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Abstract. An extensive investigation is given for magnetic properties and
phase transitions in one-dimensional (1D) Bethe ansatz integrable spin-1/2
attractive fermions with polarization by means of the dressed energy formalism.
An iteration method is presented to derive higher order corrections for the
ground-state energy, critical fields and magnetic properties. Numerical solutions
of the dressed energy equations confirm that the analytic expressions for these
physical quantities and resulting phase diagrams are highly accurate in the
weak and strong coupling regimes, capturing the precise nature of magnetic
effects and quantum phase transitions in 1D interacting fermions with population
imbalance. Moreover, it is shown that the universality class of linear field-
dependent behaviour of the magnetization holds throughout the whole attractive
regime.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 073009
1367-2630/09/073009+17$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:Murray.Batchelor@anu.edu.au
http://www.njp.org/


2

Contents

1. Introduction 2
2. The model 3
3. TBA 6
4. Magnetic properties in the weak coupling regime 7
5. Solutions to the dressed energy equations 8
6. Quantum phase transitions 11
7. Conclusion 14
Acknowledgments 15
References 15

1. Introduction

Bosons and fermions reveal strikingly different quantum statistical effects at low temperatures.
Bosons with integer spin undergo Bose–Einstein condensation (BEC), whereas fermions with
half-odd-integer spin are not allowed to occupy a single quantum state due to the Pauli
exclusion principle. However, fermions with opposite spin states can pair up to produce
Bardeen–Cooper–Schrieffer (BCS) pairs to form a Fermi superfluid. Quantum degenerate gases
of ultracold atoms open up exciting possibilities for the experimental study of such subtle
quantum many-body physics in low dimensions [1]–[4]. In this platform, Feshbach resonance
has given rise to a rich avenue for the experimental investigation of relevant problems, such as
the crossover from BCS superfluidity to BEC [5], fermionic superfluidity and phase transitions,
among others [6]–[8]. Particularly, pairing and superfluidity are attracting further attention from
theory and experiment due to the close connection to high-Tc superconductivity and nuclear
physics. The study of pairing signature and fermionic superfluidity in interacting fermions has
stimulated growing interest in Fermi gases with population imbalance [9]–[12] i.e. systems with
different species of fermions [3] as well as multicomponent interacting fermions [13]–[16]. This
gives rise to new perspectives to explore subtle quantum phases, such as a breached pairing
phase [17] and a nonzero momentum pairing phase of Fulde–Ferrell–Larkin–Ovchinnikov
(FFLO) states [18, 19] and colour superfluids [4].

One-dimensional (1D) atomic gases with internal degrees of freedom also provide
tunable interacting many-body systems featuring novel magnetic properties and quantum phase
transitions [20]–[24]. Although the FFLO state has not been fully confirmed experimentally,
investigations of the elusive FFLO state in the 1D interacting Fermi gas with population
imbalance are very promising [25]–[35], [38]–[42]. Theoretical predictions for the existence
of an FFLO state in the 1D interacting Fermi gas has emerged by a variety of methods including
the Bethe ansatz (BA) solution [26], numerical methods [28], [30]–[32], [34, 38, 42] and field
theory [35, 43, 44]. A powerful field theory approach [35, 44] was used to describe an FFLO
state in the 1D Fermi superliquid with population imbalance. Nevertheless, verification of the
FFLO signature of polarized attractive fermions is still lacking via the BA solution. A recent
thermodynamic Bethe ansatz (TBA) study of strongly attractive fermions [27] shows that paired
and unpaired atoms from two Fermi liquids coupled to each other. The TBA equations indicate
that spin wave fluctuations ferromagnetically couple to the unpaired Fermi sea. A full analysis
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of magnetic effects and low energy physics of spin-1/2 fermions with polarization in both the
weak and strong coupling regimes, as well as a detailed discussion on the universality class
of the magnetic behaviour in the whole attractive regime, are desirable in understanding such
subtle paired states in 1D interacting fermions with polarization.

In the present paper, we provide an extended investigation of quantum phases and phase
transitions for 1D interacting fermions with polarization in the presence of an external field. We
analytically and numerically solve the dressed energy equations that describe the equilibrium
state at zero temperature. We extend the previous work on this model to derive higher order
corrections (up to order 1/|γ |

3) for the ground-state energy, magnetization, critical fields,
chemical potentials and the external field–energy transfer relation. The phase diagrams in the
weak and strong coupling regimes are obtained in terms of the external field, density and
interaction strength. In the strong coupling regime, (i) the bound pairs in the homogeneous
system form a singlet ground state when the external field is less than the lower critical value
Hc1, (ii) a normal Fermi liquid phase without pairing occurs when the external field is greater
than the upper critical value Hc2, and (iii) for an intermediate range Hc1<H <Hc2, paired and
unpaired atoms coexist. However, for weak coupling, a BCS-like pair scattering phase occurs
only when the external field H = 0, while paired and unpaired fermions coexist when the field
is less than a critical field. Significantly, we also show that the universality class of linear field-
dependent behaviour of the magnetization remains throughout the whole attractive regime.

The present paper is set out as follows. In section 2, we present the Hamiltonian and discuss
the pairing signature for the 1D fermions with population imbalance in the whole attractive
regime. In section 3, we present the dressed energy equations obtained from the TBA equations
in the limit T → 0. In section 4, we present the magnetic properties for the model in the
weak coupling regime. We solve the dressed energy equations in the strong-coupling regime
in section 5. The explicit forms of the magnetic properties and the ground-state energy are
given in terms of the interaction strength, density and external field. In section 6, we present the
full phase diagrams for the whole attractive regime. Section 7 is devoted to concluding remarks
and a brief discussion.

2. The model

The Hamiltonian [47, 48] we consider

H=

∑
j=↓,↑

∫ L

0
φ

†
j (x)

(
−

h̄2

2m

d2

dx2

)
φ j(x)dx + g1D

∫ L

0
φ

†
↓
(x)φ

†
↑
(x)φ

↑
(x)φ

↓
(x)dx

−
1

2
H

∫ L

0

(
φ

†
↑
(x)φ

↑
(x) − φ

†
↓
(x)φ

↓
(x)

)
dx (1)

describes N δ-interacting spin-1/2 fermions of mass m constrained by periodic boundary
conditions to a line of length L and subject to an external magnetic field H . In this formulation,
the field operators φ↓ and φ↑ describe fermionic atoms in the respective states | ↑〉 and | ↓〉. The
δ-type interaction between fermions with opposite hyperfine states preserves the spin states such
that the Zeeman term in the Hamiltonian (1) is a conserved quantity. For convenience, we use
units of h̄ = 2m = 1 and define c = mg1D/h̄2 and a dimensionless interaction strength γ = c/n
for the physical analysis, where n = N/L is the linear density. The inter-component interaction
can be tuned from strongly attractive (g1D → −∞) to strongly repulsive (g1D → +∞) via
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Figure 1. BA root configurations for pairing and depairing in quasimomentum
space. For weakly attractive interaction, unpaired roots sit in the out wings
due to strong Fermi pressure. For strongly attractive interaction, unpaired
roots can penetrate into the central region, occupied by the bound pairs.
However, for weakly repulsive interaction the roots with up- and down-spins
separate gradually. In the strongly repulsive regime, the model forms an
effective Heisenberg spin chain with the antiferromagnetic coupling constant
J ≈ −4EF/γ [52], where EF = n2π 2/3 is the Fermi energy.

Feshbach resonance and optical confinement. The interaction is attractive for g1D < 0 and
repulsive for g1D > 0.

The model (1) was solved by Yang [47] and Gaudin [48] in the 1960s and has received
renewed interest in connection with ultracold atomic gases [20]–[32], [34, 35], [38]–[42]. The
energy eigenspectrum is given by E =

h̄2

2m

∑N
j=1 k2

j , where the BA wave numbers {ki} and the
rapidities {3α} for the internal spin degrees of freedom satisfy the BA equations:

exp(ik j L) =

M∏
`=1

k j − 3` + i c/2

k j − 3` − i c/2
,

N∏
`=1

3α − k` + i c/2

3α − k` − i c/2
= −

M∏
β=1

3α − 3β + i c

3α − 3β − i c
. (2)

Here j = 1, . . . , N and α = 1, . . . , M , with M the number of spin-down fermions.
The solutions to the BA equations (2), as depicted in figure 1, provide a clear pairing

signature and the ground-state properties of the model. The BA root distributions in the complex
plane were studied recently [23, 29]. The ground state for 1D interacting fermions with repulsive
interaction has antiferromagnetic ordering [23, 49, 50]. Rather subtle magnetism for the model
with repulsive interaction was recently studied [51, 52]. For attractive interaction, fermions with
different spin states can form BCS pairs with nonzero centre-of-mass momenta, which might
feature FFLO states [26, 28], [30]–[32], [34, 35].

In the weakly attractive regime, the weakly bound Cooper pairs are not stable due to
thermal and spin wave fluctuations. The unpaired fermions sit on two outer wings in the
quasimomentum space [23, 27] due to the Fermi pressure (see figure 1). The ground state
can only have one pair of fermions with opposite spins having a particular quasimomentum
k. The paired fermions occupy the central area in the quasimomentum k space. Indeed, we
find from the BA equations (2) that in the weak coupling limit, i.e. L|c| � 1, the imaginary
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part of the quasimomenta for a BCS pair is proportional to
√

|c|/L . However, for strongly
attractive interaction, i.e. L|c| � 1, the BCS pair has imaginary part ±i 1

2 |c|. In this regime,
the lowest spin excitation has an energy gap, which is proportional to c2. For the cross-over
regime, i.e. L|c| ∼ 1, the imaginary part ±iy is asymptotically determined by the condition
y tanh( 1

2 yL) ≈
1
2 |c|. For this cross-over regime, the spin gap might be exponentially small.

However, it is hard to analytically determine this small energy gap from the BA equations (2).
Nevertheless, for the weak coupling regime L|c| � 1, the bound state has a small binding energy
εb = h̄2n|γ |/mL , which has the same order of γ as the interacting energies of pair–pair and
pair–unpaired fermions. In this limit, the real parts of the quasimomenta satisfy the Gaudin
model-like BA equations [23, 36], which describe BCS pair–pair and pair–unpaired fermion
scattering. They form a gapless superconducting phase. Using the above BA root configuration,
the ground-state energy per unit length is given by [23]

E ≈
h̄2n3

2m

(
−

|γ |

2
(1 − P2) +

π2

12
+

π 2

4
P2

)
(3)

in terms of the polarization P = (N − 2M)/N . The first term in equation (3) includes the
collective interaction energy (pair–pair and pair–unpaired fermion scattering energy) and the
binding energy (internal energy). We see clearly that for large polarization (P ≈ 1) the small
portion of spin-down fermions are likely to experience a mean-field formed by the spin-up
medium. This is consistent with the observation of Fermi polarons in an attractive Fermi liquid
of ultracold atoms [37].

On the other hand, when the attractive interaction strength is increased, i.e. L|c| � 1, the
bound pairs gradually form hard-core bosons, while the unpaired fermions can penetrate into
the central region in the quasimomentum space (see figure 1). The main reason for the unpaired
fermions and BCS pairs having overlapping Fermi seas is that in 1D the paired and unpaired
fermions have different fractional statistical signatures such that they are allowed to pass into
each other in the quasimomentum space. In the thermodynamic limit, i.e. L → ∞, N → ∞ with
N/L finite, the binding energy of a pair is εb = h̄2n2γ 2/(4m). The dimensionless interaction
strength γ = c/n is inversely proportional to the density n. This signature leads to different
phase segments in 1D trapped fermions [25]–[27] than the phase separations in 3D trapped
interacting fermions, where the Fermi gas has been separated into a uniformly paired inner core
surrounded by a shell with the excess of unpaired atoms [6]–[8].

From the ground-state energy for the model with strong attraction and arbitrary
polarization [23], we find the finite-size corrections to the energy in the thermodynamic limit to
be given by

E(L , N ) − L E∞

0 ≈ −
π h̄C

6L
(vb + vu), (4)

where the central charge C = 1 and the group velocities for bound pairs vb and unpaired
fermions vu are

vb ≈
vF(1 − P)

4

(
1 +

(1 − P)

|γ |
+

4P

|γ |

)
,

vu ≈ vF P

(
1 +

4(1 − P)

|γ |

)
.

(5)
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Here the Fermi velocity is vF = h̄πn/m. In the above equation, E∞

0 is the ground-state energy
in the thermodynamic limit

E∞

0 ≈
h̄2n3

2m

{
−

(1 − P)γ 2

4
+

P3π2

3

(
1 +

4(1 − P)

|γ |

)
+

π 2(1 − P)3

48

(
1 +

(1 − P)

|γ |
+

4P

|γ |

)}
. (6)

The nature of the finite-size corrections indicates that two Fermi liquids couple to each other
and have different statistical signatures. The low energy physics is dominated by the charge
density fluctuations. The spin wave fluctuations are frozen out. In order to understand the pairing
signature and the subtle FFLO states in 1D, one should investigate density distributions, pairing
correlations and thermodynamics, which we do here through the TBA formalism. In particular,
we shall focus on magnetic properties and quantum phase transitions for the whole attractive
regime.

3. TBA

The TBA provides a powerful and elegant way to study the thermal properties of 1D integrable
systems. It also provides a convenient formalism to analyse quantum phase transitions and
magnetic effects in the presence of external fields at zero temperature [45], [53]–[55]. In
the thermodynamic limit, the grand partition function is Z = tr(e−H/T ) = e−G/T, in terms of
the Gibbs free energy G = E − H M z

− µn − T S and the magnetization H , the chemical
potential µ and the entropy S [45], [53]–[55]. The TBA equations for the attractive regime are
much more subtle and involved compared with those for the repulsive regime. In general, the
equilibrium states satisfy the condition of minimizing the Gibbs free energy G with respect to
the particle and hole densities for the charge and spin degrees of freedom that generates the TBA
equations (details are given in [53, 55, 56]). At zero temperature, the ground-state properties are
determined in terms of the dressed energies for the paired εb and unpaired fermions εu and the
function

am(x) =
1

2π

m|c|

(m c/2)2 + x2
(7)

by

εb(3) = 2

(
32

− µ −
1

4
c2

)
−

∫ B

−B
a2(3 − 3′)εb−

(3′)d3′
−

∫ Q

−Q
a1(3 − k)εu−

(k)dk,

εu(k) =

(
k2

− µ −
1

2
H

)
−

∫ B

−B
a1(k − 3)εb−

(3)d3,

(8)

which are the dressed energy equations [27, 45, 53] obtained from the TBA equations in the
limit T → 0. The superscripts ± denote the positive and negative parts of the dressed energies,
with the negative (positive) part corresponding to occupied (unoccupied) states. The integration
boundaries B and Q characterize the Fermi surfaces of the bound pairs and unpaired fermions,
respectively.

The Gibbs free energy per unit length at zero temperature is given by

G(µ, H) =
1

π

∫ B

−B
εb−

(3)d3 +
1

2π

∫ Q

−Q
εu−

(k)dk. (9)
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The TBA equations provide a clear configuration for band fillings with respect to the external
field H and chemical potential µ. The polarization P varies with respect to the external magnetic
field. From the Gibbs free energy we have the relations

−∂G(µ, H)/∂µ = n, −∂G(µ, H)/∂ H = n P/2. (10)

4. Magnetic properties in the weak coupling regime

For weak coupling |c| → 0 caution needs to be taken in the thermodynamic limit. On solving the
discrete BA equations (2) in the regime L|c| � 1 the imaginary part of the BCS-like pairs tends
to

√
|c|/L [23]. However, the TBA equations [27, 53] usually follow from the root patterns in the

thermodynamic limit, i.e. L , N → ∞ with N/L is fixed. Under this limit, we naturally have the
BA root patterns k j = 3 j ± i 1

2 |c| with j = 1, . . . , M for the charge degree and the string patterns
with equally spaced imaginary distribution for spin rapidity 3n

α, j = 3(n)
α + i1

2(n + 1 − 2 j)c, with
j = 1, . . . , n. Here the number of strings α = 1, . . . , Nn. 3n

α is the position of the centre for the
length-n string on the real axis in 3-space. Therefore, in the weak coupling limit, i.e. |c| → 0,
the integral BA equations and the TBA equations do not properly described the true solutions to
the discrete BA equations (2) unless under the thermodynamic limit conditions. Nevertheless,
the discrepancy is minimal, i.e. it is O(γ 2).

The BA equations (2) in principle give complete states of the model. However, at finite
temperatures, the true physical states become degenerate. The dressed energies in the TBA
equations (8) characterize excitation energies above the Fermi surfaces of the bound pairs and
unpaired fermions. All physical quantities, for example, free energy, pressure and magnetic
properties can be obtained from the TBA equations without deriving the spectral properties of
low-lying excitations. In the weak coupling limit, the interaction energy is proportional to |c|,
which is much less than the kinetic energy. Therefore, in this regime, the exact ground-state
energy with leading term of order |c| is precise enough to capture the nature of phase transitions
and magnetic ordering.

From the ground-state energy (3) we have the relation between the external field and
magnetization

H ≈
h̄2n2

2m

[
2π2mz + 4|γ |mz

]
, (11)

where mz
= M z/n and the magnetization is defined by M z

= n P/2. A linear field-dependent
behaviour of the magnetization is observed. Figure 2 shows the magnetization versus the field
H for different interaction values |γ |. We observe that the analytic results plotted from (11) are
in excellent agreement with the numerical curves evaluated directly from the dressed energy
equations (8). We also find that a fully paired ground state only occurs in the absence of the
external field. However, for H > Hc where

Hc = n2[π2 + 2|γ |] (12)

the fully polarized phase occurs. Paired and unpaired fermions coexist in the intermediate range
0 < H < Hc. The phase diagram for weak coupling is illustrated in figure 3.
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Figure 2. Magnetization M z/n versus external field H in units 2m = h̄ = 1 with
weak coupling |c| = 1 for different densities n. The dashed lines are plotted
from the analytic result (11). Excellent agreement between the analytic result
and numerical solution of the integral equations (8) (solid lines) is seen.
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Figure 3. Phase diagram for weak coupling value |c| = 1. The dashed line plotted
from the analytic result (12) is in excellent agreement with the coloured phases,
which are obtained from numerical solutions of the dressed energy equations (8).

5. Solutions to the dressed energy equations

In this section, we solve the dressed energy equations (8) analytically in the strong coupling
regime to obtain explicit forms for the critical fields and magnetic properties in terms of the
interaction strength γ . We present a systematic way to obtain these physical properties up
to order 1/|γ |

3 which gives a very precise phase diagram for finite strong interaction. Here,
we note that Iida and Wadati [29] have presented a different method to solve the dressed
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energy equations. We have solved the dressed energy equations (8) numerically in the whole
attractive regime to compare with the analytic results. Excellent agreement between numerical
and analytical results is found.

First consider the ground state P = 0. Following the method developed in [27] where the
dressed energy equations (8) are asymptotically expanded in terms of 1/|c|, the ground state
dressed energy equation for P = 0 is given by

εb(3) ≈ 2(32
− µ̄) −

|c|

π

∫ B

−B

εb(3′)

c2 + (3 − 3′)2
d3′ (13)

with µ̄ = µ + (c2/4). For convenience, we introduce the notation

pb
= −

1

π

∫ B

−B
εb(3)d3, (14)

pu
= −

1

2π

∫ Q

−Q
εu(k)dk (15)

for the pressure of bound pairs and un-paired fermions. Since the Fermi point B is finite, we
can take an expansion with respect to 3′ in the integral in equation (13). By a straightforward
calculation, the pressure pb is found to be

pb
≈ −

4

π

(
B3

3
− µ̄B

)
−

2B

π

pb

|c|
+

128

45π2|c|3
(µ̄)3. (16)

We obtained this equation by iteration in terms of pb and µ̄. In such a way, the accuracy of
physical quantities can be controlled to powers of 1/|c|. This provides a systematic way to obtain
accurate results from dressed energy equations. It is free from restriction on the integration
boundaries B and Q. Furthermore, from equation (16) and the condition εb(±B) = 0, we find

B2
≈ µ̄ −

pb

2|c|
+

8

5π |c|3
(µ̄)5/2. (17)

Finally, using the above equations and the relation ∂pb/∂µ = n, the pressure per unit length
follows as

pb
≈

h̄2n3

2m

π2n3

24

(
1 +

3

2|γ |
+

3

2|γ |2
+

1

4|γ |3

(
5 −

π2

3

))
(18)

and the energy per unit length is

E0 ≈
h̄2n3

2m

{
−

γ 2

4
+

π 2

48

[
1 +

1

|γ |
+

3

4|γ |2
+

1

2|γ |3

(
1 −

π2

15

)]}
. (19)

The dressed energy equations (8) can also be solved analytically for 0 < P < 1.
Following [27], we define µ̃ = µ + H/2 . We note that the Fermi points Q and B are still finite in
the presence of an external field H . Similar to the case P = 0, using the conditions εb(±B) = 0
and εu(±Q) = 0, we obtain the relations

pb
≈ −

4

π

(
B3

3
− µ̄B

)
−

2B

π

pb

|c|
−

8B

π

pu

|c|
+

128µ̄

45π 2|c|3
+

64(µ̄)3/2(µ̃)3/2

9π2|c|3
+

64(µ̄)1/2(µ̃)5/2

15π 2|c|3
, (20)
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pu
≈ −

Q

π

(
Q2

3
− µ̃

)
−

2Q

π

pb

|c|
+

64(µ̄)3/2(µ̃)3/2

9π 2|c|3
+

64(µ̃)1/2(µ̄)5/2

15π 2|c|3
(21)

and

B2
≈ µ̄ +

pb

2|c|
−

2pu

|c|
+

4µ̄5/2

3π |c|3
+

16µ̃2/2µ̄

3π |c|3
+

4(µ̄)5/2 + 16(µ̃)5/2

15π |c|3
,

Q2
≈ µ̃ −

2pb

|c|
+

64(µ̄)3/2µ̃

3π |c|3
+

64(µ̄)5/2

15π |c|3
.

(22)

After eliminating B and Q, we have

pb
≈

8

3π

(
µ̄ −

pb + pu

2|c|
+

24(µ̄)5/2 + 16(µ̃)5/2 + 80(µ̃)3/2µ̄

15π |c|3

)3/2

−
160(µ̄)3 + 640(µ̄)3/2(µ̃)3/2

45π 2|c|3
,

(23)

pu
≈

2

3π

(
µ̃ −

2pb

|c|
+

64(µ̄)3/2µ̃

3π |c|3
+

64(µ̄)5/2

15π |c|3

)3/2

−
128(µ̄)3/2(µ̃)3/2

9π |c|3
. (24)

Obviously, the pressures pb and pu are functions of µ̄, µ̃ and the interaction strength c,
i.e. pb

= pb(µ̄, µ̃, |c|) and pu
= pu(µ̄, µ̃, |c|). Furthermore, taking into account the relations

(∂pb/∂ H) + (∂pu/∂ H) = P/2 and (∂pb/∂µ) + (∂pu/∂µ) = n, after a tedious calculation we
find the effective chemical potentials for the pairs µb

= µ + εb/2 and for the unpaired fermions
µu

= µ̃ = µ + H/2. Explicitly,

µu
≈

h̄2n2π 2

2m

{
P2 +

(1 − P)(49P2
− 2P + 1)

12|γ |
+

(1 − P)2(93P2 + 2P + 1)

8γ 2

−
(1 − P)

240|γ |3

[
1441π 2 P4

− 7950P4
− 324π2 P3 + 15720P3

− 7620P2

+166π 2 P2
− 120P − 4π 2 P − 30 + π2

] }
, (25)

µb
≈

h̄2n2π 2

2m

{
(1 − P)2

16
+

(3P + 1)(6P2
− 3P + 1)

12|γ |
+

(1 − P)(5 + 17P − P2 + 491P3)

64γ 2

+
1

240|γ |3

[
15(1 + 2P2) + 7470P3 + 10π2 P2

− 180π 2 P3

+335π 2 P4
− 420π2 P5

− 15405P4
− π2 + 75P + 7815P5

] }
. (26)

These results give rise to a full characterization of two Fermi surfaces. The total chemical
potential can be determined from either µb

= µ + εb/2 or from µu
= µ + H/2. The chemical

potentials for the fermions with spin-up and spin-down states are determined by µ↑ = µ + H/2
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Unpaired

Paired

Dressed energy

Quasimomentum

Figure 4. Schematic dressed energy configuration for the gapless phase in the
vicinity of Hc1.

and µ↓ = µ − H/2. The energy for the model with arbitrary population imbalances can be
obtained from E/L = µn − G + H P/2, with result

E

L
≈

h̄2n3π 2

2m

{
−

(1 − P)γ 2

4
+

π2(1 − 3P + 3P2 + 15P3)

48

+
π 2(1 − P)(1 + P − 5P2 + 67P3)

48|γ |
+

π 2(1 − P)2(1 + 5P + 3P2 + 247P3)

64γ 2

−
π2(1 − P)

1440|γ |3

[
−15 + 31125P4 + 1861π2 P5

− 15765P5
− 659π2 P4

+346π 2P3
− 14π2P2 + π2P + π2

− 105P − 150P2
− 15090P3

] }
. (27)

This result provides higher order corrections in terms of the interaction strength γ compared
with previous studies [27, 29].

6. Quantum phase transitions

In section 4, we examined magnetic effects and phase transitions for spin-1/2 weakly attractive
fermions with polarization. As the attractive interaction strength |γ | increases, the bound pairs
become stable and form a singlet ground state. The ground-state configuration is characterized
by an empty unpaired Fermi sea, whereas the Fermi sea of the bound pairs is filled up to the
Fermi surface. The first critical field value Hc1 diminishes the gap, thus the excitations are
gapless. This critical field indicates a phase transition from a singlet ground state into a gapless
phase where two Fermi liquids of paired and unpaired fermions couple to each other. These
configurations are depicted in figure 4.
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Analysis of the dressed energy equations (8) reveals that a fully paired phase with
magnetization M z

= 0 is stable when the field H<Hc1, where

Hc1 ≈
h̄2n2

2m

[
γ 2

2
−

π 2

8

(
1 −

3

4|γ |2
−

1

|γ |3

)]
. (28)

In the vicinity of the critical field Hc1, the system exhibits a linear field-dependent magnetization

M z
≈

2(H − Hc1)

nπ 2

(
1 +

2

|γ |
+

11

2γ 2
+

81 − π2

6|γ |3

)
(29)

with a finite susceptibility

χ ≈
2

nπ 2

(
1 +

2

|γ |
+

11

2γ 2
+

81 − π2

6|γ |3

)
. (30)

This universality class of linear field-dependent magnetization behaviour is also found for
the multicomponent Fermi gases with attractive interaction [57]. However, it differs subtly from
the case of a Fermi–Bose mixture due to the different statistical signature of a boson and a
bound pair of fermions with opposite spin states [52]. For the model under consideration here
the magnetic properties in this gapless phase can be exactly described by the external field-
magnetization relation

1
2 H =

1
2εb + µu

− µb, (31)

where µu and µb are given by (25) and (26) with P = 2M z/n = 2mz. This relation reveals an
important energy transfer relation among the binding energy, the variation of Fermi surfaces
and the external field. This relation might provide evidence for the pairing signature in
a 1D imbalanced Fermi gas with attractive interaction, i.e. pairs with nonzero centre-of-
mass momenta. The lower critical field is reminiscent of the Meissner effect, whereas the
upper critical field determined by (31) is reminiscent of a quantum phase transition from
superconducting to normal states [58]. Figure 5 shows the magnetization versus external field
for different values of the interaction strength γ . Numerical solution of the dressed energy
equations (8) shows that the analytic results are highly accurate in the strong and finitely strong
coupling regimes.

A similar configuration occurs for the external field exceeding the upper critical field Hc2,
given by

Hc2 ≈
h̄2n2

2m

[
γ 2

2
+ 2π2

(
1 −

4

3|γ |
+

16π 2

15|γ |3

)]
, (32)

where a phase transition from the mixed phase into the normal Fermi liquid phase occurs.
Figure 6 shows this configuration in the dressed energy language. From the relation (31), we
obtain the linear field-dependent magnetization as

M z
≈

n

2

[
1 −

Hc2 − H

4n2π 2

(
1 +

4

|γ |
+

12

γ 2
−

16(π 2
− 6)

3|γ |
3

)]
(33)

with a finite susceptibility

χ ≈
1

8nπ2

(
1 +

4

|γ |
+

12

γ 2
−

16(π 2
− 6)

3|γ |
3

)
. (34)
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Figure 5. Magnetization M z/n versus the external field H/εb for c = −10 in
the units 2m = h̄ = 1 for different densities n. The dashed lines are plotted
from the analytic result (31). The solid curves are obtained from numerical
solutions of the dressed energy equations (8). Excellent agreement is seen
between the analytic and numerical results. The inset shows a similar comparison
between analytic and numerical results for the susceptibility versus the external
field H/εb.
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Figure 6. Schematic dressed energy configuration for the gapless phase in the
vicinity of Hc2.
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Figure 7. Phase diagram for finite strong interaction with |c| = 10. The dashed
lines are plotted from equations (28) and (32). The coloured phases are obtained
by numerical solution of the dressed energy equations (8). The numerical phase
transition boundaries coincide well with the analytic results (28) and (32).

A typical phase diagram in the n − H plane for finite strong interaction is shown in figure 7.
Smooth magnetization curves at the critical fields Hc1 and Hc2 indicate second-order phase
transitions. Very good agreement is observed between the curves obtained from the numerical
solution of the dressed energy equations and the analytical predictions (28) and (32) for the
critical fields.

7. Conclusion

In summary, we have studied magnetic properties and quantum phase transitions for the 1D
BA integrable model of spin-1/2 attractive fermions. The previous work on this model has
been extended to derive higher order corrections for the ground-state energy, pressure, chemical
potentials, magnetization, susceptibility and critical fields in terms of the external magnetic
field, density and interaction strength. The range and applicability of the analytic results have
been compared favourably with numerical solutions of the dressed energy equations. The
universality class of linear field-dependent behaviour of the phase transitions in the vicinity
of the critical field values has been predicted for the whole attractive regime. This universal
behaviour is consistent with the prediction for the 1D Hubbard model [59]. However, it appears
not to support the argument [45, 46] for a van Hove-type singularity of quantum phase transition
for 1D attractive fermions. Finite temperature properties of 1D interacting fermions will be
considered elsewhere.

We further confirm that 1D strongly attractive fermions with population imbalance exhibit
three quantum phases, subject to the value of the external field H [27]: (i) for H <Hc1 bound
pairs form a singlet ground state, (ii) for H >Hc2 a completely ferromagnetic phase without
pairing occurs, and (iii) for the intermediate range Hc1<H <Hc2 paired and unpaired atoms
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coexist. The typical phase diagram is as depicted in figure 7. However, for weak coupling, the
BCS-like pairing is unstable. Two quantum phases emerge when the external field is applied: (i)
a fully polarized phase for H >Hc and (ii) a coexisting phase of paired and unpaired fermions
for 0<H <Hc. The phase diagram for weak coupling is illustrated in figure 3. We have shown
that the mixed phase in 1D interacting fermions with polarization can be effectively described by
two coupled Fermi liquids. Our exact phase diagrams for the weak and strong coupling regimes
also provide a space segment signature for an harmonically trapped Fermi gas in 1D geometry.
These quantum phases and magnetic properties may also possibly be observed in experiments
with ultracold fermionic atoms [60, 61].
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