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Observation of Dipole-Mode Vector Solitons
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We report on the first experimental observation of a novel type of optical vector soliton, a dipole-
mode soliton, recently predicted theoretically. We show that these vector solitons can be generated in a
photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking
instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with
the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.

PACS numbers: 42.65.Tg, 05.45.Yv, 42.65.Hw
Optical spatial solitons in �2 1 1� dimensions are par-
ticlelike solitary waves propagating in a nonlinear bulk
medium [1]. The exhaustive research of the past decade
has shown that these “light particles” can possess topo-
logical phase properties analogous to a charge. Moreover,
several light beams can combine to produce a vector soli-
ton with a complex internal structure. This process can be
thought of as the formation of a “solitonic molecule” from
the constituents of different charge.

Recently, the existence of the most robust “solitonic
molecule,” the dipole-mode vector soliton, has been pre-
dicted [2]. This novel optical vector soliton originates from
trapping of a dipole-mode beam by a waveguide created by
a fundamental soliton in the copropagating, incoherently
coupled, beam. While many other topologically complex
structures may be created, it is only the dipole mode that
is expected to generate a family of dynamically robust vec-
tor solitons [2]. The closest counterexample is the vortex-
mode vector soliton [3] which has a nodeless shape in one
component and a ringlike vortex in the other component.
This radially symmetric, vector soliton undergoes a non-
trivial symmetry-breaking instability [2,4], which trans-
forms it into a more stable object—radially asymmetric
dipole-mode vector soliton, even in an isotropic nonlinear
medium.

While the existence and robustness of the dipole-mode
vector solitons have been established theoretically for a
general model of an isotropic medium with saturable non-
linearity [2], the main question still stands: Is the stability
of these asymmetric solitons, as opposed to the radially
symmetric vortex-mode solitons, a fundamental phenome-
non that can be demonstrated experimentally?

In this Letter we answer this question positively. We
observe dipole-mode solitons in strontium barium niobate
(SBN) photorefractive crystals experimentally, by employ-
ing two different techniques. First, we use a specially fab-
ricated phase mask to create a dipolelike structure in one
of the copropagating, mutually incoherent, beams. Sec-
ond, we observe the symmetry breaking of the vortex-
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mode soliton and the formation of a dipole-mode soliton,
as predicted by the theory.

Theoretical results.—We consider two incoherently
interacting optical beams propagating in a bulk, isotropic,
saturable medium. The model describes �2 1 1�-
dimensional screening solitons in photorefractive (PR)
materials in the isotropic approximation [5]. It represents
a great simplification with respect to a more realistic
treatment taking into account the inherent anisotropy of
the nonlocal nonlinear response of a PR crystal [6,7].
However, we will show that it does provide correct
qualitative predictions of the phenomena observed ex-
perimentally. Moreover, due to the generality of the
model, one can expect to observe similar effects in other
nonlinear isotropic or weakly anisotropic systems.

The normalized equations for the slowly varying beam
envelopes, E1 and E2, can be written as follows [5,8]:
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where D� is the transverse Laplacian and z is the
propagation direction. Stationary, �2 1 1�-dimensional
solutions of these equations can be found in the form E1 �p

b1 u�x, y� exp�ib1z�, E2 �
p

b1 w�x, y� exp�ib2z�,
where b1 and b2 are two independent propagation
constants. Measuring the coordinates x and y in the
units of

p
b1, and introducing the soliton parameter

l � �1 2 b2���1 2 b1�, we derive the stationary equa-
tions for the normalized envelopes u and w:

D�u 2 u 1 F�I�u � 0 ,

D�w 2 lw 1 F�I�w � 0 ,
(2)

where F�I� � I�1 1 sI�21, I � u2 1 w2, and s � 1 2

b1 is the saturation parameter. The limit s ! 0 corre-
sponds to the Kerr medium [4].

As has been recently shown in [2], when one of the
beams components, say w, is weak, a soliton formed by
the u component induces a change in the refractive in-
dex of the PR material that traps and guides the weaker w
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component. If the waveguide is induced by a fundamen-
tal, bell-shaped soliton, its nonlinear guided modes form
a set analogous to the Hermite-Gaussian and Laguerre-
Gaussian linear modes supported by a radially symmetric
waveguide [9]. At higher intensities of the trapped beam,
the two beams form a vector soliton that is self-trapped
by a composite refractive index change induced by both
beams. Apart from the bell-shaped vector solitons genera-
ted by the ground-state mode of the soliton-induced wave-
guide, one can anticipate various types of higher-order
�2 1 1�-dimensional vector solitons. For example, a ra-
dially symmetric vortex-mode vector soliton [3,4] is gen-
erated by a nodeless beam guiding the component with a
nonzero topological charge and the doughnut structure of
a Laguerre-Gaussian �LG1

0� mode. A radially asymmet-
ric dipole-mode vector soliton [2] has one nodeless com-
ponent, while the other component has a structure of a
Hermite-Gaussian �HG01� mode.

The existence domain for the radially asymmetric
dipole-mode vector solitons of our model (2) was deter-
mined in Ref. [2]. A typical example of such a soliton is
shown in Fig. 1(a), along with a phase distribution in a
dipole-mode constituent. For any given s, the solutions are
characterized by a certain cutoff value l, when the dipole-
mode component vanishes. Near the cutoff, the vector
soliton can be approximately described by the linear
waveguiding theory. With increasing l, the w component
grows and deforms the effective waveguide generated
by the u mode, so that the u component elongates and
becomes radially asymmetric. The linear and dynamical
stability analysis of these solitons has revealed their
astounding dynamical stability, with respect to both
small- and large-amplitude perturbations [2]. Overall, the
analysis performed in [2] suggested that the dipole-mode
vortex solitons would lend themselves to experimental

(a) (b)
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FIG. 1. Examples of constituents of (a) dipole-mode and
(b) vortex-mode vector solitons for s � 0.3 and s � 0.65,
respectively (top and middle row) shown with the phase dis-
tributions needed to generate the w component experimentally
(bottom row).
observation more easily than their unstable vortex-mode
counterparts.

The family of radially symmetric vortex-mode solutions
of Eqs. (2), in the form: u � u�r�, w � w�r� exp�imf�,
where r �

p
�x2 1 y2�, has been numerically found in

[2,4]. The u component of this solution has no topologi-
cal charge and the w component carries a single-charged
vortex (m � 61). In Fig. 1(b), we present a typical so-
lution of this family, along with the helical phase distri-
bution needed to generate a vortex in the w component.
The dynamical and linear stability analysis of these solu-
tions conducted in [2,4] has proved that all such vortex-
mode vector solitons are linearly unstable. The instability
growth rate is positive for any vanishingly small amplitude
of the w component, and it increases rapidly with the vor-
tex intensity.

Remarkably, an unstable vortex-mode soliton displays
a symmetry-breaking instability. It always decays into a
radially asymmetric dipole-mode soliton with nonzero an-
gular momentum which can survive for very large propaga-
tion distances [2]. The breakup of the vortex-mode vector
soliton in a saturable medium is a nontrivial effect which,
as we show below, can be used to observe dipole-mode
vector solitons in PR crystals.

Experimental techniques.—Formation of dipole mode
vector solitons has been investigated using an experimen-
tal setup shown schematically in Fig. 2. An extraordi-
nary polarized laser beam (l � 532 nm) was split into
two parts. The first beam was then transmitted through
the phase mask (or glass slide) in order to imprint the re-
quired phase structure. In this way, we could obtain either
an optical vortex with intensity vanishing in the center of
the beam [see Fig. 1(b)] or a dipolelike structure with a
phase jump of p across the beam along its transverse di-
rection [see Fig. 1(a)] that is perpendicular to the optical
axis of the crystal [the axis �c� in Fig. 2]. The second
beam was transmitted through the system of spherical
or/and cylindrical lenses in order to form either a circu-
lar or elliptically shaped spot of desired size. The beams
were later combined using the beam splitter BS2 and fo-
cused into the input face of the photorefractive crystal. We
used two samples of the ferroelectric SBN crystal doped
with cerium (0.002% by weight). Their dimensions �a 3

b 3 c� are �10 3 6 3 5� mm or �15 3 8 3 5� mm. It is
well known that photorefractive crystals biased with strong

FIG. 2. Experimental setup.
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FIG. 3. (a) Results of numerical simulations showing
the generation of a stable dipole-mode soliton (s � 0.65,
l � 0.5, z � 35). (b) Experimental results showing forma-
tion of a dipole-mode soliton (bottom) from the two out-
of-phase beams (top, right) and copropagating Gaussian
beam (top, left). Experimental parameters are V � 2 kV,
z � 15 mm, and the initial powers of the u and w components
Pu � Pw � 0.6 mW.

dc electric field exhibit strong positive or negative non-
linearity depending on the polarity of the field [10]. In
our case, the SBN crystal was biased with the dc field of
1.5–2.5 kV applied along an optical axis [the axis (c) in
Fig. 2]. The resulting photorefractive nonlinearity was of
a self-focusing, saturable character.

To control the degree of saturation, we illuminated the
crystal with a wide beam derived from a white light source.
We estimated the initial (i.e., at the input face of the crys-
tal) degree of saturation to be of the order of unity in all
our experiments. Since both the components forming a
vector soliton have to be mutually incoherent, one of the
constituent beams was reflected from a vibrating mirror
mounted on a piezoelectric transducer (M2, PZT). Driv-
ing this transducer with an ac signal of 1 kHz imposed a
frequency shift onto the beam. This made both beams ef-
fectively incoherent inside the photorefractive crystal as the
slow photorefractive response does not follow fast changes
of the relative phase between the beams. In all our experi-

FIG. 4. (a) Results of numerical simulations showing strong
repulsion of the input dipole-mode lobes without the second
component. (b) Experimental results showing the strong repul-
sion the two out-of-phase solitons formed by the dipole lobes
without the copropagating Gaussian beam [theoretical and ex-
perimental parameters as in Figs. 3(a) and 3(b)].
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FIG. 5. Suppression of the vortex filamentation due to modula-
tional instability in the presence of a copropagating fundamental-
mode beam (see discussion in the text). Numerical results are
obtained for s � 0.65 and l � 0.5: (a) z � 35, (b) z � 90.

ments the initial power of the beams did not exceed a few
microwatts.

Experiment vs theory.—First, we generate the dipole-
mode soliton by applying a phase mask to one of the in-
put beams to create a dipolelike structure as in Fig. 1(a).
If the dipole-mode bearing beam is launched simultane-
ously with a Gaussian beam shown in Fig. 3(b) (top row),
and the two beams are made mutually incoherent, a ro-
bust dipole-mode vector soliton is generated [Fig. 3(b),
bottom row]. However, when a dipole-mode-bearing beam
is launched in the absence of a Gaussian beam, two out-of-
phase lobes of the dipole beam form two coherently inter-
acting fundamental solitons that strongly repel each other
[Fig. 4(b)].

Our numerical simulations of the original equations (1)
provide excellent agreement with the experiment, as is
seen in Figs. 3(a) and 4(a). The propagation distance of
z � 35 used in these simulations corresponds to �9 mm
propagation distance in the PR crystal, which is a priori
smaller than the crystal length in most experimental runs.

Next, we examine experimentally a nontrivial breakup
of the vortex mode in the presence of the Gaussian beam.
Without the Gaussian beam, a scalar vortex exhibits fila-
mentation due to the modulational instability [11,12]. An
intermediate stage of a complex vortex filamentation is
shown in Fig. 5(a). The corresponding results of an ex-
perimental propagation of a single-charge vortex is shown

FIG. 6. Experimental demonstration of suppression of the vor-
tex filamentation in the presence of copropagating fundamen-
tal-mode beam. Shown are (a) the vortex-bearing input beam,
(b) output beam after propagating without the Gaussian beam,
(c) output intensity of the dipole-mode soliton formed by two co-
propagating vortex and Gaussian beams, and (d) intensity of the
dipole-mode constituent of the two-component vector soliton.
Parameters are V � 2.3 kV, Pu � Pw � 0.3 mW, z � 6 mm.
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FIG. 7. Numerical results showing the intensity and phase dis-
tribution for the dipole-mode component of a vector soliton
formed via decay of a vortex-mode vector soliton (s � 0.3,
l � 0.6, z � 30).

in Figs. 6(a) and 6(b). The filamentation picture is differ-
ent in the experimental situation owing to the impurities
and the inherent anisotropy of the nonlocal nonlinear re-
sponse of a PR crystal. When the vortex component w
is launched simultaneously with the uncharged compo-
nent u, the scenario of the instability development changes
dramatically. The vortex-mode instability leads to the
formation of a dipole-mode vector soliton, as we demon-
strate numerically [see Fig. 5(b)] and experimentally [see
Figs. 6(c) and 6(d)]. Importantly, the phase distribution
across the profile of the resulting dipole-mode beam cal-
culated numerically and measured in the interference ex-
periment [see Figs. 7 and 8] confirms that the observed
localized two-component structure is indeed the dipole-
mode vector soliton predicted theoretically.

FIG. 8. Experimental results showing (a,c) the intensities and
(b,d) interference pattern for the dipole-mode lobes generated
(a,b) via the phase-imprinting experiment, as in Fig. 3(b), and
(c,d) via the symmetry breaking of a vortex-mode soliton, as in
Figs. 6(c) and 6(d). The shift seen in the interference fringes
of the dipole-mode lobes overlapped with a mutually coher-
ent plane wave (b,d) is the result of the p phase difference
between the lobes. Parameters are (a,b) V � 1.8 kV, Pu �
Pw � 1 mW, z � 15 mm; (c,d) corresponds to V � 1.8 kV,
Pu � 1.7 mW, Pw � 0.4 mW, z � 10 mm.
In conclusion, we have generated experimentally a novel
type of vector optical soliton in a bulk medium. This soli-
ton has a radially asymmetric structure and originates from
trapping of a dipole mode by the soliton-induced wave-
guide, being much more robust than the corresponding
vortex-mode vector soliton. Our experimental results are
verified by a systematic comparison with the theory.
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