) HE11 and (b) TM01 modes supported
by plasmonic nanocavities of different size parameters. (c) and (d) show both the
lossless and lossy dispersion curves for the two modes for a chosen size parameter.

to the zero group velocity point, the effect is not negligible any more. The mode
bifurcation at the zero group velocity point shown in Fig. 2.7(c) and Fig. 2.7(d)
when loss is present is a quite generic feature and has already been demonstrated
for nanowires, as shown in Fig. 2.5.

Here we note that we use the Drude model to simulate the optical responses
of metals, which does not work well when the size of the nanowire or nanocavity
is in the sub-nanometer regime when nonlocal effect of metal has to be taken into
consideration [27, 84]. Due to the nonlocal effect of metal the longitudinal modes
can arise and SPPs modes can exist above the surface plasmon frequency [27, 84].
Though the results about nonlocal effects in cylindrical plasmonic structures will
not be included in this thesis but published in a upcoming paper, we claim that even
when nonlocal effect is taken into consideration, backward modes can still exist and
the effect of loss on the dispersion curves, especially the zero group velocity point,
is quite similar to what we have demonstrated earlier in Fig. 2.5 and Fig. 2.7.
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Figure 2.8: (a) Two dielectric waveguides with ε1 = 9 and ε2 = 4, separated by
D embedded into infinite metal. Green arrows indicate the energy flow at different
channels for the wave vector along z; (b) dispersion of two coupled waveguides. Yellow
region indicates the incomplete polarization dependent spectral gap obtained using
temporal coupled mode theory with vg = 0.13c, vg3 = −0.039c, and δ = 0, where c is
the speed of light.

2.3 Spectral gap in coupled plasmonic nanocavities

In this section we study a plasmonic coupler involving backward (TM01) and
forward (HE11) modes of dielectric waveguides embedded into an infinite metal-
lic background (plasmonic nanocavities). The simultaneously achievable contra-
directional energy flows and co-directional phase velocities in different channels
lead to a spectral gap, despite the absence of periodic structures along the waveg-
uide. We demonstrate that a polarization independent complete spectral gap can
be achieved in a symmetric structure composed of four coupled nanocavities. This
new mechanism demonstrated may play an important role in nanophotonics, as it
could significantly simplify complex geometries that are required for subwavelength
optical manipulation and concentration.

2.3.1 Polarization-dependent spectral gap in two coupled plasmonic
nanocavities

Figure 2.8(a) shows the two-waveguide structure we study: two dielectric rods
of the same radius α = 1.21 (corresponding R is about 25 nm for silver) with ε1 = 9
and ε2 = 4 are embedded into infinite metal. Firstly, by analyzing the dispersion
of a single waveguide, we find that the backward TM01 mode for ε = 9 intersects
with the forward HE11 mode for ε = 4 at ω/ωp = 0.3856 [see Fig.2.9(a)]. The HE11

mode has linear polarization inside the dielectric [see Fig. 2.9(c)], which could be
excited directly with a normal incident wave [122], whereas the TM01 mode has
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radial polarization [see Fig. 2.9(d)] with much higher losses in the coupling region
[see Fig. 2.9(b)].

Prior to preforming a fully numerical study, we use temporal coupled mode the-
ory [123, 124] (TCMT) to get a qualitative understanding of dispersion relation in
the lossless case. The eigenmodes of a coupled system are expressed as a superpo-
sition of individual waveguide modes: E =

∑
mAm(z, t)Em(x, y)e

i(ωm0+κmm)t, where
ωm0 = ωm at k = k0 and κmm is the self-coupling coefficient. For the two coupled
waveguides, three modes can couple to one another: two forward HE11 modes of
preferred x and y polarizations, which could be approximately reconstructed by two
orthogonal eigenmodes of circular polarizations A1,2(z, t), and one backward TM01

mode A3(z, t). The coupled mode equations in time domain are:

i
∂A1,2(z, t)

∂t
+ ivg

∂A1,2(z, t)

∂z
+ κA3(z, t)e

i2δt = 0, (2.2)

i
∂A3(z, t)

∂t
+ ivg3

∂A3(z, t)

∂z
+ κ

2∑
m=1

Am(z, t)e
−i2δt = 0, (2.3)

where δ = 1
2
(κ33 + ω30 − κ11 − ω10) =

1
2
(κ33 + ω30 − κ22 − ω20) is the antisymmetry

parameter of two waveguides; A1,2,3 are normalized envelopes of the wavefunction;
vgi(vg = vg1,g2 > 0, vg3 < 0) are the group velocities at ω0 = ω(k0); κ12 = κ21=
0 (mode 1 and 2 are orthogonal), and the other mutual coupling coefficients are
identical: κij = κji = κ (i = 1, 2; j = 3). In the coupling region we ignore
the dispersion of group velocities and assume that vg,g3 and κ are constants. By
introducing the following variables: a1(z, t) = A1(z, t)e

−iδt, a2(z, t) = A2(z, t)e
−iδt,

a3(z, t) = A3(z, t)e
iδt, Eq.(2.2) and Eq.(2.3) can be simplified as:

i(
∂

∂t
+ ω1

∂

∂z
)a1,2(z, t)− δa1,2(z, t) + κa3(z, t) = 0, (2.4)

i(
∂

∂t
+ ω13

∂

∂z
)a3(z, t) + δa3(z, t) + κ [a1(z, t) + a2(z, t)] = 0. (2.5)

Then we apply the Fourier Transform:

a1,2(z, t) = (
1

2π
)2
∫∫

â1,2(k, ω)e
iωt−ikz (2.6)

and then Eq.(2.4) and Eq.(2.5) are transformed into the frequency domain:

[i(iω − iω1k)− δ] â1,2(k, ω) + κâ3(k, ω) = 0, (2.7)

[i(iω − iω13k) + δ] â3(k, ω) + κ [â1(k, ω) + â2(k, ω)] = 0. (2.8)

The eigenvalues of Eq.(2.7) and Eq.(2.8) can be easily found, which actually
correspond to the propagation constants of the three eigenmodes supported by the
coupled system:

k1,2 =

(
α1 ± i

√
−8vg3vgκ

2 − α2
2

)
/2vgvg3, k3 = (ω + δ)/vg, (2.9)
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Figure 2.9: (a) Dispersion curve and (b) losses of TM01 mode for εd = 9 and HE11

mode for εd = 4. (c) and (d) Poynting vector component Sz (colourmap) and trans-
verse electric field Et (arrows) for HE11 mode and TM01 respectively at ω/ωp=0.3856
with γ=0.002.

where α1 = vg(ω−δ)+vg3(ω+δ) and α2 = vg(ω−δ)−vg3(ω+δ). When −8vg3vgκ
2 ≥

α2
2, k1,2 is a conjugate pair, indicating the existence of a spectral gap, while k3

corresponds to the eigenmode:

â(k, ω) = â1(k, ω) + â2(k, ω), (2.10)

where â1(k, ω) and â2(k, ω) denote orthogonal circularly polarized modes. Thus, k3
corresponds to a linearly polarized HE11 mode, which is not coupled to the TM01

mode. This mode makes the gap dependent on the polarization. Figure 2.8(b) shows
the results obtained using TCMT of δ = 0 when values with vg,g3 are extracted from
the data shown in Fig. 2.9(a).

Full numerical simulation results using COMSOL (see Fig. 2.10) qualitatively
agree with TCMT. In the lossless case γ = 0, the spectral gap is defined by a
pair of complex conjugated propagation constants [see Figs. 2.10(a) and (b)]. The
gap width increases with decreasing the distance D [see Fig. 2.10(f)], because the
coupling coefficient becomes larger. When we incorporate some losses (γ = 0.002),
all modes become complex, and the definition of width of the gap depends on how



2.3 Spectral gap in coupled plasmonic nanocavities 31

0.4 0.6 0.8 1 1.2

0.36

0.37

0.38

0.39

−0.5 0 0.5 1

0.36

0.37

0.38

0.39

−2 0 2

−1

0

1

−0.5

0

0.5

1

−2 0 2

−1

0

1

−1
−0.5
0
0.5

−2 0 2

−1

0

1

−0.5
0
0.5
1

-0.5 10 20 30 40 50

0.37

0.38

0.39

0.4

-1

-1

-1

-1

-2

-0.5

-0.5

-0.5

ω
 /ω

p
ω

 /ω
p

ω
 /ω

p

Re (ckz/ωp)

D/nm

x/R

y/
R

D=10nm
γ=0, dashed line
γ=0.002, solid line

                D=10nm
γ=0, dashed line
γ=0.002, solid line

D=10nm
γ=0

gap

Im (neff)

(a)

(b)

(c)

(d)

(e)

(f)

ABC
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to the TM01 mode as shown in (c). (c)-(e) Sz of modes at the points (A)-(C) marked
in (a), respectively. (f) Gap region vs distance between waveguides when γ=0.

far it is from the observing point to the source. However, the gap width of lossless
metal (γ = 0) may still serve as a guide and effective approximation as shown in
Figs. 2.10(a) and (b) with dashed lines.

In addition to the modes of conjugate propagation constants, there exists one
more HE11-like decoupled mode. The energy flow of this mode is mostly confined
inside ε1 = 4 waveguide [see Fig. 2.10(c)]. Thus, the gap of the two coupled waveg-
uides is incomplete and polarization dependent.

2.3.2 Symmetry induced polarization independent complete spectral

gaps

To make modes of different preferred polarizations directions degenerate and
obtain a full gap, symmetric structures could be used [125, 126]. One of the options
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is to utilize four-waveguide C3v structure [see Fig. 2.11(a)]. We use subscripts n =
1, 2 to denote two HE11 modes of circular polarizations and n = 3, 4, 5 for three
TM01 modes. Based on the symmetry and energy conservation law in the lossless
case, the following relations are satisfied for mutual coupling coefficients:

κ12 = κ12 = 0, κ1m = κ∗m1 = κ∗2m = κm2 = κ1e
2
3
π(m−3)i, (2.11)

where m,n = 3, 4, 5 and m �= n. Due to the C3v symmetry, eigenmodes â(k , ω) =∑5
m=1 βmâm(k , ω) of preferred x polarization (β1 = β2) and those of preferred y

polarization (β1 =−β2) should be degenerate [125, 126]. Thus using TCMT we can
find five eigenmodes of three frequencies:

k1,2 =

(
α1 ± i

√
−12vg3vgκ

2 − α2
2

)
/2vgvg3, (2.12)

which corresponds to two degenerate pairs of modes and the last mode of:

ω = ω3(k) + 2κ2. (2.13)
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Here α1 = vg(ω − δ + κ2) + vg3(ω + δ), α2 = vg(ω − δ + κ2) − vg3(ω + δ) and
ω3(k) is the dispersion of the individual TM01 mode. Again k1,2 can be a conjugate
pair, indicating the existence of a gap. ω = ω3(k) + 2κ2 corresponds to eigenmode
(E3 mode) â(k, ω) =

∑5
m=3 âm(k, ω), which is a symmetric combination of TM01

modes. The cut-off frequency of E3 mode is shifted by 2κ2 compared with individual
TM01 mode. Numerical results from COMSOL are shown in Fig. 2.11. This allows
us to conclude that the spectral gap of four coupled waveguides indicated by the
yellow region becomes polarization independent when the E3 mode is cutoff. For
larger losses (metal in deep ultraviolet regime) the spectral gap still exists, but the
effective width becomes smaller and eventually disappears as increasing losses make
the differences between gap and non-gap region smaller. To enable coupling at
longer-wavelength regimes, where losses of metal are lower, one could use dielectric
waveguides with higher permittivities (GaAs or Si for example).

2.4 Summary

In this chapter after a brief introduction to backward modes and their existence
in planar layered plasmonic structures, we study two basic plasmonic cylindrical
structures: nanowires and nanocavities, and reveal the existence of the backward
modes supported by them. We discuss the mode evolutions with size parameters
and also the effect of loss of metal on the shape of the dispersion curves. Then
we study a coupler based on two coupled nanocavities involving the coupling of
backward and forward modes. By using the temporal coupled mode theory we have
predicted a spectral gap in such a system without a periodic structure. This result
has been verified by direct numerical simulations. Moreover, we have demonstrated
that a complete polarization independent gap can be achieved by using four cou-
pled nanocavities with C3v symmetry. Similar coupling between surface plasmon
polaritons (SPPs) can happen in metallic-wire structures when the radius is small
enough to support backward SPPs modes. However, high losses of backward SPPs
on metallic wires prevent them from realistic realizations. We anticipate that by
incorporating materials with gain and/or nonlinearities, the proposed structure can
be considered as a platform for the study of gap solitons, optical bistability, high-Q
cavities, plasmonic nanolaser in various systems without periodicity.



CHAPTER 3

Beam shaping in plasmonic potentials

Flexible beam shaping and steering is an important functionality for plasmonic
nanocircuits. The approaches proposed for beam shaping relying on employing
nonlinear media or bending the plasmonic waveguides have severe drawbacks. For
example, the nonlinear effects are usually very weak and highly dependent on the
intensity of the signal, and bending the waveguides will induce extra scattering
losses. In this Chapter we propose and demonstrate flexible and efficient beam
shaping in plasmonic potentials. At the beginning we discuss the similarity be-
tween Schrödinger equation for matter waves and the paraxial wave equation for
photons. We point out that the graded index plays the effective role of potentials for
photons, similar to the potentials for matter waves. Then we introduce the concept
of plasmonic potentials and demonstrate how to achieve different kinds of potentials
for SPPs modes in various modulated metal-dielectric-metal (MDM) structures. We
show firstly different kinds of parabolic plasmonic potentials in quadratically mod-
ulated MDM structures and the beam manipulations in such potentials, includ-
ing polychromatic nanofocusing in full parabolic potentials, plasmonic analogue of
quantum paddle balls in half parabolic potentials, and adiabatic nanofocusing in ta-
pered parabolic potentials. In the last section of this chapter we show the existence
of linear plasmonic potentials in wedged MDM structures and efficient steering of
the Airy beams in those potentials.

3.1 Introduction

Formal scientific investigation on the similarities between classical particles and
light date back to 1704 when Isaac Newton published his treatise Optiks [127].
This topic was further systematically studied by Hamilton and especially those
founders of quantum mechanics, e.g. Einstein, Heisenberg, de Broglie, Schrödinger
etc [118, 128, 129]. After the well establishment of quantum mechanics and the in-
vention of the laser, many theories and concepts from quantum mechanics have been
successfully adopted and demonstrated in the field of photonics (see, e.g. Ref. [130]
and the references therein).

A well known example is the similarity between the scalar paraxial wave equation
for photons and the Schrödinger equation [130–132]. The scalar paraxial wave



3.1 Introduction 35

Figure 3.1: Photon bouncing under photonic gravity: The trajectory of a light beam
(λ = 532 nm) through a tank of water filled with sugar. After Ref. [132].

equation is:

−i∂ψ
∂z

=

[
k0n(x, z) +

1

2k0n(0, z)

∂2

∂x2

]
ψ, (3.1)

where k0 is the wavenumber in free space and n(x, z) is the effective refractive index
distribution. We note here that for the second-order partial derivation term of
Eq. (3.1) we make the approximation that n(x, z) = n(0, z) under the circumstance
that the effective refractive index does not change significantly with x. For the case
that the effective refractive index is independent of z, of which a special example
is a uniform waveguide along z. The paraxial wave equation Eq. (3.1) can then be
compared to the Schrödinger equation:

−i∂ψ
∂t

=

[
V (x, t) +

1

2m

∂2

∂x2

]
ψ, (3.2)

where V (x, t) is the potential term for matter waves. If we compare Eq. (3.1) and
Eq. (3.2) they are actually the same with the effective refractive index n playing the
actual role as the potentials for matter waves. To directly visualize this similarity, in
Fig. 3.1 we show a light beam passing through a tank of water filled with sugar [132].
Due to gravity, the density of sugar molecules will show a graded distribution along
the vertical direction and thus form an effective potential (approximately linear
potential) for photons passing through. The light follows more or less the trajectory
of a series of parabolas, which is exactly the trajectory of a thrown bouncing ball
under gravity.

Based on the similarity described above, using designated effective refractive
index distributions to mimic different potentials (external forces), many photonic
counterparts of matter wave phenomena have been demonstrated, such as Airy
beam [133–136], Wannier-Stark ladder [137], Bloch oscillations [138], dynamic lo-
calization [139] and so on. Also due to this similarity, we refer to plasmonic graded
index distributions as plasmonic potentials in the following text. The advantage
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of doing so is that we can directly apply the well known analysis and results in
quantum mechanics to plasmonic waveguides and achieve efficient beam shaping
and steering.

3.2 Beam shaping in parabolic plasmonic potentials

In quantum mechanics, the most important model is probably the harmonic os-
cillator model of a particle in a parabolic potential and this model has been more
widely employed in various fields, including atomic and molecular physics, solid
state physics and even quantum optics [140–142]. In this section, we borrow this
model and investigate different kinds of beam shaping in various parabolic plas-
monic potential in quadratically modulated MDM structures, including polychro-
matic nanofocusing in full parabolic potentials, plasmonic analogue of quantum
paddle balls in half parabolic potentials, and adiabatic nanofocusing in tapered
parabolic potentials.

3.2.1 Polychromatic nanofocusing in full parabolic plasmonic poten-

tials

In this section, we introduce the concept of polychromatic plasmonics and
demonstrate the functionalities of a broadband plasmonic lens based on a metal-
dielectric-metal (MDM) structure. We utilize quadratic modulation of the thickness
of the dielectric layer in transverse direction to produce a parabolic optical poten-
tial which is practically wavelength independent. We develop analytical descrip-
tions and employ numerical simulations to show its capability of three-dimensional
subwavelength manipulations, including nanofocusing, self-collimation, and optical
pendulum effect. The nanofocusing of our lens is demonstrated over a bandwidth
exceeding an optical octave (> 500 nm) thus allowing for polychromatic plasmon
focusing.

Background

The field of plasmonics experiences an explosive growth recently due to the abil-
ity of plasmonic components to confine light down to the nanoscale. Various plas-
monic structures with miniaturization scales comparable to those of modern semi-
conductor electronics have been designed to realize different types of light waveg-
uiding and control [13, 28, 143–147]. Despite the boom in research one can identify
two major challenges for further applications of plasmonic devices: high propagation
loss and strong wavelength dispersion. Different approaches to combat optical losses
in metals have been explored, including incorporation of gain [44, 148] or nanofo-
cusing [149, 150]. However, the concept of broadband control and nanofocusing of
SPPs remains practically unattainable.

The concept of polychromatic light propagation is well developed for dielec-
tric structures, of which the polychromatic dynamic localization is a noticeable
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Figure 3.2: (a) Flat and (b) parabolically modulated MDM. (c) Real part of the
symmetric mode index of the flat structure vs. 1/h for various values of free space
wavelengths. (d) Real part of the effective permittivity (optical potential) of the
structure (b), obtained using Eq. (3.5) (red) and numerically (black).

example [151]. In these structures, curved waveguides are employed to produce an
effective wavelength invariant optical potential to compensate for the dispersion.
In plasmonics, the engineering of the optical potentials for SPPs has been a key
concept for designing plasmonic lenses and other elements [145, 146, 152]. Two
kinds of structures with transverse [144, 147] or longitudinally varied effective in-
dex [149, 153] are mainly used. In the structures with transverse index modulation
the plasmonic potentials are usually heavily wavelength dependent [144–147]. On
the other hand, in longitudinally modulated structures light of different wavelengths
can be focused asymptotically [153] in the same taper, however light is fully local-
ized there and could not propagate beyond the focus point [149, 153]. Recently a
variation of a plasmonic lens was shown to focus broadband light based on diffrac-
tion [154]. However, the focusing was obtained for light in free space rather than for
propagating SPPs, thus with low focusing resolution. The focusing of polychromatic
SPPs still remains an unsolved challenge.
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Parabolic potentials in quadratically modulated MDM structures

To address this challenge, first we consider a flat MDM waveguide shown in
Fig. 3.2(a). We only consider the symmetric modes of the structure (with respect
to the magnetic field distribution) because it is primarily excited by simple end-fire
coupling, while the antisymmetric mode experiences a cut-off for the parameters of
our work [13]. The dielectric is chosen to be silica glass with permittivity εd = 2.25,
and the metal is silver for which we use the Drude model, εm = 1−ω2

p/(ω
2+ iωωc),

where ω, ωp, ωc are the angular frequency, plasma frequency and collision frequency,
respectively. This model is proven to be a good approximation for noble metals,
including silver in the spectral range above 500 nm. For silver we take ωp = 1.37×
1016 rad/s and ωc/ωp = 0.002. The effective index of the symmetric mode can be
obtained through solving the following equation [10, 13]:

tanh(
1

2
kdh) +

εdkm
εmkd

= 0, (3.3)

where km,d =
√
τ 2 − εm,d, τ = 2πneff

λ
(neff is the effective refractive index for the

symmetric mode and λ is the wavelength in free space). Figure 3.2(c) shows the
real part of the effective mode index, versus the inverse thickness of the dielectric for
three different wavelengths. The dependence is linear, consistent with the theoretical
approximation [155, 156],

neff = a/h + b, (3.4)

where both a and b are complex parameters and could be extracted from data fitting.
Most importantly, the slope a of these curves is practically wavelength independent
which allows for the design of broadband optical potential and polychromatic plas-
mon propagation.

Using the effective refractive index in Eq. (3.4), it is possible to construct a
parabolic optical potential [131] for SPPs. This is achieved by a MDM waveguide
with one flat and one parabolically curved surfaces as shown in Fig. 3.2(a). The
thickness of the dielectric is h(x) = h0 + x2/2R0, with R0 as an effective radius
(R0 � h0, |x|).

In this waveguide, we obtain a parabolic optical potential under the condition
of x2 � 2h0R0:

neff(x) = n0(1− 1

2
Ω2x2), (3.5)

where n0 = a/h0+ b, and Ω =
√
a/(n0R0h20) is the focusing strength. Figure 3.2(d)

shows the results calculated by Eq. (3.5) and numerically for h0 = 50nm, λ =
0.7μm, and R0 = 100μm.

Expressions for the eigenmodes

Using the effective index method for the structure shown in Fig. 3.2(b), we can
express the vertical electric field as [156, 157]:

Ey(x, y, z) = A(x)B(x, y) exp(iβz), (3.6)
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with B(x, y) as the eigenmode field and A(x) as the envelope function. Through
substituting Eq. (3.6) into the Helmholtz equation in isotropic media,

∇2Ey + k2εm,dEy = 0 (3.7)

and neglecting ∂B(x, y)/∂x and ∂B2(x, y)/∂x
2
when R0 � |x|, h0, we get the dif-

ferential equation for B(x, y):

∂2B(x, y)
/
∂y

2
+
[
k20ε− ζ2(x)

]
B(x, y) = 0 , (3.8)

where ζ(x) = neff(x)k. The expression of B(x, y) is similar to that of Ey in flat
metal-dielectric-metal structure, with slight dependence on x [10]:

B(x, y) = γ cosh(ϑdy) (3.9)

when 0 < y < h(x) and

B(x, y) = exp(−ϑm|y − 1

2
h(x)|) (3.10)

when y < 0 or y > h(x). In the above two equations Eq.(3.9) and Eq.(3.10),
γ = εm exp[−1

2
ϑmh(x)]

/
εd cosh[−1

2
ϑdh(x)], ϑm,d =

√
ζ2(x)− k2εm,d and h(x) =

h0 + x2/(2R0).
The differential equation for A(x) is [131, 158]

d2A(x)

dx2
+
[
ζ2(x)− β2

]
A(x) = 0, (3.11)

where ζ(x) = kneff(x) and ζ0 = kn0, k = 2π/λ. This is exactly the linear harmonic
oscillator equation in quantum mechanics:

− �
2

2m

d2ψ(x)

dx2
+ (

1

2
mω2

0x
2 −E)ψ(x) = 0. (3.12)

Based on the well known results of this kind of equation, the eigenmodes of Eq.(3.11)
are [131, 158]:

Am(x) = (
√
πη02

mm!)−
1
2Hm(x/η0) exp

(−x2/2η20) , (3.13)

where η0 = (ζ0Ω)
− 1

2 is the characteristic width of the plasmonic waveguide and
Hm is the Hermite polynomial. The effective indices of different modes under the
paraxial approximation are:

neff(m) = [ζ0 − 1

2
(2m+ 1)Ω]/k. (3.14)

We also calculate the eigenmodes of this structure using commercial Mode
Solutions (MS) software (Lumerical) with the parameters x ∈ [−3, 3]μm, y ∈
[−1, 1.05]μm, R0 = 100μm, h0 = 50nm and λ = 0.7μm. The results of our
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Figure 3.3: (a) Real and (b) imaginary parts of neff for different order modes. Theo-
retical (black circles) and numerical (red circles) results are shown. (c-h) Transverse
mode profiles of the fundamental, second and tenth order modes. (c-e) Theoretically
and (f-h) numerically calculated mode profiles (|Ey|).

analytical theory [Eqs. (3.11)-(3.14)] and the MS calculations are summarized in
Fig. 3.3. Figure 3.3(a,b) shows the real and imaginary parts of neff for different
modes with the theoretical field distribution of |Am(x)B(x, y)| [Fig. 3.3(c-e)] and
numerically calculated total field |Ey| [Fig. 3.3(f-h)], which show a good agreement
for low order modes. For higher order modes, larger discrepancy appears in terms
of both effective index and field distribution. This is consistent with the results
in Fig. 3.2(d), as the higher order modes spread out to the larger x values, where
the assumption x2 � 2h0R0 does not strictly hold and the potential is not exactly
parabolic.

Periodic beam oscillation

Next we study the SPPs propagation in the structure. An incident beam could
excite modes of different orders, which will then interfere with one another, produc-
ing different intensity patterns inside the structure. As a result of this interference,
a range of SPPs beam manipulations is possible, including focusing, self-collimation,
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and optical pendulum effect [131, 158].
For an incident beam C(x, y, 0), we can expand it into a complete set of orthog-

onal modes:

C(x, y, z) =

∞∑
m=0

χmAm(x)B(x, y) exp(iβmz), (3.15)

where χm = 〈Am(x)B(x, y) , C(x, y, 0)〉. The inner product is defined as:

〈ψ1 , ψ2〉 =
∫∫

ψ∗
1ψ2 dxdy (3.16)

When C(x, y, 0) = C(x, 0)C2(y, 0), A(x) could be decoupled from B(x, y), and
B(x, y) changes slowly with x, we get:

χm =

∫
B(x, y)∗C2(y, 0)dy

∫
Am(x)

∗C(x, 0)dx. (3.17)

This means that the beam expansions along x and y are independent. Considering
that the beam distribution along y could be fully characterized by B(x, y), we check
only the beam dynamics in the x− z plane [158]:

C(x, z) =
∑∞

m=0
amAm(x) exp(iβmz), (3.18)

where am is the expansion coefficient of the m-order mode am =
∫
Am(x)

∗C(x, 0)dx.
If the initial beam has a Gaussian distribution:

C(x, 0) = π− 1
4w

− 1
2

0 exp[−(x− x0)
2/2w2

0], (3.19)

where w0 is the beam width, then the expansion coefficient is [131, 158]:

am =

√
π

2m/2
√
m!

√
2w0ξ0√
ξ20 + w2

0

(
ξ20 − w2

0

ξ20 + w2
0

)m/2Hm(
w0x0√
ξ40 − w4

0

) exp[−1

2
x20/(ξ

2
0 + w2

0)].

(3.20)

and the beam inside the structure, under paraxial approximation, is [131, 158]:

C(x, z) = 1
4
√

πq2(z)
exp

{
− [x−x0 cos(Ωz)]2

2η2

}
× exp

[
i(k0z +

1
2
k0ρ

−1x2)
]
P (x0), (3.21)

where η2 = |q(z)|2, ρ−1 = η−1dη/dz, P (x0) = exp{i(η0/w0)
2[xx0 sin(Ωz) −

1
4
x20 sin(2Ωz)]} and q(z) = w0 cos(Ωz) + i(η20/w0) sin(Ωz). In the lossless case with
ωc = 0, the beam amplitude can be expressed as:

|C(x, z)| = π− 1
4η−

1
2 exp

{− [x− x0 cos(Ωz)]
2 /2η2(z)

}
(3.22)

and the dynamic beam width varies along propagation:

η(z) =
√
w2

0 cos
2(Ωz) + η40/w

2
0 sin

2(Ωz) . (3.23)



42 Beam shaping in plasmonic potentials

 

 

5

15

25

5

15

25

-2 0 2-2 0 2 -2 0 2 -2 0 2
x ( m) x ( m) x ( m) x ( m)

z 
(

m
)

z 
(

m
)

(a) (b) (c) (d)

(e) (f) (g) (h)

x0=1 mx0= 0x0= 0x0= 00 340w nm= 0 800w nm= 0 480w nm= 0 480w nm=

FD
TD

 (w
it

h 
lo

ss
)

Th
eo

re
�c

al
 (w

it
ho

ut
 lo

ss
)

Figure 3.4: (a-d) Theoretical field distribution without loss and (e-h) FDTD
simulations with loss (shown |E|) in the x − z plane in the middle of the gap
(y = h0/2 = 25 nm). Plots (a, b, e, f) show typical effects of self-imaging with
nanofocusing; (c, g) self-collimation; and (d, h) optical pendulum effect. The corre-
sponding characteristic beam width is η0 ≈ 480 nm.

The plasmon polariton beam is thus oscillating periodically along z. It is easy
to prove that the maximum and minimum dynamic beam widths are constrained
by [131] ηmaxηmin = η20 , indicating that the beam is trapped in the parabolic optical
potential.

To confirm our theoretical analysis, we preform finite-difference-time domain
(FDTD) simulations (Lumerical). All initial beams are y-polarized with transverse
Gaussian distributions to guarantee the excitation of SPPs modes, as the plasmonic
waves are TM polarized. The structure parameters are the same as in the MS
simulation, with z ∈ [0, 30]μm and x ∈ [−3, 3]μm, y ∈ [−1, 1.05]μm. Also we place
perfectly matched layers at the boundaries and field distribution monitors within
the gap in the x − z plane. To model the fine features of this structure especially
the metal dielectric interface along y, we make the minimum mesh size along y as
0.5nm and 25nm along x and z. We have also tried finer meshes to make sure that
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the simulation results are convergent. The analytical results without loss and the
numerical results with loss are presented in Fig. 3.4. The data are shown for the
x− z plane in the middle of the gap, y = h0/2 = 25 nm.

For an on-axis input beam (x0 = 0) [Fig. 3.4(a, b, e, f)], one can observe periodic
beam focusing with a period of

F = π/Ω = π
√
R0h0(1 + h0b/a) . (3.24)

The points of maximum intensity correspond to the focusing when all excited modes
interfere constructively. There is an initial phase shift depending on the ratio of the
incident beam width and the characteristic width of the plasmonic waveguide w0/η0.
When these two widths match w0 = η0, one can observe self-collimation effect -
diffractionless propagation of the beam [see Fig. 3.4(c, g)]. For an off-axis input
beam (x0 �= 0) there are transverse oscillations [see Fig. 3.4(d, h)], and the plasmon
polariton beam propagation exhibits an analog of optical pendulum behavior in a
parabolic potential. The comparison with FDTD results suggests that losses do not
affect the beam propagation except for attenuation along z direction.

Polychromatic nanofocusing of the plasmonic waves

Equation (3.24) has some important implications for propagation of polychro-
matic SPPs beams. As a is practically wavelength independent while b varies
slowly [Fig. 3.2(c)], the focusing strengths Ω and the oscillation period F are
nearly the same for different wavelengths. For example, in Fig. 3.5(a) we show
both the theoretical (solid line) and FDTD (circles) results for an input beam with
w0 = 800 nm > η0 for three different thicknesses h0 in the wide wavelength range
0.5 − 1.0μm. The different color beams focus at the planes of z = F1 = F/2.
The dispersionless characteristic of F enables broadband SPPs focusing and dis-
tinguishes our plasmonic structure from other highly wavelength dependent struc-
tures [144, 147]. In Fig. 3.5(b-d) we show the field distribution |E| on the x − z
plane of y = h0/2 = 15 nm for the three points marked in Fig. 3.5(a) at h0 = 30nm.
False colors are used to indicate schematically the three different wavelengths. It is
important to note that the focal planes of all spectral components coincide within
500 nm (less than one wavelength deviation in the spectral range 0.5 − 1.0μm)
and are practically indistinguishable. Note that the focal depth is in the range of
2−3μm for the different spectral components. Figure 3.5 proves that this structure
acts as a lens for broadband polychromatic light focusing, a functionality that has
not been discussed in other plasmonic structures. From Fig. 3.5 and Eq. (3.24),
it is clear that one can control the position of the focusing points by varying the
thicknesses h0 and/or the wire curvature R0, which enables wide reconfigurability
of our structure.

Focusing resolution of the plasmonic waves

Finally, we investigate the focusing resolution of this structure, which is charac-
terized by the full width at half maximum (FWHM) along x direction at the focal
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h0 values of 20 nm, 30 nm and 50 nm. Solid lines: theoretical results; circles: FDTD
simulations. (b-d) SPPs propagation for the three wavelengths marked in (a).

plane. (Along the vertical direction the resolution can be approximately charac-
terized by the thickness of the dielectric layer as shown in the insets of Fig. 3.6.)
We define the wavelength of the SPPs, λspp = λ/neff , which is smaller than the
light wavelength in the dielectric, λp = λ/nd. What makes SPPs special is that its
wavelength could be made as small as required, even vanishing for localized surface
plasmons [13]. In our lens-like structure, if we want to improve the focusing resolu-
tion, we could decrease λspp. For a fixed vacuum wavelength, the simplest approach
to increase neff is to make the thickness h0 smaller. Figure 3.6 shows the depen-
dency of FWHM along x at the focal plane for a fixed wavelength λ = 0.7μm and
w0 = 800 nm. Figure 3.6(a, b) shows the field distribution |E| along propagation
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for the two points marked in Fig. 3.6(c) in the x− z plane of y = h0/2 (20 nm and
10 nm, respectively). The white dashed lines indicate the focal planes. Insets (i)
and (ii) show the transverse field distribution of |E| at the two focusing planes. As
shown in Fig. 3.6, the FWHM could be as small as 100 nm. This could be further
improved by decreasing R0 and/or increasing the focusing strength Ω. Our results
clearly show that the light is fully confined in the dielectric along y and trapped in
the optical parabolic potential along x.

Conclusion

In conclusion, we have suggested the concept of polychromatic plasmonics and
demonstrated a broadband plasmonic lens based on a parabolically modulated
MDM structure. We have shown the plasmonic lens allows for complete three-
dimensional subwavelength control of a beam, bringing a potential functionality for
manipulation of ultra-short optical signals. The focusing capability of this plasmonic
lens could be further improved by tapering the dielectric layer along the propaga-
tion direction [159]. We anticipate the proposed structure is a promising candidate
for broadband plasmonic applications including subwavelength white light imaging,
polychromatic plasmon solitons, and ultrashort pulse plasmonic nanolasers. Fur-
thermore, our ideas can be extended beyond the field of plasmonics, to include quan-
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tum particles in parabolic potentials, considering the similarity between Shrödinger
equation and paraxial wave equation.

3.2.2 Plasmonic analogue of quantum paddle balls in half parabolic
plasmonic potentials

In this section, we suggest a plasmonic analogue of the quantum paddle ball
by employing a half parabolic potential with a fully repulsive wall (paddle ball
potential). The potential is obtained in a MDM structure with a quadratically
modulated dielectric layer and a metallic reflecting wall on one side. Employing such
a potential, we demonstrate both analytically and numerically, the wave revivals,
oscillations, and interference patterns (in the region close to the reflecting surface) of
the plasmonic beam. Furthermore, as the proposed plasmonic quadratic potentials
are effectively non-dispersive, the plasmonic paddle ball can be achieved with broad
bandwidth polychromatic light, thus finding possible applications in subwavelength
beam steering and manipulations for ultra-short laser pulses.

Background

In recent years optics has offered remarkable opportunities to test wave phenom-
ena in various physical systems, including solid state, relativistic and non-relativistic
quantum physics [160]. This is due to the ability to directly visualize the wave-
function of light beams as well as to build up with unprecedented accuracy the
optical potentials, thus engineering the dispersion of waves in the system. Impor-
tant examples constitute the optical demonstration of Bloch oscillations, dynamic
localization, relativistic trembling motion of a free Dirac electron, and quantum
bouncing ball [160–162]. The latter originates from the implementation of a half-
linear potential model [141], finding its counterparts in cold atoms [163] and neu-
tron physics [164, 165]. The linear potentials however are anharmonic, leading
to fractional revivals, phase collapses and aperiodic oscillations of the bouncing
ball [141, 162].

Therefore the fundamental harmonic oscillator model of a particle in a parabolic
potential has been more widely employed in various fields, including atomic and
molecular physics, solid state physics and quantum optics [140–142]. The related
half parabolic potential model, corresponding to a harmonic oscillator with a rigid
wall, was also proposed and investigated in terms of a quantum paddle ball [140, 141].
In a sharp contrast to the anharmonic bouncing balls, paddle balls experience full
wave revivals and periodic beam oscillations with no phase collapses [141]. Also
due to its simplicity and harmonicity, the quantum paddle ball can serve as a basic
model to explain the full wave dynamics of matter waves scattered by high potential
barriers [141, 166], to investigate atomic wave diffraction and interference [166, 167],
to study the van der Waals force between atom and barrier [168], and to investigate
chaotic quantum bouncers [169]. So the direct optical visualization of the wave-
dynamics of paddle balls is an attractive milestone, however never studied before.
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Figure 3.7: (a) Quadratically modulated MDM structure with a side reflecting metal
wall. (b) Real part of the effective refractive index of the modes supported by the
structure shown in (a). Both analytical [Eq. (3.26)] and numerical (mode solver,
Lumerical) results are shown. The field distribution of the mode m = 7 is shown in
(c) (analytical, |Bm(x, y)|) and (d) (numerical, |Ey|). The metal is silver, which is
described by the Drude model and other parameters are h0 = 50 nm, λ = 0.633μm,
R0 = 100μm and εd = 2.25.

The implementation of a plasmonic potential rather than dielectric optical po-
tential carries a number of advantages to our work. The field of plasmonics not
only offers a chance to confine light down to the nanoscale [28], but also provides
a novel tool to visualize the wave effects which are not easy to realize in pho-
tonics [170]. This is because in plasmonics one can construct photonic potentials
with large absolute values of amplitude and gradient, which are elusive in dielectric
structures [156, 170].

Eigenmodes in half parabolic potentials

In the modulated MDM structure shown in Fig. 3.7(a) (the thickness of the
dielectric layer is h(x) = h0+x

2/(2R0) for x ≥ 0, with a pure metal wall for x < 0),
we obtain a plasmonic paddle ball potential (half parabolic potential) under the
condition of x2 � 2h0R0:

n(x) ≈
{ ∞ (x < 0)
n0 (1− Ω2x2/2) (x ≥ 0)

, (3.25)
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where n0 = a/h0 + b, and Ω =
√
a/(n0R0h

2
0) is the potential strength. It is worth

noticing that in Eq. (3.25) we neglect the field penetration into the left metal wall
on the side and the consequent effects, such as phase modification, Goos-Hänchen
shift and bulk mode excitations [171]. The eigenvalues (termed as effective refrac-
tive index in the realm of optics) and corresponding eigenmodes of this paddle ball
potential can be easily obtained from its counterpart of complete parabolic poten-
tial n(x) = n0(1− 1

2
Ω2x2)[x ∈ (−∞,+∞)]: only modes with odd parities of the

full potentials can exist in the corresponding paddle ball potentials, with exactly
the same effective refractive index. Those half modes actually provide a complete
orthogonal set for the paddle ball potentials [141]. The eigenvalues of the paddle
ball potential of the structure in Fig. 3.7(a) are [corresponding to effective refractive
index of odd modes in the full parabolic potential in Eq. (3.14)]:

neff(m) = n0 − Ω(m+ 1/2)/k (m = 1, 3, 5...), (3.26)

where k = 2π/λ is the wavenumber in vacuum and the field distributions of the
corresponding eigenmodes are: Bm(x, y) = Am(x, y) (x ≥ 0); Bm(x, y) = 0 (x < 0),
where Ag(x, y) (g = 0, 1, 2...) denotes the eigenmodes of the full potential counter-
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part in Section 3.2.1. In Fig. 3.7(b) we show the real parts of the effective refractive
index and the field distributions of the eigenmodes supported in the structure shown
in Fig. 3.7(a). Both analytical [Eq. (3.26)] and numerical (Mode solver, Lumeri-
cal) results are shown. The dielectric layer between the metal plates is glass with
εd = 2.25 and the metal is silver, for which we use the Drude model with the same
parameters as in Section 3.2.1. Other parameters for Figs. 3.7(b)-(d) are h0 = 50nm,
λ = 0.633μm, and R0 = 100μm. Both analytical and numerical results agree very
well, except for higher-order modes. This is because higher-order modes spread out
more to the larger x region [as shown in Figs. 3.7(c-d)], where the approximation
x2 � 2h0R0 does not fully hold, and consequently the potential deviates from being
exactly parabolic.

Bouncing plasmonic waves in half parabolic potentials

As the next step, we investigate analytically the beam evolution in the plasmonic
potential. Similar to the full parabolic potential case the propagation of any incident
beam F (x, y, 0) could be expanded into the eigenmodes of this paddle ball potential:

F (x, y, z) =
∑

m
βmBm(x, y) exp[ikxneff(m)], (3.27)

where βm =
∫∫
F (x, y, 0)B∗

m(x, y, 0)dxdy are the expansion coefficients. Meanwhile,
considering the special boundary condition in the model the expansion could also
be expressed as [141, 172]:

F (x, y, z) =

{
0 (x < 0)

ψ(x, y, z)− ψ(−x, y, z) (x ≥ 0)
. (3.28)

Here ψ(x, y, z) =
∑

g αgBn(x, y) exp[ikxneff(g)] and αg =∫∫
F (x, y, 0)A∗

g(x, y, 0)dxdy is the corresponding expansion coefficient (expanded
into the eigenmodes of the full potential). If the initial beam has a Gaussian dis-

tribution along x: F (x, 0) = π− 1
4w

− 1
2

0 exp[−(x − x0)
2/2w2

0], where w0 characterizes
the initial beam width and x0 is the beam center offset, the beam in the x − z
domain is [141, 172] (under paraxial approximation and ignoring the metallic loss
of the plasmonic potential):

|F (x, y, z)| = ( 2
ξ(z)

√
π
)1/2 exp

{
−1

2

x2+x2
0cos

2(Ωz)

ξ2(z)

}
|P (x)− P (−x)|, (3.29)

where P (x) = exp[xx0 cos(Ωz)/ξ
2(z) + ixx0 sin(Ωz)/w

2
0] and the dynamic beam

width is:

ξ(z) =
√
w2

0 cos
2(Ωz) + η40/w

2
0 sin

2(Ωz), (3.30)

with η0 = (n0kΩ)
−1/2 as the characteristic potential width. The beam experiences

periodic oscillations with the period of L = 2π/Ω.
The dynamic beam width is constrained by the potential:

ξmaxξmin = η20 , (3.31)
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Figure 3.9: (a) Characteristic potential width η0 and oscillation period L for the
wavelength range of 0.5 − 0.9 μm. (b)-(d) FDTD results (|E|) for beam propagation
in the plane y = h0/2 = 25 nm for three wavelengths of λ = 0.5 μm, 0.7 μm and
0.9 μm. For all the three cases, w0 is fixed at 482 nm, which is the characteristic
potential width of λ = 0.7 μm, as indicated by point A in (a). Except for the
wavelength, other parameters are the same as in Fig. 3.7.

and the beam width is a constant ξ(z) = w0 only if the initial beam width is w0 = η0.
When the beam hits the wall, the beam width is:

ξw = ξ(Ωz = π/2) = η20/w0, (3.32)

which is inversely proportional to w0. In Figs. 3.8(a-c) we show the analytical results



3.2 Beam shaping in parabolic plasmonic potentials 51

of Eq. (3.29) with three initial beam widths: w0 = 300 nm, 454 nm and 800 nm when
λ = 0.633μm. The parameters are the same as in Fig. 3.7 and correspondingly η0 =
454 nm. The classical trajectories, calculated through Hamiltonian optics [173], are
shown by black curves.

Plasmonic paddle balls shown in Figs. 3.8(a-c) experience full beam revivals
and periodic beam oscillations. This is due to the harmonic nature of the paddle
ball potentials, in other words, the symmetry of the Hamiltonian in phase space
and thus the equidistant energy levels (or equidistant effective refractive index of
eigenmodes in optics) [141, 174]. Meanwhile, similar to photonic bouncing balls,
plasmonic paddle ball shows significant interference patterns in the region close to
the walls, which come from the interference of the incoming and reflecting beams.
It is worth mentioning that smaller w0 would lead to larger dynamic beam width
ξw [Eq. (3.32)] and thus larger overlapping region of the incoming and reflecting
beams, resulting in larger interference regions [Figs. 3.8(a-c)].

In Figs. 3.8(d-f) we show correspondingly the FDTD results for |E| on the plane
y = h0/2 = 25 nm (Lumerical), with the Ohmic losses of metal included. The
discrepancies between the analytical and the numerical results come from both
metallic losses and the paddle ball potential approximation [Eq. (3.25)].

Finally, we study the dispersion of the plasmonic paddle ball potentials. The
period of the beam oscillations L depends on the potential strength Ω. As Ω is prac-
tically wavelength independent, we expect multi-color plasmonic paddle balls with
the same oscillating period: polychromatic plasmonic paddle balls. In Fig. 3.9(a)
we show both the characteristic potential width η0 and oscillation period L for the
wavelength range of 0.5 − 0.9 μm. Other parameters are the same as in Fig. 3.7.
It is obvious that for this wavelength range of more than an optical octave, L is
almost the same and the aberration is within 1 μm.

Then we show the beam distributions on the plane y = h0/2 = 25 nm for three
wavelengths of λ = 0.5 μm, 0.7 μm and 0.9 μm in Figs. 3.9(b-d) respectively (FDTD,
|E|). The initial beam width w0 is fixed at 482 nm, which is the characteristic
potential width for λ = 0.7 μm [point A in Fig. 3.9(a)]. It is seen that the plasmonic
analogue of a paddle ball of different colors exhibits almost dispersionless oscillation
period, justifying the claim of polychromatic behavior of the plasmonic analogue
of a paddle ball. Meanwhile η0 is of significant differences for beams of different
wavelengths [Fig. 3.9(a)]. This means that with fixed w0, the dynamic beam width
ξw changes with wavelength [Eq. (3.32)], leading to different interference scopes for
light of different wavelengths.

Conclusion

In conclusion, we have introduced a plasmonic analogue of a quantum paddle
ball through employing a quadratically modulated metal-dielectric-metal structure
with a reflecting wall on the side. We have described beam revivals, periodic beam
oscillations, and significant interference patterns close to the wall, which resem-
ble the full wave dynamics of the corresponding propagating matter waves. We
have also demonstrated that the plasmonic paddle ball operates in a polychromatic
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regime, which may find applications in broadband subwavelength beam manipula-
tions, polychromatic plasmon focusing, and ultrashort pulse plasmonic nanolasers.

The structure proposed in this section is quite practical considering that it cor-
responds to a broad metal wire (with diameter of several hundred microns) above a
metal plate with another reflecting metal wall on the side. Also when reflecting walls
are introduced at the potential bottom, the plasmonic paddle ball potential could
be realized in air-polymer-metal structures, which could be characterized directly
by fluorescence imaging or leakage radiation microscopy [170, 175]. It is worth men-
tioning that paddle ball potential is not confined to the field of plasmonics and could
be easily extended to other branches of nanophotonics and graded index structures.

3.2.3 Adiabatic nanofocusing in tapered parabolic plasmonic poten-

tials

In this section we propose and investigate the adiabatic nanofocusing of the
fundamental modes in plasmonic parabolic potentials. The potentials are obtained
in the MDM structure, of which the dielectric layer width is modulated quadrati-
cally in the horizontal direction and linearly in the longitudinal direction. In such
a structure, light is compressed in both transverse directions due to increasingly
stronger parabolic potentials and decreasing dielectric layer width. We show by
both closed from analytical descriptions and by simulations that there is a critical
tapering angle, above which the field could be enhanced. In contrast to previously
reported tapered structures in the adiabatic regime without transverse potentials,
the structure proposed in this section shows stronger focusing capability and allows
monotonic increasing field enhancement over longer propagation distances.

Background

SPPs are highly lossy due to the intrinsic Ohmic loss of metal and this poses a
great challenge for its further applications, which requires significant field enhance-
ment. To address this challenge, various structures are proposed and experimentally
verified for nanofocusing of SPPs (see Refs. [149, 177–179] and references therein).
Among all the structures proposed, tapered MDM slot waveguides have attracted
large attention due to the fabrication simplicity, high coupling efficiency and strong
focusing effects [37, 150, 159, 178–183]. In two dimensional MDM structures shown
in Refs. [180–182], although significant field enhancement can be achieved, for real-
istic beams carrying finite energy, light is confined in only one transverse direction
within the dielectric layer but would diffract in the other direction, thus rendering
the nanofocusing incomplete.

Different approaches have been employed to compress light in the other trans-
verse direction, including decreasing the transverse dimensions [176, 183] [shown in
Fig. 3.10(a)], introducing a extra potential by transverse modulation [159] [shown
Fig. 3.10(b)] or through incorporating materials with nonlinearities [150] [shown in
Fig. 3.10(c)]. However, all those approaches have specific problems. For structures
truncated finite in the transverse direction as shown in Refs. [176, 183], as the field
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(a)

(b) (c)

Figure 3.10: Different approaches for efficient plasmonic wave nanofocusing based
on: (a) shrinking directly the transverse dimension, (b) constructing effective
Coulomb potentials and (c) introducing nonlinearities in the focusing structure. From
Refs. [150, 159, 176].

is still strong in the region close to the edge, the edge effects would be strong and
SPPs confined would be too sensitive to the edge roughness and other surrounding
perturbations. For the structure shown in Ref. [159] where a Coulomb potential is
introduced, light is fully localized within the edge when the opening angle is smaller
than the critical angle and thus this structure is hard to be applied for applications in
visible light regime (the critical angle of visible light is large and this will set a limit
for the opening angle and hence significantly suppress the nanofocusing effects).
Moreover, the Coulomb potential is asymmetric and the coupling efficiency would
be low if the incident beam is symmetric. Although introducing nonlinearities [150]
would avoid problems mentioned above, the nanofocusing would be undermined by
the nonlinear saturation [94] and also nonlinearity based devises would be highly
intensity sensitive, which is not desirable for on-chip signal processing.

Expressions for field evolutions in tapered parabolic potentials

In this section we introduce symmetric plasmonic parabolic potentials to confine
light in one of the transverse directions. In the MDM structure shown in Fig. 3.11(a),
the dielectric layer width is modulated quadratically in the horizontal direction to
produce a parabolic potential and tapered linearly in the longitudinal direction with
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Figure 3.11: (a) A MDM structure with quadratic and linear modulation of the
dielectric layer width in the x and z direction respectively. The tapering angle along
z direction is θ and the structure length is L. (b) FWHM of |H|2 along the x direction
for the fundamental modes with different dielectric layer widths in the x = 0 plane
(R0 = 100 μm). Both theoretical (solid lines) and numerical (circles) results are
shown. (c)-(e) Transverse filed distributions (simulation, |H|2) for the three cases
marked in (b).

a tilting angle θ. During propagation, light would be more and more tightly confined
in both transverse directions due to the increasingly stronger potential and narrower
dielectric layer width. To describe the nanofocusing process, we derive closed form
analytical formulas and deploy simulations to show the field evolution.

In our study, the dielectric is air (εd = 1) and the metal is silver, for which we
use the Drude model with the same parameters as in Section 3.2.1. In a flat MDM
structure, the effective refractive index of the symmetric mode (with respect to the
magnetic field distribution) can be expressed as [similar to Eq. (3.4)]:

neff(h) = a/h+ b = (a1 + ia2)/h+ b1 + ib2, (3.33)

where both a and b can be extracted from data fitting. In the structure shown in
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Fig. 3.11(a), the width of the dielectric layer is

h(x, z) = h(0, z) + x2/2R0, (3.34)

where R0 is the effective radius [R0 � h0 = h(0, 0), |x| ]. We define that h(z) =
h(0, z), and with a tilting angle θ we get

h(z) = h0 − θz. (3.35)

In this waveguide, we obtain a longitudinally changing parabolic plasmonic potential
under the condition of x2 � 2h(z)R0:

neff(x, z) = n(z)(1 − 1

2
Ω2(z)x2), (3.36)

where n(z) = a/h(z) + b, and Ω(z) =
√
a/[n(z)R0h2(z)] is the focusing strength.

In this potential, we consider only the adiabatic nanofocusing of the fundamental
modes, as it is symmetric along horizontal direction and is mainly excited by end-
fire coupling (see Fig. 3.11). Throughout this section, for simplicity we characterize
the nanofocusing effect by the enhancement of the magnetic filed, which is similar
to what is shown Ref. [180]. Based on the expressions of the fundamental mode in
parabolic potentials shown in Eq. (3.13), the adiabatic approximation [149] and the
TM mode approximation (ignore the components of Hy, Hz and Ex), the magnetic
field can be expressed as:

H(x, y, z) = Hx(x, y, z) = H0(z) exp[i
z∫
0

β(z)dz] exp[− x2

2μ2(z)
]A(x, y, z). (3.37)

with

H0(z) = Hx(0, 0, z); β(z) = n(z)k0 − Ω(z)/2 = β1(z) + iβ2(z), (3.38)

and the effective mode width along x:

μ(z) = [k0n(z)Ω(z)]
−1/2, (3.39)

where k0 is angular wavenumber in vacuum, and A(x, y, z) is the eigenfield distri-
bution of Hx, which can be found in Ref. [10].

The full width at half maximum (FWHM) of |H|2 for the fundamental mode
can be expressed as:

FWHM = 2
√
ln 2 |μ(z)| . (3.40)

In Fig. 3.11(b) we show FWHM for the fundamental mode along x direction at
different h with R0 = 100 μm and λ = 632.8 nm. For simulation we use Lumerical
Mode Solutions (the calculation is based on eigenmode axial coupling method [121]).
In Figs. 3.11(c)-(e) we show the simulation results of the transverse field distribution
of |H|2 at three points marked in Fig. 3.11(b) of h = 10 nm, 105 nm and 305 nm
respectively. It is obvious that with decreasing h, the mode is more and more
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Figure 3.12: (a) Field enhancement along propagation with L = 6 μm, output
dielectric layer width h(L) = 5 nm and R0 = 100 μm. Both theoretical (solid lines)
and numerical (dashed lines) are shown for three angles θ ≈ 2.9◦, 0.2◦, 0.1◦. The
corresponding critical angle is approximate 0.2◦. (b)-(d) Simulation results of the
filed distribution (|H|2 in the plane y = 0) for the three cases shown in (a).

compressed in both transverse directions [we note here that Figs. 3.11(c)-(e) are
shown in different scales].

When R0 � h0 and x2/2R0 � h(z), the filed distribution along the two trans-
verse directions can be decoupled. Based on Eq. (3.37), the integrated energy flow
along z direction is:

P (z) = c2
√
π

8πω
|μ(z)| |H0(z)|2 exp[−L(z)]Py(z), (3.41)

where L(z) = 2
∫ z

0
β2(z

′
)dz

′ ≈ 2k0a2/θ ln[h(0)/h(z)] + 2k0b2z which is a factor
indicating the accumulated Ohmic loss, c is the speed of light and ω is the angular
frequency. Py(z) is the energy flow integrated along y in the x = 0 plane and the
specific expression can be found in Ref. [180]. We define a field enhancement factor:
Γ(z) = H0(z)/H0(0) and according to the law of energy conservation this factor
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satisfies:

Γ(z) =
√|μ(0)/μ(z)|√Py(0)/Py(z) exp [−L(z)] . (3.42)

The three terms on the righthand side of Eq. (3.42) come from increasingly stronger
parabolic potentials, decreasing dielectric layer widths and Ohmic losses, respec-
tively. Compared to the structures shown in Refs. [180–182], the extra term orig-
inating from the tapered parabolic potentials (

√|μ(0)/μ(z)|) makes the focusing
capabilities of our proposed structure stronger.

Field enhancement in tapered potentials

To show specifically the focusing capabilities, firstly we fix the length of our
structure to L = 6 μm. Also the height at the output is fixed at h(L) = 5 nm. We
summarize our results in Fig. 3.12 for three tilting angles θ ≈ 2.9◦, 0.2◦, 0.1◦ (the
corresponding input heights are h0 = 305 nm, 25 nm, 10 nm and λ = 632.8 nm, all in
the adiabatic regime), and theoretical [Eq. (3.42)] and simulation results (Lumerical
Mode Solutions) agree well. The critical tapering angle for this structure is approx-
imately θ ≈ 0.2◦ and at this angle the Ohmic losses can be fully compensated in
terms of field amplitude maintain, as shown in Fig. 3.12(a). The filed can be further
enhanced at tapering angles larger than the optimal angle. We show more details
of the light focusing processes for three tapering angles in Figs. 3.12(b)-(d) (sim-
ulation, |H|2 in the plane y = 0). It is obvious that during propagation light is
more and more suppressed by the increasingly stronger parabolic potentials along
x direction.
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Finally we study how the structure length L affects the focusing capabilities.
For simplicity we the fix tapering angle to θ ≈ 2.9◦ and λ = 632.8 nm. As discussed
in Refs. [159, 180, 182], for longer propagation distances, Ohmic losses will balance
or even eliminate the focusing effects. We investigate the structure up to a L =
40 μm. In Fig. 3.13(a), monotonic increasing field enhancement is observed, and
compared to the structures studied in Refs. [159, 180, 182] this unusual feature is
obviously due to strong focusing effects of the symmetric parabolic potentials we
introduce. For comparison, we show the nanofocusing of transverse uniform taper
investigated in Refs. [180, 182] (without parabolic potential) in Fig. 3.13(a) (bottom
line), which shows monotonic increasing field enhancement only up to 18 μm and
the enhancement factor is much lower. Filed distribution for L = 40 μm is shown
in Fig. 3.13(b) (simulation, |H|2 in the plane y = 0). For larger L, the fundamental
mode will spread out more [the confinement along x is characterized by mode width
η(z), see Fig. 3.11(b)]. Then our theoretic model will be less accurate considering the
parabolic potential approximation condition x2 � 2h(z)R0. Larger discrepancies
with increasing L are observed as shown in Fig. 3.13(a).

Conclusion

In conclusion we have proposed and studied adiabatic nanofocusing of the fun-
damental modes in plasmonic parabolic potentials. The potentials are obtained in
MDM structures with quadratic modulation of the dielectric layer width in the hor-
izontal direction and linear modulation in the longitudinal direction. We show that
there is a critical tapering angle above which the field enhancement can be achieved.
Moreover, we demonstrate that our structure shows better focusing capabilities and
supports monotonic increasing field enhancement over longer propagation distances
compared to those previously reported in the adiabatic regimes [159, 180, 182].
The field enhancement can be further improved by extending it to nonadiabatic
regimes [181] (larger tapering angles) or/and decreasing the output heights of the
dielectric layers. The structure proposed here corresponds to a broad metal wire
above a metal plate and thus is feasible to fabricate. We anticipate that the mech-
anism of suppressing light by increasingly stronger symmetric potentials can find a
variety applications, such as plasmonic lasers, nanoparticle probing, hyperfine spec-
troscopy, and enhanced nonlinear effects, where significant local field enhancement
is required.

3.3 Plasmonic Airy beam manipulation in linear potentials

In this section we demonstrate, both theoretically and numerically, the efficient
manipulation of plasmonic Airy beams in linear optical potentials produced by a
wedged metal-dielectric-metal structure. By varying the angle between the metallic
plates, we can accelerate, compensate or reverse the self-deflection of the plasmonic
Airy beams without compromising the self-healing properties. We also show that
in the linear potentials the Airy plasmons of different wavelengths could be routed
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into different directions, creating new opportunities for optical steering and manip-
ulation.

3.3.1 Photonic and plasmonic Airy beam in free space

The study of Airy wavepackets dates back to the work of Berry and Balz in
1979 [184]. They found that for the Schrödinger equation in free space, if the
wavepacket has an initial Airy distribution, there are two unusual features for the
evolution of the wavepacket in time domain: (1) the wavepacket maintains the
nonspreading Airy distribution and (2) the wave packet is self-accelerating following
a parabolic trajectory. It is worth mentioning that both features, especially the
second one of self-accelerating in free space, are quite counterintuitive, but they do
not contradict the Ehrenfest theorem [118] as the ideal Airy wave packet proposed
by Berry and Balz carries infinite energy and thus there is no well defined centre of
the wavepacket.

As we discussed before (Section 3.1) there is close similarity between the
Schrödinger equation and the paraxial wave equation. So it is quite natural to
introduce the concept of the Airy wavepacket to the photonic regime, which is then
termed as Airy beam [133, 185]. The first challenge for the real experimental demon-
stration on the Airy beam is that the ideal Airy beam carries infinite energy, and
thus should be truncated to make it carry finite energy. An exponential trunca-
tion was firstly proposed in Ref. [185] and shortly afterwards the Airy beam was
demonstrated experimentally [133]. Also the same group predicted that plasmonic
Airy beam can be excited on the metal surface [186] and then three other groups
demonstrate such beams almost at the same time with different experimental se-
tups and techniques [134–136]. In Fig. 3.14 we show the first demonstration of the
Airy beams in Fig. 3.14(a), prediction of plasmonic Airy beam on metal surface in
Fig. 3.14(b), one of the experimental setups and the observation of plasmonic Airy
beams in Fig. 3.14(c) and (d), respectively.

Those features of asymmetric field profile and self-deflection of Airy beams have
been employed for various applications, including optical trapping [187], plasma
guiding [188], and light bullet generation [189, 190]. Being combined with the
virtue of surface plasmon polaritons, the plasmonic Airy beams could be a promising
candidate for subwavelength beam manipulation and on-chip signal processing, in
the emerging fields of nanophotonics and plasmonics.

3.3.2 Airy beam steering in linear plasmonic potentials

The manipulation of Airy beams has been demonstrated in both linear and
nonlinear regimes [191–194]. However, these schemes are reliant on the Airy beam
generation processes, and are highly dependent on the amplitude (nonlinear) or
phase (linear) of the incident light. The drawbacks prevent those manipulation
methods to be widely used. The development of more robust and flexible Airy
beam manipulation mechanisms and techniques are important but still unavailable.
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(a)

(b)

(c) (d)

Figure 3.14: (a) First experimental demonstration of the Airy beam. (b) Plasmonic
Airy beam on metal surface. (c) and (d) show one of the experimental setups and the
observation of plasmonic Airy beams. After Refs. [133, 134, 186].

Linear plasmonic potentials and Airy beam steering

The control of Airy beams by linear potentials was firstly discussed by Berry and
Balazs more than thirty years ago [184], but it has not attracted much attention
since. In fact, the linear potential is the only potential that could be used to
change the propagation direction of Airy beams, while preserving its non-diffracting
properties [195]. To achieve a linear optical potential in the transverse direction, we
utilize a linear modulation of the thickness of the dielectric layer along the x-axis,
as shown in Fig. 3.15(a). In an unmodulated metal-dielectric-metal structure, the
effective refractive index of the symmetric mode (with respect to the magnetic field
distribution) could be expressed as [see Eq. (3.4)]: neff(h) = α/h + β, where h is
the width of the dielectric layer. Correspondingly, in the wedged structure shown in
Fig. 3.15(a) (the tilting angle is θ and the gap width in the middle is h0), we obtain a
linear effective index distribution (linear optical potential) under the approximation
of |θx| � h0:

n(x) = n0 − αθx/h20, (3.43)
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Figure 3.15: (a) Wedged metal-dielectric-metal structure with a tilting angle θ. The
transverse field distribution is shown schematically below. (b) Positions of the main-
lobe center of the plasmonic Airy beam for four tilting angles. Both theoretical (no
losses, dashed lines) and numerical (with losses, solid lines) results are shown. Field
distributions of the plasmonic Airy beam in the plane y = 0 are shown in (c-e) (theory,
|ψ(x, z)|) and (f-h) (numerical, |E|). The parameters are: λ = 632.8 nm, h0 = 60 nm,
a = 0.1, and x0 = 500 nm. The corresponding critical angle is θc = 0.175◦.

where n0 = neff(h0). Using the effective index method, we can express the vertical
electric field as [156] Ey(x, y, z) = A(x, y)ψ(x, z) exp(in0kz), where A(x, y) is the
plasmon eigenmode field, ψ(x, z) is the envelope function and k is the wavenumber
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in vacuum. When |θΔx| � h0, A(x, y) and ψ(x, z) can be decoupled [156]. While
the expression for A(x, y) can be found in Eq.(3.9) and Eq.(3.10), the equation for
ψ(x, z) under paraxial approximation is:

i
∂ψ

∂ξ
+ fsψ +

1

2

∂2ψ

∂s2
= 0, (3.44)

where s = x/x0 (x0 is the characteristic width of the first Airy beam lobe),
ξ = z/(n0kx

2
0), and f = −αθk2n0x

3
0/h

2
0 is effective optical force. Equation (3.44)

is exactly the Shrödinger equation for a particle in a linear potential (fs). This
problem has a known solution [196, 197]:

ψ(s, ξ) =
√

1
2πiξ

exp[i(fsξ − f2ξ3

6
)]
∫ +∞
−∞ ψ(χ, 0)

exp( i
2ξ
[(s− fξ2

2
)− χ]2)dχ,

(3.45)

where ψ(χ, 0) is the initial beam distribution. For an initial truncated Airy distri-
bution ψ(s, 0) = Ai(s) exp(as) (a > 0 is the apodization parameter truncating the
negative s part of the Airy beam distribution, and thus the deflection of Airy beam
in free space is towards the positive x direction), we obtain the solution [185, 197]:

ψ(s, ξ) = Ai[s− 1
4
(1 + 2f)ξ2 + iaξ] exp[a(s− fξ2

2

− ξ2

2
)] exp[i(−f2ξ3

6
+ fsξ − fξ3

4
− ξ3

12
+ a2ξ

2
+ sξ

2
)].

(3.46)

From Eq. (3.46) it follows that there exists a critical tilting angle θc = h20/(2αk
2n0x

3
0)

[satisfying the condition f(θ = θc) = −1/2] for which the Airy function becomes a
stationary solution. Furthermore, Eq. (3.46) shows that when a� 1 the deflection
of the plasmonic Airy beam could be accelerated (θ < 0), compensated (θ = θc) or
even reversed (θ > θc). We note that ψ(x, z) is also the envelope function of Ez and
therefore of |E|, considering the fact that Ex � Ey, Ez.

Next, we compare our theoretical results of Eq. (3.46) for |ψ(x, z)| with numerical
results (|E|) based on finite-difference time-domain (FDTD) technique (Lumerical)
in Figs. 3.15(b-h). In the simulations, we make the mesh size to 0.5 nm in the region
close to the metal dielectric interface and choose PML (perfectly matched layer)
boundary conditions. Parameters used here are λ = 632.8 nm, h0 = 60nm, a = 0.1,
x0 = 500 nm. The dielectric is air (εd = 1) and the metal is silver. We use the Drude
model for silver, εm = 1 − ω2

p/(ω
2 + iωωc), where ωp = 1.37 × 1016 rad/s and ωc =

7.25× 1013 rad/s. Figure 3.15(b) shows the positions of the main-lobe center of the
Airy plasmons for four values of the tilting angle (θc = 0.175◦). For three cases, the
field distribution in the plane y = 0 is shown in Figs. 3.15(c-h). We observe that the
deflection of plasmonic Airy beams could be indeed accelerated [θ < 0, Fig. 3.15(b)],
compensated [θ = θc, Figs. 3.15(b,d,g)] or even reversed [θ = θc, Figs. 3.15(b,e,h)].
In general, there is a good qualitative agreement between our analytical theory and
the numerical results showing that this analysis can be used to predict the behavior
of plasmonic Airy beams. As θ increases, however, larger discrepancies between the
theoretical and numerical results are observed [Fig. 3.15(b)]. This is because larger
tilting angles render both the linear potential and paraxial wave approximations
less accurate.



3.3 Plasmonic Airy beam manipulation in linear potentials 63

z (
μm

)
m

)

5

10

15

x (μm)
-2 0 2

x (μm)
-2 0 2

θ=0 θ=2θc

x (μm)
-2 0 2

θ=θc

Figure 3.16: Numerical results for the field distribution (|E|) of plasmonic Airy
beams in linear optical potentials with perturbations for three tilting angles. An
ellipsoid particle (ε = 2.25) with (Rx, Ry, Rz) = (0.1, 0.025, 0.1)μm is centered at
(x, y, z) = (−0.4, 0.025, 1) μm. Other parameters are the same as in Fig. 3.15.

Self-healing properties of Airy beams in plasmonic linear potentials

One of the most important properties of Airy beams is their self-healing capabil-
ity. This has been demonstrated both experimentally and theoretically for free-space
Airy beams [187, 198], which are of a great significance for particle guidance. Here
we demonstrate that the introduced linear potentials for the manipulation of Airy
beams do not compromise their self-healing properties.

The diffraction patterns of the unperturbed and perturbed plasmonic Airy beam
in linear potentials are denoted by Ua(x, z) [as shown in Fig. 3.15(c-h)] and Up(x, z)
respectively, with a small perturbation (e.g. a bump or dent or an extra particle)
located at (x0, z0). Now let us think of a complementary case: the perturbation
is removed and the occupied area is made transparent; other areas in the propa-
gation plane are made opaque. The plasmonic Airy beam can be fully blocked by
those opaque areas, and can only propagate through the aperture which is made by
removing the perturbation. The scattering pattern of this complementary case is
denoted by Upa(x, z). According to Eq. (3.45), the evolution of Airy beams in linear
potentials obeys the Fresnel transform [196]. This means that we can understand
the effects of perturbations on Airy beams by applying Babinet’s principle [2, 198],
irrespective of the existence of the linear potentials. According to Babinet’s princi-
ple, as Upa(x, z) and Up(x, z) correspond to complementary diffraction screens, the
following relation is satisfied: Upa(x, z) + Up(x, z) = Ua(x, z). If the perturbation
is of small size and thus rapidly diffracting [2, 187], in areas far from the pertur-
bation position (x0, z0), we have Up(x, z) ≈ 0 and thus Upa(x, z) ≈ Ua(x, z). This
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means that after some propagation distances beyond the perturbation, the scatter-
ing pattern will be the same as that without the perturbation, indicating that in
linear potentials the plasmonic Airy beams still possess self-healing capabilities as
the free propagating Airy beams do [198]. In Figs. 3.16(a-c) we show our numeri-
cal results for the diffraction patterns of the plasmonic Airy beams in the wedged
metal-dielectric-metal structure where we place an ellipsoid particle (ε = 2.25) at
the position (x, y, z) = (−0.4, 0.025, 1)μm with (Rx, Ry, Rz) = (0.1, 0.025, 0.1)μm.
Other parameters are the same as in Fig. 3.15. Importantly, we observe the self-
healing properties in all three cases.

Multi-color Airy beams steering in plasmonic linear potentials

Finally, we study how the linear potential affects the propagation of plasmonic
Airy beams of different wavelengths. As the critical angle θc depends on the wave-
length, plasmonic Airy beams generated at different wavelengths will be steered
into different directions. Figure 3.17(a) shows the critical angles for the wavelength
range of 0.5 − 1.5μm at h0 = 60nm. Shorter wavelength corresponds to smaller
critical angle, and this means that the deflection of shorter wavelength plasmonic
Airy beam is easier to control. For θ = 0.458◦ we obtain a critical linear potential
that could compensate the deflection of the plasmonic Airy beam and force it to
propagate straight. This is shown in Fig. 3.17(c) for λ = 1μm beam. When the cor-
responding critical angle is smaller, the deflection direction is reversed, as is shown
in Fig. 3.17(b) for λ = 0.6μm. The action of the linear potential on longer wave-
length plasmonic Airy beams is weaker, and then the deflection direction is only
slightly modified, being still towards the positive x direction [see Fig. 3.17(d)]. As
plasmonic Airy beams of different colors could be directed into different directions,
the mechanism shown here could find possible applications in routing of signals on
a photonic chip into different processing channels.

Conclusion

In conclusion, we have studied the propagation of Airy plasmon beams in linear
optical potentials created by a transversely wedged metal-dielectric-metal struc-
ture. By employing an analytical model and direct numerical simulations, we have
demonstrated that by changing the angle between the metallic plates, the deflec-
tion of the Airy plasmon could be enhanced, compensated, or even reversed without
compromising their self-healing properties. We have also shown that the linear po-
tential could be used to switch multi-color plasmonic Airy beams into different
directions. The mechanism shown here opens a door to various applications, such
as optical transportation, subwavelength beam manipulation, light bullets control,
and on-chip signal processing.
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Figure 3.17: (a) Critical angle vs. wavelength in the range of 0.5 − 1.5 μm. (b-d)
Numerical results for the field distributions (|E|) of three plasmonic Airy beams of
wavelengths 0.6μm, 1μm and 1.4μm presented in false colors. Parameters used are
the same as in Fig. 3.15, with θ = 0.458◦, which is the critical angle at λ = 1μm
(point c).

3.4 Summary

In this chapter, after a brief description of the similarity between Schrödinger
equation and the paraxial wave equation, we introduce the concept of plasmonic
potentials and employ different kinds of potentials for various beam manipulations.
We achieve parabolic potentials in quadratically modulated MDM structures and re-
lated beam manipulations include: (1) polychromatic nanofocusing in full parabolic
potentials; (2) plasmonic analogue of quantum paddle balls in half parabolic poten-
tials; (3) adiabatic nanofocusing in tapered parabolic potentials. Also we achieve
linear potentials in wedged MDM structures and demonstrate flexible Airy beam
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manipulations there. Here we confine the research to fundamental potentials of
parabolic and linear forms only, however surely more complicated potentials can be
constructed in MDM structures or other plasmonic structures for beam shaping.
We note that the principles demonstrated here can be extended beyond the field of
plasmonics, to other graded index structures or even to include quantum particles
in parabolic potentials, serving as an efficient platform for various investigations.



CHAPTER 4

Scattering engineering by magneto-electric
nanostructures with both electric and
magnetic resonances

For many surface plasmon resonance based applications, such as plasmonic
nanoantennas, sensing with plasmonic nanospheres, photovoltaic devices and so
on, efficient shaping of scattering pattern is playing a vitally important role. Nev-
ertheless, most approaches on scattering shaping are based on engineering of the
electric responses of the nanostructures due to the fact that for most structures
only electric responses are supported, especially in the optical regime. In this chap-
ter, we introduce artificial magnetic responses and manage to shape the scattering
efficiently through the interference of both electric and magnetic responses in plas-
monic nanostructures. The introduction of magnetic responses brings an extra
dimension of flexibility and based on that we achieve efficient scattering shaping
of core-shell nanoparticles, including broadband unidirectional scattering by core-
shell nanospheres and scattering pattern engineering for core-shell nanowires. We
also demonstrate polarization independent Fano resonances in arrays of core-shell
nanospheres.

4.1 Introduction

The study of light scattering by small particles has a long history and it is
of fundamental significance in different branches of physics, such as sensing, solar
cells, optical communications, etc. Nanoparticles have found wide applications for
biomedical labeling, impacting strongly on the fields like biology and medical re-
search [60, 63, 64, 199, 200]. Recently fostered by the flourishing fields of plasmonics
and metamaterials, various novel scattering phenomena have been demonstrated,
e.g. clocking [96], super-scattering [25, 201, 202], control of the direction of the
scattered light [61, 62], nonlinear second harmonic scattering [48], and artificial an-
tiferromagnetism [203]. It is also shown that light scattering can be significantly
enhanced with the incorporation of gain materials, based on which deep subwave-
length nanoscale lasing could be achieved [49, 78, 204].

For most scattering problems, efficient shaping of the scattering pattern is one
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(a) (b)

(c) (d)

ed
md

Figure 4.1: (a) and (b) show the split ring resonator and the silicon sphere respectively
with strong circulating displacement currents which produce strong artificial magnetic
response. (c) shows the spectral responses of the split ring resonator shown in the
inset and (d) shows the spectral response of the silicon sphere of diameter 150 nm.
After Refs. [205, 206].

of the most crucial issues. Nevertheless, most approaches on scattering shaping
are based on engineering of the electric responses of the nanostructures. This is
because most structures have only electric responses as there are very limited kinds
of magnetic materials, which at the same time can usually only operate in narrow
spectral regimes, and is accompanied by high losses. Of most scattering problems,
the dominant response would be electric dipole (ED) response and two typical fea-
tures of the scattering pattern of an ED are exhibited: (1) light will be scattered
symmetrically in backward and forward directions [199] and (ii) the ED excited will
have a specific orientations depending on the polarization of the incident wave, re-
sulting in azimuthally asymmetric scattering patterns [199, 207]. However, for many
applications based on the mechanism of resonant light scattering, such as nanoan-
tennas [58, 59], sensing with nanospheres [52], and photovoltaic devices [60], usually
unidirectional scattering is required. To suppress the unwanted backward scattering
(reflection) and enhance the directional forward scattering, an extra reflector or cou-
pled item [58, 59, 208–212], an extended substrate [212–215], Fabry-Pérot resonator
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like structures [214, 216], and/or complicated structure engineering [217, 218] are
usually employed.

We also note that if only magnetic dipole (MD) is supported in a structure,
the scattering pattern would be the same as that of an individual ED due to the
symmetry of Maxwell equations [199]. However, if an ED and a MD can coexist
and interfere with each other, then there will be extra freedom and flexibilities
for scattering shaping. Two related outstanding examples are Kerker’s vanishing
background condition [219] and the concept of Huygense source [220, 221]. For
both examples the scattering pattern show two usual features compared to that of
an individual ED or MD: (1) suppressed backward scattering and enhanced forward
scattering; and (2) azimuthally asymmetric scattering. The features come directly
from the interference of the ED and the MD, under the conditions of: (1) the ED and
the MD overlap spectrally and (2) the ED and the MD are of the same magnitude.
After the clarifications of the scattering features and the conditions, it is clear that
two challenges are laying ahead: how to get the MD response and how to overlap
the ED and the MD?

As we mentioned before, there are very limited kinds of materials that directly
support magnetic responses, which at the same time can usually only operate in nar-
row spectral regimes, and is accompanied by high losses. However recently inspired
by the emerging field of metamaterials [20–22], many non-magnetic structures are
proven to be able to support artificial magnetic resonances, with examples include
the split ring resonators [205, 222] and many other high permittivity dielectric struc-
tures [206, 223–232]. As such it is easy to excite the artificial MD but usually it
is very challenging to overlap the ED and the MD. In Fig 4.1 (a) and (b) we show
two well studied structures that support artificial magnetic responses: the split ring
resonator and high permittivity dielectric sphere (silicon sphere). It is shown that
due to the strong displacement currents, there is are strong magnetic responses of
the structures [205, 206, 222]. In Fig 4.1 (c) and (d) we also show their spectral
responses. It is clear that although both structures support both an ED and a MD,
the two resonances are separated spectrally without efficient overlap.

4.2 Shaping the scattering of core-shell nanostructures

through the interferences of electric and magnetic dipoles

In this section, we demonstrate that efficient overlapping of an ED and a MD
is possible in symmetric core-shell nanostructures. We investigate two special cases
of core-shell nanospheres and core-shell nanowires. It is shown that for both cases
the ED and the MD are decoupled from each other and thus can be engineered
to overlap spectrally. For core-shell nanospheres, the ED and the MD are of the
same amplitude, thus leading to backward scattering suppression and forward scat-
tering enhancement. For core-shell nanowires with incident p waves, as each ED
corresponds to two angular momentum channels, the ED is twice the magnitude
of the MD, thus leading to different scattering patterns from those of core-shell
nanospheres.
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4.2.1 Broadband unidirectional scattering by magneto-electric core-
shell nanospheres

In this section we demonstrate the suppression of the backward scattering
and enhancement of the forward directional scattering by superimposing electric
and magnetic responses of core-shell nanospheres. We achieve azimuthally sym-
metric broadband unidirectional scattering using (metal) core - (dielectric) shell
nanosphere structures without magnetic materials or extra reflectors being involved.
Each nanosphere is effectively magneto-electric as it supports orthogonal ED and
MD resonances, which can be engineered to coincide spectrally with the same
strength [229, 233]. As the electric and the magnetic dipoles have the same strength,
and they can interfere destructively in backward direction and constructively in for-
ward direction, azimuthally symmetric unidirectional scattering can be achieved
even for a single particle. Furthermore, we show that the directionality can be ad-
ditionally enhanced in a chain of such particles. Although there is a tradeoff between
energy confinement and directionality for different inter-particle distances, however
the properties of vanishing backward scattering and azimuthal symmetry are always
preserved. At the end, we demonstrate that the operating spectral regime of the
unidirectional scattering is practically broadband.

Unidirectional scattering of a single core-shell nanosphere

The scattering of a spherical particle [see Fig. 4.2(a)] (single-layered or multi-
layered) can be solved analytically using Mie theory [199, 234]. The far-field scat-
tering of such particles can be expanded into orthogonal electromagnetic dipolar
and multipolar scattering, with Mie coefficients an and bn (both can be calculated
analytically [199, 234]) corresponding to electric and magnetic moments respec-
tively [199, 233]. The effective electric and magnetic dipolar polarizabilities can be
expressed as [199]:

αe
1 =

3i

2k3
a1, α

m
1 =

3i

2k3
b1, (4.1)

where a1 and b1 are Mie scattering coefficients, which correspond to electric and
magnetic dipole moments, respectively, and k is the angular wave number in the
background material (vacuum in our case). In Fig. 4.2(b) we show the scattering
efficiency spectra including the total scattering - total scattering cross section di-
vided by the geometrical cross section of the particle (blue line) and the scattering
contribution from a1 (red line) of a silver sphere with a radius R = 68 nm, illumi-
nated by a linearly polarized (along x) plane wave as shown in Fig. 4.2(a). For the
permittivity of silver we use the experimental data from Ref. [235]. It is clear that
the sphere can be approximated as an electric dipole for the wavelength range under
consideration. The scattering patterns at the resonant wavelength of 440 nm are
shown on the right of Fig. 4.2(c) for both p (line with crosses) and s (solid line) po-
larizations [scattering plane parallel (ϕ = 0) and perpendicular to the polarization
(ϕ = 90◦) of the incident plane wave, respectively]. The three-dimensional (3D)
scattering pattern is shown on the left of Fig. 4.2(c) with a part cutoff for better
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Figure 4.2: (a) Scattering of an incident plane wave by a spherical particle. The
electric field is polarized along x and the wave is propagating along z. (b) Scattering
efficiency spectra (total and the contribution from a1) for Ag sphere (inset) of radius
68 nm and (c) left: corresponding 3D scattering pattern at the resonant wavelength
of 440 nm (with a part cut for bettering viewing); right: scattering pattern for both
s (solid line) and p (line with crosses) polarizations. (d) Scattering efficiency spectra
(total and the contribution from a1 and b1) for a core-shell nanosphere (inset) with
inner radius 68 nm and outer radius 225 nm. The core is silver and the shell is
dielectric with n = 3.4. (e) Left: corresponding 3D scattering pattern at the resonant
wavelength of 1550 nm; right: scattering patterns for both p and s polarizations.

visibility. Two typical features of the scattering by a single dipole are seen: (i) az-
imuthal asymmetry and (ii) symmetry in the backward and forward directions. We
note that spherical symmetry of the silver sphere does not guarantee azimuthally
symmetric scattering because the sphere has only dominant electric response.

In contrast, in Fig. 4.2(d) we show the scattering efficiency spectra for a core-
shell nanosphere (total and the contribution from a1 and b1) with a silver core
and dielectric shell of refractive index n = 3.4 (e.g. GaAs, Si or Ge) with inner
radius R1 = 68 nm and outer radius R2 = 225 nm (inset). Considering that a1
and b1 correspond to the first order electric and magnetic eigenmodes of the core-
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shell nanosphere respectively, the core-shell nanosphere can be effectively viewed
as a combination of a pair of orthogonal electric and magnetic dipoles. We note
here that spherical symmetry leads to the orthogonality of the two modes and thus
they are not coupled to each other [236]. Due to the orthogonality, it is possible
to superimpose these two modes spectrally. To match the strength of the electric
and magnetic dipoles with the same strength, further geometric tuning (change of
the radius aspect ratios) is required [229, 233]. For most structures that do not
exhibit specific symmetries [236], although both electric and magnetic resonances
are supported, they are coupled to each other and therefore the resonances are
spectrally separated. Due to the coexistence of the ED and MD resonances, different
from a single metal sphere, the core-shell nanosphere is effectively a magneto-electric
scatterer according to Eq. (4.1).

When higher order modes excitation is negligible (an = bn = 0, n ≥ 2), the
scattering intensity (correspond to the intensity of the scattering amplitude [199])
of a spherical particle can be derived as:

SI(θ, ϕ) =
9

4
[sin2 ϕ(a1 + b1 cos θ)

2 + cos2 ϕ(a1 cos θ + b1)
2]. (4.2)

When there is no dipolar magnetic response (b1=0), as for the case of a silver sphere
in Fig. 4.2(b), the scattering intensity is

SI(θ, ϕ) =
9

4
a21(sin

2 ϕ+ cos2 ϕ cos θ2), (4.3)

and this indicates a typical scattering pattern of an electric dipole as shown in
Fig. 4.2(c). However when there are equal dipolar electric and magnetic responses
(b1 = a1 = c), as for the core-shell nanosphere shown in Fig. 4.2(d), the scattering
intensity is simplified to:

SI(θ) =
9

4
c2(1 + cos θ)2, (4.4)

where the ϕ dependence is eliminated, indicating that the scattering is azimuthally
symmetric as shown in Fig. 4.2(e). Also according to Eq. (4.4), the forward scatter-
ing intensity is SI(0) = 9c2, which is enhanced and backward scattering intensity
is SI(π) = 0, which is canceled. The enhancement and cancelation of the scat-
tering originates from constructive and destructive interference of the electric and
magnetic dipoles respectively.

Unidirectional scattering of an array of core-shell nanospheres

Up to now, we have demonstrated azimuthally symmetric unidirectional scat-
tering using a single core-shell nanosphere [Eq. (4.4) and Fig. 4.2(e)]. To further
enhance the directionality, we employ a one-dimensional chain of such particles
with the chain axis parallel to the propagation direction of the incident plane wave
[Fig. 4.3(a)], where the inter-particle distance is d. To characterize the directional-
ity of the scattering, we define the main lobe beamwidth α as shown in Fig. 4.3(b),
which corresponds to the full width at half maximum of the scattering intensity. To
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Figure 4.3: (a) A chain of core-shell nanospheres with inter-particle distance d. The
chain axis is parallel to the propagation direction of the incident plane wave. (b)-(d)
Theoretical (solid line) and FDTD (crosses) results of the scattering pattern (arbitrary
scattering plane) by a chain of such particles with N = 2, 3, 10 particles, respectively.
The wavelength is λ = 1550 nm and d = 700 nm. The main lobe beamwidth α is
defined and shown in (b). (e) Main lobe beamwidth α and (f) forward and backward
scattering intensity versus particle numbers in the chain. The parameters of a single
nanosphere is the same as in Fig. 4.2.

investigate theoretically the scattering of the chain, each core-shell nanosphere is
treated as a combination of orthogonal ED and MD with polarizabilities described
by Eq. (4.1). The chain is comprised of N such particles and the i-th particle,
located at the position of ri, has an electric moment Pi and a magnetic moment
Mi. According to the coupled dipole theory involving both electric and magnetic
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dipoles [237, 238]:

Pi = αe
1E

0
i + αe

1

∑j �=i

j=1:N
(E

Pj

i + E
Mj

i )

Mi = αm
1 H

0
i + αm

1

∑j �=i

j=1:N
(H

Pj

i +H
Mj

i )
(4.5)

where E0
i and H0

i are the electric and magnetic fields of the incident wave at po-

sition ri, respectively; E
Pj

i and H
Pj

i are electric and magnetic fields of radiation of

Pj at ri, respectively; E
Mj

i and H
Mj

i are the fields of radiation of Mj at ri. By
solving Eq. (4.5), both the electric and magnetic moments of each particle can be
obtained and then the scattering pattern can be achieved as the superposition of
the radiations of all the 2N interacting dipolar moments.

The symmetry of Maxwell’s equations guarantees that in Eq. (4.5) Pi and −Mi,
Ei and −Hi are exchangeable when αe

1 = αm
1 . This means that each particle in the

chain will have electric and magnetic moments of the same strength, thus leading to
unidirectional scattering, similar to an isolated core-shell nanosphere. Considering
also the azimuthal symmetry of the structure, the whole chain will scatter light
unidirectionally independent on azimuthal angle. In Fig. 4.3(b)-(d) we show the
scattering patterns at arbitrary scattering planes by a chain with particle number
N = 2, 3, 10, according to Eq. (4.5). The operating wavelength is λ = 1550 nm,
which is approximately the resonant wavelength of a single core-shell nanosphere
[Fig. 4.2(d)], and the inter-particle distance is fixed at d = 700 nm. It is clear from
Fig. 4.3(b)-(d) that by increasing the number of particles, the main lobe beamwidth
will decrease, indicating a better directionality.

The dependence of α on the particle number is shown in Fig. 4.3(e) for N up to
400. In Fig. 4.3(f) we also show the scattering intensity in forward and backward
directions for different number of particles in the chain. These dependencies confirm
that the vanishing backward scattering feature is robust with increased particle
number N and the forward scattering is enhanced for larger N . To verify the
theoretical results, we also perform three dimensional finite-difference time-domain
simulations of the chains, with the results shown in Fig. 4.3(b)-(d) (crosses). The
simulations have been carried out using the commercial software Lumerical FDTD
Solutions (http://www.lumerical.com/). The experimental data [235] is assigned
for the permittivity of silver and the permittivity of the dielectric shell is n = 3.4.
A total-field scattered-field plane wave source, and six two-dimensional frequency-
domain field monitors are used to calculate the far-field scattering pattern directly.
In simulations perfectly matched layer (PML) boundary condition is used for all
the six boundaries and we decrease the mesh size until the results are convergent.

It is seen that the FDTD results agree well with the theoretical predictions, jus-
tifying the claim of azimuthally symmetric unidirectional scattering with enhanced
directionality. Note here, that we do not use forward-backward ratio to characterize
the scattering, which is impractical in our case, as this ratio is practically infinite
even for very few core-shell nanosphere as shown in Fig. 4.3(b)-(d). We note here
that the mechanism of the directionality enhancement by the nanosphere array is
basically the same as that of Yagi-Uda antennas, where the interferences plays a
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Figure 4.4: (a)-(c) Theoretical (solid line) and FDTD (crosses) results of the scat-
tering pattern (arbitrary scattering plane) by a chain of core-shell nanospheres with
N = 4 and d = 450 nm (touching particles), 700 nm, and 1200 nm, respectively. Two
diffraction angles of 107◦ and 253◦ are indicated in (c). (d) Theoretical and FDTD
results of α versus d. Inset: Near electric field distributions for two inter-particle
distance (top) d = 450 nm and (bottom) 500 nm respectively. The parameters of a
single particle is the same as in Fig. 4.2(d) and λ = 1550 nm.

major role [58, 208]. However, in contrast to the conventional Yagi-Uda antennas,
in our structures the backward scattering is suppressed automatically based on the
special feature of each nanosphere, without the need of extra reflectors to reflect
the backward radiation.

As a next step, we investigate the dependence of the scattering by the chain on
the inter-particle distance d. We fix N = 4 and λ = 1.55 μm. In Fig. 4.4(a)-(c) we
show both the theoretical (solid line) and FDTD (crosses) results of the scattering
patterns for three inter-particle distances: d = 450 nm (touching particles), 700 nm,
and 1200 nm, respectively. Figure 4.4(d) shows the dependence of α on d for the
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range of 450 nm to 1200 nm (both FDTD and theoretical results are shown). It
is clear that when d > 650 nm, the theoretical results are in excellent agreement
with the FDTD simulations, indicating the validity of the mixed dipole approxima-
tion. In the regime of d < 650 nm, the theoretical results agrees only qualitatively
with the FDTD simulations, showing accurately the trend that with decreasing d,
α increases, displaying worse directionality. The discrepancies come from the dipole
approximation of spherical particles [Eq. (4.1)], which is based on the far-field scat-
tering effect [199, 233], while the near-field features of spherical particles can not
be fully captured by the dipole approximation. Viewing the core-shell nanosphere
as combined dipoles will reflect the coupling with high accuracy when they are well
separated (d > 650 nm). However when the particles are closer to each other and
the near-field coupling is more pronounced, the dipole approximation can only qual-
itatively approximate the stronger near-field coupling and thus larger α and worse
directionality. In Fig. 4.4(d-inset) we show the near-field distributions (electric field)
for four core-shell nanospheres with two inter-particle distances, which show clearly
stronger near-field coupling for smaller d. We emphasize that even for touching par-
ticles [Fig. 4.4(d)(top inset)], the dipole moments are still dominant. This is because
within each core-shell nanosphere, the electric dipole is a result of a surface plasmon
mode, with the fields confined at the interface of core and shell, while the magnetic
dipole is a result of a cavity type mode in the high permittivity shell [199, 226], with
most of the fields confined within the shell. Thus, the fields outside the core-shell
particle and thus the induced coupling are relatively small. Therefore the dipole
moments remain dominant irrespective of inter-particle distances [Fig. 4.4(d-inset)].
At the same time due to the symmetry of Eq. (4.5), the dominant electric and mag-
netic dipole moments of each particle have the same strength and this guarantees
that the features of azimuthally symmetric and vanishing backward scattering are
robust against different inter-particle distances [Fig. 4.4(a)-(d)], which are preserved
even for touching particles [Fig. 4.4(a)].

According to Fig. 4.4(d), there is a clear trend that smaller distance d will
lead to worse directionality and larger distance d can enhance the directionality.
This feature can be intuitively understood simply through considering the far field
interference of the nanospheres in the array. The phase delay between adjacent
nanosphere is ΔΦ = kd(1 − cos θ), which indicates that in the forward direction
θ = 0 all dipoles interfere constructively. As such, the scattering intensity is al-
ways strongest in the forward direction [Fig. 4.3(b-d)]. At the same time, better
directionality means destructive interference for smaller θ, which requires larger d
to produce sufficient phase delay. Here we also emphasize the tradeoff between the
energy confinement and directionality for the chains with different d. Although
larger d will lead to better directionality (Fig. 4.4), when d > λ/2, the phase delay
between adjacent nanospheres will be sufficient to support collective grating diffrac-
tions, leading to significant energy leakage into other directions [Fig. 4.4(c)]. The
angle of the first diffraction order is β = arccos(1−λ/d), which corresponds to 107◦

and 253◦ when d = 1200 nm and λ = 1550 nm. As shown in Fig. 4.4(c), there is
significant energy leakage into both of these directions due to the grating effect. On
the other hand for smaller d, although there will be worse directionality (Fig. 4.4),
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light would be better confined (less leakage to other channels) as a larger proportion
of the Brillouin zone is located above the light line [239].

Broadband unidirectional scattering of core-shell nanospheres

A key feature of the scattering properties of the core-shell nanospheres is their
relatively broadband spectral response. From 4.2(d) one can clearly see that there
is a wide spectral region where a1 and b1 spectrally overlap. According to Eq. (4.4),
azimuthally symmetric unidirectional scattering can be achieved when a1 and b1
coincide and, thus, the main features should be preserved in the entire overlapping
spectral region. To obtain the spectral response of the scattering we fix the number
of particles to N = 4 and the distance between them to d = 700 nm. In Fig. 4.5 we
show the scattering patterns of the chain under plane wave illumination for three
different wavelengths in the range 1.51 μm to 1.65 μm, covering the entire C and
L-bands that are dominantly used in optical fiber telecommunications [240]. Both s
(solid line) and p (circles) polarization scattering patterns are shown, demonstrating
a 140 nm bandwidth of the unidirectional scattering. For wavelengths outside this
spectral region, a1 and b1 are significantly different [Fig. 4.2(d)] and thus both the
azimuthal symmetry and the vanishing backward scattering will be lost according to
Eq. (4.4). We emphasize here that we call the response broadband in a relative sense
because: (i) both electric and magnetic dipolar resonances overlap spectrally over
a range that is as broad as the individual resonances [Fig. 4.2(d)], over which the
unidirectionally scattering can be achieved. If the two resonances are not tuned to
coincide spectrally and are effectively separated, the bandwidth of the unidirectional
scattering will also be reduced and can be quite narrow compared to what we have
achieved in this work; (ii) the achieved spectral regime covers the entire C band and
L band that are primarily used in optical fiber communications [240].

We note that azimuthally symmetric unidirectional scattering can be achieved
for any system that support dominantly electric and magnetic dipolar resonances
that coincide spectrally with the same strength. For example, within a single high
permittivity sphere, both ED and MD resonances can be supported dominantly
and be of approximately the same strength at a specific wavelength regime [225].
The problem is that for such a sphere, the resonant wavelengths of electric and
magnetic dipoles are separated, with the overlapping point far from either resonance.
Therefore although unidirectional scattering can be achieved for a dielectric sphere,
the scattering is off-resonant and generally weak. Also it is expected that in this
case the operating wavelength range of unidirectional scattering will be narrow and
the structure will have high frequency selectivity.

Conclusion

In conclusion, we have studied the scattering properties of (metal) core - (di-
electric) shell nanospheres and have shown that they exhibit azimuthally symmetric
unidirectional scattering. This unidirectional scattering originates from the interfer-
ence of electric and magnetic dipolar resonances that coexist with the same strength
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Figure 4.5: FDTD results of the scattering pattern of a chain of four core-shell
nanospheres with d = 700 nm for three operating wavelengths of 1.51 μm, 1.57 μm,
and 1.65 μm. Both s (solid line) and p (circles) polarization scattering patterns are
shown. The parameters of a single core-shell nanosphere is the same as in Fig. 4.2(d).

within the particle itself. We have further shown that the directionality of a sin-
gle core-shell nanosphere scattering can be enhanced when the nanospheres are
arranged in a one-dimensional chain. For such a chain, there is a tradeoff between
energy confinement and directionality for different inter-particle distances, however
the features of vanishing backward scattering and azimuthal symmetry are always
preserved, irrespective of the inter-particle distances, even when the particles touch
each other. We also show that the operating wavelength range for unidirectional
scattering of the chain is widely broadband, spanning over a bandwidth of 140 nm.

It is worth mentioning that the described features are valid under excitation of
broad Gaussian beam (compared to the cross sections of the scatter) [199], which
provides a feasible path to experimental observation of the predicted effects. For
experimental realization, the fabrication of particles with metal-core and high-index
dielectric shell is of key importance. Chemically synthesis of core-shell nanosphere
is well suited for practical realizations [241], with numerous examples where metal-
core with a shell of high-index oxides such as TiO2 or ZrO2 can be routinely syn-
thesized [242]. At the same time, for shells made of materials with refractive index
higher than 3, such as high-index semiconductors, one would probably need to re-
sort on bottom-up approached, including double inversion with silicon deposition.
Indeed, high index silicon shells have already been developed and used for low-Q
whispering gallery mode cavities [243]. Similar shells might well be applicable for
the fabrication of core-shell nanosphere considered in this work.

We note that the operating wavelength range of the core-shell nanosphere is
highly tunable by changing the core-shell aspect ratios and the permittivity of
the dielectric shell. Furthermore, there is extra freedom for resonance tuning if
anisotropic materials are involved [244–246]. For the nanospheres studied here, at
the resonant wavelength of λ = 1550 nm, the total scattering efficiency is approx-
imately 14 and the absorption efficiency is approximately 0.3. The ratio is close
to 50, which means that a very small proportion of the total energy is transferred
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into heat rather than radiated. For operating wavelength where the loss of metal is
higher or/and the loss of the dielectric shell is significant, the absorption efficiency
will be higher. Loss can also change the position and strength of the resonances
of the particles. However as long as the two resonances can be tuned to coin-
cide spectrally with the same strength, the azimuthally symmetric unidirectional
scattering could be achieved. Most importantly all our results can be extended to
other particle geometries (rather than spheres) that support orthogonal electric and
magnetic resonance pairs. We envisage that our findings on reflection suppression
and broadband unidirectional scattering by superimposing electric and magnetic
responses will be of great importance in various fields, especially in the flourish-
ing fields of nanoantennas, photovoltaic devices and nanoscale lasers that require
reflection suppression.

4.2.2 Scattering pattern engineering for magneto-electric core-shell

nanowires

In this section we extend the study of 3D nanospheres to 2D core (metal)-shell
(high permittivity dielectric shell) nanowires. we study the scattering of (metal)
core-(high permittivity dielectric) shell nanowires, which support both electric and
magnetic resonances. We find that for p-polarized incident waves, the ED and MD
can be tuned to overlap spectrally. As the ED corresponds to two degenerate scat-
tering channels while the MD corresponds to only one channel, its magnitude is
twice the magnitude of the MD. Consequently, in sharp contrast to spherical struc-
tures investigated before, where the scattering is suppressed only at the backward
direction, here we demonstrate a pair of angles along which the scattering is van-
ishing. It is also demonstrated that the scattering features are highly polarization
dependent, and the vanishing scattering angles can also be obtained through the
Fano resonance, which is induced by the interference of the broad MD and the
narrow higher order electric modes.

Scattering pattern of core-shell nanowires

The structure we study is shown schematically in Fig. 4.6. The infinitely long
nanowire is arranged along z direction with a silver core (the permittivity is from
Ref. [235]) and a dielectric shell (n = 3.5). Here the incident plane wave propa-
gates along x direction and the scattered light is confined at the x− y plane. The
electric field of the incident wave is either polarized along y (p-wave) or along z (s-
wave). The scattering of a nanowire (single-layered or multi-layered) can be solved
analytically and the scattering efficiency is [199, 247]:

Qs,p
sca =

2

kr

[
(as,p0 )2 + 2

∑∞
m=1

(as,pm )2
]
, (4.6)

where k is the angular wave-number in the background material (vacuum in this
study); r is the radius of the outmost layer; a0 and am are the scattering coefficients,
and the superscripts s and p corresponds to s-wave and p-wave, respectively. More
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Figure 4.6: Schematic of scattering of normally incident p-polarized plane waves by
a core-shell nanowire. The core nanowire is silver of radius r1 and the shell is n = 3.5
dielectric of radius r2. The scattering angle is defined as θ.

specifically a0 and a1 correspond to the magnetic (electric) and electric (magnetic)
dipoles for p (s) waves, respectively [224]. The scattering coefficient am relates to an
angular field distribution of eimθ [224], which corresponds to two angular momentum
channels with angular momentums ±m�, where the scattering angle θ is defined in
Fig. 4.6. In contrast a0 corresponds to a uniform angular field distribution with no
angular momentum along z direction [199, 247]. As a result, the contribution from
am to the scattering efficiency is twice that from a0. At the same time the angular
scattering amplitude can be expressed as [199, 247]:

SAs,p(θ) =
√
2/πk

∣∣∣as,p0 + 2
∑∞

m=1
as,pm cos(mθ)

∣∣∣ . (4.7)

In Fig. 4.7 we show the scattering efficiency spectra (SES) for incident p-
wave, including the total scattering efficiency and the contributions from ap0 (MD)
and ap1 (single channel, ED). Firstly we study a single-layered nanowire (r1 = 0,
r2 = 145 nm) and the SES is shown in Fig. 4.7(a). It is clear that although both
dominant ED and MD are supported with resonances centered at point E and M,
respectively, they are spectrally separated. Above Fig. 4.7(a) we also show the
near-field distributions of longitudinal magnetic field intensity (|Hz|2 ,colourmap)
and transverse electric field (Et, arrows) of points E and M. Dashed green lines
indicate the nanowire-background boundaries. It is clear that ED and MD are
supported at points E and M respectively: at point E, the Hz field shows a typ-
ical dipolar distribution with transverse electric filed almost linearly polarized; at
point M, Hz field is almost azimuthally symmetric inside the nanowire, accompa-
nied by circulating displacement currents, indicating the existence of an artificial
magnetic dipole [206, 225–228]. Fig. 4.7(c) shows the scattering patterns at both
points. Typical dipole-like scattering patterns are observed: at point E the ED is
dominant and oriented along y direction with a two-lobe scattering pattern in the
x− y plane; at point M the MD is dominant and oriented along z direction with an
almost circular scattering pattern in the x− y plane. Then we study a two-layered
core-shell nanowire, shown in Fig. 4.6. As shown in Fig. 4.7(b) it is clear that when
the inner radius r1 = 70 nm and the outer radius r2 = 145 nm, the ED and MD
can overlap and thus creating a superscattering spectral regime (the corresponding
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single channel limit in terms of scattering efficiency is approximately 2.4) [25]. We
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with equal p-wave and s-wave incidence along θ = 120◦ and 240◦. The inset shows
an enlarged area of λ = 1.190 − 1.210 μm. (c) and (d) show the scattering patterns
for the points indicated in (a) and (b) with λB = 1.202 μm and λS = 1.106 μm.

note here that the overlapping wavelength of ED and MD for such structures is
highly tunable, and can be shifted to shorter or longer wavelengths for smaller or
larger scales of the nanowires with specific aspect ratios. Also in the spectral regime
in Fig. 4.7(b), the ED and MD are dominant and Eq. (4.7) can be simplified as:

SAp(θ) =
√
2/πk|ap0 + 2ap1 cos(θ)|. (4.8)

At the overlapping resonant point S, as indicated in Fig. 4.7(b), both ap0 and ap1
are real [247] and ap0 = ap1 = b. Thus at this point we have SAp(θ) = b

√
2/πk|1 +

2 cos(θ)|, which indicates that when θ = 120◦, 240◦ [cos(θ) = −1/2] the scattering
is vanishing. In Fig. 4.7(d) we show the normalized scattering amplitude at point S.
We note that at point A indicated in Fig. 4.7(b), the scattering pattern is identical
as that of point S. The difference is that point A is in the non-resonant regime and
the overall scattering is less than half of that at point S.

Polarization dependence of the scattering of the core-shell nanowires

Next we change the incident wave to s-wave and show the SES for the core-
shell nanostructure in Fig. 4.8(a). In contrast to p-wave incidence, at the point S,
|as0| �= |as1|. Thus the scattering at the vanishing scattering angles of the p-wave
can not be neglected, as demonstrated in Fig. 4.8(c). This feature is similar to
the reflection at the Brewster angle, which is highly polarization dependent. In
Fig. 4.8(b) we show the amplitude ratio of SAs/SAp[cos(θ) = −1/2] with equal
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and λP = 0.895 μm.

p-wave and s-wave incidence. There is a sharp peak centered at point S where the
p-wave scattering is negligible [Fig. 4.7(d)] compared to that of the s-wave incidence
along θ = 120◦ and 240◦ (the maximum intensity ratio can reach approximately
3500). At the same time, the width of such response is as narrow as 5 nm, indicating
that it might be used for efficient polarization splitter and filters. We also note that
there is a dip located at point B [inset of Fig. 4.8(b)], where the scattering of s-wave
incidence along θ = 120◦ and 240◦ is vanishing [Fig. 4.8(d)].

Fano resonance induced scattering shaping of the core-shell nanowires

Finally, we study the interference of MD and the electric quadruple mode (QM,
characterized by a2) for p-wave. In Fig. 4.9(a) we show the SES for the same core-
shell structure at the spectral range of 800-1000 nm. The contribution from QM
and MD are dominant and then Eq. (4.7) can be expressed as:

SAp(θ) =
√

2/πk|ap0 + 2ap2 cos(2θ)|. (4.9)

Compared to the QM, the MD response is rather broad, and its interference with the
narrow QM will produce sharp Fano resonances [248–250]. In Fig. 4.9(b) we show
the normalized scattering amplitude when 1 + cos(2θ) = 0, and the two modes can
almost cancel each other, resulting in vanishing scattering along two pairs of angles:
θ = 60◦, 120◦, 240◦ and 300◦. Typical Fano asymmetric line-shape is observed. The
specific scattering patters for the Fano dip (point D) and Fano peak (point P) are
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shown in Fig. 4.9(c) and Fig. 4.9(d), respectively, showing clearly the destructive
and constructive interferences along those angles.

Conclusion

In summary, we have studied scattering of core-shell nanowires, which support
both electric and magnetic resonances. We have demonstrated how to achieve a pair
of vanishing scattering angles in the superscattering regime of overlapped ED and
MD for p-waves. We have also demonstrated the polarization dependence of these
scattering features and Fano resonance induced vanishing scattering angles. Our
study generalizes the proposal of Kerker for backward scattering suppression, and
our approaches can be extended to higher order modes or to other non-cylindrical
structures where different vanishing scattering angles can be obtained in the res-
onant strong-scattering regimes. Our results shed new light on the direction of
scattering shaping based on interferences of both electric and magnetic resonances,
which can play a major role in applications such as nanoantennas, nanolasers, sen-
sors, solar cells and so on.

4.3 Fano resonance in arrays of core-shell nanospheres

4.3.1 Fano resonance in nanostructures

Fano resonance is characterized by a distinct asymmetric line-shape, which orig-
inates from an interference of a broad spectral line background state and a narrow
discrete state [248, 249, 251]. As an ubiquitous wave inference phenomenon, the
applications of Fano resonance spread rapidly from atomic physics, where it was first
investigated systematically [251], to many other fields including nuclear physics, con-
densed matter physics, and classical optics [248, 249, 251]. Recently in the emerging
fields of plasmonics and metamaterials, Fano resonance is attracting surging inter-
est due to its observations and applications in different settings, such as individ-
ual asymmetric plasmonic structures [252], periodic plasmonic structures [253–256],
plasmonic clusters [257] and metamaterials [258]. In Fig. 4.10 we show some basic
information about Fano resonance. Firstly compared to the Lorentzian resonance
which corresponds to a fundamental symmetric line-shape, Fano resonance is char-
acterized by an asymmetric line-shape, with a Fano dip and a Fano peak. The Fano
resonance can be viewed as a hybrid state coming from the interference of a discrete
state with the continuum or a broad state: the destructive interference will leads to
the Fano dip while the constructive interference leads to the Fano dip.

The Fano resonances studied up to now usually involve the interference of only
two modes - with a spectrally broad background and a narrow resonant one. In
photonic structures, for different polarizations of the incident waves, only modes
of specific orientations can be excited and, thus, the overlapping and coupling be-
tween those modes are highly polarization dependent. As a consequence, the Fano
resonance achieved in such structures, which comes directly from the coupling of
modes, also inevitably show strong polarization dependence [202, 259, 260]. For
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Figure 4.10: (a) Symmetric line-shape of Lorentzian resonance and asymmetric line-
shape of Fano resonance. (b) Schematic illustration of the origin of Fano resonance:
the interference of a discrete state with the continuum (or broad state).

many applications based on the Fano resonances, e.g. sensing [53, 54], nonlinear
switching [259, 261], lasing [78] and so on, polarization independent Fano resonances
are highly desirable, but has not been demonstrated yet.

4.3.2 Polarization independent Fano resonance in arrays of core-shell
nanospheres

In this section, in contrast to the conventional approach, we employ the inter-
ference of three modes rather than two to achieve polarization independent Fano
resonances in periodic structures. We demonstrate that such Fano resonances can
be excited in arrays of various configurations of (metal) core - (dielectric) shell
nanospheres. We find particular parameters of a single particle, which allow to
support simultaneously a pair of orthogonal ED and optically-induced MD, which
spectrally overlap and are of the same strength [229, 233]. These two resonant
modes can interfere simultaneously with the geometric resonance (coherent col-
lective response, also termed as Wood’s anomaly [262–265]) of the periodic array
through diffractive coupling, producing polarization independent Fano resonances,
despite the fact that such periodic structures do not possess azimuthal symmetry.
We further show that with different polarizations, the ED and the MD can be se-
lectively controlled, thus opening new opportunities for near-field manipulations,
which may find applications in sensing, lasing and nonlinear switching in plasmonic
nanostructures and metamaterials.
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(a)] and the core-shell nanosphere can be approximated as a pair of orthogonal ED
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geometry of the 1D structure under consideration. The unit cell particle could be
either a silver sphere or core-shell nanosphere. The incident plane wave is propagating
along z and the polarization angle (electric field with respect to x direction) is θ.

Polarization independent Fano resonance in the 1D arrays of core-shell

nanospheres

The scattering of a spherical particle (single- or multi-layered) can be solved
analytically using Mie theory [199]. For an incident plane wave illumination, the
extinction efficiency can be expressed as [199]:

Qext =
2

k2R2

∞∑
n=1

(2n + 1)Re(an + bn), (4.10)

where k is the angular wave number in the background material (it is vacuum in
our study); an and bn are Mie scattering coefficients, which correspond to electric
and magnetic moments respectively [199]; R is the radius of outmost layer and Re
means the real part. In the case of scattering by a small size particle the excitations
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of higher order modes can be neglected [an � 1, bn � 1 (n > 1)]. As such only the
ED (a1) and the MD (b1) moments contribute to the overall extinction efficiency:

Qext =
6

k2R2
Re(a1 + b1). (4.11)

In Fig. 4.11(a) we show the extinction efficiency spectra (both total and the con-
tribution from a1) of a silver sphere of R = 50 nm [on top of Fig. 4.11(a)] illumi-
nated by a plane wave. For the permittivity of silver we use the experimental data
from Ref. [235]. It is clear that a1 contribute dominantly to Qext in the spectral
range shown and thus the sphere could be effectively approximated as an ED. Fig-
ure 4.11(b) shows the extinction efficiency for a core-shell nanosphere with a silver
core of a radius R1 = 38 nm and a dielectric shell of refractive index n = 3.5 with
an outer radius R2 = 150 nm [top of Fig. 4.11(b)]. According to Fig. 4.11(b), only
a1 and b1 dominantly contribute to Qext in the spectral regime of 1100 nm-1180 nm,
therefore the core-shell nanosphere can be viewed as a pair of orthogonal ED and
MD coinciding spectrally with the same strength. The ED and the MD are or-
thogonal and not coupled to each other due to the high symmetry of the core-shell
structure [236].

We first investigate 1D periodic structures as shown in Fig. 4.11(c). For com-
parison, the unit cell particle can be either a silver sphere shown in Fig. 4.11(a) or
a core-shell nanosphere shown in Fig. 4.11(b), with inter-particle distance d. The
incident plane wave is propagating perpendicular to the array axis (along z direc-
tion) and the polarization angle is θ, which is the angle between electric field and
x direction. Here we fix the wavenumber k of the incident plane wave perpendic-
ular to the array axis as shown in shown in Fig. 4.11(c), which is the case of the
strongest Fano resonance [254]. when the direction of k deviates from the normal
of the array axis, the Fano resonance will split into several resonances with reduced
strengths [254].

For spherical particles with only dipole resonances, the effective electric and
magnetic polarizabilities are given by Eq. (4.1). For an ensemble of such spherical
particles with particle number N , let us suppose that the i-th particle located at the
position ri has an electric moment Pi and magnetic moment Mi. According to the
coupled dipole approximation (CDA) with the presence of both ED and MD shown
in Eq. (4.5), the electric and magnetic moments of each particle in the ensemble
(Pi and Mi) can be obtained. Then, the extinction efficiency of the ensemble can
be found by combining all the contributions from the 2N interacting dipoles in the
far-field [238]:

QN
ext =

4k

NR2

N∑
i=1

(
Im(Pi · E0∗

i )

|E0|2 +
Im(Mi ·H0∗

i )

|H0|2
)
. (4.12)

For the 1D periodic array shown in Fig. 4.11(c), each particle in the array has
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identical polarization dependent response with x and y projections:

Px =
αe
1E0 cos θ

1− 2αe
1(C1 + C2)

, Py =
αe
1E0 sin θ

1 + 4αe
1C2

, (4.13)

Mx =
−αm

1 H0 sin θ

1− 2αm
1 (C1 + C2)

,My =
αm
1 H0 cos θ

1 + 4αm
1 C2

, (4.14)

where

C1 = −k2 [ln (2− 2 cos(kd)) + i(2m− 1)π − kd] /2d, (4.15)

C2 =
∑∞

n=1
eiknd(iknd − 1)/n3d3. (4.16)

Here d satisfies (m−1)λ < d < mλ with m = 1, 2, 3..., E0 and H0 are the amplitude
of the electric and magnetic fields of the incident wave respectively. According
to Eq. (4.13) and Eq. (4.14), electric and magnetic moments are separable: electric
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and magnetic moments are only dependent on the electric and magnetic fields of the
incident wave, respectively. Based on Eq. (4.12)-Eq. (4.14) the extinction efficiency
for the 1D array is:

Qext = QPx
ext +Q

Py

ext +QMx
ext +Q

My

ext , (4.17)

QPx
ext(θ) =

4k

R2
Im

(
αe
1cos

2θ

1− 2αe
1(C1 + C2)

)
, (4.18)

Q
Py

ext(θ) =
4k

R2
Im

(
αe
1sin

2θ

1 + 4αe
1C2

)
, (4.19)

QMx
ext (θ) =

4k

R2
Im

(
αm
1 sin

2θ

1− 2αm
1 (C1 + C2)

)
, (4.20)

Q
My

ext (θ) =
4k

R2
Im

(
αm
1 cos

2θ

1 + 4αm
1 C2

)
. (4.21)

We note that the term C2 is always convergent while the term C1 could be divergent
when cos(kd) = 1. The divergence point of C1 decides the position of the Fano dip,
which is always located at λ = d [248, 249, 254]. Such wavelength corresponds
to the sharp Wood’s anomaly and this wavelength is also termed as the Rayleigh
wavelength [262–265]. The Fano peaks appears at Re[1− 2αe,m

1 (C1 + C2)] = 0,
when the projections Px or Mx reach their maximum, respectively [254]. This
means that there will be two independent Fano peaks when the ED and the MD
are both supported but separated spectrally [225]. In the region close to the Fano
peaks Px andMx (moments along x direction) are the dominant contributing terms

as QPx
ext, Q

Mx
ext � Q

Py

ext, Q
My

ext .

When the unit cell of the array contains only single silver nanoparticle [see

Fig. 4.11(a)], the magnetic response is negligible b1,Mx,My, Q
Mx
ext , Q

My

ext ≈ 0. Thus,
the main contribution to the Fano peak comes from the electric dipole moment along
x direction only QPx

ext(θ). This means that the Fano resonance originates from the
interference of two modes (ED and the geometric resonance of the array), and thus,
it is highly polarization dependent [see cos2 θ dependence in Eq. (4.18)- Eq. (4.21)].
This is understandable as for different polarizations, the ED moments have different
orientations, leading to different field overlap between adjacent coupled EDs. The
theoretical results based on Eq. (4.13)-Eq. (4.21) for the extinction efficiency of in-
finite 1D array of silver spheres are shown in Fig. 4.12(a) for five polarization angles
of θ = 0, 25◦, 45◦, 75◦, and 90◦ (solid line). As discussed above, the Fano dips are
located at λ = d and clear polarization dependence features are shown. To confirm
the theoretical results, we also do 3D finite-difference time-domain (FDTD, Lumer-
ical) simulations with the results shown in Fig. 4.12(a) (dashed line with circles).
Both the CDA analysis and the simulation results agree very well, confirming the
validity of the coupled dipole approximations. We note here that such polarization
dependence has the origin in the original Wood’s observations, where there were
both p-anomalies and s-anomalies [262–265]. Also the Fano line shapes shown here
is reminiscent of the Wood’s anomaly line shapes [264, 265], both of which indicate
the existence of Fano resonances.
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When the unit cell contains a core-shell nanosphere [see Fig. 4.11(b)], both modes
are excited with a1 ≈ b1 and according to Eq. (4.1), αe

1 ≈ αm
1 ≈ α. Therefore, two

main contributions to the Fano peak come from QPx
ext(θ) and QMx

ext (θ). Although
both terms show polarization dependence, the overall effect of them

Qext = QPx
ext(θ) +QMx

ext (θ) =
4k

r2
Im

[
α

1− 2α(C1 + C2)

]
(4.22)

is polarization independent. In sharp contrast to the case of silver sphere array, in
the array of core-shell nanospheres the Fano resonance comes from the interference
of three resonances (the ED, the MD and geometric resonance of the array) rather
than two. This means that the ED and the MD can interference simultaneously
with the geometric resonance of the array, leading to polarization independent Fano
resonances, irrespective of different orientations of the EDs and MDs. The CDA
results for 1D array of core-shell nanospheres are shown in Fig. 4.12(b) (solid line),
which show the Fano dip at the Rayleigh wavelength λ = d. It is clear that compared
to the case of silver sphere array [Fig. 4.12(a)], the Fano resonances are practically
polarization independent. The FDTD simulation results in Fig. 4.12(b) (dashed line
with circles) agree well with the CDA results, verifying the theoretical analysis.

Then we study the realistic structure of finite 1D array with N nanoparticles. For
a finite array, in contrast to the infinite array, the electric and magnetic moments
are coupled to each other (all resonant moments are dependent on both electric and
magnetic fields of the incident wave) and each particle has different responses. In
Fig. 4.13(a) and (b) we show the extinction efficiency [Eq. (4.12)] of the finite arrays
of 300 silver spheres and 300 core-shell nanospheres respectively. As is clear from
Fig. 4.13, in finite arrays the polarization dependent or independent features are
preserved.
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Near-field enhancement in the 1D arrays of core-shell nanospheres

Up to now we have achieved polarization independent Fano resonances in the
array of core-shell nanospheres in terms of extinction efficiency spectra, which is
a far-field feature. As a next step, we investigate the near-field distributions for
different polarizations of the incident waves. We would like to stress again that no
real magnetic materials are involved in our study, and the MD supported by the
core-shell nanosphere is artificial, which comes from the circulation of displacement
currents in the high permittivity shell [206]. The dipole approximation comes from
the far-field scattering similarity to Ref. [233], and the near-field distribution of this
virtual MD would be significantly different from that of a real MD. To clarify this,
in Fig. 4.14(a) we show a dielectric (n = 3.5) shell structure with hollow core that
support dominantly a MD resonance [199, 229, 233] in the spectral range 1 μm-
1.3 μm. The inner radius is 38 nm, outer radius is 150 nm and the central MD
resonant wavelength is λ = 1195 nm. In Fig. 4.14(b) we show the corresponding
near-field (electric and magnetic field amplitude) distributions. Although for a
metal sphere at the ED resonant wavelength, the near-field shows typical dipole
distribution [199], for the artificial MD shell [206] in Fig. 4.14(b), the near-field
shows dominant magnetic field enhancement within the shell, without exhibiting
obvious dipolar type distribution.

As a next step, we investigate the near-field distributions of the core-shell
nanosphere array at the Fano peak for different polarizations. According to
Eq. (4.13) and Eq. (4.14), at the Fano peak Re[1− 2α(C1 + C2)] = 0 for the array of
core-shell nanospheres (the corresponding wavelength is approximately 1159.5 nm),
both electric moments Px and magnetic momentsMx can be enhanced but individu-
ally they are highly polarization dependent (cos θ and sin θ dependence respectively).
This means that at the Fano peak, for different polarization angles of the incident
wave, the ED and the MD moments can be selectively enhanced. In Fig. 4.14(c)-
(h) we show the normalized near-field distribution (electric field and magnetic field
at the plane z = 0 for a unit cell particle in an infinite array) at the Fano peak
(λ = 1159.5 nm) for three polarization angles θ = 0, 45◦, and 90◦. For θ = 0,
the ED (cos θ dependence) is dominant and the near-field shows the typical feature
of an ED [199, 200] [Fig. 4.14(c) and Fig. 4.14(f)]. For θ = 90◦, the MD is domi-
nant (sin θ dependence) and the near-field shows the typical features of a pure MD
[Fig. 4.14(e) and Fig. 4.14(h)] with dominant magnetic field enhancement, similar to
what is shown in Fig. 4.14(b). For θ = 45◦, the MD and the ED are equally excited
and the near-field shows hybrid features [Fig. 4.14(d)-(g)]. According to Fig. 4.14,
in the array of core-shell nanospheres, the near-field distributions can be effectively
manipulated by different polarizations of the incident wave. The electric fields can
be selectively enhanced [Fig. 4.14(c)] or suppressed [Fig. 4.14(e)]. For the magnetic
fields, though the maximum value is stable against θ (due to the artificial nature
of the MD), the field distribution patterns can be significantly changed with differ-
ent polarizations [Fig. 4.14(f)-(h)]. Those flexible near-field manipulations together
with the far-field polarization independent Fano resonances make our structures su-
perior to other similar ones that support either only the ED [253–256], or only the
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Figure 4.14: (a) A dielectric (n = 3.5) shell structure with hollow core that support
a MD resonance. The inner radius 38 nm, outer radius 150 nm and the central
MD resonant wavelength is λ = 1095 nm. (b) Corresponding near-field (normalized
electric and magnetic field) distributions. (c)-(h) Normalized near-field distributions
of a unit cell in a 1D infinite array of core-shell nanospheres for three polarization
angles of θ = 0, 45◦, and 90◦ at the Fano peak position λ = 1159.5 nm. Other
parameters are the same as in Fig. 4.12 and Fig. 4.11.

MD [266, 267], or both [225] but with the two resonances significantly separated
spectrally. Also according to Fig. 4.12(b), the existence of polarization independent
Fano resonances indicates that all the near-field manipulations can be carried out
without being detected in the far-field.
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Polarization independent Fano resonance in 2D arrays of core-shell
nanospheres

It is worth mentioning that the polarization independent features of the core-
shell nanospheres originate from the simultaneously equal electric and magnetic
responses of each particle itself, rather than the overall symmetry of the whole
structure [236, 268]. This is shown in Fig. 4.12 with 1D structures. To further
confirm this, we investigate a 2D rectangular lattice shown in Fig. 4.15(a), with
lattice constants dx and dy along vertical and horizontal directions, respectively.
Figures 4.15(b)-(d) shows the extinction efficiency spectra of the Ag sphere lattice
for different polarizations with dx = 0.45 μm and dy = 0.43 μm, where the Fano
maxima are marked as Fx and Fy for the Fano resonances arising from coupling be-
tween particles along x and y directions, respectively. The two Fano resonances can
be selectively excited with different polarization angles, showing clearly the polar-
ization dependent features of the Ag sphere lattice. In contrast, in Fig. 4.15(e)-(g)
we show the extinction efficiency spectra for a lattice of core-shell nanospheres with
dx = 1.17 μm and dy = 1.11 μm. As each core-shell nanosphere has equal electric
and magnetic responses, for different polarizations both Fano resonances related to
the two lattice constants can be excited simultaneously and the polarization inde-
pendent features are shown. We emphasize that for both lattices there is a third
lattice constant along the diagonal direction. However, along this direction, the
geometric resonance is spectrally far from the individual resonance supported by
each particle, thus there is no coupling between them and no Fano resonances will
arise along this third direction.

Conclusion

In conclusion, we demonstrate the polarization independent Fano resonances in
arrays of core-shell nanospheres, with each nanosphere supporting a pair of orthog-
onal ED and MD, which coincide spectrally with the same amplitude. For different
polarizations, the ED and the MD can interfere simultaneously with the geometric
resonance (sharp Wood’s anomaly) of the array through diffractive coupling, pro-
ducing polarization independent Fano resonances. We further demonstrate that at
the Fano peak, the ED and the MD can be selectively controlled through the change
of polarizations, leading to flexible near-field manipulation without being detected
in the far-field. We expect that the proposed structure can work as an effective
platform with much more flexibilities to study nonlinear and lasing effects when
nonlinear and/or gain materials are incorporated. The principle of overlapping the
ED and the MD with the same strength to produce a hybrid background state
for the realization of polarization independent Fano resonances can be extended to
higher order modes or to other structures (not necessarily spherical particles) which
support orthogonal electric and magnetic resonances. Such mechanism of superim-
posing orthogonal electric and magnetic modes to achieve polarization independent
Fano resonances is not confined to optics, and it can be applied to other fields
including atomic and nuclear physics.
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4.4 Summary

The central goal of this chapter is to overlap the artificial MD with the ED, and
employ their inference to shape the scattering patterns of plasmonic structures. We
shown that for the core-shell nanosphere, the ED and the MD can be overlapped
with the same strength, thus leading to unidirectional scattering. We also show that
the directionality of the scattering can be further enhanced in a 1D array of such
nanospheres and the unidirectional scattering response is practically broadband.
For the core-shell nanowire of p-polarized incident waves, when the ED and MD
are tuned to overlap spectrally, as the ED corresponds to two angular momentum
channels while the MD corresponds to only one channel, its magnitude is twice the
magnitude of the MD. Consequently, in sharp contrast to the spherical structure
investigated before where the scattering is suppressed at only the backward direc-
tion, here we demonstrate a pair of angles along which the scattering is vanishing.
It is also demonstrated that the scattering features are highly polarization depen-
dent, and the vanishing scattering angles can also be obtained through employing
the Fano resonance, which is induced by the interference of the broad MD and the
narrow higher order electric modes. At the end of this chapter, in the arrays of
core-shell nanospheres, with each nanosphere supporting a pair of orthogonal ED
and MD, which can interfere simultaneously with the geometric resonance (sharp
Wood’s anomaly) of the array through diffractive coupling, we produce polarization
independent Fano resonances.
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Figure 4.15: (a) Schematic geometry of the 2D rectangular lattice with lattice con-
stants dx and dy along vertical and horizontal directions, respectively. Extinction
efficiency spectra of: (b-d) the Ag sphere lattice with dx = 0.45 μm and dy = 0.43 μm
and (e-g) the core-shell nanosphere lattice with dx = 1.17 μm and dy = 1.11 μm. For
both lattices the results of three polarization angles of θ = 0, 45◦, and 90◦ are shown.
The parameters of single particles are the same as in Fig. 4.11. Fx and Fy mark the
peaks of the Fano resonances arising from coupling between particles along x and y
direction, respectively.



CHAPTER 5

Conclusions and outlook

Fostered by the observation of extraordinary optical transmission and the rise
of the new field of metamaterials, recently the field of plasmonics is attracting more
interest than ever before. Named by the group of Harry Atwater in 2000, the term
of plasmonics is a very broad concept and any science and technology that is re-
lated to the coherent coupling of photons to collective oscillations of electrons at
the conductor-dielectric interface can be categorized into this field. According to
the type of the energy confinement, the field of plasmonics can be roughly divided
into two branches: propagating surface plasmon polaritons and localized surface
plasmons. The former branch deals mainly with topics related to the subwave-
length energy transportation and the latter one deals mainly with topics related
to the scattering of light by plasmonic particles. Furthermore, the LSPs can be
geometrized through Bohr condition and thus are highly related to SPPs. Here in
this thesis, we discuss light manipulation by plasmonic nanostructures and address
several challenging problems in the field of plasmonics, including contents about
both propagating surface plasmon polaritons and localized surface plasmons.

We demonstrate a simple mechanism to achieve plasmonic spectral gaps based
on the coupling of forward and backward modes. We study a plasmonic coupler
involving backward and forward modes of coupled plasmonic nanocavities. The
simultaneously achievable contra-directional energy flows and co-directional phase
velocities in different channels lead to a spectral gap, despite the absence of periodic
structures along the waveguide. We also demonstrate that a complete spectral gap
can be achieved in a symmetric structure composed of four coupled waveguides.

We realize efficient and flexible plasmonic beam manipulations in various plas-
monic potentials: (1) we introduce the concept of polychromatic plasmonics and
suggest a broadband plasmonic lens for nanofocusing of surface plasmon polari-
tons based on full parabolic potentials; (2) we demonstrate a plasmonic analogue
of a quantum paddle ball that describes the dynamics of a quantum particle in a
half-parabolic potential (under a linear restoring force bouncing off an impenetrable
barrier); (3) we propose and investigate the adiabatic nanofocusing of the funda-
mental modes in tapered plasmonic parabolic potentials where light is compressed
in both transverse directions due to increasingly stronger parabolic potentials and
decreasing dielectric layer width; (4) we demonstrate the efficient manipulations
of plasmonic Airy beams in linear optical potentials, including acceleration, com-
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pensation and reversing the self-deflection of the plasmonic Airy beams without
compromising the self-healing properties.

We introduce artificial magnetic MDs into plasmonic nanostructures and man-
age to effectively shape the scattering patterns, through the interferences of EDs
and MDs: (1) we have studied the scattering properties of core-shell nanospheres
and show that they exhibit azimuthally symmetric unidirectional scattering, which
originates from the interference of the ED and the MD that coexist with the same
strength at the same frequency. The directionality of a single particle can be en-
hanced when they are arranged in a chain and the operating wavelength range
for unidirectional scattering of the chain is practically broadband; (2) we extend
the approach of scattering shaping through overlapping of EDs and MDs from 3D
nanospheres to 2D core-shell nanowires. Within such nanowires, for p polarization
incident waves, each electric resonance corresponds to two angular momentum chan-
nels while the magnetic resonance corresponds to only one channel. Consequently
when the electric dipole and magnetic dipole are tuned to overlap spectrally, the
magnitude of the electric dipole is twice that of the magnetic one, leading to a pair
of vanishing scattering angles. We further demonstrate that the scattering features
of nanowires are polarization dependent, and vanishing scattering angles can also
be induced by Fano resonances due to the interference of high order electric modes
with the broad magnetic dipole background; (3) we study the scattering properties
of arrays of core-shell nanospheres and reveal the existence of polarization inde-
pendent Fano resonances due to the interaction of a pair of degenerate orthogonal
ED and MD of the same strength with the spectrally-narrow geometric resonance
of the array. Furthermore, we show that for different polarizations of the incident
plane waves, the electric and magnetic modes supported by each nanoparticle can
be selectively controlled, providing extra freedom for near-field manipulation, with
applications to nonlinear and lasing devices.

Although there have been steady and rapid progress in the field of plasmonics
especially after 1998 when the phenomenon of extraordinary transmission was ob-
served, still many challenges are laying ahead. The most urgent and challenging one
is probably how to alleviate or even eliminate the effect of intrinsic loss of metal. It
is shown that incorporating gain media can compensate the loss, while the side ef-
fects of gain media on the signal carried by plasmonic pulse is not clear. At the same
time, the narrow operating spectral regime of the gain media and the requirement
of an external pump will probably further restrict the applications of gain-assisted
plasmonic devices. Other challenges include the clear and accurate characterization
of the nonlocal and nonlinear responses of metal, the interplay of nonlocality and
quantum tunneling for plasmonic nanoparticle interaction, quantum effects like sin-
gle plasmon and their entanglement, singular plasmons and so on. The existence
of the challenges mentioned above should be the reason of optimism rather than
pessimism. Actually those challenges indicate the future development direction of
the whole field.

Another rather exciting trend of the field of plasmonics is that it merges
rapidly with several promising emerging fields, including spinoptics [269–283],
graphene [284–288], and topological insulators [289–294]:
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Photons that carry angular momentum (spin and/or orbital angular momen-
tum) have nontrivial Berry curvature in momentum space, which plays a vitally
important role in the field of spinoptics [269–271, 282]. Due to the duality of real
space and momentum space, an extra term in the dynamical equation of motion,
termed as the anomalous velocity or Lorentz force in momentum space, will natu-
rally arise duo to this Berry curvature [282]. This term can provide extra freedom
for beam manipulation for photons carrying angular momentum, including unidi-
rectional SPPs excitation [278–280], the spin Hall effect of light [270, 272, 275], the
plasmonic Aharonov-Bohm effect [274] and so on.

The current vibrant field of graphene also gives the plasmonic community a
strong stimulus. As a 2D system within which the carbon atoms are arranged in a
honeycomb lattice, graphene has intrinsic plasmonic effects [284, 285], and the com-
bination of graphene with nanoplasmonic structures may lead to totally new optical
devices. Such devices can operate with high speed, low driving force and energy
consumption, and can work at wide rage of spectral regimes [285]. Promising out-
put that might come out from the marriage of graphene and plasmonic structures
include efficient photocells, ultrafast optical modulators, graphene-based 2D plas-
monic lasers, ultrasensitive chemical sensors and biosensors, and so on. At the same
time, the hybrid plasmonic-graphene structures might provide an efficient platform
for research in fundamental physics, including quantum spin Hall effect for plas-
mons, ultra-strong light matter interactions and nonlinearity, pseudospin for SPPs
and so on [282, 284, 290, 295, 296].

A third impetus that might push the field of plasmonics into unprecedented
depth and breadth comes from the new topic of topological insulators [289–291].
An immediate motivation from this impetus is the search for topological states of
surface plasmons, similar to what have already been demonstrated for photons [292,
293, 297–299]. At the same time, it is shown that the complete characterization of
topological insulators requires an extra topological magnetoelectric term, which
indicates the efficient coupling between electric and magnetic fields. Such term
might bring out totally novel effects for SPPs excited on the surface of topological
insulators [294], which do not exist for SPPs excited at the interface of conventional
metal-dielectric structures.

To conclude, we anticipate that there is plenty of room of the development of
plasmonics and this field will keep on its expansion and spread widely more into
not only other branches of optics and physics, but also into biological and medical
researches, finding deeper space and extra dimensions to establish new physical
principles, and numerous practical applications in our daily life.
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